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Abstract 

Traditional statistics instruction emphasizes a .05 significance 
level for hypothesis tests. Here, we investigate the 
consequences of this training for researchers’ mental 
representations of probabilities –– whether .05 becomes a 
boundary, i.e., a discontinuity of the mental number line, and 
alters their perception of differences between p-values. 
Graduate students (n = 25) with statistical training viewed pairs 
of p-values and judged whether they were ‘similar’ or 
‘different’. After controlling for covariates, participants were 
more likely and faster to judge p-values as ‘different’ when 
they crossed the .05 boundary (e.g., .047 vs. .052) compared to 
when they did not (e.g., .027 vs. .032). This categorical 
perception effect suggests that traditional statistical instruction 
creates a psychologically real divide between so-called 
statistically significant and non-significant p-values. Such a 
distortion is undesirable given modern approaches to statistical 
reasoning that de-emphasize dichotomizing p-values. 

Keywords: statistics education; statistical significance; 
categorical perception; rational number processing. 

Introduction 

The phenomenon of p-hacking, wherein researchers make 

self-serving decisions to achieve ‘attractive’ p-values, has 

spurred debate and reflection among researchers, journal 

editors, and statisticians (Simmons et al., 2011; Simonsohn et 

al., 2014; Tramifow, 2014; Wasserstein et al., 2019).  Beyond 

methodological concerns, we consider here the question of 

whether instruction and practice emphasizing a statistical 

boundary at .05 results in a mental boundary in people’s 

understanding and perception of probabilities. Cognitive 

science research has investigated how people use categories 

to divide cognitive representations of continuous stimuli in 

the service of learning and communication (Bruner et al., 

1956; Gibson, 1969). These categories have consequences. In 

particular, the categorical perception effect (CPE; Harnad, 

1987) is a distortion in the way people perceive exemplars on 

the same vs. different sides of a category boundary (Fleming 

et al., 2013; Notmon et al., 2005). 

Given the predominance of the .05 boundary in science and 

calls for its reform, it is important to understand the 

underlying cognition in using p-values and whether 

researchers show a CPE on the p-value continuum between 0 

and 1. The presence of distortions could affect researchers’ 

statistical interpretations and decisions. The potential 

existence of such distortions would shed new light on 

statistical hypothesis testing and the recalcitrant phenomenon 

of p-hacking. It would also potentially spur new research on 

instruction and practice of statistics. In this study, we explore 

whether a CPE for p-values exists in individuals with 

statistical training at the graduate level.   

Background 

The formal use of p-values in statistical testing traces back to 

the early 20th century and two competing approaches –– 

significance testing and hypothesis testing. Statistical 

significance testing compares expectations based on a 

candidate hypothesis to observed evidence. A researcher 

estimates a p-value, or the probability of observing a possible 

outcome at least as deviant as the observed evidence from the 

expectation based on the hypothesis. A sufficiently small p-

value, historically those below .05 (Fisher, 1925), indicates 

that either the hypothesis is true and the observed outcome is 

deviant by a rare coincidence or the hypothesis is false.  

In the hypothesis testing approach, a candidate hypothesis 

is compared to a family of possible alternatives to generate a 

set of decision rules to govern researchers’ behavior 

(Neyman & Pearson, 1933). These rules are determined in a 

manner that minimizes the probabilities of two kinds of error 

when choosing between competing hypotheses –– a false 

rejection of the candidate hypothesis (i.e., Type I error) and a 

false acceptance of the candidate hypothesis (i.e., Type II 

error).  

Together, these practices combined to form the modern 

practice of null hypothesis significance testing (NHST), 

whereby a candidate null hypothesis is rejected if and only if 

p < .05.  

Since then, the artificial boundary of .05 has become a 

gatekeeper to publication (Tramifow, 2014; Stang et al., 

2010), despite recommendations that NHST should have at 

most a limited role in statistical inference (Rao, 1992).  
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Methodological critiques of NHST have been offered 

nearly continually since the 1930s, primarily focused on the 

logic of the approach and its utility in conducting statistical 

inference (Cohen, 1994). This has led to a recent movement 

emphasizing estimation via effect sizes and confidence 

intervals while de-emphasizing hypothesis testing and p-

values (Cumming, 2014). 

Here, we offer a cognitive critique of sorts, considering the 

representational and reasoning consequences of 

conceptualizing .05 as the boundary delineating ‘statistically 

significant’ results. We begin with categorization, which is 

fundamental to human inference and perception (Bruner et 

al., 1956; Murphy, 2002).  

CPEs alter perception such that differences between two 

values on the same side of a boundary are minimized, while 

differences between two values on opposite sides of a 

boundary are exaggerated –– even when the physical or 

numerical difference between the pairs is the same 

(Goldstone & Hendrickson, 2010; Harnad, 2017). The effect 

of this phantom discontinuity on perception can lead 

individuals to make suboptimal decisions (Fleming et al., 

2013; Notmon et al., 2005). Although not all categorizations 

alter perception, CPEs have been shown for a variety of 

stimuli including facial expressions (e.g., Etcoff & Magee, 

1992), speech sounds and phonemes (e.g., MacKain et al., 

1981), colors (e.g., Roberson & Davidoff, 2000), and music, 

pitch, and rhythm (e.g., Schulze, 1989).  

Notably, categorical perception effects have not yet been 

investigated for numeric stimuli such as probabilities limited 

to the range [0, 1]. However, boundary effects have been 

found for socially significant categories such as ‘thousands’ 

and ‘millions’ (Landy et al., 2017). Furthermore, the ubiquity 

of categorical effects for physical stimuli suggests that there 

may be a CPE for numbers in the [0, 1] range and that it may 

in turn distort the mental representation of p-values.  

Cognitive models for numeric stimuli suggest that the 

mental representation of natural numbers is continuous 

(Ansari et al., 2005; Moyer & Landauer, 1967). Natural 

numbers are mapped to points on a mental number line 

(MNL; Dehaene et al., 1990). This is also true of rational 

numbers expressed as decimals (Varma & Karl, 2013), so 

long as those decimals are neither very small nor very large 

(i.e., not less than .01 nor greater than .99; Cohen et al., 2002). 

Moreover, the MNL appears to be distorted from the linear 

continuum of mathematics. The evidence for a 

logarithmically compressed MNL comes in part from 

experiments where people are asked to identify the greater (or 

lesser) of a pair of numbers. People make faster judgments 

when the numbers are small versus large (e.g., 1 vs. 2 is faster 

than 8 vs. 9; LeFevre et al., 1996); this is the size effect. They 

make faster judgments when the distance between numbers 

is far vs. near (e.g., 2 vs. 8 is faster than 3 vs. 5; Cohen, 2010); 

this is the distance effect. Finally, they make faster judgments 

for pairs of multi-digit numbers when the digit in each place 

of the larger number is greater than its counterpart in the 

smaller number (e.g., 46 vs. 35 is faster than 45 vs. 36; Nuerk 

et al., 2001; Varma & Karl, 2013); this is the compatibility 

effect. There are also discontinuities of the MNL caused by 

the place-value symbol system for naming numbers. For 

example, determining the midpoint between two numbers is 

slower and less accurate when the tens digits differ (e.g., 

bisecting 27 – 35 is harder than 21 – 29; Nuerk et al., 2011); 

this is the decade-crossing effect.  

The question we consider here is whether traditional 

statistics instruction produces a discontinuity in the MNL at 

.05 after controlling for the effects of size, distance, 

compatibility, and decade crossing. If this is not the case, 

consistent with traditional cognitive models of the MNL, 

participants should perceive p = .048 and p = .051 to be more 

similar than p = .018 and p = .021 because of the size effect 

and more similar than p = .018 and p = .023 because of the 

size and distance effects. However, if a CPE exists, 

individuals may perceive p = .048 and p = .051 to be more 

different than at least some of the other pairs above because 

only in this case do the two p-values cross the putative .05 

boundary. Thus, the goal of this study is to identify whether 

a CPE effect exists in the perception of p-values. 

Methods 

Canonical CPE studies include two tasks to establish a CPE 

–– an identification task to determine the precise location of 

the boundary and a discrimination task to confirm within-

category indiscriminability. As p < .05 is the conventional 

boundary for statistical significance, it was assumed to be the 

location of the boundary separating p-values that would be 

labelled ‘statistically significant’. To evaluate within-

category indiscriminability, we employed the AX 

discrimination task, which asks participants to identify when 

pairs of stimuli are ‘similar’ or ‘different’ (e.g., Repp, 1984). 

Such judgments are neither inherently correct nor incorrect, 

and thus a within-subjects design was employed to study 

patterns in participants’ selections across a variety of stimuli. 

The experiment was designed to distinguish between the 

competing predictions of the MNL theory against those of a 

hypothetical CPE –– a hypothetical CPE suggests that 

individuals will be more likely to label a pair of stimuli as 

different when they cross the .05 boundary, relative to when 

the p-values are either both below the boundary (i.e., both 

‘statistically significant’) or both above the boundary (i.e., 

both ‘not statistically significant’). Furthermore, for a given 

distance between two p-values, participants would be faster 

when responding that they are different if the p-values cross 

the .05 boundary, relative to when then p-values do not cross. 

Participants 

We recruited graduate students associated with the 

Department of Educational Psychology at the University of 

Minnesota. Eligible participants were those who reported 

having experience through research or teaching with 

hypothesis tests and p-values. An initial screening of 40 

respondents identified 25 who were eligible and completed 

the experiment in full. Participants were recruited on a 

voluntary basis and were not compensated for participation. 
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Materials 

Each stimulus was a pair of p-values (see Table 1). The 

distance between the p-values was varied in thousandths 

increments to control for an expected distance effect.  

Between 9 and 15 stimuli pairs were created for each 

within-pair distance. The critical variable was boundary-

crossing. Of these 9-15 pairs, 3-4 crossed the .05 boundary, 

3-5 were below the boundary, and 3-5 were above the 

boundary. It was necessary to include both below and above-

boundary stimuli to control for an expected size effect.  

All stimuli pairs were of the form “0.0AB” where A and B 

were non-zero digits to control for a potential effect of a 

different number of leading zeros on response time (Schulze 

et al., 1991). Each pair of p-values had different digits in the 

hundredths place to control for a potential hundredths-

crossing effect analogous to the decade-crossing and tenths-

crossing effects (Nuerk et al., 2001; Varma & Karl, 2013). 

Distances within a pair ranged from .002 to a maximum of 

.009 to avoid pairs generating a compatibility effect, and 

there were multiple pairs for each distance larger than .002 

(e.g., .049 vs. .052 and .048 vs. .051 for a within-pair distance 

of .003). We included 18 additional filler stimuli so that 

participants would not notice and begin attending to patterns 

in the stimulus set. These filler stimuli included distances up 

to .016 and p-values with the same digit in the hundredths 

place. A total of 108 stimuli were created (see Table 2). 

 

 

Table 1: Example stimuli by 

within-pair distance and stimulus type 

 

Distance Below*  .05 Crossing 

.002 .039 vs. .041 .049 vs. .051 

.003 .029 vs. .032 .049 vs. .052 

.004 .017 vs. .021 .047 vs. .051 

.005 .028 vs. .033 .048 vs. .053 

.006 .036 vs. .042 .046 vs. .052 

.007 .027 vs. .034 .047 vs. .054 

.008 .034 vs. .042 .044 vs. .052 

.009 .016 vs. .025 .046 vs. .055 

*Above pairs mirrored Below pairs. Each 

within-pair distance had 9-15 unique pairs. 

 

 

Table 2: Number of unique stimuli by  

within-pair distance and stimulus type 

 

Distance Below .05 Crossing Above 

.002 5 2 4 

.003 5 4 4 

.004 5 3 5 

.005 6 4 5 

.006 4 3 3 

.007 3 3 3 

.008 3 4 3 

.009 2 4 3 

filler 6 6 6 

Procedure 

Pairs of p-values were presented sequentially to participants, 

with the first p-value shown for 1000 ms and the second p-

value shown until either a response was made or 5000 ms 

elapsed. Participants were asked to “identify whether the p-

values are similar or different”, and to indicate their choice as 

quickly as possible by pressing either ‘F’ (for similar) or ‘J’ 

(for different) on their keyboard. In approximately half of the 

trials, the first p-value presented was smaller than the second 

one, while in the other half it was larger. To induce a 

statistical mindset, p-values were presented in the form “p = 

0.0AB”. Stimuli were blocked into six sets of 18 pairs, with 

a 20-second break between each block. An additional six 

stimuli were presented in an initial training phase to 

familiarize participants with the task procedures. 

Statistical Models 

We looked for a CPE in two ways. First, we investigated 

whether similar vs. different judgments (for which there is no 

objectively correct response) changed as a function of 

whether the p-values crossed the .05 boundary using a log-

binomial mixed effects model (e.g., Huang, 2019). Second, 

we looked for differences in participants’ response times 

(RTs) when selecting ‘different’, as a function of the .05 

boundary-crossing, using a lognormal mixed effects model 

(e.g., van der Linden, 2006).  

To isolate the effect of .05 boundary-crossing, both models 

adjusted for size of the p-values, the distance between them, 

and whether the first p-value presented was smaller than the 

second p-value presented. Each of these effects were entered 

into the models as random effects varying across participants. 

Random effects were also included for the order in which 

stimuli were presented. All filler stimuli were excluded from 

analysis.  

Preliminary analyses detected aberrant patterns for within-

pair distances of .002, in which participants judged p-values 

as different more often than when distances between p-values 

were .003 or .004. As all stimuli pairs with distances of .002 

were necessarily of the form .0A9 vs. .0B1, we suspect 

participants might have noticed the particularly salient .049 

vs. .051 comparison and adjusted their behavior to this .05 

Crossing stimulus (see Discussion). Additionally, two 

participants’ RTs exhibited aberrant patterns of exceptionally 

large RTs. We suspect that these participants did not attempt 

to respond as quickly as possible. Due to these suspected 

response process compromising data quality, only stimuli 

with within-pair distances between .003 and .009 were 

included in the statistical models, and two participants’ RTs 

were therefore excluded from analyses of RTs.  

Taking as our null hypothesis the MNL theories’ 

predictions, we used ANOVA Type III Sums of Squares tests 

to generate p-values for fixed-effects in the log-binomial 

mixed effects model (Matuschek et al., 2017) and t-tests with 

Satterthwaite’s Method for Degrees of Freedom for the 

lognormal mixed effects model. All analyses were completed 

using R (R Core Team, 2019) and the lme4 package (Bates et 

al., 2015). 
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Results 

After adjusting for the other potential effects, judgments of 

similarity vs. difference showed the predicted CPE (see 

Figure 1) –– for a given distance, participants were more 

likely to label the stimulus pair as ‘different’ for the .05 

Crossing stimuli compared to the Above or Below stimuli (p 

< 0.0001; see Table 3). The estimated rate-ratio was 2.42 

(95% CI: 1.49 – 3.95), implying that for a given distance 

between a pair of p-values, participants were nearly two and 

a half times as likely to indicate that the pair were different in 

.05 Crossing stimuli, compared to when the p-values were on 

the same side of the boundary, as in the Below and Above 

stimuli.  

In addition, participants were more likely to indicate that a 

stimulus pair was different as the within-pair distance 

increased (p < .0001). There were no effects of size (p = 

0.2404) nor presentation order (p = 0.4838). There were no 

interaction effects between any of the factors in the model.  

  

 

 
Figure 1: Unadjusted proportion of participants selecting 

‘Different’ by within-pair distance and stimulus type, with 

95% Confidence LOESS Envelope. 

 

 

Table 3: Fitted log-binomial mixed effects model 

predicting participants’ difference selections 

 

Factor Estimated rate-ratio 

(95% CI) 

p-value 

.05 Crossing 2.422 (1.49 – 3.95) <0.0001 

Distance* 1.368 (1.28 – 1.46) <0.0001 

Size* 0.991 (0.98 – 1.01) 0.2404 

Smaller 1st 0.928 (0.75 – 1.14) 0.4838 

*Estimates are per 0.001 increase 

 

The finding of a CPE at the group level also held at the 

level of individual participants. Estimates of random effects  

indicated that 23 of 25 participants were more likely to judge 

a stimulus pair as ‘different’ when the p-values crossed the 

boundary, indicating a robust effect. Estimated rate-ratios 

ranged from .92 times as likely to select ‘different’ to over 17 

times as likely, with a median effect of 1.96 times as likely. 

These individual differences were not related to whether 

participants had taken a statistics class within the last year, a 

proxy for experience (Wilcoxon Rank-Sum Test: p = 0.7675).  

Analysis of participants’ RTs similarly showed the 

predicted CPE (see Figure 2) –– for a given distance, 

participants were faster to judge a stimulus pair as ‘different’ 

when the pair was a .05 Crossing stimulus compared to the 

Above or Below stimuli (p = 0.0440; see Table 4). The 

estimated percentage reduction in RT was 21.9% (95% CI: 

0.7% – 38.5%), corresponding to a 275 ms reduction in RT 

compared to the model-adjusted mean RT of 1114 ms.  

 

 

 
Figure 2: Unadjusted mean RT for participants’ difference 

selections by within-pair distance and stimulus type, with 

95% confidence weighted LOESS envelope. 

 

 

Table 4: Fitted lognormal mixed effects model predicting 

participants’ log RT when selecting ‘different’ 

 

Factor Estimated RT-ratio 

(95% CI) 

p-value 

.05 Crossing 0.781 (0.62 – 0.99) 0.0440 

Distance* 0.968 (0.94 – 1.00) 0.0506 

Size* 1.025 (0.92 – 1.14) 0.7504 

Smaller 1st 1.001 (0.99 – 1.00) 0.6538 

*Estimates are per 0.001 increase 
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In addition, participants were on average faster at 

indicating that a stimulus pair was different as the within-pair 

distance increased (p = 0.0506). There were no effects of size 

(p = 0.7504) nor presentation order (p = 0.6538). There were 

no interaction effects between any of the factors in the model.  

We also looked for a CPE on RTs at the individual level. 

After adjusting for the other effects, 17 of 23 participants 

were on average faster at selecting ‘different’ in .05 Crossing 

stimuli. Estimated average percentage differences in RT 

between .05 Crossing stimuli and the Above/Below stimuli 

ranged from 79% faster to 43% slower, with a median of 18% 

faster. These individual differences were not related to 

whether participants had taken a statistics class within the last 

year (Wilcoxon Rank-Sum Test: p = 0.4458). 

Discussion 

This study investigated the mental representation of the p-

value continuum, specifically whether there is a CPE at the 

boundary of .05. In fact, there was such an effect. Participants 

were more likely and faster to judge a pair of p-values as 

‘different’ (vs. ‘similar’) when they crossed the .05 boundary. 

These effects were present even after controlling for 

compatibility, size, distance, and order effects in the 

comparisons of numbers that have been documented in the 

mathematical cognition literature.  

The finding of a CPE indicates that the p-value continuum 

contains a discontinuity at .05. We hypothesize that this is a 

consequence of traditional statistics instruction, and with 

reading a scientific literature still dominated by NHST with 

𝛼 = .05. Specifically, if this instructional and experiential 

hypothesis is true, then the CPE for p-values should be 

relatively small for first-year graduate students, should 

increase over graduate training and statistical coursework, 

and should be relatively large for working scientists. 

The current experiment has several limitations. First, it 

included only 25 participants who made only 108 judgments 

each. Thus, the data were noisy, and the RT data exhibited 

unexpected patterns which occluded precise estimation of the 

CPE and its interaction with distance effects.  

Second, the CPE found here might be specific to the AX 

paradigm used, and more generally the adaptation of CPE 

tasks to numeric stimuli. The AX task is a simple 

discrimination task, and participants may have interpreted the 

choice of ‘similar’ and ‘different’ subjectively, especially in 

the absence of a correct response (Gerrits & Schouten, 2004). 

This subjectivity may also have interacted with a complex 

distortion of the MNL to produce the aberrant pattern where 

participants identified p-values with a distance of .002 as 

different more often than for within-pair distances of .003 or 

.004. This aberrant pattern was neither predicted by 

traditional mathematical cognition theories of the MNL nor a 

simple CPE distortion of the MNL. In the present study, we 

have controlled for this subjectivity by including random 

effects for participants in statistical models and limiting the 

data analysis to stimuli with within-pair distances between 

.003 and .009. Additionally, we are currently conducting 

further studies investigating whether .05 is a psychological 

boundary across a range of discrimination tasks, examining 

the structure of the distortion in greater detail, and 

considering methods to adapt CPE discrimination tasks for 

numeric stimuli.  

Third, although traditional CPE study participants compare 

two categories with distinctive labels (e.g., ‘P’ and ‘B’), p-

values’ categories are simply ‘statistically significant’ and 

‘not statistically significant’. This asymmetry of 

categorization suggests there may be complex asymmetries 

near .05 in the MNL. Further studies are needed to understand 

the nature of a CPE for complementary categories such as 

‘statistically significant’ and ‘not statistically significant’.  

Nevertheless, the current study provides a first insight into 

the mental representations underlying the interpretation of p-

values and sets the stage for future research on these 

representations and their tuning through statistical 

instruction.  

Recently, statisticians have suggested that comparisons of 

statistical significance and non-statistical significance should 

not be made (Wasserstein et al., 2019). The advice is meant 

to obviate the phenomenon of p-hacking and to quell the 

NHST controversy. However, dichotomous categorizations 

are generally helpful to novice learners (Gibson, 1969), and 

some statisticians have pushed back on the abandonment of 

statistical significance in the classroom for this reason (e.g., 

Krueger & Heck, 2019).  

Our results show that CPEs for p-values may exist for 

emerging psychological scientists. This might be taken as 

evidence for the dismal conclusion that p-hacking and other 

questionable research practices may be an inevitable 

consequence of how people think and learn. We do not 

believe this to be the case. CPEs that result from early 

categorizations are not permanent – categorizations and 

perceptions can change through experience (Goldstone, 

1994). Thus, an important direction for future research is to 

develop classroom activities and run instructional studies 

showing that NHST can be taught to students without 

distorting their perceptions of probability. This would be an 

important step towards moving to a world beyond ‘p < 0.05’.   
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