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Abstract
Quantifying the association between components of multivariate random curves is of general interest and 
is a ubiquitous and basic problem that can be addressed with functional data analysis. An important 
application is the problem of assessing functional connectivity based on functional magnetic resonance 
imaging (fMRI), where one aims to determine the similarity of fMRI time courses that are recorded on 
anatomically separated brain regions. In the functional brain connectivity literature, the static temporal 
Pearson correlation has been the prevailing measure for functional connectivity. However, recent 
research has revealed temporally changing patterns of functional connectivity, leading to the study of 
dynamic functional connectivity. This motivates new similarity measures for pairs of random curves that 
reflect the dynamic features of functional similarity. Specifically, we introduce gradient synchronization 
measures in a general setting. These similarity measures are based on the concordance and discordance 
of the gradients between paired smooth random functions. Asymptotic normality of the proposed 
estimates is obtained under regularity conditions. We illustrate the proposed synchronization measures 
via simulations and an application to resting-state fMRI signals from the Alzheimer’s Disease 
Neuroimaging Initiative and they are found to improve discrimination between subjects with different 
disease status.
Keywords: Alzheimer’s disease, concordance, fMRI, functional connectivity, functional data analysis, Pearson 
correlation

1 Introduction
In many applications, data are collected in the form of curves or signals over time. In the context of 
functional data analysis (FDA), such curve data are modelled as realizations of an underlying 
smooth stochastic process. Although a variety of approaches have been proposed for univariate 
functional data (Cai & Yuan, 2012; Cardot et al., 2003; Chiou & Müller, 2014; Chiou et al., 
2016; Crambes et al., 2009; Fan & Zhang, 1999; Hall & Horowitz, 2007; Hoover et al., 1998; 
Huang et al., 2002; Ramsay & Dalzell, 1991; Shin, 2009; Yao et al., 2005; Zhu et al., 2014), 
the statistical modelling of dependency between the components of multivariate functional data 
has received less attention.
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Generally, a problem of continuing interest in FDA is the construction of measures of correl-
ation and association between components of multivariate random curves (He et al., 2000). 
A classical correlation measure is the Pearson product-moment correlation coefficient (Pearson, 
1895) which describes the linear dependence between two random variables. It can be viewed 
as the cosine of the angle between two centred vectors of a sample. The notion of an angle has 
been extended to random functions in a Hilbert space (Dubin & Müller, 2005), providing a the-
oretically supported dynamic functional correlation. A traditional approach to describe the correl-
ation between random vectors is canonical correlation (Hotelling, 1936), which has been extended 
to multivariate time series (Brillinger, 1975) under the stationarity assumption and to bivariate 
functional data (Leurgans et al., 1993) under the rubric functional canonical correlation. 
Functional canonical correlation requires delicate regularization as it involves inverse operators 
(Cupidon et al., 2008; Eubank & Hsing, 2008; He et al., 2003, 2004). To avoid the inverse prob-
lem, several alternative notions of functional correlation have been proposed, including dynamic 
correlation (Dubin & Müller, 2005), which is an extension of Pearson correlation (PC) to the case 
of functional data, and also a functional correlation based on functional singular decomposition 
(Yang et al., 2011).

Measures of functional correlation and association are at the core of the quantitative analysis of 
functional connectivity in neuroscience for time-course data obtained from functional magnetic 
resonance imaging (fMRI). The fMRI time courses are referred to as blood oxygenation level de-
pendent (BOLD) signals, where an increase in blood flow caused by neuronal activity is thought to 
lead to a surplus in local blood oxygen (Poldrack et al., 2011), and one measures local changes in 
deoxyhaemoglobin concentration in the brain, which serves as a proxy for neural activity 
(Lindquist, 2008). Functional connectivity as used in neuroimaging corresponds to the temporal 
correlation of a neurophysiological index measured in different brain areas (Friston et al., 1993). 
The temporal PC was first applied in resting-state fMRI functional connectivity studies by Biswal 
et al. (1995) and remains one of the predominant tools to measure temporal correlation in the 
fMRI literature. Other commonly used measures include coherence (Ombao et al., 2008; Sun 
et al., 2004), which goes back to Wiener (1930), and partial coherence (Tick, 1963) to evaluate 
the linear relationship between fMRI time series in the frequency domain under various versions 
of stationarity. Resting-state fMRI is a common method to study brain functional connectivity 
when subjects are not performing an explicit task (Biswal, 2012; Greicius et al., 2003; Shehzad 
et al., 2009).

As the temporal variability of signals may exhibit changes across time during the period of data 
collection, it is of interest to study association measures that can reflect the dynamic characteristics 
of time courses, especially as the study of variability of connectivity over time has become more 
popular in recent years (Allen et al., 2014; Chang & Glover, 2010; Hutchison et al., 2013; 
Lindquist et al., 2014; Patel et al., 2006; Xue et al., 2015), leading to novel approaches to measure 
functional connectivity in the context of brain diseases such as Alzheimer’s disease (AD) 
(Bijsterbosch et al., 2017; van den Heuvel & Pol, 2010). This motivated us to study the application 
of the proposed measures of synchronization to resting-state fMRI signals from Alzheimer’s pa-
tients. While we highlight fMRI signals as a major application area, the relevance and impact of 
the proposed methodology is not limited to this specific application. Indeed, Leurgans et al. 
(1993) and Dubin and Müller (2005) demonstrated how their respective versions of functional 
correlation led to new insights for the gait data (Ramsay & Silverman, 2005) and multivariate 
physiological data in nephrology (Kaysen et al., 2000), respectively, in addition to applications 
to longitudinal medical studies such as the Baltimore Longitudinal Study of Aging (Yang et al., 
2011).

To study association in the presence of complex time variability, we propose new association 
measures for paired functional data that emphasize dynamics and are shown to be useful for 
assessing fMRI-based brain connectivity. The proposed measures differ in essential ways 
from the commonly used sliding window method (Chang & Glover, 2010) for the analysis 
of functional connectivity, where one computes temporal PCs over sliding windows. They in-
clude gradient synchronization and gradient synchronization fluctuation and are based on the 
sign of the product of the derivatives of the two random functions, which is used to track time 
dynamic synchronicity between two signals. We show that this concept can be interpreted as a 
limit of temporal PCs that are constructed over sliding windows when the window size shrinks 
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to zero. Gradient synchronization provides a measure of similarity at the individual level which 
is readily extended to samples by averaging across subjects. A second measure, gradient syn-
chronization fluctuation, is the number of sign changes of the product of the empirical deriva-
tives of the signals and serves as an additional useful measure. Previous measures to describe 
changing patterns of connectivity include a dynamic connectivity regression algorithm to detect 
change points in connectivity (Cribben et al., 2012, 2013) and temporal independent compo-
nent analysis to obtain temporal functional modes (Smith et al., 2012). In an application to 
fMRI signals from 11 brain regions (Andrews-Hanna et al., 2010), we find that the proposed 
gradient synchronization is more closely associated with disease status than traditional 
PC-based measures.

The remainder of the paper is organized as follows. We define the concepts of gradient 
synchronization and gradient synchronization fluctuation and the proposed estimators in 
Section 2. Theoretical results that include asymptotic normality for the proposed estimators are 
given in Section 3. Simulation results are presented in Section 4, followed by an application to 
resting-state fMRI data described in Section 5. A discussion follows in Section 6 and the proofs 
can be found in Section S1 in the online supplementary material.

2 Gradient synchronization
2.1 From segmented correlation to gradient synchronization
Let (X, Y) be a pair of centred random functions on an interval D, assumed to be [0, 1] without 
loss of generality. We assume that X and Y are both in the Hilbert space L2 endowed with the inner 
product 〈X, Y〉 = ∫D X(t)Y(t)dt. Then, 〈X, Y〉/(‖X‖‖Y‖) may be viewed as the cosine of the angle 
between X and Y, where ‖X‖2 = 〈X, X〉.

To introduce the proposed time-varying measure of association between pairs of random 
curves, we first partition D into many small segments and then calculate the cosine of the 
angles of the two centred curves on each of the segments induced by the partition. 
Specifically, let P = {A1, . . . , AKP } be a collection of disjoint intervals of which the union is 
[0, 1] and δP = max1≤k≤KP {μ(Ak)}, where μ stands for the Lebesgue measure on R. Given a ran-
dom curve X, the temporally centred curve on Ak is X(t) − ∫Ak

X(s)ds/μ(Ak), for t ∈ Ak, and 
analogously for Y. The cosine of the angle between the centred curves on the segment Ak is 
then

rAk
(X, Y) =

∫Ak
X(t) −

1
μ(Ak)

∫Ak
X(s)ds

 

Y(t) −
1

μ(Ak)
∫Ak

Y(s)ds
 

dt
���������������������������������������������������������������������������������

∫Ak
X(t) −

1
μ(Ak)

∫Ak
X(s)ds

 2

dt

 

∫Ak
Y(t) −

1
μ(Ak)

∫Ak
Y(s)ds

 2

dt

 




. (1) 

We observe that rAk 
is closely connected to the classical PC for paired data observed during 

the time interval Ak, which is the customary measure of connectivity in fMRI research. To 
see this, approximate the integrals in equation (1) by Riemann sums over a set of M time 
points, t1k < t2k < · · · < tMk, in Ak. Then, the right-hand side of equation (1) is approximately 
the PC of the M data pairs (X(tmk), Y(tmk)), m = 1, . . . , M. Thus, for each pair of curves 
(X(t), Y(t)), their similarity or association can be quantified by a sequence of local similarities 
rAk

(X, Y) that quantify the similarity between X and Y along the time segments Ak. This simi-
larity measure is time dynamic and can be characterized by

SXY,P(t) =
KP

k=1

rAk
(X, Y)IAk

(t), (2) 

where I is the indicator function.
Under the following standard assumption (A1),
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(A1) X(·) and Y(·) are continuously differentiable on [0, 1] almost surely, X(·) and Y(·) are con-
tinuously differentiable on [0, 1] almost surely.

One finds that as the partition P gets finer, SXY,P(t) converges to the gradient synchronization 
(GS) function

SXY(t) = sign{X′(t)Y′(t)}, (3) 

where sign(u) = −1, 0, 1, if u < 0, u = 0, u > 0, respectively.

Theorem 1 If Assumption (A1) holds, then for any t ∈ (0, 1) with P{X′(t)Y′(t) = 0} = 0, 
SXY,P(t) converges to SXY(t) almost surely as δP → 0.

We refer to SXY(·) as the gradient synchronization function of X and Y since it captures the syn-
chronization of the derivatives or gradients of X and Y. This is illustrated in Figure 1 for a realization 
of the paired random functions (X, Y) generated according to simulations in Section 4. The oscilla-
tions of the random functions result in frequent jumps of SXY(·) between the values 0 and 1, motiv-
ating a simple summary measure.

Let #A be the cardinality of a set A. For any interval I ⊆ (0, 1), we denote the cardinalities of the 
random sets of zero crossings for X′ and Y′ by

NX′ (I) = #{t ∈ I ∣ X′(t) = 0} and NY′ (I) = #{t ∈ I ∣ Y′(t) = 0}, (4) 

respectively, and for I = (0, 1) write NX′ = NX′ ((0, 1)) and NY′ = NY′ ((0, 1)). We need an addition-
al assumption, which is not overly restrictive if (A1) is satisfied. 

(A2) Almost surely, NX′ and NY′ are finite.

We note that Assumption (A2) guarantees that SXY(·) is Riemann integrable almost surely 
(Theorem 8 in Section 5.3 of Royden & Fitzpatrick, 2010). This leads to 

Definition 1 The GS R and the population GS (pGS) ρ of random functions X and Y are 
defined as

R = ∫10 SXY(t)dt and ρ = E(R). (5) 

Figure 1. One randomly selected realization of the paired functions (X (t), Y (t)) and the corresponding gradient 
synchronization function SXY (t) (3) generated according to the simulations described in Section 4 with L = 91.
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Obviously, the pGS ρ is always between −1 and 1 and is a measure of similarity as the popula-
tion mean of the aggregated concordance and discordance of the gradients of the random curves X 
and Y. It is positive if both trajectories tend to jointly increase or decrease so that their 
derivatives have the same sign and is negative if the signals tend to head in opposite directions. 
With ρ+ = E[μ{t ∈ D:X′(t)Y′(t) > 0}] and ρ− = E[μ{t ∈ D:X′(t)Y′(t) < 0}] representing, respectively, 
the proportion of the time domain where concordance and discordance of the derivatives of X and 
Y occurs, under the assumption that E[μ{t ∈ D:X′(t)Y′(t) = 0}] = 0, we have ρ+ + ρ− = 1, whence 
ρ+ = (1 + ρ)/2 and ρ− = (1 − ρ)/2 follow in conjunction with ρ = ρ+ − ρ−. The extreme scenario ρ = 
1 occurs when X and Y are both monotonically strictly increasing or both monotonically strictly 
decreasing, and ρ = −1 occurs when one of them is monotonically strictly increasing, while the 
other is monotonically strictly decreasing over the entire domain. In all other scenarios, one has 
−1 < ρ < 1, where ρ = 0 indicates that the aggregated areas of concordance and discordance bal-
ance each other out; that is, for half of the time period, there is concordance and for the other half 
there is discordance.

For a simple example, consider two random functions X(t) = −Vcos(7πt/4), Y(t) = Vsin(7πt/4), 
t ∈ [0, 1], where V ∼ N(0, 1). Then,

E ∫10 sign{X′(t)Y′(t)}dt
 

= ∫10 E[sign{X′(t)Y′(t)}]dt

= ∫10 E[sign{(7πV/4)2sin(7πt/2)/2}]dt

= ∫10 sign{sin(7πt/2)}dt

= ∫2/70 1dt− ∫4/72/7 1dt+ ∫6/74/7 1dt− ∫16/7 1dt

= 1/7.

Thus, ρ = 1/7 and therefore ρ+ = 4/7 and ρ− = 3/7.
It is also of interest to investigate the expected number of sign changes of SXY(·) from 1 to −1 or 

−1 to 1 over time. These sign changes quantify the fluctuation of concordance and discordance 
between the signals X and Y and thus provide a measure for the stability of gradient synchroniza-
tion over time. For a piece-wise continuous function f :[0, 1]→ R, denote by f (t−) = lims→t− f (s) 
and f (t+) = lims→t+ f (s) the left and right limits, respectively. Fluctuations in gradient synchroniza-
tion can be quantified by counting the sign changes of SXY(·), motivating the following definition of 
gradient synchronization fluctuation at the population level.

Definition 2 The gradient synchronization fluctuation (GSF) Z and the population GSF 
(pGSF) ζ for random functions X and Y are

Z = #{t ∈ (0, 1) ∣ SXY(t−)SXY(t+) = −1} and ζ = E(Z). (6) 

We note that the GSF Z is finite almost surely since it is bounded by NX′ + NY′ which is finite 
under Assumption (A2). To guarantee that ζ is well defined, we further require the following re-
gularity condition for the cardinalities NX′ and NY′ of random sets of zero crossings for X′ and Y′

as defined in equation (4). 

(A3) E(NX′ ) < ∞ and E(NY′ ) < ∞.

Assumption (A3) requires that the expectations of NX′ and NY′ exist and is a stronger condition 
than (A2). This condition is related to the study of the expected number of roots of a smooth random 
function with the Kac–Rice formula (Kac, 1948; Rice, 1944). For a random process U(·) defined on 
an interval I, with NU = #{t ∈ I ∣ U(t) = 0}, these formulas provide certain integrals to calculate 
E(NU) under regularity conditions (Adler & Taylor, 2009; Azaïs & Wschebor, 2009). For a 
Gaussian random function U(·) taking values in C1([0, 1]), a sufficient condition for E(NU) < ∞ is 
that the distribution of U(t) is not degenerate for any t ∈ [0, 1] (Azaïs & Wschebor, 2009, 
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Theorem 3.2). An example is given by U(t) =
K

k=1 Akϕk(t), where the Ak are Gaussian random var-
iables and {ϕk(·)} is a polynomial basis or trigonometric basis. Conditions (A2) and (A3) are satisfied if 
X and Y are Gaussian processes with C2([0, 1]) sample paths and X′(t) and Y′(t) are non-degenerate 
random variables for any t ∈ [0, 1]. For non-Gaussian processes, sufficient conditions for E(NU) < ∞ 
are in Theorem 3.4 of Azaïs and Wschebor (2009).

2.2 Estimation
In practice, data are only available as discrete measurements taken at a grid of time points. For 
independent copies {(Xi, Yi)}

n
i=1 of the underlying random processes (X, Y), we assume that 

Xi(·) and Yi(·) are observed on J + 1 time points 0 = t0 < t1 < · · · < tJ = 1, which form a partition 
J = {tj}

J
j=0 of [0, 1]. For the ith subject, the corresponding GS, as per (5), is given by

Ri = ∫10 SXiYi (t)dt = ∫10 sign{X′i(t)Y
′
i(t)}dt. (7) 

An empirical derivative for Xi and Yi can be obtained by difference quotients

X′iJ (t) =
J

j=1

Dj,XiI [tj−1,tj)(t) and Y′iJ (t) =
J

j=1

Dj,YiI [tj−1,tj)(t), (8) 

where Dj,Xi = {Xi(tj) − Xi(tj−1)}/(tj − tj−1) and Dj,Yi is defined analogously. Then, a plug-in esti-
mate for Ri is

RJ ,i =
J

j=1

(tj − tj−1)sign(Dj,Xi Dj,Yi ). (9) 

Naturally, the empirical estimate for the pGS ρ is then

ρJ =
1
n

n

i=1

RJ ,i. (10) 

The asymptotic normality of the estimate ρJ is provided in Theorem 2 in Section 3.
For i = 1, . . . , n, as per equation (6), the subject-specific GSF Zi is

Zi = #{t ∈ (0, 1) ∣ SXiYi (t
−)SXiYi (t

+) = −1}. (11) 

Since the observable time grid J = {tj}
J
j=0 is often pre-determined by a measurement device or sam-

pling plan, a variant of the pGSF ζ in (6) that reflects the time grid J is also useful. Specifically, a 
grid-dependent variant ζJ of the pGSF is defined as

ζJ = E(ZJ ,i), (12) 

where ZJ ,i is an estimate for Zi by simply counting the sign changes in terms of whether adjacent 
intervals have the same or different signs of the empirical gradients, i.e.

ZJ ,i = #{2 ≤ j ≤ J ∣ Dj−1,Xi Dj,Xi Dj−1,Yi Dj,Yi < 0}

+ #{1 ≤ j ≤ J ∣ Dj,Xi Dj,Yi = 0},
(13) 

where Dj,Xi and Dj,Yi are defined as after equation (8). Hence, a sample estimate of ζ can be ob-
tained by

ζJ =
1
n

n

i=1

ZJ ,i. (14) 
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We establish the asymptotic normality of ζJ in Theorem 3 below, where we consider the pGSF ζ in 
(6) and the grid-dependent variant ζJ in (12) as the targets, respectively.

3 Asymptotic properties
For the partition J of [0, 1], let δJ = max1≤j≤J {tj − tj−1}. To derive the asymptotic properties of the 
proposed estimators, we assume δJ → 0 as n→∞, which requires the grid to get denser as the 
sample size increases. Although the partition J = J n depends on the sample size n, we keep the 
notation J instead of J n if no confusion arises. Based on Assumptions (A1)–(A3), we obtain 
the consistency and asymptotic normality of ρJ .

Theorem 2 (a) If Assumptions (A1) and (A2) hold, then ρJ converges to ρ (5) in 
probability.

(b) If Assumptions (A1) and (A3) hold and δJ = o(n−1/2), then 
��
n
√

(ρJ − 
ρ)/σR,J converges in distribution to N(0, 1), where σR,J is the square 
root of the empirical estimate of the variance of R, i.e. 
σR,J = {(n − 1)−1n

i=1 (RJ ,i −ρJ )2}1/2.

To obtain the asymptotic normality of ζJ , we need the following conditions: 

(A4) E(N2
X′ ) < ∞ and E(N2

Y′ ) < ∞.
(A5) P(∃t ∈ (0, 1) such that X′(t) = Y′(t) = 0) = 0.
(A6) There exist constants C > 0 and ϵ > 0 such that for all δJ < ϵ, the following holds: (a) 

P(NX′ (I) = k) ≤ C|I|k and P(NY′ (I) = k) ≤ C|I|k, for all k ∈ N and I ∈ {[t0, t1), [tJ−1, tJ]}, 
as well as for all k ∈ N ∩ [2, ∞) and I ∈ {[tj−2, tj):j = 2, . . . , J} and (b) P(NX′ (I) = 1, 
NY′ (I) = 1) ≤ C|I|2, for I ∈ {[t0, t1), [tJ−1, tJ]}. Here NX′ (I) and NY′ (I) are defined in equation 
(4), and |I| denotes the length of I.

Assumption (A4) is needed to obtain the asymptotic normality of ζJ when the target is the grid- 
dependent ζJ in (12). It is a stronger condition than (A3). Fortunately, we can tap into known re-
sults on the second moments of NU for a random process U(·). For a Gaussian random function 
U(·) in C1([0, 1]), E(N2

U) < ∞ holds if the joint distribution of (U(s), U(t)) is non-degenerate for 
any 0 ≤ s < t ≤ 1, see Theorem 3.2 of Azaïs and Wschebor (2009). Thus, a sufficient condition 
for Assumption (A4) is that X is a Gaussian process having C2([0, 1]) sample paths and the joint 
distribution (X′(s), X′(t)) is non-degenerate for any 0 ≤ s < t ≤ 1 and analogously for Y; for 
non-Gaussian processes see Theorem 3.4 of Azaïs and Wschebor (2009) and Chapter 11 of 
Adler and Taylor (2009).

Assumptions (A5) and (A6) are needed to obtain the asymptotic normality of ζJ when targeting 
the grid-independent pGSF ζ in (6). Specifically, Assumption (A5) implies that X′ and Y′ cannot be 
zero at the same t almost surely; it does not preclude that there are times t where X′ or Y′ are zero. 
This assumption guarantees that ZJ ,i converges almost surely as δJ → 0 and it holds under some 
regularity conditions as discussed in Chapter 3 of Azaïs and Wschebor (2009). In particular, 
Assumption (A5) holds if (X, Y) is a bivariate Gaussian process with C2([0, 1]) sample paths 
and X′(t) and Y′(t) are non-degenerate random variables for any t ∈ [0, 1]. Assumption (A6) is 
a restriction on the frequency of zero crossings of X′ and Y′, which implies Assumption (A4), 
and is needed to ensure ζJ − ζ = O(δJ ) as δJ → 0. Assumption (A6) is satisfied, for example, 
in the case where X and Y are random polynomials such that the distance between any two 
zero crossings of X′ and Y′ is at least ε, where ε > 0 is a constant.

Theorem 3 (a) If Assumptions (A1) and (A4) hold, then 
��
n
√

(ζJ − ζJ )/σZ,J converges in 
distribution to N(0, 1), where σZ,J is the square root of the empirical es-

timate of the variance of Z, i.e. σZ,J = {(n − 1)−1n
i=1 (ZJ ,i −ζJ )2}1/2.

(b) If Assumptions (A1), (A5), and (A6) hold and δJ = o(n−1/2), then 
��
n
√

(ζJ − ζ)/σZ,J converges in distribution to N(0, 1).
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The asymptotic normality of ρJ and ζJ can be utilized for inference such as the construction of 
asymptotic confidence intervals for ρ and ζ. Let zα denote the upper α-quantile of N(0, 1), i.e. 
P(V > zα) = α where V ∼ N(0, 1). By Theorems 2 and 3, ρJ ± zα/2σR,J /

��
n
√

and ζJ ± 
zα/2σZ,J /

��
n
√

are 100(1 − α)% asymptotic confidence intervals for the pGS ρ and the pGSF ζ.

4 Simulation studies
To demonstrate the finite sample performance of the proposed estimators, our simulation design 
included M = 1,000 simulation runs and n = 50, 200, and 1,000 independent and identically dis-
tributed (i.i.d.) pairs of random functions (Xi, Yi), i = 1, . . . , n. The grid points {0 = t0 < · · · < 
tJ = 1} were located equidistantly on [0, 1], with the number of grid points chosen as J = 100, 
200, and 500. Paired functional data (Xi, Yi) were generated from the trigonometric basis as fol-
lows:

Xi(tj) =
L

l=1

Ai,lϕl(tj) and Yi(tj) =
L

l=1

Bi,lϕl(tj), 

where L = 91, ϕ1(t) ≡ 1, ϕl(t) =
��
2
√

cos((l − 1)πt) for odd l > 1 and ϕl(t) =
��
2
√

sin(lπt) for even l, 
Ai = (Ai,1, . . . , Ai,L)⊤ are i.i.d. random vectors from N(0, D) with the covariance matrix D a di-
agonal matrix with elements Dll = exp ( − |l − 35|/50)/8 for l = 1, . . . , L and 
Bi = (Bi,1, . . . , Bi,L)⊤ = aAi + VCi, with Ci independent copies of Ai, V an L × L matrix with 

(i, j)th entry Vij = 0.8 × 0.3|i−j|, and a such that ∫10 Var{Xi(t)}dt = ∫10 Var{Yi(t)}dt, i.e. 
L

l=1 Dll = a2L
l=1 Dll + trace(VDV⊤), whence a = 0.48414. The value of pGS is ρ = 0.34253, 

obtained numerically by averaging the values for 106 paired random functions, recorded on a 
regular grid with increment 10−6 on [0, 1]. Similarly, the value of pGSF is ζ = 130.67 and its grid- 
dependent variant ζJ equals 42.567, 77.472, and 107.67 for J = 100, 200, and 500, respectively, 
where J determines the segmentation scheme.

Table 1 contains the numerical results for the estimates of pGS and Table 2 the coverage rate of 
the 95% confidence interval ρJ ± z0.025σR,J /

��
n
√

. We find that the proposed estimator ρJ converges 
to the true target ρ as sample size n increases and the coverage rate of the confidence interval is 
close to the nominal level 95%. The corresponding results for the estimate of pGSF are in 

Table 1. Bias, variance, and mean squared error of the proposed estimator ρJ with respect to the target ρ

J = 100 J = 200 J = 500

Bias(ρJ ) n = 50 11.714 4.832 3.620

n = 200 7.710 2.067 2.944

n = 1,000 7.088 0.732 0.952

Var(ρJ ) n = 50 2.059 1.730 1.556

n = 200 0.481 0.415 0.363

n = 1,000 0.102 0.084 0.076

MSE(ρJ ) n = 50 2.073 1.732 1.557

n = 200 0.487 0.415 0.364

n = 1,000 0.107 0.084 0.076

Note. Based on M = 1,000 simulation runs, the first row provides the bias Bias(ρJ ) =
M

m=1 (ρ[m]
J − ρ)/M, where ρ[m]

J is the 
proposed estimator of ρ for the mth simulation run. The second row provides the variance Var(ρJ ) =

M
m=1 (ρ[m]

J − 
M−1 M

m′=1ρ
[m′]
J )2/M of the proposed estimator. The third row shows the mean squared error 

MSE(ρJ ) =
M

m=1 (ρ[m]
J − ρ)2/M. All values in the table have been divided by 10−4.
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Tables 3 and 4, where the target is the grid-dependent variant ζJ . It can be seen that ζJ moves 
closer to ζJ for increasing sample size and the coverage of the confidence intervals is satisfactory.

Often the observable time grid J is pre-determined by the measurement device and the fluctu-
ation of the gradient synchronization inside intervals (tj−1, tj) is not detectable. This leads to a nat-
ural bias so that ζJ underestimates the grid-independent pGSF ζ in general. We demonstrate this 
phenomenon in simulations. Table 5 provides the bias, variance, and mean squared error of the 
proposed estimator ζJ with respect to the target ζ. The bias decreases as the partition gets finer 
and the estimating error is seen to be dominated by the bias. Bias correction will be a relevant topic 
for future research.

In addition, we evaluated the performance of the proposed estimators of pGS and pGSF ob-
tained from samples of smaller size starting from n = 1 for functions observed on various time 
grids with different numbers of time points J ∈ {100, 200, 500}. As shown in the boxplots for es-
timated pGS and pGSF in Figures S1 and S2 in Section S2 in the online supplementary material, for 
sample sizes n as small as 25, the estimation accuracy is quite satisfactory.

Table 2. Coverage rates for 95% confidence intervals ρJ ± z0.025σR,J /
��
n
√

J = 100 J = 200 J = 500

n = 50 0.944 0.937 0.930

n = 200 0.954 0.943 0.949

n = 1,000 0.945 0.956 0.947

Table 3. Bias, variance, and mean squared error of the proposed estimator ζJ with respect to the target ζJ

J = 100 J = 200 J = 500

BiasJ (ζJ ) n = 50 −0.023 −0.013 −0.057

n = 200 −0.013 0.011 −0.042

n = 1,000 −0.009 0.005 −0.025

Var(ζJ ) n = 50 0.660 1.468 1.222

n = 200 0.158 0.342 0.300

n = 1,000 0.030 0.067 0.059

MSE(ζJ ) n = 50 0.660 1.468 1.225

n = 200 0.159 0.342 0.302

n = 1,000 0.030 0.067 0.060

Note. Based on M = 1,000 simulation runs, the first row provides the bias BiasJ (ζJ ) =
M

m=1 (ζ [m]
J − ζJ )/M, where ζ [m]

J is 
the proposed estimator of ζ for the mth simulation run. The second row provides the variance Var(ζJ ) =

M
m=1 (ζ [m]

J − 
ζ̅J )2/M of the proposed estimator, where ζ̅J =

M
m=1

ζ [m]
J /M. The third row shows the mean squared error 

MSEJ (ζJ ) =
M

m=1 (ζ [m]
J − ζJ )2/M.

Table 4. Coverage rates for the 95% confidence intervals ζJ ± z0.025σZ ,J /
��
n
√

J = 100 J = 200 J = 500

n = 50 0.936 0.932 0.942

n = 200 0.953 0.950 0.949

n = 1,000 0.956 0.957 0.948
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As in reality data may be noisy, in addition we considered scenarios where the simulated curves 
are contaminated with different levels of random noise. To study the case of error contaminated 
data, we generated the observations of Xi and Yi as

Xij = Xi(tj) + ϵij and Yij = Yi(tj) + εij, 

where ϵij and εij for i = 1, . . . , n and j = 1, . . . , J are i.i.d. random noise generated from N(0, σ2
err,X) 

and N(0, σ2
err,Y), respectively. We define the signal-to-noise ratio (SNR) as the integrated variance 

of the random functions divided by the noise variance, i.e.

SNR =

�����������������

∫10 Var{Xi(t)}dt
σ2

err,X






for functions X and analogously for functions Y.
This definition quantifies the contrast of the variability of signal and noise and is also com-

monly used in fMRI analyses (Frässle et al., 2017; Stephan et al., 2008; Welvaert & Rosseel, 
2013), which is sometimes referred to as contrast-to-noise ratio alternatively. The 
signal-to-noise ratios considered were 20, 5, and 2, similar to the values taken in simulations 
of fMRI studies and corresponding to three levels of contamination in the observed data, which 
in what follows are referred to as low-, medium-, and high-contamination scenarios, respective-
ly. We also compared the estimation of pGS and pGSF based on raw noisy data with the estima-
tion based on band-pass filtered data. For the latter, the band-pass filtering was applied to only 
preserve frequency components between 0.01 and 0.1 Hz assuming that the recording for an en-
tire function takes 600 s, mimicing the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
fMRI data in Section 5 with around 200 measurements per scan recorded with repetition time 
(TR) 3,000 ms. As shown in Tables S1–S6 in Section S2 in the online supplementary material, 
pGS and pGSF are not well estimated based on unfiltered noisy data, especially when the ob-
served time grid J is relatively dense (e.g. J = 200 and J = 500). Yet for the band-pass filtered 
data, the performance of the proposed estimators is found to be much better—both the size of 
bias and variance shrink overall and the shrinkage is more remarkable as the observed time 
grid J gets denser.

Table 5. Bias, variance, and mean squared error of the proposed estimator ζJ with respect to the target ζ

J = 100 J = 200 J = 500

Bias(ζJ ) n = 50 −88.130 −53.215 −23.060

n = 200 −88.120 −53.191 −23.044

n = 1,000 −88.116 −53.197 −23.027

Var(ζJ ) n = 50 0.660 1.468 1.222

n = 200 0.158 0.342 0.300

n = 1,000 0.030 0.067 0.059

MSE(ζJ ) n = 50 7767.515 2833.317 532.969

n = 200 7765.237 2829.607 531.344

n = 1,000 7764.427 2830.023 530.322

Note. Based on M = 1,000 simulation runs, the first row provides the bias Bias(ζJ ) =
M

m=1 (ζ [m]
J − ζ)/M, where ζ [m]

J is the 
proposed estimator obtained for the mth simulation run. The second row provides the variance Var(ζJ ) =

M
m=1 (ζ [m]

J − 
M−1 M

m′=1
ζ [m′]
J /M)2/M of the proposed estimator. The third row shows the mean squared error 

MSE(ζJ ) =
M

m=1 (ζ [m]
J − ζ)2/M.
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5 Application to resting-state fMRI data
Resting-state fMRI data consisting of BOLD signals, while subjects relax were obtained from the 
ADNI database (http://adni.loni.usc.edu). The ADNI fMRI data have different numbers of tem-
poral volumes and we took those scans that have 197 time points so that the sample size is the lar-
gest across different time points. Each subject was assigned to one of six cognitive groups: 
cognitively normal (CN, 279 subjects), subjective memory concerns (SMC, 24 subjects), early 
mild cognitive impairment (EMCI, 54 subjects), mild cognitive impairment (MCI, 120 subjects), 
late mild cognitive impairment (LMCI, 20 subjects), and AD dementia (36 subjects). From each 
subject, we considered their earliest available fMRI scans for those with repeated scans. The 
BOLD signals are measured with repetition time (TR) 3,000 ms.

Pre-processing of the BOLD signals followed standard procedures, including head motion cor-
rection, slice-timing correction, co-registration, normalization, and spatial smoothing. The first 
four time points were removed to eliminate non-equilibrium effects of magnetization. 
Subsequently, average signals of voxels within each seed region were extracted, where linear de-
trending and band-pass filtering were performed to account for signal drift and global cerebral spi-
nal fluid and white matter signals, including only frequencies between 0.01 and 0.1 Hz, 
respectively. These steps were performed in MATLAB using the Statistical Parametric Mapping 
(SPM12, http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit V1.8 
(REST1.8, http://restfmri.net/forum/?q=rest).

Our analysis focused on the default network, a set of regions that activate when there is no 
external stimulus (Mazoyer et al., 2001; Raichle et al., 2001; Shulman et al., 1997). 
Functional connectivity within the default network has been shown to be deficient in a number 
of neurological diseases including Alzheimer’s (Buckner et al., 2008; Greicius et al., 2004). Our 
analysis focused on the 11 regions of interest (ROIs) within the default network identified in 
Andrews-Hanna et al. (2010, Table S1, replicated in Table S7 in Section S3 in the online 
supplementary material). To quantify the strength of inter-regional functional connectivity, 
we considered the average signals of spherical seed regions of diameter 8 mm centred at the 
seed voxels of these regions. This yielded 55 paired combinations for the 11 ROIs. To investigate 
the differences between cognitive groups, we carried out Kruskal–Wallis tests and two-sample 
Wilcoxon rank sum tests for the equality of the distributions for connectivity measures. 
Specifically, we first considered a summary statistic of connectivity measures aggregating all 
55 pairs of ROIs, the mean of the absolute values (mean size) of pair-wise connectivity measures 
over all 55 ROI pairs, as a single quantity summarizing the magnitude of average hub 
connectivity.

We considered three connectivity measures: The proposed GS Ri in (7) with an estimate RJ ,i in 
(9) and the proposed GSF Zi in (11) with an estimate ZJ ,i in (13), based on centred signals, as well 
as the (static) temporal PC, which for the ith subject with data (Xi, Yi) is defined as

PJ ,i =
J

j=1 {Xi(tj) − X̅i}{Yi(tj) − Y̅i}
���������������������J

j=1 {Xi(tj) − X̅i}
2

 ���������������������J
j=1 {Yi(tj) − Y̅i}

2
 , (15) 

with X̅i = J−1J
j=1 Xi(tj) and Y̅i = J−1J

j=1 Yi(tj). We note that the temporal PC is the standard 
functional connectivity measure used in brain imaging studies and for our analysis is computed 
based on all the temporal measurements during the screening session with the first four measure-
ment times discarded, as described above. Results of Kruskal–Wallis tests in Table 6 demonstrate 
that the proposed measures GS and GSF discriminate the six cognitive groups, whereas no signifi-
cant difference is found among the six groups for temporal PC. Furthermore, when applying two- 
sample Wilcoxon rank sum tests for each pair of cognitive groups (Table 7), temporal PC does not 
significantly distinguish between any groups, while all pairs of groups except for the pair (MCI, 
AD) are significantly distinguished by GS and all are distinguished by GSF except for the pairs 
(CN, LMCI) and (SMC, MCI). When considering simultaneous pair-wise comparisons between 
the 15 pairs formed by the 6 groups, GSF still significantly discriminates 10 pairs of groups and 
GS 14 pairs.
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Another question of interest is whether subjects in different cognitive groups exhibit differences in 
connectivity among specific pairs of brain regions. To address it, we performed Kruskal–Wallis tests 
for the 55 combinations of paired ROIs, with comparisons based on temporal PC and the proposed 
GS and GSF. To account for multiple comparisons, p-values were adjusted by Bonferroni correction. 
As illustrated in Figure 2, significant differences among the six cognitive stages were found using GS 
and GSF for all 55 pairs of ROIs, while no pervasive differences were found when using temporal PC. 
When employing two-sample Wilcoxon rank sum tests to compare 55 pairs of ROIs simultaneously 
in terms of (static) temporal PC (15), GS (9), and GSF (13) between subjects in different cognitive 
groups, again GSF was found to discriminate much better between the various cognitive groups 
than temporal PC and GS (see Figures S3–S17 in the online supplementary material).

Beyond static functional connectivity, the proposed synchronicity measures GS and GSF can 
also be leveraged for the analysis of dynamic functional connectivity. To study the dynamics in 
resting-state functional connectivity, one of the most commonly used approaches is sliding win-
dows (Hutchison et al., 2013). Specifically, functional connectivity metrics are calculated using 
data points falling within windows of fixed length that are shifted across the time domain. 
Accordingly, we compared the performance of the dynamic temporal PC with dynamic counter-
parts of the proposed GS and GSF.

Table 6. P-values of the Kruskal–Wallis tests to compare mean sizes over the 55 pairs of ROIs of (static) temporal PC 
(15), GS (9), and GSF (13) among the six cognitive groups

PC GS GSF

0.63 2.1 × 10−61 2.3 × 10−36

Note. GS = gradient synchronization; GSF = gradient synchronization fluctuation; PC = Pearson correlation; 
ROIs = regions of interest.

Table 7. P-values of the two-sample Wilcoxon rank sum tests to compare mean sizes over the 55 pairs of ROIs of 
(static) temporal PC (15), GS (9), and GSF (13) between the six cognitive groups

Pair of groups PC GS GSF

(CN, SMC) 0.65 1.3 × 10−12∗∗ 0.021∗

(CN, EMCI) 0.22 1.1 × 10−23∗∗ 7.0 × 10−22∗∗

(CN, MCI) 0.71 1.5 × 10−33∗∗ 0.027∗

(CN, LMCI) 0.41 3.2 × 10−9∗∗ 0.72

(CN, AD) 0.43 3.0 × 10−16∗∗ 3.3 × 10−19∗∗

(SMC, EMCI) 0.22 1.6 × 10−5∗∗ 3.8 × 10−10∗∗

(SMC, MCI) 0.77 6.8 × 10−10∗∗ 0.11

(SMC, LMCI) 0.36 3.6 × 10−6∗∗ 0.0012 ∗∗

(SMC, AD) 0.33 2.6 × 10−7∗∗ 8.1 × 10−11∗∗

(EMCI, MCI) 0.18 1.7 × 10−16∗∗ 1.0 × 10−17∗∗

(EMCI, LMCI) 0.96 1.4 × 10−8∗∗ 6.1 × 10−9∗∗

(EMCI, AD) 0.80 3.4 × 10−10∗∗ 1.7 × 10−4∗∗

(MCI, LMCI) 0.35 9.8 × 10−9∗∗ 0.047∗

(MCI, AD) 0.36 0.35 1.5 × 10−16∗∗

(LMCI, AD) 0.86 1.4 × 10−7∗∗ 4.0 × 10−9∗∗

Note. Significance at level 0.05 for individual tests is marked by ‘∗’ and for multiple comparisons after the Bonferroni 
correction (i.e. less than 0.05/15 ≈ 0.0033) by ‘ ∗∗’. AD = Alzheimer’s disease; CN = cognitively normal; EMCI = early 
mild cognitive impairment; GS = gradient synchronization; GSF = gradient synchronization fluctuation; LMCI = late 
mild cognitive impairment; MCI = mild cognitive impairment; PC = Pearson correlation; ROIs = regions of interest; 
SMC = subjective memory concerns.
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The dynamic temporal PC of the pair (Xi, Yi) is defined as

Pdyn
J ,i (s, Δ) =

s+Δ−1
j=s {Xi(tj) − X̅i(s, Δ)}{Yi(tj) − Y̅i(s, Δ)}

������������������������������s+Δ−1
j=s {Xi(tj) − X̅i(s, Δ)}2

 ������������������������������s+Δ−1
j=s {Yi(tj) − Y̅i(s, Δ)}2

 , (16) 

for s = 1, . . . , J − Δ + 1, where Δ is the window size, X̅i(s, Δ) = Δ−1s+Δ−1
j=s Xi(tj), and 

Y̅i(s, Δ) = Δ−1s+Δ−1
j=s Yi(tj). The empirical dynamic GS Rdyn

J ,i and dynamic GSF Zdyn
J ,i can be analo-

gously defined over sliding windows as

Rdyn
J ,i (s, Δ) =

s+Δ−1

j=s

(tj − tj−1)sign(Dj,Xi Dj,Yi ),

Zdyn
J ,i (s, Δ) = #{s + 1 ≤ j ≤ s + Δ − 1 ∣ Dj−1,Xi Dj,Xi Dj−1,Yi Dj,Yi < 0}

+ #{s ≤ j ≤ s + Δ − 1 ∣ Dj,Xi Dj,Yi = 0},

(17) 

where Dj,Xi and Dj,Yi are defined as after equation (8). We adopt Δ = 15, which represents 
measurements during a time interval of 45 s and quantify the variability of dynamic functional 

connectivity for (Xi, Yi) by the standard deviations of Pdyn
J ,i (s, Δ), Rdyn

J ,i (s, Δ), and Zdyn
J ,i (s, Δ), over 

s ∈ {1, . . . , J − Δ + 1} (Choe et al., 2017; Hindriks et al., 2016).
Based on the averages over the 55 hub pairs of standard deviations of the three dynamic func-

tional connectivity metrics, we performed Kruskal–Wallis tests and two-sample Wilcoxon rank 
sum tests to compare the various cognitive groups. Significant differences between the six cognitive 
groups were found for dynamic PC and dynamic GS as well as dynamic GSF (Table 8). 

Figure 2. Kruskal–Wallis tests to compare 55 pairs of ROIs simultaneously in terms of (static) temporal PC (15) (left), 
GS (9) (middle), and GSF (13) (right) among the six cognitive groups, where significance at level 0.05 after 
Bonferroni adjustment is shown by filled squares and insignificance by crosses. GS = gradient synchronization; GSF 
= gradient synchronization fluctuation; PC = Pearson correlation; ROIs = regions of interest.

Table 8. P-values of Kruskal–Wallis tests to compare the averages over the 55 pairs of the 11 ROIs in Andrews-Hanna 
et al. (2010) of standard deviations of dynamic temporal PC (16), GS  and GSF (17) among the six cognitive groups

Dynamic PC Dynamic GS Dynamic GSF

1.2 × 10−4 5.2 × 10−72 2.0 × 10−60

Note. GS = gradient synchronization; GSF = gradient synchronization fluctuation; PC = Pearson correlation; 
ROIs = regions of interest.
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Furthermore, dynamic GS and GSF distinguish many more pairs of ROIs than dynamic PC does 
(Table 9).

We also performed pair-wise Kruskal–Wallis tests and two-sample Wilcoxon rank sum tests for 
all 55 pairs with Bonferroni correction for multiple comparisons and found significant differences 
in terms of the variability of dynamic GS and GSF between the six cognitive groups, while dynamic 
PC found none (Figure 3). It emerged that variability of dynamic functional connectivity between 
many more pairs of ROIs differs significantly between subjects in different cognitive groups in 

Table 9. P-values of two-sample Wilcoxon rank sum tests to compare the averages over the 55 pairs of the 11 ROIs in 
Andrews-Hanna et al. (2010) of standard deviations of dynamic temporal PC (16), GS  and GSF (17) between the six 
cognitive groups

Pair of groups Dynamic PC Dynamic GS Dynamic GSF

(CN, SMC) 0.50 1.1 × 10−12∗∗ 2.0 × 10−13∗∗

(CN, EMCI) 0.042∗ 5.3 × 10−25∗∗ 1.4 × 10−21∗∗

(CN, MCI) 0.032∗ 3.6 × 10−37∗∗ 1.3 × 10−20∗∗

(CN, LMCI) 0.089 5.2 × 10−11∗∗ 4.9 × 10−13∗∗

(CN, AD) 5.5 × 10−6∗∗ 6.8 × 10−22∗∗ 1.1 × 10−20∗∗

(SMC, EMCI) 0.43 1.8 × 10−8∗∗ 1.8 × 10−6∗∗

(SMC, MCI) 0.70 5.5 × 10−8∗∗ 6.7 × 10−10∗∗

(SMC, LMCI) 0.27 3.0 × 10−4∗∗ 2.7 × 10−4∗∗

(SMC, AD) 0.0041∗ 5.5 × 10−17∗∗ 2.5 × 10−4∗∗

(EMCI, MCI) 0.70 4.3 × 10−16∗∗ 1.4 × 10−14∗∗

(EMCI, LMCI) 0.67 7.1 × 10−7∗∗ 1.9 × 10−8∗∗

(EMCI, AD) 0.016∗ 3.9 × 10−14∗∗ 6.0 × 10−10∗∗

(MCI, LMCI) 0.57 2.6 × 10−6∗∗ 7.1 × 10−11∗∗

(MCI, AD) 0.0021∗ 1.9 × 10−19∗∗ 4.5 × 10−17∗∗

(LMCI, AD) 0.20 8.8 × 10−10∗∗ 0.011∗

Note. Significance at level 0.05 for individual tests is marked by ‘∗’ and for multiple comparisons after the Bonferroni 
correction (i.e. less than 0.05/15 ≈ 0.0033) by ‘ ∗∗’. AD = Alzheimer’s disease; CN = cognitively normal; EMCI = early 
mild cognitive impairment; GS = gradient synchronization; GSF = gradient synchronization fluctuation; LMCI = late 
mild cognitive impairment; MCI = mild cognitive impairment; PC = Pearson correlation; ROIs = regions of interest; 
SMC = subjective memory concerns.

Figure 3. Kruskal–Wallis tests to compare 55 pairs of the 11 ROIs in Andrews-Hanna et al. (2010) simultaneously in 
terms of the standard deviations of dynamic temporal PC (16) (left), GS (middle), and GSF (right) (17) for the six 
cognitive groups, where significance at level 0.05 after Bonferroni adjustment is shown by coloured squares and 
insignificance by crosses. GS = gradient synchronization; GSF = gradient synchronization fluctuation; PC = Pearson 
correlation; ROIs = regions of interest.

J R Stat Soc Series B: Statistical Methodology, 2024, Vol. 86, No. 3                                                     707



terms of GS and GSF but not for temporal PC (Figures S18–S32 in the online supplementary 
material). We repeated this analysis for the 20 ROIs identified by Buckner et al. (2009, Table 4, 
replicated in Table S8 in Section S4 in the online supplementary material), where similar findings 
emerged as for the analysis of the 11 ROIs in Andrews-Hanna et al. (2010). Results are provided in 
Tables S9–S12 and Figures S33–S64 in the online supplementary material. In addition, we con-
structed networks based on the proposed pGS and pGSF; see Section S5 in the online 
supplementary material.

6 Discussion
The proposed new measures, gradient synchronization (GS), and gradient synchronization fluctu-
ation (GSF), measured as integrals and sign changes of X′(t)Y′(t), complement established similar-
ity measures such as PC, partial correlation (e.g. Marrelec et al., 2006), mutual information, and 
partial/conditional mutual information (e.g. Cassidy et al., 2014; Gretton et al., 2006; Salvador 
et al., 2010, 2007, 2005). In brain connectivity studies, mutual and partial mutual information 
are often applied in the frequency domain and hence reflect the dependence/similarity of paired 
random functions across different frequencies (e.g. Cassidy et al., 2014; Salvador et al., 2010, 
2007, 2005), while the proposed measures focus on the similarity of temporal dynamics. 
Specifically, GS captures the average aggregated concordance and discordance of the change rates 
between random curves, while GSF provides a complementary measure of the stability of the gra-
dient synchronization.

6.1 Application to fMRI data
The proposed measures were found to better distinguish different cognitive groups in the AD spec-
trum for the ADNI data compared to standard PC-based measures. Reduced connectivity between 
the posterior cingulate cortex (PCC) and the medial temporal lobe (MTL) structures was previous-
ly found for AD patients compared to normal controls (Greicius et al., 2004). Among the eleven 
regions in the default network identified in Andrews-Hanna et al. (2010), five belong to the MTL 
subsystem, namely ventral medial prefrontal cortex (vMPFC), posterior inferior parietal lobule 
(pIPL), retrosplenial cortex (Rsp), parahippocampal cortex (PHC), and hippocampal formation 
(HF+). In contrast to temporal PC, GSF and variance of dynamic GS were found to significantly 
differ between PCC and MTL regions among the six groups (Figures 2 and 3) and also between 
CN and other groups (Figures S7, S19, and S21 in the online supplementary material). Reduced 
metabolism and perfusion in parietal lobes, medial temporal structures and the PCC in 
Alzheimer’s (Bradley et al., 2002; Matsuda, 2001) may also be related to the deficient connectivity 
between these regions. Reduced connectivity between the temporal parietal junction and the PCC 
as well as the five MTL regions is partly identified by GSF and more fully by dynamic GS, but not 
by temporal PC (Figures 2 and 3; Figures S7, S19, and S21 in the online supplementary material).

6.2 Consistency, reliability, and comparison of different fMRI measures
Following other fMRI studies (e.g. Zhao et al., 2023), we evaluated the individual stability of the 
proposed GS and GSF as well as temporal PC based on first two consecutive fMRI scans taken 
from CN subjects such that second scans are taken within 12 months of the first scans. To measure 
individual stability, we computed the intra-class correlation (ICC) (Shrout & Fleiss, 1979). 
Considering a set of measures obtained from scan j and subject i for j = 1, . . . , k and 
i = 1, . . . , n, denoted by {xij}, ICC is defined as

ICC =
BMS − WMS

BMS + (k − 1)WMS
.

Here, the between-target mean square (BMS) BMS =
n

i=1 k(x̅i· − x̅··)
2/(n − 1) and the within- 

target mean square (WMS) WMS =
n

i=1
k

j=1 (xij − x̅i·)
2/{n(k − 1)}, and in our case, k = 2. 

Higher values of ICC imply that variability in the corresponding measure is primarily driven by 
the variation of subjects and that the measure is more stable for each subject. We computed ICC 
for each of the 55 pairs of ROIs in the default network identified in Andrews-Hanna et al. (2010)
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for each measure, temporal PC (15), GS (9), and GSF (13), respectively. As seen in in Figure 4, the 
three measures yield similar ICCs and hence have comparable subject stability, while the ICCs of GS 
and GSF have higher variation among pairs of ROIs. We repeated the analysis on the 190 pairs of 
ROIs identified in Buckner et al. (2009, Table 4) and found that subject stability of GSF is as good as 
that of PC, while the subject stability of GS is slightly inferior (Figure 5). Comparing ICCs of differ-
ent functional connectivity measures evaluated over different sets of ROIs in Figures 4 and 5, we find 
that, similar to Zhao et al. (2023), within-network individual stability of PC and GS is higher than 
across-network individual stability, noting that the 11 ROIs identified in Andrews-Hanna et al. 
(2010) all lie in the default network, while the 20 ROIs identified in Buckner et al. (2009, 
Table 4) fall in multiple networks including the default network. For GSF, both within-network 
and across-network individual stability are high.

6.3 General applicability
While our approach was motivated by a study of functional connectivity of the human brain and 
we illustrate our methods in this paper with resting-state BOLD fMRI signals, the proposed meth-
ods are broadly applicable to multivariate functional data. Such data are increasingly encountered, 
for example in longitudinal studies with densely measured multivariate outcomes. One advantage 
of the segmentation technique is that it keeps track of local dynamic behaviour and both the aver-
age behaviour as well as the stability of synchronization over time can be quantified and studied. A 
noteworthy feature is that no smoothing parameter selection is required. By exploiting the func-
tional features of the data, we avoid assumptions of temporal stationarity that have been imposed 
for signals in fMRI studies. The proposed methods are also suitable to quantify the temporal 

Figure 4. Boxplots of ICCs of temporal PC (15) (left), GS (9) (middle), and GSF (13) (right) evaluated over the 55 pairs 
of ROIs in the default network identified in Andrews-Hanna et al. (2010, Table S1). GS = gradient synchronization; 
GSF = gradient synchronization fluctuation; ICC = intra-class correlation; PC = Pearson correlation; ROIs = regions of 
interest.

Figure 5. Boxplots of ICCs of temporal PC (15) (left), GS (9) (middle), and GSF (13) (right) evaluated over the 190 
pairs of ROIs identified in Buckner et al. (2009, Table 4). GS = gradient synchronization; GSF = gradient 
synchronization fluctuation; ICC = intra-class correlation; PC = Pearson correlation; ROIs = regions of interest.
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variability of signals, including changes of synchronization patterns over time, e.g. in task-based 
fMRI studies.
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