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Automated tracking of in vitro morphogenesis 

David Joy 

Abstract 

Embryogenesis is a critical period in the developmental life cycle of organisms, 

but the processes that enable multicellular coordination of germ layer formation and the 

subsequent dynamics of tissue structure assembly are still poorly described at the 

single cell level. Recent advances in microscopy and computer vision have enabled 

whole embryo tracking of cell migration, lineage commitment, and tissue formation in 

model organisms such as fly, zebrafish, frog, and chick, but it is unknown to what extent 

these organisms recapitulate the complex processes of early human development. 

Direct interrogation of the development of post-implantation human embryos carries 

technical and ethical limitations that render in vivo study of human embryogenesis 

largely observational, but recent advances in human induced pluripotent stem cells 

(hiPSCs) derived organoid models provide a powerful in vitro platform to elucidate 

developmental processes. The four studies described in this dissertation developed 

biological and computational pipelines to study the interdependencies between cell 

migration, lineage specification, and morphogenesis during early human development. 

First, several automated cell tracking algorithms were designed and deployed to study 

individual cell migration events in models of mosaic pattering and differentiation. 

Sparsely labeled cell populations were tracked during pluripotency, yielding measures 

of cell migration pre-differentiation, then cell behavior change kinetics were quantified in 

a mosaic Wnt differentiation model, demonstrating that automated cell tracking can non-
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destructively detect signatures of cell fate transition. Second, collective cell migration 

was interrogated using a novel ensemble of deep neural cell networks to generate 

dense spatio-temporal descriptions of hiPSC colony behaviors. Dense cell tracks 

revealed colony position dependent cell-cell interactions, including correlated migration, 

changes in cell density, and coordinated multicellular structure formation. Cell behaviors 

were found to be dependent on substrate, media, and colony size, and striking 

behavioral transitions were detected during differentiation to germ lineages using 

multiple protocols, including divergent cell migration patterns induced by Wnt and BMP 

signaling that nonetheless resulted in convergent germ layer organization. These results 

demonstrate how robust multicellular pattern formation is achieved through integration 

of cell intrinsic, local, and global signals. Third, collective migration and body axis 

emergence was studied in an organoid model of gastrulation and neural tube formation, 

where initially round organoids spontaneously assembled an organizer like structure 

and then underwent several days of elongation. Automated tracking of multi-day time 

lapse videos and segmentation of culture images spanning weeks of differentiation, 

facilitated quantification of organoid growth, elongation, and stratification, enabling 

optimization of culture conditions to improve differentiation robustness and repeatability 

across multiple stem cell lines. Elongation was demonstrated to depend on the 

emergence of a subpopulation of neuromesodermal progenitors (NMPs) which formed 

signaling centers reminiscent of the node structures that direct early primitive streak 

formation in vivo. Ablation of the early NMP transcription factor TBXT did not abrogate 

tail formation, but rather caused multiple spontaneous extensions to form, suggesting a 
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key role for TBXT expressing cells in enabling the spontaneous symmetry breaking 

events underlaying the formation of a head-tail axis. Fourth and finally, a mechanistic 

simulation of the observed TBXT symmetry breaking and tail axis formation events was 

developed. Cell-cell interaction forces, cell migration parameters, and cell growth were 

derived from 2D measurements of re-plated organoids, shown to explain observed 3D 

organoid structure, growth, and elongation rates, and then applied to a 3D particle 

simulation of tail formation. Coalescence of structures matching the TBXT+ organizers 

were found to depend on both percentage of TBXT+ cells and the directionality of cell 

migration, demonstrating that a combination of chemotaxis and population 

heterogeneity is sufficient to produce organizer-like structures from initially randomly 

mixed populations. Overall, these studies demonstrate the critical activity of cell 

migration in coordinating multicellular organization during early embryogenesis, and 

provide a kinetic, mechanistic platform to interrogate how tissues form at multiple scales 

across the developmental landscape. 
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1 Introduction 

1.1 Overview 

 The goal of this dissertation was to interrogate the dynamics of collective cell 

migration that drive the organization of multicellular structures during embryogenesis. 

Descriptions of the stereotyped migration patterns of cells and their contribution to the 

structures of the developing embryo are among the oldest literature in biology. Cell 

migration is critical to the formation of the main body axes (Aman and Piotrowski, 2010), 

the formation and elaboration of the heart (Christiaen et al., 2010; George et al., 2020), 

and the innervation (Ahmed et al., 2017; Uesaka et al., 2016) and vascularization (Azad 

et al., 2019; Koenig et al., 2016) of the tissues of the body. In particular, the collective 

cell migration processes that occur during gastrulation are of critical importance to 

laying out the fundamental anterior-posterior body axis and positioning the three germ 

layers correctly within the developing embryo (Aman and Piotrowski, 2010; Chuai and 

Weijer, 2009; Hara et al., 2013). However, mechanistic descriptions of how the 

embryogenic signaling milieu is integrated to produce cell migratory behaviors and 

which behaviors are necessary or sufficient to enable tissue formation remain 

underexplored. This dissertation outlines a number of techniques for measuring and 

simulating individual and collective cell migration in models of germ layer specification, 

gastrulation, and anterior-posterior axis formation, to generate descriptions of how 

individual cells behave during differentiation, and how those behaviors contribute to 

multicellular patterning. 
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 The goal of the first study was to generate measures of individual human induced 

pluripotent stem cell (hiPSC) behavior in the context of two-dimensional colonies and 

differentiating epithelial sheets. A time lapse imaging analysis pipeline was developed 

capable of tracking sparsely labeled cells within the colony, deriving baseline measures 

of hiPSC migration in a multicellular context. Titration studies were used to determine 

ideal density of labeled cells, as well as how different cell tracking algorithms performed 

as label density and cell number increased. Finally, the tracking algorithm was applied 

to a study of differentiating hiPSCs under optogenetic Wnt stimulation, revealing 

behavioral signatures that correspond to acquisition of mesodermal fate and the 

epithelial to mesenchymal transition (EMT). This study demonstrated that hiPSC 

colonies are constantly in motion, and that changes in migration dynamics non-

destructively reveal cell state transitions during germ layer specification. 

 Although tracking of sparsely labeled colonies of hiPSCs revealed individual cell 

behaviors, the low percentage of labeled cells required by conventional cell tracking 

algorithms limited the study of collective cell migration and cell-cell interactions during 

pluripotency and differentiation. In the second study, dense, whole-colony cell tracking 

was achieved through development of a deep learning-based cell detection and tracking 

pipeline, enabling whole colony monitoring in time lapse studies ranging from hours to 

days. Dense tracking enabled mapping of cell behavior to position within the colony, 

demonstrating distinctions between cells near the edge of the colony versus those in the 

center. Further, by measuring cell neighborhoods, dense tracking enabled correlation of 

cell migration and study of the formation of multicellular structures such as rings during 
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mesoderm formation and neural rosettes during ectoderm specification. By measuring 

whole colony dynamics during differentiation, this platform was able to distinguish 

between pluripotent cell culture conditions, and to detect divergent cell behaviors 

between Wnt and BMP germ layer differentiation protocols that otherwise specified 

superficially similar multicellular patterning, demonstrating convergence among 

multicellular sorting mechanisms. 

 While the collective migration phenotypes in 2D formed a rich and complex 

dataset of cell-cell interactions, the behaviors observed in adherent colonies failed to 

recapitulate the directional, polarized collective cell migration observed during 

gastrulation. In the third study, a 3D organoid model of gastrulation and neural tube 

formation was developed and characterized. Organoids developed polarized cell 

masses by day 3 that spontaneously elongated in suspension culture, producing 

organoids with lengths of up to millimeters, and aspect ratios of 10 or more, resembling 

the “tadpole” stage of embryos in vivo. Time lapse imaging of organoids was used to 

measure organoid growth and extension, as well as multicellular flow into the tail 

structure, revealing that collective cell migration drove extension. Further, organoids 

elongated in a Wnt dose dependent manner, with a critical level of Wnt induction of a 

population of neuromesodermal progenitors (NMPs) identified as required for 

elongation. Knockdown of the early NMP transcription factor TBXT did not abrogate 

extension, but rather generated multiple smaller extensions, suggesting a role for TBXT-

dependent chemotaxis in generating a unified single tail. This study quantified the 

contribution of collective cell migration to generating an in vitro anterior-posterior axis in 
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a human system, providing mechanistic insights into the assembly of the human 

organizer and the formation of the main body plan. 

 Unfortunately, 3D imaging of whole-organoid elongation was limited by technical 

issues, requiring a different approach to connect the single cell description of cell 

migration with the whole organoid description of axial extension. In the fourth study, a 

mechanistic simulation of organizer formation in neural organoids was developed using 

empirically derived cell behavior parameters from both differentiating colonies and 

organoids. Cell parameters for cell-cell adhesion, migration, and cell division were 

derived from 2D colonies of re-plated neural organoids. The 2D cell-cell measurements 

were then compared to static dense 3D cell-cell localization and found to be 

comparable. Based on this congruence, measures of organoid cell number, growth, and 

migration velocity were then derived from whole organoid time lapse imaging, yielding 

growth and migration curves that matched extrapolated 2D results. These parsimonious 

parameters were then employed in a mechanistic simulation of 3D organoids as 

randomly mixed spheres. Percentage of TBXT+ cells, mutual TBXT+ cell 

chemoattraction, and surface seeking behaviors were found to be the dominant terms 

determining the frequency of organizer coalescence, number of organizer sites, and 

positioning of the organizer clusters. Overall, this study suggests that human 

embryogenesis may utilize TBXT-dependent chemoattractive organizer assembly to 

produce the node driving primitive streak formation, and further defines the parametric 

domain where self-assembling organizers robustly form, enabling optimization of 
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differentiation and further avenues of study to better understand human body plan 

organization. 

 This dissertation provides a comprehensive study of human pluripotent stem cell 

migratory behavior as individual cells, in collective epithelial sheets, and in 3D during 

early differentiation and axis formation. It demonstrates that phase separation, multi-

cellular structure formation, and high level morphogenic events depend on, and can be 

predicted by measuring cell migration parameters over time and space. These results 

enable a behavioral metrology approach complementary to the current focus on 

transcriptomic, genomic, and epigenomic profiling of single cells, enabling future 

mechanistic modeling of dynamic tissue formation processes over a broad range of 

spatiotemporal scales. This introduction provides background for the key topics and 

approaches applicable to this work, such as early embryogenesis and symmetry 

breaking, cell migration assays and measurement, in vitro models of gastrulation, and in 

silico models of cell organization and pattern formation. 

1.2 Symmetry breaking and body plan formation 

 During embryogenesis, a single cell undergoes a series of stereotyped cell 

divisions that lead first to the division of extraembryonic, embryonic, and germ cells, 

then to the formation of individual germ layers (Pfeffer, 2018; Płusa and Piliszek, 2020), 

and finally through a complex series of migrations and lineage commitments that 

properly position the germ layers in relation to one another and establish the primary 

anterior-posterior (AP) body axis (Bénazéraf and Pourquié, 2013; McDole et al., 2018; 

Shah et al., 2019). A critical stage during embryo development is gastrulation, where a 
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radially symmetric blastocyst with no apparent AP axis undergoes a polarized symmetry 

breaking event (Blum et al., 2014; Schiffmann, 2006), simultaneously generating the 

head-tail body plan while also positioning progenitors of the three principal germ layers 

in a well-defined spatial arrangement (Shah et al., 2019; Winklbauer and Parent, 2017). 

Multiple deterministic mechanisms driving polarization have been previously 

demonstrated, ranging from distribution of maternal RNAs (Wieschaus, 2016), to 

signaling events during sperm entry (Wu and Schöler, 2016), to the mechanical 

environment post-implantation (Hiramatsu et al., 2013). However, the robustness of axis 

formation to both cell ablation (Takaoka et al., 2017) and randomization (Fulton et al., 

2020) suggests that compensatory, active mechanisms must act to ensure the 

formation of a singular organizing axis, correctly placed. 

 In many model organisms, an organizer, a small pocket of pre-patterned cells 

which are independently capable of inducing gastrulation events, forms within the larger 

embryo pre-gastrulation (Anderson and Stern, 2016). Organizers secrete pro-

gastrulation factors such as Nodal and are inhibited by various factors such as BMPs 

secreted by the trophectoderm, creating classic reaction-diffusion system where 

ubiquitous, rapidly diffusing inhibitors interact with localized, slowly diffusing activators 

to produce non-linear pattern responses reminiscent of many developmental structures 

(Tewary et al., 2017, 2018). This developmental pattern has elegant robustness 

properties, where an embryo with too few cells in the epiblast will be inhibited from 

undergoing gastrulation due to dominance of inhibition, while an embryo that reaches 

the correct size threshold spontaneously undergoes symmetry breaking, protecting 
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against many forms of cell ablation or misallocation (Takaoka et al., 2017; Tewary et al., 

2018). Further, the ectopic axis induction properties of organizer transplants suggests 

that polarized organizers need only be generated from a few cells (Bertocchini and 

Stern, 2002), reducing the complexity of orchestrating multicellular assembly during the 

earliest stages of embryogenesis. 

In many bilaterian organisms, the identity and position of organizer cells is 

defined early in embryogenesis, determined by segregation of maternal RNA in the 

oocyte in drosophila (Wieschaus, 2016), or location of sperm entry in and subsequent 

hemispheric polarization in amphibians (Nieuwkoop, 1985). However, in mammalian 

embryogenesis, organizer populations are much less well defined, with evidence that 

organizers control only partial body axis specification (Morgani and Hadjantonakis, 

2020; Tam and Behringer, 1997), or that mammalian embryos can spontaneously 

regenerate organizers from mixtures of epiblast and primitive endoderm cells (Bedzhov 

et al., 2014). Additionally, the peri-implantation nature of gastrulation forces mammalian 

embryonic development to be ambivalent to initial embryo orientation relative to the 

uterine wall (Hiramatsu et al., 2013). These factors combine to suggest that mammalian 

organizer positioning must be defined spontaneously, enabling robustness against the 

stochastic nature of embryogenesis. 

 Although mammalian embryonic development has been well described, 

especially in murine systems, there are a number of distinctions that make extrapolation 

to human embryogenesis problematic. The order primates diverged from other 

mammals approximately 55 million years ago (Ezran et al., 2017; Luo, 2007), and the 
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closest extant ape genus Pan diverged approximately 6 million years ago (Chintalapati 

and Moorjani, 2020; Rolian, 2014), leading to large differences in developmental 

trajectory with common small-animal models (Kelly and Sears, 2011; Milinkovitch and 

Tzika, 2007; Selwood and Johnson, 2006), and small but significant distinctions when 

studying developmental processes in even close relative species (Rolian, 2014). Direct 

study of human embryonic development pre-implantation has been common, leading to 

revolutions in the efficiency and efficacy of medical procedures such as in vitro 

fertilization and embryo genetic testing, but the peri-implantation nature of gastrulation 

gives rise to both technical and ethical limitations to the study of human anterior-

posterior patterning. To complement in vivo models of development, in vitro studies 

using human stem cell derived organoids can be employed to dissect which aspects of 

human development are evolutionarily conserved, and which processes are unique to 

fully human embryogenesis. 

1.3 Migration and lineage tracing 

 Lineage tracing studies are among the oldest developmental biology assays, with 

the lineage of the nematode C. elegans among the first to be fully defined in the 

literature (Sulston et al., 1983). Higher organisms such as chick were first traced by 

embryo hybridization studies with quail or duck embryos with distinctive cell sizes 

(Catala et al., 1995). As genetic reporter constructs became available in models such as 

mouse or zebrafish, lineage tracing became much easier, with transcription of 

fluorescent proteins driven by cell-type specific transcription factors that marked cells of 

a particular fate (Buckingham and Meilhac, 2011). Further sophistication was achieved 
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with the introduction of Cre-activated lineage tracing systems which stochastically 

activated or inhibited fluorophores when driven either by a specific transcriptional event, 

or by external chemical stimulus (Cai et al., 2013; Hadjieconomou et al., 2011; Pan et 

al., 2011) aiding in innumerable cell lineage tracing assays, including determining 

precursors of neurogenesis, organ development, and even hair follicle growth 

(Buckingham and Meilhac, 2011). While many of these cell visualization tools are 

constitutively expressed and can be assayed non-destructively, limitations of optical 

clarity and large scale motion have prevented the use of live reporters in studying all but 

the earliest stages of in vivo mammalian development (McDole et al., 2018; Pantazis 

and Supatto, 2014). 

 In contrast, study of in vitro mammalian cell migration was initially performed on 

cells or colonies plated onto 2D surfaces and were primarily concerned with the 

diffusive migratory behavior of metastatic cancer cell lines (Deryugina and Bourdon, 

1996; Parent, 1999) or with the migration speed of fibroblasts and neutrophils along 

one-dimensional patterned tracks (Doyle et al., 2009; Maiuri et al., 2012). These 

migration assays established that cells migrate stochastically, switching between an 

active directional migration mode where a cell can move up to one cell length every few 

minutes to a passive mode where almost no motion occurs (Ascione et al., 2016; 

Campos et al., 2010) analogous to a biased random walk (Campos et al., 2010; Patlak, 

1953). Paradoxically, the diffusive and stochastic properties of individual cell migration 

have been shown to contribute to the formation of ordered structures during cell-sorting 

and boundary formation events (Das et al., 2017; Krupa et al., 2014; Wang et al., 2017), 
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suggesting that individual cell migration enhances robustness of tissue segregation 

during embryogenesis. 

 Cells undergoing collective migration in epithelial sheets exhibit much more 

ordered behavior. In the classic wound scratch assay, cells at the leading edge of the 

wound sense the absence of cell neighbors, in addition to directional sources of 

damage signals from across the wound gap, and hence undergo a directed migration to 

close the gap, dragging the cell sheet behind them through cell-cell adhesion and 

chemotactic signals (Arciero et al., 2011; Yarrow et al., 2004). Cells can undergo highly 

organized migration of hundreds to thousands of cells, each acting primarily under the 

influence of local migratory and adhesion signals, to produce higher-order collective 

organization events such as a “zippering” or “string of pearls” closure (Hashimoto et al., 

2015; Pilhwa Lee and Charles W. Wolgemuth, 2011). Although the individual signaling 

factors and adhesion molecules differ, similar collective migration mechanisms are at 

work throughout embryogenesis, including during neural tube closure, heart septation, 

and gut tube elaboration (Anderson et al., 2003; Choi et al., 2017; Hashimoto et al., 

2015). Hence, collective cell migration under chemotaxis represents an ordering 

principle that robustly accommodates and counteracts perturbations during 

development and organism damage. 

 During mammalian embryogenesis, individual cells within the epiblast receive a 

milieu of signals directing both the maintenance of their pluripotent state and instructing 

differentiation to each of the three major germ lineages. These contradictory signals are 

further complicated by the stochastic nature of both individual cell signal receptivity and 
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disparate cell potential dispersed among otherwise undifferentiated epiblast cells 

(Chazaud et al., 2006; Krupa et al., 2014). Hence, cells require a set of secondary post-

commitment organizing principals to ensure that individual germ layers are organized 

into large scale multicellular agglomerations rather than randomly dispersed among a 

disordered bulk cell population. This dissertation demonstrates several modes of cell 

migration that enable lineage organization, with heterogeneously induced cells of each 

lineage migrating towards and ultimately coalescing with cells of similar cell fate, leading 

to a phase separation of germ layers preceding gastrulation. 

1.4 Models of in vitro symmetry breaking 

 Because of the difficulties of studying in vivo human symmetry breaking, in vitro 

models of multi-cellular organization provide a window into the myriad processes 

involved in human embryonic development (Hayashi, 2019; Morgani and Hadjantonakis, 

2020; Warmflash et al., 2014). In particular, organoids, 3D aggregates of human stem 

cells which undergo co-differentiation to multiple interacting cell types that form 

multicellular structures reminiscent of organs in vivo, provide a rich model of 

multicellular organization (Clevers, 2016; Lou and Leung, 2018). Organoids generate 

impressive mesoscale organization, with robust assembly of functional units such as 

nephrons in kidney organoids (Combes et al., 2019), villi in gut tube organoids (Silva et 

al., 2020), or islet structures in pancreatic organoids (Hohwieler et al., 2017), occurring 

at the scale from 100s of microns to occasionally millimeter scales (10s to 100s of cell 

lengths). However, organoids are disordered at a macroscale, lacking organization of 

multicellular units into functional complexes, failing to maintain boundaries and ordered 
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interactions between cells of different germ layer origins, and missing topological 

features such as chambers or tubes required for organ function (Takebe and Wells, 

2019). In vivo, tissue formation is patterned by, and mechanically coupled with body 

plan elaboration, with a combination of signaling gradients, migration events, and 

boundary formation events enabling proper placement of organ forming cells in the 

correct four dimensional spatiotemporal environment (McDole et al., 2018; Sutherland, 

2016). The plasticity of whole organism development prevents simple decoupling of 

body formation processes from the elaboration of individual organ systems, so defining 

which mechanical and signaling stimuli are necessary and sufficient to produce robust 

macroscale organ formation ex vivo remains an area of active research. 

 Generating in vitro global patterning phenotypes has been primarily successful 

through simulating the patterning events found in gastrulation. 2D hiPSC colonies under 

BMP4 stimulation reliably generate the three germ layers and an extraembryonic outer 

layer in a system of concentric rings, following what appears to be a classic reaction 

diffusion system under control of a mutually repressive BMP4-NOG interaction (Tewary 

et al., 2017; Warmflash et al., 2014). In 3D, even more striking behavior has been found 

in gastruloids, organoid models that spontaneously generate a polarized mass of cells 

and undergo elongation (Beccari et al., 2018; van den Brink et al., 2014; Marikawa et 

al., 2020). Gastruloid models have shown patterned expression of Hox genes that 

recapitulate formation of the anterior-posterior axis, polarized signaling and gene 

expression gradients, and segregation of germ layer compartments. Further, gastruloids 

directed towards central nervous system fates have been shown to generate somites 
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and spontaneously generate organized dorso-ventral axes, demonstrating both 

boundary formation and spontaneous formation of multiple body axes (Bérenger-Currias 

et al., 2020; van den Brink et al., 2020; Veenvliet et al., 2020). Despite these striking 

models of global patterning, it remains unclear which multicellular processes enable 

polarization and elongation, how individual cell types contribute to the elongation 

process, and to what extent in vitro organoid models recapitulate analogous body 

formation processes in vivo. 

1.5 Tracking cell migration 

 Image analysis techniques to trace cell migration have historically employed a 

population of cells that are physically distinctive such as with embryo hybridization 

assays (Catala et al., 1995), or are marked with a reporter construct as in lineage 

tracing assays (Cai et al., 2013), enabling a reconstruction of the most probable 

migration path by linking individual cell detections over time. Modern imaging 

techniques such as confocal and light sheet microscopy enable non-destructive time 

lapse imaging of fluorescent protein expressing populations within embryos, allowing 

higher sampling rates and the quantification of cell migration and cell divisions over time 

(Keller et al., 2008; McDole et al., 2018). Imaging whole embryos is limited by both the 

size of the embryo and the depth of the tissue to be imaged, with early stage gastrulas 

relatively optically transparent while even relatively shallow tissues in late stage 

embryos may be inaccessible below a few millimeters in depth (Pantazis and Supatto, 

2014). As the complexity of the cell migration event increases, the number of cells 

which need to be marked, the minimum field of view, or the temporal sampling rate 
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might each or all increase, rapidly outpacing the limits of manual cell annotation and 

necessitating computational approaches (Amat et al., 2015). 

 Automated cell tracking approaches utilize a number of features to first segment 

cells and then link those segmentations over time. Fluorescent labeling of the cell 

cytoplasm is the most common approach for detecting cells, with automated algorithms 

able to separate labeled cells from background, generating a contour or surface that 

gives both cell position and shape information, although dense cytoplasmic labels make 

it difficult to separate one cell from another (Kheradmand et al., 2017; Stegmaier et al., 

2016; Zhang et al., 2015). For mononucleated cells types, cell position can also be 

reliably be determined by labeling the nuclei alone, typically at much higher labeling 

densities including 100% cell labeling, although the loss of shape information can 

impact both cell phenotype classification and tracking accuracy (Coelho et al., 2009; 

Cohen et al., 2017; Lou et al., 2014). Fusion approaches often employ both a nuclear 

and cytoplasmic marker, gaining shape information from cytoplasmic tracking while still 

being able to separate nearby cells using nucleus position (Caicedo et al., 2019; Kang 

et al., 2013). Depending on the biological question, sparse information about cell shape 

or dense information about cell position may be more relevant, leading to divergent 

tracking and labeling approaches. 

  Once a fluorophore strategy is established, cells or nuclei need to be segmented 

from the background and from each other. Well mixed, sparsely labeled colonies can 

typically be segmented with a simple background segmentation algorithm that estimates 

a background fluorescence threshold, followed by a labeling pass to assign pixels 
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above the threshold to contiguous masks representing the cell contour (Coelho et al., 

2009). Densely labeled colonies or colonies where the labeled population undergoes 

significant clonal expansion require additional steps to calculate boundaries between 

cells, with various approaches exploiting information about nuclei position (if available), 

cell texture information, or priors about cell packing and boundary shape (Meijering et 

al., 2009). Dense segmentation has been enabled by recent advances in machine 

learning, which deep neural networks approaching and sometimes surpassing human 

generated cell segmentations (Chowdhury et al., 2017; Falk et al., 2019; Moen et al., 

2019). In 3D volumes, further information about cell polarization and distinctions cell 

shapes can also be incorporated to improve boundary calculation, although 

computational complexity grows very rapidly with volume size, limiting the application of 

highly accurate segmentation methods (Amat et al., 2015; Pantazis and Supatto, 2014). 

Even in 2D, highly accurate cell contours are often difficult to robustly calculate for all 

cells in a colony due to density of cell packing, suggesting that contour and surface- 

based representations may not be appropriate for large image volumes. 

 Instead of generating complete, pixel accurate maps of the cytoplasm or nuclear 

shape, the center of mass of the cell or nuclei can be estimated, resulting in a simpler 

and computationally more efficient particle localization (Meijering et al., 2012). 

Fluorescence detection from round structures such as nuclei has a distinctive single 

peak near the center of mass of the nucleus, enabling computationally efficient 

approaches such as peak detection with non-maximum suppression to produce very 

accurate segmentations even in highly dense fields of labeled nuclei such as in 
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hematoxylin and eosin or Hoechst staining (Libby et al., 2018). Accuracy can again be 

enhanced with deep learning approaches, leading to state of the art cell counting and 

tracking, even with a single nuclear label (Cohen et al., 2017; Xie et al., 2016, 2018). 

Nuclear tracking scales well to 3D volumes, with density peak-detection approaches 

operating efficiently even on large volumes (Meijering et al., 2012). While the loss of cell 

shape information makes particle detectors inappropriate for assays like cell type 

classification, the simplicity and scalability of the center of mass representation makes it 

invaluable for efficient analysis of large numbers of cells. 

 Once cells have been detected, individual detections need to be linked into cell 

tracks across time series. For sufficiently rapidly sampled cells, cell contours or cell 

centers of mass move much less than one cell body length per frame, so greedy linkage 

of cells in the previous frame to their nearest neighbor in the next is both simple to 

implement and computationally efficient (Coelho et al., 2009; Meijering et al., 2012). 

Extremely rapid sampling of cell positions has a number of downsides including 

increased data set size, mechanical limits on the volume that can be sampled within an 

acquisition period, and, critically, increased fluorescent exposure time leading to 

cytotoxicity and abnormal cell behavior (Meijering et al., 2012). For even short term 

experiments of minutes to hours, sampling rates typically are too low to guarantee cell 

migration cannot exceed a cell body length, so more sophisticated tracking algorithms 

compensate by incorporating prior cell shape and size information, likely cell direction of 

travel, and cutoffs to prevent spurious linkages of cell tracks that cannot be positively 

assigned to a single detection in the new frame (Debeir et al., 2005; Gold and 
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Rangarajan, 1996; Peng et al., 2010). For tracking assays across longer periods of 

hours to days, additional complications such as cell division, cell death, and migration in 

and out of the field of view need to be considered, all of which come with additional 

computational penalties to recognize and account for the event (Piltti et al., 2018). 

Finally, the fidelity of the track reconstruction needs to be considered: a fine-grained 

lineage trace of a few, sparsely labeled cells can be reconstructed using precise, 

computationally intensive methods without incurring an analytical penalty, while mass 

tracking of collective migration may be tolerant of a high rate of track breakage, cell mis-

assignments, and mis-classified cell-state transitions without impacting measurement of 

overall material properties such as average speed, direction, and persistence of 

migration of a cell sheet. The complexity of cell tracking in time lapse microscopy 

means that no one-size-fits-all algorithm will satisfy all experimental designs, and 

generating gold standard tracking data sets and metrics remains an open research 

problem (Caicedo et al., 2019; Coelho et al., 2009). 

1.6 Models of in silico symmetry breaking 

 The complexity of in vivo and even in vitro cell behavior has led to a large family 

of mathematical models that attempt to provide mechanistic explanations for patterning 

events. Initial models of symmetry breaking were built on non-linear phase separation 

events in physical systems such as Ising spin models (Yang, 1952) and reaction 

diffusion systems (Turing, 1952), which were initially used explain self-assembling 

processes in coat patterning, but also have been applied to almost every aspect of 

developmental patterning (Marcon and Sharpe, 2012). Continuum descriptions of 
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symmetry breaking invoke signaling gradients of cytokine diffusion, chemoattractive or 

repulsive nodes that coordinate cell migration, and anisotropic variations in the 

extracellular stiffness or directionality that all can provide polarizing signals to individual 

cells (Browning et al., 2018; González-Valverde and García-Aznar, 2018; Plank and 

Simpson, 2013). While continuous approaches provide simple, often computationally 

tractable descriptions of cell behavior, they are difficult to integrate with the 

fundamentally discrete nature of individual cells, and hence can only provide 

descriptions at coarse scales if they are not complemented by other methods. 

 In contrast, agent based models (ABMs) provide a cell-centric description of 

behavior capable of recapitulating many emergent multicellular events (Glen et al., 

2019; Norfleet et al., 2020). The classic Cellular-Potts models are reminiscent of Ising 

models, representing cells as 4-connected regions on a 2D lattice which attempt to 

expand or contract from regions according to probabilistic rules (Graner and Glazier, 

1992; Voss-Böhme, 2012). Even simple deterministic Cellular-Potts-like systems such 

as the Game of Life are Turing complete (Bak et al., 1989), while more complicated 

probabilistic models can simulate many of the aspects of tissue development, including 

cell growth and division, cell death, cell migration, and changes in cell lineage (Libby et 

al., 2019). The effects of continuous fields and forces can be incorporated through 

numerical integration, enabling Cellular-Potts models to simulate reaction-diffusion 

processes and other non-linear patterning events (Glen et al., 2019; González-Valverde 

and García-Aznar, 2018). Further extensions incorporate simulation of internal gene 

regulatory or cell-cell signaling networks, allowing coupling of cell state transitions to 
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models of internal transcription factor expression and external signal transport (Bauer et 

al., 2010; Mehdipour et al., 2018; Yachie‐Kinoshita et al., 2018). Extensions of the 

Cellular-Potts framework to 3D can simulate complex morphogenic events, but the 

geometric increase in computational complexity places limits on the size of phenomena 

that can be tractably simulated (Madhikar et al., 2018; Tapia and D’Souza, 2011). Still, 

Cellular Potts models can provide physically plausible simulations of cell-cell interaction 

and pattern formation. 

 The final relevant class of cell simulations are particle-based models. Unlike 

Cellular-Potts or continuous models, cells in a particle simulation are represented by a 

geometric object such as a sphere or ellipse, and interactions between cells are 

evaluated using quasi-elastic spring force calculations between nearest neighbors 

(González-Valverde and García-Aznar, 2018; González-Valverde et al., 2016; Norfleet 

et al., 2020). Despite these simplifications, particle simulations can account for complex 

behaviors such as single cell and collective migration, cell division, and response to 

external stimuli under a single force balance framework (González-Valverde et al., 

2016). Because the geometric representation of the cell is heavily simplified, operations 

such as directional migration, cell-cell collision detection, complex fluid flows, and 

stochastic cell-state transition matrices can easily be extended to simulations of 10s to 

100s of thousands of cells on modern CPU or GPU hardware (Tang and Karniadakis, 

2014). Further, particle simulations pay a relatively small computational scaling penalty 

when extended to 3D, enabling simulation of flows in organoids and developing tissues 

in addition to more conventional colony or sheet migrations. Hence, in cases where cell 
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shape information is not a dominant factor when modeling morphogenesis, particle 

simulation represents a flexible tool for computational descriptions of tissue evolution. 

1.7  Concluding Remarks 

The complex process of embryogenesis is marked by a series of symmetry 

breaking events where previously homogeneous populations bifurcate into divergent 

cell types, enabling formation of differentiated tissue domains, cell sorting, boundary 

creation, and many of the myriad events found in development. While all developmental 

processes are multifaceted, integrating gene expression patterns, signaling factors, and 

physical changes to produce a final organ system, cell migration represents a key step 

throughout development, enabling the formation of boundaries, the controlled mixture of 

cell lineages, and the extension and elaboration of the body plan. Cell migration 

processes are among the oldest described developmental events, but the rules 

connecting individual and collective migration events to phenotypic outcomes remain 

underexplored. In particular, the tightly regulated environment of the developing embryo 

makes it difficult to determine how sensitive various multicellular patterning processes 

are to perturbation of the percentages, lineages, and spatiotemporal distribution of 

migratory cell types, and to what extent cell migration either ameliorates or exacerbates 

stochastic variation in initial heterogeneous populations. Therefore, in vitro cell tracking 

in models of embryogenesis offers a unique tool to explore the design space of 

embryonic development, producing the necessary and sufficient conditions of pattern 

formation. 
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In this dissertation, bioengineering, developmental biology, and computational 

biology are combined to produce a detailed description of cell migratory behavior in ex 

vivo models of gastrulation and axial extension. This work provides a foundational tool 

to interrogate patterning events during all phases of organism development, producing 

comprehensive descriptions of migratory cell behavior during several multicellular 

organization events, metrics to evaluate and compare pluripotency and differentiation 

protocols from live cell tracking, and an empirically derived computational model of self-

assembly and convergent extension during gastruloid elongation. These tools can be 

employed towards deeper understanding of coupled morphogenic events in vivo, in 

vitro, and in silico, with the future goal of enabling rational in vitro organ generation for 

disease modeling, therapeutic generation, and tissue transplant. 
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2 Sparse cell tracking reveals hiPSC behavioral signatures 

during symmetry breaking 

 Introduction 

 During early embryogenesis, cells must undergo a series of patterned 

differentiation and cell migration events to form and organize the three germ layers that 

compose the main body tissues (Pelegri et al, 2017). Collective cell migration is readily 

apparent in many core body formation events such as gastrulation (Chuai and Weijer, 

2009), neural tube formation (Hashimoto et al., 2015), and the cell flows that contribute 

to the development of the heart (George et al., 2020), but individual cell migration 

events also contribute to, and enable robust formation of several different tissue types 

(Aman and Piotrowski, 2010; Saykali et al., 2018). While cell migration during 

differentiation is well described in vivo, the complex, rapidly evolving, 3D nature of 

developing embryos makes untangling individual cell migrations from bulk tissue motion 

difficult (Pantazis and Supatto, 2014). Analogous to developing tissues, human induced 

pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) have the 

ability to self-organize (Libby et al., 2018), differentiate to all three germ layers (Han et 

al., 2018), and undergo transitions from bulk endothelial cell sheets to freely migrating 

mesenchymal cells (Yang et al., 2020). hiPSCs provide a robust, tractable system to 

observe, quantify, and predict cell migration phenotypes, enabling mechanistic modeling 

of cell migration in pluripotency, and quantification of behavioral change during 

differentiation. The ability to deconvolve the interactions of heterotypic cell types with 
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morphological transitions during cell fate specification enables the possibility of 

predicting and directing differentiation via cell-intrinsic routes. 

 In this study, partially labeled colonies of hiPSCs with inducible constructs based 

on CRISPR interference (CRISPRi)(Libby et al., 2018) or optogenetically activated Wnt 

signaling (optoWnt)(Bugaj et al., 2013) were used to induce and subsequently track cell 

sorting and migration events both during pluripotency and early differentiation to 

multiple germ lineages. By providing the empirically derived cell behavior parameters to 

optimize an in silico model of multicellular pattern formation, this tracking pipeline 

enabled closed loop prediction of pattern formation and subsequent organizational 

control of germ lineages within a colony. Further, by tracking and analyzing cell 

behavior during optoWnt directed differentiation, mesodermal cell fate acquisition was 

detected non-destructively and migratory signatures of the epithelial to mesenchymal 

transition (EMT) were quantified. Through tracking of live cell migration, this pipeline 

generated measures of in vitro morphogenesis that are predictive of organization events 

both in pluripotency and in differentiation. 

 Materials and Methods 

2.2.1 Cell Culture 

 hiPSC CRISPRi cell lines were derived from the parent line WTC (Coriell Cat. # 

GM25256). Optogenetic lines were derived from hESC lines (H9, WiCell) and hiPSC 

lines (19-9-7, WiCell). All cells were grown at 37° C and 5% CO2 in feeder-free media 

conditions on Matrigel (Corning, lot # 7268012, 7275006; BD Biosciences) in mTeSR1 

medium (STEMCELL Technologies)(Ludwig et al., 2006) with daily media changes. 
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Optogenetic cells were cultured with the hood lights off. Cells were singularized in 

Accutase (STEMCELL Technologies) at 37° C for 5 minutes and seeded onto Matrigel-

coated plates in media containing Rho-associated coiled-coil kinase (ROCK) inhibitor Y-

276932 (5-10μM depending on cell line; Selleckchem)(Watanabe et al., 2007). WTC 

derived cell lines were seeded at 12,000 cells per cm2 while optoWnt cell lines were 

seeded at 35,000 cells cm2. 

2.2.2 Generation of cell line 

 CRISPRi knockdown lines were previously generated as described in (Mandegar 

et al., 2016), where 20 base pair guides were designed using the Broad Institute sgRNA 

design website (Doench et al., 2016). 20 base pair sequences were cloned into the 

gRNA-CNKB vector using restriction enzyme BsmBI digestions, followed by ligation with 

T4 DNA ligase. 200,000 cells of the CRISPRi-Gen1 hiPSC line were nucleofected with 

individual gRNA vectors using the Human Stem Cell Nucleofector Kit 1 solution with the 

Amaxa nucleofector 2b device (Lonza). Cells were then plated at increasing dilutions 

into 3 wells of a 6-well plate coated with Matrigel (BD Biosciences) in mTeSR1 

(STEMCELL Technologies) supplemented with Y-276932 (10μM) for 2 days, then 

treated with blasticidin (10μg/ml) for a selection period of 7 days. Surviving colonies for 

each gRNA were pooled and passaged in mTeSR1 with blasticidin (10μg/ml) and Y-

27632 (10μM) for a single day then transitioned to mTeSR1 media only. After stable 

polyclonal populations of hiPSCs were established for each gRNA, cells were 

karyotyped by Cell Line Genetics (Libby et al., 2018). Knockdown efficiency was tested 

by the addition of doxycycline (2μM) to the culture media for 6 days and subsequent 



 40 

qPCR of mRNA levels of respective genes compared to time matched controls of the 

same line without CRISPRi induction. 

 Clonal knock-in Opt-Wnt cell lines were generated through CRISPR/Cas9-

mediated recombination. Prior to nucleofection, hESCs were pre-treated with 10 μM 

ROCK inhibitor for 3 to 4 hours or 5 μM Y27632 overnight. Accutase-digested single 

hESCs were collected and 2.5 - 3.5 million cells were nucleofected with 2.5 μg gRNA 

AAVS1-T2 (Addgene # 41818), 4.5 μg pCas9-GFP (Addgene #44719), and 6 μg 

optoWnt donor plasmid in 200 μl room temperature PBS -/- using a NucleofectorTM 2b 

(Lonza) with program B-016. The resulting cells were plated onto Matrigel-coated 6-well 

plates containing 3 mL pre-warmed mTeSR1 with 10 μM ROCK inhibitor. Once the cells 

grew to confluency, they were subjected to selection with 1 μg mL-1 puromycin in 

mTeSR1 media for approximately 2 weeks. Clonal lines were generated by picking 

single-cell clones into wells of a Matrigel-coated 96-well plate that were expanded for 1-

2 weeks and subjected to PCR genotyping. 

2.2.3 Formation of heterotypic cell populations 

 Mixed population hiPSC colonies were generated using forced aggregation via 

PDMS microwells in a 24-well tissue culture plate (~975 400x400μm wells per well) 

(Hookway et al., 2016; Libby et al., 2018). hiPSCs were dissociated and singularized 

using Accutase (STEMCELL Technologies) and subsequently counted using an 

Invitrogen Countess Automated Cell Counter (Thermofisher Scientific). The proper 

ratios of cells to create 100 cell aggregates were then seeded into PDMS wells in 

mTeSR1 with Y-27632 (10μM), centrifuged at 200g for 5 minutes, and allowed to 
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compact overnight (~18h). Aggregates were then washed out of the PDMS wells with 

fresh mTeSR1 and re-plated into a growth factor reduced matrigel (BD Biosciences) 

coated PerkinElmer CellCarrierTM-96 plates at ~10/aggregates/cm2. optoWnt colonies 

were created by mixing WT and optoWnt cells at a 1:1 ratio and seeded onto Matrigel 

coated plates (Corning) at a cell density of 35,000 cells per cm2. Cells in all conditions 

were and fed daily with mTeSR1. 

2.2.4 Heterotypic colony imaging 

Mixed hiPSC colonies were imaged at the basal surface on optically clear 

PerkinElmer CellCarrierTM-96 plates on an inverted AxioObserver Z1 (Ziess) with an 

ORCA-Flash 4.0 digital CMOS camera (Hamamatsu) with a 20x objective, where that 

single plane was used for parameter estimations. Mixed colonies of wildtype and 

CRISPRi-Gen1 cells without knockdown guides were imaged for 6 hours every 5 

minutes from hours 60-66 after plate down. Mixed colonies of wildtype, CDH1 KD, and 

ROCK1 KD cells lines were also generated at ratios predicted by a machine learning 

pipeline as described in (Libby et al., 2019). Colonies were allowed to grow for between 

36 and 108 hours after plate down, and then fixed in 4% paraformaldehyde (VWR) for 

25 minutes. Samples were then incubated with primary antibodies overnight at 4°C in a 

PBS solution with 1% bovine serum albumin (Sigma Aldrich) and 0.3% Triton-X. 

Samples were washed 3 times and then incubated for 1 hours at room temperature with 

secondary antibodies and Hoescht. Primary antibodies used were: anti-OCT4 

(SantaCruz 1:400), anti-SOX2 (AbCAM 1:400), and anti-Ecadherin (AbCAM 1:200). All 

secondary antibodies were used at 1:1,000 and purchased from Life Technologies. 
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Images were taken in one focal plane on the apical surface of hiPSC colonies at 10x 

magnification on a Ziess Observer.Z1 (Ziess) or an InCell Analyzer2000 (GE 

Healthcare). All image analysis was done using custom code written in python using the 

sckit-image package (van der Walt et al., 2014). 

2.2.5 optoWnt colony imaging 

Co-cultures were treated with CellTracker Red (ThermoFisher) dye diluted 

5,000x in mTeSR1 media for 15 min and washed two times. A sealing membrane 

(Breathe-Easy, Sigma-Aldrich) was applied to plates prior to imaging. Plates were 

imaged on a Molecular Devices Image Xpress Micro (IXM) imaging system with 

environmental control (37 °C, 5% CO2, and humidity control) using a 10x objective. For 

single-cell tracking experiments, 4-8 sites were imaged at 18 min intervals. Optogenetic 

stimulation was delivered from the fluorescence light source (SOLA Light Engine, 

Lumencor) set to 5% intensity, passing through the 10x objective and GFP filter set 

(472/30nm). Measured power at the sample was 2.82 mW. Optogenetic stimulation was 

delivered for 3 min at each site prior to imaging of each timepoint (i.e. for 3 min every 18 

min) in a sequence of short light pulses (500 ms on-pulse, 10 s off-pulse). 

2.2.6 Colony Boundary Tracking 

 To detect the boundary of colonies imaged in phase, difference images were 

calculated between subsequent frames of a 6-hour phase time series, and then the 

standard deviation of pixel values calculated. A two component gaussian mixture model 

was fit to the resulting anomaly image to find an optimal threshold separating non-

moving from moving pixels. Regions with motion above this threshold were segmented 
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and then filtered to remove both objects and holes smaller than 52 μm2. The largest 

contiguous region was then selected as the seed for the mask at each frame. For each 

frame, the background was estimated using phase values outside of the seed mask as 

definitive background and filling the resulting gap using biharmonic inpainting (Damelin 

and Hoang, 2018). The contour of the resulting mask was then used to calculate 

properties such as colony area, mean and max radius, and perimeter, as well as to 

derive colony circularity with the formula: 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋 ∗ 𝐴𝑟𝑒𝑎/𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟3. All 

image manipulations were performed using the python package scikit-image (van der 

Walt et al., 2014) 

2.2.7 Contour Cell Tracking 

Mixed aggregates of defined ratios of WT and CRISPRi cells without a targeting 

guide were generated. With the addition of doxycycline (DOX) to the cell culture media, 

the CRISPRi no guide population expressed a cytoplasmic mCherry marker which 

allowed individual cells to be distinguished from the untagged WT background (Figure 

2.2). 24 colonies were imaged for 6 hours at 5 minutes/image at 20X magnification 

creating a time series of 73 frames. Each frame was individually normalized and 

thresholded using adaptive histogram normalization. Cell migration tracks were 

generated by following matching contours between frames where matching contours 

share at least ten pixels overlap. Watershed segmentation was used to separate 

adjacent cells. Instantaneous frame to frame velocity was calculated as: 

𝑣5678 = [:𝑥<=,3 − 𝑥<=,@A/∆𝑡, :𝑦<=,3 − 𝑦<=,@A/∆𝑡] 
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where 𝑥<=,3 was the center of mass of each segmented cell body at the currently 

observed frame and 𝑥<=,@ was the center of mass of each segmented cell body at the 

previous frame, and ∆𝑡	was the sample rate in minutes. 

2.2.8 Center of Mass Cell Tracking 

To extract cell positions, each the contrast each image was corrected using 

adaptive histogram equalization, then the image background was removed using a 

difference of gaussians filter. Peaks at least 20% above background in the foreground 

image were then detected using non-local maximum suppression with a minimum 

radius of 2.6 μm. The cell counts were then fit to an exponential model of cell growth, 

and frames with anomalous (R2 > 2500 cells2) segmentations were discarded. This 

resulted in dataset of individual cell detections in 5 fields of view spanning 90 frames 

between approximately hours 8 and 36 of the stimulation experiment. Individual cell 

detections were linked to their nearest neighbor in a radius up to 32.4 μm from their 

previous position both forwards and backwards in time with both a global maximum 

velocity and neighborhood quasi-rigidity penalty(Kim and Lee, 2002). The resulting track 

fragments were then iteratively merged with overlapping tracks within 3.4 μm and 18 

minutes of each other. This process converged after 10 iterations, generating 4,127 

total tracks with mean length of 13.5 hours (standard deviation 6.4 hours). 

 For each track, instantaneous velocity magnitude and direction were 

approximated using finite differences and then smoothed with a 15 point (4.5 hour) 

rolling window filter. Cell migration distance was calculated by integrating over finite 

differences of cell position. Track turning angle was calculated by phase unwrapping 
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change in velocity direction. Finally, periods of persistent migration were determined as 

those times where a cell was both migrating at least 0.1 μm/min and turning no more 

than 2 degrees/min from its previous velocity direction. Both changes in instantaneous 

traces and binned values were assessed based on 95% confidence intervals around the 

mean, as determined by 1,000 iterations of bootstrap sampling. 

 Results 

2.3.1 Uniformly mixed colonies generated from force aggregation and 

reattachment 

 To establish a system to generate sparsely labeled colonies of defined size and 

composition, WT cells expressing a DOX-inducible cytoplasmic mCherry construct were 

mixed at defined ratios with WT cells from the same genetic background without a 

fluorescent construct (Mandegar et al., 2016).  Cells were mixed at ratios of 1:99, 1:19, 

1:9, 1:3, 1:1, and 3:1 mCherry:WT cells and then formed into 100 cell aggregates using 

force aggregation (Hookway et al., 2016). After 18-24 hours of formation, they were 

removed from uWells and allowed to reattach to 96-well plates. Aggregates attached 

after approximately another 24 hours, after which they were imaged in both phase and 

647 nm for 6 hours, sampling every 5 minutes (Figure 2.1A).  
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 Colony growth was assessed by segmenting the colony periphery in phase 

(Figure 2.1B) and then calculating summary statistics such as area, perimeter, and 

circularity. Colonies grew approximately 30% in area over 6 hours, expanding from a 

mean radius of 124 μm (+/- 21 μm) to 138 μm (+/- 23 μm), while maintaining a 

circularity of approximately 0.73 (1.0 is perfectly circular). Mean eccentricity of individual 

colonies was stable throughout observation around 0.55 (+/- 0.16), suggesting that the 

long axis of the colony was approximately 20% longer than the short axis in each 

colony, with the variation in axis ratio converging over time (Figure 2.1 C-H). These 

results demonstrate that hiPSC colonies generated from force aggregation and re-

adhesion do not diverge significantly from a circular cross section and potentially adopt 

a more uniform shape over time.  

 

Figure 2.1: Kinetics of re-adherent hiPSC colony growth  
A) Schematic of colony and cell tracking workflow B) Colony phase image with segmentation (red). C)  
Colony area, D) perimeter, and E) circularity changes over 6 hours. F) Colony eccentricity, G) ratio of 
long to short axis, and H) mean radii 
 

Figure 2.2: Kinetics of hiPSC colony growth A) Schematic of colony and cell tracking workflow B) 

Colony phase image with segmentation (red). C)  Colony area, D) perimeter, and E) circularity 

changes over 6 hours. F) Colony eccentricity, G) ratio of long to short axis, and H) mean radii 

 

 

Figure 2.3: Kinetics of hiPSC colony growth 

A) Schematic of colony and cell tracking workflow B) Colony phase image with segmentation (red). C)  

Colony area, D) perimeter, and E) circularity changes over 6 hours. F) Colony eccentricity, G) ratio of 

long to short axis, and H) mean radii 

 

 

Figure 2.4: Kinetics of hiPSC colony growth A) Schematic of colony and cell tracking workflow B) 

Colony phase image with segmentation (red). C)  Colony area, D) perimeter, and E) circularity 

changes over 6 hours. F) Colony eccentricity, G) ratio of long to short axis, and H) mean radii 
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Cell position was assessed within a colony defined by the apparent boundary of 

the colony segmented in phase (Figure 2.2). At mixing ratios above 25%, cell 

boundaries were not readily apparent between mCherry cells, while colonies mixed at 

1:99 cells had low incorporation of mCherry+ cells, with ~50% colonies having fewer 

than 2 labeled cells (n=8/16). Colonies at between 5% and 10% cell mixing were 

universally labeled, and had good separation between individual labeled cells, but also 

more than 5 cells detected per colony per frame, enabling efficient sampling. Some 

colonies at 25% labeling were also trackable at early stages, but clonal expansion lead 

to clustering of labeled cells over frames after a few hours. Based on these results, a 

mixing ratio of 25% or fewer labeled cells to WT cells was chosen for further analysis. 

To understand how heterotopically mixed cells distribute within a given colony, 

average parameters for each cell, and measures of mean cell position within a colony 

were calculated. Individual cells occupied a median area of 500 μm2 (IQR: 330 to 782 

 

Figure 2.2: Segmentation of mixed colonies at defined ratios of mCherry:WT cells  
Segmentation boundaries outlined and apparent direction of motion shown by arrows. 
 

 

Figure 2.5: Segmentation of mixed colonies at defined ratios of mCherry:WT cells Segmentation 

boundaries outlined and apparent direction of motion shown by arrows. 
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μm2), and were also approximately elliptical, with median circularity 0.76 (IQR: 0.65 to 

0.84; 1.0 is perfectly circular), eccentricity 0.78 (IQR: 0.69 to 0.85; 0.0 is perfectly 

circular) and radius ratio of 1.61 (IQR: 1.38 to 1.92; 1.0 is circular) (Figure 2.3 A-D). 

Radial distribution of the cells within a given colony was calculated by taking the 

distance of the center of mass of each cell from the overall colony center of mass, then 

dividing by the colony radius, giving a normalized distance from center. Cell distribution 

was not significantly different from randomly distributed cells along the unit circle, 

suggesting that WT cells are well mixed in an hiPSC colony, despite clonal expansion 

(Figure 2.3 E). A theoretical calculation of the number of cells per colony was made by 

multiplying the number of cell detections by the original mixing ratio, while a second 

calculation was made by assuming cells obeyed perfect random hexagonal packing 

within the colony segmentation (Figure 2.3.F), with the hex packing number given by: 

𝑛<FGG7 = 	
𝐴<HGH6I
𝐴<FGG

∗
𝜋
√12

=
𝑟<HGH6I3

𝑟<FGG3
∗
𝜋
√12

 

The two values agreed within 18% (+/- 11%) on average, suggesting that heterotypic 

aggregation robustly produces the anticipated mix of cell populations, and that those 

population ratios are stable over at least 2 days of cell culture (Figure 2.3 G).  
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2.3.2 Measurement of cell migration parameters 

Dynamic cell behavior in colonies was next assessed by linking individual cell 

detections into cell tracks over time. Cell contours were observed to overlap from frame 

to frame, so individual cell masks were linked into tracks by calculating the intersection 

between all detected cells in a given frame with all the cells in the subsequent frame. 

The contour with the majority overlap between two frames was assigned to be the same 

cell. In cases with multiple overlapping cells, cells were assigned greedily by overlap 

area, where the largest overlap was assigned first, then the second largest, and so on 

until no more unlinked cells remained. Despite not accounting for cell division, shape 

parameters, or frame-wise errors in cell segmentation, this method robustly produced 

 

Figure 2.3 Shape and distribution of hiPSC cells in colonies 
Distributions of A) cell area, B) cell circularity, C) eccentricity, and D) ratio of major to minor axis lengths. 
E) Empirical and theoretical distributions of cells over the colony radius. F) Schematic of two models of 
calculating total cell number, with G) estimated cell number by density (grey) and cell ratio (blue). 
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cell tracks spanning multiple hours that robustly followed mCherry expressing cells in 

10% labeled colonies for 6 hours (Figure 2.4 A,B). 

 

To calculate summary statistics, all tracks spanning at least 15 minutes of time (3 

samples) were used to estimate instantaneous cell velocity, total cell distance traveled, 

and total cell displacement. Cells were found to migrate with an average velocity of 0.31 

μm/min (+/- 0.07 μm/min) which followed an over dispersed gamma distribution (Figure 

2.4 C). Average track displacement, distance traveled, and persistence also followed a 

heavy-right tailed distribution, with cells traveling only 36.4 μm (+/- 15.7 μm) with a 

directional persistence (displacement/distance) of 0.42 (+/- 0.14; where 1.0 is travel in a 

straight line) (Figure 2.4 D-F). Mean squared displacement was linear over a range of 

 

Figure 2.4 Cell behavior of hiPSCs in colonies 
A) Linked cell contours colored by track identity over 6 hours. B) Single frame showing cell contour 
and velocity estimate. Distributions of C) Average cell migration velocity magnitude, D) total distance 
traveled, E) total distance from cell origin, and F) persistence of migration. G) Empirical (blue) and 
model fit (cyan) of mean square displacement.  
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approximately 2.5 hours of tracking, with a slope of 651 μm2/min translating to a 

diffusion coefficient for hiPSC stem cells of ~163 μm2/min. These results suggest that 

human stem cells are among the faster types of migrating cells, with speeds 

comparable to human and murine tumor cell lines (Maiuri et al., 2012), and undergo 

primarily diffusive migration in 2D colonies, producing large scale mixing that prevents 

clonal expansion alone from producing heterotypic cell patterning.  

2.3.3 Spatial quantification in mosaic patterned colonies using nuclei detection 

Although contour-based tracking of sparsely labeled cells was effective for 

analyzing hiPSC behavior within colonies, the low level of cell detection and potential 

biases of clonal expansion forced selection of a different approach for characterizing 

mosaic patterning within colonies.  Since hiPSC and hESCs have prominent, elliptical 

nuclei that compose a large fraction of the cytoplasm (Lou et al., 2014), nuclei detection 

provided an attractive target to quantify cell position and expression of transcription 

factors within a fixed colony. To detect cells without evaluating a contour, peak 

detection was used to find the highest regional staining for Hoescht in a local area of 

approximately 5x5 μm using non-maximum suppression. By visual inspection, these 

peaks corresponded roughly to the center of mass of each Hoescht signal, and hence 

the approximate centroid of each cell nucleus.  
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Previously published inducible CRISPRi cell lines inhibiting the expression of E-

cadherin (CDH1) and Rho-associated coiled-coil containing protein kinase (ROCK1) 

were first characterized and then simulated using a machine recognition and pattern 

optimization framework, to generate predicted mixtures of cells that would undergo 

patterning events (Libby et al., 2018, 2019). Based on in silico predictions, a mix of 20% 

 

Figure 2.5 Spatial analysis of mosaic structures using nuclear tracking 
A) Example bullseye (top) and island (bottom) colonies stained for CDH1 and DAPI, B) segmented for 
CDH1 area, C) with an example region showing nuclear localization. D) Quantification of number of 
regions per colony, and then for example colonies E) radii of each region, F) cells per region, and G) 
circularity of each region. 
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CDH1 knockdown cells with 80% WT cells was used to generate colonies containing 

agglomerations of CDH1-KD cells into clusters termed “islands”, while a mix of 20% 

ROCK1 knockdown cells to 80% CDH1 knockdown cells was used to generate a central 

cluster of ROCK1-KD cells surrounded by CDH1-KD cells, termed a “bullseye”. 

Colonies were fixed and stained as described above, then each cell classified by the 

presence or absence of CDH1 staining in a region surrounding each nucleus. The 

contours of “islands” or “bullseye” structures were then calculated by finding all 

connected regions of either CDH1+ (for bullseyes) or CDH1- (for islands), then 

detecting the nuclei contained within each region (Figure 2.5 A-C). Number of regions 

per colony was detected, with bullseye colonies having between a median of 1 

connected region (IQR: 1-2), while island colonies had a median of 3 regions (IQR: 2-5) 

(Figure 2.5 D).  To characterize the spatial distribution of mosaic patterns within 

selected colonies, shape and size parameters for each region were calculated, with 

bullseyes having a median radius of 119 μm (IQR: 85 to 362 μm), a median of 132 cells 

per region, and were very elongated, with median circularity of 0.1 (IQR: 0.06 to 0.18, 

1.0 is circular). In contrast, islands were smaller and more round, with a median radius 

of 88 μm (IQR: 80 to 106 μm) and a median circularity of  0.3 (IQR: 0.1 to 0.4)  (Figure 

2.5 E-G). These results demonstrated that nuclear segmentation of colonies could be 

used to compare different modes of cell sorting in mosaic colonies and acted as a proof 

of principle for using nuclear tracking to analyze time lapse studies of cell and colony 

organization.  
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2.3.4 Cell tracking in cell sheets through nuclei detection  

hESC cells expressing nuclear-localized mVenus were seeded 1:1 with WT cells 

and allowed to grow into ~50% confluent epithelial, then imaged in time lapse every 18 

minutes for 24 hours during optogenetic stimulation. Analogous to segmenting stained 

colonies using nuclear Hoescht localization, peak detection with non-maximum 

suppression algorithm was adapted to track nuclear-localized mVenus, yielding 

detections of the rough center of mass of each cell at each frame. As a proxy for 

contour overlap, neighboring peaks in the next frame within a radius of 32.4 μm from a 

given peak were considered “overlapping” and ordered by distance. Peaks were then 

greedily matched to their closest neighbors, with ties going to cells in close proximity 

(Meijering et al., 2012). A second algorithm that performed a probabilistic match 

between close peaks was also compared (Gold and Rangarajan, 1996), but the tracks 

produced were not higher in quality, while the algorithm was much more 

computationally intensive. The resulting nearest neighbor assignment algorithm 

generated >1,000 cell tracks spanning 90 frames of observation (Figure 2.6 A).  
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Distributions for cell velocity, distance, and displacement were calculated for the first 

6 hours of observation and compared to analogous distributions from the contour 

tracking algorithm (Figure 2.6 B-D). Cell median velocities were 0.35 μm/min (IQR: 0.3 

to 0.42 μm/min), slightly faster than hiPSCs, while distance traveled was 72 μm and 

displacement was 35 μm on average, giving an essentially constant displacement to 

distance ratio of 0.49 (1.0 is directional migration) (Figure 2.6 E). Cells were 65% 

persistent in their migration direction, with mean squared displacement 790 μm2 over 

the most linear 2 hour range, giving a diffusion coefficient of 87.7 μm2/min, slower than 

the results for hiPSC tracking (Figure 2.6 F,G). Despite some differences in values, the 

congruence of individual cell parameters, combined with the increased computational 

 

Figure 2.6 Baseline migratory behavior of optoWnt colonies 
A) Image and estimated cell traces for a representative optoWnt stimulated colony. B) Distribution of 
median cell velocity over a 6 hour observation period. Changes in C) cell distance, D) cell 
displacement, E) displacement distance ratio, F) percentage travel in a uniform direction, and G) mean 
square displacement over 6 hours of observation. H) Cell growth over the entire 24-hour period 



 56 

efficiency and higher density of cell tracking suggests that nuclear tracking is preferable 

when analyzing mononucleated cells if cell shape information is dispensable.  

With the longer period of observation, robust estimates of other cell parameters such 

as growth rates, became possible. The number of cell traces was plotted and fit to an 

exponential model of cell growth using ordinary least squares. Cells grew at a rate of 

0.7 cells/minute starting from 637 cells, giving an approximate time constant of 21 

hours, in agreement with the heuristic that hESCs double in number every day (Figure 

2.6 H). Despite obvious track breakages and migration of cells out of the field of view, 

these results suggest that nuclear tracking with nearest neighbor linkage produces 

sufficiently high-quality cell traces to evaluate colony growth and cell dynamics over 

extended periods. 

2.3.5 EMT detection in OptoWnt stimulated cells 

Wnt stimulation is commonly used as the first step in protocols that induce hiPSCs 

and hESCs to differentiation towards mesendodermal germ lineages. A consequence of 

the initial induction is a partial loss of the epithelial phenotype of stem cells as they 

undergo EMT, forming multilayered colonies with cells of different fates in each layer, or 

detaching from the colony altogether and becoming highly migratory. In vivo, Wnt 

activation represents a key signal which activates a portion of the epiblast stem cell pool 

to organize the primitive streak and subsequent multicellular morphogenic events, but 

the mechanism of heterotypic cell fate acquisition remains difficult to elucidate. While 

protein, small molecule, and genetic approaches all exist to stimulate aspects of the 

Wnt pathway in all cells, the consequences of heterotypic Wnt activation and the 
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subsequent cell behaviors upon mosaic acquisition of mesendodermal fates is 

underexplored, so an in vitro model to generate mosaic activation of Wnt signaling 

would be valuable to understanding primitive streak self-assembly. 

The 1:1 population of optoWnt and WT stem cells was stimulated first for 8 hours 

without imaging, and then throughout the 24-hour imaging period, inducing visible 

changes 32 hours post stimulation including phase separation of the two populations 

and activation of the transcription factor TBXT in the optoWnt fraction, indicating 

transition out of pluripotency and towards mesendodermal fates. To determine the 

kinetics of optoWnt activation, rolling window smoothing was applied to all tracked cells 

and average velocity, displacement, and distance were calculated over time. Velocity 

increased from 0.30 μm/min to 0.42 μm/min, with a clear transition occurring between 

22 and 30 hours (Figure 2.7 A). Mean squared displacement similarly increased from 

600 μm2 to a peak of over 1,000 μm2, indicating an almost 2-fold increase in cell mixing 

rate (Figure 2.7 B). Interestingly, the ratio of displacement to distance did not change 

from ~0.4 indicating that cells were not traveling more directionally despite increased 

migration velocity (Figure 2.7 C). Another measure of persistent migration, percent of 

time spent traveling in a single direction, did increase from 50% to 65% leading to an 

apparent contradiction in stimulated cell migratory behavior (Figure 2.7 D). 
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To resolve this incongruity in cell migration directionality, cell tracks were 

fractionated into 3 groups by median track velocity, with low tracks having velocities 

ranging from 0-0.15 μm/min, mid speed tracks ranging from 0.15-0.18 μm/min, and the 

highest speed tracks averaging between 0.18-0.6 μm/min (Figure 2.7 E). Initially, 80% 

of cell tracks fell into the slow or mid bins, but between 22 and 30 hours, the number of 

cells in the high-speed bin increased from 20% of the population to 35% of the 

population. Median velocities in the high-speed group increased from 0.18 μm/min to 

almost 0.23 μm/min, while mid speed cells increased only from median 0.12 to 0.15 

μm/min, while low speed cells were almost unchanged from 0.08 to 0.10 μm/min 

 

Figure 2.7 Cell behavior transitions during optoWnt stimulation 
Changes during 36 hours of optoWnt stimulation in A) migration velocity, B) mean square 
displacement, C) displacement distance ratio, and D) persistent migration. E) Stratifying cells by mean 
velocity into 3 groups of slow (blue), medium (yellow), and fast (green) cells. F) Percent population 
membership in each group over time. G) Average population velocity in each group. H) Percent of 
time spent persistently migrating in each group. 
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(Figure 2.7 F,G). Cells in the highest velocity group consistently migrated directionally 

80% of the time, with mid cells migrating 60% of the time and low cells migrating less 

than 30% of the time in a straight line (Figure 2.7 H). Hence, the transition in ensemble 

cell migration behavior during optoWnt stimulation is attributable to ~15% of cells 

converting from slow to fast migrating cells, simultaneous with increased cell velocity in 

those cells in the fastest population. These results indicate a potential new source of 

cell heterogeneity, where cell migration speed and persistence make cells more 

susceptible to Wnt stimulation and subsequent EMT transition. 

 Discussion 

Robust estimation of multicellular state requires integration of a complex network 

of inputs, from internal transcriptional regulation, cell-cell signals, extracellular matrix 

patterning, soluble factors, as well as engineered genetic and chemical perturbations 

(Gerbin et al., 2020; Hackett and Surani, 2014). Feature-rich tools to bioinformatically 

interrogate cell genetic, epigenetic, and proteomic state have been employed to 

generate highly detailed description of lineage transitions during morphogenesis, but the 

destructive nature of these endpoint assays has limited the ability to assess the kinetics 

of morphogenic processes. In this chapter, I have demonstrated several image analysis 

approaches based on live fluorescent reporter imaging, enabling analysis of cell shape, 

position, and migratory behavior on the time scales of hours to days. By generating rich 

metrics of cell and colony shape and position, I’ve shown that force aggregation of 

heterotypic hiPSC populations followed by reattachment forms well mixed, circular 

colonies that maintain the engineered population ratios over a course of several days. 
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The features derived from cell migration demonstrate that hiPSCs are highly diffusive, 

preventing pattern formation through clonal expansion alone. Pointwise estimates of cell 

position through nuclei tracking were shown to recapitulate the same cell dynamic 

profiles as complete cytoplasmic segmentation, suggesting an alternate, 

computationally cheaper approach to generate robust cell traces. Finally, the kinetics of 

a mosaic Wnt differentiation were analyzed, demonstrating that cell tracking can reveal 

pre-differentiation stratification between cell populations, as well as providing 

quantitative measures of the rate and dynamic behavior changes that occur during 

mesendodermal differentiation in hESCs. 

 Live cell tracking represents a foundational approach to generating feature rich 

descriptions of hiPSC cell behavior complementary to traditional genomic and proteomic 

analyses. The interchangeability of different components, such as nuclear vs 

cytoplasmic detection, or different algorithms to assign tracks across frames gives a 

general framework for cell dynamic analysis, where each stage can be designed to 

answer a focused set of biological questions and trading accuracy for computational 

complexity as appropriate. Further, this tracking framework can be combined with 

constitutive labeling of subcellular components (Roberts et al., 2017), lineage tracing 

reporters (Cai et al., 2013; Henner et al., 2013), or label-free imaging techniques (Guo 

et al., 2019), to yield high resolution descriptions of subcellular, multicellular, and 

multilineage dynamic processes. Through a deeper understanding of the kinetics of cell 

behavior, live cell tracking enables future mechanistic models of morphogenesis 

capable of predicting the processes that underlie tissue formation.  
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3 Deep neural net tracking of human pluripotent stem cells 

reveals intrinsic behaviors directing morphogenesis 

 Introduction 

In the developing embryo, individual cells undergo a sequence of cell fate 

transitions and migration events to cooperatively form the tissues and structures of the 

organism. Cell tracking techniques based upon high resolution imaging have been used 

to trace cell lineage and describe the emergent patterns of embryogenesis across 

multiple model organisms (Chhetri et al., 2015; Peng et al., 2016; Sulston et al., 1983), 

including the early human pre-implantation embryo (Deglincerti et al., 2016; Shahbazi et 

al., 2016). However, automated tracking of cell migration within whole embryos in vivo 

has been limited both in size to small organisms such as C. elegans (Bao et al., 2006) 

due to the difficulty of identifying and tracking cells in a crowded multicellular 

environment, and in scale due to the low throughput of 3D imaging and reconstruction 

techniques (Stegmaier et al., 2016). Researchers frequently address the problem of 

density by employing sparse labeling of cells, either by only tracing cells of a single 

lineage (Cai et al., 2013; Henner et al., 2013), or by detecting transcriptional (Lou et al., 

2014) or morphologic distinctions between cells (Stegmaier et al., 2016). Similarly, 

when analyzing cell behavior in vitro, experimental limitations such as mechanical 

confinement to one dimensional tracks (Maiuri et al., 2012), or sparse labeling (Libby et 

al., 2018) have been required to accurately track individual cells, limiting the ability of 

these systems to monitor multicellular tissue behaviors with comprehensive single cell 

resolution. 
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Self-organizing developmental processes are often initiated by small founder 

populations within a larger population of physically inter-connected cells, as in the case 

of classic Turing patterns (Turing, 1952). Similar multicellular organizational events 

have been observed in vitro with human induced pluripotent stem cell (hiPSC), 

revealing their heterogeneous differentiation potential due to global positional cues 

(Warmflash et al., 2014), cell population boundaries (Libby et al., 2018), or cell-cell 

interactions (Hookway et al., 2016). In particular, because cell fate and function are 

strongly impacted by local interactions within multicellular networks (Malmersjo et al., 

2013; Novkovic et al., 2016; White et al., 2013), coordinated morphogenic processes 

exhibit scale-free connectivity (i.e. at multiple scales, cell behavior is coordinated 

through a central hub of influential cells) (Barabási et al., 1999), indicating that small 

populations of cells, by establishing highly connected organizing centers, can exert a 

large impact on the final composition of the developing tissue (Martinez Arias and 

Steventon, 2018; Shahbazi and Zernicka-Goetz, 2018). Sparse labeling approaches 

inherently under-sample these rare populations, highlighting the need for dense cell 

tracking algorithms to definitively identify the origins and quantify the behaviors of 

organizers. 

Recent advances in machine learning, in particular in deep neural networks, have 

demonstrated superhuman performance at image segmentation, revolutionizing the field 

of computer vision (LeCun et al., 2015; Moen et al., 2019). Several classes of 

convolutional neural nets (CNNs) have been developed specifically to perform dense 

cell segmentation (Xie et al., 2016), based upon different architectures such as 



 67 

autoencoders (Su et al., 2015), U-nets (Falk et al., 2019; Ronneberger et al., 2015; Xie 

et al., 2018), or variants of the Inception architecture (Cohen et al., 2017; Szegedy et 

al., 2014). Each architecture offers distinct trade-offs between cell segmentation 

accuracy, training efficiency, noise robustness, and computational complexity, with sub-

optimal network choice leading to reduced tracking quality and poor capture of cell 

behavior. While cell tracking algorithms have historically been assessed through head-

to-head competitions (Caicedo et al., 2019; Ulman et al., 2017), the potential advantage 

of combining complementary techniques for cell localization and tracking has been 

rarely employed. 

In this study, I overcame the challenge of dense cell tracking by developing an 

ensemble of three neural networks (FCRN-B (Xie et al., 2016), Count-ception (Cohen et 

al., 2017), and a Residual U-net (Xie et al., 2018)) to localize each individual cell 

nucleus in an hiPSC colony. Nuclei displacements were then connected between 

sequential frames of a time series, enabling high spatiotemporal resolution of hiPSC 

behaviors over relevant developmental time scales of hours to days. This dense cell 

tracking pipeline revealed distinctive cell behaviors based on location within the colony, 

cell heterogeneity, and response to extracellular signaling molecules. Long-term cell 

tracking in combination with immunostaining for lineage markers, enabled tracking of 

the differentiation history of colonies with single-cell resolution. The whole-colony 

tracking and analysis pipeline revealed radially stratified shifts in cell migration speed 

and cell packing density in hiPSC colonies in reaction to changes in culture conditions. 

Changes in cellular behavior were detected at the local cell neighborhood level in 
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response to differentiation induced by externally applied morphogens, enabling real-

time identification of local organizing centers (~10-20 cells) that precede tissue-scale 

morphogenic events. By detecting rare organizational events, my computational cell 

tracking pipeline allows for a more comprehensive dynamic understanding of the 

multicellular principles of morphogenesis, which can empower more refined control of 

organoid and engineered tissue development. 

 Methods 

3.2.1 hiPSC culture 

The hiPSC cell lines Wild-Type C11 was provided by the Conklin Lab and the 

Allen institute Lamin-B1 EGFP line (AICS-0013) was provided by Coriel. Both lines were 

cultured in feeder-free media on growth factor reduced Matrigel (BD Biosciences) and 

fed daily with mTeSRTM-1 medium (STEMCELL Technologies)(Ludwig et al., 2006). 

Stem cells were dissociated to single cells using Accutase (STEMCELL Technologies) 

and passaged at a seeding density of 12,000 cells per 𝑐𝑚3. Rho-associated coiled-coil 

kinase 1 (ROCK-1) inhibitor, Y-276932 (10 𝜇M; Selleckchem) was added to the media 

for the first 24 hours after passaging to promote survival(Watanabe et al., 2007). 

Starting with a base cell line cultured in mTeSR, cells were migrated to E8 (Gibco) by 

first culturing for one passage in a 1:1 mixture of E8 and mTeSR, followed by a 

minimum of two passages in E8 before evaluation. 

3.2.2 Force aggregation of colonies 

Cell aggregates consisting of 250 cells were generated using 400x400 𝜇m PDMS 

microwell inserts in 24-well plates ( 975 microwells per well).(Hookway et al., 2016) 
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Dissociated cultures were resuspended in their respective maintenance media 

supplemented with Y-276932, mixed at the required cell ratio and concentration (250 

cells/well), added to the microwells, and centrifuged (200 RCF). After 24 hours of 

formation, aggregates were transferred to ibidi slides (12 uWell format) or optically clear 

96-well plates (Corning), coated with a substrate, and seeded at 10 aggregates/well 

or  18 aggregates/𝑐𝑚3 and allowed to spread into colonies. 

3.2.3 Substrate coating protocol 

To promote aggregate attachment, ibidi slides were coated with growth factor-

reduced Matrigel (80 𝜇𝑔/𝑚𝐿, BD Biosciences), vitronectin (10 𝜇𝑔/𝑚𝐿, Sigma Aldrich) or 

recombinant human laminin 521 (10𝜇𝑔/𝑚𝐿 rLaminin, Corning). Wells were uniformly 

coated using 125 𝜇L/well (223 𝜇L/𝑐𝑚3) and incubated at 37 C following manufacturer’s 

recommendations. Matrigel was incubated for 16 hours, while vitronectin and rLaminin 

were both incubated for 1 hour. Following manufacturer recommendation, rLaminin 

wells were additionally washed three times using cell culture grade water. 

3.2.4 Differentiation protocol 

Recombinant BMP4 (R and D Systems) was added to mTeSR at 50 ng/mL for 24 

hours, starting 24 hours after aggregate seeding to induce a trilineage 

differentiation,(Warmflash et al., 2014) followed by 24 hours of imaging in mTeSR 

alone. CHIR differentiation was performed by adding 12 𝜇𝑀 CHIR-99021 (Selleck 

Chemicals) to mTeSR for 24 hours, starting 24 hours after seeding, followed by 24 

hours of imaging in mTeSR only. Dual SMAD inhibition was performed by adding both 

10 𝜇𝑀 SB-431542 (GlaxoSmithKline) and 0.2 𝜇𝑀 LDN-193189 (Stemgent) to 
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mTeSR(Chambers et al., 2009) during force aggregation, and maintained for 72 hours 

through colony adhesion and imaging. CHIR pre-treatment during dual SMAD inhibition 

was achieved by adding 2 𝜇𝑀 CHIR-99021 to mTeSR starting 48 hours before force 

aggregation, and continued through imaging (5 total days of treatment)(Libby et al., 

2020). 

3.2.5 Time-lapse imaging 

Initial mixing studies were performed on an incubated inverted Axio Observer Z1 

(Zeiss) microscope using an AxioCam MRm (Zeiss) digital CMOS camera at 20x 

magnification (NA 0.8, 0.323 𝜇𝑚 x 0.323 𝜇𝑚 per pixel). Colony positions were mapped 

using ZenPro software and approximately 30 colonies were imaged each experiment. 

Colonies were imaged over the course of 6 hours with images taken every 5 minutes. 

All subsequent studies were performed on an incubated spinning disk confocal 

Observer Z1 (Zeiss) using a motorized filter wheel (Yokogawa) and imaged using a 

Prime 95B (Photometrics) digital CMOS camera at 10x magnification (NA 0.45, 0.91 𝜇𝑚 

x 0.91 𝜇𝑚 per pixel). Pluripotent colony studies were imaged over 6 hours with images 

taken every 3 minutes. Differentiation studies were imaged over 24 hours with images 

taken every 5 minutes. 

3.2.6 Immunofluorescence staining 

Within 15 minutes of the conclusion of imaging, slides and plates were washed 

once with PBS (125 𝜇L/well, 220 𝜇L/𝑐𝑚3), then fixed for 30 minutes with 4% 

paraformaldehyde (100 𝜇L/well, 178 𝜇L/𝑐𝑚3). Cells were permeabilized for 1 hour in 

200 𝜇L/well (357 𝜇L/𝑐𝑚3) of a blocking solution of 5% normal donkey serum, 0.3 % 
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Triton X-100 in PBS. Cells were incubated with the primary antibody for 1 hour in 100 

𝜇L/well (178 𝜇L/𝑐𝑚3) of a solution of 1% bovine serum albumin, 0.3 % Triton X-100 in 

PBS. Cells were then incubated with the secondary antibody for 1 hour in 100 𝜇L/well 

(178 𝜇L/𝑐𝑚3) of a solution of 1% bovine serum albumin, 0.3 % Triton X-100 in PBS. 

3.2.7 Human labeling of data set 

To establish baseline human performance on labeling colonies, one annotator 

labeled the first 12 frames of the time series for 8 colonies each of 9:1 (10% labeled), 

7:3 (30% labeled) or 0:10 (100% labeled) wild type:GFP+ mixed colonies (336 frames 

total). A power analysis was performed, indicating that 8 samples per condition in a 3-

way balanced design was required to distinguish between annotator performance when 

labeling different colony mixture ratios (p <= 0.05 with 80 % confidence of rejecting the 

null hypothesis). 

To produce a validated human data set, 12 pairs of random sequential frames 

from the original labeled data set were shuffled to obscure the order of the images (for a 

total of 24 images, 8 per condition). With 50 % probability, each image was horizontally 

mirrored (13 mirrored, 11 not mirrored), then with 25 % probability, each image was 

randomly rotated in increments of 90 degrees (6 unrotated, 6 rotated 90 degrees, 9 

rotated 180 degrees, 3 rotated 270 degrees). This data set was presented to seven 

independent annotators using custom software written in Python. 

A consensus segmentation was generated using k-means clustering of all 

annotations on each frame with k equal to the largest number of points selected by any 

individual annotator. Annotations were added to the consensus if they had at least 3 
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members in a cluster from unique annotators. This consensus segmentation was used 

as ground truth to calculate inter-rater reliability (IRR) for each annotator for each frame. 

Each frame to frame segmentation accuracy was measured using each annotator’s 

inter-frame reliability (IFR) on the 12 pairs of images after inverting their transformation. 

IFR was compared between all pairwise two-sided t-tests with the Bonferroni Holm 

correction for multiple comparisons. 

To evaluate the ability for this segmentation architecture to transfer learning to a 

different microscope, a second data set of confocal images was segmented by a single 

human annotator. The first two frames of each of 12 10% labeled colonies, 12 30% 

labeled colonies, and 8 100 % labeled colonies were segmented in sequence with no 

crops, flips, or rotations. Inter-frame reliability on this data set was not significantly 

different from the previous annotations, so this data set was used as a baseline for 

performance for transfer learning. 

3.2.8 Initial neural net training 

Each neural network architecture was implemented using Keras with the 

Tensorflow back end, with the input field of view for each architecture enlarged to 

256x256 to enable fully convolutional segmentation of large images. Neural networks 

were trained using two NVidea GeForce GTX 1080 GPUs. 

A training data set was generated from the initial segmentation by first splitting 

the images into 80% training, 10% test, and 10% validation folds. Then each fold was 

expanded by generating all possible 90-degree rotations and horizontal flips for each 

image in each data partition. Output point annotations were converted to cones 
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centered on the output with a radius of 4 pixels following.(Cohen et al., 2017) Input 

output pairs were generated by selecting random 256x256 crops of each input image, 

then further cropping the output image to match the output detector size (256x256 for 

Residual U-net, FCRN-A and FCRN-B, 225x225 for Count-ception, 96x96 for U-net). 

To establish the number of epochs to train each neural net before saturation, we 

trained each net for 500,000 epochs and evaluated performance on the test set at the 

10, 50, 100, 200, 300, 400, and 500 thousandth epoch using the Adam algorithm with a 

learning rate of 1e-4. Each neural net had a slightly different loss behavior, but all nets 

saturated around 100,000 epochs with highest performance on the test data at 50,000 

epochs. Each architecture was then trained three times to 100,000 epochs and 

evaluated at the 10, 25, 50, 75, and 100 thousandth epoch on the test data set. The top 

three highest performing architectures were then ensembled to maximize train and test 

score from compositing the individual net segmentations using grid search to weight 

each net over the range 0.0 to 2.0 inclusive in steps of 0.1. All nets receiver operating 

characteristic (ROC) and precision and recall were compared on the validation data set, 

and ranked according to area under the curve (AUC). 

To establish how well each network could transfer segmentations between 

imaging systems, the confocal data set was also split into 80 % training, 10 % test, 10 

% validation, and then each fold expanded by generating all possible 90-degree 

rotations and horizontal flips for each image in each data partition. Neural nets trained 

only on the inverted data set had poor performance, so each net was additionally 

trained for 25,000 epochs with evaluations on the test set at the 1, 2, 5, 10, 15 and 25 
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thousandth epochs using Adam with a learning rate of 1e-5. Weights for the ensemble 

were recalculated using grid search as described above and net performance was again 

compared to the validation data set using AUC. 

3.2.9 Cell correspondence algorithm 

To detect cells in images of arbitrary size, each neural net was convolved with a 

zero-padded image to create a final output probability mask with the same size as the 

original image, with a convolution stride of 1, excluding 5 pixels around each border. To 

convert individual neural net predictions to cell point detections, the peak detections of 

each cell center were segmented using non-local maximum suppression with a minimal 

activation level of 0.1 and a minimal distance of 3 pixels. 

Cell correspondence was found by greedily pairing the closest detected cell 

center in each frame to the next, taking the closest match in cases of multiple linkage, 

with a maximal link distance of 8 um. Since on average 5% of cells were not detected 

each frame, nearest neighbor linkage resulted in many short track fragments with single 

frame breaks that impeded long term cell tracking. To link discontinuous fragments, a 

dense mesh was imposed on colonies in space using Delaunay triangulation, and then 

holes in the mesh were detected by finding points connected to at least 3 other neighbor 

points in one frame, but missing in the next, then imputing their position using the 

average motion of the neighborhood. Finally, track fragments shorter than 15 minutes 

(3-5 frames) were removed from the data set as short fragments were found to not 

correspond to cells. 
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3.2.10 Track evaluation 

To calculate individual track metrics, each individual track’s x and y coordinates 

were first interpolated in time by a factor of 4 before smoothing using a rolling average 

with a filter width of 5 samples. Smoothed tracks were then used to calculate track 

length, total cell displacement, and velocity. Track persistence was calculated by 

analyzing the change in direction of travel at each step. A track segment was 

considered instantaneously persistent if the velocity was greater than 0.91 𝜇𝑚/𝑚𝑖𝑛 and 

did not turn more than 3 degrees/min. 

3.2.11 Spatial metrics 

Whole colony metrics were calculated using a Delaunay triangulation after 

removing links longer than 50 𝜇m (5 cell diameters away). The largest completely 

connected region was selected as the colony segmentation, and the perimeter and area 

of the whole region were calculated. To calculate estimates of density at each track 

point, the area of each triangle surrounding the point was calculated and the density 

estimated as the inverse of the average of those areas. 

To map all colonies to a uniform coordinate system, the colony perimeter was 

projected onto the unit circle by calculating the angular position of each perimeter point, 

then using the distance from that perimeter point to the center as the local radius, and 

finally by gridding these radii onto a radially uniform 500-point grid. All interior points 

were then projected onto the unit circle by normalizing each point’s radius with the 

average perimeter radius at the two nearest angular bins. 
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3.2.12 Statistical analysis of colony behavior 

Average colony spatial behavior was assessed by dividing warped colonies into 

three annular rings of equal area: the center, a middle ring, and the periphery. Average 

density, velocity, and persistence were calculated for each bin averaging over all time 

and over each colony in the experimental group. All possible comparisons for each 

group and bin were performed using two-sided t-tests with the Bonferroni-Holm 

correction for multiple comparisons with significance was assessed at p < 0.05. 

Additionally, 95 % confidence intervals around the mean were calculated using 1000 

iterations of bootstrap sampling. Effect size was assessed using Cohen’s d using 

pooled standard deviations as measured using the maximum likelihood estimator. 

 Results 

3.3.1 Manual annotation of cell migration in hiPSC colonies 

Human iPSCs form dense, multilayered colonies in vitro with indistinctive 

boundaries between cells when using common phase imaging, pan-cytoplasmic, or 

pan-nuclear staining techniques. To establish a baseline for cell localization quality, a 

series of heterogeneously labeled colonies were generated by mixing wild type hiPSCs 

with an hiPSC-derived cell line expressing a nuclear GFP fluorescent label (Lamin-

B::GFP) at ratios of 9:1 (10% labeled), 7:3 (30% labeled) or 0:10 (100% labeled). While 

maintaining the cells in pluripotency media, mixtures were force aggregated in 

microwells (Hookway et al., 2016), allowed to reattach to tissue culture plates, and then 

imaged every five minutes for six hours to generate a set of frames for annotation 

(Figure 3.1A,B). Seven individual human annotators selected the center of every GFP 
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positive cell nucleus in 12 sequential pairs of 500-cell colonies containing 10%, 30%, or 

100% Lamin-B::GFP iPSCs presented in randomized order. A spatial average of all 

seven annotation sets was calculated using k-means clustering to generate a ground 

truth human consensus segmentation for each frame (Figure 3.1 B). 

Human annotators were scored using a ratio of selected nuclei within a 5𝜇𝑚 

radius from the consensus cell, divided by the total number of expected cells, missing 

cells, and incorrectly selected cells (true positives divided by all positives plus any false 

positives). The average individual rater reliability (IRR) was 88.5% (± 7.9 %) with a 

minimum of 83% and a maximum of 93% (Figure 3.1 C). As a second comparison, the 

individuals and human consensus were rated on their ability to select the same cell 

twice in pairs of sequential frames. Average inter-frame reliability (IFR) was 85.8% (± 

7.7%) with a minimum of 75% and a maximum of 92% (consensus 90.2% ± 4.8%) 

(Figure 3.1D). To assess how increasing label density impacted cell detection, 

performance metrics were stratified according to colony labeling density (Figure 3.1E). 

As expected, human annotators exhibited maximal IRR and IFR when evaluating 

colonies with the lowest percentage of GFP+ cells (i.e. 10%), with performance 

significantly declining for colonies containing higher proportions of GFP+ cells (30% and 

100%).  
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Figure 3.1 Quality of Manual Tracking Plateaus with Increasing Density of Labeled Cells 
A) WTC11 and LaminB1::GFP cells were seeded into microwells, generating mixed aggregates with 
defined ratios of each population, then the aggregates were re-plated to form colonies. B) Annotators 
selected all cells in the colony, with high consistency in sparse regions, but lower agreement in dense 
regions. C) Individual annotator accuracy for each image was compared to the consensus for all 
images (n=23) with only annotator 7 different from any other rater (* p < 0.05, ** p < 0.01). D) 
Accuracy segmenting the same cell across sequential frames was assessed for all image pairs (n=12) 
but only annotator 7 was less repeatable than other annotators (* p < 0.05, ** p < 0.01). E) Colonies 
with 10%, 30%, and 100% LaminB1::GFP labeled cells were formed with labeled cells dispersed 
throughout the colony. F) Annotators were less accurate as compared to consensus on 100% labeled 
colonies than on 10% and 30% colonies (** p < 0.01, *** p < 0.001). G) Segmenting the same cell 
across sequential frames was also less repeatable in 100% labeled colonies vs 10%. 
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3.3.2 Ensemble deep neural network segmentation of dense hiPSC colonies 

To determine how deep neural networks compare to human segmentation 

performance, a diverse array of independent cell segmentation network architectures 

was selected from recent literature (Figure 3.2Ai) and compared to the human 

annotator baseline as well as to the prediction of an ensemble of the selected 

architectures (Figure 3.2Aii). Five different neural net architectures were compared, 

including two networks with VGG-like architecture (FCRN-A and FCRN-B (Xie et al., 

2016)), two U-net architectures (U-net (Ronneberger et al., 2015) and Residual U-net 

(Xie et al., 2018)), and an Inception-inspired network (Count-ception (Cohen et al., 

2017)). Each neural network was trained to segment the GFP images of 10%, 30%, and 

100% labeled colonies by predicting a cone-shaped probability around the human 

annotated center of each nucleus. Despite architectural differences, all neural networks 

exhibited comparable average performance, segmenting the data with a receiver 

operating characteristic (ROC) area under the curve (AUC) of 0.86 or better (Figure 

3.2B). Although no individual neural network was able to equal human segmentation of 

100% GFP-labeled colonies, an ensemble of the three highest performing networks 

surpassed human cell localization of fully-labeled colonies (Figure 3.2Aii, B-D). The 

primary variation between neural networks was due to spatial performance differences 

at the center or edge of individual colonies (Figure 3.2E). 
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Figure 3.2 Heterotypic Neural Net Ensembles Generate Human Quality Segmentations 
A) i. Individual images were segmented by one of several neural net architectures. producing 
probability maps localizing the center of each LaminB1::GFP labeled nuclei. ii. A weighted average of 
these maps from three different architectures (FCRN-B, Residual U-net, Count-ception) was used to 
produce the consensus segmentation. B) The true positive and false positive rate was calculated for 
each segmentation over the range of probability map thresholds between 0 and 1 and then the area 
under the curve (AUC) calculated for each architecture. C) Repeatability of cell detections between 
frames was calculated for the entire training set (n=3,168, p < 0.001 vs all single neural nets). D) 
Repeatability of cell detections was stratified by percent labeling and compared to the human 
annotator consensus, (* p < 0.05, 30% and 100% not significant). E) Representative image depicting 
individual and net ensemble detection ability where different colored dots indicate the peak probability 
of a cell as predicted by each neural net architecture. F) The agreement between net ensemble 
predicted labels and the human annotated data set was assessed for each label percentage (* p < 
0.05, *** p < 0.001) G) The repeatability of the net ensemble detections over time was also compared 
across label percentages (*** p < 0.001) 
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Compared to the human annotator baseline, cell segmentation performance 

varied greatly between networks, with the two U-net architectures agreeing least with 

human annotators, whereas FCRN-B and the ensemble agreed most often (Figure 

3.3A). However, ROC AUC (Figure 3.2 B) and effect size were often indistinguishable 

between similar architectures such as FCRN-A and FCRN-B (Cohen’s 𝑑 = 0.11) or U-

net and residual U-net (𝑑 = 0.02). Segmentation speed varied widely between 

architectures (from 23 to 288 milliseconds per frame), but because the ensemble 

network was composed of several of the faster architectures, generating the composite 

segmentation was only 16.0% slower than using U-net only (± 2.5% slowdown; Figure 

3.3B). In contrast to human annotators, neural net IRR and IFR segmentation accuracy 

improved with increasing label density (3.6%±0.4% and 5.7%±0.4%, Figure 3.2 F,G 

respectively). 

 

 

Figure 3.3 Inter-rater Reliability and Segmentation Times for Neural Nets 
A) Individual rater reliability for each neural net architecture compared to human annotated dataset. B) 
Average time to segment one image for each neural net architecture. annotated dataset.  
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3.3.3 Individual cell tracking of pluripotent stem cell behavior 

Individual frame segmentations were initially combined using a nearest neighbor 

linkage between frames to create cell tracks covering the center, middle, and edge 

regions of each colony (Figure 3.4 A, blue, gold, and red regions respectively), enabling 

construction of whole colony traces for all cells in 100 % GFP+ colonies over the entire 

time series (Figure 3.4 B). However, segmentation uncertainty at the individual cell 

level (e.g. a 95% accurate classifier will fail to detect a cell approximately once every 

20th frame) led to artificially shortened tracks separated by short gaps of 1-5 frames. To 

reduce random breakages, a second linking step was added to combine tails of track 

fragments across gaps of up to 5 frames, using the motion of the local cellular 

neighborhood to interpolate any missing cell positions. Neighborhood interpolation 

significantly increased track fragment lengths (from average coverage of 21.5% of the 

time series length to 33.5%, Figure 3.5 A), bringing track fragment counts closer to the 

expected cell count based on cell seeding number and extrapolated growth rate - from 

482 to 836 individual cells, with 1,000 expected (Figure 3.5 B). 



 83 
 

 

Figure 3.4 Spatio-temporal linkage of detections enables long term single cell tracking 
A) Individual detections were linked across frames forming long tracks that spanned the entire time 
series. Depiction of example colony where regions were identified as center, middle, edge (colors). B) 
Dense track map created by linking detections covering the entire time series. C) Trace plot of 
example cell velocity tracks across colony locations (colors) D) Proposed two state model of 
alternating active migration and quiescence fit from average active and stopped periods. E) 
Distribution of the ratio of total track displacement to total track distance where colored dots represent 
individual tracks from the center, middle, and edge regions and dotted lines show the theoretical 
curves for persistent migration (dark green) and random diffusion (dark red) F) Delaunay triangulation 
depicted across an example colony to calculate cell neighborhoods, G) Average inverse area of 
Delaunay triangles around each cell (cell density) depicted on the example colony, and projected onto 
the unit circle. H) Quantification of cell density and velocity across the colony region identified by 
projecting triangulated cell position onto rings of the unit circle (** p < 0.01, *** p < 0.001). 
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To understand how individual cell behavior contributes to colony spreading and 

density, I calculated persistence of cell migration by locating regions of each track 

where the direction of cell motion changed by less than 5 degrees per minute. Most cell 

tracks displayed clear binary switching between persistent migratory and stationary 

behavior (Figure 3.4C), with a mean active period of 15.7 minutes (±12.7 minutes) 

followed by a quiescent period of 9.2 minutes (±6.8 minutes), similar to the cyclic 

migration behavior observed in E. coli (Darnton et al., 2007) and eukaryotic cells 

(Devreotes and Janetopoulos, 2003) that can be attributed to the interaction between 

local polarizing cues and global inhibition of directional migration (Figure 3.4D). The 

active migration period was highest at the edge of colonies, and lowest at the center, 

while the quiescent period did not differ between colony regions (Figure 3.5 C, D). 

To measure the extent to which individual cells traveled directionally or diffused 

randomly, we calculated the ratio of track displacement-to-distance, where a value of 

1.0 represents travel in a straight line, lower values an increasingly curved trajectory, 

 

Figure 3.5 Track Interpolation and Cell Migration in Pluripotent Colonies 
A) Mean track length increases with increasing number of interpolated frames (** p < 0.01, *** p < 
0.001). B) Mean cell number increases with increasing number of interpolated frames (** p < 0.01, *** 
p < 0.001). C) Average period of active migration is higher at the edge than the center (** p < 0.01, *** 
p < 0.001). D) Average quiescent period between migrations is not different between the edge and 
center of colonies. 
 

 

 

Figure 3.5 Track Interpolation and Cell Migration in Pluripotent Colonies A) Mean track length 

increases with increasing number of interpolated frames (** p < 0.01, *** p < 0.001). B) Mean cell 

number increases with increasing number of interpolated frames (** p < 0.01, *** p < 0.001). C) 

Average period of active migration is higher at the edge than the center (** p < 0.01, *** p < 0.001). D) 

Average quiescent period between migrations is not different between the edge and center of 

colonies. 
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and 0.0 a path that ultimately returns to its origin. Although cell tracks covered a broad 

range between purely directional and random diffusion, there was no difference in 

directionality of motion between cells at the center, middle or periphery of the colony 

(Figure 3.4 E, blue, gold and red points respectively). Finally, to identify coordinated 

movement between neighboring cells, I calculated correlation between each cell’s 

velocity profile and its immediate neighbors. In the center of colonies, nearest neighbors 

had uncorrelated velocity profiles (Pearson’s R = 0.00298, std 0.0757), whereas cells 

near the periphery demonstrated much higher correlation (R = 0.118, std 0.383), 

suggesting that observed peripheral spreading results from multi-cellular collective 

migration, as has been shown previously in models of collective migration (Cui et al., 

2005; Pegoraro et al., 2016). 

To analyze the dynamic behavior of iPSC colonies, a graph structure of each 

colony was created using Delaunay triangulation (Figure 3.4 F). Based on the 

triangulation, individual cell area was estimated using the average of all triangles 

surrounding a cell within a maximum link distance threshold of 50 𝜇𝑚 (Figure 3.4 G). 

The entire colony mesh and all cell measurements, such as density or velocity, were 

mapped onto the unit circle, then separated into three rings of equal area corresponding 

to the center, middle, and periphery of the colony (Figure 3.4 G). In pluripotent colonies, 

cells in the center region were packed more densely relative to the middle and 

peripheral bins (p = 1.82*10-10 and 1.56*10-11, respectively) (Figure 3.4 H), suggesting 

local crowding effects contribute to radial inhomogeneities in cell packing in hiPSC 

colonies. In contrast, cells in the middle and peripheral bins moved faster than cells in 
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the center (p = 2.28*10-5 and 2.93-4 respectively, Figure 3.4 H), demonstrating an edge-

biased cell migratory phenotype and suggesting that colony compaction may play a role 

in hiPSC colony spreading, as has been reported for migration of other epithelial cells 

(Cui et al., 2005; Pegoraro et al., 2016). 

3.3.4 Packing and migratory behaviors of undifferentiated pluripotent stem cells 

To interrogate the heterogeneous behavior of hiPSC colonies, I compared 

standard pluripotency maintenance conditions using the CNN tracking algorithm. First, I 

compared the effect of colony size on single cell behavior by forming colonies of either 

100 or 500 cells (Figure 3.6 Ai). The average cell density and travel distance of 100-cell 

colonies were more similar to those of the edge of 500-cell colonies than to the center, 

suggesting that 100-cell colonies uniformly exhibit a similar phenotype to the edge of 

500-cell colonies (Figure 3.6 Aii). At both colony sizes, cells at the edge displayed 

higher travel distance and migration speeds than those at the center (Figure 3.6 

Aiii,iv). 100-cell colonies were more uniform in both density and cell distance traveled, 

with both measures closer to the cell density and travel values for the edge of 500-cell 

colonies. The transition in phenotype from edge-like to center-like cells as confluency 

increases may account for the observed sensitivity of hiPSC pluripotency and 

differentiation to cell plating density (Lian et al., 2013) and colony size (Warmflash et al., 

2014). 
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Figure 3.6 Basal culture conditions change cell packing density and migratory behavior 
A) i. Example images of colonies with 100 or 500 starting cells. Comparison of 100 cell and 500 cell 
colonies stratified by colony region for: ii. average cell density (*** p < 0.001), iii. average total cell 
distance traveled in 6 hours (*** p < 0.001) and iv. average instantaneous cell velocity (*** p < 0.001). 
B) i. Example images of colonies generated from cells cultured in mTeSR or E8. Comparison of 
mTeSR and E8 colonies stratified by colony region for: ii. average cell density (*** p < 0.001), iii. 
average total cell distance traveled in 6 hours (*** p < 0.001) and iv. average instantaneous cell 
velocity (not significantly different). C) i. Example images of colonies adhered to either Matrigel, 
Vitronectin, or rLaminin521 coated plates. Comparison of Matrigel, Virtonectin and rLaminin521 
colonies stratified by colony region for: ii. average cell density (*** p < 0.001), iii. average total cell 
distance traveled in 6 hours (*** p < 0.001) and iv. average instantaneous cell velocity (*** p < 0.001, 
Matrigel and rLaminin521 not significantly different)  
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Next, I explored the effect of pluripotency maintenance media on colony behavior 

by comparing the effect of passaging hiPSCs in mTeSR or E8 media (Figure 3.6 Bi). 

Colonies cultured in mTeSR were more compact with frequent formation of multi-

layered structures and low-density regions in the center of the colony, while colonies 

cultured in E8 were uniformly flat with lower cell packing density (Figure 3.6 Bii). 

Individual cells within colonies cultured in E8 traveled less overall (Figure 3.6 Biii). 

Despite structural differences, cell migration velocities between the two conditions only 

differed slightly (p = 0.012, d = 9.44*10-3), indicating that the density shift could not be 

solely attributed to differences in cell motility between the two conditions (Figure 3.6 

Biv). 

Finally, I interrogated changes in colony phenotype due to commonly used 

adhesive extracellular matrices, which have been shown to have a cell-ECM strain-

mediated effect on hiPSC morphology, behavior, and differentiation potential (Przybyla 

et al., 2016). hiPSC aggregates were allowed to adhere onto either Matrigel, Vitronectin, 

or recombinant Laminin 521 (rLaminin, Figure 3.6 Ci). Cell adhesion was much lower 

on rLaminin, with only 47.2% of aggregates adhered after 24 hours vs 91.7% on 

Matrigel and 97.2% on Vitronectin. Cells in adherent colonies on both rLaminin and 

Vitronectin had higher cell density than on Matrigel (Figure 3.6 Cii), while cells on 

Matrigel and rLaminin spread more than on Vitronectin (Figure 3.6 Ciii). Cells on 

Vitronectin had lower migration velocities, and much lower difference between center 

and edge migration velocities than either Matrigel or rLaminin (Figure 3.6 Civ). hiPSC 

behavior on Matrigel and rLaminin were very similar for both cell migration distance and 
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migration velocity, however stratifying the colonies by radius revealed that colonies 

plated on Matrigel were 11.1% less dense in the center. hiPSCs at the periphery of 

colonies grown on Vitronectin traveled only 92.7% of the distance for those on the edge 

of Matrigel or rLaminin colonies, and cells in Vitronectin colonies uniformly moved more 

slowly than those on other matrices, leading to more compact colony morphology 

overall. These results suggest that changes to substrate can subtly alter the local strain 

environment within a pluripotent stem cell colony, providing a mechanism to modulate 

peripheral migration and cell packing within hiPSC colonies. 

Through dynamic characterization of hiPSC behavior, my tracking pipeline 

revealed that hiPSCs display a wide variety of heterogeneous behaviors while 

maintaining pluripotency. In particular, cells at the periphery of colonies exhibit a distinct 

phenotype from those in the center. Media environment and substrate can modulate 

both static and dynamic aspects of the edge and center phenotype. However, static 

snapshots of colony configuration, such as cell density, do not predict dynamic cell 

behaviors such as cell migration distance or velocity. Since both static and dynamic cell 

behaviors prime hiPSCs towards particular differentiation trajectories (Glen et al., 2018; 

Libby et al., 2019; Przybyla et al., 2016; Warmflash et al., 2014), dynamic assessment 

of whole colony behavior is necessary to illuminate the scope of hiPSC heterogeneity in 

pluripotency and predict priming during differentiation. 

3.3.5 Lineage tracing of cell fate decisions during early morphogenic induction 

Changes in hiPSC behavior during early lineage specification were then 

assessed by employing the tracking pipeline to analyze differentiation protocols used to 
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induce combinations of all three germ layers. Previous work has shown that multi-

cellular annular ring patterns form during tri-lineage differentiation (Warmflash et al., 

2014), but the dynamic changes to cell migration behavior during ring formation have 

not been described. In addition, protocols to induce either mesendoderm (Lian et al., 

2013) or neuroectoderm (Chambers et al., 2009) have been reported, but whether those 

direct differentiation protocols induce similar dynamic transformations to those that 

occur during tri-lineage differentiation is not known. To monitor the transition from 

pluripotent cells to differentiating germ layers, a critical 24-hour morphogenic window 

was identified for each differentiation protocol for further exploration. 

In the BMP4-induced trilineage protocol (Figure 3.7Ai), colonies adopted a round 

morphology 24 hours after BMP4 treatment with relatively uniform velocity and cell 

density, consistent with undifferentiated colonies (Figure 3.8). Approximately 32 hours 

after induction, cells across the colony slowed in migration velocity, except for a ring of 

cells at ~50% of the colony radius which maintained similar velocity to undifferentiated 

cells (Figure 3.7Aii, Figure 3.8B). In the center of the colony, cell density was constant 

for the entire period of observation, however, the periphery of the colony also began to 

rapidly decrease in cell density about 32 hours post-induction, with a dense plateau of 

cells forming at approximately 50% of colony radius, consistent with previous reports 

(Tewary et al., 2017; Warmflash et al., 2014) (Figure 3.7Aiii, Figure 3.9A). All three 

germ lineages formed by 48 hours, with OCT4+ cells in the center ring (SOX2-, 

EOMES-, presumptive endoderm), EOMES+ cells in the middle (presumptive 

mesoderm), SOX2+ cells at the colony edge (OCT4-, EOMES-, presumptive ectoderm), 
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and the periphery of the colony negative for all three markers (Figure 3.7Aiii). The peak 

of EOMES expression corresponded with both the maximum of cell migration velocity 

and the transition from high to low cell density, suggesting that the mesoderm ring acts 

as a migratory barrier between ectoderm and endoderm, enabling the physical phase 

separation of the colony into three distinct germ layers, analogous to gastrulation 

(Shahbazi and Zernicka-Goetz, 2018; Tewary et al., 2017; Warmflash et al., 2014).  
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Figure 3.7 Whole Colony Analysis Reveals a Density Signature of Multi-lineage Differentiation  
A) i. Treatment timeline and example time course of colony treated with BMP4 with example images at 
24, 32, and 40 hours post re-seeding (HPR) and fixed and stained image of the same colony at 48 HPR. 
ii. Surface plot of temporal evolution of average instantaneous cell velocity over BMP4-treated colonies 
projected on to the unit circle (n=16 colonies). iii. OCT4, SOX2, and EOMES expression profiles and 
average cell density profile at 48 HPR projected onto the unit circle in BMP4-treated colonies (n=16 
colonies). B) i. Treatment timeline of colony treated with CHIR with example images at 24, 32, 40, and 
48 HPR. ii. Surface plot of temporal evolution of average instantaneous cell velocity over CHIR-treated 
colonies projected on to the unit circle (n=16 colonies). iii. OCT4, SOX2, and EOMES expression profiles 
and average cell density profile at 48 HPR projected onto the unit circle in CHIR-treated colonies (n=16 
colonies). C) i. Treatment timeline of colony treated with Dual SMAD inhibition at 24, 32, 40, and 48 
HPR with rosettes highlighted (white arrows). ii. Temporal evolution of average cell density inside and 
outside of rosettes (n=16 colonies). iii. OCT4, SOX2, and EOMES expression profiles and average cell 
density profile at 48 HPR projected onto the unit circle in Dual SMAD inhibition-treated colonies (n=16 
colonies). D) i. Treatment timeline of colony treated with both Dual-SMAD inhibition and CHIR pre-
treatment, at 24, 32, 40, and 48 HPR. ii. Surface plot of temporal evolution of average instantaneous 
cell velocity over DualSmad+CHIR-treated colonies projected on to the unit circle (n=16 colonies). iii. 
OCT4, SOX2, and EOMES expression profiles and average cell density profile at 48 HPR projected 
onto the unit circle in Dual SMAD+CHIR-treated colonies (n=16 colonies). 
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Treatment with the WNT activator CHIR is commonly used to induce 

differentiation of mesoderm (Lian et al., 2013). Tall, multilayered colonies (average 

61.4 ± 10.7𝜇𝑚) formed after 24 hours of 12 μM CHIR treatment, but by 48 hours a 

secondary flat epithelial ring expanded radially out from the colonies, ultimately forming 

a stratified colony similar to that induced by BMP4 (Figure 3.7Bi). Unlike in BMP4-

treated colonies, CHIR-treated cells at the colony periphery increased in migration 

speed by 50%, with individual cells at the periphery of the colony undergoing EMT and 

traveling beyond the field of view (Figure 3.10B). Similar to BMP4 treatment, the central 

region maintained cell density similar to untreated colonies, while the middle and outer 

compartments rapidly decreased in density (Figure 3.7Biii, 3.9B). OCT4, SOX2, and 

EOMES were detected in all colonies, but levels of OCT4 and especially SOX2 were 

lower with CHIR than in BMP4 treated colonies, consistent with early CHIR induction 

directing differentiation towards mesoderm and away from neuroectoderm (Figure 

3.7Biii). Again, the peak of EOMES expression occurred at ~50% of the colony radius 

 

Figure 3.8 Dynamic Behaviors of Untreated Colonies over 24 hours  
A) Treatment timeline and example time course of untreated colonies at 24, 32, and 40 HPR with fixed 
and stained image of the same colony at 48 HPR. B) Surface plot of temporal evolution of average 
instantaneous cell velocity over untreated colonies projected on to the unit circle (n=12 colonies). C) 
OCT4, SOX2, and EOMES expression profiles and average cell density profile at 48 HPR projected 
onto the unit circle in untreated colonies (n=12 colonies). 
 

 

 

Figure 3.11 Dynamic Behaviors of Untreated Colonies over 24 hours A) Treatment timeline and 

example time course of untreated colonies at 24, 32, and 40 HPR with fixed and stained image of the 

same colony at 48 HPR. B) Surface plot of temporal evolution of average instantaneous cell velocity 

over untreated colonies projected on to the unit circle (n=12 colonies). C) OCT4, SOX2, and EOMES 

expression profiles and average cell density profile at 48 HPR projected onto the unit circle in 

untreated colonies (n=12 colonies). 

 

 

 

Figure 3.12 Dynamic Behaviors of Untreated Colonies over 24 hours  
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and corresponded spatially to the transitions between low to high velocity and high to 

low density, respectively. The direct comparison of CHIR and BMP4 induced 

differentiations demonstrates that limited numbers of similar static snapshots of colony 

structure can mask distinctive cell behaviors that can indicate divergent differentiation 

trajectories of pluripotent cells. 

 

Neuro-ectoderm directed colonies remained behaviorally indistinguishable from 

untreated colonies through the first 48 hours of dual SMAD inhibition. However, starting 

at 60 hours after treatment, small rosettes of approximately 20 cells began to form ring 

structures that expanded continuously for the remaining 12 hours of imaging (Figure 

 

Figure 3.9 Cell Density Response to Morphogen Treatment  
Temporal evolution of average cell density stratified by colony region (n=16 colonies/condition, n=12 
untreated) in A) BMP4 treated colonies, B) CHIR treated colonies, C) Dual SMAD treated colonies, D) 
Dual SMAD colonies pre-treated with CHIR, and E) untreated colonies 
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3.7Ci). Between 6 and 18 rosettes formed per colony (mean 10.1 ± 2.3) with a mean 

rosette diameter of 64.2 ± 21.1𝜇𝑚. Rings consisting of regions of lower cell density 

began to appear 36 hours after plating, with ring diameter expanding at a rate of 2.58 ±

0.51𝜇𝑚/ℎ𝑜𝑢𝑟, and a mean center-to-center spacing between rings of 124.0 ± 27.5𝜇𝑚 

(Figure 3.7Cii). Average cell density was slightly higher at the periphery of colonies, 

corresponding to higher expression of both OCT4 and SOX2 (EOMES-, potentially 

undifferentiated cells), while the center of the colonies expressed high SOX2 and low 

OCT4 (presumptive neuroectoderm, Figure 3.7Ciii). EOMES expression was slightly 

elevated in the center of the colonies, but overall EOMES was rarely detected 

compared to BMP4 or CHIR differentiation. None of the three lineage markers appeared 

to be specifically localized to the ring structures. Addition of CHIR pre-treatment (Libby 

et al., 2020) to the dual SMAD neuro-ectoderm protocol completely abrogated the 

formation of rosettes (Figure 3.7Di). CHIR pre-treated neuro-ectoderm colonies were 

indistinguishable from untreated colonies in both their uniform velocities and radial 

distribution of cell densities (Figure 3.7Dii and 3.10D, 3.9D, respectively). CHIR 

treatment elevated expression of EOMES, and suppressed expression of both SOX2 

and OCT4, likely delaying the commitment of cells to neuroectoderm fates, consistent 

with its previously reported activity (Libby et al., 2020). By monitoring the trajectories of 

differentiating colonies at single cell resolution, morphogenic signatures were detected 

at both the local cell neighborhood and colony-wide levels, thereby enabling quantitative 

measurement of the comprehensive dynamics of multicellular organization and subtle 
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yet distinctive differences in cell behavior that distinguish between independent 

differentiation protocols. 

 

 Discussion 

Single cell analyses have highlighted the intrinsic heterogeneity present in virtually 

all multi-cellular populations. Complementary approaches, such as automated cell 

lineage tracing and single-cell RNA sequencing, have enabled fine-grained spatio-

temporal quantification of diverse and robust developmental processes (Bao et al., 

2006; Cai et al., 2013; Mohammed et al., 2017). Understanding the dynamic behavior(s) 

of pluripotent stem cells in response to environmental factors can similarly clarify the 

 

Figure 3.10 Cell Velocity Magnitude Response to Morphogen Treatment  
Temporal evolution of average cell velocity magnitude stratified by colony region (n=16 
colonies/condition, n=12 untreated) in A) BMP4 treated colonies, B) CHIR treated colonies, C) Dual 
SMAD treated colonies, D) Dual SMAD colonies pre-treated with CHIR, and E) untreated colonies. 
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effects of multicellular structure and environmental factors on the behavior and ultimate 

fate of individual cells within developing tissues and organs ex vivo. To assess how 

organization arises from the collective action of individual cells, I developed a dense cell 

tracking platform to analyze time lapse imaging of hiPSC colonies with high 

spatiotemporal precision. Using the resulting quantitative measures of cell behaviors, I 

identified signatures of multicellular organization at the single cell, local neighborhood, 

and whole colony scale, demonstrating that hiPSC behaviors are influenced by short 

distance interactions between neighboring cells that propagate into global effects 

throughout an entire colony of 100’s of cells and more. While many of the measured 

cell-intrinsic properties were relatively constant under pluripotent culture and early 

differentiation conditions, I found that the local cell neighborhood responds in 

characteristic ways to different external stimuli. Changes in cell-cell interactions are 

orthogonal to stem cell pluripotency (Libby et al., 2018; Przybyla et al., 2016), but can 

impact the sensitivity of hiPSCs to morphogenic cues (Libby et al., 2019), and thus may 

be a critical determinant in pre-patterning of cells to different cell fate decisions. The 

ability to specifically modulate cell-cell interactions through modification of culture 

conditions or genetic engineering provides new strategies to pre-pattern and control 

colony structure and subsequent differentiation trajectories (Libby et al., 2019). 

Furthermore, my live cell monitoring platform during early differentiation allows for non-

destructive, high-throughput assessment of regional changes in cell fate, providing a 

critical first step towards feedback-control of hiPSC differentiation. 
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In this chapter, I applied the cell tracking system to resolve human pluripotent 

morphogenesis evolution at single-cell resolution to the maintenance of hiPSCs and 

early differentiation, but it can be used more generally to quantify multicellular structure 

at scale with either static or time-lapse microscopy of any cell line. Quantitative 

comprehensive characterization of cellular neighborhood dynamics will provide a robust 

approach to interrogate the effects of multicellular interactions among a broad range of 

cell types across many species, and will provide novel metrics to assess the fidelity of 

stem cell models to recapitulate developmental processes in a tissue context ex vivo. 

Ultimately, extracting unbiased cell dynamics from in vitro time-lapse imaging enables 

new insights into the complex processes underlying multicellular organization and 

morphogenesis. 
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4 Elongation of Caudalized Human Organoids Mimics 

Neural Tube Development 

 Introduction 

Development of multicellular organisms depends on the specialization and 

regionalization of multiple cell types to form appropriate tissue structures and organs. In 

human development, this process is intertwined with the initial establishment of the 

anterior-posterior embryonic axis (Steventon et al., 2016), which is required for neural 

tube and subsequent spinal cord development. Defects in early spinal cord 

morphogenesis result in severe congenital abnormalities, such as spina bifida, 

highlighting the clinical importance of understanding human axial elongation and neural 

tube development. However, despite the advances gleaned from vertebrate models 

such as mouse and chicken, many of the molecular mechanisms and cellular behaviors 

that regulate spinal cord development remain unknown due to the difficulty of studying 

these dynamic post-implantation processes (Schiffmann, 2007; Wilson et al., 2009).  

Experiments in model organisms have revealed that the posterior neural tube is partially 

generated from a unique pool of axial stem cells called neuromesodermal progenitors 

(NMPs). NMPs are bipotent progenitors that reside at the node-streak border within the 

caudal lateral epiblast and later in the chordoneural hinge of the tail bud (Beddington 

and Robertson, 1999; Cambray and Wilson, 2007; Wilson et al., 2009; Wymeersch et 

al., 2016). The lack of a model for posterior neural tube development has prevented 

understanding specifically how NMPs regulate and coordinate the emergence of the 

posterior spinal cord in humans. However, studies in model systems and 2D 
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differentiation models implicate WNT and FGF as critical factors regulating this process 

(del Corral and Storey, 2004; Ericson et al.; Liem et al., 1995; McMahon et al., 1998). 

Discoveries from embryonic studies have enabled the robust production of neuronal 

subtypes in vitro (Butts et al., 2017; Gouti et al., 2014). In parallel, organoids capable of 

recapitulating structures reminiscent of early embryonic tissues have been developed 

as high-throughput platforms for uncovering developmental patterns (Lancaster and 

Knoblich, 2014). More specifically, protocols have capitalized on NMP differentiation 

(Turner et al., 2014) to generate neuromuscular junctions (Martins et al., 2020), mimic 

spinal cord dorsal-ventral patterning (Veenvliet et al., 2020; Zheng et al., 2019), or 

recapitulate the spatiotemporal expression profiles of gastrulation (termed “gastruloids”) 

(Beccari et al., 2018; van den Brink et al., 2020; Moris et al., 2020; Warmflash et al., 

2014). However, organoids do not perfectly recapitulate the spatiotemporal dynamics of 

gene expression and differentiation that occurs within embryos. Moreover, 

reproducibility within differentiations, between cell lines and experiments, and across 

labs remains a significant technical hurdle (Ortmann and Vallier, 2017).  

Building on the foundation of the limited existing ‘gastruloid’ models currently 

available, an organoid model was generated that reproduces many of the endogenous 

cell behaviors that generate axial elongation during human spinal cord development 

using both human embryonic stem cells (hESCs) and human induced pluripotent stem 

cells (hiPSCs). This model demonstrates extensive self-driven unidirectional growth, cell 

subtype specification that recapitulates NMP differentiation and neural tube 

morphogenesis, and regionalized gene expression profiles with distinct axial identities. 
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This robust model of neural tube morphogenesis and axial elongation enables direct 

examination of features of early human spinal cord development and patterning that 

have to this point remained unattainable. 

  Methods 

4.2.1 Human Induced Pluripotent Stem Cell Line Generation and Culture 

All work with human induced pluripotent stem cells (iPSCs) or human embryonic 

stem cells (ESCs) was approved by the University of California, San Francisco Human 

Gamete, Embryo, and Stem Cell Research (GESCR) Committee. Human iPSC lines 

were derived from the WTC11 line (Coriell Cat. #GM25256), the WTB line (Conklin Lab) 

(Miyaoka et al., 2014), and the Allen Institute WTC11-LaminB cell line (AICS-0013 

cl.210) and the human ESCs H7 and H1 (WiCell, Madison, WI). All cell lines were 

karyotyped by Cell Line Genetics and reported to be karyotypically normal. Additionally, 

all cell lines tested negative for mycoplasma using a MycoAlert Mycoplasma Detection 

Kit (Lonza). 

Human iPSCs were cultured on growth factor reduced Matrigel (Corning Life 

Sciences) and fed daily with mTeSRTM-1 medium (STEMCELL Technologies) (Ludwig 

et al., 2006). Cells were passaged by dissociation with Accutase (STEM CELL 

Technologies) and re-seeded in mTeSRTM-1 medium supplemented with the small 

molecule Rho-associated coiled-coil kinase (ROCK) inhibitor Y-276932 (10 μM; 

Selleckchem) (Ludwig et al., 2006) at a seeding density of 12,000 cell per cm2. 

The generation of the TBXT, Chordin and Noggin CRISPRi lines first involved 

TALEN mediated insertion of the CRIPSRi cassette pAAVS1-NDi-CRISPRi (Gen2) 
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(Addgene) to the AAVS1 locus of the Allen Institute WTC11-LaminB cell line. Following 

antibiotic selection of clones that received the CRIPSRi cassette, CRISPRi gRNAs were 

generated targeting Noggin and Chordin (Table 4.1) using the Broad Institute GPP Web 

Portal and cloned into the gRNA-CKB (Addgene) following the previously described 

protocol(Mandegar et al., 2016). Guide RNA vectors were nucleofected into the LaminB 

CRISPRi iPSC line using a P3 Primary Cell 96-well NucleofectorTM Kit (Lonza) and the 

4D Nucleofector X Unit (Lonza) following manufacturer’s instructions. Nucleofected cells 

were allowed to recover in mTeSRTM-1 medium supplemented with Y-276932 (10 μM) 

and then underwent antibiotic selection with blasticidin (ThermoFisher Scientific; 10 

μg/ml) following the previously published protocol (Libby et al., 2018; Mandegar et al., 

2016). Knockdown efficiency was evaluated by addition of doxycycline to the daily 

feeding media over the course of 5 days, collection of mRNA, and subsequent 

quantification of gene expression by qPCR. 

Table 4.1 CRISPRi guide sequences 

Gene Target (Symbol) Guide sequence 

Brachyury (TBXT) CCTTGGACCGAGACCTGCGA 

Noggin (NOG) CTCCTCTCCCGGGTCTACTG 

Chordin (CHRD) AAGGAGCCGCTGCCCGTTCG 

 

4.2.2 Organoid Differentiation 

Organoid differentiations were a modified protocol of a previously published 

spinal cord interneuron differentiation protocol (Butts et al., 2017). Human iPSCs were 
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seeded at 125000 cells/cm2 in mTeSRTM-1 medium supplemented with the small 

molecule Rho-associated coiled-coil kinase (ROCK) inhibitor Y-276932 (10 μM; 

Selleckchem) and small molecule GSK inhibitor CHIR99021 (2μM, 4μM, or 6μM; 

Selleckchem). Two days later, cells were singularized with Accutase (STEMCELL 

Technologies), counted using a Countess II FL (Life Technologies), and seeded into 

800μm X 800μm PDMS microwell inserts in a 24 well plate (~270 wells/insert) 

(Hookway et al., 2016). After ~18 hours, condensed organoids were transferred to 

rotary culture in 6-well plates in mTeSRTM-1 medium supplemented with Y-276932 (10 

μM; Selleckchem), CHIR99021 (2μM, 4μM, or 6μM; Selleckchem), ALK5 small 

molecule inhibitor SB431542 (10μM, Selleckchem), and small molecule BMP inhibitor 

LDN193189 (0.2μM, Selleckchem) at an approximate density of 270 aggregates per 

well unless otherwise mentioned in figure legend. Organoids were fed every other day 

for up to 17 days. Y-276932 was removed from the media at day 3. At day 5 organoids 

were transferred to Neural Induction Media (DMEM F:12 (Corning), N2 supplement (Life 

Technologies), L-Glutamine (VWR), 2μg/ml heparin (Sigma Aldrich), non-essential 

amino acids (Mediatech INC), penicillin-streptomycin (VWR), supplemented with fresh 

0.4μg/ml ascorbic acid (Sigma Aldrich) and 10ng/ml brain derived neurotrophin factor 

(BDNF, R&D Systems)) supplemented with CHIR99021 (2μM, 4μM, or 6μM; 

Selleckchem), SB431542 (10μM, Selleckchem), and LDN193189 (0.2μM, 

Selleckchem). From day 7 onwards, organoids were fed with Neural Induction Media 

supplemented with retinoic acid (10nM, Sigma Aldrich), purmorphamine (300nM, EMD 
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Millipore) and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester 

(DAPT D5942, 1μM, Sigma-Aldrich). 

4.2.3 Organoid Elongation Imaging and Quantification 

Day 5 organoids from a single 10cm dish were individually transferred using wide 

bore pipette tips into the center 60 wells of an uncoated ultra-low attachment 96-well 

plate (Corning), seeding exactly one organoid per well, with the remaining organoids 

maintained in rotary culture through day 7. Using an inverted Axio Observer Z1 (Zeiss) 

microscope with incubation (Zeiss Heating Unit XL S, maintained at 37°C, 5% CO2), all 

60 wells were imaged using an AxioCam MRm (Zeiss) digital CMOS camera at 5x 

magnification (NA 0.16, 2.6 μm x 2.6 μm per pixel). Each well was imaged in TL 

Brightfield every 20 minutes for 48 hours giving a total of 145 frames. At the end of 

imaging (day 7), 31 organoids from the parallel rotary culture were imaged at 5x to 

generate a comparison image set. 

To segment the organoids, all well images were first aligned by fitting a truncated 

quadratic curve to the average image intensity, then solving for the peak of maximum 

intensity, which was assumed to be the well center. Next, the average lighting 

inhomogeneity was calculated as the pixel-wise median of all 60 aligned well images, 

which was then subtracted from the individual aligned frames. After background 

correction, individual organoids were isolated by finding objects brighter than 0.83% of 

maximum intensity, but less than 3.0% of maximum intensity, with object size greater 

than 2,000 pixels, eccentricity greater than 0.1, and solidity greater than 40%. A 

bounding box 2 mm x 2 mm around the center of each of these objects was calculated 
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and all frames of the time series cropped to this bounding box to reduce memory usage. 

To detect the region of maximum motion in the time series, the difference image 

between each pair of sequential images was calculated, and then the pixel wise 

standard deviation was calculated over all difference images in a given region. This 

standard deviation image was then thresholded at between 0.01 and 0.03 (AU) 

depending on the remaining lighting inhomogeneity in the image, producing a ring-

shaped mask around the periphery of each organoid. Finally, using the interior of the 

mask as the organoid seed and the exterior as the background seed for the first frame, 

organoids were segmented using anisotropic diffusion (Grady, 2006), evolving the 

foreground and background seeds using the contour calculated from the previous frame 

for subsequent segmentations. Segmentation, labeling, and metrology were all 

performed using the python package sckit-image (van der Walt et al., 2014). 

Segmentations were manually inspected for accuracy, with 45 of 60 determined 

as having no or only minor flaws, with the remaining 15 excluded from automated 

analysis. Using the high-quality segmentations only, each organoid time series was then 

analyzed to examine geometry change over time. For each contour at each time point, 

we calculated contour area, contour perimeter, minimum, maximum and mean distance 

from contour center of mass to the perimeter. As additional non-dimensional measures 

of shape, we calculated the ratio of maximum to minimum radius and organoid 

circularity. Organoids were also manually classified as “extending”, “partially extending”, 

or “non-extending” by examining each video. Organoids assigned to “extending” 

exhibited at least one, and at most two large protuberances that extended at least 
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100μm from the main body. Partially extending organoids exhibited at least one, and 

often many protuberances, all of which failed to extend robustly past the 100μm 

demarcation. Non-extending organoids were any organoids that failed to generate any 

extensions over the observation period. 

4.2.4 Dissection of Extended Organoids 

Dissections were performed on a SteREO Discovery.V8 Manual Stereo 

Microscope (ZEISS) and images were taken with an EP50 Microscope Digital Camera 

(Olympus). Day 9 organoids were transferred into 12 mL of 37°C PBS in a 10 cm dish. 2 

mL of warmed PBS were also added to 2 wells of a 6-well plate. Using two fine point 

forceps, polarized elongated aggregates were immobilized and pulled or pinched apart. 

Using a p200 pipette with a cut tip, the ‘anterior’ and ‘posterior’ halves of the organoids 

were collected and transferred to separate wells of the 6-well plate. After ~25 organoids 

were dissected, the collected halves were transferred to Eppendorf tubes and 

suspended in RLT buffer (RNAeasy Mini Kit; QIAGEN) for RNA extraction. Remaining, 

whole undissected organoids were also collected and suspended in RLT buffer for 

comparison. Standard RNA extraction was performed following manufacturer 

specifications. 

4.2.5 Real Time Quantitative Polymerase Chain Reaction 

Total RNA was isolated from organoid samples using an RNAeasy Mini Kit 

(QIAGEN) according to manufacturer’s instructions. Subsequently, cDNA was 

generated using an iScript cDNA Synthesis kit (BIORAD) and the reaction was run on a 

SimpliAmp thermal cycler (Life Technologies). Quantitative PCR reaction using Fast 
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SYBR Green Master Mix (ThermoFisher Scientific) and run on a StepOnePlus Real-

Time PCR system (Applied Biosciences). Relative gene expression was determined by 

normalizing to the housekeeping gene 18S rRNA, using the comparative threshold (CT) 

method. Gene expression was displayed as fold change of each sample versus control. 

The primer sequences were obtained from the Harvard Primer bank or designed using 

the NCBI Primer-BLAST website (Table 4.2). 

Table 4.2 qPCR Primers 

Target Forward Primer Reverse Primer 

Axin 2 (AXIN2) GGC GGG ATC ACT GGC 
TC 

GGG CTC ATC TGA ACC 
TCC TC 

Brachyury (TBXT) TTT CCA GAT GGT GAG 
AGC CG 

CCG ATG CCT CAA CTC 
TCC AG 

Brachyury (TBXT) TTG GCC TTG GAC CGA 
GAC CTG CGA 

AAA CAG CGT CCA GAG 
CCA GGT TCC 

Caudal type homeobox 
2 (CDX2) 

GCA GCC AAG TGA AAA 
CCA GG 

TTC CTC TCC TTT GCT 
CTG CG 

Chordin (CHRD) TATGCCTTGGACGAGACGT
G 

ATGTTCTTGCAGCTGAC
CCT 

Cytochrome P450 
family 26 subfamily A 
member 1 (CYP26A1) 

ATG AAG CGC AGG AAA 
TAC GG 

AGG AGT CGT GCA GGT 
TAG AGA 

Engrailed Homeobox 1 
(EN1) 

CGCCCAGTTTCGTTTTCGT
T 

GCAGAACAGACAGACC
GACA 

Fibroblast growth factor 
8 (FGF8) 

CCTTCGCAAAGCTCATCGT
GG 

CACAATCTCCGTGAAGA
CGCAG 

GATA Binding Protein 6 
(GATA6) 

TCT CCA TGT GCA TTG 
GGG AC 

AAG GAA ATC GCC CTG 
TTC GT 
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Table 4.2 continued 

Target Forward Primer Reverse Primer 

Hes Famil y BHLH 
Transcription Factor 1 
(HES1) 

TCAACACGACACCGGATAA
AC 

GCCGCGAGCTATCTTTC
TTCA 

Homeobox A1 (HOXA1) CTA CCA GAC TTC CGG 
GAA CC 

CCC ACC ACT TAC GTC 
TGC TT 

Homeobox A11 
(HOXA11) 

GGA AGA GGG CTG CAA 
ATC CT 

CAC CTC AGG GAA CAG 
TCC AC 

Homeobox A3 (HOXA3) ATG CAA AAA GCG ACC 
TAC TAC G 

TAC GGC TGC TGA TTG 
GCA TTA 

Homeobox A6 (HOXA6) TCC CGG ACA AGA CGT 
ACA C 

CGC CAC TGA GGT CCT 
TAT CA 

Homeobox A9 (HOXA9) GTC CAA GGC GAC GGT 
GTT T 

CCG ACA GCG GTT CAG 
GTT TA 

LIM Homeobox 2 
(LHX2) 

AAGTTCAGGCGCAACCTCT
T 

AAGACGGACGTCACAGT
TGG 

LIM Homeobox 5 
(LHX5) 

GTGCAAAGACGACTACCTG
AG 

CGGTCCGTACAGGATGA
CAC 

Noggin (NOG) GCTGCGGAGGAAGTTACAG
A 

ACGAGCGCTTACTGAAG
CAG 

Oligodendrocyte 
Transcription Factor 2 
(OLIG2) 

CGCATCCAGATTTTCGGGT
C 

AAAAGGTCATCGGGCTC
TGG 

RNA, 18S Ribosomal 5 
(RNA18S5, 18S) 

CTC TAG TGA TCC CTG 
AGA AGT 

ACT CGC TCC ACC TCA 
TCC TC 

RNA, 18S Ribosomal 5 
(RNA18S5, 18S) 

CTTCCACAGGAGGCCTACA CTTCGGCCCACACCCTT
AAT 

 SRY-box 2 (SOX2) AAC CAG CGC ATG GAC 
AGT TA 

CGA GCT GGT CAT GGA 
GTT GT 

SRY-box 2 (SOX2) CCG TTC ATC GAC GAG 
GCT AA 

TAA CTG TCC ATG CGC 
TGG TT 
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Table 4.2 continued 

Target Forward Primer Reverse Primer 

T-box transcription
factor 6 (TBX6)

CATCCACGAGAATTGTACC
CG 

AGCAATCCAGTTTAGGG
GTGT 

Visual System 
Homeobox 2 (VSX2, 
CHX10) 

CGGCGACACAGGACAATCT
T 

CCTGTATCCTGTCTTCC
GGC 

Wnt family member 3 
(WNT3) 

CAC AAC ACG AGG ACG 
GAG AA 

GCT TCC CAT GAG ACT 
TCG CT 

Due to low RNA abundance in the dissected organoids, PreAmp Master Mix 

(FLUIDIGM) was used to amplify cDNA. Briefly, 20ng of cDNA were amplified per 5μL 

reaction volume for 15 cycles on a SimpliAmp thermal cycler (Life Technologies). 

Amplified cDNA was diluted 5-fold using nuclease free water. 1μL of amplified diluted 

cDNA was used for each 20μL quantitative PCR reaction using Fast SYBR Green 

Master Mix (ThermoFisher Scientific) and run on a StepOnePlus Real-Time PCR 

system (Applied Biosciences), following normal qPCR methods described above. 

4.2.6 Histology, Immunocytochemistry and Imaging 

Organoids were fixed with 4% paraformaldehyde (VWR) for 40 minutes, washed 

three times with PBS. Organoids to be used for histology were embedded in HistoGel 

Specimen Processing Gel (Thermo Fisher) prior to paraffin processing. Parafin 

embedded samples were sectioned in 5m sections, and subsequently stained for H&E. 

For immunofluorescent staining, slides were deparaffinized as for H&E staining. Epitope 

retrieval was performed by submersing slides in Citrate Buffer pH 6.0 (Vector 

Laboratories) in a 95°C water bath for 35 minutes. Samples were permeabilized in 0.2% 
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Triton X-100 (Sigma-Aldrich) for 5min, blocked in 1.5% normal donkey serum (Jackson 

Immunoresearch) for 1 hour, and probed with primary antibodies against SOX2, PAX6, 

TBXT, NES, TUBB3, and CDH2 (Table 4.3) overnight at 4°C and secondary antibodies 

for 1 hour at room temperature. Nuclei were stained with a 1:10000 dilution of Hoechst 

33342 (Thermo Fisher) included with secondary antibodies. Coverslips were mounted 

with anti-fade mounting medium (ProlongGold, Life Technologies) and samples were 

imaged on a Zeiss Axio Observer Z1 inverted microscope equipped with a Hamamatsu 

ORCA-Flash 4.0 camera. 

Table 4.3 Antibodies 

Gene Target (Symbol) Species Company (cat. #) Dilution 

SRY-box 2 (SOX2) mouse Abcam (ab79351) 1:400 

Paired Box 6 (PAX6) rabbit ThermoFisher 
Scientific (42-6600) 

1:400 

Brachyury (TBXT) goat ThermoFisher 
Scientific (PA5-
46984) 

1:400, 1:300 

Nestin (NES) mouse Santa Cruz (SC-
23927) 

1:400, 1:200 

Hoescht DNA stain NA ThermoFisher 
Scientific (62249) 

1:10000 

Tubulin Beta 3 Class III 
(TUBB3/TUJ1) 

rabbit Biolegend (802001) 1:500 

N-cadherin (CDH2) rabbit Abcam (ab76057) 1:400 

Collagen type IV goat EMD Millipore 
(AB769) 

1:75 

Tight junction protein ZO-
1 (TJP1/ZO1) 

Mouse Invitrogen (33-9100) 1:200 

Caudal-Type Homeobox 2 
(CDX2) 

Goat R&D Systems (AF-
1979) 

1:100 
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Table 4.3 continued 

Gene Target (Symbol) Species Company (cat. #) Dilution 

phospho-SMAD1/5 
(pSMAD1/5) 

Rabbit Cell Signaling 
Technology (41D10) 

1:800 

Oligodendrocyte 
Transcription Factor-2 
(OLIG2) 

Rabbit Abcam (ab9610) 1:400 

Left-Right Determination 
Factor-1 (Lefty1) 

Rabbit ThermoFisher 
Scientific (PA5-
19507) 

1:1000 

NODAL Rabbit ThermoFisher 
Scientific (PA5-
23084) 

1:200 

Mesenchyme Homeobox 
MEOX1 

Mouse ThermoFisher 
Scientific (TA-
804716) 

1:400 

Fibronectin Mouse Sigma-Aldrich 
(F6140)  

1:400 

Phospho-Histone H3 
(Ser10) 

Rabbit Cell Signaling 
Technology 
mAb #3377 

1:1600 

4.2.7 Whole Mount Lightsheet Imaging 

4% paraformaldehyde-fixed paraffin-embedded samples (see “Histology, 

Immunocytochemistry, and Imaging”) were permeabilized with 1.5% Triton X-100 

(Sigma-Aldrich) for 1 hour, blocked in 5% normal donkey serum (Jackson 

Immunoresearch) for 1 hour, and probed with primary and secondary antibodies (Table 

4.3) overnight. Nuclei were stained with a 1:10000 dilution of Hoechst 33342 (Thermo 

Fisher) included with secondary antibodies. Samples were then embedded in 1.5% low 

melt agarose (BioReagent) and drawn up into ~1mm imaging capillaries and 
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subsequently imaged on the Zeiss Z.1 Light sheet Microscope equipped with two 

PCO.edge SCMOS cameras at 5X and 20X (NA 1.34, aqueous objective). 

4.2.8 Flow cytometry 

WTC and H1 cells were pretreated with either 2, 4, or 6 μM CHIR for 2 days, 

then dissociated from tissue culture plates with Accutase (STEMCELL Technologies) 

and washed with PBS. Similarly, the LBC-TBXT knockdown cells were pretreated with 

between 0 and 5 days of doxycycline concurrent with a final 2 days of 4 μM CHIR 

treatment, then dissociated and washed as described above. Cells were fixed for 20 

minutes with 4% paraformaldehyde and washed 3x for 3 minutes with PBS. Samples 

were permeabilized in 0.5% Triton-X-100 (Sigma-Aldrich) for 30 minutes, then blocked 

in 1% normal donkey serum (Jackson Immunoresearch) for 1 hour, and probed with 

primary and secondary antibodies (Table 4.3) overnight. Samples were run on a LSR-II 

analyzer (BD Biosciences). Singlets were first identified by gating on forward scatter to 

side scatter ratio, then samples were gated into SOX2+/- and TBXT+/- using single 

stained controls for each cell line, then samples were assessed for percent 

SOX2+/TBXT+ cells. Analysis was conducted with a minimum of 20,000 events per 

sample. 

4.2.9 Bulk RNA Sequencing Sample and Library Preparation 

Whole organoids differentiated in either 0μM CHIR or 4μM CHIR at days 1, 3, 5, 

7, and 10 of the differentiation protocol (n=3 per condition per day) were lysed with RPE 

buffer with 5 mM 2-mercaptoethanol, and RNA was extracted using the RNeasy Mini Kit 

(Qiagen) and quantified using the NanoDrop 2000c (ThermoFisher Scientific). RNA-seq 
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libraries were generated using the SMARTer Stranded Total RNA Sample Prep Kit 

(Takara Bio) and sequenced using NextSeq500/550 High Output v2.5 kit to a minimum 

depth of 25 million reads per sample. The sequences were aligned to GRCh37 using 

HiSat2 (Kim et al., 2015), reads were quantified using the featureCounts tool in the 

subread package (Liao et al., 2014), and differential expression between 0μM and 4μM 

CHIR-treated organoids was assessed at each day using the edgeR differential 

expression pipeline with limma/voom normalization (Law et al., 2014). Longitudinal 

differential expression was assessed for each CHIR condition using the “l” normalization 

algorithm (Zhang et al., 2019). Raw data is available at Geo under the accession 

number GSE155382. 

4.2.10 Single Cell RNA Sequencing Sample and Library Preparation 

Multiple organoid samples were combined and processed together using the 

MULTI-Seq technology (McGinnis et al., 2018). Organoids were singularized using 

Accutase (STEMCELL Technologies) and washed with cold PBS. Cells were 

resuspended in PBS with lipid-modified Anchor and Barcode oligonucleotides (gift from 

Zev Gartner, UCSF) and incubated on ice for 5 minutes. A co-Anchor oligo was then 

added in order to stabilize membrane retention of the barcodes incubated for an 

additional 5 minutes on ice. Excess lipid-modified oligos were quenched with 1% BSA in 

PBS, washed with cold 1% BSA solution, and counted using a Countess II FL (Life 

Technologies). Single cell GEMs and subsequent libraries were then prepared using the 

10X Genomics Single Cell V2 protocol with an additional anchor specific primer during 

cDNA amplification to enrich barcode sequences. Short barcode sequences (approx. 
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65-100bp determined by Bioanalyzer) were purified from cDNA libraries with two

sequential SPRI bead cleanups. Barcode library preparation was performed according 

to the KAPA HiFi Hotstart (Kapa Biosystems) protocol to functionalize with the P5 

sequencing adapter and library-specific RPIX barcode. Purified ~173bp barcode 

fragments were isolated with another SPRI bead cleanup and validation by Bioanalyzer. 

Raw data is available at Geo under the accession number GSE155383. 

The sample library was sequenced on an Illumina NovaSeq yielding an average of 

41,112 reads per cell and 6,444 cells. The MULTI-Seq barcode library was sequenced 

on an Illumina NextSeq yielding an average of 9,882 reads per barcode and enabling 

sample assignment for 4,681 of 6,124 unique UMIs detected (76.4% recovery), using 

the demultiplexing code provided by the MULTI-Seq protocol (McGinnis et al., 2018). 

4.2.11 Genome Annotation, RNA-seq Read Mapping, and Estimation of Gene and 

Isoform Expression 

The sample library was aligned to the human GRCh38 reference genome using 

Cell Ranger v1.2.0 (10x Genomics). Gene expression levels were assessed using the 

Seurat v3.0.0 analysis pipeline (Butler et al., 2018). First cells were removed with fewer 

than 200 detected genes, fewer than 1,000 total detected transcripts, or which had 

greater than 10% mitochondrial gene expression. Next, expression levels were log 

normalized, and the top 2,000 variable genes calculated using the VST algorithm. The 

top 20 principal components were used to group cells into 2 clusters using a resolution 

of 0.3. Finally, top markers were detected for each cluster by detecting the top 

differentially expressed genes between both clusters, where at least 25% of cells in the 



121 

cluster expressed the gene and the gene was expressed at least 0.25 log2 fold-change 

different from the remaining population. Clusters and gene expression were visualized 

on a two-dimensional UMAP projection of the first 15 principal components. 

4.2.12 Cluster Analysis 

To assign cluster identity, the top markers for each cluster were tested for GO 

term enrichment using the biological process “enrichGO” function in the R package 

“clusterProfiler” v3.12 (Yu et al., 2012). In addition, differentiation maturity in each 

cluster was assessed by examining expression level of panels of early neuroectoderm 

markers, proliferation markers, markers of neuron fate commitment, and markers of cell 

types present in neural tube formation and axial extension (Tanabe and Jessell, 1996). 

Finally, to assess anterior-posterior position of each, panels of HOX genes were 

examined to assign rough position of each cluster along the head-tail axis (Bel-Vialar et 

al., 2002; Carpenter, 2002; del Corral and Storey, 2004). 

4.2.13 Quantification of EdU and PH3 Localization 

Sections stained for DAPI, EdU and ph3 were segmented by detecting the peaks 

of DAPI staining for each section using non-maximum suppression. The exterior of each 

section was then segmented by grouping DAPI+ cells into spatially contiguous clusters 

consisting of at least 5,000 pixels and which touch the image border in less than 1% of 

their total area. The exterior contour was then calculated for each region and fit to an 

elliptical model by total least squares (Halır and Flusser, 1998). All detected cells were 

projected onto the ellipse major axis, which was then normalized by total length. Where 

more detections fell on the left half of the major axis, the coordinates were reversed 
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such that the right half of each projected section always contained the majority of 

detections. Detected cells that corresponded to ph3 or EdU fluorescence at 20% or 

more above the background level outside of any section were counted as positive 

detections. A 15-bin histogram was then used to calculate percentage of projected cells 

for each day at each point along the semi-major axis, and then gaussian kernel density 

estimation was used to produce the empirical distribution. Linear and quadratic models 

were fit using ordinary least squares over the total population. 

4.2.14 RNAScope 

In situ hybridization for HOXB1, HOXC6, HOXB9 (probe information in Table 4.4) 

was performed on sections of 4% paraformaldehyde-fixed paraffin-embedded samples 

(see “Histology, Immunocytochemistry, and Imaging”) using the RNAscope Multiplex 

Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics) and following the protocol 

outlined in User Manual 323100-USM. Sections were imaged on a Zeiss Axio Observer 

Z1 inverted microscope equipped with a Hamamatsu ORCA-Flash 4.0 camera. 

Table 4.4 RNAscope Probes 

Gene Target (Symbol) Channel 

HOXB1 C2 

HOXC6 C1 

HOXB9 C3 
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4.2.15 Statistical Analysis 

Each experiment was performed with at least three biological replicates. Multiple 

comparisons were used to compare multiple groups followed by unpaired T-tests (two 

tailed) between two groups subject to a post-hoc Bonferroni correction. In gene 

expression analysis, three replicates were used for each condition, and all gene 

expression was normalized to control wildtype populations followed by unpaired T-tests 

(two tailed). Significance was specified as P-values< 0.05 unless otherwise specified in 

figure legends. All error bars represent standard error of the mean (SEM) unless 

otherwise noted in the figure legend. 

 Results 

4.3.1 Wnt Agonism Induces Emergence of Axial Extension of Neuronal 

Organoids 

Because caudalization of the spinal cord and generation of NMPs are critically 

dependent on Wnt signaling (Henrique et al., 2015; Wilson et al., 2009; Yamaguchi, 

2001), increased canonical Wnt signaling was paired with a previously-described 

hindbrain differentiation protocol (Butts et al., 2017) to attempt to produce spinal cord 

cell populations. Human induced pluripotent stem cells (hiPSCs) were pretreated for 48 

hours with the Wnt small-molecule agonist CHIR99021 (CHIR; 4 μM) before organoid 

formation (Figure 4.1 A,B). Organoids were generated by aggregating singly-

dissociated cells in non-adherent pyramidal inverted wells (3,000 cells/well) followed by 

rotary suspension culture in 6-well plates (Hookway et al., 2016). Aggregation was 

considered day 0 of differentiation (Figure 4.1 A). After 5 days in suspension culture, 
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pronounced singular extensions emerged from the CHIR-pretreated organoids (Figure 

4.1 C). Elongated organoids were continuous, with linear striations extending 

longitudinally from a radially symmetric anterior aggregate. Histological analysis 

revealed multiple internal elongated epithelial compartments separated by regions 

devoid of cells (Figure 4.1 C). To ensure elongation was not due to organoid fusion in 

bulk culture, organoids were imaged continuously over 48 hours which revealed robust 

elongation in 83% of imaged wells as measured by axis ratios above 1.6 at the end of 

the time-course (Figure 4.1 D, Figure 4.2 A-B). Because NMPs can be generated in 

vitro in as little as 48 hours (Gouti et al., 2014), CHIR treated organoids were examined 

to determine if they generated a detectable population of NMPs immediately following 

aggregation. Indeed, SOX2(+) TBXT(+) NMPs were present in CHIR organoids at day 

0, whereas in the absence of CHIR treatment, organoids lacked NMPs and did not 

extend (Figure 4.3 A,B). To ascertain whether extensions resulted from polarized 

populations of proliferating cells, EdU incorporation and phospho-histone H3 presence 

were measured on days 6, 7 and 9 of differentiation (Figure 4.4 A). A two-hour EdU 

pulse labeled >50% of cells in extending organoids, where proliferation was observed 

increasingly at the outer edges of extending aggregates, however polarized cell-division 

was not recapitulated when examining actively dividing cells via phospho-histone H3 

(Figure 4.4 B). Furthermore, extensions occurred in organoids of various sizes (Figure 

4.5 B) and extended more robustly when cultured at low density (Figure 4.5 A), 

suggesting that density-mediated signaling parameters, such as paracrine effects or 

nutrient availability, likely play a role in inducing and maintaining axial extensions, 



 125 

similar to the documented role of glycolysis in vertebrate axial elongation(Oginuma et 

al., 2020). Overall, an organoid model was generated that robustly extends across a 

variety of culture conditions due to the early presence and size of SOX2(+) TBXT(+) 

NMPs that seem to account for the generation of the elongation phenotype.  
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Figure 4.1 Spatiotemporal characterization of elongating organoids 
A-B) Schematic of experimental set up and differentiation protocol. C) Brightfield and histological 
images of extending organoids. D) (LEFT) Frames from video time-course tracking organoid 
extensions in static 96 well plate culture where red outline defines measurements taken. (RIGHT) 
Quantification of ellipse axis ratios from day 5 to 7 of extending (blue) and non-extending (grey) 
organoids. Solid lines represent the mean ratio (dark color) with 95 percent confidence interval (light 
color); n= 2 non-elongating, n= 15 elongating.  E) Immunofluorescence images at day 5 of 
differentiation from paraffin sections in extending organoids examining CDX2 and TBXT localization. 
F) Immunofluorescence images at day 10 of differentiation from paraffin sections in extending 
organoids examining axis and developmental patterning markers. G) Fluorescence image of TBXT 
streak traveling down the length of organoid G’) 3D reconstruction cross section of the posterior of 
extending organoids based on light-sheet microscopy displaying TBXT+ streak. H-I) Optical sections 
from light-sheet microscopy of elongating (top) and spherical (bottom) organoids stained for Nestin 
and bIII-Tubulin (TUBB) or COL IV and ZO1.  
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Figure 4.2 Time lapse quantification of organoid elongation 
A) Number of extending verse non-extending aggregates in 4uM CHIR conditions (n=18). B) 
Quantification of area, perimeter, circularity, maximum, minimum, and average radius lengths of 
extending (blue) and non-extending (grey) aggregate videos. (mean value (dark line) with 95 percent 
confidence interval (light color)). 
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Figure 4.3 CHIR treatment results in extensions and increase of TBXT expression 
A) Stereoscope images of differentiation performed with and without CHIR in the WTC hiPSC line. B) 
Histological sections of WTC organoids exposed to 0uM CHIR and 4uM CHIR C) Immunofluorescence 
images of TBXT and SOX2 in CHIR-treated and non-treated organoids. 
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Figure 4.4 Cell proliferation occurs throughout the extending organoid 
A) Immunofluorescence images of EdU incorporation and phospho-histone 3 (PH3) localization in 
extending organoids taken from paraffin sections. B) TOP: Segmentation of organoid sections 
showing LEFT) ph3 staining, MIDDLE) segmentation of nuclei by DAPI staining, RIGHT) a total least 
squares fit of the segmentation contour with the major axis superimposed. BOTTOM: Lineplots for 
PH3 or EdU expression along the normalized semi-major axis of aggregates at day 6, 7, and 9. Linear 
and quadratic least squares fits of PH3 and EdU expression along the normalized semi-major axis for 
all days. 
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4.3.2 Organoids Display Markers of Tissue and Cellular Polarity 

Next, it was determined whether extending organoids generated an anterior-

posterior (AP) axis. The posteriorly expressed gene CDX2 (Beck et al., 1995) was 

detected in a polarized manner from day 5 to day 10 of differentiation (Figure 4.1 E,F). 

Furthermore, within extending organoids, clusters of NODAL- and LEFTY-positive cells 

were observed at day 10, suggesting the presence of an organizer-like population 

(Figure 4.1 F, Figure 4.6 B). In fact, multiple clusters of NODAL-positive cells were 

present in organoids with multiple extensions (Figure 4.6 A). In day 10 extending 

organoids, compartments of cells expressing the ventral spinal cord marker, OLIG2, 

 

Figure 4.5 Organoid culture density changes morphology of extensions 
A) Stereoscope images of organoids grown at high (135 aggregates/ml) or low (23 aggregates per ml) 
densities.  A’) Histological stains on paraffin sections of organoids at day 10 of differentiation in high 
(left) vs low (right) density culture. B) Differentiations conducted in the WTC hiPSC line starting with 
different aggregate sizes. 
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lined the epithelial cysts, and a polarization of pSMAD1/5 expression was detected 

across the organoid (Figure 4.1 F). These observations suggest that the extending 

organoids exhibit characteristics of the emergent populations that establish the 

embryo’s anterior-posterior axis.  

 

To understand how differences in the identity and spatial distribution of NMP 

populations in extending organoids contributed to differential organoid morphologies, 

extending and non-extending organoids were imaged via light-sheet microscopy at day 

7 of differentiation (Figure 4.1 G-G’, Figure 4.6 C). In most extending organoids, the 

 

Figure 4.6 Gene expression distribution within extensions. 
A) Immunofluorescence staining of an extending organoid at day 10 of differentiation for NODAL and 
pSMAD1/5. B) Immunofluorescence staining of an extending organoid at day 7 of differentiation for 
LEFTY1. C) 3D reconstructions of light-sheet microscopy images of day 7 extending and non-
extending organoids stained for TBXT and SOX2. 
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TBXT(+) population formed a streak along the extension and accumulated at the end of 

the extension, reminiscent of the notochord and previous gastruloid reports (Beccari et 

al., 2018). Additionally, regions of SOX2(+)TBXT(+) NMPs were adjacent to the 

TBXT(+) streak (Figure 4.1 G). In contrast, TBXT(+) cells in non-extending organoids 

were sparsely distributed across the surface of the spherical organoid with no clearly 

identifiable regions of SOX2(+)TBXT(+) co-expression. At day 10, both extending and 

non-extending organoids contained cells expressing the neuronal progenitor markers 

Nestin and beta 3-tubulin, indicating that the majority of cells differentiated to a neural 

fate (Figure 4.1 H, Figure 4.7 B). However, in the extending organoids, the neural-

committed cells organized into distinct compartmentalized layers surrounding lumens 

within the extensions. 
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Figure 4.7 Apical-Basal polarity in extending organoids over time 
A) Optical section from light-sheet imaging of extending stained for COL IV and ZO1 (left). 3D 
reconstruction showing internal ring of basement membrane within the posterior extensions (right). B) 
Immunofluorescence of paraffin sections of extending organoids at day 7 and day 10 of differentiation. 
B’) Immunostaining of paraffin sections of extending organoids at day 7 and 10 of differentiation for 
markers of basement membrane (COL IV) and tight junctions (ZO1). 
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 Cell polarity was examined by staining for collagen IV (COL IV), a marker of the 

basement membrane, and zona occluden-1 (ZO-1), a marker of tight junctions at 

cellular apical domains (Figure 4.1 I, Figure 4.7 A). An increase in basement 

membrane deposition and cell polarization was observed between days 7 and 10 of 

differentiation in extending organoids (Figure 4.7 B’). After 10 days, ZO-1 was apparent 

at the apical domain of cells in the outer epithelial layers of the extensions, as well as in 

cells facing the internal lumens. Distinct layers of basement membrane marked by 

collagen IV were observed basally to ZO1, forming a bilayer between lumens and 

organoid exterior (Figure 4.1 I, Figure 4.7 A,B’). Bilayers of cells were also apparent in 

non-extending organoids, but to a lesser extent since the internal lumens were much 

smaller. Overall, these patterns indicate that extending organoids undergo tissue 

polarization via axial extensions that consist of polarized sheets of neuroepithelial cells 

that generate organized basement lamina.  

4.3.3 Organoids Display Regionalized HOX Patterning 

To examine transcriptional differences between the two poles of extending 

organoids, the “anterior”, or main organoid body was manually dissected from the 

“posterior”, or extending portion, of day 9 organoids (Figure 4.8 A,B) and compared via 

qPCR. Of the genes tested, only HOXA11, a marker of the lumbar region, displayed a 

significant difference in expression between the anterior and posterior fragments, likely 

because of high variability between replicates (Figure 4.8 C). To gain a more nuanced 

understanding of HOX expression in extending organoids, transcripts marking hindbrain 
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(HOXB1), brachial (HOXC6), and thoracic (HOXB9) regions of the neural tube were 

examined via RNAscope at days 7 and 10 (Figure 4.9 A, 4.10 A). While non-extending 

organoids expressed both hindbrain and brachial HOX genes, their expression was 

distributed radially, and the expression of HOXB9 was delayed relative to extending 

organoids (Figure 4.10 B). In contrast, HOXB1 (hindbrain) was enriched in the central 

mass of extending organoids, and HOXC6 (brachial) and HOXB9 (thoracic) were 

enriched in the extensions (Figure 4.9 A). Interestingly, HOXC6 and HOXB9 often 

overlapped at day 7 within extending organoids. However, by day 10 HOXB9 was more 

pronounced than HOXC6 in the extension regions, suggesting a transition to a more 

posterior fate. These data indicate that while organoid extension is not a requirement for 

posterior HOX expression, extension enables the stratification of distinct HOX domains. 

 

 

Figure 4.8 Dissections of extending organoids to isolate anterior and posterior regions. 
A) Schematic and example of anterior vs posterior regions. B) Stereoscope images of organoids after 
isolation of anterior or posterior region. C-C’) qPCR data of HOX genes and region-specific genes in 
anterior vs. posterior of organoids (p < 0.05).  
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Figure 4.9 Gene expression differences within extending organoids. 
A) RNAscope of sectioned organoids cultured at low density with probes for HOX genes marking 
different regions of the spine at day 7 of differentiation (arrows mark anterior (A) and posterior (P) axis 
of organoids). B) Heatmap of HOX gene expression in organoids with and without CHIR treatment 
from bulk RNAseq C) Line graphs of gene expression change in markers associated with Gastrulation, 
Neural, Mesodermal, and Caudal Epiblast fates (grey line indicates 0uM CHIR and blue line indicates 
4uM CHIR; solid line indicates mean, shading represents 95% confidence bounds; axis displayed are 
log2 counts). D) Significant (p < 0.05) Gene Ontology classifications derived from the most 
differentially upregulated genes in extending organoids from bulk RNAseq. E) UMAP of n=789 cells 
from extending organoids  exposed to a lower concentration of CHIR (2μM) at day 10 of differentiation 
from single-cell RNAseq. Gene Ontology terms assigned to identified clusters. F) UMAPs showing 
cells expressing PAX6 and MEOX1. Color scale indicates a normalized increase in log2 fold change 
from min expression to max expression of the respective gene. G) Heat map showing normalized 
expression levels of genes associated with spinal neuron specification, caudalizing factors, and 
mesoderm specification from single-cell RNAseq.  
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4.3.4 Developmental Timing and Maturation of Organoids 

To obtain a more detailed picture of HOX gene expression over time, bulk RNA 

sequencing was performed across 5 timepoints, comparing organoids with and without 

CHIR treatment. As previously observed, timing and extent of HOX expression varied 

between the two conditions. Non-extending organoids began to express detectable 

HOX transcripts at Day 7 and adopted a hindbrain identity upon the experiment’s 

conclusion at day 10 (Figure 4.9 B). In contrast, extending organoids expressed both 

hindbrain and cervical HOX transcripts as early as day 3, with a notable upregulation in 

thoracic HOX genes by day 10. This, in conjunction with the RNA-scope data, suggests 

that the spatiotemporal onset of HOX expression in extending organoids recapitulates 

the progression of anterior-to-posterior elongation of in vivo development. 

 

Figure 4.10 Limited segregation of HOX genes in non-extending organoids 
A) RNAscope of sectioned extending organoids with probes for HOX genes marking different regions 
of the spine at day 10 of differentiation. B) RNAscope of sectioned non-extending organoids with 
probes for HOX genes marking different regions of the spine at day 7 and 10 of differentiation. 
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Analysis of the top divergent genes between the extending and non-extending 

organoids (Figure 4.11 A) revealed unique components of pattern specification in the 

extending condition, as indicated by Gene Ontology (Figure 4.9 C). Day 1 extending 

organoids were enriched for genes involved in pattern specification and embryonic 

morphogenesis, and by day 10 included hallmarks of anterior-posterior pattern 

specification. Extending organoids upregulated WNT3 and WNT5B signaling at day 1, 

whereas the non-extending organoids upregulated WNT5B at day 5 (Figure 4.9 D, 4.11 

B). Extending aggregates were enriched for the caudal marker CDX2, while non-

extending organoids were enriched for the forebrain marker OTX2 at later timepoints 

(Figure 4.9 D, 4.11 A). Further, elongating organoids passed through a goosecoid 

(GSC) and TBXT-high stage at day 1 and more specific lineage markers arose at day 3. 

Finally, neural markers remained high as the differentiation progressed. Together, this 

analysis indicates that early upregulation of Wnt signaling induces pattern specification 

in organoids that mirrors many aspects of in vivo morphogenesis and favors caudal 

neurogenesis. 

 



 139 

 

4.3.5 Extending Organoids Consist Exclusively of Neural and Mesodermal 

Lineages 

To examine cell diversity in extended organoids, single-cell RNA sequencing was 

performed on extending day 10 organoids. The single cell transcriptomic data 

recapitulated HOX gene expression profiles previously observed within extending 

organoids (Figure 4.12 A). Shared nearest neighbor computation revealed two clusters 

 

Figure 4.11 Bulk RNA sequencing of organoids with or without CHIR treatment. 
A) Top differentially expressed genes. B) Line plots showing gene expression of genes associated 
with signaling morphogens (grey line: 0μM CHIR; blue line: 4μM CHIR). 
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(Figure 4.9 E); one (cluster A) largely distinguished by cell cycle regulation and the 

other (cluster B) by somitogenesis, according to Gene Ontology. Neural markers, such 

as SOX2, were expressed in both clusters (Figure 4.12 B,C), but, cluster A had higher 

expression levels of genes associated with neural tube fates (SOX2, IRX3, PAX6, 

NEUROG2) and the caudal lateral epiblast (CDX2, NKX1.2 and FGF8) (Figure 4.9 

F,G). In contrast, MIXL1, MEOX1, CYP1B1, MEOX2, and PAX3 were almost 

exclusively expressed in cluster B, indicating that this cluster contained mesodermal 

cells (Figure 4.9 F,G; 4.12 B,C). Expression of endoderm-specific markers such as 

SOX17 was not observed, and only very low expression of FOXA1 and PAX9 in <1% of 

cells (Figure 4.12 C), indicating that, in contrast to previously reported gastruloid 

models(Beccari et al., 2018; van den Brink et al., 2020; Moris et al., 2020), these 

extending organoids consisted entirely of neural and mesodermal cell types. Overall, 

these data indicate that extending organoids transcriptionally mimic the caudal epiblast 

and contain cell populations associated with both mesoderm and neural tube, similar to 

the embryo during axial extension. 
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Figure 4.12 Single cell gene expression within extending organoids 
A) Heat map of top differentially expressed genes between cluster A and B. B) Gene expression 
distribution plots. C) Dot plot of HOX gene expression within organoids. 
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4.3.6 Wnt Signaling Influences Extension and Axis Identity Across Stem Cell 

Lines 

To determine the robustness of the effect of WNT signaling on axial elongation, 

two iPSC lines (WTC and WTB) and two hESC lines (H1 and H7) were differentiated 

into neural organoids in the presence of varying amounts of CHIR. The threshold of 

CHIR required to reliably generate extensions varied between lines (Figure 4.13 A), 

highlighting cell-line-specific responsivity to Wnt agonism. Whereas the WTC line 

produced elongations at a 2-4μM dose of CHIR, all other lines tested only began to 

elongate when the CHIR dose was increased to 6μM. Further, increasing CHIR dosage 

increased both the degree of extension (Figure 4.13 B,C’,D’) and the frequency of 

SOX2(+)TBXT(+) cells at the start of the differentiation (Figure 4.13 C,D). Interestingly, 

the WTC line demonstrated a maximum threshold for CHIR-induced extension, as 6μM 

CHIR treatment reduced extensions (Figure 4.13 A,C). Importantly, all cell lines 

displayed polarized organization with internal epithelialization and cavitation at their 

respective condition that permitted extension (Figure  4.14 A). To further characterize 

this polarization, we found that the H1 ESC line displayed similar regionalized 

expression of axial markers as seen in the WTC iPSC line (Figure  4.14 B).  
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Figure 4.13 Wnt mediated increase in extensions across stem cell lines. 
A) Brightfield images at day 7 of differentiation with increased CHIR doses conducted in the hiPSC 
and ESC lines. B) Stereoscope images of extending and non extending organoids in two different 
CHIR doses. C) Quantification of SOX2(+)TBXT(+) cells at increasing CHIR doses by FLOW 
cytometry in the WTC hiPSC or H1 ESC line at day 0. D) Quantification of the length of extensions in 
WTC or H1 organoids shown as radius ratio (ie. major to minor) with increasing doses of CHIR. (Solid 
line indicates mean, shading represents 95% confidence bounds). 
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Figure 4.14 Extension reproducibility across hiPSC and hESC lines 
A) Histology of the WTC and WTB hiPSC lines and H1 and H7 ESC line at extending (6uM) CHIR 
concentrations at day 10 of differentiation. B) Immunofluorescence staining of paraffin sections for 
OLIG2, Nestin, PAX6, pSMAD1/5, LEFTY1, MEOX1, CDX2, and Fibronectin at day 10 in H1 
organoids (arrows indicate regions of positive staining). C) qPCR of caudal epiblast markers in the H1 
ESC line across CHIR doses. 
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To examine differences in expression across Wnt conditions, sections of WTC 

organoids were stained at day 10 treated with 2μM-, 4μM- or 6μM-CHIR (Figure 4.15). 

Organoids exposed to 4μM and 6μM CHIR expressed SOX2 and PAX6 in distinct 

regions of the organoids, whereas organoids exposed to 2μM CHIR displayed SOX2 

and PAX6 expression throughout, suggesting a non-neuronal population emerging in 

higher Wnt signaling environments. All organoids displayed N-cadherin and beta III-

tubulin expression, indicating the emergence of maturing populations of neurons; 

however, regions without N-cadherin or beta III-tubulin were more prevalent in 

organoids exposed to higher doses of CHIR, suggesting a Wnt-dependent reduction in 

the overall neural population. Overall, the level of Wnt pathway activation that allows for 

robust emergence of an NMP progenitor pool and organoid extension varies across 

both hiPSC and ESC lines, as commonly reported for most differentiation protocols 

(Ortmann and Vallier, 2017). 
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Figure 4.15 Neural cellular identities are maintained across CHIR dosage 
A) Immunofluorescence of paraffin sectioned WTC hiPSC organoids at day 10 of differentiation from 
2uM, 4uM, and 6uM CHIR concentrations.  
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4.3.7 Wnt and BMP Signaling Influences Axis Identity and Degree of Extension 

As the body axis extends, gradients of key signaling molecules are set up across 

the embryo. Initially, Wnt signaling is activated throughout the epiblast by 

extraembryonic BMP and later localized to the posterior embryo where Wnt directly 

upregulates the expression of TBXT, which in turn upregulates both Wnt and FGF, 

reinforcing and maintaining their posterior to anterior gradients (Amin et al., 2016). The 

importance of these signaling relationships for proper axial elongation are highlighted in 

mouse knockout models. TBXT knockout mice have severely disrupted trunk 

morphogenesis, failing to generate the notochord and posterior somites (Chesley, 1935; 

Herrmann et al., 1990; Pennimpede et al., 2012; Wilson and Beddington, 1997; Wilson 

et al., 1993). When the dorsal inhibitor of BMP, Noggin, is knocked out, murine models 

have increased posterior BMP signaling, failure of neural tube closure, loss of robust 

dorsal-ventral patterning, and elongation of the developing tail (McMahon et al., 1998). 

Deletion of the BMP shuttling molecule, Chordin, results in a shortened body axis, a 

ventralized phenotype, and underdeveloped anterior spine (Bachiller, 2003). Thus, to 

interrogate the role of these signaling pathways in a human system, TBXT, Chordin, or 

Noggin were independently knocked down via an inducible CRISPR interference 

system in human iPSCs (Larson et al., 2013; Libby et al., 2018; Mandegar et al., 2016).  

First, RNA guides targeting TBXT were integrated into a Lamin-B GFP-labeled WTC 

hiPSC line harboring a doxycycline (DOX) inducible CRISPR interference system 

(CRISPRi)(Libby et al., 2018; Mandegar et al., 2016). Media supplemented with DOX 

for five days prior to aggregation reduced the number of detected TBXT(+) cells by 90% 
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(Figure 4.16 A,B), and the frequency of TBXT(+)SOX2(+) cells was also significantly 

reduced (Figure 4.16 C). Interestingly, the TBXT knockdown organoids displayed 

multiple extensions emerging at day 5 (Figure 4.16 D). These multi-extension 

aggregates maintained a reduced level of TBXT expression through day 10 and had 

large cavities devoid of cells (Figure 4.16 E,F). At day 7, the wildtype control 

demonstrated pockets of expression of the axis organizer LEFTY, whereas the TBXT 

knockdown aggregates displayed reduced expression of LEFTY that was distributed 

throughout the organoids (Figure 4.16 G). Both isogenic control and TBXT knockdown 

organoids expressed the neuronal marker nestin, the caudal marker CDX2, and 

basement membrane marker fibronectin (Figure 4.16 H). However, there was a 

reduction in caudal HOX genes in the knockdown organoids at day 5 and day 10 of 

differentiation, as well as a reduction in CDX2 and FGF8 expression (Figure 4.16 I, 

Figure 4.17), reminiscent of the absent posterior structures in TBXT knockout mice. 

Interestingly, organoids maintained expression of members of the Wnt pathway, such 

as AXIN2 and WNT3, suggesting that TBXT is necessary in this system for 

unidirectional extension and caudal fate specification, but not for maintaining Wnt 

expression and signaling. 
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Figure 4.16 TBXT knockdown leads to multiple elongations 
A) Schematic of differentiation protocol timeline with knockdown induction. B) Quantification of TBXT 
knockdown efficiency by reduction in mRNA expression levels measured by qPCR, each collected on 
day 0 of differentiation. C) Quantification by FLOW of TBXT(+)SOX2(+) cells with DOX treatment over 
time, each collected on day 0 of differentiation.  D) Brightfield images of differentiation time course of 
knockdown hiPSC lines. E) Immunofluorescence staining of fixed cells (Day 0) or paraffin sections 
(Days 3 - 10) for TBXT over time in wildtype and KD organoids. F) Histological sections of wildtype 
and KD organoids at day 3 and 7 of differentiation. G) Immunofluorescence staining of paraffin 
sections for LEFTY at day 7 and 10 in wildtype and KD organoids. H) Immunofluorescence staining of 
paraffin sections for NESTIN, CDX2, and Fibronectin at day 10 in wildtype and KD organoids. I) qPCR 
quantification of HOX genes and genes related to axial pattern specification from day 10 organoids 
with and without DOX treatment (* signifies p-value < 0.05, ** signifies p-value < 0.005, *** signifies p-
value < 0.0005). 
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To interrogate the BMP pathway, Noggin and Chordin were knocked down 

separately (Figure 4.18 A,B). Both Chordin and Noggin knockdown resulted in 

increased extension compared to wildtype organoids (Figure 4.18 C). To further 

examine extension dynamics, organoids were allowed to continue to grow for an 

additional 7 days, to a total of 17 days of differentiation. Noggin knockdown organoids 

extended continuously, becoming more polarized through day 13 relative to isogenic 

control organoids. The pronounced extensions in Noggin knockdown organoids 

appeared analogous to the elongated tails of Noggin knockout mice. In contrast, 

Chordin knockdown organoids initially rapidly developed outgrowths without clear 

anterior-posterior axis identity, but then halted elongation after day 10 of differentiation, 

a morphogenic response reminiscent of the shortened body axis of Chordin knockout 

mice (Figure 4.18 D). 

 

Figure 4.17 qPCR of TBXT KD at day 5 of differentiation 
A) Quantification of gene expression by qPCR of HOX genes and genes associated with caudal fates 
in the TBXT knockdown organoids at day 5 of differentiation (* signifies p-value < 0.05, ** signifies p-
value < 0.005, *** signifies p-value < 0.0005). 
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Figure 4.18 Manipulation of endogenous BMP signaling by CRISPR interference 
A) Schematic of differentiation protocol timeline with knockdown induction. B) Quantification of Noggin 
and Chordin knockdown efficiency by reduction in mRNA expression levels measured by qPCR. C) 
Brightfield images of differentiation time course of knockdown hiPSC lines. D) Quantification of 
organoid length displayed as aspect ratio of major to minor axis in response to knockdown. E) 
Schematic depicting BMP signaling and progenitor specification within the developing neural tube. F) 
Quantification of mRNA expression of progenitor specific transcription factors by qPCR at day 17 of 
differentiation (n=3). Error bars depict standard deviations. Significance depicted by * indicating p < 
0.05, ** indicating p < 0.01, and *** indicating p < 0.001.  
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  Because of the role of BMP signaling in generating the dorsal-ventral axis of the 

spinal cord, progenitor domain gene expression was assessed by qPCR. At day 17, 

expression of LHX2, a marker of dI1 dorsal interneurons, did not significantly change in 

either knockdown conditions. However, expression of LHX5, a marker of V0 ventral 

interneuron populations, significantly increased in both Noggin and Chordin knockdown 

organoids (Figure 4.18 E,F). Although markers and regulators of neural maturation, 

Sox2, Pax6, and Hes1, were not significantly upregulated in the knockdowns, LHX5 and 

EN1, transcription factors that mark the central V0 and V1 domains, were upregulated. 

Interestingly, genes associated with the more extreme poles of the dorsal-ventral axis 

(LHX2, CHX10, and OLIG2) did not show significant differences, suggesting a potential 

change in threshold of BMP signaling that affects more central regions within the dorsal-

ventral axis.  Altogether, these results suggest that BMP signaling impacts both the 

anterior-posterior and dorsal-ventral progenitor emergence of the extending human 

organoids in a manner that recapitulates cellular patterning of murine neural tube 

development. 

 Discussion 

Here, hiPSC-derived organoids were demonstrated to model axial extension via 

the specification of progenitors that organize axial elongation and neural tube formation. 

This model enables robust axial extension as a function of both culture density and Wnt 

signaling. Within extending organoids, a persistent TBXT(+)SOX2(+) NMP population 

was observed, reminiscent of populations present in the caudal lateral epiblast and in 

the tail bud during axial elongation. Extending organoids displayed regionalized co-
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linear patterning and timed expression of HOX genes. Single-cell RNA sequencing 

confirmed the presence of caudal transcriptomic profiles and populations of neuronal 

progenitors and paraxial mesoderm. Finally, axial extension of organoids was shown to 

be influenced by Wnt and BMP signaling, such that perturbation of endogenous TBXT, 

Chordin, or Noggin influences relative expression of neuronal markers along the 

anterior-posterior and dorsal-ventral axis, as has been observed in parallel mouse 

models (Bachiller, 2003; Chesley, 1935; McMahon et al., 1998; Pennimpede et al., 

2012; Wilson and Beddington, 1997; Wilson et al., 1993). Overall, the organoids 

described herein provide reliable and faithful models of the gene regulatory networks, 

multicellular organization, and structural outcomes that contribute to the development of 

the primitive central nervous system in humans. 

Stem cell-derived organoid models that reflect multiple organ systems (Lancaster 

et al., 2013; Martins et al., 2020; Renner et al., 2017; Sato et al., 2009) and stages of 

development (Beccari et al., 2018; van den Brink et al., 2020; Harrison et al., 2017; 

Moris et al., 2020; Veenvliet et al., 2020) can now be used to investigate aspects of 

human embryogenesis that were previously elusive due to poor tissue quality, technical 

difficulties isolating and imaging embryonic tissues, and ethical concerns regarding 

tissue procurement. Organoid platforms are amenable to varying culture conditions, 

genetic modification, or small molecule drug screens, enabling the systematic 

manipulation of experimental conditions at higher scale and speed than possible in most 

model organisms. This work demonstrates that as multiple examples of axial elongation 

are developed(Beccari et al., 2018; van den Brink et al., 2020; Marikawa et al., 2020; 
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Moris et al., 2020; Trivedi et al., 2019; Veenvliet et al., 2020), refining the protocols of 

organoid culture and differentiation can lead to more complex models than previously 

possible, and pushes the limits of organoid utility beyond cell signaling toward 

coordinated multicellular organization and morphogenesis en route to structurally and 

functionally mature tissues. 
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5 Directed cell migration drives spontaneous symmetry 

breaking during simulated gastrulation 

 Introduction 

Human embryos begin as an aggregate of totipotent stem cells that transition 

through a series of lineage restriction and symmetry breaking events to self-organize 

into the tissues of the body. While mechanisms of pre-patterning cell fates are known 

for specific model organisms such as Xenopus (Keller and Danilchik, 1988; Moon et al., 

1993) and Drosophila (Wieschaus, 2016), the asynchronicity of mammalian 

embryogenesis and the complexity of studying embryos post-implantation has limited 

the ability to construct mechanistic models of embryo organization in mammals (Płusa 

and Piliszek, 2020). Recent advances in human organoid systems have allowed for in 

vitro interrogation of morphogenic processes reminiscent of those found during early 

development, including models of central nervous system development (Velasco et al., 

2020), gastrulation and axial extension (van den Brink et al., 2014; Turner et al., 2017), 

and multi-system co-emergence (Silva et al., 2020; Takasato et al., 2015). However, 

unlike the highly coordinated, robust sequence of tissue forming events found during 

embryogenesis, organoid structures form in a highly variable, disordered arrangement 

(Lou and Leung, 2018; Qian et al., 2019), suggesting the need for more mechanistic 

understanding of the processes underlaying multicellular structure assembly. 

Computational models of multicellular behavior have long been used to understand 

developmental pattern formation in contexts including coat patterning (Marcon and 

Sharpe, 2012; Turing, 1952), limb formation (Scoones and Hiscock, 2020), and 



 163 

somitogenesis (Pantoja-Hernández et al., 2020; Tomka et al., 2018). Broadly, models 

fall into three classes: continuum models, lattice-based models, and lattice free 

approaches, with agent based models (ABMs) representing a large portion of the latter 

two groups (Glen et al., 2019; González-Valverde and García-Aznar, 2018; Voss-

Böhme, 2012). Although lattice-based models have had enormous success predicting 

pattern formation in various 2D contexts, they require hardware acceleration to scale to 

3D and need parametric tuning to replicate in vitro measurements (González-Valverde 

et al., 2016; Libby et al., 2019; Madhikar et al., 2018). In contrast, particle-based ABMs 

are amenable to simultaneous simulation of tens of thousands of cells on CPUs, are 

inherently n-dimensional, and incorporate direct biological measurements relatively 

easily (González-Valverde and García-Aznar, 2018). Despite extreme simplification of 

the complex processes occurring within a cell, the scalability of ABMs makes them a 

tractable system to model the adhesion and collective migration processes underlaying 

organoid formation. 

In this chapter, I present a particle-based ABM simulating the dynamics underlaying 

symmetry breaking in a gastruloid model of neural tube formation. Initial physical 

parameters were fit based on the detailed measurements of individual and collective cell 

behavior derived in chapters 2 and 3. The resulting parameters were then refined using 

measurements of the single cell structure of the elongating neural organoids presented 

in chapter 4. Finally, a dynamic, full-scale simulation of particle migration in organoids 

was performed, demonstrating how the interactions between differential cell ratios and 

chemotaxis enable a randomly mixed, spherical cell distribution to break symmetry and 
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form axially polarized populations. By exploring the dynamic range of cell ratios, cell-

type specific chemoattraction, and surface seeking behavior, this simulation provides a 

testable, mechanistic model for organoid polarization. Further, by providing a high-level 

description of the individual multicellular elements involved in organoid polarization, this 

model suggests potential targets for modulating the organizing processes underlaying 

gastrulation and neural tube formation in vitro. 

 Methods 

5.2.1 Generation of organoids 

Elongating and non-elongating organoids were generated as described in 

Chapter 4. Briefly, hiPSCs derived from the WTC11 line (Coriell Cat. #GM25256) were 

cultured in feeder-free conditions on growth-factor reduced Matrigel (BD Biosciences) 

coated plates and fed daily with mTeSR1 medium (STEMCELL Technologies)(Ludwig 

et al., 2006). Cells were passaged by dissociating with Accutase (STEMCELL 

Technologies) the re-seeded in mTeSR1 supplemented with the small molecule Rho-

associated coiled-coil kinase (ROCK) inhibitor Y-276932 (10 μM; Selleckchem) (Park et 

al., 2015) at a seeding density of 12,000 cells per cm2. To induce differentiation, hiPSCs 

were seeded at 125,000 cells per cm2 in mTeSR1 medium supplemented with Y-

276932 and small molecule GSK inhibitor CHIR99021 (2μM, 4μM, or 6μM; 

Selleckchem). Two days later, cells were singularized with Accutase (STEMCELL 

Technologies), counted using a Countess II FL (Life Technologies), and seeded at 

810,000 cells per well into 800μm X 800μm PDMS microwell inserts in a 24 well plate 

(~270 wells/insert; 3,000 cells per microwell) (Hookway et al., 2016) in mTeSR1 



 165 

(STEMCELL Technologies) supplemented with Y-276932 (10 μM), CHIR99021 (2μM, 

4μM, or 6μM), ALK5 small molecule inhibitor SB431542 (10μM, Selleckchem), and 

small molecule BMP inhibitor LDN193189 (0.2μM, Selleckchem). After ~18 hours, 

condensed organoids were transferred to rotary culture at a density of approximately 

270 organoids per well, or allowed to reattach to 96-well plates for imaging as described 

below. 

5.2.2 Attached organoid imaging and colony tracking 

Organoids were allowed to reattach to optically clear 96-well plates (Corning) 

coated with growth factor reduced Matrigel (BD Biosciences) for 48 hours and fed with 

mTeSR1 medium (STEMCELL Technologies) supplemented with CHIR99021 (2μM, 

4μM, or 6μM), SB431542 (10μM), and LDN193189 (0.2μM). After 48 hours, fresh 

media was exchanged, then colonies were imaged for 24 hours with images taken 

every 5 minutes on an incubated spinning disk confocal Observer Z1 (Zeiss) using a 

motorized filter wheel (Yokogawa) and imaged using a Prime 95B (Photometrics) digital 

CMOS camera at 10x magnification (NA 0.45, 0.91 𝜇𝑚 x 0.91 𝜇𝑚 per pixel), as 

described in Chapter 3. Colonies were segmented using the dense cell tracking pipeline 

described in Chapter 3, yielding a data set of total cell behavior in adherent colonies 

corresponding to days 3-4 of the elongating organoid differentiation protocol from 

Chapter 4. 

5.2.3 Colony morphology characterization 

The perimeter of each colony was calculated by finding the largest connected 

component of each cell mesh for each frame, then calculating the boundary of that 

connected component. An elliptical model was fit to this contour by least squares (Halır 
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and Flusser, 1998) to calculate eccentricity and the ratio of semi-major to semi-minor 

axes. Area and circularity were also calculated, giving a second measure of colony 

shape. Rosette structures were manually segmented by selecting an ellipse around the 

visible density anomaly in the final frame of each colony image. The cell tracks enclosed 

this elliptical contour were then projected backwards through time to estimate rosette 

size and shape over time. Cell radius was estimated as half the average distance 

between detected cell centers of mass in non-rosette regions, which was consistent 

between CHIR treated and non-treated colonies. 

5.2.4 Cell migration and growth rate estimation 

Cell velocity and active/passive percentages was calculated by first interpolating 

individual tracks by a factor of 4, then smoothing with a rolling average of 5 samples, 

then calculating velocity magnitude and direction as described in Chapter 3. Smoothed 

tracks were divided into regions of time where velocity was greater than at least 0.1 

μm/min and where a cell changed direction less than 3 degrees/minute, which were 

called active migration, and other times, where cells were considered quiescent. The 

proportion of the two times were calculated, and used as transition probabilities in a 

persistent random motion model (Campos et al., 2010). 

Cell growth was estimated using the total number of cell tracks in each frame. A 

growth rate was then estimated by normalizing the total number of cells by the initial cell 

number in each colony, yielding an approximately exponential empirical distribution. An 

exponential model was fit to this curve using least squares, giving the mean cell 
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doubling time according to. This was scaled by the observation time to calculate the 

probability of cell division in a single simulation step. 

5.2.5 Rotary culture and phase imaging 

Organoids were cultured in 6-well plates on a rotary orbital shaker as described 

in Chapter 4. Media was exchanged every other day for up to 10 days. At day 5, 

organoids were transferred to Neural Induction Media (DMEM F:12 (Corning), N2 

supplement (Life Technologies), L-Glutamine (VWR), 2μg/ml heparin (Sigma Aldrich), 

non-essential amino acids (Mediatech INC), penicillin-streptomycin (VWR), 

supplemented with fresh 0.4μg/ml ascorbic acid (Sigma Aldrich) and 10ng/ml brain 

derived neurotrophin factor (BDNF, R&D Systems)) supplemented with CHIR99021 

(2μM, 4μM, or 6μM; Selleckchem), SB431542 (10μM, Selleckchem), and LDN193189 

(0.2μM, Selleckchem). From day 7 onwards, organoids were fed with Neural Induction 

Media supplemented with retinoic acid (10nM, Sigma Aldrich), purmorphamine (300nM, 

EMD Millipore). Organoids were imaged daily at 4x magnification in phase using an 

EVOS M5000 imaging system (ThermoFisher Scientific), and organoid images 

segmented as described in Chapter 4, giving a set of longitudinal organoid contours 

over the course of 10 days of differentiation. 

 At days 3 and 5, organoids from 6-well plates were individually transferred using 

wide bore pipette tips into the center 60 wells of an uncoated ultra-low attachment 96-

well plate (Corning), seeding exactly one organoid per well, and imaged using an 

inverted Axio Observer Z1 (Zeiss) microscope with incubation as described in Chapter 

4. Wells were imaged at 5x magnification in TL Brightfield every 20 minutes for 48 
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hours, and the resulting time lapse images segmented, giving a denser set of contours 

covering the 48-hour period of organoid polarization and initial axis extension. Gross 

motion of organoid structures was calculated using optical flow (Farnebäck, 2003), 

giving an estimate for multicellular migration velocity magnitude, direction, and duration. 

Organoid volume was estimated by calculating the area of the exterior contour of each 

organoid segmentation, calculating the effective radius of a circle with the same area, 

then scaling that effective radius to a sphere, i.e: 
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corresponding to a uniform circular inflation of the contour in all directions. Cell number 

within the estimated volume was given by assuming optimal sphere packing of spherical 

cells with the cell radius estimated as half the cell-cell distance from 2D cell tracking, i.e. 
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5.2.6 Whole Mount Light Sheet Imaging and Segmentation 

Organoids were fixed with 4% paraformaldehyde (VWR) for 40 minutes, washed 

three times with PBS, permeabilized with 1.5% Triton X-100 (Sigma-Aldrich) for 1 hour, 

blocked in 5% normal donkey serum (Jackson Immunoresearch) for 1 hour, and probed 

with primary and secondary antibodies overnight. Nuclei were stained with a 1:10000 

dilution of Hoechst 33342 (Thermo Fisher) included with secondary antibodies. Samples 

were then embedded in 1.5% low melt agarose (BioReagent) and drawn up into ~1mm 

imaging capillaries and subsequently imaged on the Zeiss Z.1 Light sheet Microscope 

equipped with two PCO. edge SCMOS cameras at 5X (NA 1.34, aqueous objective). 
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Multiple views of each volume were fused in Zen Black 2014 (Zeiss) using the Multi-

view fusion module with rotation and translation alignment on intensity of the Hoechst 

channel. Cell puncta were segmented in Imaris v9.5.1 (Oxford Instruments) using the 

Spot detection tool on each of the channels corresponding to Hoescht, TBXT, and 

SOX2 expression, with a minimum spot diameter of 5 μm, a maximum spot diameter of 

20 μm, and an intensity threshold corresponding to at least 20% above the estimate of 

the local fluorescent background for that channel. 

5.2.7 Cell-cell spacing and 3D organoid shape and position 

Detected nuclei were merged by clustering all spot detections that co-occurred 

within a 5 μm, then classifying detections as either containing a TBXT+ detection, or 

otherwise being a TBXT- cell. SOX2 detection in stained samples was ubiquitous (>99% 

positive clusters), so no attempt was made to classify cells by SOX2 status. Cell 

neighborhood size was assessed by calculating the distance to the nearest 20 

neighbors and detecting the smallest number of neighbors where the mean distance to 

neighbors rapidly increases, giving a mean neighborhood size of approximately 12 cells. 

The convex hull of the organoid was calculated (Barber et al., 1996), and the organoid 

convex volume, ellipsoid parameters, and the distance of each cell to the convex 

centroid were measured to give a normalized radial cell position within the organoid 

volume. Cells were clustered using k-means clustering with k evaluated between 1 and 

20 clusters by the silhouette coefficient using the implementations in scikit-learn v0.23 

(Pedregosa et al., 2011). Cluster centroids were estimated and measures of both 
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normalized radial cluster position and distance between clusters was calculated to 

estimate the extent of cluster polarization and cluster convergence. 

5.2.8 Initialization of Randomly Packed Spherical Organoids 

Initial cell position within an organoid was generated by simulating a close 

random packing of hard spheres with a uniform radius equal to the average cell radius, 

enclosed within a spherical volume defined by the mean radius of the segmented 

organoids. Cell positions were drawn uniformly at random and placed following the u-

statistic for spheres: 

𝑟	~	𝒰(0, 1)@/_; cos(𝜃)~	𝒰(−1, 1); 	𝜑	~	𝒰(0, 2𝜋) 

𝑥⃗<FGG = m
𝑟 ∗ 𝑠𝑖𝑛(𝜃) ∗ cos	(𝜑)
𝑟 ∗ sin(𝜃) ∗ sin	(𝜑)

𝑟 ∗ cos	(𝜃)
	q	 

A running index of previously placed cells was maintained, and any newly sampled cells 

which collided with a previous cell were redrawn until they no longer collided, or ten 

samples failed in a row, whichever occurred first (Visscher and Bolsterli, 1972). 

Previous mixing studies, as presented both in Chapter 2 and in (Turaga et al., 2020) 

showed that aggregates of two cell types are initially uniformly mixed, so cell 

populations were assigned to either “red” cells representing TBXT- cell types, or “gold” 

cells, representing the TBXT+, polarizing fraction of cells uniformly and at random: 

𝑃(𝑔𝑜𝑙𝑑) = 1 − 𝑃(𝑟𝑒𝑑) = 	𝒰r0,
𝑛sHGt

𝑛uFt +	𝑛sHGt
w 

Initializing cells uniformly throughout the volume agreed best with empirical 

measurements, but other distributions including inside-out, planar polarized, or ring 

shaped were also easily generated using this sampling method. 
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5.2.9 Simulation of cell-cell adhesion 

Cell-cell adhesion was simulated with a modified Lennard-Jones potential 

(González-Valverde and García-Aznar, 2018; González-Valverde et al., 2016): 
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where 𝑟ytz was the empirically derived mean cell-cell spacing (7.5 μm), and 𝑤ytz  was a 

tunable parameter to control how strongly cells experienced adhesion forces (set to 1.0 

for simulations described below). This function generated a profile where cells very 

close to each other were strongly repulsed, while cells within several multiples of 𝑟ytz 

were mildly attracted to one-another. Cells far away felt an attractive force that 

diminished with the 3rd power of the distance, enabling force calculations to be 

performed on a sparse graph of cells within a distance of 7 ∗ 𝑟ytz (where �𝐹⃗ytz� <

0.01	µm/min3), speeding up the simulation as cell numbers increased from O(n2) to O(n 

log(n)). Cell type specific values for 𝑟ytz were possible in this framework, but empirical 

results showed no difference in cell packing between the two cell types, so a single 

value was used for red-red, red-gold, and gold-gold interactions. 

5.2.10 Simulation of stochastic cell migration 

To simulate a stochastic active passive model of cell migration, cells were 

partitioned into a two-state migration model using the empirically derived mean 

durations for active migration and quiescence. Cells in the active state selected a 

velocity direction uniformly at random, and a velocity magnitude from a normal 

distribution with mean 0.33 μm/min (+/- 0.05 μm/min), which produced similar results to 
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the empirical heavy tailed distribution but had fewer parameters to optimize when 

matching empirical and simulation behavior. Cells in the active state transitioned to 

quiescence with a probability of 𝑃(𝑄8|𝐴8�@) =
∆8

8������
 where ∆𝑡 was the simulation time 

step and 𝑡y<85�F = 15 minutes, the mean active migration time from the data set. Cells in 

the quiescent state were defined to have an intrinsic velocity magnitude of 0 μm/min, so 

only moved in response to external forces. Quiescent cells transitioned to an active 

state with an analogous probability 𝑃(𝐴8|𝑄8�@) =
∆8

8���������
 where ∆𝑡 was the simulation 

time step and 𝑡��5F7<F68  = 40 minutes, again derived from the empirical mean time. At 

colony initialization, cells were assigned active or passive at random with probability of 

initial state given by the expected ratio of ~3:8 active to quiescent cells.  Intrinsic 

velocity was not evaluated during force integration, but was instead evaluated during 

velocity integration to update cell positions only, and so represented a stochastic 

impulse input to the simulation, rather than a true force. These results gave the coupled 

system of differential equations: 

𝑑𝑉�⃗ytz
𝑑𝑡 = 	 𝐹⃗ytz	 

𝑑𝑥⃗
𝑑𝑡 = 	𝑉

�⃗ytz + 𝑉�⃗y<8 

Which were evaluated numerically using adaptive step-size Euler integration that 

capped the maximum force evaluated at any step to 20 μm/min2 and the maximum 

velocity evaluated at any step to 2.0 μm/min. Aggregates were stably integrated forward 

in time in time steps of ∆𝑡 = 12 seconds for several days in all conditions described 

below. 
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5.2.11 Simulation of cell growth 

Cell growth was incorporated into the simulation by giving each cell a probability to 

divide at each time step given by 𝑃(𝑑𝑖𝑣𝑖𝑑𝑒) = 	Δ𝑡/𝑡t5�575H6 where Δ𝑡 was the time step 

and 𝑡t5�575H6  was the empirical cell division time of 3,258 minutes/division (~2.2 days). 

Upon division, a new cell was generated, duplicating the cell type, but initializing the cell 

migratory state independently. To place the new cell, a direction was drawn randomly 

around the dividing cell, and then the current and new cells were placed at opposite 

ends of this axis, spaced u���
3

 apart, which was empirically determined as a ratio where 

sudden appearance of a cell did not cause a large spike in the force balance of cells. 

Cell type specific division rates were not supported by empirical data, and divisions that 

induced a transition in cell state were not explored, so only one division rate was used. 

Using these simulation parameters, organoids grew exponentially over several days of 

simulation time while maintaining approximately equal ratios of cell types, cell migration 

states, and cell-cell spacing. 

5.2.12 Simulation of chemoattractive migration 

To incorporate cell-cell chemoattraction, the “gold” cells were modified to alter 

their active migration velocity direction each time step. For each “gold” cell, the centroid 

of the nearest 5 “gold” cells was calculated, then the direction of any actively migrating 

cells modified with the re-weighting 

𝑉�y<8 ≔ 	 [𝑤<zF=H ∗ 𝑉�<zF=H + (1 − 𝑤<zF=H) ∗ 𝑉�y<8) 

where 𝑉�<zF=Hwas the direction of the centroid, and 𝑉�y<8 was the current active migration 

direction for each active cell. 𝑤<zF=H was the strength of attraction, where 0 represented 
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no chemoattraction and 1 represented only chemoattraction and was tuned as 

described in the experiments below. 

5.2.13 Simulation of surface-seeking migration 

The surface of each simulated organoid was estimated by calculating the convex 

hull of each organoid, then calculating the nearest vertex of the hull for each “gold” cell. 

Analogous to the chemoattractive model, the only active migration velocity direction was 

modified for each cell at each time step, according to  

𝑉�y<8 ≔ 	 [𝑤7�u] ∗ 𝑉�7�u] + :1 − 𝑤7�u]A ∗ 𝑉�y<8) 

Where 𝑉�7�u]was the direction of the nearest surface vertex and 𝑉�y<8 was the current 

active migration direction for each active cell. 𝑤7�u] was the strength of the surfacing 

pseudo-force, where 0 represented no surfacing impulse, and 1 represented directed 

migration towards the surface, and was tuned in the experiments below. Where 

chemoattraction and surfacing were both simulated simultaneously, the two weights 

were set to obey the inequality 

𝑤<zF=H + 𝑤7�u] ≤ 1.0 

with parameter settings sampled along the resulting simplex. 

5.2.14 Statistical methods and sampling 

Empirical measurements were made based on at least 3 biological replicates and 

across multiple batches where available. Each setting of aggregate parameters was 

simulated at least 3 times with distinct random seeds. Distributions were compared 

using the Mann–Whitney U test. Two tailed t-tests were used to assess p-values in all 
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pairwise statistics presented, with significance reported as *p<0.05, **p<0.01, and 

***p<0.001.  

 Results 

5.3.1 Organoid parameters derived from differentiating colonies 

Although there are well known behavioral and structural differences between 

adherent colonies and organoids, local cell neighborhoods in plated organoids maintain 

a quasi-3D nature for some time, so the colony morphology of adhered elongating and 

non-elongating organoids was characterized to compare with suspension culture 

(Figure 5.1 A). CHIR-pretreated (elongating) and untreated (non-elongating) organoids 

were allowed to reattach to plates for 48 hours, then analyzed using the cell tracking 

pipeline from Chapter 3 to generate detailed measures of cell-cell adhesion, migration 

rate, and proliferation between days 3 and 4 of differentiation. Gross colony morphology 

was largely round for the entire 24-hour period of observation, with both colony size and 

number of detected cells increasing following an exponential growth curve with a 

doubling time of 21.2 hours (Figure 5.1 B-D). CHIR pre-treated organoids were overall 

larger, and grew at faster rates during the 24-hour period, but no differences were found 

between regions in either CHIR pre-treated or untreated colonies. Cells were packed in 

a hexagonal arrangement with an average of 5.9 neighbors. Cell-cell spacing grew 

slightly over 24 hours in both protocols, from 13.5 μm to 14.0 μm on average. CHIR pre-

treated colonies increased in spreading at the colony edge vs untreated, consistent with 

CHIR-induced density changes shown in Chapters 2 and 3 (Figure 5.1 E-G).  



 176 

 

For the vast majority of colonies, cell migration followed the typical stochastic 

active passive migration cycle found in wild type colonies with similar periods of 14 

minutes active followed by 40 minutes passive migration time on average. In CHIR pre-

treated colonies, the active migration period of cells on the periphery increased from 14 

 

Figure 5.1 2D morphometry of re-attached organoids between day 3 and 4 
A) Schematic of approach to compare 2D and 3D organoid structure. B) Growth of adherent colony 
area over 24 hours for CHIR pre-treated (yellow) and untreated (red) organoids. C) Change in 
adherent colony ratio of major to minor axis over 24 hours. D) Growth in cell number. E) Average 
radius of nearest neighbors to each cell over time. F) Average number of nearest neighbors over time. 
G) Region stratified cell-cell spacing for CHIR-pretreated colonies for cells in the center, middle, and 
edge of a colony. H) Active and I) passive migration periods for CHIR pretreated colonies. J) Velocity 
of actively migrating cells in CHIR-pretreated colonies. K) Migration persistence of actively migrating 
cells in CHIR-pretreated colonies. 
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to 17 minutes per cycle, while the velocity of migration fell from 0.25 μm/min to 0.22 

um/min, consistent with similar trends found in BMP4 differentiation, but distinct from 

CHIR differentiation. Active migration time and directionality increased on the periphery 

of CHIR pre-treated colonies, suggesting that the periphery of colonies was 

recapitulating the migratory phenotype observed during optoWnt differentiation as 

described in Chapter 2 (Figure 5.1 H-K). 

5.3.2 Local cell neighborhood structures replicated in 3D organoids 

One of the current challenges of developing accurate organoid models of in vivo 

tissues is the disordered formation of mesoscale and macroscale structures, where 

individual tissue components become juxtaposed in artificial ways not observed in living 

organisms. Previous studies of force aggregation of mixed populations of cells have 

demonstrated that microwell aggregation thoroughly randomizes the spatial composition 

of the aggregate (Turaga et al., 2020). Hence, multicellular structures must form post-

aggregation, with multiple interacting mechanisms such as differentiation, clonal 

expansion, cell sorting, or cell migration responsible for creating higher order 

organization. This spontaneous formation of ordered structures makes organoid 

systems an ideal platform to study symmetry breaking from a disordered, spherically 

symmetric distribution of single cells.  
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To understand the packing of cells in 3D organoids, we quantified cell-cell 

spacing in day 5 and day 7 light sheet volumes of CHIR treated elongating organoids 

(n=20 organoids, Figure 5.2 A). Cell-cell spacing was comparable to that found in 2D, 

with mean spacing of 14.9 μm (+/- 0.63 μm), although the distribution was somewhat 

bimodal with peaks around 14 μm and 16 μm. Cell neighborhood size was found to be 

11.6 cells on average, consistent with a random close packing of nearly equal sized 

spheres (Figure 5.2 B-C). Overall organoid volume was estimated by RANSAC 

estimation of the convex hull of a sample of detected cells, giving measures of the size 

 

Figure 5.2 3D morphometry of organoids during polarization and elongation 
A) Representative segmentation of 3D organoid in light sheet. B) Average cell-cell spacing in 3D CHIR-
pretreated organoids. C) Average neighborhood size in 3D CHIR-pretreated organoids. D) Organoid 
volume at days 5 and 7. E) Estimated total number of cells in organoids at days 5 and 7. F) Percent of 
detected cells at normalized depth compared to the expected number in an organoid of uniform cell 
density (0.0 is the center of the organoid and 1.0 is the surface). G) Day 5 organoid with TBXT+ clusters 
(gold) surrounded by TBXT- cells (red). H) Cluster to cluster spacing, and I) normalized cluster position 
for aggregations. J) % TBXT+ cells detected in organoids on day 5 and day 7. 
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of the organoid, total number of cells in the organoid, and the radial distribution of 

detected cells (Figure 5.2 D-F). Regional variations in cell density were low at all 

locations of the organoid, but scattering artifacts deep in the organoid prevented robust 

detection of cell position deeper than ~100 μm, leading to a drop from approximately 

50% cell detection at the surface, to only 20% cell detection near the core. Overall, the 

consistency of cell spacing with both a random sphere packing model and with the 

density measurements found in 2D suggest that cell-cell adhesion is similar in the 2D 

colonies and 3D aggregates. 

At day 5, TBXT+ cells formed ~11-12 aggregations throughout the organoid, 

consisting of 147 cells per cluster, with an average center-to-center spacing of 160 μm 

(Figure 5.2 G-H). The aggregations appeared throughout the organoid (Figure 5.2 I), 

and were marked by streams of TBXT+ cells connecting each cluster, suggesting a 

mechanism of polarization by chemoattraction of TBXT+ cells to the nearest cluster. 

This hypothesis was supported by the observation of several day 5 organoids 

undergoing elongation with a clear polarized TBXT+ pocket in the organoid extension. 

Approximately 10-12% of all cells were TBXT+ at day 5 and day 7 post-elongation 

(Figure 5.2 J), consistent with flow cytometry results at day 0 and suggesting that the 

proportion of TBXT+ cells is relatively constant over time. 

Although light sheet was important to understand 3D aggregate structure, the 

limited number of samples, and limited segmentation volume prevented a dense 

estimation of organoid growth over the entire 10-day differentiation protocol. A set of 

phase images were collected daily at 24-hour intervals over the entire protocol and then 
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segmented, producing a large dataset of organoid contours (Figure 5.3 A). To estimate 

volume, the area of each contour was converted to 3D by inflating each contour using a 

cylindrical distance transform, producing a dense time course of organoid volume over 

time (Figure 5.3 B). Since cell density was found to be relatively constant between days 

and between 2D and 3D, cell counts were estimated by multiplying organoid volume by 

cell density and then assuming near-perfect sphere packing to estimate the unoccupied 

volume. Organoid growth for the first 7 days was exponential, with a doubling time of ~2 

days, approximately half the rate of growth derived from 2D (Figure 5.3 C). Initial 

aggregate size at day 1 was estimated at a median of 1,325 cells (IQR: 1,073 to 1,609), 

suggesting that approximately 50% of cells loaded at day 0 were incorporated into the 

final aggregate. Median cells per aggregate at day 3 were 1,907 cells (IQR: 1,534 to 

2,821) with 3,723 cells (IQR: 3,152 to 5,454) at day 4, consistent with 2D cell tracking 

(Figure 5.3 C). 4,648 cells (IQR: 3,787 to 5,987) were estimated at day 5 and 8,313 

cells (IQR: 6,223 to 10,504) at day 7, consistent with 3D measurements from light 

sheet. The distribution of estimated cell number across organoids was heavy tailed, with 

an approximately gamma shape (Figure 5.3 D) Organoid growth after approximately 

day 7 became sigmoidal, suggesting a change in growth pattern which likely 

corresponded to the media switch at day 5 and subsequent changes in the nutrient 

balance. 



 181 

 

To further complement this dataset, 48-hour time lapse videos of elongating 

organoids were taken for several different CHIR dosages between days 5 and 7 of 

differentiation. Although videos were too low resolution for single cell tracking, contours 

were extracted around each organoid which matched growth curves from the 

longitudinal imaging. During elongation, motion of particles was detectible in phase at 

the periphery of elongating colonies in both the head and tail regions. The average 

speed of these particles was estimated as 0.05 μm/min, much slower than the average 

velocity of individual cells, suggesting that optical flow was measuring an ensemble 

 

Figure 5.3 Quasi-3D analysis of longitudinal images of organoids 
A) Example segmentation of elongating organoids segmented in bright field. B) Estimated organoid 
volume from day 1 through day 10. C) Estimated cell number per organoid from day 1 through day 10 
(light red) and exponential fit of cell growth from day 1 through day 7 (dark red). D) Distribution of 
aggregate sizes at day 1 (red), with a gamma distribution fit (grey) E) Optical flow analysis of an 
elongating organoid during extension showing the elliptical fit head-tail axis (red line, dot at head), the 
organoid segmentation, and the direction of elongation for all points moving at least 0.01 μm/min. F) 
Velocity magnitude of the head, middle, and tail regions of elongating organoids over 48 hours.  



 182 

average of many cells, moving with random velocities that tended to cancel out in 

regions where the aggregates remained round. However, during elongation, the 

extending regions almost doubled in average velocity to 0.1 μm/min, and the movement 

of large portions of the tail became aligned in the same direction, suggesting that the 

elongation phenomenon was at least partially a result of aligned cell migration (Figure 

5.3 E, F). 

Overall these results suggest that dense measures derived from 2D culture 

replicate key single cell and cell neighborhood behaviors in 3D elongating organoids. 

Cell-cell adhesion was found to be similar between 2D and 3D bulk populations. TBXT+ 

cells were retained through at least day 7 of differentiation and maintained at a steady 

~10% of overall cell population. Organoid growth was slower than in 2D, but obeyed a 

similar exponential distribution through at least day 7. Finally, while elongation velocities 

were much slower for whole aggregates, tail extension occurred at speeds consistent 

with partially correlated directed migration of cells. These results suggest that dense 

parameter estimates derived from 2D, with appropriate scaling, can also apply to cell 

behavior in 3D during at least early stages of stem cell differentiation. 

5.3.3 Migration and differential cell adhesion induce simulated symmetry 

breaking 

Although the behavior was not identical, the similarities between 2D and 3D 

suggested that average cell parameters were well conserved during the critical period 

between force aggregation at day 0, and polarization and elongation between days 3 

and 5. Unfortunately, the relatively large size of elongating organoids, the high opacity 
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of interior organoid structures, and the lack of a live TBXT reporter precluded direct 

observation of TBXT+ cell coalescence in 3D. Further, elongating organoids were 

observed to have differential behavior when embedded in matrix (Matrigel) or neutral 

gels (alginate or agarose), including loss of 3D organization (i.e. plate down) and failure 

to elongate to the same extent as unembedded controls. Further, the low throughput of 

light sheet imaging precluded a large scale, multi-factorial exploration of necessary and 

sufficient parameters to produce organoid polarization. 

Given the consistent estimates of cell adhesion and migration parameters, an 

agent-based model (ABM) of cell behavior was developed to explore the robustness 

and stability of organoid polarization in silico. Based on the cell behavior data derived 

from 2D and confirmed in 3D, agents were modeled as the interaction between 4 core 

forces: cell-cell adhesion modeled as a Leonard-Jones potential, cell migration modeled 

using a stochastic active/passive migration model, cell growth modeled using a simple 

stochastic exponential growth rate, and a lumped damping term representing internal 

viscosity, migration contact inhibition, and cell-ECM interactions. Organoids were 

modeled as a close random packing of spheres starting from 1,500 cells at day 1 and 

simulated forward in time for 144 hours until day 7 of differentiation. Simulated and 

experimental organoids were compared several time points to assess how organoid 

morphology compared between in silico and in vitro models of elongation. 
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Randomly mixed models were simulated consisting of 10% TBXT+ cells (gold) and 

90% TBXT- cells (red) (Figure 5.4 A). Cells were simulated with uniform cell behaviors 

derived from the bulk cells in the 2D DS+CHIR differentiation, resulting in organoid 

growth curves similar to in vitro results, and maintaining uniform mixing between TBXT- 

and TBXT+ cells over 7 days (Figure 5.4 B). A chemoattractive term was added to the 

 

Figure 5.4 Simulations of chemoattractive symmetry breaking 
A) Time series of a single simulated aggregate over 7 days. B) Organoid volume growth over 7 days. 
C) Mixing in 10% TBXT+ aggregates with low, mid, or high levels of mutual chemoattraction. D) 
Number of clusters in 10% TBXT+ high chemoattraction organoids. E) Percentage of TBXT+ cells in a 
cluster. F) Clustering behavior of organoids with between 1% and 75% TBXT+ cells with high 
chemoattraction. G) Number of clusters at day 7 for organoids with different percentages of TBXT+ 
cells. H) Percentage of TBXT+ cells in the core of organoids. I) Percentage of TBXT+ cells near the 
surface of organoids. 



 185 

simulation (Figure 5.4 C)., where TBXT+ cells underwent biased migration towards the 

center of mass of the nearest other TBXT+ cells, resulting in clear phase separation at 

day 3, and formation of ~4 tightly separated clusters at 7 days, with almost all TBXT+ 

cells contained in a cluster (Figure 5.4 A, D, E). The percentage of TBXT+ cells was 

varied from 1% to 75%, resulting in divergent behaviors (Figure 5.4 F, G). At between 

1% and 10% TBXT+ cells, 4-8 polarized clusters robustly self-assembled after 5 days, 

with clusters appearing near the surface of the organoid (20%-40% of the time, Figure 

5.4 H). Once 25% or more cells were TBXT+ positive, the chemoattractive force still 

robustly induced clustering, but resulted in formation of a large, centrally located TBXT+ 

cluster rather than polarized, off-axis clusters, displacing an increasing number of 

TBXT- cells to the surface (Figure 5.4 I, J). The divergence between polarized clusters 

and more centrally localized inside-outside clusters was reminiscent of the effect of 

increasing CHIR dosage, where organoids with a low to mid level of CHIR treatment 

robustly elongated, where organoids with higher CHIR doses formed a central TBXT+ 

population and did not undergo axial extension. 

5.3.4 Surface seeking behavior increases robustness of polarization 

Analysis of average cell position within 3D organoids suggested a higher 

proportion of TBXT+ cells were detected at or near the organoid surface than would be 

expected, even accounting for losses due to light sheet scattering. Several migratory 

cell types have been previously shown to undergo Warburg-like metabolic 

reprogramming during transition to a migratory phenotype (Bhattacharya et al., 2020; 

Miyazawa and Aulehla, 2018), suggesting that oxygen tension might provide a 
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“surfacing” signal. Other plausible mechanisms include migration along gradients of 

chemoattractive morphogens such as FGF8 secreted by a surface population (Sheeba 

and Logan, 2017), mechanical exclusion from the organoid interior (Winklbauer and 

Parent, 2017), or destabilization of the TBXT gene expression network for cells too far 

from the aggregate surface. To test the hypothesis that TBXT “surfacing” contributes to 

organoid polarization, a second bias term was added to the directional migration 

calculation, where TBXT+ preferentially migrated towards the surface of the organoid in 

addition to migration towards the nearest TBXT+ cluster, with the relative strength of the 

two attraction terms controlled by a weight. 
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Imposing at least 50% bias towards surfacing resulted in strong agglomeration of 

TBXT+ clusters at the surface of the aggregate, although >75% bias resulted in cluster 

fragmentation and 100% bias resulted in phase separation from the aggregate, 

indicating that surfacing alone was not sufficient to explain aggregate polarization 

(Figure 5.5 A-C). Coalescence of clusters was strongest at 50% surfacing to 50% 

chemoattraction, with both >50% of clusters at the surface of the organoid and clear 

 

Figure 5.5 Simulation of surface seeking behavior to model organoid polarization 
A) Day 7 organoids with 10% TBXT+ cells with different intensity of surface seeking. B) Number of 
TBXT+ clusters over time for 10% TBXT+ organoids. C) Percent of TBXT+ cells in a cluster over time 
for 10% TBXT+ organoids. D) Percentage of clusters near the aggregate surface for 10% TBXT+ 
organoids E) Overall aspect ratio of 10% TBXT+ organoids. F) Morphology of TBXT+ clusters at 1%, 
5% and 10% TBXT+ cells with 50% surfacing. G) Percent of clusters near surface at different TBXT+ 
% with 50% surfacing. H) Number of TBXT clusters with 50% surfacing. 
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extension of clusters out of the organoid altering the overall aspect ratio (Figure 5.5 D-

E). More TBXT+ cells reached the surface at lower TBXT+ percentages, but additional 

clusters formed, demonstrating the tension between surfacing and chemoattraction in 

forming polarized surface clusters (Figure 5.5 F-H). These results suggest that a 

combination of cell clustering by mutual chemoattraction and polarization through 

migration towards the organoid surface are sufficient to induce the symmetry breaking 

and phase separation events underlaying axial polarization in gastruloids. 

 Discussion 

The complex, interwoven extra-cellular, inter- and intra-cellular processes that 

enable tissue patterning during morphogenesis are likely not amenable to a tractable 

mathematical treatment (Glen et al., 2019), and as such can only be approximated by in 

silico methods. However, phenomenological modeling remains a powerful tool for 

elucidating the minimal set of dynamic components necessary to produce an outcome, 

and predicting how those components may interact in a biological system. In this 

chapter, I presented an empirically derived model of organoid symmetry breaking and 

polarization capable of recapitulating important aspects of axis formation. I showed that 

cell distributions within microwell aggregates are well explained by random mixing 

models, and that cell migration and cell-cell adhesion act to maintain this randomly 

mixed state in the absence of additional forces. Particle-based ABMs were employed to 

efficiently simulate in vitro behavior of cells, and the resulting in silico organoids 

faithfully recapitulated many aspects of in vitro structure, shape, and organization. By 

generating quantitative predictions of organoid formation dynamics, my model offers 
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testable hypotheses to explain self-organization events, implicating chemotactic and 

metabolic signals as likely key components to induce polarization in elongating 

organoids. 

Particle based models of organoid can be extended to model morphogenic events in 

other organoid developmental contexts. Within my model, polarization occurs at the 

scale of the entire organoid, but in other organoid models such as neural tube organoids 

(Bérenger-Currias et al., 2020) or multilineage cardiac gut organoids (Silva et al., 2020), 

the signaling gradients that enable structure formation likely have spatially restricted 

ranges and are impacted by compartment boundaries between tissue types. This cell 

and organoid tracking system enables quantification of compartmentalized cell 

behavior, as well as behavior transitions during differentiation, enabling compilation of a 

catalog of morphometric and kinetic cell phenotypes for use in prospective modeling, as 

has been previously proposed (Moraru et al., 2008). Further, through quantification of 

the impacts of inducible genetic perturbations, morphogen response dynamics, and 

optogenetic stimulation, the combination of empirical cell tacking and ABM enables 

prospective engineering of synthetic constructs to direct the evolution and patterning of 

organoid systems. The combination of phenomenological organoid particle simulations 

with machine learning optimization techniques (Briers et al., 2016; Libby et al., 2019) 

represents a first step towards the rational design of organoid differentiation, and 

ultimately to controlled engineering of in vitro tissue. 
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6 Discussion and Future Considerations 

 Summary 

The results presented in this dissertation represent a set of models and analysis 

pipelines to interrogate the influence of cell migration on pattern formation during early 

development. In Chapter 2, single cell behavior in mosaic hiPSC colonies and confluent 

sheets was explored. Cells were demonstrated to mix freely during pluripotency, but 

gained divergent dynamic behaviors upon differentiation which resulted in phase 

separation reminiscent of symmetry breaking events in vivo. Chapter 3 elaborated on 

this model, generating a whole colony cell tracking pipeline based on a novel ensemble 

of neural nets. By segmenting each colony in both space and time, pluripotent stem cell 

behavior was shown to have a bimodal structure, with central and edge cells exhibiting 

divergent phenotypes despite remaining universally pluripotent. Interventions to 

modulate behavioral heterogeneity through colony size, media, and substrate were 

explored, demonstrating that subtle alterations in pluripotent culture protocols had 

marked impact on colony structure. During differentiation, cell behavior dynamics were 

shown to be predictive of both differentiation protocol and cell lineage commitment, with 

divergent cell behaviors converging on ultimately similar germ layer patterning events. 

In Chapter 4, a 3D organoid model of symmetry breaking and axial elongation was 

developed, enabling quantification of the kinetics of a convergent extension-like 

polarization mechanism, and implicating TBXT+ cells as a key driver of organoid 

elongation. Finally, in Chapter 5, I applied insights from 2D cell tracking and 3D 

structural analysis of elongating organoids to propose an in silico model of symmetry 
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breaking and organoid polarization, demonstrating that an empirically derived 

combination of chemoattractive and surface-seeking migration is sufficient to produce 

organizer-like structures from an initially randomly mixed 3D population. Together, these 

results define a critical role for individual and collective cell migration on the formation of 

2D and 3D patterns during hiPSC differentiation, and implicate coordinated cell 

migration as a key organizing principle for inducing macroscale tissue structure during 

organism development. However, this treatment of cell migration in early development 

is by no means comprehensive, and so raises additional questions that can be explored 

on future studies. 

 Invasive migration to induce multicellular patterning 

Advances in inducible control of gene expression, through systems such as CRISPR 

interference and activation (Gilbert et al., 2014; Mandegar et al., 2016), optogenetic 

stimulation (Repina et al., 2019; Sako et al., 2016), and synthetic direct reprogramming 

(Farber and Qian, 2020; Fernandopulle et al., 2018) provide new tools to induce 

spatiotemporal patterns of activation and inhibition of gene regulatory networks distinct 

from classic pleiotropic stimulation from soluble morphogens. However, it is unclear to 

what extent direct and indirect actuation of gene expression recapitulates the dynamic 

processes necessary to induce self-assembly of heterogeneous cell constructs. In 

particular, mistimed expression of multipotent transcription factors (Guye et al., 2016), 

or incomplete epigenetic reprogramming (Habibi and Stunnenberg, 2017) can lead to 

abiological intermixing of cell populations and incomplete association of key cell types 

when forming multilineage tissues. While the biological patterns of cell migration and 
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tissue compartment formation are well studied during embryogenesis, it is unknown to 

what extent organoid differentiation recapitulates the formation and chemotaxis of 

migratory cell subtype pools, and which in vitro culture conditions are simultaneously 

permissive of tissue boundary formation, while still enabling multilineage association to 

occur. By combining dense cell tracking, mosaic differentiation systems built on 

CRISPR interference (Libby et al., 2019) or optogenetic control (Repina et al., 2019), 

and directed differentiation towards innervating (Fernandopulle et al., 2018) or 

vascularizing (Ng et al., 2016) cell types, it should be possible to systemically screen for 

conditions which actively favor the invasive migration of neuro- or vascular-progenitors 

into otherwise homogenous bulk differentiations (e.g. to skeletal muscle or foregut), 

producing organoids with tissue-like nervous or circulatory systems. Similarly, 

recapitulating the migration of neural crest cells (Martik and Bronner, 2017) in a mosaic 

ex vivo model of craniofacial development would enable untangling of the complex gene 

regulatory networks that underlay the formation of the face and skull, and help 

understand how migratory cells resolve positional cues within complex 3D 

environments. By better understanding how to optimize for and control cell migration in 

in vitro morphogenesis, we would gain the ability to engineer multilineage tissues that 

recapitulate the neurulation, vascularization, and germ lineage associations found in 

vivo.  
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 Organoid Patterning through Coupled Differentiation and Axial 

Elongation  

Convergent extension plays a critical role in patterning tissues during 

embryogenesis, most noticeably during axial elongation (Perez-Vale and Peifer, 2020), 

and limb formation (Hopyan, 2017), but also less obviously during internal structure 

development as in kidney duct elaboration (Lienkamp et al., 2012) or vascular network 

growth (Kirkegaard et al., 2019). The process of cell extrusion creates a polarized axis, 

enabling the localization of signaling centers while simultaneously enabling temporal 

patterning of cell types through a balance of pro-plasticity signals emanating from the 

bulk and pro-differentiation signals secreted by the axial pole, or vice versa. In vivo 

studies have long demonstrated the instructive properties of transplanted organizers in 

patterning either total axes in non-mammalian vertebrates (Catala et al., 1995; Ding et 

al., 2017; Schneider and Mercola, 1999) or partial axes in mammals (Beddington and 

Robertson, 1999; Tam and Behringer, 1997), which requires the recruitment and 

coordination of multiple tissue types to form structures such as ectopic heads, spines, or 

tails. Analogously for in vitro organoids, a self-assembling organizer system, such as 

the one presented in Chapters 4 and 5, could be introduced into non-neural organoid 

differentiations with semi-permissive conditions at an early stage, and then stimulated at 

the desired point during differentiation to induce axis formation. By driving a mechanical 

sorting process as well as polarized signaling reminiscent of the cues provided during 

segmentation, this organizer-like structure could be used to generate patterned HOX 

expression in non-neural contexts, enabling study of how tissue positional identity is 
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established, as well as acting as a source of stratified cell types. Organizer-based 

macroscale patterning could further be used to study the ex vivo mechanics of folding or 

looping processes, such as those that occur during heart and gut development 

(Nowotschin and Hadjantonakis, 2020; Silva et al., 2020; Zamir et al., 2003). By 

providing whole organoid mechanical and morphogenic patterning cues, in vitro 

organizers would represent a step towards true “micro-organs”, enabling the creation of 

globally stratified, multi-lineage constructs with both microscale, mesoscale, and 

macroscale organization. 

 Prospective Simulation for Directed Organoid Design 

Although stunning progress has been made in organoid differentiation over the last 

10 years, the culture methods and differentiation protocols employed are still empirically 

derived, leading to anachronistic differentiation of cell lineages and abiological 

association of multicellular constructs relative to in vivo development (Lou and Leung, 

2018; Qian et al., 2019; Takebe and Wells, 2019). Heterogeneous cell mixing has been 

employed to generate organizer populations that lead to spontaneous multicellular 

patterning (Bérenger-Currias et al., 2020; Rivron and Rivron, 2018), to create poised 

domains biased towards cell fates (Libby et al., 2018, 2019), or to control cell fate by 

modulating the cell-cell interactions that propagate differentiation signals throughout the 

colony (Glen et al., 2018), but recapitulating complex in vivo developmental processes 

requires combinatorial application of multiple of these engineering principles. While the 

resulting experimental design matrix is too large for naive in vitro optimization, in silico 

approaches have been successfully employed to explore the behavioral design space of 
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multicellular interactions (Appleton et al., 2019; Briers et al., 2016; Libby et al., 2019; 

Mehdipour et al., 2018), yielding empirically testable predictions of the genetic and 

behavioral perturbations required to induce cell patterning events. 

Unfortunately, measures of cell behavior dynamics and gene regulatory network 

kinetics have historically been performed in a bespoke, experiment specific manner, 

although attempts exist to provide more systematic comparisons (Diego et al., 2017; 

Jiménez et al., 2017; Maiuri et al., 2012). Analogous to chemical design space 

(Vanhaelen et al., 2020), a catalog of cell lineage, behavior, and relevant gene 

regulatory networks can be assembled for early hiPSC differentiation protocols. 

Machine learning models capable exploring large numbers of branching experimental 

paradigms quickly (Libby et al., 2019; Silver et al., 2016) and optimizing for cooperative 

and emergent behaviors (Baker et al., 2020; Berner et al., 2019) can then be employed 

to target either designed multi-cellular behaviors (Briers et al., 2016; Libby et al., 2019) 

or to evolve novel interactions through autocurricula learning (Baker et al., 2020; 

Sukhbaatar et al., 2017). Through rapid, in silico optimization, the available classes of 

multicellular assembly processes could be rapidly expanded, and their robustness 

optimized prior to in vitro work, leading to an increase in the complexity and biological 

fidelity of organoid differentiation. Further, systemization of cell behaviors and lineage 

transitions may reveal novel general design principles that can be employed to better 

direct all classes of hiPSC differentiation, providing another step on the road towards 

rational organoid design.  
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 Conclusions 

The results presented in this dissertation contribute significantly to the fields of 

developmental biology and bioengineering, creating a set of biological models and 

analysis pipelines that enable quantification of dynamic pattern formation events during 

morphogenesis. The development of cell, colony, and organoid tracking pipelines 

enables multi-scale characterization of the 4D process of lineage specification and 

multilineage differentiation during gastrulation and axis elongation. Through study of 

heterotypic cell behavior and mosaic differentiation, this dissertation provides tools to 

measure the distribution of cell variation and approaches to measure population 

coalescence and cell-cell interactions in space and time. Finally, through 

phenomenological modeling of organoid growth and polarization, this dissertation 

demonstrates a proof of concept mechanism for stochastic self-assembly and 

polarization in an in vitro organizer. These contributions provide a foundation for future 

improvements in multi-lineage tissue assembly, rational design of stem cell 

differentiation, and in silico models of developmental biology. 
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