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Abstract 

 
 
 
 

Inspecting what you expect: Applying modern tools and techniques to evaluate the effectiveness 
of household energy interventions 

 
 
 

by 
 

Ajay Pillarisetti 
 

Doctor of Philosophy in Environmental Health Sciences 
 

and Designated Emphasis in Development Engineering 
 

University of California, Berkeley 
 

Professor Kirk R. Smith, Chair 
 
 
 
Exposure to fine particles (PM2.5) resulting from solid fuel use for household energy needs – 
including cooking, heating, and lighting – is one of the leading causes of ill-health globally and is 
responsible for approximately 4 million premature deaths and 84 million lost disability-adjusted 
life years globally. The well-established links between cooking and ill-health are modulated by 
complex social, behavioral, technological, and environmental issues that pose unique challenges 
to efforts that seek to reduce this large health burden. Despite growing interest in the field – and 
numerous technical solutions that, in the laboratory at least, reduce emissions of harmful air 
pollutants from solid fuel combustion – there exists a need for refined tools, models, and 
techniques (1) for measuring environmental pollution in households using solid fuel, (2) for 
tracking adoption of interventions, and (3) for estimating the potential health benefits attributable 
to an intervention.  
 
Part of the need for higher spatial and temporal resolution data on particular concentrations and 
dynamics is being met by low-cost sensing platforms that provide large amounts of time-resolved 
data on critical parameters of interest, including PM2.5 concentrations and time-of-use metrics for 
heat-generating appliances, like stoves. Use of these sensors can result in non-trivial challenges, 
including those related to data management and analysis, and field logistics, but also enables 
novel lines of inquiry and insight. Chapter 2 presents a long-term deployment of real-time PM2.5 
sensors in rural, solid-fuel-using kitchens, specifically seeking to evaluate how well commonly 
measured 24 or 48-hour samples represent long-term means. While short-term measures were 
poor predictors of long-term means, the dataset enabled evaluation of numerous sampling 
strategies – including sampling once per week, month, or season – that had much lower errors 
and higher probabilities of estimating the true mean.  



 

 

2 
Chapters 3 and 4 describe the selection and deployment of 200 advanced cookstoves to pregnant 
women in rural Palwal District, Haryana, India. Chapter 3 focuses on selection and evaluation of 
an intervention stove in the community, including preliminary measurement of exposure to 
PM2.5 and CO. These data suggest one method of piloting interventions and exposure assessment 
methods prior to larger rollouts to ensure community acceptability and feasibility. Chapter 4 
specifically addresses adoption and use of the intervention stove over a period of approximately 
one year through the deployment of data-logging thermometers on 200 traditional and 
intervention stoves. Intervention stove use declined steadily over time and stabilized after 
approximately 200 days, while use of the traditional stove remained constant, emphasizing the 
need for monitoring both traditional and intervention stoves and for monitoring for periods of 
time beyond just the initial deployment to truly understand use. Chapter 4 additionally 
investigated intervention stove failures and how well short measures of stove use predict long-
term trends (similar to the analysis performed in Chapter 2).  
 
Chapter 5 focuses on utilizing the best available knowledge of exposure-response relationships to 
estimate the potential health impacts of an intervention at the national level in a software 
package called HAPIT, the Household Air Pollution Intervention Tool. HAPIT combines 
background disease data from the 2010 Global Burden of Disease with demographic and 
socioeconomic data and relative risk estimates from the integrated exposure-response curves to 
estimate disability-adjusted life years (DALYs) and deaths that could be averted by an exposure-
reducing household air pollution intervention. Chapter 5 outlines the methodologies powering 
HAPIT and contains two example scenarios – one in which open fires are replaced by well-
operating chimney stoves, and a second where they are replaced by LPG -- informed by data 
from the RESPIRE trial and ongoing work in Guatemala.  
 
Chapter 6 synthesizes work from the proceeding chapters and offers suggestions for future lines 
of inquiry.  
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“Not only does cooking mark the transition from nature to culture, 
but through it and by means of it, the human state can be 

defined with all its attributes...” 
 

Claude Lévi-Strauss, The Raw and the Cooked 
 
 
 
 
 
 
 
 

“Double, double toil and trouble; 
Fire burn, and cauldron bubble.” 

 
William Shakespeare, Macbeth, Act iv, Scene 1 
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Chapter 1 
 
Introduction 
 
 
1.1 Background 
 
Globally, approximately 2.8 billion people rely on biomass – including wood, crop residues, and 
dung – as fuel for cooking.1 Inefficient combustion of these fuels, often in simple, unvented stoves, 
results in exposure to hazardous air pollutants responsible for approximately 3.9 million deaths 
yearly2, placing it fourth overall and highest in total burden of disease amongst environmental 
risk factors in the 2010 Global Burden of Disease (GBD-2010).3  
 
Studies across the developing world have demonstrated that decreased indoor air pollutant 
concentrations can be achieved by venting pollution outdoors or by decreasing emissions from 
the stove.4-7 Often, these reductions are associated with transitioning from traditional stoves and 
open fires to ‘improved’ chimney stoves, which enclose the combustion chamber and move 
pollution from the kitchen into the outdoor environment. Analyses from the first household 
energy and health randomized control trial found that chimney stoves failed to reduce emissions, 
instead simply shifting pollution outside – some of which re-infiltrated the home and some of 
which remained outdoors.8 Exposure reductions and health benefits resulting from these stoves, 
while present, were not of the magnitude expected or desired.  
 
Potential explanations for this lack of exposure reduction include the inability of the intervention 
stove to adequately drive down emissions and concomitant exposures; the intervention stove 
being used in tandem with the existing, traditional stove, therein offering attenuated or no 
exposure benefits; the presence of additional, unmonitored sources of air pollution that may 
contribute to elevated background concentrations; and chimney interventions solely shifting the 
pollution from the home to the near-home outdoor environment, where exposure still occurs. 
Recent stove design innovations focus on decreasing emissions by increasing air flow through the 
combustion chamber and stabilizing combustion conditions – preventing the release of the 
pollutants, instead of simply moving them into the near-home environment. Many of these so-
called ‘advanced cookstoves’ show admirable performance at reducing emissions in the 
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laboratory9 but only mediocre improvements in reducing concentrations of and exposure to 
health-damaging pollutants in real world evaluations.10-12 Whatever the reason, the sub-optimal 
exposure reductions seen in before and after evaluations of various cookstove interventions 
indicate substantial room for improvement to truly protect health. 
 
Estimating the health benefits of any exposure reduction to particulate air pollution is 
complicated by highly non-linear ‘integrated exposure-response’ functions (IERs)2,13, modeled by 
Burnett et al (2014) from studies of the relationship between health effects and exposure to 
particles from ambient air pollution, active smoking, and second-hand tobacco smoke. Given the 
supralinear shape of the IERs (described in more detail and visually depicted in Chapter 5) for 
many health effects, including cardiovascular disease, pulmonary disease, and acute lower 
respiratory infection, the modest exposure improvements provided by chimney and rocket stoves 
result in relatively small health benefits. Thus, to maximize health benefits, interventions must 
move exposure significantly ‘down the curve’ by vastly decreasing emissions and almost 
completely displacing use of the traditional stove14.  
 
Despite the limited successes of past stove programs, there is a renewed focus on household 
energy interventions – enhanced recently by the formation of the Global Alliance for Clean 
Cookstoves (GACC), spearheaded in 2010 with support from then Secretary of State Hillary 
Rodham Clinton. Funding from GACC and other governmental and non-governmental 
agencies has spurred methodological innovations in household air pollution (HAP)-related study 
design, exposure assessment, modeling, and impact estimation. There is an additional focus in 
late 2015 on evaluating the potential for truly clean cooking with liquid fuels or electricity to 
impact health, spearheaded by the United States National Institutes of Health (NIH).  
 
During the last decade, the cookstove evaluation field has benefitted from use of low-cost, high-
resolution, high-frequency data loggers based on off-the-shelf sensing technologies. Our research 
group pioneered the use of these sensors with the development of the University of California, 
Berkeley Particle and Temperature Sensor (UCB-PATS)15-17, the Berkeley Aerosol Information 
Recording System (BAIRS)18 and the adaptation of commercial iButton technology into the 
Stove Use Monitoring System (SUMS)19-21. We are additionally assisting in the development of 
new stove use monitors based on low-cost thermocouples, an updated version of the UCB-PATS 
known as the PATS+, and creation of a low-cost system to evaluate air exchange rates in rural 
settings known as ARMS (air exchange rate monitoring system).  
 
The volume of data generated by these sensors allows researchers to better understand variability 
within and between homes and can draw into question standard exposure assessment practices – 
including the common use of 24- or 48-hour pollutant measurements as a surrogate for long-
term exposures, the practice of short-term monitoring of intervention stove usage to determine 
uptake and/or adoption, and the necessity of continuous monitoring of both use and measures of 
pollution. Use of these devices and their data is not without issues, including such challenges as 
standardized sensor placement, sensor calibration, data handling and analysis and translation of 
data into meaningful, policy-relevant metrics. The spread of, and challenges arising from, these 
sensors is, of course, not limited to HAP assessments – findings from other disciplines, including 
water and sanitation22,23, ambient air monitoring24, and climate change offer discipline-specific 
best practices. 
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1.2 Key contributions 
 
Leveraging advances in microelectronics, sensors, and data handling and processing – along with 
greater understanding of exposure-response relationships enabled by the IERs – allows new types 
of monitoring and evaluation strategies for HAP assessments. The bulk of this dissertation focuses 
on using this type of highly resolved data to answer questions that hone HAP assessments to 
maximize field efficiency and to ensure data precision and validity. The techniques employed in 
this dissertation – and the suggestions arising from my findings – highlight the possibility of using 
similar methods to better elaborate exposure-response relationships and to drive down 
uncertainty in our understanding of how an intervention is used and how that use translates to 
reduced pollutant concentrations in solid-fuel-using homes.  
 
Chapter 2 focuses on the long-term deployment of the UCB-PATS in the Guatemalan 
Highlands during the Randomized Exposure Study of Pollution Indoors and Respiratory Effects 
(RESPIRE) randomized control trial. UCB-PATS were deployed for an average of 222 days in 8 
households – 4 using an open fire to cook and 4 using a Plancha chimney stove. Minute-to-
minute PM2.5 concentrations were recorded; this dataset is one of the longest continuous 
measures of PM concentrations within a developing world kitchen. We use this large volume of 
data to estimate how much the coefficient of variability (COV, the standard deviation divided by 
the mean, a measure of dispersion) is reduced by increasing the number of consecutive 
monitoring days. The paper additionally describes how well short measures – such as a single 24-
hour or 48-hour measurement – and alternative measures – such as the mean of measurements 
made once per study week or study month – predict the long-term average. Findings from the 
paper have implications for future HAP assessments and strongly suggest that current practices – 
which rely on short-term measures – are poor predictors of long-term averages and may result in 
misestimation of potential health impacts.  
 
Chapters 3 and 4 are based on work performed in India, where the disease burdens associated 
with HAP are particularly pronounced. 85.8% of rural households and 23.3% of urban 
households rely on either firewood, crop residues, or dung as their primary fuel for cooking. 
According to the 2011 Indian Census, this accounts for approximately 717 million rural residents 
and 38.9 million urban residents. GBD-2010 estimated approximately 1 million annual deaths in 
India attributable to solid fuel use for household cooking – about 10% of national mortality. In 
terms of DALYs, HAP was the most important risk factor for women and girls and third most 
important for men and boys in India.  
 
Chapters 3 and 4 make a case for the importance of monitoring usage of both intervention and 
traditional stoves during interventions. Chapter 3 offers simple guidelines for evaluating the 
acceptability of laboratory-vetted stoves in a community. It focuses on initial work to identify a 
feasible intervention and to determine optimal sensor placement and sampling strategies. It 
includes quantitative and semi-quantitative measures of stove acceptability for two then-widely-
available advanced stoves in India. Unlike other chapters in this volume, which are more 
technical in nature, Chapter 3 focuses on preliminary work necessary to establish the conditions 
for a stove trial and mirrors the more extensive pilot work done prior to the beginning of the 
RESPIRE randomized control trial in rural Guatemala and prior to exposure-response work 
performed in Kenya 25,26. While it does not offer new techniques or measurements, it emphasizes 
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the importance of pilot work, especially in the context of findings in Chapter 4. This pilot work, 
while seemingly commonsense prior to any type of large health-related intervention, is still 
somewhat uncommon in our field. Chapter 3 offers some replicable methods for this type of early 
work to inform larger, more expensive, and more intensive trials. 
 
Chapter 4 describes new analytic methods for analyzing stove usage data, based on a deployment 
of the Philips HD4012 (henceforth ‘Philips’) advanced cookstove to a population of 200 pregnant 
women in rural North India. The Philips was one of the best-performing biomass-burning stoves 
in the lab9 and had been previously tested in India, where it was found to reduce particulate 
matter and black carbon concentrations.27 Stove use was assessed by placing small, data-logging 
iButton™ thermometers (adapted from industries employing a temperature-controlled supply 
chain) on both intervention and primary traditional stoves, and logging instantaneous 
temperatures every ten minutes for over one year. While informed by pioneering previous work 
19-21,28,29 on stove usage, which described placement, analysis, and modeling techniques, the 
chapter emphasizes the importance of (1) tracking use continuously over time on both 
intervention and traditional stoves and of (2) relating stove usage to metrics of energy 
consumption. It describes the challenges of managing large amounts of data in resource- and 
staff-constrained environments and of repairing advanced stoves often used beyond 
recommendations. The chapter also offers new metrics for tracking use and adoption of 
household energy interventions in a society with complex cooking behaviors. Chapter 4 focuses 
on the findings from the aforementioned deployment of 200 Philips. Data presented in that 
chapter are the longest and deepest published study of stove usage to date, with a total of 
approximately 25 million data points representing 140,000 stove-days. It is also the first 
published evaluation of a large-scale deployment of an advanced cookstove.  
 
Chapter 5 moves beyond any specific stove type to the larger question of how best to model the 
health benefits of household energy interventions and to contextualize them in terms of cost-
effectiveness as outlined by the World Health Organization’s CHOICE (CHOosing 
Interventions that are Cost-Effective) criteria. The chapter describes the design, development, 
and underlying theory behind HAPIT, the Household Air Pollution Intervention Tool, and 
models two example scenarios using empirical data from Guatemala. HAPIT evolved from a 
simple spreadsheet-based tool to an online platform for evaluating health benefits that 
incorporates various scales of uncertainty throughout the model. The front-facing simplicity of 
the tool and its various outputs masks significant ‘behind-the-scenes’ methodological complexity. 
HAPIT relies on input data from the Institute for Health Metrics and Evaluation and on up-to-
date iterations of the IER curves. It utilizes the IERs to estimate burdens of disease before and 
after deployment of an intervention and assumes the change in burden after an intervention is an 
impact of that intervention. HAPIT targets policymakers, program implementers, non-
governmental organizations, stove designers, and advocacy groups seeking to evaluate the 
potential implications of an intervention or to present an array of potential policy solutions to 
help alleviate the burden of disease associated with solid fuel use for cooking. HAPIT was 
developed in collaboration with Dr. Kirk R. Smith and Dr. Sumi Mehta, and has benefitted from 
the input of numerous colleagues and collaborators globally.  
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1.3 Context 
 
A framework commonly used to contextualize environmental health sciences (EHS) research writ 
large is the environmental health pathway, which links pollutant sources to health endpoints 
through a linear progression. An introduction to and application of the EHS pathway to the 
chapters of this dissertation helps clarify and contextualize its place in the broader household 
energy literature. 
 
The environmental health pathway describes a step-ordered, linear relationship between a source 
of pollutants and health effects (depicted in Figure 1.1, adapted from a figure from Smith et al 30). 
Between the source and health effects are environmental components – emissions of a pollutant 
into the environment per unit time and concentration in the environment, expressed in terms of 
mass of pollutant per volume or mass of environmental media – and organism-level components, 
including the biologically relevant portion of an exposure and concomitant health effects. The 
bridge between the environment and the human is exposure, which is a combined measure of 
duration and intensity of contact with a given pollutant in a given environment.  
 

 
Figure 1.1  Linear Environmental Health Pathway 

This depiction of the Environmental Health Pathway, based on an earlier formulation by Smith et al 
(1987), includes indicators of which chapters of this dissertation pertain to which components of the 
pathway.  

 
Chapter 2 of this dissertation focuses on measurements of PM2.5 concentrations in rural 
Guatemalan kitchens to provide strategies to better estimate annual concentrations and 
exposures. Chapter 3 provides preliminary measurements of PM2.5 and CO exposures in rural 
Haryana. Chapters 3 and 4 both focus extensively on stove usage, which modulates two 
relationships on the pathway: the relationship between a user and a source and the relationship 
between emissions from sources and concentrations and exposure. Chapter 3 offers some 
suggestions on how to understand what influences the choice of an intervention stove and what 
drives use of a specific household cooking appliance, while Chapter 4 focuses on methods to 
more precisely quantify usage of multiple sources. Chapter 5 links measured and modeled 
exposures with health effects through the IERs.  
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Chapter 2  
 
Long-term PM2.5 monitoring in kitchens cooking with wood: 
implications for measurement strategies 
 
 
2.1 Background 

 
As described in Chapter 1, forty percent of households globally rely on solid fuels – including 
wood, dung, grass, coal, and crop residues – for cooking.1 The Comparative Risk Assessment 
(CRA), a component of the Global Burden of Disease (GBD-2010), estimated that in 2010 
household air pollution (HAP) resulting from the combustion of these fuels was responsible for 
3.9 million premature deaths, accounting for ~4.8% of global disability-adjusted life years 
(DALYs) lost.2,3 Most evidence of these health effects is from studies using either measured or 
modeled surrogates of individuals’ typical or long-term (months to years) particle exposures, such 
as fuel type or kitchen concentrations.  
 
Measures of particulate matter with an aerodynamic diameter of less than 2.5 microns (PM2.5) 
are central to cookstove intervention program evaluations7,31,32,33,34,35 and global health 
assessments36 related to solid fuel use. Many of these studies use sampling durations of either 24 
hours10,33,37,38 or 48 hours7,31,32,39, which we refer to here as short-term measures. It is unknown 
how well these short-term measures predict annual concentrations or exposures.  
 
Although many studies have measured PM2.5 concentrations in village homes, few have 
measured repeatedly. In Mexico, during an assessment of the Patsari cookstove, PM2.5 kitchen 
concentrations were monitored for 4 days in 24 homes.40 Researchers observed that variability 
decreased as the number of sampling days increased; however, they were unable to compare this 
to a long-term mean, such as an annual average concentration. In Guatemala, researchers 
compared single 48-hour personal carbon monoxide (CO) measurements to the long-term mean 
of 4 repeated measures. They found that the single measures were unreliable as an estimate of 
long-term exposure.41  
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Use of short-term measurements introduces classical measurement error in exposure, which 
attenuates estimates of the true exposure-response relationship. Lengthening the duration and/or 
frequency of measurements is a potential solution to this problem, but brings additional 
equipment and personnel costs, increases field-worker burden, and lengthens study procedures in 
homes, impacting participants.  
 
As part of the RESPIRE (Randomized Exposure Study of Pollution Indoors and Respiratory 
Effects) randomized control trial8,42 , which evaluated the impact of reduced exposure to wood 
smoke on childhood acute lower respiratory infections, we placed particle monitors in homes 
with and without intervention chimney stoves (Figure 1) and monitored daily PM2.5 
concentrations for on average 200 days per home. The current study seeks to determine how 
accurately a single 24- or 48-hour measurement predicts long-term concentrations and to 
quantify gains in precision from alternate sampling strategies – including increased measurement 
duration over consecutive days and repeated 24- and 48-hour samplings over time.  
 
 
2.2 Methods 

 
Study location and population 
Measurements were made between February 2004 and March 2005 in 8 households located in 
the western highlands of Guatemala (altitude 2200 – 3300 meters). The region has a temperate 
and fairly consistent climate (Appendix Figure B1) with three seasons: dry and cold (November 
through February), dry and warm (mid-February through April), and rainy and warm (May 
through October). The selected households were a convenience sample of RESPIRE control and 
intervention homes. Control homes cooked with a traditional open fire (n=4); intervention homes 
had a chimney stove known locally as the Plancha (n=4). All participants had relatively similar 
household characteristics and used wood as their primary cooking fuel. RESPIRE project details 
– including human subjects approvals, consent, survey details, recruitment procedures, and 
information about the intervention, were reported previously8. 
 
PM2.5 measurements 
Continuous PM2.5 measurements were made using the University of California, Berkeley Particle 
and Temperature Sensor (UCB-PATS, Berkeley Air Monitoring Group, USA) following 
standard protocols.15,34 The UCB-PATS is a data-logging, battery-powered optical particle 
monitor created using custom microelectronics coupled with commercial smoke alarm sensing 
technology. The device is powered by a 9V battery and was set to log photoelectric responses 
every minute. A total of 48 unique UCB-PATS were rotated through households during this 
study. All monitors were assigned the same temperature and particle coefficients used to convert 
raw photoelectric responses into particle concentrations in micrograms per cubic meter. Masses 
reported by the UCB-PATS were adjusted, using a pooled PM2.5 gravimetric correction factor  
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Figure 2.1 Typical intervention and traditional stoves in San Lorenzo, Guatemala 
The top panel depicts the Plancha intervention stove in San Lorenzo, Guatemala. Fuel is fed into an 
enclosed combustion chamber (not visible); smoke vents out through a chimney (near the rear of the stove). 
The lower panel depicts a typical open fire cookstove.  
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determined during a previous study15 amongst wood-burning households in Guatemala. 
Unadjusted values and gravimetric correction factors are reported in Appendix Table B1.  
 
All UCB-PATS were zeroed in a resealable plastic bag for 30 minutes before and after 
deployment in the households. Monitors logged data every minute and were placed at a height of 
1.5 meters from the floor of the kitchen and from windows and doors and 1 meter from the 
combustion zone of the primary stove. Fieldworkers visited participating homes every week to 
swap monitors. Monitors that were removed from homes were transported to the field 
headquarters, where data were downloaded and routine monitor maintenance was performed. 
Logs of household visits and monitor performance were maintained.   
 
The daily mean concentration was calculated for each household on days with less than 10% of 
data missing. Additionally, because we are interested in predicting long-term daily averages, we 
excluded periods associated with unusual events. In one household, kitchen renovation began in 
January of 2005; all measurements in this home after Dec 31, 2004, were excluded. At the end of 
RESPIRE, all control household received the chimney stove; measurements in these four homes 
after introduction of the intervention were excluded. Finally, one outlier day was excluded, 
during which the mean concentration exceeded the next highest day by greater than 2-fold. 
 
Quantifying the COV with increasing measurement durations 
We calculated the reduction in the coefficient of variation (the standard deviation divided by the 
mean) for consecutive days of measurement 40. We selected 10 random days as starting points 
from the complete pool of valid measurement days and estimated the COV for sampling periods 
of 1, 2, 3, 4, 5, 6, 7, 14, 21, and 28 days from the starting point. To ensure stable estimates, this 
process was repeated 1000 times; the average COV is reported. 
 
Evaluating sampling strategies 
To evaluate how well measures of various lengths predicted the long-term household mean 
concentration, we calculated the mean of every possible set of consecutive days of measurements 
(of 1, 2, 3, 4, 7, 14, 21, and 28 days), the mean of a single 24-hour measurement drawn once per 
study week and once per study month, and the mean of 48-hour samples drawn once per season. 
For each set of measurements of varying length, we determined how many estimates fall within a 
given precision level – for instance, within 20% of the long-term household mean concentration 
– and divided by the total number of estimates, yielding the probability of a random 
measurement of a specific duration falling within a given range around the long-term mean. 
Calculations were performed separately by household and are presented in aggregate by stove 
type. We additionally calculated the root mean square error (RMSE) and its standard deviation 
for each measure described above. 
 
Explaining variability in PM2.5 concentrations with mixed models 
We used linear mixed effects models to partition within and between household variances. The 
base mode took the following form: 
 

 
 

Yij = β0 + bi + eij
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where Y"#is the ith concentration in household j, β0  is the overall intercept, bi  is the random effect 
for household i, and eij  is the leftover error. By comparing the base model with models of 
increasing complexity, we estimated how much variability in daily average PM2.5 concentrations 
could be explained by fixed, household-level characteristics, such as stove type, socioeconomic 
indicators, and home characteristics and by time-varying effects, such as day of week and 
season41. We additionally evaluated the autocorrelation between consecutive measurement days.  
 
Fieldworker time and cost 
We evaluated the financial and person-time impact of the various sampling strategies described 
above. Time requirements were estimated based on the field manager’s experience with the 
particle monitors. Cost data was derived from study budgets. 
  
All statistical analyses were performed in R 3.1 (R Foundation, Vienna, Austria). 
 
 
2.3 Results 
 
PM2.5 measurements 
Approximately 2.4 million data points were recorded during 1634 valid measurement days. The 
number of days measured per home ranged from 120 to 333 days. The average daily 
concentration was 1903 µg/m3 (SD = 1335) in open fire homes and was 125 µg/m3 (SD = 133) 
in chimney stove homes. Summary statistics by household are described in Table 2.1; time series 
plots by stove-type and household are presented in Figure 2.2. Both the summary statistics in 
Table 2.1 and graphs in Figure 2.2 indicate wide variability both within and between households 
in each group. Correlation between consecutive days of measurement is shown by household in 
Appendix Figure B2 and in aggregate in Appendix Figure B3. Comparisons with relevant global 
studies are in Appendix Figure B4 and B5.  
 
Table 2.1 Mean PM2.5 concentrations in µg/m3 by household and stove type 
 

 N Mean SD Min Median Max Start Date End Date 

Open Fire 136 2255 1068 528 2076 5987 7/7/04 12/13/04 
Open Fire 134 1118 592 102 981 2903 7/7/04 12/12/04 
Open Fire 120 923 494 194 863 3135 2/17/04 7/16/04 
Open Fire 215 2717 1514 53 2476 9017 2/24/04 11/22/04 
All Open Fire 605 1903 1335 53 1557 9017  
Chimney Stove 154 143 119 39 115 1077 7/7/04 12/31/04 
Chimney Stove 215 147 138 41 98 1342 7/7/04 3/21/05 
Chimney Stove 333 54 77 31 41 1122 2/17/04 3/21/05 
Chimney Stove 327 175 149 43 128  975 2/17/04 3/21/05 
All Chimney Stove 1029 125 133 31 84 1342  
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Figure 2.2 Daily mean PM2.5 concentrations in µg/m3 
The top panel displays data from intervention homes. The lower panel displays data from open fire homes. 
The dotted lines are the study-wide means by stove type.  

 
 
Coefficient of Variation (COV) 
Figure 2.3 displays the reduction in the coefficient of variation associated with longer consecutive 
measurement days. Most of the reduction in COV occurs by increasing the measurement 
duration up to 1 week; additional reductions continue to occur, but the rate of reduction 
decreases. Notably, chimney stove measurements are more variable than open fires, albeit 
around a much lower mean. 
 
Evaluating sampling strategies  
Comparisons of the precision of samples of varying durations are displayed graphically in Figure 
2.4 for both open fires and chimney stoves. Approximately 32% of chimney and 39% of open 
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fire 24-hour samples are within 25% of the long-term mean. Increasing the consecutive days of 
measurement led to increases in precision for both stove types. The magnitude of the increase 
varied; open fire homes saw greater increases in precision for an equivalent increase in sampling 
length.  
 
Table 2.3 depicts the probability of falling within 50%, 25%, and 10% of the long-term mean for 
each of the sampling strategies. Probabilities increase with increasing consecutive days of 
measurement; sampling once per study week (20 times per household in the current study) or 
once per study month (6 times per household in this study) greatly improve the probability of 
attaining precision goals, as does selecting 48-hour samples randomly once per season. Under all 
scenarios, samples are less likely to fall within precision goals for the chimney stoves. 
 
The RMSE for each sampling strategy is displayed in Figure 2.5 and described in Appendix 
Table B2. Samples composed of a smaller number of days have more dispersed RMSEs, as 
indicated by the error bars representing one standard deviation above and below the central 
estimates. The RMSEs ranged from 27 – 110 µg/m3 for chimney stoves (20 – 85% of the overall 
chimney stove mean) and 168 – 1000 µg/m3 for open fires (10 – 50% of the overall open fire 
mean). For both stove types, the largest RMSE was for a single sampling day, while the smallest 
was for the mean of random days selected from each study week.  
 
 

 

 
Figure 2.3  COV with increasing consecutive days of measurement 

COVs are reported above each measurement periods of 1, 2, 3, 4, 5, 6, 7, 14, 21, and 28 consecutive 
days were evaluated. 
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Explaining concentration variability 
Mixed models evaluated during this analysis are shown in Table 2.3. Model (A) is the simplest 
model, containing no covariates; model (D) is the most complex, containing both fixed and time-
varying covariates. A variable for stove type explained the majority of the between-household 
variability; addition of other fixed and time-varying variables explained little or no additional 
variability, consistent with previous modeling work in this community in Guatemala41.  
 
Table 2.2 Mixed model variance components for mean PM2.5 concentrations 
 

Model 
Within-
household 
variance 

Between-
household 
variance 

$%&'(&)* A	 $+,'%,,)* B	

A -./ = 12 + 4. + 5./ 	 0.33 2.25   

B -./ = 12 + 16(89:) + 4. + 5./ 	 0.33 0.26 0 0.88 

C -./ = 12 + 16 89: + 1< = . + 4. + 5./ 	 0.33 0.32 0 0.86 

D 
-./ = 12 + 16 89: + 1< = . + 1> ? ./

+ 4. + 5./ 	 0.32 0.30 0.03 0.86 

A Within household variance explained by model relative to baseline model (A). 
B Between household variance explained by model relative to baseline model (A). 
Model C contains the following time invariant variables (X): an asset index, roof type, wall type, 
and kitchen volume. 
Model D contains time varying variables (Z) day of week and season.   
 
 
An additional model (not shown) containing a random intercept term for UCB monitor 
explained approximately 3% of the within household variability relative to the baseline model. A 
fourth order autoregressive correlation structure was fit given the autocorrelation observed 
between mean concentrations over consecutive days in the data (Appendix Figure B2 and B3). 
 
Fieldworker time and cost 
Sampling design decisions depend on the desired precision and confidence of field measurements 
in light of cost and personnel limitations. For this study, field workers were paid 65 Guatemalan 
Quetzals per day (approximately 8.45 USD at the midpoint of the study) for 8 hours of work, 
which was above the minimum wage at that time. A single monitor deployment – including 
launching and zeroing the device in the lab before and after sampling and traveling to and from 
participating households, but excluding data download – required approximately 2 hours of 
fieldworker time during this study. The data download time was estimated at 5 minutes per 
sampled day. For deployments greater than 1 week, we assumed fieldworkers would have to visit 
homes once per week to maintain the monitors, requiring approximately 1 hour. We assumed 
that a deployment for a 24-hour period took 2.08 hours and cost 2.2 USD. Table 2.4 includes 
cost estimates of each sampling strategy per household. 
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Figure 2.4 Changes in precision given sampling intervals of different lengths 

The x-axis represents the deviation from the long-term mean; the y-axis is the probability of obtaining a 
measurement at a specific percent deviation from the long-term mean. The top panels are for consecutively 
sampled days; the lower panels are for randomly selected sampling days. The stove type is specified in the 
panel title.  
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Table 2.3  Probability of being within 10, 25, and 50% of the long-term mean 
 

* This strategy, while comprised of 6 days of measurements, requires three 48-hour 
deployments. 
 
 
  

Precision Level 
50%  
(least stringent) 

25% 
 

10% 
(most stringent) 

Sample Days in sample Open 
Fire Chimney Open 

Fire Chimney Open 
Fire Chimney 

Randomly selected days Probability 

1 day 1 69% 70% 39% 32% 18% 13% 
1 day per  
study month 6 99% 95% 81% 68% 44% 27% 

1 day per  
study week 20 100% 100% 98% 66% 74% 34% 

48 hour period 
per season 6* 97% 88% 72% 61% 33% 26% 

Random consecutive days Probability 
2 days 2 81% 75% 48% 34% 17% 13% 
3 days 3 85% 80% 53% 38% 19% 12% 
4 days 4 89% 82% 56% 41% 24% 14% 
7 days 7 96% 82% 64% 48% 24% 14% 
14 days 14 99% 82% 79% 54% 36% 13% 
21 days 21 100% 93% 88% 52% 47% 17% 
28 days 28 100% 98% 98% 62% 51% 16% 



Chapter 2. Long-term PM2.5 monitoring in kitchens cooking with wood  
 

 

16 

Table 2.4 Cost and fieldworker time commitment per household 

* Cost per home was calculated as the total time divided by 8 (the number of working hours 
per day) times the daily wage of 8.45 USD per day.  
 
2.4 Discussion 
 
We report on the largest dataset of repeated measurement of PM2.5 concentrations in households 
using solid fuels for cooking to date. By deploying real-time monitors routinely for an extended 
period of time, we were able (1) to describe the variability in PM2.5 concentrations in rural 
Guatemalan homes using either an open-fire or a chimney stove, (2) to estimate how well 
traditionally performed short-term measures predict long-term averages, and (3) to suggest 
alternative sampling approaches to better predict the long-term mean.  
 
The small sample size in each stove group limited the range of statistical modeling we could 
perform. Descriptive analyses (Appendix Figures B4, B5, and B6) indicate little difference in the 
distribution of PM2.5 concentrations by season and day of the week both when all households 
were pooled and when they were examined individually. This is consistent with previous findings 
from other studies21,41, in which stove usage and personal exposures to carbon monoxide were 
found to be largely consistent throughout the year for this population. We additionally note that 
measurements closer in time were correlated, though the cause of this correlation is unknown. 
Although seasonal effects were significant in the previous stove usage analysis21, the magnitude of 
modeled effects was small (seasonal differences ranged from 3 to 5%). We expect more seasonal 
variability in kitchen PM2.5 in regions with more varied seasons and different cooking and  

Sample Sampling 
Days 

Fieldworker time 
(minutes) 

Data download 
time (minutes) 

Total 
Time 
(hours) 

Cost per 
home  
over sampling 
period ($)* 

Randomly selected days 

1 day 1 120 5 2.1 2.2 
1 day per 
study month 6 720 30 12.5 13.2 

1 day per 
study week 20 2400 100 41.7 44.0 

48 hour 
period per 
season 

6 360 30 6.5 6.9 

Random consecutive days 
2 days 2 120 10 2.2 2.3 
7 days 7 120 35 2.6 2.7 
14 days 14 205 70 4.6 4.9 
21 days 21 330 105 7.3 7.7 
28 days 28 435 140 9.6 10.1 
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Figure 2.5 RMSE of sampling strategies relative to the long-term mean 

The x-axis is the error; the y-axis is each sampling strategy. Error bars are the mean RMSE ± SD. The 
top panel is for chimney stoves; the lower panel is for open fires.  
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heating patterns. Similar analysis to the one reported here should be repeated in these 
environments to discover if a strategy that samples once for 24 hours per study week or study 
month or once for 48 hours per season could also produce better estimates of long-term average 
concentrations, as reported here.  
 
Coefficient of Variation 
A study in the central highlands state of Michoacán, Mexico40, found that the COV was reduced 
from 0.68 for a single, 24-hour measure to 0.48 when the sampling duration was increased to 96 
hours. The majority of the reduction in COV occurred by increasing the duration of sampling to 
48 hours. Our findings were similar; the COV was reduced from 0.96 to 0.78 for chimney stove 
homes and from 0.71 to 0.61 for open fire homes during the first 48 hours. By 96 hours, the 
COV in our study reduced to 0.68 and to 0.57 for chimney and open fire homes, respectively. In 
both Mexico and the current study, the COV decreased by 29% over the first four days. Figure 
2.3 indicates that the COV begins to stabilize at monitoring durations of approximately 1 week. 
The higher COV in chimney-stove homes may indicate occasional open fire use, a phenomenon 
known as stove stacking28,43, the well-documented practice of using multiple stoves in a home. In 
areas where several stoves are used, it is likely that estimation of long-term concentrations using a 
single 24-hour measure will be imprecise. Inspection of PM2.5 traces measured during this study 
which had an average concentration over 1 mg/m3 indicated periods of cooking from sources 
other than a chimney stove by visual inspection (data not shown). While this type of inspection is 
possible, objective monitoring using stove use monitors (discussed below) is preferred.  
 
Sampling strategies 
Short-term measurements of 1 or 2 days had a low probability of closely estimating the long-term 
mean. Increasing the measurement duration to greater than 7 days increased the probability of 
falling within 25% of the long-term mean and reduced the RMSE. Alternate sampling strategies 
– that focus on sampling once per study week or once per study month – improved the 
probability of falling within any given deviation from the long-term mean and also reduced the 
RMSE. However, these strategies require additional resources and incur added costs and 
impositions on participating households. Increasing the measurement duration to 48 hours and 
sampling three times offers a compromise between error and the burden imposed on households 
and on fieldworkers by extra measurement visits. The larger error across strategies in chimney 
stove households may be due to continued, possibly occasional, usage of the old stove or 
simultaneous use of both stoves, leading to less consistent concentrations when a small number of 
days are selected from the complete set of available days at random.  
 
Limitations and future work 
This analysis had a number of limitations. First, the study had only 8 participating households. 
The disadvantages of having only 4 households in the chimney-stove and open-fire groups were 
partially alleviated by many repeated measures.  
 
The excellent relationships between households and researchers in this community enabled 
placement of monitors for many months and repeated visits by field workers. This rapport, built 
over years of work in Guatemala, may not be replicable in other settings and may limit the 
reproducibility of the current study. Local cooking and heating customs differ amongst solid fuel-
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using households globally. Replication in additional geographies will further help determine the 
best approaches for optimizing sampling strategies. 
 
For many health outcomes associated with exposure to PM2.5 resulting from solid fuel use for 
cooking, there are exposure durations of interest that are longer than the total duration measured 
for this study. For example, to understand effects of exposure on chronic obstructive pulmonary 
disease or cardiovascular disease, we would ideally measure exposure over decades. Although our 
study informs the viability of using short-term measure to predict annual means, it cannot 
address variability in exposures over these decadal timeframes. Our study additionally cannot 
comment on short-term peak concentrations, which can be of concern for women and children 
26,44. Finally, there are concerns about other PM size distributions (like ultrafine particles), 
particle characteristics (like black carbon), and chemical composition that may impact health. 
Similar measurement-related concerns exist for these pollutants but should be addressed 
separately.  
 
Data from the UCB monitors used during this study were not individually gravimetrically 
adjusted, instead relying on a pooled correction factor from previous work15. As a result, the 
coefficients used to convert raw millivoltage from the photodetector into PM mass may 
misestimate the true concentration; however, we expect the relative differences between monitors 
remained constant. Concentrations reported in Table 2.1 are thus indicative of the variability 
within and between homes, but estimates of actual indoor concentrations of pollutants may 
deviate from true values.  
 
We were unable to measure several time-varying factors that may impact kitchen PM2.5 
concentrations, including use of multiple stoves, weather near households, changes in household 
configuration, and changes in the number of people per household. Advances in the ability to 
monitor stove usage using small, data-logging thermometers (Stove Use Monitors – SUMs) 
should help better understand the variability of PM2.5 concentrations within homes, especially in 
homes where multiple stoves are being used. In instances where stove use is not correlated with 
concentrations and exposures, additional unmeasured sources should be considered. Similarly, 
any future studies of long-term pollutant concentrations in biomass-burning households should 
capture information – such as behavioral changes due to lifecourse events, like pregnancy or 
delivery, or changes in household structure – that may help explain the variability within and 
between households. These types of changes, which were not measured for this analysis, may be 
important for analyses looking at specific maternal and child health outcomes, and should be 
collected in addition to routinely collected information, including the number of household 
members in a home, special cooking done during monitoring periods, changes in fuel source, and 
stove-fuel-food combinations that may change with season.  
 
Our simple estimate of program costs does not take into account monitor availability or pricing. 
Up-front equipment costs can be high; the availability of monitors to perform measurements of 
concentration or exposure depend on program resources and vary widely. Additionally, our cost 
estimates may slightly over-estimate the per sample fieldworker cost; presumably, during long-
data download sessions, field staff could perform other tasks. Finally, advances in monitoring 
technology should dramatically drive down the time required to download data and manage 
devices.  
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Under ideal circumstances, health researchers would repeatedly measure personal exposure, 
tracking individuals through space and time, in place of measuring kitchen concentrations, as 
done in this study. During data collection for the current study, such ongoing monitoring was not 
possible due to the project cost and participant burden of personal exposure assessment. 
Optimizing the duration of sampling for exposure assessments is not straightforward, however. 
We reviewed published exposure measurements (Appendix Tables B3 and B4) and extracted the 
mean and standard deviation of exposures to estimate COVs, which varied widely depending on 
locale and pollutant measured.  
 
For PM2.5 exposure measurements at our field site in Guatemala, the estimated COVs were 1.13 
for open fires and 1.27 for chimney stoves45 – higher than the COV for a single kitchen 
measurement reported here (0.71 and 0.96 for open fires and chimney stoves, respectively). 
Contrastingly, in a Honduran community using a mixture of stoves, the COV from personal 
exposures to PM2.5 was lower than that of kitchen concentrations (0.9 and 1.4, respectively)46. In 
a Ghanaian community using primarily open fires, personal measurements also had a lower 
COV than kitchen measurements (0.61 and 0.92, respectively)47. This variability may be related 
to cooking styles and practices, difference among roles of household members, and other 
behavioral factors, as well as structural differences in household environments, and indicates the 
need for more evaluation of personal exposure measurement duration.  
 
 
2.5 Conclusion 
 
As part of pilot work for future large-scale studies, investigators may wish to consider small, 
targeted long-term monitoring studies along the lines of what we report here, which could 
leverage recent advances in particle monitors to potentially require less frequent field visits than 
the one-week interval we employed. These could better quantify exposure variability in different 
situations by monitoring households and individuals for a number of consecutive days. Such 
studies could greatly increase the efficiency of the sampling strategy employed in the study being 
planned, whether to conduct exposure-response analysis of health outcomes or to assess the 
pollution impacts of interventions, as well as help decide more mundane, but important, 
questions such as whether monitoring on weekends is needed. 
 
The choice of sampling strategy is motivated by a number of competing factors. First, there are 
considerations of logistical issues, such as the study budget, the cost of monitoring equipment, the 
availability of study staff, and the burden on participants. Second, there are analytical issues, such 
as whether the question of interest involves group-level estimates, which are unbiased and 
relatively constant, regardless of monitoring duration; or individual estimates of exposure, which 
are imprecise when estimated from short-term measurements of pollutant concentration. Most 
studies of household air pollution focus on a single measurement period of either 24 or 48 hours. 
Our findings suggest that if short measurement durations are used to link air pollutant 
concentrations and exposures to ill-health, the true effect size will be underestimated. 
Measurement durations (1) longer than 48 hours or (2) consisting of repeated 24 or 48 hour 
measurements throughout a study should be considered in future studies of household air 
pollution to accurately characterize variability and to better predict long-term concentrations and 
exposures.   
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Chapter 3  
 
Traditional cooking practices, air quality monitoring, and the 
acceptability of advanced biomass cookstoves in Haryana, India: 
An exploratory study to inform planning of large-scale 
intervention efforts  
 
 
3.1 Background 

 
According to the 2011 Indian census, approximately 66% of all households rely primarily on 
wood, crop residues, or cow dung for energy 48. This comprises 23% of urban households and 
86% of rural households. Approximately 780 million Indians living in 160 million households 
relied primarily on these fuels for their cooking needs 48,49. In 2009, the Indian Ministry of New 
and Renewable Energy (MNRE) announced the National Biomass Cookstove Initiative, which 
seeks to “achieve the quality of energy services from cookstoves comparable to that from other 
clean energy sources, such as LPG” 50.  
 
Capitalizing on renewed interest in India and beyond to identify interventions to reduce 
exposures to household air pollution, we sought to evaluate different dissemination approaches 
for a national advanced combustion stove program. In this chapter, I describe an exploratory 
study to design a conceptual framework for a Newborn Stove (NBS) Initiative targeted at 
pregnant women who access the national public antenatal care system. The specific aim of the 
larger initiative was to introduce advanced combustion biomass stoves through the antenatal care 
system in order to reduce the prevalence of adverse pregnancy outcomes, especially low birth 
weight, a serious problem in India today. The idea of a NBS study sought to target the most 
vulnerable – poor, pregnant women – during a period of time when significant exposure 
reductions could have a meaningful impact on the health of the developing fetus.  
 
As approximately 75% of the nearly 27 million births in India each year include at least one 
antenatal care visit 51, a national program adding an advanced stove to the package of antenatal 
care benefits could cover a major portion of the country's most vulnerable households within a 
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few years. Importantly, a stove intervention disseminated via the public antenatal care system 
could be highly specific in reaching poor, pregnant women, nearly all of whom use biomass fuels 
for cooking. Pregnant poor women are arguably the largest easily identified vulnerable group for 
HAP interventions. Middle- and high-income women, who commonly use gas for cooking, would 
not be part of this proposed program.  
 
A recent meta-analysis indicates that a truly advanced stove – one that brings HAP exposures 
close to those of clean fuels, particularly gas – might be able to achieve on average a 93 gram 
increase in birth weight 52. This would be a major improvement in India, where about 30% of 
babies are born underweight (<2500 g) 53. To show the actual improvement in practice, however, 
will likely require a major cluster-randomized trial of the type historically required before public 
investment in large-scale national programs, such as for vaccines. 
 
To obtain data needed to design such a large NBS trial, we initiated a study in Palwal district, in 
the State of Haryana, India, to assess the feasibility of distributing advanced combustion 
cookstoves through the public antenatal care system. It enrolled 200 pregnant women and 
assessed usage patterns of traditional and advanced combustion cookstoves and measured HAP 
before and after introduction of the advanced stoves. The study also gathered data on user 
perceptions and acceptability of the advanced stoves and assessed the feasibility of capturing 
gestational age and birth weight in rural Indian communities.  
 
This chapter describes the exploratory work for the design of this study that (1) characterized 
traditional cooking practices in the study communities, (2) compared different methods for 
monitoring air pollution levels associated with traditional cooking practices and established 
baseline air pollution levels associated with these practices, (3) evaluated the cultural acceptability 
of two commercially available advanced combustion cookstoves through semi-structured 
interviews, (4) tested methods to objectively monitor advanced stove usage, and (5) evaluated the 
feasibility of assessing personal exposures to combustion byproducts among pregnant women. 
 
 
3.2 Methods 

 
Study location 
The work in this chapter was undertaken at the INCLEN (International Clinical Epidemiological 
Network) SOMAARTH demographic and environmental surveillance site, located in Palwal 
District, Haryana, approximately 80 kilometers south of Delhi. Palwal district has an area of 
1,367 square kilometers and a population of approximately one million 48. The surveillance site 
includes a population of approximately 200,000 from 51 villages across 3 administrative blocks of 
Palwal, encompassing 308 square kilometers. The villages selected for this preliminary assessment 
use predominantly wood and cow dung for cooking and have access to electricity periodically 
throughout the week. From the villages in the SOMAARTH site, convenience samples were 
drawn for each of the three distinct components of the current study (Figure 3.1). 
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Assessment of traditional cooking patterns 
In-depth, semi-structured interviews with primary cooks in 32 households in 23 SOMAARTH 
villages were conducted and analysed by a trained anthropologist from INCLEN, using a 
questionnaire developed by University of California, Berkeley. Primary cooks were those that 
prepared 50% or more of the meals in the previous week. The interviews began with a consent 
process and an explanation of the purpose of the study. Questions were derived from a literature 
review and tailored to meet our specific research aims. Interviews were conducted in Hindi and 
digitally recorded.  
 

Figure 3.1  Graphical representation of the three primary study components 
 
All interviews were transcribed verbatim. Transcriptions were reviewed against recordings and 
translated into English. Data were processed through free-listing domain analysis 54,55.  
 
Assessment of pollution exposures during traditional cooking practices 
In a separate activity, personal exposures and area concentrations of carbon monoxide (CO) and 
PM2.5 resulting from traditional stove use were assessed in 10 households in two villages by a 
collaborating team from the Environmental Health Engineering Department at Sri 
Ramachandra University, Chennai, India. A combination of monitoring durations and 
techniques was used to determine the feasibility of multiple methods of assessing the primary 
cook’s exposure to combustion-related byproducts. Area sampling of CO and PM occurred 
continuously for either 24 hours or 48 hours. Personal sampling of PM occurred during cooking 
periods of approximately 2 hours, during which personal continuous CO sampling also occurred. 
  
Real-time measurements of PM2.5 were taken using the UCB Particle and Temperature Sensors 
(UCB-PATS™, Berkeley Air Monitoring Group, Berkeley, CA, USA). The UCB-PATS is a 
passive, portable, datalogging optical particle monitor that has been validated in the field in India 
5,15. Data were recorded every minute. Instruments were placed 1.5 meters above the ground in 
all locations; in the primary cooking location, the monitor was placed 1 meter from the primary 
stove. UCB-PATS were deployed in one home over three days in the kitchen, primary living 
area, and outside, in the main household courtyard.  
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Integrated PM2.5 measurements were collected using an SKC Air Sampling Pump (SKC Inc., 
Eighty Four, PA, USA) at a flow rate of 1.5 liters per minute. PM2.5 was collected on 2.0µm pore 
Teflon™ filters (Pall Corporation, Port Washington, NY, USA), backed with cellulose support 
pads and placed in a filter cassette connected to a BGI cyclone (BGI Inc, Waltham, MA, USA). 
Using a laboratory calibrated rotameter, flow rates were measured before and after initiation of 
the sampling in the field. Separate integrated measurements were collected in the living area for 
24 hours (n=4), the kitchen for 24 hours (n=5), and in the vicinity of the primary cook during two 
cooking events (total duration=125±53 minutes, n=10).  
 
Filters were weighed pre- and post-sampling, using a Mettler balance (Mettler of Toledo, Inc., 
Toledo, OH, USA) in a temperature- and humidity-controlled room at Sri Ramachandra 
University. Filters were conditioned for 24 hours prior to weighing.  
 
Real-time CO concentrations were assessed using the Draeger Pac 7000™, a portable, 
electrochemical CO sensor. The Pac 7000 recorded the CO concentration every minute during 
the monitoring period. Personal CO was assessed for 24 hours on 9 primary cooks. Correlations 
between logged data from the Pac 7000 and corresponding integrated PM2.5 samples during the 
same cooking events were investigated. 
 
Exploratory assessment of advanced combustion stoves 
In 17 households, two advanced combustion stoves (Figure 3.2), both relying on two-stage 
combustion with forced air, were assessed. The stoves were chosen based on their availability on 
the Indian market 56 and their best-in-class laboratory and field-confirmed efficiency and 
emissions performance 27,57, indicating potential to protect health in homes. Kar et al found that 
the Philips reduced black carbon emissions in the field by approximately 77% when compared to 
a traditional, mud cookstove and reduced concentrations in the breathing zone by approximately 
70%, though the latter reduction was not statistically significant due to intra-test and device 
variation. Jetter et al found that a prototype Philips blower stove reduced carbon monoxide and 
PM emissions in the laboratory by ~90% relative to a traditional three-stone open fire 57.  
 
(A)               (B) 

  
 
 
 
 
 
 
 
 
 
 

 
Figure 3.2  Advanced stoves evaluated in Palwal, Haryana 

A is the Philips Woodstove Model HD4012. B is the Oorja (photo courtesy First Energy, India). Both 
are manufactured in India.  
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The Philips burns biomass and requires minimal fuel processing – fuel must be chopped into 
pieces less than approximately 2.5 cm in diameter and 5 cm long. The Oorja™ uses 
manufactured biomass pellets. Both stoves have a controllable electric fan powered by a 
rechargeable battery and thus require at least intermittent access to power. Manufacturers of 
both stoves claim that a single charge can provide power to the fan for seven to eight hours of 
cooking. To the best of our knowledge, there is no peer-reviewed published literature examining 
the acceptability of either stove amongst rural communities in north India. 
 
Nine households received the Philips and eight received the Oorja in convenience samples of 
villages. Primary cooks were trained in stove use by field workers. Stoves were given to the 
households in their original packaging with instruction manuals written in Hindi and English. 
Philips users were instructed on proper processing of biomass prior to adding it to the 
combustion chamber. Oorja users received an allotment of fuel pellets and were given contact 
details for field staff, from whom they could receive additional allotments as needed. The 
assessment had the following two parts. 
 
Assessment of advanced cookstove usage  
Objective usage of stoves was assessed using the Stove Use Monitoring System (SUMS™, 
University of California, Berkeley). The SUMS 19,20,58 consists of a combination of a small, 
unobtrusive, battery-powered, temperature data-logger (Maxim Integrated Products, Sunnyvale, 
CA, USA) and related signal-processing software (University of California, Berkeley). Each 
SUMS is affixed to a household combustion device and records its temperature profile over time. 
 
Prior to the field work, multiple SUMS were attached to both stove types using heat-resistant 
tape and sampled every ten seconds during three independent cooking events. Optimal positions 
were determined by investigating temperature traces and choosing a location on the stove that 
captured temperature variation but did not exceed 85ºC, the maximum tolerable temperature 
for the SUMS. Locations were chosen to be minimally obtrusive to the cook. 
 
After determining the optimal sensor location, SUMS were programmed to record temperature 
readings every ten minutes. Data were downloaded every two weeks across a 12-week period by 
research staff from INCLEN.  
 
Assessment of advanced cookstove acceptability 
After distribution of the advanced stoves, INCLEN research staff collected data on stove 
acceptability amongst primary cooks using a simple questionnaire. The questionnaire was 
administered at regular 7-day intervals during the 12-week follow-up period. Final analysis on 
stove acceptability was carried out at INCLEN. Questions fell into the following broad 
categories: convenience of use, problems experienced, perceptions, and comparisons with the 
traditional hearth.  
 
Data analysis 
Data were summarized and analyzed using R64 (R version 2.13.2, R Foundation for Statistical 
Computing, Vienna, Austria) and Microsoft Excel™ (Microsoft, Redmond, WA, USA). 
Preliminary analyses in Excel included measures of central tendency and event counts. Box plots, 
confidence intervals, and plots of device signals were created in R64 using built-in packages.  
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Ethical considerations 
The study was approved by INCLEN Independent Ethics Committee (Protocol ID IIEC 002; 
Ref: IEO-Delhi/Gen Corres 2011/IIEC-19); by University of California, Berkeley Committee 
for the Protection of Human Subjects (Protocol ID 2010-11-2567); by the Columbia University 
Human Research Protection Program (Protocol Number IRB-AAAI0866); and by the Indian 
Health Ministry’s Screening Committee (Ref. 5/8/4-1/Env/Indo-foreign/09-NCD-I).  
 
All participants provided informed consent and were given information about the purpose of the 
study and potential study outcomes. During air pollution monitoring sessions, field staff received 
permission from participants to place air pollution monitoring devices in their homes. Devices 
chosen for pollution and stove usage monitoring have minimal risk for participants. Stove 
training sessions were organized by SOMAARTH technical teams to teach study participants 
about stove operations and safety protocols and included dissemination of an instruction manual 
in Hindi. SOMAARTH technicians, during regular field visits, emphasized critical safety 
measures related to stove usage with study participants and helped troubleshoot any stove 
problems. Advanced stoves were evaluated based on their safety, reliability, and user-friendliness 
prior to dissemination. 
 
 
3.3 Results 

 
Semi-quantitative assessment of traditional cooking patterns 
The median age of the 32 primary cooks was 32 years (range 18– 65 years). 59% of participants 
were illiterate. The average number of household members was 8, but half of the households had 
less than 6 members. All primary cooks were women; men only cook in unusual circumstances. 
The majority of households did not purchase their solid cooking fuel and all used wood and/or 
cow dung for household cooking. Out of 32 households, 20 had LPG stoves in addition to 
traditional hearths and purchased an LPG cylinder every 1 to 3 months. 28 of 32 primary 
cooking spaces were located outdoors in a courtyard outside the main house. Courtyards shared 
many attributes – they were typically large, open spaces bounded on two sides by mud-brick 
walls. The remaining two sides contained storage and living areas. The courtyard served as a 
place for household members to congregate and work.  
 
Primary meal preparation occurred twice daily in 27 households. The morning meal was cooked 
between 5:00 and 9:00 AM; the evening meal was prepared between 5:00 and 9:00 PM. Cooks 
reported that cooking one meal took, on average, 1.5 hours (range: 0.5 to 2.5 hours). In addition 
to primary meals, 22 respondents reported primary traditional stove use for tea preparation 1-3 
times daily. 10 households reported no further use of the primary traditional stove outside of the 
two primary meals.  
 
Twenty-five households reported two or more cooking locations. Among the 32 households, 
fieldworkers identified a total of 68 cooking locations, 71% of which were outdoors and 29% 
were indoors. Of the outdoor cooking locations, 18% were partially covered, while the others 
were completely in the open. Of the respondents who had an indoor cooking location, nearly half 
reported that the indoor space was used only during inclement weather, including rain or 
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extreme heat or cold. Almost all of these cooking locations inside the house had LPG stoves along 
with traditional mobile hearths. 
 
A total of 90 traditional hearths were identified across the 32 respondent households. Larger 
households (with a family size of greater than five) had on average 3 hearths, while smaller 
households (five or fewer family members) had on average 2 hearths.  
 
Two primary types of traditional hearth were identified (Figure 3.3). The stationary hearth, or 
chullah (Figure 3.3A) is made of burnt bricks that are covered on three sides with mud plaster. 
Fuel is loaded into the front of these devices. 29 of 32 households had chullah outside. A portable 
hearth, or uthaao chullah (Figure 3.3B), is also made of brick and mud plaster. These hearths are 
not fixed to the ground and can be moved indoors during cold or inclement weather. All 32 
households used the chullah or uthaao chullah as their primary hearth. 
 
Two additional stove types were identified. The angithi (Figure 3.3C) is a top-loading, mobile 
hearth made entirely with mud. Fuel is loaded into the top of the device. Respondents noted that 
the angithi was used primarily for simmering items for long periods of time – including 
preparation of animal fodder and heating water or milk. All angithi were located outside of the 
house in a corner of the courtyard. The haroo (Figure 3.3D) is a fixed, top-loading, mud and brick 
hearth. The observed haroo were pits lined with bricks and coated with a mud layer. Usage is 
similar to an angithi. 20 households prepared animal fodder daily using either the angithi or the 
haroo outdoors.  
 
User perceptions: LPG vs traditional hearth 
As noted, 20 households had LPG stoves with 2 burners. However, none of the respondent 
households used LPG exclusively. Most respondents stated that the cost of gas was the major 
reason for using the traditional stove. Biomass is free and readily available. Almost all stated that 
chapatis (traditional Indian flat breads) made on the traditional hearth tasted better, remained 
soft, and spoiled less quickly than those made on the LPG stove. A smaller proportion of 
respondents indicated that other foods, including deep fried breads and green vegetables, cook 
and taste better when prepared on a traditional hearth. Finally, respondents stated that milk 
simmered on a traditional hearth produced more cream.  
 
Respondents stated that while they preferred the traditional hearth, they recognized that LPG 
cooked food faster, did not produce smoke, was convenient to light and turn off, and allowed use 
of a pressure cooker.  
 
Respondents ranked fuel efficiency as their primary criterion for a “good” hearth, followed by 
decreased smoke emission. Others mentioned the taste of the food. Additionally, a small number 
mentioned design and durability of the stove, convenience of ignition, safety, and mobility as 
important factors when choosing a hearth.  
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 (A)              (B) 

        
(C)              (D) 

 
 
Figure 3.3 Common traditional stoves found in homes in Palwal District, Haryana  

A is the traditional stationary hearth, or chullah. Figure B is the portable hearth, or uthaao chullah, and is 
used during inclement weather under a covering or indoors. Both A and B are made of mud and plaster. C 
is a top-loading, fixed hearth made of brick and mud, or haroo. Figure D is a portable top-loading hearth, 
or angithi. C and D are used for simmering items for long periods of time. D is used during inclement 
weather under a covering or indoors.  

 
 
Traditional cooking air pollution assessment 
The distribution of gravimetric measurements across locations and monitoring durations is 
shown in Figure 3.4. Figure 3.5 shows one days worth of real-time PM and real-time CO data. 
Pollution peaks are consistent with usage peaks (described below). Area measurements in the 
kitchen and kitchen personal concentrations assessed during cooking events were highest, with 
respective mean PM2.5 concentrations of 468µg/m3 and 718µg/m3. Living area concentrations 
were lowest (315µg/m3), due in part to the location of kitchens outside of the homes and away 
from primary living spaces. Outdoor measurements were noticeably elevated, with a mean 
concentration of 400µg/m3. Concentrations measured are consistent with other studies across 
India and other countries in which biomass fuel is burned in traditional hearths 5,33,59. Daily 
personal measurements of PM were not possible due to participant refusal to wear sampling 
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pumps with adjoined tubing and cyclones. Although such equipment has been used in other 
studies in India and elsewhere, our participants stated that the equipment was loud, bulky, 
conspicuous, and uncomfortable to wear.  
 
 

 
 
Figure 3.4  PM2.5 concentrations across all study households 

Each box represents a separate subsample by location and monitoring approach. The height of each box is 
the interquartile range. The median concentration is marked with a solid black line. The mean 
concentration is marked by a diamond. The box whiskers extend to 1.5 times the interquartile range. 
Kitchen Area and Living Area concentrations were measured for at least 1440 minutes; personal 
concentration measurements were during cooking periods and lasted between 90 and 225 minutes. Outdoor 
concentrations not depicted due to small sample size (n=3). 

 
 
The average personal CO exposure (summarized in Table 3.1) during daily cooking was 7.4 
ppm, with a range between 0.82 and 18.5 ppm. Non-cooking period concentrations ranged from 
0.37 to 5 ppm, with an average of 2.4 ppm. 24-hour personal CO exposures, averaged over both 
cooking and non-cooking periods, ranged between 0.82 and 5.27 ppm. Concentrations measured 
were consistent with studies in Guatemala 60-62 and The Gambia 63,64.  
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 (A) 

 
(B) 

 
Figure 3.5 Sample plots from pollutant monitors  

(A) the Draeger Pac7000 real-time carbon monoxide monitor and (B) the University of California 
Berkeley Particle and Temperature Sensor (UCB-PATS) logging data during cooking with a traditional 
stove. Note that peaks roughly correspond with cooking times from Figure 3.6. 
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Table 3.1 Summary of 24-h pollutant area concentrations  
n is the number of samples; SD is the standard deviation of the pooled household concentrations.  

 

 n Mean ± SD 

PM2.5 (µg/m3)
Gravimetric 10 718 ± 369 

PM2.5 (µg/m3)
UCB 7 686 ± 753 

CO (ppm)
- During Cooking 9 7.46 ± 5.75 

CO (ppm)
- Non-Cooking 9 2.36 ± 1.43 

CO (ppm)
- Average 10 2.58 ± 1.52 
 
 
Pilot assessment of advanced combustion stoves  
Usage. To determine acceptability of the two advanced stoves amongst primary cooks, we 
assessed the total time each stove was used and the number of stove events over the 12-week 
monitoring period. Stove usage data from the SUMS were grouped into three periods (periods 1-
3), each consisting of four weeks of data. Counts of usage events were determined using an 
algorithm5 and confirmed by manually counting peaks on printed, weekly traces from each 
household. No significant difference was found between manual counts and the utilized 
algorithm.  
 
Overall, the Philips stove was used more often and for more hours than the Oorja stove across 
the entire monitoring period (Table 3.2 and Figure 3.7). Note that both stoves start with high 
usage, but then diverge, with both stoves being used, though at different levels. For both stoves, 
the number of events and the total duration of use were highest during period 1 and dropped 
during period 2. Usage of the Oorja during period 3 was elevated relative to period 2; usage of 
the Philips dropped during period 3. Even during its periods of lowest use, the Philips was used 
more than the Oorja. In one household, the Oorja was only used during the preliminary 
monitoring period; in two other households, the the Oorja was unused during the final 
monitoring period. The Philips was used consistently by all households. 
 
Acceptability. Findings from the acceptability survey confirm objective usage data. All of the Oorja 
users reported mechanical or operational issues, including the stove consistently requiring 
relighting and the fan being “weak.” One stove failed completely in the trial. Smoke from the 
stove was reported as a significant problem by 12.5% of users. At least once during the 12-week 
follow-up period, 75% of Oorja users stated that the Oorja offered “no convenience”. Of those 
reporting a benefit, 50% reported reduced smoke as the major convenience of the Oorja. 37.5% 
reported that the portability and speed of cooking were advantageous. When considering the 
overall utility of the stove, only 12.5% of respondents reported a benefit of the Oorja when 
compared to their traditional stove.  
                                                
5 Algorithm one applied a 6 point moving average to the data. When the temperature increased from point n to 
point n+5 by greater than 2 degrees, an event was noted as beginning.  
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 (A) 

 
 
(B)  

 
Figure 3.6  Typical daily use pattern for stove use monitors 

Philips Stove (A) and the Oorja (B). Peaks in the graphs represent cooking events.  
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Figures 3.6A and 3.6B display one day’s worth of raw data from the SUMS. Elevated 
temperatures indicate stove usage. A distinct morning and evening stove usage event is visible for 
each stove type. 
 
Table 3.2  Advanced stove usage over time by four-week periods.  

Means with standard deviations of usage per day in hours and events per day are reported for 19 
households.  

 

 Period 1 Period 2 Period 3 

 Use/Day 
(hrs) 

Events/Day Use/Day 
(hrs) 

Events/Day Use/Day 
(hrs) 

Events/Day 

Philips 2.14 ± 0.50 2.13 ± 0.58 1.92 ± 0.84 1.92 ± 0.90 1.84 ± 1.06 1.68 ± 0.99 

Oorja 1.24 ± 0.82 0.96 ± 0.61 0.47 ± 0.61 0.56 ± 0.61 0.79 ± 0.90 0.67 ± 0.76 
 
 
In contrast, consistently throughout the follow-up period, all of the Philips users noted some 
benefit from their stove. All reported that the stove reduced smoke, increased cooking speed and 
fuel efficiency, and stated that the stove’s portability was a benefit. All reported significant 
benefits over the traditional cookstove. 
 
For both stoves, 16 out of 17 respondents were of the opinion that the combustion chambers 
were too small and required constant refueling. They also stated, however, that when functioning 
properly, both stoves used less fuel than their traditional hearth.  
 
 
3.4 Discussion 
 
As has been known previously, the concentrations of particulate matter and carbon monoxide 
measured during traditional cookstove use (both in the cooking area and outdoors) confirm the 
need for exposure reductions in the household environment. Of the two potential interventions 
we evaluated, only the forced draft stove using minimally processed biomass (the Philips) was 
found to be acceptable to participant households in this community. From the outset, the Philips 
was used more frequently and for more hours per day than the pellet stove, the Oorja. The 
Oorja users noted the inconvenience of the pelletized fuel and numerous mechanical and 
operational difficulties. As a result of these findings, we noted that only the Philips was being used 
during the feasibility study. Although the Philips requires that fuel be broken into small pieces, 
cooks had no difficulty doing so, because the local fuel consists mainly of cow dung and fine 
woody debris (twigs). Our results may not generalize to settings where fuels include coarser wood, 
or where appropriate fuel is scarce. As the Oorja requires a steady supply of pellets, this may 
reduce its use in poor populations. We understand that stove manufacturers try to improve 
designs over time, so our conclusions can only refer to the particular models we had available at 
the time of our study. 
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(A) 

 
(B) 

 
 
Figure 3.7  Average uses per day and hours of use over time by stove type  

(A) shows the average number of uses per day of the Philips Stove vs the Oorja. (B) shows the changes in 
cumulative hours of use over each period. For both A and B, the length of the box is the interquartile range. 
The median usage is marked with a solid black line. The mean usage is marked by a diamond. The box 
whiskers extend to 1.5 times the interquartile range.  
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This exploratory study – despite relatively small sample sizes in each of its three components – 
demonstrates that full piloting of advanced cookstoves prior to large disseminations will be 
necessary to ensure the most appropriate interventions are chosen for each area of use, to take 
into account local fuel availability and cultural practices. Objective monitoring with the SUMS 
and assessment of stove performance by questionnaire can help program designers understand 
why a particular intervention is adopted or abandoned by primary cooks. This is illustrated here 
in that both stoves perform admirably in the laboratory, but only one was well-received by our 
community.  
 
Certain tasks – including simmering of milk and preparation of animal fodder – were not 
accommodated by either advanced stove, but continued to be carried out with one the many 
traditional stoves employed regularly by households. Future studies should investigate the 
contribution of these persistent uses of traditional stoves to personal exposures and to ambient 
outdoor pollution. Exposure reductions due to dissemination of advanced cookstoves may be 
inconsequential if the household air pollution concentrations remain elevated due to other 
household combustion sources or external sources of exposure. That cooking tends to takes place 
simultaneously across households in a community may exacerbate this problem. Work in Mexico 
has shown that adoption and sustained usage of stoves is a complex, multi-stage process, in which 
more than one device is routinely used, a practice sometimes called “stacking”28,29. Further 
investigation -- combining qualitative and quantitative data -- of how the advanced stoves 
integrate into daily routines may help elaborate best practices for exposure reductions and inform 
future stove designs.  
 
Monitoring of the primary traditional hearth before and after the household receives the 
advanced stove is one method by which to understand changes in stove use patterns. A challenge 
moving forward will be what we now realize is a requirement for two related behavioral changes. 
Users must not only adopt the advanced stove as their primary hearth, but also must decrease (or 
stop) use of the traditional stoves. Motivating this transition will remain a challenge and may 
require development of specialized stoves for particular tasks. Our study (described in more detail 
in Chapter 4) tracked changes in traditional stove use before and after introduction of the 
advanced stove, allowing better understanding of shifts in usage and how they relate to personal 
exposures to hazardous air pollutants.  
 
The presence of LPG stoves in many of the households in this study indicates that the traditional 
stove is preferred over the “ideal” device for some tasks, primarily because of fuel cost, although 
better taste was also cited as a reason. Further investigation over longer timeframes will be 
needed to understand how the introduction of an advanced stove alters usage patterns and user 
perceptions, and in turn how the device is used within the overall household cooking device 
profile.  
 
Outdoor air pollution levels were higher than expected. Possible explanations for this include (1) 
preliminary monitoring during the early winter, when inversions are common in northern India; 
(2) outdoor cooking by many households at the same time, leading to large increases in 
neighborhood-level pollution; and (3) other sources of ambient pollution, including brick kilns 
and trash burning. Further ongoing evaluation will better characterize the role of outdoor air 
pollution in driving daily exposure. High background rates of pollution in this community 
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indicate that achieving significant personal exposure reductions may require interventions 
focused at the village or regional scale. Targeting individual households may fail to control for 
exposures resulting from neighborhood traditional stove use.  
 
Understanding exposures in this context, especially amongst the pregnant women we propose to 
monitor in the larger NBS feasibility study, is challenging. Initial attempts at 24-hour personal 
monitoring failed due to participant unwillingness to wear larger devices, including pumps, 
cyclones, and UCBs. Less intrusive or demanding approaches – using a minimally invasive set of 
equipment, such as the small carbon monoxide sensors, gas diffusion tubes, or prototype personal 
particulate matter samplers that are now being tested by researchers in the US and Ghana – may 
offer the best compromise of participant compliance and data quality.  
 
The global resurgence in clean cookstoves projects highlights a need for accurate estimation of 
personal exposure to validate potential health effects. This study draws attention to the need for 
further development of valid techniques for investigation of the shifts in household energy usage 
patterns upon new device introduction. It also highlights the necessity of vetting multiple 
interventions in small, exploratory studies to find ones best suited to cultural habits and cooking 
practices.  
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Chapter 4  
 
Patterns of stove usage after introduction of an advanced 
cookstove: the long-term application of household sensors  
 
 
4.1  Introduction 
 
This chapter explores an on-the-ground deployment of an advanced, blower-assisted cookstove 
in rural India. It evaluated the long-term use of both the intervention and traditional stoves for 
over one year in an attempt to better characterize and describe usage patterns over time, and 
demonstrated the viability of using low-cost sensors to track usage for such periods of time. While 
similar assessments had been performed elsewhere before, to our knowledge at the time of 
publication, this study was the first to track traditional stoves before and after introduction of an 
intervention, and offered a new algorithm to convert temperature traces into meaningful metrics, 
such as number of daily events and daily duration of use in minutes.  
 
Globally, approximately 40% of households rely on solid fuel – including wood, dung, grass, 
coal, and crop residues – for cooking.1 The 2010 Comparative Risk Assessment of the Global 
Burden of Disease attributed 3.6 million deaths yearly to the harmful byproducts of solid fuel 
combustion for cooking and an additional 0.3 million deaths from contributions of household air 
pollution to ambient air quality.2,3 While the proportion of households using solid fuels appears to 
be declining, the absolute number using these fuels remains fairly constant.1 
 
Most efforts to mitigate this health burden have focused on providing biomass-burning stoves 
that vent pollution outdoors and/or improve combustion efficiency to reduce emission rates. 
Increasingly, some are focused on providing access to clean energy for cooking – including 
electricity or liquefied petroleum gas. Several conditions must be met if household energy 
interventions are to improve health: continuous access to a low-emissions energy source for 
cooking2, sustained usage of this energy source, and discarding of the more polluting traditional 
stoves. Mixed use of clean and traditional stoves – dubbed stove ‘stacking’ – can mask or negate 
any potential benefit of an intervention. Stacking is well-documented through surveys 28,29,65,66, 
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though little objective continuous monitoring of usage of multiple cooking appliances during 
intervention studies has occurred to date. 
 
In Palwal District, Haryana, we provided a fan-assisted, advanced cookstove, with modifications 
to improve combustion efficiency (not just improve fuel efficiency or vent pollutants outdoors), to 
pregnant women via local antenatal healthcare system workers. Preliminary research evaluating 
potential interventions and describing this community has been published67 and was described in 
detail in Chapter 3. During that initial work, we identified the stove selected for this study – the 
Philips HD4012 – as suitable, despite requiring access to power for battery charging and the 
need to chop the biomass fuel into small pieces. Among other goals, the study evaluated the use 
of the intervention and primary traditional stoves over time and investigated predictors of usage.  
 
Monitoring usage and adoption of intervention stoves traditionally relied on simple metrics 
obtained through interviews or by a trained observer. Such practices introduce the potential for 
bias – due either to recall bias or to changes in behavior due to participants knowing that they 
are being observed in the study (the ‘Hawthorne effect’). Recent work in Rwanda, for example, 
highlighted that usage estimates obtained from surveys were biased upward relative to objective 
measures from electronic sensors.23,68 These biases have been well described in water and 
sanitation studies, including recent evidence showing significant effects of structured observation 
on behavior69 and attempts to address these issues using simple data-logging sensors.22 Previous 
studies19,20,28,58,67 of household energy identified Maxim IC’s iButton technology as an objective, 
field-validated Stove Use Monitor (SUM). iButtons are small, coin-shaped thermometers that log 
time-resolved instantaneous temperatures at the surface upon which they are mounted. Properly 
placed, iButtons offer both an objective measure of stove usage and a relatively unobtrusive way 
to monitor interventions over time. Specific sensor characteristics are described elsewhere.20,67 
 
This paper describes time-trends in usage of the intervention and primary traditional stoves in 
rural Indian homes. We examine how well short-term measures (1, 2, and 7 day mean 
measurements) of stove use predict study means, with the goal of optimizing sampling times and 
strategies for monitoring household energy interventions. We believe the dataset described in this 
paper is the longest and deepest dataset of measured stove usage generated to date, spanning 
over 15 months of monitoring at 10-minute intervals on both intervention and primary 
traditional stoves in 200 homes (~21 million datapoints). Measuring multiple stoves required 
creation of new metrics to characterize shifts in usage patterns over time. Our secondary focus – 
on reducing total monitoring duration for assessing use, without compromising data quality – 
informs strategies to optimize the conflicting goals of precise measurements and efficient 
fieldwork.  
 
 
4.2  Methods 
 
Study site 
This study took place approximately 80 kilometers south of New Delhi at the International 
Clinical Epidemiology Network (INCLEN) SOMAARTH demographic, development, and 
environmental surveillance site67 in Palwal District, Haryana, India beginning in November of 
2011 and ending in March of 2013. At the time of the study, INCLEN was carrying out  



Chapter 4. Long-term stove usage after introduction of an intervention 
 

 

39 

 

 
 
Figure 4.1  Traditional and intervention stoves and placement of stove use monitors 

A is a typical traditional wood and dung-fueled stove. The inset image shows the Stove Use Monitor and 
its holder. B is the Philips intervention stove. A metal sheet stamped with a unique identifier and machined 
with a hole was used to securely hold each stove use monitor. 

A 

B 
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demographic and environmental surveillance in 51 villages, covering a population of 
approximately 200,000.  
 
During the study, ambient temperatures varied widely by season, reaching a maximum of 45ºC 
in May and a minimum of 4 ºC in January (Appendix Figure C1). Temperature data were logged 
every minute by the project meteorological station (Onset Microstation, Onset Computer 
Corporation) at the INCLEN field headquarters in Palwal town, between 5 and 12 kilometers 
from study villages. 
 
Study sample 
The current study focused on 7 rural villages, selected based on their use of biomass for cooking, 
total population, and their accessibility to the SOMAARTH field headquarters. 205 pregnant 
women were recruited from these villages. All households recruited into the study used dung, 
wood, and crop residues in a traditional hearth (Figure 4.1A) as the primary means of cooking. 
Nearly all homes (n=200) cooked outdoors. 
 
Intervention 
The Philips HD4012 (Figure 4.1B) is a top-loading, fan-assisted semi-gasifier stove fueled by 
small wood pieces 5 cm in length and up to 2.5 cm in diameter. It contains a rechargeable 
battery that powers a fan used to enhance combustion efficiency. The fan is adjustable via a knob 
on the front of the stove. The HD4012 requires access to electricity for intermittent charging. 
Initial selection of the Philips stove was based on its performance in laboratory testing by the US 
EPA, which found it to be amongst the cleanest stoves evaluated using standard simulated 
cooking methods.9 Field emissions from this stove were evaluated by other research projects in 
India27,70 and our research team validated this stove’s acceptability in the community prior to this 
project.67 At the time of the study, the stove was produced in Ghaziabad, India, and sold for 
approximately 60 USD.  
 
Participants who received the Philips stove were trained on proper stove use and maintenance by 
community health workers and INCLEN field staff. Contact information for INCLEN’s field 
office, which was equipped with spare Philips parts and had access to trained technicians and 
electricians, was provided to participants in case of any stove malfunction, error, or other user 
complaint. Complaints could be filed during regular household visits by INCLEN field staff, 
through calls to INCLEN, or by visiting the field headquarters. Upon receipt of a complaint, 
repair attempts were undertaken first by INCLEN support staff and then, if necessary, by 
electricians. A supply of replacement stoves was available to avoid prolonged interruption in 
homes with stove failures. Detailed logs of stove reliability, malfunction, and maintenance were 
maintained by INCLEN field staff (see Appendix C).  
 
Stove Use Monitoring 
Upon enrollment into the study, field staff obtained informed consent, administered a baseline 
questionnaire, and installed a SUM on the primary traditional stove in each participant’s 
household. The primary cook was informed of the purpose of the sensor. SUMs were placed in a 
custom-made metal holder and plastered onto the traditional stove side-wall with the same slurry 
of mud and water used to construct and repair stoves. The holder and a SUM can be seen in the 
inset image in Figure 4.1A. The selected SUMs placement location did not disturb standard 
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cooking practices, was protected from overflows and spills, and captured variability in 
temperatures adequately. Stoves varied in shape and size between households; SUMs were 
placed in approximately the same location on each stove throughout the study.  
 
Within four weeks after pre-intervention monitoring began, the Philips intervention stove, pre-
fitted with a SUM (visible in Figure 4.1B), was delivered to the home. A custom-made metal 
bracket, stamped with a unique stove ID, was used to hold the SUMs in an identical location on 
all intervention stoves.  
 
SUMs logged instantaneous temperature every 10 minutes continuously throughout the study. 
Field workers visited homes every two weeks to inspect stoves and download data from the 
SUMs. SUMs were reprogrammed after each download. Raw sensor data were acquired using a 
Touch and Hold Probe connected to a USB to 1-Wire RJ11 adaptor (Maxim Integrated, San 
Jose, CA, USA). Data transfer took approximately 2-5 minutes per stove and involved holding 
the probe to the surface of the iButton. Stove usage files were transferred to the field office, where 
they were inspected for errors and minimally processed.71 Filenames contained metadata, 
including stove type (Philips or traditional), household ID, and download date. Raw files were 
archived at the field site and at INCLEN headquarters in New Delhi. Cleaned files were 
transferred to a secure server in the School of Public Health at the University of California, 
Berkeley, and analyzed using R. Approximately 20.6 million SUMs data points were collected 
during the main study, representing 143,000 stove-days of data from 408 stoves.  
 
Data processing 
The number and duration of usage events, derived from raw SUMs temperature traces, were 
determined for each stove on each monitored day. Algorithms for processing SUMs data were 
created using an iterative process, beginning with recommendations from the literature that 
identify events by setting thresholds for the rate of increase and decrease in temperature. 20 Due 
to the high variability in ambient temperatures in Palwal, existing algorithms were altered to 
better suit the local climate and stove types. We took advantage of our continuous ambient 
temperature measurement to ‘correct’ for diurnal variation. To compensate for variability in 
temperatures between households and the field office, we calculated the mean and standard 
deviation of ambient temperature for each recorded hour during the study. These values were 
used to create thresholds for evaluating whether a stove was in use or not.  
 
For each stove, the daily recorded SUMs temperature range (Drange) was calculated by 
subtracting the daily minimum temperature from the daily maximum temperature. SUMs data 
were then merged with data for mean hourly ambient temperatures (Hmean amb) and their 
standard deviations (Hsd amb). A stove was considered in use when the SUMs temperature 
exceeded the mean ambient temperature plus 6 times its standard deviation. Any period detected 
for which Drange was less than 20 ºC was marked as a period of non-use. To count the total 
number of daily uses, periods of use that occurred less than 40 minutes apart were treated as a 
single use. This clustering threshold was based on manual observation of temperature traces. For 
each stove, durations of daily use and number of uses per day were saved.  
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Analyses and interpretation of sensor data 
Summarized data were analyzed to understand trends in usage of both the traditional and 
intervention stoves. All analyses were restricted to households for which we had at least 2 days of 
pre-intervention data (n=177). Analyses were performed separately (1) for the entire data set for 
these households and (2) for days on which data were successfully collected from both traditional 
and intervention stoves (see Appendix C).  
 
The proportion of stove use-time spent using the Philips intervention stove was defined as 
 

 
 
All durations were calculated in minutes. While the proportion of time spent using an 
intervention is useful to track adoption, it does not take into account gains in efficiency of heat 
transferred to the pot by the intervention stove, leading to shorter cooking times, and therefore 
does not allow direct comparison between stoves. Thus, we linked durations of cooking derived 
from the SUMs with cooking power from laboratory studies9 to determine the utilized cooking 
energy (UCE) in megajoules (MJ): 
 

 
 
Calculation of UCE allowed estimation of changes in total energy used before and after 
deployment of the intervention. Laboratory cooking power estimates were derived from 
controlled burning for water boiling using uniform wood fuel and may not be representative of 
conditions in the field, where multiple biomass fuels of varying moisture contents may be used. 
 
Statistical tests and modeling 
The metrics described above were used to create a log of daily household usage, including the 
number of uses, duration of use, and estimated energy used by each stove. Overall trends in use 
of the traditional stove before and after introduction of the intervention were compared using t-
tests.  
 
We evaluated the change in daily mean traditional stove use after introduction of the 
intervention using linear mixed models to partition the between- and within-household variance 
components and to calculate the intraclass correlation coefficient (ICC, the proportion of 
variability explained by between subject differences). Models took the following form  

 
Where Yij is the ith duration of use in household j, B0 is the overall intercept, bi is the random 
effect for household i, and eij is the leftover error. This baseline model was run first for the 
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combined dataset and then separately by period (pre-intervention and post intervention) for the 
traditional stoves. Variability in Philips usage was assessed independently in the same fashion.  
 
Sampling strategies 
We additionally evaluated how well short measures of usage predicted the study average during 
stable periods of usage. This analysis was restricted to the traditional stove, which exhibited stable 
use patterns, and was performed independently for the pre- and post-intervention periods. We 
calculated means from varying time periods (one day, two consecutive days, two random days, 
one week, and one day per month) of usage data selected randomly from each household and 
study period and compared it to the mean duration of use for the entire study period. For shorter 
measures, we calculated the probability of a random measurement falling within a precision 
interval (for instance, within 20% in either direction of the period mean).  
 
 
4.3  Results 

 
Pre- and post-intervention stove usage  
During the pre-intervention period, usage of the traditional stove was measured in 177 homes 
for, on average, 34 days (SD = 35, range = 3 – 103). In this period, households used their 
primary traditional stove 1.4 times (SD = 0.8), for an average of 209 minutes (SD = 105) per day. 
After introduction of the intervention, the traditional stove was monitored for, on average, 251 
days (SD = 97, range = 52 – 426); the Philips stove was monitored for, on average, 358 days (SD 
= 54, range = 139 – 433). During the post-intervention period, households exhibited a significant 
mean decrease in the use of their primary traditional stove to 144 minutes per day (p < 2.2e-16, 
SD = 134) once daily. The intervention stove was used, on average, 0.6 times daily (SD = 0.8) for 
60 minutes (SD = 87) after its introduction.  
 
A small number of characteristic stove adoption patterns was observed across households. Figure 
4.2 shows the two most common patterns of the transition between traditional stoves and the 
intervention stove, as illustrated by data from two study households. In both panels, the dotted 
blue line is the SUMs trace from the traditional stove; the solid red line is the trace from the 
Philips. Pre- and post-intervention patterns of use are shown. In the upper panel (“Mixed Use”), 
the Philips is used upon introduction repeatedly over the course of a week, concurrently with 
traditional stove use. Philips use declines and tapers off in later weeks. In the lower panel 
(“Philips Use”), use of the traditional stove halts after Philips introduction. A third pattern, in 
which the Philips was rarely or never used, was observed but is not displayed. These patterns 
were typical of the larger population during the first month after introduction of the stove.  
 
Post-intervention cooking patterns 
Use patterns during the first through third months post-intervention in homes with SUMs data 
available on both stoves for at least 15 days per month are described in Table 4.1. During the 
first month with the Philips, almost all homes used both stoves (n=152). 6% of homes used the 
Philips exclusively (n=9); only one home did not use the Philips. Among the homes using both 
stoves, the Philips accounted for greater than 80% of cooking events in 17% of homes (n = 28).  
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Subsequent months exhibited wide variability between and within homes (Appendix C). Among 
the 9 homes that exclusively used the Philips during the first month, average use of the Philips 
decreased from 111 minutes daily during the first month post-intervention to 78 minutes daily 
across the remaining months. Traditional stove use increased from 0 to 52 minutes daily across 
the same period. Additionally, all households exhibited multiple days during later months in 
which neither stove was in use, suggesting that food was obtained by other means (from relatives 
or purchased), cooked in alternate locations, or cooked using stoves not fitted with SUMs. Similar 
trends were noted for homes exclusively using the Philips in months two and three.  

 
Figure 4.2  SUMs data from households with different usage patterns 

Panels show temperature traces for the traditional stove (dashed blue) and for the Philips stove (solid red).  
 

Table 4.1 Distribution of cooking events using Philips stove 
 

Days After 
Intervention 

N 

Percent of Total Cooking Events using Philips 
n  (%) 

No  
Use a 0 1-19% 20-

39% 
40-
59% 

60-
79% 

80-
99% 100% 

0 – 30 162 0 (0) 1 (0) 11 (7) 34 (21) 55 (34) 33 (20) 19 (12) 9 (6) 
31 – 60 155 5 (3) 8 (5) 25 (16) 25 (16) 34 (22) 23 (15) 13 (8) 22 (14) 
61 – 90 146 4 (3) 8 (6) 30 (20) 29 (20) 19 (13) 13 (9) 16 (11) 27 (18) 
a No use of either stove recorded 
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Figure 4.3  Use and monitoring of traditional and intervention stoves throughout study 

The upper panel depicts daily mean usage of monitored stoves by stove type. Day 0 is the day the 
intervention stove was introduced. The middle panel depicts the percent of cooking time each stove was used. 
The bottom panel depicts the number of stoves monitored per study day.  
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The variability in usage of the intervention and the lack of displacement of cooking tasks from 
the traditional stove to the intervention is emphasized at the study population scale in Figure 4.3. 
Between introduction of the intervention and post-intervention day 200, there is a significant and 
consistent decrease of 0.28 minutes/day in use of the Philips (p < 2e-16); between day 200 and 
the end of monitoring, usage stabilizes but continues to decrease by 0.04 minutes per day. The 
traditional stove use after Philips introduction was stable. Similar trends were noted for daily use 
event counts over time (see Appendix C).  
 
Most of the total variability in usage across stove types was due to variability within homes – 66% 
across periods for traditional stoves and 78% for intervention stoves. The total variability was 
highest for traditional stoves in the post-intervention period, perhaps indicative of either a shift 
first to and then from the Philips or mixed use of both stoves. Appendix Table C3 shows the 
means of use duration overall and by stove type and period and presents the calculated ICCs, the 
proportion of variability explained by differences between subjects. 
 
Utilized cooking energy 
Prior to the intervention, households utilized 15.5 MJ of energy per day (SD = 1.5) from cooking 
with their traditional stoves (Figure 4.4). After introduction of the intervention stove, utilized 
cooking energy from the monitored traditional stove decreased significantly to 10.6 MJ per day 
(SD = 0.86, p < 2.2e-16). In the first month after introducing the intervention, however, total 
average utilized energy increased to 21 MJ daily, due to use of both stoves. Counterintuitively, 
perhaps, decreasing usage of the more efficient Philips in subsequent weeks led to decreasing total 
energy use. Assuming the rate of energy consumption of each stove remained constant 
throughout the study, the average daily utilized energy across the post-intervention period 
increased to 16.3 MJ (p = 0.003).  
 
Comparing short-term measures of stove usage to study means 
We evaluated the ability of “short measurements” of cooking duration –1 day, 1 day per study 
month, 2 random or 2 consecutive days, and one consecutive week – to predict mean stove usage 
of the traditional stove during the pre- and post-intervention periods. These periods for the 
traditional stove were selected because they exhibited relative stability over time, as compared to 
the Philips.  
 
Short measurements had a low probability of predicting the study-wide mean of stove usage. 
Precision varied across the pre- and post-intervention periods (Appendix Figure C5 and Table 
C4). Short-term measures adequately predicted pre-intervention means with traditional stoves. 
During this period, a consecutive week of sampling had the highest probability (75%) of being 
within 20% of the long-term mean. After introduction of the intervention stove, short-term 
means performed poorly. Just 18% of random single days were within 20% of the long-term 
mean for the traditional stove. The mean of samples taken for one day per month post-
intervention had a 66% chance of being within 20% of the long-term average.  
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4.4  Discussion 
 
We report on the usage of an intervention stove distributed to 177 pregnant woman and related 
changes in use of the traditional stove over approximately 60 weeks in rural India. The dataset 
consists of one of the largest and longest objective measurement campaigns of stove usage to 
date. By deploying stove use sensors for over a year, we were able to track and report for the first 
time the changes in usage of an advanced cookstove intervention and the primary traditional 
stove over time.  

 
 
Figure 4.4  Utilized cooking energy in megajoules throughout intervention 

The utilized cooking energy is presented separately for the traditional and intervention stoves (blue and red, 
respectively) and pre and post-intervention periods. The total energy use is presented in green. 

 
 
Analysis and application of stove usage data 
Few algorithms for converting temperature traces to event counts and durations of use have been 
published. We offer a novel analysis method: usage events defined as periods that deviate from 
ambient temperatures. This method does not rely on any additional assumptions about the 
distribution of the data and facilitates relatively fast analysis of large volumes of data. It does, 
however, require local measurement of ambient temperature, which can introduce additional 
cost. We focus on durations of use, as we believe this to be a more health-relevant metric and a 
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better indicator of potential risk than number of events, which can easily be obtained from 
duration data if needed (see Appendix C).  
 
Further evaluation of this algorithm is ongoing on both previously collected and new SUMs 
datasets. We are additionally investigating the feasibility of household or village level “ambient 
SUMs” to aid with signal processing and to account for microclimatic variability not captured by 
a single, meteorological station. Finally, we are monitoring usage on many different stove 
phenotypes globally; these activities will help optimize SUMs placement practices, and evaluate 
and hone the described algorithm to determine its broader applicability.  
 
We see a need for standard methodologies for interpretation of iButton signals that cater to 
specific research or programmatic goals. Daily time of use and number of uses are simple metrics 
obtainable from SUMs data through a number of methods. Inter-study comparisons of usage 
may be complicated, however, by variation in the algorithms used to generate these metrics. For 
instance, estimated time-of-use is impacted by the threshold at which the stove is no longer 
considered to be on; the estimated number of uses is similarly affected by decisions about 
clustering of temperature peaks. Clear specification of algorithm parameters – ideally in the form 
of open-source code – and evaluation of algorithms in multiple studies can help clarify differences 
between results obtained using different methods.  
 
Stove usage and adoption in Haryana 
We found linearly decreasing population-scale trends in usage of the intervention stove over time. 
This trend leveled off between 175 and 200 days post-intervention. While usage of the 
intervention had not completely ceased at the end of data collection, the number of homes using 
the intervention stove regularly and the related durations of use were lower than immediately 
after stove distribution. Our findings are supported by other studies which have (1) indicated 
“stacking” of devices throughout the adoption process58 and (2) acknowledged a trial period 
during which the household evaluates the suitability of the intervention. 28,29  
 
Utilized cooking energy showed similar trends, with an increase in total UCE following 
introduction of the Philips, followed by a leveling off and stabilization. Future studies should 
focus on similar calculations to understand if there is a ‘rebound effect’, as discussed elsewhere72 
in the household appliance literature. In our setting, addition of the advanced stove seemed to 
increase overall energy use, perhaps because the users took advantage of an additional stove to 
provide more cooking services, rather than substituting the Philips for the traditional stove. Any 
future studies seeking to calculate UCE should evaluate cooking power in the field, as laboratory 
and field stove performance parameters often vary widely73-75. Because we relied on these 
laboratory estimates and applied them uniformly over the study period, we may be mis-
estimating the actual utilized cooking energy.  
 
Our findings indicate that the Philips may have temporarily offset a portion of measured 
traditional cookstove usage, albeit in a way that may have increased total energy use. Despite this 
continued use of the Philips, however, it failed to become the dominant stove used in the home, 
as would be necessary to maximize health protection. Changes in exposure during the current 
study will be reported separately.  
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Importantly, without measurement of usage of both the primary traditional and intervention 
stoves, we would have been unable to make any determinations about the role of the Philips – as 
an added cooking appliance – in household cooking. Finally, we would not have observed the 
initial uptick and subsequent decrease in UCE after introduction of the intervention.  
 
Stove usage variability 
The high within-household variability of daily usage of both stoves – especially in the post-
intervention period – indicates that care must be taken when using short-term measures of usage 
to predict long-term means. Specifically, after deployment of an intervention, a period allowing 
households to reach an equilibrium is recommended to prevent mis-estimation of long-term 
trends. This stands in stark contrast to previous work in Guatemala 58, where the majority of 
variability was found to be between households. Most likely, this is due to the difference between 
the character of the intervention in Guatemala, which was well known to the community, locally 
created, and fixed in place, and the intervention in India, which while vetted in the community 
was a portable, engineered object brought in from elsewhere.  
 
Continuous measurements allowed us to evaluate the ability of short-term measurements to 
predict the long-term mean. Short-term measurements of one or two consecutive days did a poor 
job of predicting the long-term mean, with the majority of measurements deviating from the 
mean by over 20%. Measurements that were spread through time – for instance, one 24hr 
measurement per month of the study – were much closer to the long-term mean. These findings 
suggest that future intervention studies should measure stove usage regularly to capture inherent 
variability in household behavioral patterns and to best capture changes in usage over time. 
Given that short-term measures fail to accurately predict long-term means in relatively stable 
situations, their value in dynamic situations, such as the days and weeks following intervention 
introduction, is extremely limited. Attempts to assess “adoption” and use must track behaviors 
consistently for longer periods of time.  
 
Limitations and challenges 
This study has a number of limitations. Stoves were given to participants free-of-charge, which 
has been shown to impact perceptions of value 24. Participants were enrolled based on pregnancy 
during the initial phases of the study and may not represent the broader population. Cultural 
cooking practices related to pregnancy may impact adoption of an intervention stove; initial and 
long-term usage in households without a pregnant woman may be more consistent or 
significantly different from the patterns we observed. However, as our study population 
represents a particularly vulnerable group, indications on how they use this free intervention can 
inform future studies targeted towards similar communities. Second, we were unprepared to 
instrument the variety of other traditional stove types found in many households. While we 
placed two sensors, one on the intervention stove and one on the participant-reported primary 
traditional cookstove, it is possible that other traditional stoves were also used during the study 
period. Further, there is possibility of the Hawthorne effect: instrumentation of the primary 
traditional cookstove may have shifted usage to other, unmonitored traditional stoves. Among 
users who exclusively used the Philips during month 1 or 2 of the study, we noted multi-day 
periods of inactivity with both monitored stoves in subsequent months, indicative of cooking 
elsewhere or use of another stove. We believe either of these reasons may account for the, on 
average, lower levels of traditional stove usage in months 1 and 2 than during the pre-
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intervention period. As a result of these caveats, our study paints only a partial picture of the true 
usage patterns in the home. As these secondary and tertiary stoves were reported to be used only 
for simmering milk or cooking during inclement weather, we do not believe there were wide 
changes in their use as a result of introduction of the Philips. We cannot, however, discount the 
possibility of use of unobserved and unmonitored stoves. Finally, the high number of 
interventions that suffered one or more mechanical failures calls into question the reliability of 
this intervention without significant infrastructure and spare parts to facilitate repair.  
 
A number of challenges arose during the study. The fieldworker burden for this study was high, 
with a small team of fieldworkers visiting each household every two weeks. Households were 
spread over a relatively wide area, leading to significant transit time and costs and fieldworker 
turnover. Similarly, the volume of data proved to be a logistical challenge to manage, clean, and 
transfer. Strict protocols and fieldworker assurances facilitated analyses but could not, inherently, 
decrease data transfer and processing times. SUMs on traditional stoves were especially difficult 
to maintain over long periods of time due to challenges with placement related to overheating 
and exposure to water (see Appendix C). We are exploring alternate measurement techniques – 
including infrared thermometers, thermocouple-based data-loggers, and wireless transmission of 
data – to improve data completeness and fidelity for traditional stoves. Comparisons of data 
measured with SUMs to participant-reported stove use and perceptions of the Philips as a 
replacement for the traditional stove are in preparation. Such comparisons have, in some cases 
58, revealed that reported stove use is similar to measured use, while in other cases reported use 
exceeds measured use23. Future intervention studies should focus on long-term objective 
measurement of stove use and, using qualitative methods from behavioral science, seek a deeper 
understanding of the individual and community behaviors motivating use or non-use of an 
intervention. 
 
4.5  Conclusion 
 
As noted elsewhere28,75, stove usage is a critical link between the potential and delivered benefits 
of intervention programs. Monitoring of usage over time is necessary to fully understand the 
potential for delivery of those benefits; in this study, short-term measurements of benefits 
immediately after intervention distribution would have been misleading and potentially led to 
mistaken claims of benefits.  
 
The low long-term usage of the intervention stove, while disappointing, is informative. It 
indicates (1) that preliminary work, while valuable to assess initial feasibility of an intervention, 
will most likely not predict long-term viability; (2) that measurement of usage of both traditional 
and intervention stoves is required – over time – to fully understand and accurately characterize 
adoption of an intervention and changes in traditional habits; and (3) that a combination of more 
transformative, aspirational, and reliable interventions – that can fully displace the traditional 
stove – and education and training, to sway participants away from the old stove – will be 
required to fully realize benefits.  
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Chapter 5  
HAPIT, the Household Air Pollution Intervention Tool, to 
evaluate the health benefits and cost-effectiveness of clean 
cooking interventions 
 
 
5.1  Introduction 
 
Globally, approximately 40% of the world’s population relies on solid fuel combustion for 
cooking 1. The household air pollution (HAP) resulting from the use of these fuels (including 
wood, dung, coal, and crop residues) results in approximately 4 million premature deaths yearly 
2,36 and 108 million lost disability-adjusted life years (DALYs) in low and medium income 
countries (LMICs). This comes from HAP’s impact on a range of diseases, including chronic 
obstructive pulmonary disease (COPD), ischemic heart disease (IHD), stroke, and lung cancer 
(LC) in adults and acute lower respiratory infection (ALRI) in children. Recently, in response to 
this large health burden, international organizations and governments –spearheaded in part by 
the Global Alliance for Clean Cookstoves – have focused on efforts to provide reliable clean 
cooking technologies to solid fuel users. Deployed interventions span a range of technologies, 
including simple “improved” chimney stoves 4,42, ‘rocket’ stoves 11, advanced cookstoves with fan-
assisted combustion 10,43, as well as clean fuel (including LPG, natural gas, biogas, ethanol and 
electricity) interventions 47,76.  
 
Selecting an intervention requires balancing a number of competing priorities, including the cost 
of the intervention; its effectiveness, as proven in the lab and pilot field studies; its cultural 
acceptability and ability to meet local cooking needs, and its inherent requirements, like the need 
for fuel processing, the intervention’s durability, and power constraints. One way to frame these 
characteristics is at the scale of a large, national program, with consideration of its potential to 
improve quality of life and avoid ill-health, expressed in terms of dollars spent on its deployment 
and evaluation.  
 
To actually measure the broad range of changes in health from a change in the HAP due to an 
intervention would require large, complicated, expensive, long-term field studies, particularly as 
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the prevalence of most of the chronic diseases known to be exacerbated by HAP (COPD, IHD, 
LC, stroke) take many years to develop but also many years to decline with reductions in 
exposure. There is nevertheless a need for methods to credibly estimate the likely degree of ill-
health that could be avoided by an intervention using the best available scientific evidence from 
epidemiological studies that could be expected from an intervention.  
 
In this chapter, we describe the development pathway and methodology used in the Household 
Air Pollution Intervention Tool (HAPIT), an internet-based platform6 to evaluate and compare 
health benefits achievable through reduced exposures to fine particulate matter (PM2.5) resulting 
from implementation of fuel and/or stove interventions. It can be tailored to the conditions in 
each of many dozens of LMICs to give organizations contemplating interventions a rough, but 
credible, estimate of the comparable health benefits that could be accrued through each scenario.   
 
The idea behind HAPIT is not to provide research-quality evidence of health benefits for all 
possible situations, which would take many years and involve costs and expertise that is well 
beyond that possible for most planned interventions. Rather, it aims to provide “good enough” 
evidence, based on the best available health effects information linked to air pollution exposures. 
There is a long tradition of using such risk assessment techniques to evaluate environmental 
health hazards, not only in air pollution77 but from interventions to reduce water pollutants, 
radiation, toxic chemicals, and so on.   
 
Evaluations of projects to reduce another important environmental health risk also benefit from 
such tools. Interventions to mitigate climate change use CO2-equivalent metrics to estimate their 
benefits. They are not required to show an actual impact on climate change, which would take 
sophisticated studies lasting many years, but rely on associations established by the best current 
science between emissions of greenhouse gases and changes to climate. These come from 
complex climate models informed by measurements and that are evolving over time. Just so with 
HAPIT, which relies on the best intermediate variable between HAP and health, exposure to 
PM2.5. Exposure is closely linked to the intervention in one direction and to health impacts in the 
other direction, via complex published models, based on major reviews of published health 
studies, which, like climate change models, evolve over time. 
 
HAPIT outputs can be made available to policy makers in order to raise awareness about the 
potential public health implications of an intervention program at a national level, inform them 
about the health benefits expected from scaling up available interventions, and provide 
information on the relative costs of scaling up different intervention options. As such, there is a 
clear role for such a tool to inform health policy makers in the implementation of the World 
Health Organization’s Indoor Air Quality Guidelines for household fuel combustion. Beyond the 
health sector, this tool can be used by clean cooking implementers both to help design better 
interventions (how clean do they need to be to achieve health benefits) and potentially to help 
raise funds to implement dissemination projects through results-based financing.   
 
HAPIT estimates both averted DALYs and averted premature deaths and calculates a simple 
cost-effectiveness metric based on the World Health Organization’s Choosing Interventions that 

                                                
6 HAPIT can be accessed at http://hapit.shinyapps.io/HAPIT 
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are Cost-Effective (WHO-CHOICE) framework. For illustration, here we demonstrate use of 
HAPIT to evaluate a chimney stove intervention deployed as part of the RESPIRE randomized 
controlled trial and an LPG intervention, both in the Western Highlands of Guatemala. Finally, 
we conclude with a discussion of the methodological and conceptual issues raised by HAPIT in 
the context of broader health and sociopolitical concerns and introduce the potential for results- 
based financing, based on averted DALYs, or aDALYs.  
 
 
5.2  Methods 
 
HAPIT relies (1) on up-to-date national background health data and (2) on the methods and 
databases developed as part of the Comparative Risk Assessment (CRA), a component of the 
Global Burden of Disease (GBD 2010). HAPIT utilizes exposure-response information for each 
of the major disease categories attributable to particulate air pollution and 2010 background 
demographic, energy, and economic conditions for the 57 countries in which solid fuels are the 
primary cooking fuel for 50% or more of homes 1. HAPIT additionally includes a number of 
countries in which household energy intervention disseminations are underway or planned, but 
which have less than 50% solid fuel use nationally. All data are for year 2010, the most recent 
year for which country-level data are currently available from GBD. Figure 5.1 visually depicts 
HAPIT inputs and methods. 
 
Background data used by HAPIT  
All background disease information employed in HAPIT was downloaded from the Institute for 
Health Metrics and Evaluation’s (IHME) GBD 2010 Country Databases7. The deaths and 
DALYs from lung cancer include the GBD 2010 estimates of tracheal, bronchial, and lung 
cancers. Cardiovascular diseases are broken down into two categories – Ischemic Heart Disease 
(IHD) and Ischemic & Other Hemorrhagic Strokes (Stroke). HAPIT calculates deaths and 
DALYs due to ALRI only among the population of ages 0-4. Average household sizes were 
extracted from the Global Alliance for Clean Cookstoves' Data and Statistics website8. 
Population data were extracted from the US Census International Bureau9 and the UN's World 
Urbanization Project10.  
 
Cost-effectiveness is determined by comparing the expected annual cost of the intervention per 
averted DALY (described below) in USD to the gross domestic product per capita (GDP PC, 
USD). WHO-CHOICE advises that interventions costing less than the GDP/capita are very 
cost-effective, those costing one to three times the GDP/capita are cost-effective, and those 
costing more than three times the GDP/capita are not cost-effective 78.  
 
HAPIT estimates program cost-effectiveness using a financial accounting approach. In doing so, 
it (1) does not take into account changes in household costs due to medical expenditure or the 
time or money spent acquiring fuel and (2) assumes that programs are covering the cost of fuel-

                                                
7 http://ghdx.healthdata.org/global-burden-disease-study-2010-gbd-2010-data-downloads 
8 http://cleancookstoves.org/country-profiles/ 
9 http://www.census.gov/population/international/ 
10 http://esa.un.org/unpd/wup/ 
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based interventions (such as monthly LPG costs per household). For custom scenarios, to take 
into account these parameters based on the characteristics of their programs, users can adjust the 
per-household maintenance or fuel costs. For example, the total financial outlay of the 
intervention program may decrease if households pay for a portion of the cost of the fuel or 
intervention, or pay back the cost over time. This can be accounted for in HAPIT by adjusting 
the per-unit or maintenance costs associated with the program.  
 

 
 
Figure 5.1  HAPIT inputs and outputs 

A conceptual diagram of the inputs, outputs, and methods used to estimate averted ill-health using 
HAPIT.   

 
 
User inputs  
HAPIT users are able to input (1) pre- and post-intervention population average exposures to 
PM2.5 in µg/m3, based on measurements performed in the target communities, and the standard 
deviation of those measurements; (2) the number of households targeted by the intervention; (3) 
the average percentage of the population using the intervention throughout the intervention’s 

Background Data
2010 Background disease  

data – deaths & DALYs 
GBD Compare 2013

2010 Population data 
US Census Int’l Bureau

2010 Solid fuel use 
Bonjour et al 2013

GDP per capita (Int’l $) 
IHME 2013

Average HH size 
GACC 2013 • UNPD

User Inputs
Pre- and post-intervention PM exposures 

in µg/m3  

Number of targeted homes and fraction 
using the intervention 

Intervention and maintenance costs 
(USD) 

Useful intervention lifespan

Relative Risks + PAFS
Calculate relative risks for each 
disease at each user-input exposure 
level using mathematical functions fit 
to exposure-response data. 

Calculate population attributable 
fractions for each disease at each 
exposure level.

Attributable Burden
Calculate attributable burdens for 
each exposure scenario and for an 
additional scenario for a perfect 
intervention – one that decreases 
exposures to the ideal counterfactual.  

Averted Burden
Subtract post-intervention deaths 
and DALYs from pre-intervention 
values to determine the health 
benefits of the intervention 
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useful lifetime; (4) the cost to the program per intervention in current US Dollars (USD); and (5) 
the yearly maintenance cost (including fuel costs) per household in current USD. For users with 
limited data for these inputs, default values are available for each of these 5 items.   
 
Users are strongly urged to address the following issues prior to scaling up an intervention: 
 

- Intervention Effectiveness: selected interventions should have the ability, under ideal 
(laboratory) conditions, to reduce emissions of health damaging pollutants to 
acceptable levels 9,57. Interventions that perform poorly in the laboratory are unlikely 
to perform well in the field.  

 
- Intervention Acceptability: interventions should be evaluated in the community, to 

ensure appropriateness for local cooking and otherwise to suit local needs 
 

- Exposure Reduction: in pilot work in the target community, or one like it, 
interventions should result in a demonstrable and significant reduction in population 
PM2.5 exposures 

 
- Sustained Intervention Usage: Interventions should, ideally, displace use of the more 

polluting traditional stove. Declining usage of the intervention over time may indicate 
reversion to traditional cooking methods and an elimination of any meaningful 
exposure reductions.   

 
Because HAPIT relies on measured exposures to estimate averted ill-health, we briefly clarify the 
distinction between (a) emissions, (b) concentrations, and (c) exposures in the context of 
household air pollution studies: 
 

a. Emissions refers to the rate of release of a pollutant per unit time or per unit of fuel; 
emissions measurements are often taken ‘directly’ from the combustion source and can be 
performed in the laboratory or the field. Although emission measurements can be 
conducted over an entire day, it is most common to conduct them in conjunction with 
one cooking cycle, either typical to the area if done in the field or with a standard cooking 
cycle if done in the lab. 

 
b. Concentrations are a result of emissions and various room conditions, like ventilation 

rates, and processes, like deposition and exfiltration. Concentrations are often measured 
in microenvironments – for instance, in the kitchen and in the living room – but do not 
directly take into account the presence of people. Because it is difficult to simulate real 
world situations, reliable concentration measurements normally are measured in 
households themselves. Commonly, for example, kitchen air pollution (KAP) 
measurements are made by placing a monitor on the wall of the kitchen for 24 hours.  

 
c. Exposures are complex, spatiotemporal relationships between individuals and the 

concentrations of pollutants in their vicinity. A population exposure thus depends on the 
concentration of pollutant in an area, the number of people in the area, and the time 
spent in that area. Similarly, an individual’s daily exposure is impacted by the variety of 



Chapter 5. HAPIT, the Household Air Pollution Intervention Tool 
 

 

56 

sources they experience in the spaces they inhabit for varying lengths of time throughout 
the day. For example, high concentrations of pollutants in a smoky kitchen do not 
necessarily result in high exposures; if the cook spends most of her time outside of the 
kitchen, her average exposure may not be as high as a concentration may predict. 
Exposure involves contact between humans and pollution. Because of the nearly universal 
diurnal pattern of human activity, exposure monitoring is best done for at least 24 hours 
or multiples of 24 hours (48, 72, etc). 

 
Data on lab-based emissions, although fewer than desirable, are increasingly publicly available 
(catalog.cleancookstoves.org). In contrast, the availability of exposure data across a range of 
geographies, fuel and stove combinations, and cooking practices remains limited, especially for 
the most promising (based on lab performance) stoves and fuels. Moreover, given the complexity 
of exposure characterization and the paucity of available data linking exposures and emissions, it 
is not currently possible to reliably estimate exposures from lab-based emissions data without 
extensive measurements followed by modeling at the local level. Default exposures in HAPIT are 
based on the available literature and informed largely by global modeling of HAP exposures 2,79. 
 
Integrated exposure-response functions 
Estimating the burden of disease attributable to all types of air pollution – including household 
air pollution (HAP) – during the 2010 Global Burden of Disease required elaboration of 
integrated exposure-response (IER) relationships 13 that relate PM2.5 exposures to risk for a 
number of health endpoints. The IERs leverage epidemiological evidence from a wide range of 
PM2.5 exposures spanning multiple orders of magnitude (ambient air pollution, active and 
secondhand tobacco smoke, and household air pollution) and result in supra-linear exposure-
response curves (Figure 5.2). 
 
In Burnett et al. (14) the parameterization of the IERs took a common form: 
 

(1)  RRIER(z) = 1 + α {1 – exp[– γ (z – zcf)δ]} 
 
where z is exposure to PM2.5 in µg/m3, zcf is the counterfactual exposure to PM2.5 in µg/m3, and 
where α, γ, and δ are model parameters. In initial versions of HAPIT (version 1 and 2), Eureqa 
(Nutonian, Inc.) was used to fit a line to a table of central relative risk estimates (and lower and 
upper confidence bounds) provided by Burnett et al. (14) for concentrations ranging from 0 to 
1000 µg/m3. In version 3 of HAPIT, we utilize data released by the Institute of Health Metrics 
and Evaluation (IHME) to create a lookup table of relative risks, using methods similar to those 
reported elsewhere 80. For each health endpoint – and for twelve age-categories for IHD and 
Stroke – 1000 values of zcf, α, γ, and δ were provided 81. We calculated the lower bound (5th 
percentile), central (mean), and upper bound (95th percentile) relative risk estimates from the 
distribution of provided values for each health endpoint, age-category, and for exposures ranging 
from 1 to 1000 µg/m3 in discrete 1 µg/m3 steps. For concentrations less than the counterfactual 
concentration of 7.3 µg/m3, the relative risk was fixed at 1, indicating no difference in risk. 
 
 
Evaluating averted ill-health 
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HAPIT generates 1000 paired pre- and post-intervention exposures by sampling from a 
lognormal distribution reconstructed from the user input mean exposure and measurement 
standard deviation. For each pair of exposures, HAPIT identifies the corresponding relative risks 
from the look-up table. The population attributable fraction (equation 2) is then calculated as 
follows: 
 

(2)      PAF =	 SFU RR – 1
SFU RR – 1  + 1

	
  
where SFU refers to the percent of the population using solid fuels and RR refers to the relative 
risk calculated using the IERs. The approach utilized is based on methods developed by the 
GBD and others 82,83, but adapted to take advantage of the continuous IER functions.  
 

 
 
Figure 5.2  IER curves relating exposure to PM2.5 to health endpoints 

 Health endpoints associated with exposure to air pollution include ischemic heart disease (IHD), stroke, 
chronic obstructive pulmonary disease (COPD), and lung cancer (LC) in adults and acute lower 
respiratory infection (ALRI) in children. See Figure 5.4 for an elaboration of uncertainties around the 
IERs.  

 
 
To estimate changes in deaths and DALYs attributable to an intervention (ABint), we subtracted 

the PAF after the intervention (PAFpost-intervention) from the PAF prior to the intervention (PAFpre-

intervention) and multiplied by the user input usage fraction; the underlying disease burden 
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(Bendpoint) for a specific country, health endpoint, and age-group as follows; and the percentage of 
solid-fuel use in the target population: 
 
(3) ABint = ( PAFpre-intervention – PAFpost-intervention ) x Bendpoint x Usefraction x SFUfraction 
 
Averted burdens are calculated for all combinations of the lower, central, and upper relative risk 
estimates and the central background disease rate estimates for each of the 1000 exposure pairs. 
HAPIT outputs the following: 
 

(a) the mean averted deaths and DALYs - the mean of the 1000 attributable burdens 
calculated using the central relative risk 

 
(b) the minimum averted deaths and DALYs – the mean of the 1000 attributable burdens 

calculated using the lower bounds of the IERs 
 

(c) the maximum averted deaths and DALYs – the mean of the 1000 attributable burdens 
calculated using the upper bounds of the IERs 

 
(d) the maximum avertable deaths and DALYs – the burden that could be averted by going 

from the pre-intervention exposure to the counterfactual, assuming 100% stove usage 
 
HAPIT assumes that all deaths and DALYs due to ALRI are accrued instantaneously upon 
implementation of the intervention. For chronic diseases in adults (COPD, stroke, IHD, and lung 
cancer), HAPIT utilizes the 20-year distributed cessation lag model of the United States 
Environmental Protection Agency (US EPA), a step function for estimating the accrual of 
benefits due to changes in exposure to air pollution (Figure 5.3). The EPA model assumes that 30 
percent of mortality reductions occur in the first year, 50 percent are distributed evenly in years 
two through five, and the remaining 20 percent are distributed evenly in years six through twenty 
84. At the end of the intervention’s lifetime, we assume that benefits for children from reduced 
ALRI cease; an additional 75% of a full benefit-year accrue for chronic diseases.  
 
HAPIT limits an intervention’s useful lifetime to, at a maximum, 5 years. This is due to two 
issues. First, because attributable burden calculations rely on up-to-date background disease 
information, extending beyond five years unrealistically assumes no change in background 
disease rates. Second, evidence from the field indicates that many current interventions do not 
have a useful life beyond two or three years 43,85 at most.  
 
Disability-Adjusted Life Years 
While HAPIT outputs averted deaths, a perhaps more interesting and useful output is that of 
averted DALYs. The DALY is a combined metric of mortality and morbidity that measures the 
gap between the ‘ideal’ and the experienced health states of a population. DALYs are composed 
of two parts, years of life lost (YLLs) to premature death and years lived with disability (YLDs) 
weighted by the severity of the condition experienced. Fundamentally, the DALY seeks to put 
death and disability from all diseases on an equal footing for all individuals of the same age in the 
world, irrespective of social class, country of origin, socioeconomic status, occupation, or other 
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characteristic 86. GBD 2010 used a life expectancy at birth of 86 years to calculate YLLs and, 
unlike previous GBD undertakings, removed all discounting and age-weighting 87. The 
calculation of disability weights was updated to take into account global heterogeneity in 
perception of the severity of various conditions and utilized revised methods by which surveys 
were translated into severity weights. While a number of concerns about the use of the DALY 
remain 88, to date no other combined metric of morbidity and mortality has been as thoroughly 
described and used in global health literature. Use of the DALY allows simple comparisons of 
cost-effectiveness across sectors and potential interventions and is commonly used in the global 
health literature.  
 
 

 
 
Figure 5.3  Visual representation of the EPA 20-year cessation lag function  

The cessation lag function as outlined by the US EPA 84 is used to adjust downward the attribution of 
averted DALYs and Deaths from chronic disease due to reduced PM2.5 exposures resulting from an HAP 
intervention. 

 
 
Implementation of HAPIT 
The basic calculations for HAPIT are implemented in R (3.1, 71) and utilize Shiny, a framework 
enabling sharing of interactive R code over the internet 89. HAPIT is currently hosted by 
RStudio for a nominal monthly fee. Figures are generated using ggplot2 90.   
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5.3  Findings from two hypothetical scenarios 
 
Overview 
As an illustration of the use of HAPIT, we adapt findings from the Randomized Exposure Study 
of Pollution Indoors and Respiratory Effects (RESPIRE), a randomized control trial (RCT) that 
assessed the impact of reduced emissions from a chimney stove on childhood pneumonia 8, and 
subsequent studies in the region 42,45,61,91. The study design has been described extensively 
elsewhere 92,93. Briefly, it took place in the Western Highlands of Guatemala between October 
2002 and December 2004. Most study homes were located between 2000 and 3000 meters above 
sea level and used wood as their primary cooking fuel. 518 households contributed to the final 
dataset, with approximately half receiving a chimney stove and the other half cooking with a 
traditional open fire. Across Guatemala, 64% of households rely on solid fuel for cooking. The 
GDP per capita in Guatemala is approximately 5000 USD. 
 
Scenario inputs 
While carbon monoxide (CO) exposures were the primary exposure measurement collected 
during RESPIRE, PM2.5 exposures were also assessed at various points throughout and after the 
primary RESPIRE trial, as described in McCracken et al (2007, 2011). For this analysis, we 
assume any new chimney stove implemented in the region would perform similarly to findings 
during those assessments; that is, we expect to see adult exposure reductions to PM2.5 from 264 
µg/m3 (SD = 297) when using the traditional stove to 102 µg/m3 (SD = 130) when using the 
intervention chimney stove11. For children, we use the ratio of child to mother exposures to 
carbon monoxide to scale exposure reductions appropriately. Because of the rich data available 
on CO exposures, we are able to estimate mother-to-child ratios for both the pre-intervention 
and post-intervention periods. During the pre-intervention period, child exposures are ~45% of 
the mothers’ exposures; in the post-intervention period, child exposures are ~54% of the 
mothers’ exposures. Accordingly, for children, the pre- and post-intervention PM2.5 exposures 
are estimated to be 119 µg/m3 (SD = 133) and 55 µg/m3 (SD = 70), respectively. 
 
We additionally assume the intervention will reach 25,000 households, be used consistently by 
90% of households 21, have a 5-year lifespan, cost 200 USD per intervention stove, and have a 
maintenance cost of 5 dollars per year per intervention stove. For comparison, we will also 
consider an LPG intervention that reduces exposures of both mothers and children to the level of 
ambient pollution in these communities of 30 µg/m3 (SD = 20)12, also has a 5-year useful lifespan 
and 90% fraction of households using the intervention, and costs 75 USD per stove, with a fuel 
cost of 175 USD per year per household. Inputs for both scenarios are summarized in Table 5.1.  
 
 
 
                                                
11 Application of HAPIT should ideally include up-to-date personal exposure measurements of PM2.5.  
12 The post-intervention concentration in this LPG scenario may seem counter-intuitive: LPG has been shown to 
very clean and emit almost no particles when operated properly. Why, then, not reduce the exposure to the ideal, 
7.3 µg/m3 counterfactual? In this case, we assume some pollution arises from households in the community who may 
not have transitioned to LPG or from other sources, such as trash burning, power generation, or vehicles, to name a 
few possibilities. LPG exposure reductions for this example are set to background ambient PM2.5 concentrations as 
measured during RESPIRE.  
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Findings 
Figure 5.4 depicts the simulated exposures before and after distribution of the chimney-stove 
intervention. The depicted IERs illustrate the non-linear nature of expected health-benefits 
associated with an exposure reduction. For instance, for adults, the relationship is relatively ‘flat’ 
for Stroke and IHD for an exposure reduction due to the intervention stove. For COPD and lung 
cancer in adults and ALRI in children, the relationship is relatively linear, though the slope 
varies. For all health endpoints, the uncertainties are large and variable depending on the 
location on the curve corresponding to a specific exposure.  
 
 
Table 5.1   HAPIT inputs for chimney stove and LPG interventions in rural Guatemala 
 

 

Pre-
Intervention 
Exposure 
µg/m3 (SD) 

Post-
Intervention 
Exposure 
µg/m3 (SD) 

# 
Homes 

Avg. 
Use % 

Stove 
Lifetime 
(yrs) 

Initial 
Cost 
USD 

Yearly 
Cost 
USD 

Adults Kids Adults Kids 

Chimney 
264 
(297) 

118 
 (113) 

102 
(130) 

55 
(70) 

25,000 90 5 
200 5 

LPG 30 
(20) 75 210 

 
 
Assumptions 
In the above examples, we do not consider the common practice of stove stacking, which would 
result, most likely, in higher post-intervention exposures. We do not include costs or savings to 
households, which may include time saved and be put towards other productive activities. 
Additionally, we do not consider dissemination costs or monitoring and evaluation costs, though 
as mentioned above we do assume that fuel costs are covered by the program. We assume that 
background disease rates for all of Guatemala are applicable to this region. 



Chapter 5. HAPIT, the Household Air Pollution Intervention Tool 
 

 

62 

 
 
Figure 5.4  IER curves and uncertainty bounds (lightly shaded) 

The dashed vertical line indicates the pre-intervention exposure; the dotted vertical line indicates the post-
chimney intervention exposure. The upper and lower tick marks along the x-axis are the distributions of the 
simulated pre- and post-intervention exposures, respectively.   

 
 
Estimates from HAPIT suggest that dissemination of 25,000 chimney stoves – similar to those 
used during the RESPIRE RCT – with 90% usage, no stove stacking, and a 5-year lifespan 
would avert approximately 3335 DALYs (uncertainty bounds 1855 – 4520) and 72 (uncertainty 
bounds 37 – 94) deaths given the exposure reductions modeled above. The majority of the health 
benefits result from reductions in ALRI in children under 5 (Table 5.2). Figure 5.5A displays the 
Averted DALYs and Deaths by disease category and the burden remaining for each group. On 
average, approximately 72% of the burden remains, though there is heterogeneity between 
disease categories (range: 62 – 85%). When using the least conservative estimate, approximately 
62% of the burden still remains. Similarly, 57% (range: 57 – 75%) of the burden remains if trying 
to reach 30 µg/m3, the level of background ambient pollution in RESPIRE communities. 
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Table 5.2  HAPIT outputs for chimney stove and LPG stove interventions in Guatemala 
 

 
 
For an LPG dissemination of 25,000 stoves with 90% usage, no stove stacking, and a 5-year 
lifespan, HAPIT estimates approximately 5750 DALYs (uncertainty bounds 3765 – 7210) and 
127 deaths averted (uncertainty bounds 82 – 160). Figure 5.5B displays the Averted DALYs and 
Deaths by disease category for an LPG intervention as described. On average, approximately 
52% percent of the burden remains (range 39% – 69%). When using the upper bound estimate 
of the potential impact of an LPG intervention, approximately 39% of the burden remains. 
Contrastingly, the ill-health remaining on the table relative to ambient air pollution is only 
approximately 16%. This latter would be taking ambient air pollution as the counterfactual, i.e. 
the minimum achievable by a change within the household itself.  
 
Despite its large unaverted burden, the chimney stove intervention is considered ‘very cost 
effective’ across its entire range of potential averted DALYs using the simple WHO-CHOICE 
rubric (Figure 5.6A). The LPG stove intervention is also considered very cost-effective, though 
the range of uncertainty around this estimate is greater than for the chimney stove (Figure 5.6B), 
extending into the “cost-effective” range. This is because the LPG, unlike biomass, is not free. 
The LPG intervention is sensitive to price variation; if the January 2015 price for an LPG 
cylinder is used (18 USD), the intervention and its uncertainty bounds move entirely into the 
“cost-effective” category. In these examples, the households may be willing to bear part of the 
cost of either a chimney stove or LPG stove and/or the monthly cost of the LPG, thus reducing 
the direct cost to the program itself and impacting program cost-effectiveness estimates.  
  

 

ALRI COPD IHD Lung Cancer Stroke 

DALYs 
(range) 

Deaths 
(range) 

DALYs 
(range) 

Deaths 
(range) 

DALYs 
(range) 

Deaths
(range) 

DALYs
(range) 

Deaths
(range) 

DALYs 
(range) 

Deaths
(range) 

Chimney 
2385 

(1290-
3230) 

30 
 (15-40) 

240 
(180-
290) 

7 
(5-10) 

380 
(240-
580) 

20 
(10-25) 

80 
(50-90) 

3 
(2-4) 

250 
(95-330) 

12 
(5-15) 

LPG 
3900 

(2570-
4780) 

45 
 (30-55) 

390 
(290-
470) 

12 
(8-14) 

730 
(540-
1150) 

35 
(25-55) 

130 
(85-
150) 

5 
(4-6) 

600 
(280-
660) 

30 
(15-30) 
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Figure 5.5  Averted deaths and DALYs by disease category for two scenarios   

(A) a chimney stove intervention and (B) an LPG stove intervention in Guatemala. The darkest bars are 
the central estimate of averted ill-health; the lightest bars are the total burden avertable by the best possible 
intervention – one that gets down to the counterfactual exposure of 7 µg/m3. The remaining bar represents 
the burden left by an intervention that gets down to 30 µg/m3, the outdoor ambient level measured during 
RESPIRE. Vertical lines indicate the range of averted ill-health attributable to the intervention modeled by 
HAPIT.  
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Figure 5.6  Dollars per total averted DALYs  

The green shading indicates the WHO-CHOICE “very cost-effective category” (< GDP PC per DALY), 
the yellow shading indicates the “cost-effective” category (between 1 and 3 x GDP PC per DALY) and the 
red indicates “not cost-effective.” Panel A is for the chimney stove intervention; Panel B is for the LPG 
intervention. The 2010 GDP PC in Guatemala was approximately 5000 USD. 

 
 
5.4 Considerations arising during the development and use of 

HAPIT 
 
HAPIT provides an easy-to-use, web-accessible format for assessing the impact of a household air 
pollution intervention for countries in which there is a significant solid fuel-using population. It 
estimates a range of DALYs and deaths averted by an intervention based on epidemiological 
methods and using the best available background disease and exposure-response data available. 
The somewhat simple interface masks significant computational and methodological complexity, 
and should thus be used with care when making significant policy decisions and considering large 
interventions with substantial financial and logistical costs.  
 
During the development of HAPIT, a number of methodological and conceptual issues came to 
the fore. We conclude with a discussion of these issues, of the limitations of HAPIT, and of next 
steps to further enhance the robustness and reliability of HAPIT-based estimates.  
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Assumptions and limitations of HAPIT 
HAPIT makes a number of assumptions and has a number of limitations. The most prominent 
follow.   
 

(1) HAPIT assumes that measurements of changes in exposure made over a short period of 
time are indicative of long-term trends. For results-based financing centered around using 
averted DALYs and deaths, it will be necessary to perform periodic verification of 
benefits throughout the period of time financing is sought. 

 
(2) As currently designed, changes in exposure to the cook, upon whom measurements were 

taken, reflect changes in other household members. The impact on children under the 
age of 5 is adjusted by the default relationship described above for all scenarios in HAPIT 
unless an alternate ratio is provided. It is strongly suggested that any alternate ratio be 
grounded in measurements. 

 
(3) HAPIT assumes background disease and economic characteristics are relatively static. 

For interventions with a short life-span, this assumption may hold; for long-lived 
interventions, such as transitioning a community to clean fuels or electricity, HAPIT 
estimates would need to be revised regularly. In addition, economies of scale are not 
considered when evaluating cooking interventions costs. Human development indicators 
may change rapidly depending on social, economic, and political conditions in countries 
in which HAPIT may be used. These changes can impact the relative merits of a HAP 
intervention, swaying an intervention from not cost-effective to cost-effective (or vice 
versa) based, for example, on more recent GDP per capita estimates or, for fuel 
interventions, on fuel costs. For example, the price of LPG in Guatemala has been fairly 
volatile, varying between 5 USD in 2003 and 18 USD in early 2015, before dropping 
back to 10 USD in May of 2015. HAPIT’s simplistic cost-estimates do not currently 
account for monthly or yearly fuel price fluctuations.   

 
(4) HAPIT currently relies on IHME’s GBD of disease data, which is, as of now, the most 

complete and comprehensive burden of disease data available. This completeness comes 
with the price of some methodological opacity. Continued burden of disease efforts from 
the World Health Organization and others may result in more rigorous and open model 
comparison efforts, similar to those seen among climate scientists.  

 
(5) The current method of estimating uncertainty in deaths and DALYs averted from the 

IERs does not fully utilize the distribution around each point in the IERs; in doing so, it 
may underestimate the minimum values and overestimate the maximum values. 
Alternate methods – including probabilistic analyses for each parameter in HAPIT, 
including a distribution of potential impacts at each point along the IERs – are discussed 
below.   

 
HAPIT highlights the tension between cost-effectiveness and the burden left ‘on the table.’ As 
seen in both of the example scenarios above, deployment of a HAP intervention leaves significant 
ill-health in target communities. This “unaverted” burden poses a quandary to policy makers and 
health practitioners seeking cost-effective solutions to myriad health problems. In the example 
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above, the chimney stove is more cost-effective by the admittedly simple form of WHO-
CHOICE implemented here; however, it leaves a substantial health burden on the table. The 
LPG intervention, meanwhile, is less cost-effective, but removes more of this burden from the 
table. Some may argue that the chimney stove represents an incremental change toward cleaner 
energy systems; others may counter that leapfrogging attempts at cleanly burning biomass may 
represent the clearest path forward towards reducing the HAP-related health burden. Rather 
than make an argument in either direction, we highlight the types of fundamental questions that 
HAPIT brings to light. These questions are further complicated by considering other health 
programs – such as a rotavirus vaccine program, the widespread deployment of insecticide-
impregnated bednets, efforts to improve access to pre-natal care services or a scale-up of a water 
purification device – side-by-side with HAPIT-based avoided ill-health estimates from clean 
cooking interventions. 
 
As both interventions leave a significant portion of the burden on the table, we assume that there 
is some contribution to background ambient air pollution from unclean cooking in homes around 
intervention homes that contributes to exposures. Controlling this air pollution by, for example, 
ensuring widespread access to clean cooking fuels in a community could lead to more substantial 
benefits of an intervention. Put another way, deploying interventions to a larger fraction of 
homes may have the additional benefit of improving ambient air pollution enough to make an 
intervention more cost-effective. Further research is needed to better understand what proportion 
of population ‘coverage’ with and usage of an intervention would be needed to optimize 
intervention-related benefits. Finally, our consideration of the burden ‘left on the table’ explicitly 
acknowledges that reaching a state of no additional ill-health above the counterfactual would 
most likely require action to reduce all sources of air pollution – including ambient air pollution 
from non-cooking sources and pollution released by industries and vehicles, to name a few.  
 
Complications are additionally introduced by an appliance-model of household energy use, in 
which interventions are used concomitantly with traditional cooking technologies to fully meet 
the cooking and heating needs of the household – a phenomenon known as stove stacking. As 
shown in a recent modeling exercise, occasional use of a traditional stove can lead to significant 
exposures 14. HAPIT assumes displacement of the traditional stove for the percentage of 
households using the intervention. In homes where stacking occurs, HAPIT may over-predict 
potential health benefits. Part of this shortcoming is accounted for in the probabilistic approach 
used, in which 1000 exposures across the distribution of measurements are drawn to estimate 
averted health impacts. However, the potential impact of stacking to dilute potential exposure 
reductions has not been taken into account 43,94. 
 
HAPIT estimates will evolve as GBD-provided background disease information and integrated-
exposure response curves change over time. Forthcoming data from the 2013 GBD update will 
undoubtedly alter HAPIT estimates, as it includes a number of revisions to the way air pollution 
burdens are estimated. Updating HAPIT to account for changes in background disease rates 
estimated by GBD (and for updates to the IER curves) is a non-trivial task complicated by the 
unavailability of access to GBD data. Furthermore, updates to HAPIT may invalidate results 
from previous versions of HAPIT.  
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Future steps 
More nuanced probabilistic uncertainty analysis is possible given the wide number of inputs (and 
corresponding uncertainty bounds) used in HAPIT estimates. Incorporating and propagating 
these uncertainties throughout the model, however, requires significant computational resources 
and would increase the requisite run time by 10 to 30 fold. We are evaluating methods to more 
quickly incorporate these types of uncertainty analyses in HAPIT by utilizing multi-core 
computing techniques.  
 
An additional and less tractable complexity arises from the model-based uncertainty bounds 
generated by the IHME modeling of the GBD. As noted elsewhere 95,96, the uncertainties 
presented in the GBD 2010 are complex and challenging to interpret and use in further analyses 
of the type we describe. For some inputs, including the IERs and the WHO solid fuel use 
estimates, more methodological clarity is now available, and this will facilitate Monte Carlo and 
other simulation-based analyses. 
 
Including reductions in community-scale ambient air pollution 
A well-performing, well-used intervention may result in benefits to households not using the 
intervention by way of reductions in emissions contributing to ambient air pollution. Accounting 
for these benefits without a significant measurement campaign would be challenging, but is 
feasible. For example, exposure reductions due to reduced ambient pollution could be estimated 
by (1) measuring exposures of individuals present in communities where an intervention 
campaign is taking place, but who themselves did not receive an intervention and (2) by 
measuring ambient pollution in those communities continuously as the intervention campaign is 
implemented. These measurements are typically expensive, and would need to account for 
seasonal effects, though the benefits of such an effort could be substantial.  
 
HAPIT does not currently have the capability to estimate these benefits, though they could be 
separately estimated in an analogous fashion to those stemming from an intervention. For 
instance, if measurements indicated that ambient concentrations were reduced from 264 µg/m3 
to 200 µg/m3 for an additional 10,000 households (or a percentage of households without an 
intervention in a given community) receiving an intervention, HAPIT could be run using these 
measurements to estimate the additional averted DALYs and deaths attributable to the 
intervention’s contribution to cleaning up the community airshed as a secondary benefit.  
 
Sub-national or customized estimates using specific background disease data  
For some countries – including India, Mexico, Peru, and Nepal – where national statistics may 
not adequately represent sub-national populations, the ability to customize background disease 
information may enhance HAPIT’s reliability. We are exploring methods by which to 
incorporate this feature. 
 
5.5 Conclusions 
 
There is a growing focus on interventions seeking to reduce the burden of disease associated with 
household air pollution. HAPIT provides policy-makers and program implementers a relatively 
easy-to-use tool by which to compare the relative merits of programs both within and between 
countries, helping assist with optimization of limited resources. Although a number of 
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uncertainties remain, HAPIT is intended to represent the ‘state of the science’ and rely on the 
best available knowledge – and is built to easily integrate new knowledge and findings to improve 
estimates.  
 
HAPIT is freely available for use over the web and can output a summary report to guide later 
discussions. Like other publicly available tools used to assist in resource allocation and policy 
making decisions 54,97, though, it requires a significant understanding of the particulars of the 
community and country in which an intervention is proposed; confidence in the interventions’ 
ability to reduce exposure to HAP; measurements of exposure to PM2.5 before and after an 
intervention; and significant consideration of optimal ways to deploy and maintain an 
intervention over time. 
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Chapter 6  
Discussion 
 
 
6.1  Overview 
 
The use of solid fuels as a household energy source continues to pose significant threats to human 
health and welfare. Despite progress towards clean cooking in many countries – including new 
strategies to increase use of LPG in Ghana and India and of electricity in Paraguay and Ecuador 
– it remains apparent that use of solid fuels will continue for the appreciable future for a large 
portion of the world’s population. In places where a transition to clean cooking is occurring, 
there is a need to optimize impact evaluation and monitoring and evaluation techniques to 
provide high-quality evidence with minimum burden on participants and field staff.  
 
Along these lines, there currently exists (1) moderate-to-high quality evidence linking PM2.5 
exposure from solid fuel use with adverse health outcomes and (2) laboratory and field evidence 
indicating modest reductions in PM2.5 emissions, area concentrations, and exposures from 
available technical interventions. For the most part, these evidence bases are based on scientific 
research, and as such rely on intensive monitoring for significant periods of time.  
 
This dissertation focuses, in part, on using data generated by low-cost, time-resolved sensor 
systems to unpack certain assumptions behind these existing evidence bases. Chapter 2 
investigates the appropriateness of the current standard practice of using a single, short-term 
measurement of PM concentration as a proxy for the long-term average – and finds it lacking. 
Chapter 4 emphasizes the necessity of evaluating the use of interventions both over time and in 
conjunction with use of the traditional, more polluting stove, in order to understand more fully 
the potential for exposure reductions. As recent work has shown14, even occasional use of a 
traditional stove can outweigh benefits of a clean stove. This poses a significant challenge to 
policymakers and interventionalists, who must both encourage use of the clean stove and 
discourage use of traditional sources. Additionally, both Chapters 2 and 4 consider tradeoffs 
between continuous monitoring, which generates large volumes of data at considerable expense 
and inconvenience, and “smart” sampling strategies that capture enough variability to 
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meaningfully evaluate an intervention and are of the type appropriate for the large-scale 
monitoring required of rapid transitions like those occurring in India and Ecuador.  
 
A second focus of this dissertation is to provide methods for evaluating interventions in the field. 
Chapter 3 describes initial, mixed-methods pilot worked we performed in Haryana, India to 
assess two potential interventions for a larger scale deployment (described in Chapter 4). While 
relatively straightforward, the chapter highlighted the vital importance of thorough, involved 
pilot work prior to selection of a technology. Of the two evaluated technologies, one was clearly 
not preferred and not used, despite its impressive performance during laboratory testing. The 
second, while used consistently and well-liked by pilot participants, suffered from numerous 
mechanical and technical failures throughout the large deployment. These problems may have 
been avoided with even more in-depth pilot work and reliability testing.  
 
Chapter 5, meanwhile, describes HAPIT, a software tool that allows policy makers and 
intervention implementers to weigh the potential impact of deployment of a clean cooking 
technology at scale. HAPIT requires pilot work – slightly more involved, though similar to, the 
work described in Chapter 3 – to understand the true performance of an intervention under 
conditions similar to an actual deployment at scale. It provides an estimate of ill-health that could 
be avertable by the intervention. In doing it so, it (1) allows governments, NGOs, and 
implementing agencies to weigh the potential benefits of an intervention and (2) provides a new 
venue for results-based financing.  
 
 
6.2  Measurement strategies 
 
Chapters 2 and 4 describe long-term monitoring of parameters that impact exposure to PM2.5 
over timeframes much longer than such monitoring is normally performed. While we 
recommend these types of assessments for future academic studies, one goal of both chapters was 
to better understand how little measurement was, in fact, adequate to understand long-term 
trends. In both chapters, we found substantial variability within and between homes.  
 
In the case of continuous PM2.5 measurement, this practically meant that the standard practice – 
of sampling for 24 or 48 hours in a home – was inadequate to truly capture the variability in 
home. For our long-term deployment of stove use monitors, the situation was complicated by the 
disruption we introduced into kitchens in the form of an intervention. The ability to assess how 
well a short-term measure of use predicted true long-term use was distorted. However, the 
picture of changing patterns of use over time – with an initial spike that declined steadily – 
remained important and highlighted the dynamic nature of interventions (especially an 
intervention that suffered from profound mechanical and maintenance-related issues).  
 
An unintended (and happy!) consequence of dealing with the large volumes of data created 
during these measurement campaigns was development of a set of R-based tools to ingest, 
manage, and analyze large volumes of data. These tools – along with user friendly, graphical 
versions of them – are freely available at github.com/ajaypillarisetti.  
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6.3  Evaluating interventions 
 
Chapters 3 and 4 describe the process by which an intervention stove was selected for 
deployment in rural Haryana, India and how that deployment proceeded with regard to 
adoption of that stove. Chapter 5, meanwhile, describes a way to consider a stove intervention by 
modeling the potential health benefits attributable to its deployment. This type of modeling 
requires significant pilot work to understand how the stove is used over time (requiring 
techniques and tools similar to those described in Chapter 4) and how the intervention impacts 
personal exposures to PM2.5 and how it is perceived by study participants (using methods similar 
to those described in Chapter 3).  
 
Wide-scale deployment of SUMs, as described in Chapter 4, required more intensive household 
visits, manpower, and data handling care than initially anticipated. Projects seeking to undertake 
a similar scale of monitoring should take into account the potential for significant data loss and 
adjust personnel schedules accordingly. For instance, more frequent visits to homes – say once 
per week – can help detect failed or removed sensors and minimize the amount of data loss. 
However, increasing the number of home visits requires more field staff and excellent logistics, 
and may be difficult if studies are spread over wide geographic areas.  
 
Moving forward, study designers should considered staggered sampling intensities. Like the study 
described in Chapter 4, we strongly suggest sampling in homes for at least two weeks prior to 
deployment of an intervention. Understanding the pre-intervention traditional stove usage 
patterns enables researchers and program implementers to evaluate how traditional stove use 
changes over time. During the initial weeks following introduction of an intervention, intense 
monitoring enables more nuanced understanding of the behavioral processes of uptake and 
initial adoption. After these first few weeks, however, less intense sampling – perhaps for a 
random 48-hour period per study week – should capture patterns adequately to understand the 
long-term adoption of a technology and/or the disadoption of the traditional stoves. 
 
Enumeration of all combustion sources in a household – and at least a rough idea of their use 
patterns – is essential to properly describe the relationship between stove use and exposure. 
Substituting one clean-cooking technology for one of multiple traditional stoves used in a 
household may not result in reduced exposures. This type of enumeration – a combination of 
survey questions and field worker observations – should be performed seasonally in areas with 
seasonal weather patterns.  
 
Chapter 5 incorporates many “state of the science” components of household energy and health 
research to model the potential health benefits of interventions that reduce exposure to HAP. 
Further research into personal exposures and concentrations will help improve estimates from 
HAPIT by filling in gaps on integrated-exposure response curves and by helping researchers 
better understand the sociobehavioral complexities of stove stacking and adoption of clean 
cooking. Improving HAPIT estimates may enable new avenues for funding intervention 
programs at different scales, akin to the carbon market – but focused on health. These results-
based financing mechanisms, while currently untested, seem a promising way forward to support 
clean cooking trials and interventions globally.  
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6.4  Ongoing and future work 
 
The work described in this dissertation could benefit from expansion, replication in additional 
geographies, and other improvements. The remainder of this section will focus on a number of 
areas of future research that could benefit ongoing household energy and health research and 
extend the work described in this volume. 
 
Extending the Stove Use Monitoring System 
While much of the work in this dissertation capitalized on leaps in sensor technology and 
computational power, there exist significant and intriguing possibilities for improving existing 
sensing platforms to take advantage of widespread cellular networks and low-cost distributed 
computing. Indeed, for assessments of national programs – such as the Give It Up and Smokeless 
Village campaigns in India – low-cost stove usage sensors that are programmable (for instance, 
they turn on once a week and log data), smart (generate summary data), and wireless-enabled 
(transmit summary data and diagnostics regularly) would greatly simplify and enhance 
monitoring and evaluation efforts. While this type of technology is currently in use in the United 
States (US EPA’s AirNow system developed by Sonoma Technology, Inc; Aclima’s sensing 
platform) and Europe, its use in the developing world is minimal. Two relevant platforms that are 
under development are Nexleaf Analytics’s (nexleaf.org) Stove Usage Sensor and SweetSense 
(sweetsensors.com), though both are currently cost-prohibitive for widespread use. 
 
Beyond wireless technologies, an expansion of the family of existing stove use monitoring 
technologies would assist in instrumenting stoves that are not amenable to measurement by the 
iButton (described in Chapters 3 and 4). Two technologies currently under development by 
myself, Berkeley Air Monitoring Group, and EME Systems are the kSUMs, a thermocouple-
based SUM, and the irSUM, an infrared thermometer based SUM. The kSUM is a small box (2 
inches long, 1.5 inches deep, 1.5 inches wide) with three probes that can be placed close to or 
directly in open fires to monitor usage. The device can measure up to 1200 ºC, logs data 
internally to an SD card, and has a battery life of 3-4 weeks.  
 
Little work has been carried out using stove use monitoring data – essentially stove temperatures 
– to model personal exposures or area concentrations to PM2.5. In many study settings, we 
assume cookstoves relying on solid fuels are the strongest source of emissions and exposures. If 
this assumption holds, presumably statistical models attempting to explain variability in or 
predict exposure to PM2.5 would be greatly aided by a model term related to a metric from stove 
use monitors. In a preliminary analysis of exposure data collected concurrently with the SUMs 
data described in Chapter 4, mixed models were used to explain variability in log-transformed 
personal exposures to carbon monoxide. The baseline model, which contained a random 
intercept for household and some household-level fixed effects, explained approximately 40% of 
the variability in CO concentrations. Inclusion of a value for traditional stove usage led to a 
model that explained approximately 70% of the variability. While not a surprising finding, it does 
indicate that including more resolved continuous terms in these types of models may enable us to 
create strategies to better model personal exposures using a more limited set of measurements.  
 
Finally, work continues on a set of easy-to-use, web-based tools to analyze stove use monitoring 
data. SUMIT (Stove Use Monitor iButton Tool) analyzes a single file at a time and applies one of 
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three simple algorithms to generate daily use metrics. Development of the second tool, the 
SUMSarizer, was led by Jeremy Coyle and Daniel Wilson. SUMSarizer ingests large volumes of 
data and presents a small subset back to the user, who then labels it manually. The labeled data is 
used to train a machine-learning algorithm, which then proceeds to label all uploaded data and 
output summary statistics, graphs, and algorithm performance based on cross-validation 
techniques. Both tools are freely available on the web.  
  
Replicating long-term monitoring in various geographies 
Chapters 2 and 4 describe long-term deployment of PM2.5 monitors in Guatemala and stove use 
monitors in India, respectively. While the findings from these studies were instructive for 
understanding variability in their respective geographies, replication will allow comparison across 
sites and evaluation of the stability of the relationships described in Chapter 2 and 4. An example 
of this type of replication – from deployment of PM2.5 monitors in Lao for on average 141 days – 
is included in Appendix D.  
  
A logical extension of long-term monitoring of area concentrations of PM2.5 is “extended” 
monitoring of personal exposure to PM2.5. Previously, such an endeavor was nearly impossible 
due to the burden to participants, who had to either wear an unwieldly but quiet real-time 
monitor or wear a large, heavy, loud pump attached to a cyclone and filter cassette. However, 
advances in personal monitoring technology, including the RTI MicroPEM and Enhanced Child 
Monitor, the Colorado State University Ultrasonic Personal Air Sampler, and the Berkeley Air 
Monitoring Group Particle and Temperature Sensor +, may enable continuous measurement of 
exposure to PM for between 7 and 10 days. These types of assessments on a small number of 
individuals would be instructive in understanding the variability in exposures. 
 
Similarly, replication of long-term monitoring of the usage of both traditional and intervention 
stoves in numerous geographies could help researchers and implementers understand adoption 
and disadoption patterns more fully over time. This type of understanding facilitates the results-
based financing opportunities enabled by HAPIT: for projects where clean cooking usage 
remains high and traditional usage remains low, full credit can be awarded; for those where 
traditional usage is high, attenuated or no credit may be awarded.  
 
Extending and maintaining HAPIT 
The aggressive, biyearly update schedule of the Global Burden of Disease poses a significant 
challenge to maintenance of HAPIT, which relies on up-to-date background disease information 
to remain policy relevant. The most optimal resolution to this shortcoming would be tighter 
programmatic integration with IHME datastores via an application programming interface. 
However, to date, IHME has not provided such an interface to their data.  
 
Beyond background data, there are a number of possible extensions and updates to HAPIT. 
First, a full exploration of GBD-model uncertainty would help to better bound HAPIT output. 
However, contextualizing this uncertainty in a policy-relevant form remains troubling. Indeed, 
trial runs of HAPIT that take into account uncertainty around all parameters yield estimates with 
very wide bounds and, furthermore, take over an hour to run when optimized for multicore 
computing. Finding the proper balance between explainability, speed, and accurate depiction of 
uncertainty remains an ongoing and difficult area of interest. 
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Second, extension of HAPIT to allow sub-national assessments is vital in countries with wide 
demographic or geographic variability – like Peru, Mexico, Nepal, and India – where national 
background disease statistics may not be representative of large population pockets relying on 
solid fuels for cooking. While implementing this feature is not difficult, finding disaggregated 
background disease data at the appropriate sub-national scale may be challenging. 
 
Combining monitoring techniques to improve impact assessment 
Combining a number of the techniques outlined in this dissertation may improve a study’s ability 
to precisely and accurately assess the impact of a household energy intervention. Assuming an 
expansive budget for exposure assessment (a sometimes dubious hope), I would thus suggest a 
multi-tiered approach, beginning with extensive pilot work.  
 
This pilot work would include the types of measurements described in Chapter 2 (long-term 
monitoring of PM2.5) and qualitative work similar to that described in Chapter 3. Additionally, 
creation and deployment of a rapid survey outlining all potential sources of exposure – including 
lists of appliances that use dirty fuels in a home, including stoves and lamps; trash-burning 
behavior, smoking and tobacco use, and proximity to other sources – could help determine the 
type and variety of exposure sources. These rapid surveys offer quick feedback to which a 
research team can adapt plans and additionally provide a baseline scenario from which to track 
changes in cooking habits over time. On the most commonly used stoves (as ascertained by the 
survey), stove use monitors could be placed to quantify baseline stove use behaviors, though 
recent evidence indicates a potentially long period of ‘reactivity’ during which participants use 
their monitored devices differently due to the presence of the monitor98. Finally, any study 
proposing personal exposure assessment should spend time working within the community to 
identify a suitable method to place equipment on participants in a comfortable fashion. In Nepal, 
India, Lao, and Guatemala, we designed a vest with pockets, a conduit for tubing, and a holder 
for a personal cyclone, CO monitor, and real-time PM monitor in fabric attractive to local 
participants. The vests were made in each country and designed to distribute weight so that 
participants could perform their daily activities with minimal intrusion from the equipment. In 
other locations, backpacks and hip packs have been used with limited success. Regardless, 
evaluating the optimal form of such an equipment holder during pilot work can prevent delays 
during the main study. 
 
Providing general suggestions for the “main” portion of a well-funded study is complicated by 
often diverse primary aims and study questions. This dissertation indicates – at least in the case of 
stove use (Chapter 4) and kitchen area PM2.5 concentration (Chapter 2) monitoring – that there is 
high variability within and between homes, indicating a need for repeat measures. In both cases, 
however, it is clear that monitoring continuously for relatively long periods of time (6 months to a 
year) poses significant logistic and analysis challenges. Smarter strategies informed by long-term 
monitoring performed during the pilot phase could optimize sampling plans to ensure that 
studies capture both within and between home variability. 
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6.5  Summary 
 
This dissertation was built (and titled) around an axiom central to our research group: “you don’t 
get what you expect, you get what you inspect.” By using relatively low-cost monitoring 
technology, this thesis demonstrated that some of the assumptions underlying standard practices 
in household energy and health research require further investigation. While instructive, the 
findings described in Chapter 2 and 4 require replication and verification more broadly to see if 
they hold across study settings. Whether they do or not, more evaluation of the type described 
here will help the field better understand variability in behavioral patterns that impact exposures 
and, in turn, help define future measurement and intervention studies. Our findings point toward 
the need to perform measurement around other areas of uncertainty – such as air exchange rates 
and variability in personal exposures – to check the validity of current assumptions. 
 
As the field moves toward larger, more rigorous studies – be they clinical trials, such as the US 
National Institute of Health’s multi-center randomized control trial, or our research group’s 
interest in evaluating large clean cooking deployments in India – there will be a significant 
reliance on sensor technology to track intervention usage and exposure changes over time. These 
larger evaluations will also require significant pilot work – of the type described in Chapter 3 – to 
ensure that selected interventions and measurement techniques are appropriate to the 
communities in which they will be applied. Extensive pilot work as part of these trials may 
provide some opportunity to evaluate the findings described in this thesis. 
 
The methods and tools evaluated in this dissertation serve dual purposes. They first seek to 
unpack and validate or refute some of the assumptions common to the household energy and 
health research enterprise. Second, they seek to find ways to make monitoring and evaluation (A) 
more accessible for NGOs, governments, and other actors seeking to increase access to clean 
cooking and (B) more appealing, through the prospects of results-based financing enabled by 
HAPIT. On the second point, there is much work still to be done to increase the translatability of 
science into policy-relevant metrics and action.  
 
 
 
 
 
 
 
 



 77 

 
 
 
 
 
Appendix A 
Abbreviations 
 
ABint    Averted Burden 

aDALYs   Averted DALYs 

ALRI    Acute lower respiratory infections 

ARMS    Air exchange rate monitoring system 

BAIRS    Berkeley aerosol information recording system 

CO    Carbon monoxide 

CO2    Carbon dioxide 

COPD    Chronic obstructive pulmonary disease 

COV    Coefficient of variation 

CRA    Comparative Risk Assessment 

EHS    Environmental Health Sciences 

EPA    Environmental Protection Agency 

DALYs   Disability-adjust life years 

Drange    Daily temperature range 

GACC    Global Alliance for Clean Cookstoves 

GBD-2010   Global Burden of Disease, 2010 

GDP    Gross domestic product 

HAP    Household air pollution 

HAPIT   Household Air Pollution Intervention Tool 

Hmean amb   Hourly mean ambient temperature 

Hsd amb    Standard deviation of hourly temperature 

IERs    Integrated exposure-response 

IHD    Ischemic heart disease 

IHME    Institute of Health Metrics and Evaluation 



Supplement to Chapter 2 

 

78 

INCLEN   International Clinical Epidemiology Network 

KAP    Kitchen air pollution 

LC     Lung cancer 

LMICs    Low and middle-income countries 

LPG    Liquefied petroleum gas 

MJ     Megajoules 

MNRE   Ministry of New and Renewable Energy (Government of India) 

NBS    Newborn stove study 

NIH    National Institute of Health 

PAF    Population attributable fraction 

PATS+   Particle and Temperature Sensor + 

PM2.5    PM with aerodynamic diameter less than 2.5 μm 

RCT    Randomized control trial  

RESPIRE   Randomized Exposure Study of Pollution Indoors and Respiratory Effect 

RMSE    Root mean square error 

RR     Relative risk 

SD     Standard deviation 

SFU    Solid fuel use 

SUM    Stove use monitor 

SUMS    Stove use monitoring system 

UCB-PATS  University of California, Berkeley particle and temperature sensor 

UCE    Utilized cooking energy 

WHO    World Health Organization 

WHO-CHOICE World Health Organization choosing interventions that are cost-effective 

YLDs    Years lost to disability 

YLLs    Years of life lost 
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Appendix B  
Supplemental Information for Chapter 2 
 
 

 
 
 
Figure B1  Ambient temperatures at the RESPIRE study headquarters 

San Lorenzo, Guatemala (2003 – 2005). The current study occurred between Feb 2004 and Mar 
2005. Dots are daily mean temperatures; shading at each point represents the range between the daily 
minimum and maximum.  
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Table B1 Unadjusted UCB-PATS concentrations & correction factors 
 

 N Mean SD Min Median Max Start Date End Date 

Open Fire 136 2233 1058 522 2055 5927 7/7/04 12/13/04 

Open Fire 134 1107 586 101 972 2874 7/7/04 12/12/04 

Open Fire 120 914 489 192 854 3104 2/17/04 7/16/04 

Open Fire 215 2690 1498 52 2452 8927 2/24/04 11/22/04 

All Open Fire 605 1884 1322 52 1542 8927  
Open Fire  
Correction 

Raw Value * 1.01 

Chimney Stove 154 228 189 62 183 1713 7/7/04 12/31/04 
Chimney Stove 215 233 220 65 156 2134 7/7/04 3/21/05 
Chimney Stove 333 86 122 50 66 1784 2/17/04 3/21/05 
Chimney Stove 327 279 238 68 204 1550 2/17/04 3/21/05 
Chimney Stove 1029 199 211 50 133 2134  
Chimney Stove 
Correction 

Raw Value * 0.63 
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Table B2 Mean, SD, and range of RMSE estimates 
 

 
Mean 
(µg/m3) 

SD 
(µg/m3) 

Min 
(µg/m3) 

Max 
(µg/m3) 

 OF Chimney OF Chimney OF Chimney OF Chimney 
Randomly Selected Days 
2 Days 774 79 304 30 334 41 1099 109 
3 Days 670 63 241 25 262 33 894 87 
Random Day 
by Studymonth 315 56 115 35 186 12 441 109 

Random Day 
by Studyweek 168 26 73 12 93 12 284 45 

48 hour period 
per season 429 48 225 21 204 19 654 64 

Consecutive Days 
1  1004 110 427 43 492 50 1510 150 
2  774 85 321 34 368 36 1126 111 
3  690 76 291 27 324 36 1005 98 
4  629 70 270 28 281 30 909 94 
5  583 66 253 27 253 26 840 90 
6  547 63 241 27 230 24 795 86 
7  519 60 233 26 209 22 754 83 
8  496 58 223 26 189 21 717 80 
9  474 56 213 25 175 19 680 78 
10  458 55 206 25 167 19 658 76 
14  401 50 186 23 152 17 600 71 
21  305 41 120 16 120 16 456 54 
28  211 33 59 12 144 14 276 47 

 
  



Supplement to Chapter 2 

 

82 

 
 
Figure B2  Serial correlation between days of measurements by home   
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Figure B3  Mean autocorrelation between days of measurements by stove 
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Figure B4  PM2.5 distributions by stove type and season 

The upper panel is for the chimney stoves; the lower panel is for open fires. Colors correspond with seasons.   
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Figure B5  PM2.5 distributions by stove type, season and household  

Each panel is labeled with a household ID and stove type.   
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Figure B6  PM2.5 distributions by stove type and weekday/weekend  

The left panel is for the chimney stoves; the right panel is for open fires. Colors correspond with weekday / 
weekend.   

 
 
Table B3 Means and SD of PM2.5 exposures and concentrations from global HAP studies  
 
 Kitchen Personal 
Study Location Stove Type Mean SD COV Mean SD COV 
McCracken et al, 2007 Guatemala Open Fire - - - 900 700 0.78 

Plancha - - - 340 490 1.33 
Armendariz Arnez et al, 
 2008 

Mexico Open Fire 1020 790 0.77 240 230 0.96 
Patsari 350 270 0.77 160 130 0.81 

Clark et al, 2009 Honduras Traditional 1002 1089 1.09 198 136 0.69 
  Improved 266 240 0.90 74 34 0.46 
Van Vliet et al, 2013 Ghana Mixture 447 410 0.92 129 79 0.61 
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Table B4 Means and SD of CO exposures and concentrations from global HAP studies 
 
 Kitchen Personal 
Study Location Stove Type Mean SD COV Mean SD COV 
Clark et al, 2009 
 

Honduras 
 

Traditional 7.9 11.2 1.42 - - - 
Improved 1.8 3.2 1.78 - - - 

Northcross et al, 2010 Guatemala 
(mothers) 

Open Fire 7.2 6.2 0.85 2.08 1.52 0.73 
Plancha 2.5 4.4 1.76 1.35 1.45 1.07 

 Guatemala 
(child) 

Open Fire 7.2 6.2 0.85 0.93 0.57 0.61 
 Plancha 2.5 4.4 1.76 0.73 0.58 0.79 
Smith et al, 2010 Guatemala 

(mothers) 
Open Fire 8.6 4 0.47 4.8 3.6 0.75 

  Plancha 1.1 1.4 1.27 2.2 2.6 1.18 
 Guatemala 

(child) 
Open Fire 8.6 4 0.47 2.8 2.5 0.89 

  Plancha 1.1 1.4 1.27 1.5 1.9 1.27 
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Figure C1  Ambient temperatures in Palwal District, India 
Measurements taken at International Clinical Epidemiology Network’s headquarters, in Palwal, 
Haryana, India. Dots are daily mean temperatures; shading at each point represents the range between the 
daily minimum and maximum.  
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Counts of stove usage 
A commonly reported metric of stove usage is the number of stove use events per day. These raw 
counts can be considered independently or can be aggregated into “meals” based on knowledge 
of cultural practices. In the current study, we evaluated the number of discrete events occurring 
within 40 minutes of each other; for example, two temperature peaks detected at 12:30 and 
12:55 would be counted as a single event.  
 

 

Figure C2  Counts of use of traditional and intervention stoves throughout study 
The upper panel depicts daily mean number of uses of monitored stoves by stove type. Day 0 is the day the 
intervention stove was introduced. The middle panel depicts the percent of stove use events for each stove. 
The bottom panel depicts the number of stoves monitored per study day. 

 

Trends in event counts over time follow those reported in the main text for durations of use over 
time. During the initial days and first week after deployment of the Philips, we note use of both 
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stoves, indicating a period during which the Philips was evaluated by households for applicability. 
Use of the traditional stove remained relatively constant after introduction of the Philips. On 
average, prior to the introduction of the Philips, traditional stoves were used 1.4 times (SD = 0.8) 
per day. After introduction of the intervention, average usage of the traditional stoves decreased 
to 1 time per day; the Philips was used 0.6 times per day. While trends in use of the traditional 
stove were relatively stable post-intervention, Philips use decreased linearly. While event counts 
are useful for tracking adoption, they fail to capture duration of use, which we believe to be a 
more useful metric.   
 
Restricted analysis 
Due to missing data from both the traditional and intervention stoves, we performed the same 
analysis described in the main text on days for which we had data on both the traditional and 
intervention stoves (n = 49,279 days). Trends mirrored those reported in the main text and are 
summarized in Table C1 and Figure C2.  
 

Table C1 Study means of post-intervention use from the restricted and full analyses 
 

 Mean (SD) 
(minutes, restricted analysis) 

Mean (SD) 
(minutes, full analysis) 

Traditional 145.7 (134.1) 143.9 (133.6) 
Philips 64.87 (88.3) 60.0 (86.8) 
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Figure C3  Stoves use throughout study on days with valid data for both stoves 

The upper panel depicts daily mean usage of monitored stoves by stove type. Day 0 is the day the 
intervention stove was introduced. The middle panel depicts the percent of stove use time each stove was 
used. The bottom panel depicts the number of stoves monitored per study day. 
 
 

Trends for utilized cooking energy (UCE) in this restricted analysis followed patterns shown in 
the main text and are depicted in Figure C3 and Table C2.  
 
Table C2 Study means of post-intervention UCE from the restricted and full analyses 
 

 Mean (SD) 
(MJ, restricted analysis) 

Mean (SD) 
(MJ, full analysis) 

Traditional 10.7 (0.9) 10.6 (0.9) 
Philips 6.1 (2.1) 5.9 (2.0) 
Total 16.8 (2.1) 16.5 (2.0) 
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Figure C4  Utilized cooking energy in megajoules throughout intervention for the restricted dataset 
The utilized cooking energy is presented separately for the traditional and intervention stoves (blue  triangles 
and red squares, respectively) and pre and post-intervention periods. The total energy use is presented in 
green squares.  
 
 

Table C3 Daily usage duration means and intraclass correlation coefficients 
 

 Mean (minutes) per day 
(95% Confidence interval) 

Intraclass  
Correlation (95% CI) 

Traditional   
   Pre-interventiona 209.2 (205.4 to 212.9) 0.25 (0.20 to 0.30) 
   Post-interventionb 143.9 (142.7 to 145.2) 0.35 (0.30 to 0.41) 
Philipsc 60.0 (59.3 to 60.7) 0.22 (0.18 to 0.25) 

95% confidence interval in parentheses 
a 2958 stove days from 177 homes 

b 44448 stove days from 177 homes 
c 63433 stove days from 177 homes 
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Optimizing SUMs sampling strategies 

 
Figure C5  Optimizing measurement strategies for SUMs sampling  

The upper panel shows the precision of various short-term measures of use of the traditional stove prior to 
introduction of the intervention; the bottom panel shows the precision of short-term measures of use of the 
traditional after introduction of the intervention.  
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Table C4 Probability of obtaining usage estimates within 20% of study mean 
 

 Pre-Intervention 
Traditional Stove 

Post-Intervention 
Traditional Stove 

Single Day 0.48 0.18 
Two Consecutive Days 0.58 0.20 
Two Non-consecutive Days 0.57 0.28 
Random Week 0.75 0.27 
One Day per Study Month 0.55 0.66 

 
 
Maintenance and repair of Philips stoves 
Field staff visited homes every two weeks to download data from SUMs. During these visits, they 
observed stove performance and recorded findings. A total of 1387 stove observation visits were 
recorded. Between visits, participants could call field staff to report issues with the Philips or 
bring malfunctioning units to study headquarters. Study staff attempted to perform repairs on 
broken stoves; if they were unable to fix the stove, trained technicians were hired. A small supply 
of replacement stoves was available to supply homes with continual service throughout the study 
period. 
 
Stove failures were categorized into 9 categories: battery failures, printed circuit board (PCB) 
failures, charger failures, knob failures, cracked or shattered plastic base, fan failures, internal 
plates cracked, broken, or collapsed; top of stove corroded, and other. Of the stoves distributed, 
142 had at least one failure that resulted in a repair. The mean time to first failure was 171 days. 
Failure types are summarized in Figures C4 and Table C3.  
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Figure C6  Counts of first failures of Philips stoves 
 
Table C5 Summary of failures observed during fieldworker visual inspection of Philips stoves.  
 

Fuel Chamber (cracked) 6 
Stove Body 26 

Broken 17 
Dented 9 

Knob 48 
Broken 11 
Missing 1 
Jammed 36 

Battery & Charger 75 
Not charging 72 
Missing 3 

Fan Not Working 32 
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Figure C7  Percent of use events with Philips 
Panels are 30 study days in length, denoted in the topmost gray area. Homes with no cooking are not 
included. Bars indicate the number of households using a stove for a corresponding period of time.  
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SUMs field performance 
Field workers downloaded data from stoves 9131 times during approximately 4737 household 
visits. On average, each of the 200 households was visited 22.8 times. Of the 9131 downloads, 
83% yielded data (n = 7613). Figure C8 depicts the frequency of data retrieval failures by cause, 
including an inability to access the stove (Door Locked), damage to the SUMs from heat or water 
resulting in an ability to download data; data errors due to sensor malfunctioning, lost or 
misplaced SUMs, or SUMs that had split apart or burst due to exposure to excess heat.  
 
Data loss impacted the traditional stoves more significantly than the intervention stoves. 
Traditional stoves varied widely in construction; in some households, placement of the SUMs in 
the ‘standard’ location resulted in either over-heating or exposure to water from cooking. We 
believe the wave-like pattern present in the post-intervention traditional homes (Main text, 
Figure 4.3, bottom panel) occurred because of detection of SUMs failures during household 
visits, which occurred in clusters at two week intervals.  
 
We approximated the total number of data points that should have been collected during the 
study by subtracting the initial data collection date from the final data collection date and 
multiplying the number obtained in days by 144 (the number of data points collected per day). 
We collected 93% and 67% of the expected data for the Philips and traditional stoves, 
respectively.  
 

 
 
Figure C8  Stove Use Monitors data loss by cause 

Numbers above the bars indicate the counts per failure type.   
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Appendix D  
Long-term monitoring of PM2.5 concentrations in Laos to 
evaluate household-level variability 
 
 
 
Overview 
PM2.5 was monitored continuously to better understand the coefficient of variation (CoV), a 
unitless metric of variability and dispersion, prior to designing the main before-and-after study. 
The CoV is calculated by dividing the standard deviation by the mean. The larger the CoV, the 
more highly variable the data. Ideally, the CoV would be evaluated prior to the start of any 
household energy and health project; in this study, PM2.5 measurements began before the 
project, but continued throughout the deployment of the intervention.  
 
Methods 
In four households in Laos, we evaluated the concentrations of PM2.5 in the primary kitchen for 
approximately 141 days (range 128 – 159 days). Sampling took place between mid-August 2014 
and February 2015. Kitchen concentrations were recorded every minute using real time PM2.5 
data-logging monitors that utilize a light-scattering sensor (UCB-PATS). The UCB-PATS were 
placed in the participant’s kitchen at approximately 1.0 meter from the stove and 1.5 meters 
above the floor, a standardized location meant to represent the approximate breathing zone of a 
woman standing near the stove. The households selected for this study were not participants in 
the main study. 
 
From the collected data, we retained days of data that contained at least 1296 data points (90% 
of the expected 1440 daily datapoints). We calculated the unadjusted daily mean and standard 
deviation of the PM2.5 concentration in each home. We then calculated the CoV of samples of 2, 
3, 4, 5, 7, 10, 14, 21, and 28 days to evaluate how the CoV changed as the number of 
consecutive sampling days increased. We additionally compared the CoV of measurements taken 
in households during the main study to (1) CoVs calculated over the entire long-term monitoring 
period for long-term monitoring households and (2) to CoVs calculated during main-study 
sampling dates only in long-term monitoring households. 
 
Findings 
COVs declined steadily with increasing consecutive days of sampling. Figure D1 depicts the 
decline in COVs for every evaluated period; all households experienced similar declines 
(described numerically in Table D1). The COV is substantially higher in household 4 than in the 
remaining 3, though the reason for this difference is unknown. Figure D2 focuses on 
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measurements of lengths ranging between 2 and 7 days, the most viable for household air 
pollution assessments. For all households, the COV decreases with increasing measurement days; 
the rate of decline begins to flatten out after 5 days of measurement.  
 

 
 
Figure D1  The reduction in COV as the number of monitoring days increases 

Each household in the study is represented separately with a unique line-type and bullet. The solid line 
with circular bullets is the mean of the COV for all households. The COV decreases as the number of 
sampling days increases.  

 
During the main study, at least 3 consecutive days of valid UCB data were collected in 64 homes 
during the before period and in 60 homes during the after period. For each period, we calculated 
the mean COV over these 3 or 4 day samples. During the before intervention period, the 
average COV was 0.34 (range 0.07 – 0.91); during the after period, it decreased to 0.30 (range 
0.03 – 0.96); this contrasts with the COV calculated during the long-term monitoring, which for 
periods of similar length (4 days) was 0.79 (range 0.65 – 1.14).  
 
Table D1 COVs for increasing monitoring days in Lao 
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Figure D2  The reduction in the coefficient of variation for 2 to 7 days.  

Each household in the study is represented separately with a unique line-type and bullet. The solid line 
with circular bullets is the mean of the COV for all households. The COV decreases as the number of 
sampling days increases.  

 
The discrepancy between the COV calculated during the main study and the long-term 
monitoring substudy may be due to a number of factors. First, the village where long-term 
monitoring was performed was not one of the study villages. Second, the discrepancy could 
reflect true month-to-month variability, which is borne out to some degree by the long-term data 
(Figure 2). When the the long-term monitoring COVs are calculated over the same period as the 
before monitoring (mid-December 2014 – early-January 2015), the discrepancy between COVs 
is reduced. During the before period in the long-term monitoring households, the average COV 
was 0.59 (range 0.19 – 0.97). If household 4 is excluded (its COV is over double the next closest 
household), the mean COV is 0.29 (range 0.19 – 0.41). A similar comparison for the post-
intervention period is not reported due to probable changes in cooking due to introduction of the 
intervention. Finally, the comparison during the post-intervention period is perhaps not a reliable 
indicator of actual conditions, given the changing dynamics of the kitchen during the 
introduction of an intervention.  
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Figure D2 Changes in COV by month in Lao 
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