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Representing Magnitude by Memory Resonance
A Hypothesis on Qualitative Judgment

Marten J. den Uyl

Psychological Laboraty
University of Amsterdam

ABSTRACT

Qualitative judgment, the ability to evaluate attributes that imply some degree of 'goodness’ or preference,
poses important problems for the information processing paradigm. In this paper one form of qualitative
judgment, contextual judgment of magnitude, is analyzed in some detail.

The results of psychophysical experiments are consistent with the idea that human magnitude
representation is based on a contextual coding process in which an actual stimulus is compared with
a sample of traces of previously encountered similar stimuli. Such a coding process is hard to realize
in a conventional memory system.

A distributed model for contextual magnitude judgment is described, in which this trace sampling
process is feasible, when special provisions for the use of resonance information are made. Resonance
coding involves the representation within a memory system of the memory activity caused by specific
patterns of stimulation. A possible implementation of resonance coding, detection of dissonance, is briefly
described. The hypothesis is put forward that evaluation of memory resonance plays an equally important
role in other forms of qualitative judgment.

INTRODUCTION

People routinely make qualitative judgments: ’an interesting novel’, ’a very elegant solution’,
a hot bath’, ‘a bitter disappointment’, 'a highly complex problem’. Such judgments have in
common that on the one hand some classification of a quality is indicated -interestingness,
elegance, hotness, etc.- and on the other hand there is an evaluation of the degree, of the
quality present.

Qualitative judgment poses pervasive problems to the information processing paradigm.
One set of problems is apparent in the actual performance of presentday AI (expert) systems.
It is generally recognized that AI systems show distinct patterns of strengths and weaknesses
when compared to standards of human intelligence. Where AI systems may easily excel in
computational power in formal domains, in ’verbatim’ memory capacity, in deductive inference,
it is a challenging task to approach human standards in heuristic inference, common sense,
creativity, esthetic judgment, and robustness in the face of unexpected and deviant situations.
Much of this pattern of weaknesses can be roughly summarized in the statement that Al
systems have problems in dealing with gqualitative aspects of tasks and situations.
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Problems with qualitative judgment may be further illustrated in the relative neglect in
cognitive psychology of affective processes such as motivation, valuation, emotion (e.g. Mandler
1985) in which qualitative judgment plays a central role.

Yet another set of problems prevail at the epistemological level. When people make
qualitative judgments, they experience certain qualitative contents or qualia, a tomato ’looks
bright red’, we °feel a pain' in a sore tooth. Qualia play a prominent role in debates on
the philosophy of mind, and particularly in arguments on the adequacy of the functional
(cognitive) paradigm in psychology. It has often been argued that the information processing
paradigm cannot account for the phenomenal qualities of human experience.

The major aim of this paper is to outline and illustrate a global hypothesis on the nature
of qualitative judgment. According to this hypothesis qualitative judgment is based on an
evaluation of memory resonance, roughly the impact of stimulation on patterns of autonomous
activity in the representational system. The body of the paper is devoted to an analysis of
the archetype of qualitative judgment: the contextual judgment of magnitude.

QUALITATIVE JUDGMENT OF MAGNITUDE

Any system that operates in the real world must face the elementary task of representing
the magnitudes or intensities of objects on continuous physical variables such as length, weight,
sound- or light intensity. The question how human beings deal with this task is the proper
domain of psychophysics, one of the oldest research traditions in modern experimental
psychology. Research in psychophysics has demonstrated many peculiarities of human magnitude
representation (For reviews see e.g. Carterette & Friedman 1974).

First of all, magnitude judgment often is a hard task for human beings. The point is
perhaps appreciated best when it is realized how dependent we are on the many measurement
instruments -from yardstick and balance to sophisticated electronic devices- that have been
developed to overcome the limitations of sensory systems.

Problems with magnitude judgment arise in particular when memory representations of
magnitudes are involved. Human capabilities in intensity resolution per se -i.e. discriminating
between magnitudes when two or more are present simultaneously or in immediate succession-
differ widely between sensory modalities, but in some cases human discrimination is fair to
any standards and may be hard to equal by mechanical devices. One of the few general
observations that can be made about intensity discrimination is known as Weber’s Law’. just
notable differences (jnd’s) between intensities tend to be constant fractions of stimulus intensity.

However, when a single stimulus at a time is judged in relation to a memory representation
of one or more reference magnitudes, human performance is severely limited and, moreover,
shows surprisingly little variation over sensory modalities. As Miller (1956) noticed, for many
different sensory continua people cannot reliably distinguish more than 7 +/- 2 levels of
intensity in identification tasks. Performance in intensity identification tasks, where reference
levels must be remembered, contrasts sharply with performance in intensity discrimination
tasks. For continua like loudness and brightness subjects may be able to partition the range
from the weakest, just perceptible, to the largest, just bearable, intensity (the dynamic range)
in well over a hundred jnd steps, when stimuli are pairwise compared; yet Ss can at most
distinguish about 10 levels of intensity with single stimulus presentations.
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It may be conjectured that these memory limitations are a direct consequence of the
characteristics of the hardware in which human intelligence is implemented. Artificial recording
devices store information in physically stable structures that may remain essentially unchanged
over longer periods of time. The human brain is a soft kind of hardware, as living tissue
grows, changes and decays over time. Human magnitude representation may be understood
as a striving for constancy in an inherently unstable system.

A further characteristic of memory representations of magnitude is their dependency on
context, particularly on the range of magnitudes over which judgments are made. The stability
of memory representations of magnitude decreases with increasing judgmental range. Two
intensity levels that can be easily distinguished when they form the extreme magnitudes in
a small range stimulus set, may become highly confusable in a large range stimulus set.

Context dependency is also a striking feature of the way magnitudes are typically expressed
in everyday language. Magnitudes are typically communicated in qualitative terms like ’'big’,
*small’, 'many’, ’few’. Such terms express magnitude in reference to a contextually determined
norm; "a lot of people’ implies different numbers at cocktail parties or mass meetings.

How are contextual norms represented in memory? How are judgments made in relation
to these norms? One approach, exemplified in the influential *Adaptation Level’ theory (Helson
1964), is to assume that judgments are made in relation to some neutral point that represents
the central tendency of the stimulus distribution. Context effects then are represented in a
single parameter, the adaptation level. However, it has repeatedly been demonstrated that not
just the central tendency but the entire shape of the stimulus distribution is reflected in
magnitude judgments (e.g. Parducci & Perrett 1971). Apparently people employ some 'multi
parameter’ representation of stimulus distributions.

Trace Sample Theory

The characteristics of human magnitude representation just described can be accounted for
by a general model of qualitative magnitude judgment (Trace Sample’ theory, den Uyl 1981).
Only a few elements of this theory need to be mentioned here.

Magnitude information may be represented in one of two different formats: primary or
trace code and secondary or contextual code (cf. Durlach & Braida 1969). A trace code, the
output of some perceptual system, is a direct or analogue representation of stimulus intensity.
The precize nature of trace codes we leave unspecified for the moment; it is, however, assumed
that trace codes are highly unstable and decay rapidly over time. Hence, the long term memory
representation of individual trace codes will be subject to very large error.

The central assumption in trace sample theory is that contextual magnitude representations
are formed by comparing the trace code for an actual stimulus magnitude to a sample of
trace codes of previously encountered similar stimuli. The resulting contextual magnitude
judgment is essentially the rank or percentile score of the actual stimulus magnitude in a
subjective reference distribution formed by the trace sample. Thus, when we judge a dog
to be ’very large’, this essentially means that this dog appears to be larger than most dogs
we have seen before. It should be noted that because of the large error in the memory

65



DEN UYL

representation of traces, the subjective reference distribution will be systematically distorted
with regard to the objective distribution of reference magnitudes.

Space does not permit to review the evidence here that this simple contextual coding
mechanism can account for many findings in experimental psychophysics (cf. den Uyl 1981).
We should turn attention to the implications of this coding scheme for the organization of
memory.

Classification, Judgment and Memory

Trace Sample theory implies that quite a number of specific traces must be somehow represented
in memory; in order to make qualitative judgments a sample of traces should be available
for each dimension of each category in memory.

How is the representation of these traces integrated in the representation of categories
in memory? One possibility is to assume that fixed sets of traces are stored with each category
in memory, and can be accessed when the entry for the category is reached as a result of
some classification process. The problem with this proposal is that it may easily lead to a
proliferation of postulated trace samples when the aim is to account for the flexibility of
human judgment. To just mention some potential problems:

-Often the norm for one dimension is dependent on the value on some other dimension,
e.g. a heigth of three feet would be 'tall’ for a two year old child, 'very tall’ for a 1.5
year old, 'extremely tall’ for a one year old. It may be possible to represent dependencies
between correlated continuous variables in sets of discrete subcategories (e.g. Lebowitz 1985),
but it would not seem a particularly elegant solution.

-Sometimes contextual judgments appear to be made in reference to ad hoc categories (Barsalou
1983) constructed on the spot. For example, the judgment that there are 'not so many people
present’ at a particular lecture, may be made in reference to an ad hoc norm for ’this kind
of lecture’, defined by a set of circumstances like size of the lecture hall, fame of the lecturer,
time of day etc.

An alternative approach that could solve these problems in a principled way, would be
to assume that a trace sample is newly composed for each occasion where a qualitative judgment
is made. That is, for each judgment the memory system samples the traces from the previously
judged objects most similar to the object presently being judged. Clearly, this is an attractive
possibility in that it could conceivably give a system the flexibility apparent in human
judgment . However, the computational costs of this scheme would seem extravagant in a
conventional computational architecture: the scheme implies that some similarity metric is
computed between the judged object and each individual object stored in memory. In order
to further explore this proposal, we need to consider an implementation of the trace sample
model in a parallel-distributed processing architecture in which the implied computations are
feasible.

lAn elegant treatment of 'norm theory' based on related principles has recently been presented in (Kahneman
& Miller 19886).
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MAGNITUDE REPRESENTATION IN A DISTRIBUTED MEMORY

The distributed model I will outline here is based on the 'Harmonium' model developed by
Smolensky & Riley (1984) with a few modifications inspired by related models (e.g. McClelland
& Rumelhart 1985). Harmony theory relies on a formal mapping between parallel computation
and thermal physics and is similar in this respect to the ’Boltzman machine’ described by
Ackley, Hinton & Sejnowski (1985).

A distributed memory consists of a -large- set of interconnected modules, each of which
in turn consists of many interconnected simple processing units or ’nodes’. The activation
state of nodes may vary, and the basic mode of operation of nodes is the passing of activation
signals to other nodes within and between modules. Specific patterns of activity over the
nodes in the memory network constitute active knowledge states. Information processing takes
the form of chains of knowledge states, brought about by the units spreading activation through
the network.

Each module contains two layers of nodes: representation nodes (R-nodes) define the active
knowledge states of the system; trace nodes (T-nodes) contain information on past contingencies
between R-nodes and may send activation signals to R-nodes on this basis. Connections are
only between layers, nodes within a single layer are not connected. Both representation and
trace nodes take only two activation values: nodes are either on/active or off/inactive.

The basic cognitive operation in a connectionist memory is pattern completion. Pattern
completion takes place in (asyncronous) processing cycles in individual modules as follows:
At the beginning of the cycle some subset of the R-nodes in the module is clamped into
activation states by incoming connections from other modules. Other R-nodes are assumed
to have random activation values at the beginning of the cycle. The task for the module
is to reinstate a stable and complete pattern over all the representation nodes in the module.
Note that in a distributed model ’psychological’ stimulus features (e.g. shapes, color) do not
correspond to individual processing units, but to activation patterns over collections of units.

Each trace node is connected to a set of representation nodes by bidirectional links. A
T-node contains -as a result of past experience- a key, a set of weights on connections with
R-nodes with values of either +1 or -1. This key defines a ’preferred pattern’ of activation
states over connected R-nodes.

A processing cycle is divided in discrete ’ticks’ (McClelland & Rumelhart 1985). At each
tick a T-node receives an activation signal from each R-node that is consistent with the
key (the state of the R-node matches the sign of the weight) and a de-activation signal
for each mismatch. A trace node is in the active state as long as the sum of the (de-)activation
signals exceeds some variable threshold value. Active T-nodes send activation signals to R-nodes
in accordance with the weights in the key, e.g. a de-activation signal is send when the weight
is negative.

The thresholds of T-nodes are gradually raised in the course of a processing cycle. As
a result many T-nodes may participate in the first stages of a cycle. At the end of a cycle
only the best matching T-nodes remain active when the module ’'freezes’ into a stable
completion.
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The activation state of a R-node not clamped by external connections is a (probabilistic)
function of the incoming signals from T-nodes; representation nodes will tend to conform
to the 'majority vote' of incoming signals.

How do trace nodes come to represent contingencies between representation nodes? 1 will
shortcut this complex issue here by postulating a global learning rule that suffices for present
purposes: at the end of a completion cycle, key weigths of then active trace nodes that are
inconsistent with the activation state of the connected representation node may change their
sign with a certain probability so as to achieve consistency .

Harmony

In a harmonium model’ processing is driven by a single principle: that of achieving completions
with the highest harmony or ’self-consistency’. Harmony is the degree of consistency between
a pattern of activation over the representation nodes, and a set of preferred patterns defined
by the keys in the active trace nodes. More precisely, the harmony of a system state can
be expressed as follows :

Let a vector T represent the states of trace nodes with the values active=1 and inactive=0;
a vector R over representation nodes takes the values on=+1 and off=-1; a vector K, represents
the key in trace node T, with the values +1 and -1 for positive and negative weights, and
0 when T, is not connected to Rj. The harmony of a state then is:

Hizgr) = &4 T-R*K; (1)

It can readily be seen that (1) is equivalent to the sum of all consistent signals in the module
minus the summed inconsistent signals (**’ denotes the dot product).

Primary Coding of Magnitude

Magnitudes on some dimension are represented on a subset of the R-nodes in a harmonium
module, the magnitude representation nodes’ or M-nodes. The primary code for a magnitude
is simply the number of M-nodes active in the module. This primary coding may be brought
about thus.
M-nodes are clamped into activation states by external connections carrying activation signals
that have their origin in sensory systems. For each M-node a threshold parameter m;, is defined
that randomly fluctuates over time. An M-node will be clamped in the active state upon
presentation of a stimulus magnitude S when s; > my and will be clamped ‘off’ otherwise.
Weber’s Law implies that the tresholds of M-nodes are spaced approximately geometrically
over the dynamic range of the magnitude dimension. The cumulative distribution function,
i.e. the expected number of active M-nodes, then is a logarithmic function of stimulus intensity.

. This postulate marks a transition from an 'enumeration of specific instances’ principle in Smolensky & Riley
51984) to a 'superposition of traces' principle (McClelland & Rumelhart 1085).
The present notation is slightly different from Smolensky & Riley (1984).
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A rationale for the present instantiation of Fechner’s time-honored ’'Logarithmic Law’
is that this coding scheme makes minimal demands on the stability of the units in which
magnitude information is encoded. In this way reliable intensity resolution can be achieved
by parallelling highly unreliable individual units.

Contextual Coding

In Trace Sample theory (den Uyl 1981) the contextual code for a stimulus magnitude S is
the proportion of traces in the trace sample smaller than ;- The present distributed model
does not store traces (copies) of magnitudes. Stimuli may only have a lasting impact on memory
by changing key weights. Yet, a contextual code can be computed in the harmonium model
that is equivalent to the secondary code in Trace Sample theory.

Four kinds of trace signals t(RK) from T-nodes to R-nodes contribute to system harmony:
- activation signals to active R-nodes: t(+,+),
- de-activation signals to active R-nodes: t(+,-),
- activation signals to inactive R-nodes: t(-,+),
- de-activation signals to inactive R-nodes: t(-,-).
Inconsistent trace signals (t(+,-) and t(-,+)) provide information concerning the position
of S in the magnitude distribution of similar stimuli. A signal t(+,-) implies that the present
stimulus dominates a threshold (sJ.:»mit) while some past stimulus s_ which caused the negative
key weight in the signal, had been below this threshold (mit.z-sp). Hence, it may be inferred
from t(+,-) that 5; dominates at least one past stimulus. Analogously, a signal t(-,+) indicates
that 5; is smaller than some past stimulus, Of course, error is introduced into these inferences
because of the random fluctuations over time of the thresholds.
Consistent signals do not provide contextual information, these signals only indicate where
both S; and past stimuli stand with regard to threshold nodes.

We denote the frequency of the signal t(r,K) summed over M-nodes, given activation
vectors T and M upon presentation of stimulus S by f(T,M)j(R'K)- A contextual code C.i
equivalent to the percentile code in Trace Sample theory can then be expressed as:

f (+,-)
C - (TM)j ?)

(+,-) +f

£ m); (T
C_i may range from 0 for extremely small stimuli to 1 for extremely large stimuli, the expected
value for intermediate stimuli (the adaptation level) is 0.5.

It may be observed that in the present model norms for magnitude judgment, i.e. the
distribution of trace signals in a harmonium module, are indeed composed anew for each
judgment, as each stimulus pattern may activate a different T vector and hence sample a
different set of key weights (cf. McClelland & Rumelhart 1985).
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Dissonance as a Contextual Code

The contextual coding scheme in the preceding section raises one important problem: How
can the contextual code in (2) be computed in a distributed system? All the information
required for the computation is present in the M-nodes. It would appear a simple solution
to have all M-nodes send counts of inconsistent incoming signals to special 'collector-units’
where the necessary computations could be performed. However, this proposal would require
M-nodes to spread other -more complex- information through the system than just their
activation state. The proposal implies a major breach with connectionist design principles.

There are ways to approximate the contextual code using standard -though specialized-
connectionist processors. One such scheme involves the detection of dissonance in activation
patterns. A clamped representation node is dissonant, when a majority of incoming trace signals
are inconsistent with the clamped activation state of the R-node.

Dissonance can be detected in the following way. Suppose a completion cycle in a
harmonium module is followed by a resonance cycle in which the activation pattern on T-nodes
remains unchanged, but all clamps on R-nodes are removed, thus allowing R-nodes to settle
into preferred states. Dissonant nodes -i.e. R-nodes which change their activation state in
the resonance cycle- could then be registrated in specialized units (e.g. units sensitive to
time-contrast in activation signals).

The contextual code in (2) can be approximated in various ways from the dissonance
in M. Large stimuli will tend to clamp high-threshold M-nodes -expected to be off- in dissonant
active states, small stimuli will produce dissonance in inactive nodes. Intermediate magnitudes
wil cause the lowest overall dissonance in M.

The precize form a dissonance-based contextual code may take is not important for the
moment. The general point I want to make here is that although it is feasible to develop
fairly simple coding schemes for contextual magnitude representations in a connectionist memory
module, some special provisions are required to this end.

RESONANCE AND QUALITATIVE JUDGMENT

It may be conjectured that all qualitative judgments share the structure of contextual magnitude
judgment, they all involve the contextual evaluation of memory resonance to an object
description.

A crucial step must be taken in order to use resonance information in a memory system.
Global characteristics of memory activity in response to a pattern of stimulation must be
represented within the memory system itself, in order to be interpreted as providing information
about the object that gave rise to this memory activity. For instance, in order to use the
extent of inconsistent activation in a module as a measure of the extreemness of the magnitude
of an object, inconsistent activation must in some way be detected and registrated.

It has been proposed that resonance evaluation takes the form of evaluating patterns of
dissonance between a ’preferred’ or expected resonance pattern, and the pattern externally
imposed on the memory. A rationale for this form of evaluation can be found in the design
principles of a distributed memory. In a distributed memory knowledge is hidden rather than
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stored. Past events only leave traces in the form of changes in activation weights. It is not
easy to systematically search or recover past episodes from such traces.

Some tasks, like magnitude judgment or evaluation of prototypicality, require a system to
make use of knowledge concerning the distribution of different stimulus patterns in the past.
Yet, a module in a distributed memory can only support one pattern of activation at a time,
Traces of past events that do not correspond to an actual pattern in a module may only
influence further processing, if it is in some way registered that they would have liked to
see things different.

I have said little about 'goodness’, preference and affective qualities in qualitative judgment.
The reason is that liking does not occur -except in a metaphorical sense- on the level of
memory modules. Only the system as a whole has likes and dislikes. In order to extend the
present hypothesis to affective evaluation, the notion of memory resonance should be extended
to higher levels of organization, i.e. resonance should be evaluated over collections of modules
rather than within single modules. A suitable framework for such an extension can be found
in Frijda’s *concern-realization’ theory of emotion (Frijda 1986; den Uyl & Frijda 1984).
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