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With continuing reductions in the cost of genome sequencing, and the advent of new

sequencing technologies, it has become a routine process to sequence genomes in experiments

across different fields of biology in order to study the foundations of life. Collecting multi-omics

data is now an integral part of studying the human health and underlying genetic cause of diseases.

Genome sequencing is extensively used to study the evolution of life and how different species

are genetically related, and it is becoming an important tool to monitor the health of ecosystems

and study the dynamics of biodiversity in this era of rapid climate change. As large datasets

of genomic data become available through worldwide consortia and collaborative efforts, an
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important challenge is processing and interpreting these massive datasets. In this dissertation, I

present a collection of statistical and algorithmic methods to address different computational

problems faced in using genome sequencing data to study the function and properties of genome

and its variation across species. In the first part of this dissertation, I describe the method

we developed to address the problem of statistical significance of overlap between genome

annotations–the assignment of function to specific genomic regions, which is a foundational

effort of modern biology. To the best of our knowledge, the p-value computation for sets of

overlapping intervals has been limited either to permutation tests that do not scale to computation

of small p-values or simple parametric tests such as hypergeometric or binomial tests that are

based on simplifying assumptions about the length and structure of intervals. Our method,

however, formulates a null model where the size of intervals and their relative arrangement are

considered when the significance of overlap is evaluated. In the second part, I introduce the idea

of using whole genome sequencing reads at low coverage–genome skims–without requiring any

genome assembly or alignment. We have developed methods to compute genomic distances

between genome skims to use them for sample identification and phylogenetic placement, and to

estimate genomic parameters such as genome length and repeat content of the genome to lay the

foundation for accurate assessment of genetic biodiversity.
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Chapter 1

Introduction

1.1 Genome annotation

Annotating the genome is a central problem in biology. Subsequent to the sequencing

and assembly of the human genome, and the development of deep sequencing technologies,

researchers have employed creative ideas to develop better insight into the regions that support

genome structure and function.

Examples of annotation include repeat elements [1], protein coding genes [2], non-coding

RNA [3], regulatory regions [4], sites with specific epigenetic modifications [5], transcription

start sites [4], ribosome initiation sites [6, 7]. Annotation may also involve structural features,

such as the regions with a change in copy number and other structural variation [8, 9]. These

regions can be dynamic and change depending upon tissue type and experimental conditions

(e.g., histone methylation marks, regions with high gene expression, etc.), or relatively static

(e.g., location of protein coding genes).

In all of these annotations, we can work with an abstract representation by considering the

genome as a line segment, and any annotation as a collection of non-overlapping intervals on that

line. Having a pair of annotations modeled by two sets of intervals, enables us to evaluate their

overlap which is very useful in uncovering biological principles, and widely used by scientists.

It has been a standard practice to formulate the problems as a hypothesis test and compute the

p-value to substantiate the statistical significance of the observed overlap. Randomization tests

1



are known to be exact significance tests when the space of all possible random samples can be

enumerated. Random annotations can be generated by randomizing the position of intervals

while preserving the coherence of each region. However, in many real-life examples including

the above studies, the sample space is enormous, and naive sampling-based methods cannot

achieve adequate resolution to distinguish between rare events in feasible running times. On

the other hand, while parametric tests used in the literature are computationally efficient, they

oversimplify the problem by casting intervals as points and ignoring the dimension of annotated

regions on the genome, which often lead to more significant p-values. In Chapter 2, we propose

an algorithm which efficiently enumerates over all possible randomized samples to find the exact

null distribution, under the assumption that the order of intervals is preserved when randomizing

their position. Using simulated data, we show that the impact of our assumption on p-value

calculation is limited. We also provide a fast approximate solution based on Poisson binomial

distribution, and using simulated data, we characterize its performance in approximating the

generic null distribution. Moreover, we demonstrate the result of applying our methods to four

examples of interval overlap problem from previously published studies, and compare our results

with the p-values reported in these studies.

1.2 Genome skimming

The ability to quickly and inexpensively study the taxonomic diversity in an environment

is critical in this era of rapid climate and biodiversity changes. In North America alone, the

bird population has declined by over a quarter since 1970[10]. Simply understanding the scope

and extent of bio-diversity changes remains a challenging problem. Genomic sequence based

biodiversity sampling provides an attractive alternative to physical sampling and cataloging.

However, the analysis typically requires assembling and finishing a reference genome, which can

still be prohibitively costly. Despite the many projects aimed at high quality genome sequencing

of eukaryotic species [11], it could be many decades before we have acquired high-quality data
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so that biodiversity measurements for each population can be acquired on an ongoing, routine

basis.

While low costs have kept PCR-based pipelines attractive, decreasing costs of shotgun

sequencing have now made it possible to shotgun sequence 1-2Gb of total DNA per reference

specimen sample for as low as $80 [12], even after including sample preparation and labor

costs. This has lead researchers to propose an alternate method that uses low-pass sequencing to

generate genome-skims [13, 12], and subsequently identifies chloroplast or mitochondrial marker

genes or assembles the organelle genome. Reconstructing plastid and mtDNA genomes from

low-pass shotgun data is possible because organelle DNA tends to be heavily overrepresented

in shotgun sequencing data; for example, 10.4% of all reads from the Apocynaceae family of

flowering plants were from the chloroplast in one genome-skimming study [13]. Large reference

databases based on genome-skimming techniques are under construction by projects such as

PhyloAlps [14], NorBol [15], and DNAmark [16].

Most current applications of genome-skimming to species identification require organelle

genome assembly, a task that requires relatively time-consuming manual curation steps to ensure

that assembly errors are avoided [17]. This approach discards a vast proportion of the non-

target data, reducing the discriminatory power. For these reasons, the DNAmark project [16]

is considering alternative methods, where, instead of only relying on organelle markers, one

could use the entire set of reads generated in a genome-skim as the identifier of a species. This

approach poses an interesting methodological question: can the unassembled data be used to

taxonomically profile reference and query samples in a similar manner to conventional barcoding,

but using all available genomic information and saving us from the labor-intensive task of

mitochondria/plastid genome assembly?

In Chapter 3, we introduce a new assembly-free method to directly use low coverage

genome-skims of both reference and query samples. By avoiding the assembly step, our approach

also reduces the amount of data processing needed for expanding the reference database. We

treat genome-skims simply as low-coverage “bags of reads”, both for a collection of reference
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species and for query samples. The problem is to find the reference genome-skim that matches

the query; if an exact match is not found, we seek the closest available match. We achieve this

goal by estimating a distance between two genome-skims for low and varied coverage using

assembly-free and alignment-free approaches.

In Chapter 4, we revisit the problem of estimating genomic parameters from genome-

skim data: specifically, genome length, sequencing depth, and repeat content. We use a mix

of theoretical and empirical analysis to understand the fundamental limitations to estimating

the genomic parameters. We get around these intrinsic limitations using a novel constrained

optimization approach, where the constraints are learned empirically from available assembled

genomes.
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Chapter 2

ISTAT: Computing the Statistical Signifi-
cance of Overlap between Genome Anno-
tations

In this chapter, we consider the following problem: Let I and I f each describe a collection

of n and m non-overlapping intervals on a line segment of finite length. Suppose that k of the m

intervals of I f are intersected by some interval(s) in I. Under the null hypothesis that intervals

in I are randomly arranged w.r.t I f , what is the significance of this overlap? This is a natural

abstraction of statistical questions that are ubiquitous in the post-genomic era. The interval

collections represent annotations that reveal structural or functional regions of the genome,

and overlap statistics can provide insight into the correlation between different structural and

functional regions. However, the statistics of interval overlaps have not been systematically

explored. In this chapter, we formulate a statistical significance problem which considers the

length and structure of intervals. We describe a combinatorial algorithm for a constrained

interval overlap problem that can accurately compute very small p-values. We also propose

a fast approximate method to facilitate problems consisted of very large number of intervals.

These methods are all implemented in a tool, ISTAT. We applied ISTAT to simulated interval data

to obtain precise estimates of low p-values, and characterize the performance of our methods.

We also test ISTAT on real datasets from previous studies, and compare ISTAT results with the

reported p-values using basic permutation or parametric tests.
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2.1 Introduction

Annotating the genome is a central problem in biology. Subsequent to the sequencing

and assembly of the human genome, and the development of deep sequencing technologies,

researchers have employed creative ideas to develop better insight into the regions that support

genome structure and function.

Examples of annotation include repeat elements [1], protein coding genes [2], non-coding

RNA [3], regulatory regions [4], sites with specific epigenetic modifications [5], transcription

start sites [4], ribosome initiation sites [6, 7]. Annotation may also involve structural features,

such as the regions with a change in copy number and other structural variation [8, 9]. These

regions can be dynamic and change depending upon tissue type and experimental conditions

(e.g., histone methylation marks, regions with high gene expression, etc.), or relatively static

(e.g., location of protein coding genes).

In all of these annotations, we can work with an abstract representation by considering the

genome as a line segment, and any annotation as a collection of non-overlapping intervals on that

line. Having a pair of annotations modeled by two sets of intervals, enables us to evaluate their

overlap which is very useful in uncovering biological principles, and widely used by scientists.

Epigenetics is among the areas that extensively apply such models, in order to study the

potential association between epigenetic modifications and functional elements in the genome.

For instance, Guenther et al. 2007 [18] observed that about 3/4 of all known promoters were

overlapped by the intervals highly enriched for the methylation of lysine 4 on histone H3,

showing that a large fraction of genes are enriched for H3K4me3 modification, including genes

without any detected transcript. Assuming that the presence of histone H3K4me3 is correlated

with transcription initiation, they hypothesized that transcription initiation occurs in all genes,

but only in active genes it is accompanied by transcriptional elongation.

This model can also be useful to study functional impact of segmental duplications and

copy number variations (CNVs). Zarrei et al. 2015 [19] performed a meta-analysis and provided
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an updated map of CNVs in healthy individual. They have considered several sets of genes

and genomic sequences such as protein-coding and non-coding genes, cancer genes, lincRNAs,

Promoters, etc., and computed the enrichment of copy number variant regions in each of these

annotations to assess the variability of different functional regions of the genome.

In experiments related to genome annotations, such questions are ubiquitous, and they all

distill down to the underlying statistical question of significantly overlapping intervals. Hence,

it has been a standard practice to formulate the problems as a hypothesis test and compute the

p-value to substantiate the statistical significance of the observed overlap. Randomization tests

are known to be exact significance tests when the space of all possible random samples can be

enumerated. Random annotations can be generated by randomizing the position of intervals

while preserving the coherence of each region. However, in many real-life examples including

the above studies, the sample space is enormous, and naive sampling-based methods cannot

achieve adequate resolution to distinguish between rare events in feasible running times. On

the other hand, while parametric tests used in the literature are computationally efficient, they

oversimplify the problem by casting intervals as points and ignoring the dimension of annotated

regions on the genome, which often lead to more significant p-values. In this chapter, we propose

an algorithm which efficiently enumerates over all possible randomized samples to find the exact

null distribution, under the assumption that the order of intervals is preserved when randomizing

their position. Using simulated data, we show that the impact of our assumption on p-value

calculation is limited. We also provide a fast approximate solution based on Poisson binomial

distribution, and using simulated data, we characterize its performance in approximating the

generic null distribution. Moreover, we demonstrate the result of applying our methods to four

examples of interval overlap problem from previously published studies, and compare our results

with the p-values reported in these studies.
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Figure 2.1. A Schematic of the interval overlap problem. I f denotes the reference collection of
intervals, and I represents the query collection. The randomized set Ir is generated by relocating
the intervals in I such that all possible non-overlapping random sets are equiprobable.

2.2 Methods

Let us first introduce the notation frequently used throughout this chapter. Let I f denote

a ‘reference’ collection of intervals, and I denote a ‘query’ collection of intervals (Figure 2.1).

We use the space-counted, zero-start convention for the genomic coordinates. Namely, we count

the space between bases starting from 0 (the one before the first base) up to g (the one after the

last base), where g denotes the length of the genomic region of interest. Thus, each interval is

denoted by a pair of indices (u1,u2) with 0≤ u1 < u2 ≤ g, and is composed of the nucleotides

between u1 and u2. We use ‘i’ to index the intervals in query set I, which has total number of n

intervals, and designate ‘ j’ to index the intervals in reference set I f , which consists of m intervals

in total. The length of i-th query interval and j-th reference interval are represented by li and x j,

respectively. Two intervals (u1,u2) and (v1,v2) overlap iff they share common nucleotide(s). A

collection of intervals is non-overlapping if no pair of intervals in the collection overlap.

Problem formulation

Let I f ⊑ I denote the subset of intervals in I f that are hit (overlap with intervals in I).

Suppose |I f ⊑ I|= k. We measure the significance (p-value) of this observation by sampling a

random set of intervals Ir with the following properties (See Figure 2.1)

• |Ir|= |I|. Ir has exactly n elements.

• Intervals in Ir have the same lengths as the intervals in I.
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• The location of intervals in Ir are drawn from a distribution (implicitly) such that all

possible random sets are equally likely.

Let Ir be drawn according to the process above, then p-value is defined as

P-value(k) = Pr(|I f ⊑ Ir| ≥ k).

While the computational complexity of the problem is not known, we can argue that it is hard.

Clearly, the number of possible random sets is very large; ranging from
(g+n−∑i li

n

)
when all li’s

are identical, to
(g+n−∑i li

n

)
n! when all li are distinct. For typical values of g = 2 ·108 (length of a

chromosome), n = 100 (number of annotated regions), and ∑ li = 106 (total length of regions

covered by an annotation), counting all possibilities naively to compute Pr(|I f ⊑ I| ≥ k) is

computationally intractable. Thus, we impose the restriction that the intervals in Ir must retain

the same order as the intervals in I, and present a dynamic programming (DP) algorithm to

compute the number of distinct random sets with |I f ⊑ Ir| = k, for all k. In practice, to apply

the algorithm to large genomes with abundant annotation we use a practical interval ‘scaling’

scheme by considering the natural partitioning of the genome into intervals and the gaps amidst

them, and scale each interval and gap in I and I f by a fraction ν . Ideally, we want to have ν = 1,

but large problems require smaller fractions to make the computation feasible from both running

time and memory usage aspects. Nevertheless, we show that the algorithm still yields a close

approximation of p-value.

2.2.1 Dynamic programming algorithm

For interval i in Ir, genomic location h, (1≤ h≤ g), 0≤ k ≤ m, a ∈ 0,1, let N(i,h,k,a)

denote the number of arrangements of the first i intervals in Ir such that (see Figure 2.2):

• The i-th interval ends exactly at location h.

• k intervals in I f are hit by the first i intervals in Ir.
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• a = 0 if the interval from I f that spans h (if any) has not been counted earlier; a = 1

otherwise.

We also define N1(i,h,k,a) identically to N(i,h,k,a) with the exception that the i-th interval

ends at or before location h. Note that if the j-th interval in I f spans h, it is counted as a hit, but

i-th interval	in	Ir

If

1 𝑔ℎ

𝑙2

𝑐 𝑖, ℎ = 3

𝑓 ℎ = 1

Ir

Figure 2.2. Cartoon for dynamic programming.

may have already been counted by some other interval in Ir. Although a separate function can

be defined to store that information, we use a as an indicator in dynamic programming for the

sake of brevity. In order to compute N1(i,h,k,a), we must define some auxiliary functions. Let

c(i,h) denote the number of intervals in I f which intersect with (h− li,h) in Ir. While evaluating

c(i,h), ( j1, j2) in I f is counted as an intersecting interval with (h− li,h) if j1 < h and j2 > h− li.

We also define binary function f : (0,g]→{0,1}, where f (h) = 1 if some interval in I f spans h,

and f (h) = 0 otherwise. See Figure 2.2. For the simplicity of exposition, it is assumed that a

single nucleotide overlap between two intervals from Ir and I f is sufficient to count the reference

interval as intersected. The generalization of algorithm to accommodate stricter conditions is

straightforward and can be done by modifying the definition of c(i,h) and f (h) (Appendix A.1).

To explain the recurrences, note that N1(i,h,k,a) can be computed by adding cases where

the i-th interval ends exactly at h, and cases where the i-th interval ends strictly before h. To

compute N(i,h,k,a) we need to consider all arrangements where the first i− 1 intervals in Ir
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ends before the start of the i-th interval at h− li.

N1(i,h,k,a) =


N(i,h,k,a) h = 1

N(i,h,k,a)+N1(i,h−1,k,min{a, f (h−1)}) Otherwise

N(i,h,k,a) =


0 h < ∑

i
x=1 lx or k < c(i,h)−a

1 i = 1 and k = c(i,h)−a

N1(i−1,h− li,k− c(i,h)+a, f (h− li)) Otherwise

1≤ i≤ n, 1≤ h≤ g, 0≤ k ≤ m, a ∈ {0,1} (2.1)

We note a technical difference between non-overlapping and ‘disjoint’. Intervals (i1, i2) and

(i2, i3) are non-overlapping as they do not share any nucleotide, but are not disjoint because we

cannot distinguish them from interval (i1, i3). The case where Ir is restricted to be disjoint is

described in Appendix A.4. The DP p-value (Pr(|I f ⊑ Ir| ≥ k)) can be computed using the ratio

P-value(k) =
∑

m
κ=k N1(n,g,κ,0)

∑
m
κ=0 N1(n,g,κ,0)

.

Recall that the total number of configurations is

m

∑
κ=0

N1(n,g,κ,0) =
(

g−∑
n
i=1 li +n
n

)
.

which can be very large and surpass the upper limit of ordinary data types. Therefore, we perform

all calculations using a logarithmic scale (Appendix A.5).

Time complexity

The number of iterations to complete the table of values for N1(i,h,k,a) is O(ngm).

The functions c(i,h) and f (h) can be pre-computed (using a modified version of binary search

algorithm), so each iteration is computed in a constant time. Therefore, the total time complexity

11



is O(ngm) which is pseudo-polynomial because the input size is O((n+m) logg). The running

time can be reduced to O(ngνm) by scaling the genome using scaling factor ν < 1. We also use

a number of tricks to improve the speed of computations, including lowering memory usage from

O(ngm) to O(gm). We should note that this time complexity is achieved under the assumption

that the order of intervals in Ir is same as I. In Results, we show that choosing different orders

does not significantly change the p-value.

Multiple chromosomes

In many cases of interest, the intervals reported are on multiple chromosomes, with a

non-uniform distribution across chromosomes. Therefore, the appropriate random interval set I′r

may only allow permutation of interval positions within the chromosome it is originally assigned

to. For this alternative null model, the DP algorithm is applied to each chromosome to enumerate

rearrangements of intervals within each chromosome, and then the results are combined to

compute the overall p-value. See Appendix A.6.

The general case

We finally tackle the case of computing p-values with no assumptions using sampling

techniques. The simplest method is a permutation like test where many (e.g., 107) random trials

are used and we count the fraction of times when the statistic (k) is exceeded. As the number of

trials required is Ω

(
1

p-value(k)

)
, the direct approach does not work when the event is very rare.

Conditional sampling offers a way out of this conundrum. Define

fs = Pr
(
|I f ⊑ Ir| ≥ s

∣∣∣ |I f ⊑ Ir| ≥ s−1
)
=

Pr(|I f ⊑ Ir| ≥ s)
Pr(|I f ⊑ Ir| ≥ s−1)

.

Using telescoping products and the fact that Pr(|I f ⊑ Ir| ≥ 0) = 1, we get

p-value(k) =
k

∏
s=1

fs . (2.2)
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If we had a procedure to estimate fs efficiently (time O(1/ fs)), we could use Eqn. 2.2 to

estimate the p-value in time O
(

∑
k
s=1

1
fs

)
= O

(
m

mins fs

)
instead of O

(
1

p-value(k)

)
. If mins fs≫

m · p-value(k), we get a significant time reduction.

Let Z≥s denote the set of all configurations Ir s.t. |I f ⊑ Ir| ≥ s. If for all s > 1, we could

sample uniformly at random from configurations in Z≥s−1, then fs could be estimated simply by

keeping track of the fraction of configurations in which ≥ s intervals were hit. We use a novel

Markov Chain Monte Carlo based method to sample uniformly from Z≥s. At a high level, we

choose a permutation π of intervals in I, and a subset S of I f with |S| ≥ s so that all and only the

intervals in S are hit using the last |S| intervals in π . The other intervals in π can be assigned

arbitrary locations constrained only in that they cannot hit any interval in I f , and maintain the

order dictated by π . By definition, any configuration Ir s.t. |I f ⊑ Ir| ≥ s can be assigned to a

unique tuple ⟨π,S⟩. Let C (π,S) denote the set of configurations in Z≥s assigned to ⟨π,S⟩. We

consider a markov chain with each state designated by ⟨π,S⟩, and the target probability given by

ρ(⟨π,S⟩) = |C (π,S)|
|Z≥s|

In the MCMC procedure, we sample states from the markov chain according to their target

probabilities. Next, for each state ⟨π,S⟩ that was sampled, we output a configuration uniformly

at random from the set C (π,S). By construction, each configuration is output with probability

1
|Z≥s| . While this procedure described the main idea, it does not quite work because |C (π,S)| is

difficult to estimate efficiently. In this section, we describe the details of the modified MCMC

procedure with a proposal distribution and a transition probability that satisfy detailed balance,

ensuring convergence to the target distribution.

2.2.2 Poisson binomial approximation

For the case that annotations contain too many intervals such that the processing resources

to run DP algorithm cannot be afforded, we provide an approximation which is reasonably close
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under certain condition. For simplicity, we remove the non-overlapping assumption on Ir. Thus,

Ir is a randomly located collection of n intervals of lengths l1, l2, l3, . . . , ln with arbitrary order.

Let Ei j denote the event that the j-th interval in I f is intersected by the i-th interval in Ir. Then,

pi j
..= Pr(Ei j) =

li + x j−1
g

As before, we assumed that a single nucleotide overlap is sufficient, but it can be easily

i
Ir

1/1/2016 2/1/2018
2/1/20163/1/20164/1/20165/1/20166/1/20167/1/20168/1/20169/1/201610/1/201611/1/201612/1/20161/1/20172/1/20173/1/20174/1/20175/1/20176/1/20177/1/20178/1/20179/1/201710/1/201711/1/201712/1/20171/1/2018

jI2

i
i
i

i

0 g
f

Figure 2.3. Illustration of the cases that i-th interval from Ir intersects j-th interval in I f .

generalized to a more strict overlap condition (Appendix A.1). Let E i j be the event that the i-th

interval in Ir does not intersect the j-th interval in I f . In the absence of the non-overlapping

assumption on Ir, the events E i j, i = 1,2, . . . ,n, are independent, and the probability of their

intersection is given by the product of individual probabilities. Therefore, the probability of

E j = ∪n
i=1Ei j, which is the event where interval j ∈ I f is hit by Ir, can be calculated as

Pj
..= Pr(E j) = Pr(∪n

i=1Ei j) = 1−Pr(∩n
i=1E i j) = 1−

n

∏
i=1

Pr(E i j) = 1−
n

∏
i=1

(1−Pr(Ei j)). (2.3)

Now consider the binary indicator variable X j, where X j = 1 iff event E j occurs. We have

m Bernoulli experiments with success probabilities P1,P2, . . . ,Pm, and we are interested in

computing Pr(∑ j X j = k). In general, there are dependencies between E j’s for different values

of j. However, under certain condition where intervals are not too close or far away, we can

approximately assume independence between different intervals. The sum of m independent

14



Bernoulli trials with different success probabilities is a Poisson binomial (PB) distribution [20].

Pr(
m

∑
j=1

X j = k) = ∑
A∈Fk

∏
u∈A

Pu ∏
v∈Ac

(1−Pv) (2.4)

where Fk is the set of all subsets of {1,2, . . . ,m} with k elements. Eqn. 2.4) allows us to compute

the p-value as

P-value(k) = Pr(
m

∑
j=1

X j ≥ k).

We cannot directly use Eqn. 2.4 by enumerating over all elements in Fk, but use a recursive

approach to compute it, following Hong [21]. It is reproduced here for completeness. Let

πk, j = Pr(∑ j
u=1 Xu = k) denote the probability of getting k hits in the first j intervals in I f . Our

goal is to compute Pr(∑m
u=1 Xu = k) = πk,m. All values πk, j can be computed in O(m2) time

using

πk, j = Pjπk−1, j−1 +(1−Pj)πk, j−1, 0≤ k ≤ m, 0≤ j ≤ m (2.5)

with the boundary conditions π−1, j = π j+1, j = 0, j = 0,1, . . . ,m and π0,0 = 1. Other FFT based

methods are also applicable [21].

With the above PB approximation, we assume that the event of an interval in I f being

hit is independent of other intervals being hit, greatly reducing the computational complexity

of the problem. To understand the impact of this assumption, we introduce a new parameter.

Recall that Pj = Pr(E j) = Pr(X j = 1) is the probability that interval j (length x j) in I f is hit

by some interval in Ir. Let d j denote the distance of interval j from interval j− 1. Define

∆ ..= (m−1) ·median{d j| j = 2,3, . . . ,m}, and η ..= ∆

g . Parameter η is a measure of the ‘spread’

of intervals in I f . For η ≪ 1, and j′ sufficiently close to j, we expect to have

Pr(X j = 1|X j′ = 1)> Pr(X j = 1) .

In other words, if intervals in I f are clumped, then E j,E ′j are not statistically independent but
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positively correlated, and we will underestimate the true p-value. For larger values of η , and

j, j′ sufficiently distant,

Pr(X j = 1|X j′ = 1)< Pr(X j = 1) ,

The negative correlation leads to an over-estimation of the p-value. To better recognize this

effect, imagine an extreme case where n < m and due to the size and spread of intervals in

I f , at most n intervals in I f can be hit. Therefore, p-value(n+ 1) = Pr(∑ j X j > n) = 0. The

independence assumption in PB computation, though, will lead to a non-zero value (over-

estimate) for p-value(n+1).

2.2.3 MCMC sampling

Recall that we generate a configuration Ir by randomly reassigning locations of intervals

in I. For parameter s, let Z≥s (respectively Zs) denote the set of distinct configurations that hit at

least s (respectively, exactly s) intervals from I f . If we can get z≥s samples (uniformly sampled)

from Z≥s and count the number of sample zs in which exactly s intervals were hit (which means

that they are in Zs∩Z≥s), then we can estimate fs as (SSdifferent from the definition of fs in the

main text):

fs = 1− zs

z≥s
.

Consider a permutation π of the intervals in I. Define a configuration satisfying π as an

assignment of starting coordinates pi to interval πi for all i. Similarly, we denote the starting

coordinate of interval j in I f as f j and its ending coordinate as e j. For simplicity of exposition,

we will consider the case where any gap in I f is larger than the largest interval in I. Consider

an ordered subset S ⊆ I f , with |S| ≥ s, and a randomly chosen positioning Aπ,S of the last |S|

intervals (an−|S|+1, . . . ,an) in π so that for all 1≤ j ≤ |S|, interval πn−|S|+ j of I overlaps with the

j-th interval in S. Let C (π,S,Aπ,S) denote the set of configurations of π so that none of the first
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n−|S| intervals in π hit any interval in I f , while p j = a j for all n−|S|< j ≤ n. By definition,

∑
π,S,Aπ,S

|C (π,S,Aπ,S)|= |Z≥s|

We will design a Markov Chain as follows: each state ζ is characterized by the triple ζ =

⟨π,S,Aπ,S⟩, where |S| ≥ s. Define a target distribution on the states of the markov chain by

ρ(ζ ) =
|C (ζ )|
|Z≥s|

. (2.6)

To sample uniformly from Z≥s, we do the following:

1. Use a Monte Carlo procedure to sample each state ζ = ⟨π,S,AS,π⟩ according to its target

probability ρ(ζ ).

2. Output a configuration uniformly at random from C (ζ ).

By construction, each configuration is output with probability 1
|Z≥s| .

Monte Carlo Sampling from the Markov Chain

Consider an arbitrary ζ = ⟨π,S,Aπ,S⟩ with |S| ≥ s. A configuration ζ ′ = ⟨π ′,S′,Aπ ′,S′⟩ is

a neighbor of ζ if either

πππ ′′′ === πππ . In this case, either S′ = S−{x}+ {y} for x ∈ S,y ̸∈ S, or S′ = S−{x} for x ∈ S, or

S′ = S+{y} for y ̸∈ S, or S′ = S . Each of the |S|(m−|S|)+(|S|)+(m−|S|)+1 choices

is picked with equal probability, except when s′ = s, or s′ = m, OR

πππ ′′′ ̸ ̸ ̸=== πππ . In this case, a new permutation π ′ is chosen by randomly exchanging two elements,

and set SSS′′′ === SSS.

We choose each of the two possibilities above with equal probability to get π ′, and choose S′

uniformly from available choices. Given a choice of π ′,S′, we choose Aπ ′,S′ uniformly from

all available choices. With this procedure, we can compute the proposal distribution Pr(ζ ′|ζ ).
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For example, suppose we have the case where π ′ = π, S′ = S−{x}+{y} for some x ∈ S, y ̸∈ S.

Then,

Pr(ζ ′|ζ ) = 1
2
· 1
|S|(m−|S|)+m+1

· 1
|Aπ ′,S′|

.

Note that we are free to choose any proposal distribution as long as it can be computed efficiently.

However, the choice might impact convergence time of the Markov Chain. The Acceptance

probability A(ζ → ζ ′) is given by the Metropolis-Hastings rule.

A(ζ → ζ
′) = min

{
1,

Pr(ζ |ζ ′)ρ(ζ ′)
Pr(ζ ′|ζ )ρ(ζ )

}
= min

{
1,

Pr(ζ |ζ ′) · |C (ζ ′)|
Pr(ζ ′|ζ ) · |C (ζ )|

}
(2.7)

The transition probability T (ζ → ζ ′) is given by

T (ζ → ζ
′) = Pr(ζ ′|ζ )A(ζ → ζ

′) ,

and satisfies the detailed balance condition,

ρ(ζ )T (ζ → ζ
′) = ρ(ζ ′)T (ζ ′→ ζ ) ,

ensuring convergence to the Target distribution.

Computing |C (ζ )|

The algorithm above (Eqn. 2.7) assumes that we can compute |C (π,S,Aπ,S)| for all ζ ,

and we describe a dynamic programming approach to achieve that goal. In the following let

s = |S|. Once we have Aπ,S, we can create a new set I′f , where the starting positions, and/or the

ending positions for the s intervals in S have changed (Figure 2.4). Denote the new fixed set as I′f

with starting positions f ′j, and ending positions e′j. Similarly, the new query set π ′ is the same as

π , but restricted to the first n− s intervals. Let N (π ′, I′f ) denote the number of assignments of

p1, p2, . . . , pn−s so that none of these n− s intervals in π ′ overlaps with any of the intervals in I′f .

Computing N (π ′, I′f ) and multiplying it by |Aπ,S|, we get |C (π,S,Aπ,S)|. Hence, we propose
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Figure 2.4. Counting |C (ζ )| for any state ζ = ⟨π,S,Aπ,S⟩.

an algorithm to compute N (π ′, I′f ).

Think of the intervals in I′f as barriers. For all 1≤ i1≤ n−s, 1≤ i2≤ i1+1, 1≤ j≤m+1,

let N(i2, i1, j) denote the number of ways of configuring the first i1 intervals so that exactly the

intervals between i2 and i1 (inclusive) lie between the barriers j− 1 and j. In other words,

intervals from i2 to i1 must lie in the interval (e′j−1, f ′j). In this notation, N(i1 +1, i1, j) denotes

the number of configurations of the first i1 intervals so that no interval falls in (e′j−1, f ′j). Let

g j = f ′j− e′j−1, and l(i2, i1) = ∑i2≤i≤i1 li. The number of possible ways of configuring intervals

from i2 to i1 such that they fall in (e′j−1, f ′j), denoted by C(i2, i1, j), is given as

C(i2, i1, j) =


1 if i2 = i1 +1

0 if l(i2, i1)≥ g j and i2 ≤ i1(g j−l(i2,i1)+(i2−i1+1)
(i2−i1+1)

)
otherwise.
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Then,

N(i2, i1, j) =

(
∑

i3≤i2

N(i3, i2−1, j−1)

)
·C(i2, i1, j)

Note that, ∑1≤i2≤n−s+1 N(i2,n− s,m+1) gives us N (π ′, I′f ). Finally, |C (π,S,Aπ,S)|=

N (π ′, I′f ) · |Aπ,S|.

2.3 Results

2.3.1 Performance on simulated data

We simulated intervals in a randomly generated chromosome to test the performance of

ISTAT. To study the impact of scaling and fixed-order assumption on the DP algorithm, we chose

g = 200Mbp, and the two sets of intervals I and I f with n = m = 100 intervals. The intervals in

I and I f are generated with random lengths li and x j distributed uniformly over [1Kbp,10Kbp].

The intervals in I f were placed uniformly at random along the chromosome, while ensuring no

overlap between them. To benchmark the speed of DP algorithm, we changed n, m, and g over

a range of values and measured the running time of ISTAT. We also simulated intervals in I f

distibuted non-uniformly over the chromosome to study how their positional distribution impacts

the quality of PB approximation.

The impact of scaling on DP p-value

The algorithm has substantial demands on memory and time. To allow it to work on

the human genome, we scale down the intervals and the gaps between them by a fraction

ν . To test the impact of scaling, we considered the example of a chromosome described

above, with g = 200Mbp, and n = m = 100. The impact on DP p-values due to scaling with

ν ∈ {1,10−1,10−2,10−3} is shown in Figure 2.5a. As can be observed, scaling preserves the

p-values tightly. To further investigate robustness of DP p-value computation to the scaling, we

also considered an adversarial example where I and I f contain intervals smaller than ν−1. For

that purpose, the length of intervals generated from a uniform distribution over [100bp,4Kbp],
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thus when we apply scaling factor ν = 10−3 about one fourth of intervals are smaller than the

resolution ν−1 and become unit intervals. Nevertheless, p-values obtained with ν = 10−3 tightly

followed finer-scale p-values (Figure A.1a), verifying that we can apply reasonable scaling

factor (with respect to the distribution of the length of intervals and gaps) to facilitate p-value

computation using DP algorithm.

Effect of order on p-value

To test the effect of fixed order on p-value, we used a scaling factor ν = 10−3, and

applied the DP method to 100 random instances of simulated intervals described before, each

with a random permutation of I. In Figure 2.5b, we plotted the mean p-value for all k, as well as

the standard error of the mean. We observe that the standard error is distributed tightly around

the mean, while its ratio to the mean increases slightly for smaller p-values. The mean p-value

range from 0.4320±2.279 ·10−4 for k = 1 to 1.017 ·10−269±6.246 ·10−271 for k = 100. The

results suggest that fixing the order in DP algorithm to compute the p-value is an acceptable

compromise for many real data-sets.

Running time

Using a desktop PC with Intel Core i7-6700K CPU and 32GB DDR4 RAM, the running

time of our DP algorithm (in a logarithmic scale) versus the number of query intervals is plotted

in Figure 2.5c for a number of scaling factors. The running time scales almost linearly with the

number of query intervals n. It also scales linearly with the number of reference intervals m

(Figure A.1b) and the size of chromosome g (Figure A.1c), and when larger scaling factors is

used.

PB versus DP

To test the role of η in p-value estimation, we compared the p-values of the Poisson

binomial method against the DP method for different values of η . See Figure 2.5d–f. Relative to

the DP, the PB approximation underestimates p-values when η = 0.005445 (Figure 2.5d), and

over-estimates for η = 0.6197 (Figure 2.5f). However, this over-estimation is not as pronounced
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as the under-estimation in the case of clumping, and reduces with large n (Figure A.1ef). In our

simulations, we changed the number of query and reference intervals as well as the spread of

reference intervals over the genome, and compared the p-values computed using each method.

Although the closeness of PB approximation is a complicated function of the distribution of

intervals and its exact characterization is hard, as a rule of thumb we suggest to consider using

DP (with the largest computationally-feasible scaling ν) when η < 0.06, to avoid liberal p-values

(more significant). In the case that we have multiple chromosomes, the minimum η among all

chromosomes can be considered to be as conservative as possible.

2.3.2 Enrichment analysis on real data

We also took four examples from the literature and applied ISTAT to to test its performance

on interval data from previously published studies and compare the p-values estimated by ISTAT

with the reported p-values. The first example comes from [22], relating to matching of focal

copy number changes in tumor genomes. The second dataset is from [19] where a map of copy

number variation (CNV) in the human genome is provided, and different genomic elements

are investigated for the presence/absence of CNVs. We also ran ISTAT on an example from

epigenetics context [18], where the promoters are found to be enriched for H3K4 methylation.

The last example was extracted from an effort to systematically annotate genome by the means

of characterizing chromatin states [23].

TCGA-CNV enrichment in HIRT (extra-chromosomal data)

For I f , we chose a collection of intervals with recurrent copy number amplifications

in the TCGA array CGH data-set (named TCGA-CNV) [24, 25]. For I, we used amplified

genomic regions from a whole genome sequencing experiment with an experimental protocol,

HIRT, that preferentially selected extra-chromosomal fragments. A strong enrichment of TCGA-

CNV intervals in the HIRT intervals would suggest that many copy number amplifications can

be attributed to the formation and independent replication of episomes (extra-chromosomal
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elements). The number of intervals in query and reference sets were not large, n = 116 and

m = 101, so we did not scale the intervals and the resulting p-value is 8.679 · 10−6. For

comparison, we applied scaling factor ν = 10−1 and the change in p-value was very small. As

expected from η = 0.001, PB approximation gives more significant p-value = 2.642 · 10−10

(Figure 2.6a).

Non-coding genes enrichment in CNVs

We chose the set of all CNV gains from the inclusive map as I, and the set of all

non-coding genes as I f , containing n = 3132 and m = 9058 intervals, respectively. Using the

scaling factor ν = 10−2, we obtained p-value = 5.216 ·10−18, confirming high enrichment of

non-coding genes in CNV gains. After applying an order of magnitude smaller scaling factor

ν = 10−3, we get very close p-value = 2.532 ·10−18 which shows that scaling with ν = 10−2

is fine (Figure 2.6b). PB approximation p-value is 1.370 · 10−52, much smaller p-value that

is consistent with η = 0.024. In the paper, they consider the exons of non-coding genes as

I f , and report p-value = 0.0001 from a 10000 randomized dataset, which shows the limited

resolution of basic permutation tests. The result of our algorithm indicates that computing the

exact p-value in this case requires at least about 1018 randomized samples, which is impossible.

In the supplementary they have also reported a binomial p-value = 2.32 ·10−54.

Enrichment of H3K4me3 in promoters

In [18] authors found that 74% of all annotated promoters were enriched for H3K4

methylation, concluding that a large fraction of genes with no detected transcript have promoter-

proximal nucleosomes enriched for H3K4me3 modification. To evaluate the statistical signif-

icance of this observation, we took the set of regions highly enriched for H3K4me3 in ES

cells (provided as supplementary information in [18]) as the query set. However, they have not

provided the coordinates of promotors, and so for the reference intervals, we used the collection

of all promoters (−5.5Kbp to 2.5Kbp relative to TSS of all RefSeq genes) as the reference set of

intervals. Although with I f that we used we did not get the same ratio of overlap as reported
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in the paper, but still the p-value is quite significant. At the observed overlap, PB p-value is

1.775 ·10−76, while DP p-value with ν = 10−2 is 2.734 ·10−82. For this example, η = 0.1 so

PB approximation gives conservative p-values as expected (Figure 2.6c).

Enrichment of promoters in promoter-associated chromatin states

Among 51 identified chromatin states, states 1 to 11 were referred to as promoter-

associated states because of high enrichment for promoter regions. We tried to compute the

p-value of enrichment by considering the set of all promoter regions (within 2Kbp of RefSeq

TSS) as the query set I, and 200-bp intervals identified with state 9 as the reference set I f .

The p-value = 1.588 · 10−8 (under the scaling factor ν = 10−2) shows that it would be very

unlikely to observe such overlap only by chance, yet it is much less significant than the p-value

reported by the authors (≤ 10−200), computed using hypergeometric distribution. As η = 0.01,

PB approximation expectedly gives liberal p-value (Figure 2.6d).

2.4 Discussion

Our results explore the statistics of interval overlaps. The question is quite natural in

the post genomic era where annotating the genome for function, structure, and variation and

identifying correlated annotations is a key problem. While scientists have used many different

ways to compute the significance of overlap between two sets of intervals, their computations

often do not explicitly state the assumptions on the null model, or accurately compute the

p-values given specific assumptions.

To the best of our knowledge, the p-value computation for sets of overlapping intervals

has been limited to either permutation tests which do not scale to computation of small p-

values, or simple parametric tests such as hypergeometric or binomial tests which are based

on simplifying assumptions about the length and structure of intervals. Our method, however,

formulates a null model where the size of intervals and their relative arrangement are considered

when the significance of overlap is evaluated. We explicitly state the assumptions that we have
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made in our proposed model, and assess the impact of our assumptions thorough the experiments

on simulated and real datasets. Computation of exact p-values may be necessary in some cases.

For example, p-values can be used to compare the significance of two ‘competing’ annotations

with different numbers of intervals (n) and intersections (k). We develop a novel frame-work that

makes exact computation of p-value possible, even for very small p-values.

The proposed DP method is able to compute very small p-values by efficiently counting

the number of possible random rearrangements of intervals resulting in specific amount of

overlap. Although we assume that the order of intervals is not changed, and it may be possible to

construct adversarial examples where changing the order has a material impact on p-values, but

our simulation of typical examples of interval data show that the resulting change in p-values

is not significant. Our experiments on simulated and real datasets also suggest that to improve

the speed and memory usage, we can employ reasonable scaling factors and sill obtain accurate

p-values.

The Poisson binomial approximation is very efficient to compute. However, our results

suggest that for typical values found in real-life examples, the independence assumption is too

strong, and might result in under-estimated p-values, or the false reporting of some overlap as

being significant. Nevertheless, we have introduced parameter η which can be readily computed

from the data before running the DP method, to estimate the accuracy of PB method compared

to DP algorithm results. Future work should look into more systematic characterization of PB

approximation.

Throughout our experiments, we let the intervals to be uniformly distributed over the

whole extent of chromosomes. However, one might be interested in a non-uniform distribution of

intervals under the null model, to account for confounding variables such G/C content, sequence

context, or intergenic/genic region. Our methods can be used in such cases by confining the

problem to the specific regions of interest. Hence, only intervals falling into such regions are

considered, and g would be the total length of the segments that intervals are allowed to be

distributed there. Moreover, we considered the overlap of two intervals as a binary event, and
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defined the statistic based on the number of overlapping intervals. However, DP method can be

modified to compute the p-value when the overlap statistic is defined based on the total amount

of shared base pairs instead. Thus, we provide this as an option in ISTAT software and give the

user the flexibility of choosing the appropriate measure of overlap for their specific application.

Chapter 2, in full, is a reprint of the material as it appears in Cell systems 8, no. 6

(2019): 523-529. “Computing the statistical significance of overlap between genome annotations

with iStat”. Shahab Sarmashghi and Vineet Bafna. The dissertation author was the primary

investigator and author of this paper.
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Figure 2.5. Testing methods on simulated data. (a) Impact of scaling parameter ν on DP
p-value when li,x j ∼U [1Kbp,10Kbp]. (b) Impact of ordering on DP p-value, with ν = 10−3.
The mean of 100 p-value computations for random orderings is plotted, and the error bars
represent the standard error of the mean. (c) Running time (in secs.) of DP algorithm as
a function of n, with m = 100 and g = 200Mbp. (d–f) Impact of approximation on p-value
computation. Simulations are run with g= 200Mbp, m= 100, n= 100, li,x j∼U [1Kbp,10Kbp];
(d) η = 0.0054, (e) η = 0.053, (f) η = 0.62.
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Figure 2.6. Enrichment analysis on real datasets. (a) TCGA-CNV enrichment in HIRT
(extra-chromosomalcdata). (b) Non-coding genes enrichment in CNVs. (c) Enrichment of
H3K4me3 in promoters. (d) Enrichment of promoters in promoter-associated chromatin states.
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Chapter 3

Skmer: Assembly-free and Alignment-
free Sample Identification using Genome
Skims

The ability to inexpensively describe taxonomic diversity is critical in this era of rapid

climate and biodiversity changes. The recent genome-skimming approach extends current

barcoding practices beyond short markers by applying low-pass sequencing and recovering

whole organelle genomes computationally. This approach discards the nuclear DNA, which

constitutes the vast majority of the data. In contrast, we suggest using all unassembled reads.

We introduce an assembly-free and alignment-free tool, Skmer, to compute genomic distances

between the query and reference genome-skims. Skmer shows excellent accuracy in estimating

distances and identifying the closest match in reference datasets. Skmer software is publicly

available on https://github.com/shahab-sarmashghi/Skmer

3.1 Introduction

The ability to quickly and inexpensively study the taxonomic diversity in an environment

is critical in this era of rapid climate and biodiversity changes. The current molecular technique of

choice is (meta)barcoding [26, 27, 28]. Traditional (meta)barcoding is based on DNA sequencing

of taxonomically informative and group-specific marker genes (e.g., mitochondrial COI [29, 26]

and 12S/16S [30, 31] for animals, chloroplast genes like matK for plants [32], and ITS [33] for
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fungi) that are variable enough for taxonomic identification, but have flanking regions that are

sufficiently conserved to allow for PCR amplification using universal primers. Barcoding is used

for taxonomic identification of single-species samples. In the case of metabarcoding, the goal is

to deconstruct the taxonomic composition of a mixed sample consisting of multiple species [28].

Beyond the barcoding application, the barcoding marker genes have also been used to delimitate

species [34] and to infer phylogenies [35, 36].

The accuracy of (meta)barcoding depends on the coverage of the reference database

and the method used to search queries against it [28]. To increase coverage, reference databases

with millions of barcodes have been generated (e.g., Barcode of Life Data System, BOLD,

for COI [37]). Computational methods for finding the closest match in a reference dataset

(e.g., TaxI [38]), and for placement of a query into existing marker trees [39, 40, 41] have been

developed. However, the traditional approach to (meta)barcoding, despite its success, has some

drawbacks. PCR for marker gene amplification requires relatively high quality DNA and thus

cannot be applied to samples in which the DNA is heavily fragmented. Moreover, since barcode

markers are relatively short regions, their phylogenetic signal and identification resolution can

be limited [42]. For example, in a recent study, 896 out of 4,174 wasp species could not be

distinguished from each other using COI barcodes [43].

While low costs have kept PCR-based pipelines attractive, decreasing costs of shotgun

sequencing have now made it possible to shotgun sequence 1-2Gb of total DNA per reference

specimen sample for as low as $80 [12], even after including sample preparation and labor

costs. This has lead researchers to propose an alternate method that uses low-pass sequencing to

generate genome-skims [13, 12], and subsequently identifies chloroplast or mitochondrial marker

genes or assembles the organelle genome. Reconstructing plastid and mtDNA genomes from

low-pass shotgun data is possible because organelle DNA tends to be heavily overrepresented

in shotgun sequencing data; for example, 10.4% of all reads from the Apocynaceae family of

flowering plants were from the chloroplast in one genome-skimming study [13]. Large reference

databases based on genome-skimming techniques are under construction by projects such as

30



PhyloAlps [14], NorBol [15], and DNAmark [16].

Most current applications of genome-skimming to species identification require organelle

genome assembly, a task that requires relatively time-consuming manual curation steps to ensure

that assembly errors are avoided [17]. This approach discards a vast proportion of the non-

target data, reducing the discriminatory power. For these reasons, the DNAmark project [16]

is considering alternative methods, where, instead of only relying on organelle markers, one

could use the entire set of reads generated in a genome-skim as the identifier of a species. This

approach poses an interesting methodological question: can the unassembled data be used to

taxonomically profile reference and query samples in a similar manner to conventional barcoding,

but using all available genomic information and saving us from the labor-intensive task of

mitochondria/plastid genome assembly? In this chapter, we introduce a new assembly-free

method to directly use low coverage genome-skims of both reference and query samples. By

avoiding the assembly step, our approach also reduces the amount of data processing needed for

expanding the reference database.

We treat genome-skims simply as low-coverage “bags of reads”, both for a collection

of reference species and for query samples. The problem is to find the reference genome-skim

that matches the query; if an exact match is not found, we seek the closest available match. A

more advanced problem, not directly addressed here, is placing the query in a phylogeny of

reference species. An even more difficult challenge, also not addressed here, is decomposing a

query genome-skim that contains DNA from several different taxa into its constituent species.

Central to solving these problems is the ability to estimate a distance between two

genome-skims for low and varied coverage using assembly-free and alignment-free approaches.

Alignment-free sequence comparison has been widely studied [44, 45, 46, 47, 48, 49], including

for phylogenetic reconstruction [50, 51, 52, 53, 44, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]. Most

existing methods, such as Kr [47], spaced words [63], and kmacs [64] compute evolutionary

distances using the length distribution of matched substrings or the count of certain words and

thus require assembled genomes to produce accurate results. These methods will not work
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with high accuracy when both the query and the reference are a set of reads and not assembled

contigs. Other methods, such as andi [60] and FSWM [62], use micro-alignments to compute

distances. Even though it may be possible to extend the idea of using micro-alignments to

the assembly-free case, both andi and FSWM software currently require assemblies as input.

However, several assembly-free methods also exist. Co-phylog [58] makes micro-alignments

and calculates distances to reconstruct phylogenetic trees; Mash [65] computes the Jaccard index

and an evolutionary distance using the k-mers; Simka [66] computes several distance measures

based on the whole k-mer content of reads. However, these methods all assume high enough

coverage, ensuring that most of the genome is covered. These levels of coverage are currently

not economically feasible for building up large reference databases or for obtaining many query

samples. Among existing methods, AAF [52] is the only one that aims to work even at lower

coverage. AAF first infers a phylogeny and then corrects its branch lengths to reflect a given

estimate of the coverage.

Here, we show that high levels of coverage are not necessary. We focus on a distance

measure defined as the proportion of mismatches between the global alignment of two genomes.

The mismatch rate, called genomic distance hereafter, is useful for species identification because

it reflects the evolutionary divergence between two species. We introduce a new method, Skmer,

for accurately computing the genomic distance even from low coverage genome-skims. In

extensive test, we show that Skmer dramatically improves estimates of genomic distance based

on genome-skims and accurately places genome-skim queries on to a reference collection. This

assembly-free approach can therefore be considered a viable complement to currently available

DNA barcoding and genome-skimming tools.
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Figure 3.1. Overview of Skmer pipeline. For both query and reference genome-skims, first,
the k-mer frequency profiles are used to estimate the sequencing error and coverage (top). Then,
the k-mers are hashed, and a subset is retained and used to estimate the Jaccard index between
the two genomes (bottom). Finally, the estimated Jaccard index and estimated sequencing
coverage and error are used to compute the corrected genomic distance between the query and
the reference.

3.2 Results

3.2.1 Skmer

We decomposed reads into fixed length oligomers (denoted k-mers with length k), a

technique used by many existing alignment-free methods [67, 60]. Recall that the Jaccard index

J is a similarity measure between any two sets (e.g. k-mer collections) defined as the size of

their intersection divided by the size of their union. Ondov et al. describe a tool, Mash [65], in

which (a) J is estimated efficiently using a hashing procedure; and, (b) J is used to estimate the

genomic distance between two genomes. Mash, however, assumes sufficiently high coverage.

Unfortunately, J, in addition to the true distance, is impacted by coverage, sequencing error, and

genome length. Skmer accounts for the impact of these factors on J.

Skmer has two stages (Fig. 3.1): first we use k-mer frequency profiles (computed using
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JellyFish [68]) to estimate the amount of sequencing error and the coverage (neither of which

is known) using a novel method. Let Mi be the number of k-mers observed i times in the

genome-skim. Let h = argmaxi≥2 Mi. Then, defining ξ =
Mh+1
Mh

(h+1), we derive (see Methods):

λ =
M1

Mh

ξ h

h!
e−ξ +ξ (1− e−ξ ) (3.1)

ε = 1− (ξ/λ )1/k (3.2)

where λ and ε are our estimates of the k-mer coverage and the sequencing error rate, respectively.

In stage two, we use the hashing technique of Mash to compute J. Finally, given these

estimates, we compute the genomic distance using

D = 1−
(

2(ζ1L1 +ζ2L2)J
η1η2(L1 +L2)(1+ J)

)1/k

(3.3)

where for i ∈ {1,2}, ηi = 1− e−λi(1−εi)
k

and ζi = ηi +λi(1− (1− εi)
k) (for high coverage, we

define ζi and ηi differently; see Methods for details), and Li is the estimated genome length.

We used a series of experiments to study the accuracy of Skmer compared to existing

methods with respect to (i) the error in computed distances, and (ii) the ability to find the

closest match to a query sequence in a reference dataset of genome-skims, and (iii) phylogenetic

inference. We compared the performance against Mash and AAF [52]. AAF is a method that uses

k-mers to estimate phylogenetic distances among a set of at least four sequences. We conclude

by comparing Skmer against the results of using COI barcodes from available barcode databases.

3.2.2 Distance accuracy for pairs of genome-skims

We first compare the accuracy of Mash and Skmer in estimating distances between two

genome skims. Since AAF outputs a phylogenetic tree and so requires at least four species, we

cannot include it in our first set of analyses on pairs of genomes.
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Figure 3.2. Comparing the accuracy of Mash and Skmer on simulated genomes. Genome-skims are
simulated using ART with read length ℓ= 100. Substitutions applied to the assembly of C. vestalis at
six different rates (x-axis), and genome-skims simulated at varying coverage range from 1

8 X to 16X. The
estimated distance (y-axis) by Mash (left) and Skmer (right) is plotted versus the real distances for each
coverage level (color). The mean (dots) and standard error (lines) of distances are shown (10 repeats).
True distance is shown in red. See Supplementary Fig. B.1 for a scaled representation.

Simulated genomes with controlled distance

Starting from the highly repetitive genome assembly of the wasp species Cotesia vestalis,

we simulated new genomes with controlled true distance d by randomly adding SNPs, and then

we simulated genome-skims by randomly sub-sampling reads and adding error (see Methods).

On these simulated genomes, distances are computed with high accuracy by Mash when coverage

is high (Fig. 3.2), except where the true distance is also high (i.e., 0.2). However, the accuracy

of Mash quickly degrades when the coverage is reduced to 4X or less. In contrast, even when

the coverage is reduced to 1
8X, Skmer has high accuracy. For example, with the true distance

set to 0.05, Mash estimates the distance as 0.081 with 1X coverage (an overestimation by 62%)
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Figure 3.3. Comparing the accuracy of Mash and Skmer on pairs of insects (a) and birds (b)
genomes. Genome-skims are simulated at coverage 1

8 X to 8X (shades of blue). The estimated distance
(y-axis) is plotted for Mash (left) and Skmer (right) for each pair of species (x-axis). The results of Mash*
run on assemblies, which is taken as the ground truth, is shown in red. Mash overestimates at lower
coverages. Skmer estimates are closer to the ground truth and are less sensitive to the coverage. See also
Supplementary Fig. B.5.
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while Skmer corrects the distance to 0.045 (an underestimation by 10%). Note that applying

Mash* (Mash without the unnecessary approximation (1−D)k ≈ e−kD used by default in Mash)

to the complete assemblies generally generates very accurate results, as expected, but even given

the full assembly, Mash* still has a small but noticeable error when d = 0.2. Note that results

are extremely consistent across our ten different runs of subsampling (Fig. 3.2). We repeated

the simulation with a lower range of coverage ( 1
64X to 1X). Interestingly, even with very low

coverage, the absolute distance error is small in many cases (Supplementary Fig. B.2); however,

for d ≥ 0.1, Skmer estimates start to degrade below 1
8X coverage.

Repeating the process with the Drosophila melanogaster genome as the base genome

also produces similar results (Supplementary Fig. B.3). The only condition where Skmer has

an absolute error larger than 0.01 is with coverage below 1X and d = 0.2 (Fig. 3.2). However,

we note that for d = 0.001, the relative error is not small with low coverage (Supplementary

Fig. B.4b) indicating that distinguishing very small distances (perhaps below species-level)

requires high coverage. Estimating the right order of magnitude when the true distance is 0.001

seems to require 2X coverage (preferably 8x) while 1X coverage is sufficient to distinguish

distances at or above 0.01 (Supplementary Fig. B.4).

Pairs of insect and bird genomes

We now test methods on several pairs of insect and avian genomes, subsampled to create

genome-skims. Note that unlike the simulated datasets, here, genomes can undergo all types

of genetic variations and complex rearrangements, and thus, do not have the same length. We

carefully selected several pairs of genomes to cover a wide range of mutation distance and

genome length. Here, the true genomic distance is not known, but we use the distance estimated

by Mash* on the full assemblies as the true distance d. For all pairs of insect and avian genomes

(Fig. 3.3), Mash has high error for coverage below 8X while Skmer successfully corrects the

estimated distance and obtains values extremely close to the results of running Mash* on the

full assembly. For example, the distance between A. stephensi with length ∼196Mbp and A.
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maculatus with length ∼132Mbp is estimated to be 0.104 based on the full assembly and 0.102

(2% underestimation) with only 1
2X coverage using Skmer, while Mash would estimate the

distance to be 0.163 (∼57% overestimation).

3.2.3 Distance accuracy for all pairs genome-skims

We now turn to datasets with sets of genome-skims, evaluating the accuracy of all pairs

of distances. Here, since we have at least four sequences in each test, in addition to Mash, we

also compare our results with AAF.

Fixed sequencing effort

So far, our experiments have controlled for the coverage by subsampling varying amount

of sequence data, proportional to the genome length. In our genome-skimming application,

coverage will not be fixed. Often, the amount of sequence data obtained for each species will

be relatively similar. As a result, genomes of different length end up being sequenced with

different coverage depth proportional to the inverse of their length. We therefore performed a

study where all species are subsampled to produce 100Mb of sequence data in total resulting

in varying levels of coverage (based on the genome length, Supplementary Table B.5). The

error in the distance estimated by Mash relative to the ground truth can be quite large (higher

than 300% in the worst case) while Skmer consistently makes accurate estimates close to the

true distance even at the lowest amount of coverage (Fig. 3.4, Figs. 3.5, and Supplementary

Table B.6). Repeating the analysis with 0.5Gb or 1Gb total sequence data produced similar

patterns, but as expected, increasing the sequencing effort reduces the error for all methods

(Supplementary Figs. B.6–B.8).

Before error correction, AAF has error levels that are comparable to Mash (Figs. 3.4b,

Fig. 3.5b). The correction applied by AAF, similar to Skmer, reduces the negative impact of low

coverage but not to the same extent. Thus, Skmer has less error compared to corrected AAF (with

100Mb sequence and across all datasets, the mean error of Skmer is 3.13% and AAF-corrected is
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Table 3.1. Tree error. For each method, we show normalized weighted RF distance (%) of
trees inferred from genome-skim distances to trees inferred from full assembly distances.
Boldface: the lowest error.

Dataset Sequencing effort Mash Skmer AAF (uncorrected) AAF (corrected)

Anopheles

0.1G 23.19% 1.07% 19.92% 6.36%
0.5G 12.84% 0.45% 9.74% 4.9%
1G 8.92% 0.37% 9.59% 3.3%
Mixed 14.75% 0.58% 8.46% 8.45%

Drosophila

0.1G 23.87% 2.05% 20.29% 5.85%
0.5G 13.33% 0.72% 10.37% 5.25%
1G 7.11% 0.58% 10.84% 2.2%
Mixed 16.58% 1.11% 11.36% 10.87%

Birds

0.1G 37.03% 5.64% 31.81% 21.13%
0.5G 25.16% 1.91% 20.8% 6.86%
1G 19.42% 1.19% 15.54% 1.05%
Mixed 28.14% 3.08% 18.15% 7.57%

22.7%). For example, in the Drosophila dataset, the worst-case error of AAF between any two

pairs of genome-skims is 31%, whereas the error never exceeds 8% for Skmer. Note that when

computing the error of AAF, we use the result of running AAF on full assemblies as the ground

truth.

To quantify the impact of distance estimates on downstream analyses, we used FastME [69]

to infer phylogenetic trees using distances computed by Mash and Skmer on genome skims and

with correction using the JC69 model [70]. AAF by default generates trees as part of its output.

We compare these trees to those computed by Mash/AAF run on the full assemblies (taken as

the ground truth) using the weighted Roubinson-Foulds (WRF) distance [71] (Table 3.1). WRF

is the sum of branch length differences between the two trees (using zero length for missing

branches), and we normalized WRF by the sum of branch lengths of both trees. In all three

datasets, Skmer distances lead to trees with lower WRF distance to the ground truth compared

to Mash and AAF/uncorrected. AAF correction reduces WRF compared to uncorrected AAF;

however, Skmer trees have two to 14 times less error compared to the corrected AAF, except in
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one case where AAF/corrected has 1.05% error and Skmer has 1.19% (Table 3.1). Increasing the

size of skims to 0.5Gb and 1Gb helps all methods to produce more accurate trees.

Heterogeneous sequencing effort

In addition to changes in the genomic length, the sequencing effort per species may

also vary across sequencing protocols, experiments and research labs, and so a database of

reference genome-skims may consist of samples with heterogeneous sequencing efforts. To

capture this, for each species, we choose its total sequencing effort from three possible values

0.1Gb, 0.5Gb, and 1Gb, uniformly at random, and estimate all pairs of distances within each

dataset as before (Fig. 3.6 and Supplementary Fig. B.9). Similar to the case of fixed sequencing

effort, Skmer mitigates large relative error in the distances estimated by Mash and produces more

accurate results than both Mash and AAF, (Table 3.2, Fig. 3.6, and Supplementary Fig. B.9). For

example, comparing to the case of fixed 100Mb genome-skims of the Drosophila dataset, the

worst-case error of AAF is increased to 70%, while using Skmer it remains almost the same

(8%). Comparing trees inferred from distances estimated by various methods also confirms the

higher accuracy of Skmer (Table 3.1). For instance, on the Anopheles dataset, Skmer has only

0.58% WRF distance to the reference tree whereas Mash and AAF-corrected trees have 14.75%

and 8.45% WRF distance.

Table 3.2. Comparing the average error of Mash, Skmer, and AAF in estimating
distances over three datasets with heterogeneous sequencing effort.

Dataset Mash Skmer AAF (uncorrected) AAF (corrected)

Anopheles 28.72% (1.10%) 0.84% (0.03%) 13.48% (0.56%) 11.36% (0.44%)
Drosophila 29.05% (0.59%) 0.84% (0.04%) 15.25% (0.38%) 10.94% (0.33%)
Birds 64.29% (0.54%) 2.21% (0.04%) 36.02% (0.29%) 5.28% (0.16%)

* The standard error of the mean is provided in parentheses.
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Figure 3.4. Distance error with fixed 100Mb sequence per genome for (a) 22 Anopheles, (b) 21
Drosophila. Each genome is skimmed with 100Mb sequence and distances are computed using Mash,
Skmer, and AAF. True distance used in calculating the error is computed by applying each method (AAF
and Mash) to the full genome assemblies. The heatmaps on the left show the error of Mash (upper triangle)
and Skmer (lower triangle), and the heatmaps on the right are for AAF before correction (upper) and after
correction (lower).
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Nipponia nippon

Pelecanus crispus
Phaethon lepturus

Phalacrocorax carbo
Phoenicopterus ruber

Picoides pubescens
Podiceps cristatus

Pterocles gutturalis
Pygoscelis adeliae

Struthio camelus
Taeniopygia guttata

Tauraco erythrolophus
Tinamus guttatus
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Figure 3.5. Distance error with fixed 100Mb sequence per genome for the avian dataset. The errors
of Mash and AAF for the two eagle species (H. albicilla and H. leucocephalus) were extremely large
(Mash: ≈ 4000%, AAF > 3000% error), dominating the color spectrum; we excluded H. albicilla to help
readability; for the eagles, Skmer’s estimate is 0.00244 (∼ 9% error).
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b

Mash − Skmer AAF(uncorrected) − AAF(corrected)

Anopheles albimanus
Anopheles arabiensis
Anopheles atroparvus

Anopheles christyi
Anopheles coluzzii

Anopheles culicifacies
Anopheles darlingi

Anopheles dirus
Anopheles epiroticus

Anopheles farauti
Anopheles funestus
Anopheles gambiae
Anopheles koliensis

Anopheles maculatus
Anopheles melas
Anopheles merus

Anopheles minimus
Anopheles nili

Anopheles punctulatus
Anopheles quadriannulatus

Anopheles sinensis
Anopheles stephensi

50% 100% 150% 200% 250%
error

Mash − Skmer AAF(uncorrected) − AAF(corrected)

Drosophila ananassae
Drosophila biarmipes

Drosophila bipectinata
Drosophila elegans

Drosophila erecta
Drosophila eugracilis
Drosophila ficusphila

Drosophila grimshawi
Drosophila kikkawai

Drosophila melanogaster
Drosophila miranda

Drosophila mojavensis
Drosophila persimilis
Drosophila rhopaloa
Drosophila sechellia
Drosophila simulans

Drosophila suzukii
Drosophila takahashii

Drosophila virilis
Drosophila willistoni
Drosophila yakuba

25% 50% 75% 100%
error

Figure 3.6. Distance error with heterogeneous sequencing effort for (a) Anopheles and (b)
Drosophila. Species have random amount of sequence chosen uniformly among 0.1Gb, 0.5Gb,
and 1Gb. See Supplementary Fig. B.9 for birds.
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Mash − Skmer

Drosophila ananassae

Drosophila biarmipes

Drosophila bipectinata

Drosophila erecta

Drosophila eugracilis

Drosophila mauritiana

Drosophila mojavensis

Drosophila persimilis

Drosophila pseudoobscura

Drosophila sechellia

Drosophila simulans

Drosophila virilis

Drosophila willistoni

Drosophila yakuba

50% 100% 150% 200%
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Figure 3.7. Comparing the error of Mash and Skmer on a dataset of 14 Drosophila genome-skims.
Each SRA is subsampled to 100Mb and then filtered to remove contamination. True distances are
computed from the assemblies.

3.2.4 Genome skims from real reads

So far, all of our tests used simulated reads. When analyzing real genome skims,

there are additional complications such as extraneous DNA (real or artifactual) and the over

representation of organelle genome. We next tested Skmer using real reads. We created 100Mb

skims of 14 Drosophila genomes by subsampling short-read data produced in a recent Drosophila

genome assembly study [72]. Before running Skmer or Mash, we filtered reads that (even

partially) aligned to 12 Drosophila-associated microbial genomes as reported in previous studies

[73, 74, 75] (see Supplementary Table B.1), to the human genome, or to the mitochondrial
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genome of respective Drosophila species. We then estimated all pairs of distances as before and

computed the error relative to the distances computed from the assemblies (Fig 3.7). Consistent

with the results we obtained on the simulated skims, Skmer has less error compared to Mash.

The average error of Mash on this dataset is 43.48% (± 2.29%) with maximum error of 217%.

Skmer, on the other hand, has an average error of 4.21% (± 0.35%) and its maximum error is

22.2%.

Running time

Skmer and Mash have comparable running time, while AAF is much slower. In the

experiment with heterogeneous sequencing effort, the total running time (using 24 CPU cores)

to compute distances based on genome-skims for all
(47

2

)
pairs of birds using Mash, Skmer, and

AAF was roughly 8, 33, and 460 minutes, respectively.

3.2.5 Leave-out search against a reference database of genome-skims

We now study the effectiveness of using genomic distance to search a database of genome-

skims to find the closest match to a query genome-skim. Given a query genome-skim and a

reference dataset of genomes, we can order the reference genomes based on their distance to the

query. The results can be provided to the user as a ranking. When the query genome is available

in the reference dataset, finding the match is relatively easy. To study the effectiveness of the

search as the distance of the closest available match increases, we use a leave-out experiment, as

described in Methods. Figure 3.8 shows the mean rank error as well as the mean distance error

of the best remaining match in a leave-out experiment when removing genomes closer than d for

0.01≤ d ≤ 0.1. A rank error (or distance error) equal to zero corresponds to a perfect match to

the best available genome.

On all three datasets, Skmer consistently and often substantially outperforms Mash and

AAF in terms of finding the best remaining match, except the Drosophila dataset where Mash

and Skmer have comparable rank error, while both are better than AAF (Fig 3.8). Even in that
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case, on average, the distance of the best match found by Skmer is closer to the distance of the

true best match compared to the best hit found by Mash. Moreover, the mean rank error of Skmer

is smaller than Mash (Supplementary Fig. B.10) if we exclude only one species Drosophila

willistoni (which is at distance 0.1565≤ d ≤ 0.1622 from other species). It is also notable that

over the avian dataset, Skmer has mean rank error less than 0.5 for all range of distances, while

Mash and AAF can be off by more than 2.5 on average. These results demonstrate that correcting

the distance not only impacts our understanding of the absolute distance, but also, impacts results

of searching a reference library.

3.2.6 Phylogeny reconstruction and comparison to organelle markers

As the last experiment, we estimated phylogenetic trees for Anopheles and Drosophila

datasets after transforming the genomic distances estimated by Skmer to Jukes-Cantor (JC)

distances [70]. For each dataset, we also built another tree based on available COI barcodes,

using an identical method. We compare the results against a reference tree obtained from Open

Tree of Life [76]. We restricted the results to species for which COI barcodes were available

(Fig. 3.9ab).

For the Anopheles species, Skmer distances produce a tree that is almost identical to

the reference tree (with only one branch difference out of nine), while COI tree differs from

the reference in seven branches. Similarly, for the Drosophila species, Skmer differs from the

reference in three branches (with small local changes) out of 13 total branches in the reference

tree, whereas COI tree is very inconsistent with the reference tree (seven branches are different).

We also built maximum-likelihood trees from COI barcodes (Supplementary Fig. B.11), but the

number of incorrect branches did not reduce. Comparing the distribution of all pairwise genomic

distances obtained from genome-skims and barcodes (Fig. 3.9c), Skmer has larger distances and

fewer pairs with zero or close to zero distance, indicating that Skmer has a higher resolution in

differentiating between samples. For example, four species of the Anopheles genus A. coluzzii, A.

gambiae, A. arabiensis, and A. melas have very small pairwise distances based on COI barcodes,
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while using Skmer, the estimated distances are in the range 0.02–0.04 for these species.

3.3 Methods

Consider an idealized model where two genomes are the outcome of a random process that

copies a genome and introduces mutations at each position with fixed probability d. Moreover,

substitutions are the only allowed mutation. In this case, the per-nucleotide hamming distance D

between the two genomes is a random variable (r.v.) with expected value d. We would like to

estimate d. While this is a simplified model, we will test the method on real pairs of genomes

that differ due to complex mutational processes (also, see Appendix B.2 for extensions). We start

with known results connecting the Jaccard index and the hamming distance and then show how

these results can be generalized to low coverage genome-skims. Throughout, we present our

results succinctly and present derivations and more careful justifications in Appendix B.1 of the

supplementary material.

3.3.1 Jaccard index versus genomic distance

The Jaccard index of subsets A1 and A2 is defined as

J =
|A1∩A2|
|A1∪A2|

=
|A1∩A2|

|A1|+ |A2|− |A1∩A2|
. (3.4)

Let W be the number of shared k-mers between the two genomes. Note that: J = W
2L−W ⇒

2J
1+J = W

L , where L is the genome length. Assuming random genomes and no repeats, perhaps

justifiably [77], the probability that a changed k-mer exists elsewhere in the genome is vanishingly

small for sufficiently large k. Thus, we assume a k-mer is in the shared k-mers set only if no

mutation falls on it, an event that has probability (1−d)k. Thus, we can model W as a binomial

with probability (1−d)k and L trials. As Ondov et al. [65] pointed out, we can estimate

D = 1−
(

2J
J+1

) 1
k

(3.5)
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and they further approximate D as 1
k ln
(J+1

2J

)
. To be able to estimate large distances, we avoid the

unnecessary approximation and use Equation 3.5 directly. We skim each genome to obtain k-mer

sets A1,A2 and estimate J using Equation 3.4, which can be computed efficiently using a hashing

technique used by Mash [65]. Note that, however, Equation 3.5 assumes a high coverage of the

genome so that each k-mer is sampled at least once with very high probability. This assumption

is violated for genome-skims in consequential ways. As a simple example, suppose the coverage

is low enough that a k-mer is sampled with probability 0.5. Then, even for identical genomes,

we estimate J as 1
3 , resulting in a distance estimate of D≈ 0.032 for k = 21.

3.3.2 Extending to genome-skims with known low coverage and error

We now show how Equation 3.5 can be refined to handle genome-skims despite low and

uneven coverage, sequencing error, and varying genome-lengths. We first assume that coverage

and error are known and later show how to compute these.

Low coverage

When the genome is not fully covered, three sources of randomness are at work: mutations

and sampling of k-mers from each of the two genomes. Each genome of length L is sequenced

independently using randomly distributed short reads of length ℓ at coverages c1 and c2 to

produce two genome-skims. Under the simplifying assumption that genomes are not repetitive,

we choose k to be large enough so that each k-mer is unique with high probability. Therefore,

the number of distinct k-mers in each genome is L− k ≃ L. The probability of covering each

k-mer can be approximated as ηi = 1− e−λi where λi = ci(1− k/ℓ). Modeling the sampling of

k-mers as independent Bernoulli trials, |Ai| becomes binomially distributed with parameters ηi

and L. By independence, W = |A1∩A2| also becomes binomially distributed with parameters

η1η2(1−d)k and L. Moreover, U = |A1∪A2| can also be modeled approximately as a Gaussian

with mean (η1 +η2−η1η2(1−d)k)L. Treating η1 and η2 as known and dividing W
L by U

L gives

us:
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J =
W
U

=
η1η2(1−D)k

η1 +η2−η1η2(1−D)k ;

thus,

D = 1−
((η1 +η2)

η1η2

J
(1+ J)

) 1
k
.

Sequencing error

Each error reduces the number of shared k-mers and increases the total number of

observed k-mers, and thus can also change the Jaccard index. Let εi denote the base-miscall rate

for genome skim i. For large k and small εi, the probability that an erroneous k-mer produces

a non-novel k-mer is negligible. The probability that a k-mers is covered by at least one read,

without any error, is approximately

ηi = 1− e−λi(1−εi)
k
. (3.6)

Adding up the number of error-free and erroneous k-mers, the total number of k-mers observed

from both genomes can again be approximately modeled as a Gaussian with mean ζiL for

ζi = ηi +λi(1− (1− εi)
k) . (3.7)

Just as before, we can simply estimate D by solving for it in

J =
η1η2(1−D)k

ζ1 +ζ2−η1η2(1−D)k . (3.8)

When the coverage is sufficiently high, each k-mer will be covered by multiple reads

with high probability, and low-abundance k-mers can be safely considered as erroneous. Mash

has an option to filter out k-mers with abundances less than some threshold m to remove k-mers
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that are likely to be erroneous. In this case,

ζi = ηi = 1−
mi−1

∑
t=0

(λi(1− εi)
k)t

t!
e−λi(1−εi)

k
(3.9)

assuming all erroneous k-mers are removed. For instance, filtering single-copy k-mers (i.e.,

m = 2) gives us:

ζi = ηi = 1− e−λi(1−εi)
k
−λi(1− εi)

ke−λi(1−εi)
k

and the Jaccard index follows the same equation as (3.8). Since this filtering approach

only works for high coverage, we filter low coverage k-mers only when our estimated coverage

is higher than a threshold (described below). Note that the genome-skims compared may use

different filtering schemes yet Eqn. 3.8 holds regardless.

Differing genome lengths

Based on a model where the genomic distance between genomes of different lengths is

defined to be confined to the mutations that are falling on homologous sequences, we can drive

J =
η1η2 min(L1,L2)(1−D)k

ζ1L1 +ζ2L2−η1η2 min(L1,L2)(1−D)k .

This computation does not penalize for genome length difference. While a rigorous

modeling of evolutionary distance for genomes of different length require sophisticated models

of gene gain, duplication, and loss, we take the heuristic approach used by Ondov et al. [65] and

simply replace min(L1,L2) with (L1 +L2)/2. This ensures that the estimated distance increases

as genome lengths becomes successively more different. This leads us to our final estimate of

distance given by:

D = 1−
(

2(ζ1L1 +ζ2L2)J
η1η2(L1 +L2)(1+ J)

)1/k

(3.10)
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3.3.3 Estimating sequencing coverage and error rate

So far we have assumed a perfect knowledge of sequencing depth and error. However, for

genome-skims, the genome length is not known; thus, we need to estimate the coverage in order

to apply our distance correction. We also assume a constant base error rate, and co-estimate it

with the coverage.

The sequencing depth, which is the average number of reads covering a position in the

genome, can be estimated from the k-mer coverage profiles. The probability distribution of

the number of reads covering a k-mer is a Poisson r.v. with mean λ , where λ is defined as

k-mer coverage. As we look into the histogram data, it is easier to work with counts instead of

probabilities. Let M denote the total number of k-mers of length k in the genome, and Mi count

the number of k-mers covered by i reads. Thus, for i≥ 0, E[Mi] = M λ i

i! e−λ . For a given set of

reads, we can count the number of times that each k-mer is seen, and assuming zero sequencing

error, it equals the number of reads covering that k-mer. Then, we can aggregate the number of

k-mers covered by i reads and find Mi for i≥ 1. However, since in a genome-skim, large parts

of the genome may not be covered, both M and M0 are unknown. To deal with this issue, we

could take the ratio of consecutive counts to get a series of estimates of λ as λ̃i =
Mi+1
Mi

(i+1)

for i = 1,2, . . .. In practice, sequencing errors change the frequency of k-mers and has to be

considered when estimating the coverage. Assuming that the error is introduced at a constant

rate along the reads, we can use the information in the k-mer counts to co-estimate ε and λ .

Like before, we assume that the k-mer length k is large enough that any error will introduce a

novel k-mer, so the count of all erroneous k-mers is added to the count of single-copy k-mers.

Moreover, for k-mers with more than one copy, the number of times that each kmer is seen equals

the number of reads covering that k-mer without any error. Formally, let M̂i denote the count of

k-mers seen i times in the presence of error, and ρ = (1−ε)k denote the probability of error-free
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k-mer.

E[M̂i] =


∑ j≥i M λ j

j! e−λ
( j

i

)
ρ i(1−ρ) j−i i≥ 2

∑ j≥1 M λ j

j! e−λ
(

jρ(1−ρ) j−1 + j(1−ρ)
)

i = 1

=


M ξ i

i! e−ξ i≥ 2

M
(

ξ e−ξ +λ −ξ

)
i = 1

(3.11)

where ξ = λρ is the average number of error-free reads covering a k-mer. A family of estimates

for ξ is obtained by taking the ratio of consecutive counts of error-free k-mers as ξ̃i =
M̂i+1
M̂i

(i+1)

for i≥ 2. Then, using an estimate of ξ and the count of single-copy k-mers, we get a series of

estimates of λ for i≥ 2 as

λ̃i =
M̂1

M̂i

ξ̃ i

i!
e−ξ̃ + ξ̃ (1− e−ξ̃ ) . (3.12)

Moreover, we can estimate the error rate from the estimates of λ and ξ as

ε̃ = 1− (ξ̃/λ̃ )1/k . (3.13)

While any of these ξ̃i and λ̃i can be used in principle, the empirical performance can be affected

by the choice; in our tool, we use heuristic rules (described below) that seek to use large Mi

values.

3.3.4 Skmer: implementation

Skmer takes as input two or more genome-skims. It uses JellyFish [68] to compute

Mi values, which are then used in estimating λ and ε based on Equations 3.12 and 3.13, by

setting ξ̃ = ξ̃h and λ̃ = λ̃h, where h = argmaxi≥2 Mi. Then, Mash is used to estimate the Jaccard

index, with k = 31 (selected empirically; Supplementary Fig. B.14) and sketch size 107. Finally,

we use Equation 3.10 to compute the hamming distance with η and ζ values computed using

Equations 3.6, 3.7 if c < 5 or else using Equation 3.9. The genome length L is estimated as the
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total sequence length divided by the coverage c.

3.3.5 Experimental setup

Method settings

For Skmer, we use default parameters described above. For Mash, similar to Skmer,

we used k = 31 (selected empirically; Supplementary Fig. B.14) and sketch size 107. As Mash

handles errors by removing low copy k-mers, we set the minimum cardinality for k-mers to be

included as ⌊ c
5⌋+1 with our estimate of c.

AFF has an algorithm to correct hamming distances for low coverage, but the correction

relies on adjusting the length of tip branches in a distance-based inferred phylogeny. As such, it

cannot run on a pair of genomes and requires at least four genomes. Also, AAF leaves coverage

estimation to the user with some guidelines, which we fully follow (Appendix B.3).

For building phylogenetic trees, we transformed Skmer distances using the JC69 [70]

model and used FastME [69] to construct the distance-based trees via BIONJ [78] method.

Genomic Datasets

We used an assembly of Cotesia vestalis [79] (GenBank accession: GCA 000956155.1)

as well as three sets of publicly available assembled genomes (Supplementary Tables B.2–B.4)

and used ART [80] to simulate genome-skims of read length ℓ= 100 with default sequencing

error profile, controlling for the sequencing depth (coverage) (Appendix B.3). Specifically,

the data included 21 Drosophila genomes (flies) and 22 genomes from the Anopheles genus

(mosquitoes) obtained from InsectBase[81], and 47 avian species from the Avian Phylogenomic

Project [82, 83].

For the experiment on real genome skims, high-coverage SRA’s of 14 Drosophila species

were obtained from NCBI database under project number PRJNA427774 [84] and then subsam-

pled to 100Mb. Assemblies used to compute true distances for these 14 Drosophila species were

obtained from the Drosophila project [85]. We used the tool fastp [86] for filtering low-quality
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reads and adapter removal. We also used Megablast [87] to search against a database of bacterial

and mitochondrial genomes and remove contaminant reads. We used Bowtie2 [88] with the

highest sensitivity to remove the reads aligning (even partially) to the human reference genome.

To simulate genomes with controlled genomic distance, we introduced random mutations.

As a challenging case, we took the highly repetitive assembly of the wasp species Cotesia vestalis,

and mutated it artificially; we only applied single nucleotide mutations distributed uniformly

at random across the genome. We repeated the study on the simpler case of the fly species D.

melanogaster. We generate genome-skims using ART with ℓ = 100, default error profile of

Illumina sequencer, and varying coverage between 1
64X and 16X. For simulated genomes, we

repeated the subsampling 10 times and reported the mean and standard error.

In order to compare with DNA barcoding method, we downloaded available COI barcodes

for the Drosophila and Anopheles species in BOLD database [37]. Out of 21 Drosophila and

22 Anopheles species in our dataset, 16 Drosophila and 19 Anopheles species had one or more

barcodes in BOLD. For each species, we selected a barcode, and using MUSCLE [89], aligned

all barcodes within each dataset and constructed the phylogenetic tree assuming the Jukes-Cantor

model. Under the same model of substitution, we transformed Skmer distances and built the

Skmer tree. We used FastME [69] to construct the distance-based trees via BIONJ [78] method.

The maximum-likelihood COI trees were built using PhyML [90].

Evaluation Metrics

For simulated data, the true distance is controlled and is thus known. For biological

datasets, the ground truth is unknown. Instead, we use the distance measured on the full assembly

by each method as its ground truth; thus, the ground truth for AAF is computed using AAF. We

show both absolute error and the relative error, measured as | d̂−d
d | where d and d̂ are the true and

the estimated distances.
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Leave-out

We used a leave-out strategy to study the accuracy of searching for a query genome in a

reference set. For a query genome Gq in a set of n genomes {G1 . . .Gn}, we ordered all genomes

based on their distances to Gq calculated using the full assemblies, which represents the ground

truth; let G1
q . . .G

n
q denote the order, and d1

q . . .d
n
q be the respective distances from the query

(note G1
q = Gq and d1

q = 0). For 0.01≤ d ≤ 0.10, we removed genomes 1 . . . i from the datasets

where i is the largest value such that di
q ≤ d, leaving us with Gi+1

q . . .Gn
q. We then ordered the

remaining genomes by each method; let x1 . . .xn−i be the order obtained by a method and let

r be the the rank of the best remaining genome according to the ground truth in the estimated

order (i.e., x1 = Gi+r
q ). Since r = 1 implies perfect performance, and r > 1 indicates error, we

measured rank error as the mean of r−1 across all query genomes (1≤ q≤ n). Moreover, the

mean (relative) distance error is defined as the mean of
di+r

q −di+1
q

di+1
q

over all queries.

3.4 Discussion

We showed that Skmer can compute the genomic distance between a pair of species from

genome-skims with very low coverage (at or even below 1X), with much better accuracy than the

main two alternatives, Mash and AAF. We also showed that the distances computed by Skmer

can accurately place a voucher genome-skim within a reference database of genome-skims,

and can be used to infer the phylogenetic tree with reasonable accuracy. While Skmer is not

the first k-mer based approach for distance estimation or phylogenetic reconstruction, as we

showed, the alternatives have low accuracy given low coverage data. We compare with Mash

because it is used within Skmer and is one of the most widely-used alignment and assembly-free

methods. However, we note that authors of Mash do no claim it can handle low coverage,

and so our results are not a criticism of their approach. Besides the methods we discussed,

many other alignment-free sequence comparison and phylogeny reconstruction algorithms

exist [50, 51, 53, 44, 54, 55, 56, 57, 58, 59, 47, 60, 48, 61, 62]. However, these methods take
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as input assembled (but unaligned) sequences, and thus, are not applicable in an assembly-free

pipeline. In other words, their goal, is to avoid the alignment step and not the assembly step.

Compared to using COI markers, currently used in practice, we showed that using all

k-mers, including those from the nuclear genome, improves the phylogenetic accuracy. These

improvements are resulting from distances that have a larger range and more resolution compared

to COI. Also, the increased resolution should not be surprising given that the entire genome is

much larger than any single locus, reducing the variance in estimates of the distance. Beyond the

question of resolution, gene trees and species trees need not match [91], a fact that can further

reduce the accuracy of marker genes for both species identification and phylogeny reconstruction.

By using the entire genome, Skmer ensures that an average distance across the genome is

computed, reducing the sensitivity to gene tree/species tree discordances. Moreover, a recent

result shows that the JC-transformed genomic distance is a statistically consistent estimator of

the species distances despite gene tree discordance due to incomplete lineage sorting [92], further

encouraging our use of the genomic distance as a measure of the evolutionary divergence.

We showed that genomic distances as small as 0.01 can be estimated accurately from

genome-skims with 1X or lower coverage. What does a distance of 0.01 mean? The answer

will depend on the organisms of interest. For example, two eagle species of the same genus (H.

albicilla and H. leucocephalus) have D≈ 0.003 but two Anopheles species of the same species

complex (A. gambiae and A. coluzzii) have D≈ 0.018. Broadly speaking, for eukaryotes, detect-

ing distances in the 10−2 order is often enough to distinguish between species (Supplementary

Fig. B.12). On the other hand, to differentiate individuals in a population, or very similar species,

we may need to reliably estimate distances of the order 10−3. Detection at these lower levels

seems to require > 1X coverage using Skmer (Supplementary Fig. B.4b) but future work should

study the exact level of sequencing required for accurate ordering of species at distances in the

order of 10−3 or less. Moreover, the question of the minimum coverage required may avail itself

to information-theoretical bounds and near-optimal solutions, similar to those established for the

assembly problem [93, 94].
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Although most of our tests simulated genome skims simulated from assemblies, we also

tested Skmer on genome skims simulated by subsampling previous whole genome sequencing

experiments. Several complications have to be addressed in real applications. The actual

coverage of real genome skims may not be uniform and randomly distributed and they can have

an overrepresentation of mitochondrial or plastid sequence. More importantly, other sources

of DNA originating from for example, parasites, diet, fungi, commensals, bacteria, and human

contamination may all be present in the sample and may cause a bias in the estimation of

distances. In our test, we simply searched all reads in a genome-skim against a few bacterial

genomes and the human reference genome; this simple scheme filtered out up to ∼10% of reads

(for D. virilis). These filtering strategies were sufficient to produce reliable distance estimates

in the case of Drosophila genomes. We recommend that before using Skmer, such database

searches should be used to find and eliminate bacterial or fungal contamination (using BLAST

[95] or perhaps metagenomic tools such as Kraken [96]), as well as removing contaminant reads

with human origin (using for example Bowtie2 [88]). However, in future, it will be beneficial to

develop better methods for finding extraneous reads without reliance on known sources.

A related direction of future work is to explore whether Skmer can be extended to

environmental DNA analyses, i.e., queries consisting of genome-skims of multi-taxa samples.

While Skmer is presented here in a general setting, its best use is for eukaryotic organisms,

where the notion of species is better established and species can be separated with reasonable

effort. We tested Skmer on birds and insects, but we predict it will work equally well for plants,

a prediction that we plan to test in future work.

Throughout our experiments, we used Mash* run on the assemblies to compute the ground

truth. Given the true alignment of the two genomes, we can compute the true genomic distance

as the proportion of mismatches among aligned orthologous positions (i.e., ignoring gaps). To

ensure that Mash* closely approximates true distances, we used simulated genomes of Rat and

Mouse from the Mammalian dataset of the Alignathon competition [97]. This simulation uses

Evolver [98] and includes many forms of mutation, including indels, rearrangement, duplications,
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and losses. On this dataset, the true distance based on the known true alignment is 0.145

and Mash* estimated the distance as 0.143, which is a very good approximation. In contrast,

FastANI [99], an alignment-free sequence mapping tool for estimating average nucleotide

identity, computes the distance as 0.189. If we count gaps as non-matching positions in the

definition of distance, then the true distance would be 0.287, which also does not match FastANI.

Presumably, FastANI, which relies on alignment of short blocks, counts short gaps (with some

definition of short) as mismatch but excludes larger ones. Thus, on real data, Mash* is the best

available option to approximate the true distance. Finally, note that, for real genomes, we chose

not to use estimated whole genome alignments (WGA) to compute the ground truth because

WGA is a difficult problem, and WGAs that are available are not necessarily accurate. We

get inconsistent estimates of distance when we use pairwise or multiple WGAs. For example,

between D. melanogaster and D. yakuba, the distance changes from 0.10 when using the multiple

WGA [100], to 0.21 if we use the pairwise WGAs [101] from the UCSC genome browser [102],

which is the state-of-the-art.

The connection between genomic distance and phylogenetic distance depends on mu-

tation processes considered. If only substitutions are allowed and assuming the Jukes-Cantor

model, the phylogenetic distance is −3
4 ln(1− 4

3d); note this transformation is monotonic and

does not change rankings of matches to a query search. Assuming a more complex model such

as GTR [103], genomic distance is not enough to estimate the phylogenetic distance. However,

we have devised a simple procedure to estimate GTR distances using the log-det approach [104]

by repeated applications of Skmer to perturbed reads (Appendix B.2). The GTR distances can

rank matches to a query differently from the genomic distance; the accuracy of the two distances

should be compared in future work.

Insertions, deletions, duplications, losses, and repeats can all lead to differences between

genomes, thereby reducing the Jaccard index and increasing the genomic distance. They also

impact genomic length. Interestingly, in our experiments, Skmer run with the true coverage is

less accurate than with estimated coverage (Supplementary Fig. B.13). We speculate that on
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genomes with repeats, by overestimating coverage, our method gives an estimate of the “effective”

coverage, reducing the impact of repeats on the Jaccard index. Nevertheless, with these complex

mutations, the correct definitions of the evolutionary distance and genomic distance are not

straightforward; nor is it clear how the Jaccard index should be translated to the genomic distance.

Here, we used a heuristic approach that simply averaged the length of the two genome, leaving

these broader questions about the best definition of genomic distance in the presence of large

structural variations to future work.

Chapter 3, in full, is a reprint of the material as it appears in Genome biology 20, no. 1

(2019): 1-20. “Skmer: assembly-free and alignment-free sample identification using genome

skims”. Shahab Sarmashghi, Kristine Bohmann, M. Thomas P. Gilbert, Vineet Bafna, and

Siavash Mirarab. The dissertation author was the primary investigator and author of this paper.
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Figure 3.8. The mean rank and distance error of the best remaining match in leave-out
experiments. The distance of closest genome in the reference to a query is varied from 0.01 to
0.1 (x-axis). The rank and distance errors (y-axis) of the best match to a query, are computed
by comparing the order given by each method with the order obtained by applying Mash* to
the full assemblies (ground truth). For each dataset, the experiment is repeated by taking each
species as the query, and then the errors are averaged. Three methods, Mash, Skmer, and AAF,
are compared on: (a) the Anopheles dataset, (b) the Drosophila dataset, and (c) the avian dataset.
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Figure 3.9. Comparing distances and phylogenetic trees from COI barcodes and simulated
genome-skims. Shown in red are wrong internal branches corresponding to the bipartitions that
are not found in the reference tree. Genome-skim size is randomly chosen among 0.1Gb, 0.5Gb,
and 1Gb. (a) Anopheles trees. (b) Drosophila trees. (c) Distribution of distances for Anopheles
(left) and Drosophila (right) genomes
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Chapter 4

RESPECT: Estimating Repeat Spectra
and Genome Length from Low-coverage
Genome Skims

The cost of sequencing the genome is dropping at a much faster rate compared to

assembling and finishing the genome. The use of lightly sampled genomes (genome-skims) could

be transformative for genomic ecology, and results using k-mers have shown the advantage of

this approach in identification and phylogenetic placement of eukaryotic species. Here, we revisit

the basic question of estimating genomic parameters such as genome length, coverage, and repeat

structure, focusing specifically on estimating the k-mer repeat spectrum. We show using a mix of

theoretical and empirical analysis that there are fundamental limitations to estimating the k-mer

spectra due to ill-conditioned systems, and that has implications for other genomic parameters.

We get around this problem using a novel constrained optimization approach (Spline Linear

Programming), where the constraints are learned empirically. On reads simulated at 1X coverage

from 66 genomes, our method, REPeat SPECTra Estimation (RESPECT), had < 1.5% error in

length estimation compared to 34% error previously achieved. In shotgun sequenced read samples

with contaminants, RESPECT length estimates had median error 4%, in contrast to other methods

that had median error 80%. Together, the results suggest that low-pass genomic sequencing can

yield reliable estimates of the length and repeat content of the genome. The RESPECT software

will be publicly available at https://github.com/shahab-sarmashghi/RESPECT.git
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4.1 Introduction

Anthropogenic pressure and other natural causes have resulted in severe disruption of

global ecosystems in recent years, including loss of biodiversity[105]. In North America alone,

the bird population has declined by over a quarter since 1970[10]. Simply understanding the

scope and extent of bio-diversity changes remains a challenging problem. Genomic sequence

based biodiversity sampling provides an attractive alternative to physical sampling and cataloging,

as falling costs have made it possible to shotgun sequence a reference specimen sample for at

most $10 per Gb (with another $60 for sample prep). However, the analysis typically requires

assembling and finishing a reference genome, which can still be prohibitively costly. Despite the

many projects aimed at high quality genome sequencing of eukaryotic species [11], it could be

many decades before we have acquired high-quality data so that biodiversity measurements for

each population can be acquired on an ongoing, routine basis.

While (meta)barcoding [26, 27, 28] methods can be used for species identification

and biodiversity measurements, they have many drawbacks including limited phylogenetic

resolution [42, 43]. Organelle assembly based methods [106, 16, 14] similarly cannot be used

for populations and often require whole genome sequences but discard the nuclear reads (the

vast majority of data). Therefore, there is renewed interest in the development of methods

that use all nuclear DNA from genome-skims–low-coverage (0.5-2Gb) sequencing, providing

0.2-4× coverage[107]. The low coverage of skims makes them cost-effective, but insufficient

for assembling, and calls for assembly-free methods. Such methods, based on analysis of k-mers

are being actively developed[108], and have been used for species identification (Skmer[109]);

for phylogenetic placement of a new species not in the library (APPLES[110]), and contaminant

filtering (CONSULT[111]). While k-mer analysis works well for species identification, it cannot

be applied easily for the analysis of populations (individuals from the same species) using

genome-skims, a key component of genomic ecology. Specifically, it ignores the effect of repeats,

and uses heuristics to estimate sequencing error and coverage, neither of which is known.
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In this chapter, we revisit the problem of estimating genomic parameters from genome-

skim data: specifically, genome length L, sequence-coverage c, and repeat content. From

genome-skim data, we have as input, abundance values of k-mers denoted by o, where oh

denotes the number of distinct k-mers of multiplicity h. A key latent variable is the k-mer-repeat-

spectrum (denoted hereafter as the k-mer spectrum) of the genome described by r, where rh

denotes the number of distinct k-mers that appear exactly h times in the genome. As the value

of oh depends upon r,c,L, and also on sequencing error, we consider the inverse problem of

estimating genomic parameters given o as input. The problem was studied in a seminal paper

by Li and Waterman[112] who mostly considered the case of high coverage and no sequencing

errors. Williams et al.[113] improved upon this model by ignoring o1 assuming that a large

proportion of unique k-mers can be attributed to sequencing errors. This assumption works better

for high coverage because at low coverage, many informative k-mers are also seen only once.

Hozza et al.[114] point this out, and focus attention on k-mer spectra. Their method, CovEst,

models spectra using a geometric distribution of unknown parameters, uses that parameterized

model to estimate both parameters and r1,r2,r3, and improves estimates even for low coverage

and high error.

A distinct but related line of research relates to estimating o itself by sub-sampling or

streaming reads. Melsted and colleagues[115, 116] describe streaming algorithms to estimate

o1 as well as moments Fk = ∑i ikoi. Interestingly, these moments can also be used to estimate

genome parameters. For example, E [F1] = λL, where λ = (1− (k−1)/ℓ)c denotes the k-mer

coverage, or the average number of k-mers covering a position derived from reads of length ℓ.

We note that streaming is akin to low-coverage sampling and consider the case of estimating

parameters over a range of λ .
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4.1.1 Estimating genome repetitiveness and other parameters using
k-mers

While previous research has emphasized the estimation of genome length and coverage,

we focus specifically on estimating the k-mer spectrum r, defined below. Consider a genome of

length L. Decompose the genome into a collection of all fixed-length (overlapping) sequences of

length k, called k-mers. Let variables r j ( j ≥ 1) denote the number of k-mers that occur exactly

j times in the genome. When k is large enough (k ≥ log4 L), high values of r j, for j ≥ 2, can be

attributed to the repetitive structures in the genome rather than chance similarities. Therefore,

we define r = [r1,r2, · · · ] as the (k-mer)-repeat-spectrum of the genome.

While the repetitive sequences occur in a variety of arrangements in terms of their

multiplicity, complexity and the size of repeating unit, the repeat spectrum provides a valuable

summary of the extent of repetition in the genome as well as other parameters. For example, the

genome length can be estimated as L = k−1+∑ j jr j ≃ ∑ j jr j. Define the uniqueness ratio of

a genome as r1/L, or the ratio of the number of k-mers seen only once to the genome length

(which is the total number of k-mers in the genome). We computed the uniqueness ratio for

622 eukaryotic genomes in RefSeq using k = 31 (Supplementary Fig C.1). The ratio revealed

a broad spectrum of values, ranging from 0.287 for A. tauschii (Tausch’s goatgrass) to 0.995

for a mite species, V. jacobsoni (Fig 4.1A). Expectedly, there is some phylogenetic correlation

and the variation of uniqueness ratio within a genus (intra-generic) is significantly lower than

inter-generic variation of uniqueness ratios (Supplementary Fig C.2). At higher taxonomic

ranks, we observed that plants had a significantly lower uniqueness ratio compared to other

groups (Fig 4.1B), consistent with a prevalence of whole genome duplication (WGD) events (see

Methods). Nevertheless, the correlation is not strong enough to predict uniqueness ratios solely

from taxonomy. For example, rice species O. sativa and O. brachyantha have different ratios

0.91 and 0.75, respectively.

The repeat spectrum provides other insights. In genomes composed largely of unique
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sequences, r1/L≃ 1 and r j values decrease rapidly for j ≥ 2 with logr1/r5 ≥ 4.5 (Fig 4.1C). On

the other hand, genomes with higher repetitive content have a smoother decrease of r j values

(Fig 4.1D) with log r1
r5
≤ 2.5 (Supplementary Fig C.3). Additionally, a genome that has duplicated

very recently will have r1 ≃ 0 and a very high value of r2. Over time, however, r1 increases due

to the accumulation of mutations. Similarly, r j > 0 for large values of j suggest the presence of

interspersed repeats.

Our method RESPECT (Repeat Spectrum identification) derives genomic length and

coverage from low-coverage genome skims, while also providing insight into the repeat structure.

We showed, through a mix of theoretical reasoning and empirical evidence, that the k-mer repeat

spectra estimation problem is fundamentally difficult because of severe ill-conditioning of the

system. In fact, the spectra are hard to estimate even when the coverage and sequencing error

rate are known. We resolve this problem for the case of known coverage and sequencing error

by imposing constraints on rh and solving a constrained optimization problem. This approach

provides greatly improved estimates of r, which in turn lead to even better estimation of coverage,

genome length and sequencing error through a stochastic iteration method. Results on genomes

sampled from different parts of the tree of life and with differing repeat structures illustrate

the validity of our approach. RESPECT is available at https://github.com/shahab-sarmashghi/

RESPECT.git

4.2 Results

4.2.1 A simple model for estimating repeat spectra from unassembled
data performs poorly

Assume that reads in the genome-skim are sequenced with a fixed mean error rate of ε per

bp, and that the read start positions follow a Poisson distribution with a mean coverage of λ per

bp. Denote the observed k-mer data as the vector o = [o1,o2, · · · ], where oh denotes the number

of k-mers observed exactly h times in the genome-skim input. The value oh is the outcome of a
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Figure 4.1. Characterizing repeats at k-mer level. (a) RefSeq plant taxonomy. The species are
color-coded based on the uniqueness ratio, from red (highly repetitive) to blue (non-repetitive).
(b) Uniqueness ratio distribution among four major taxonomic groups of eukaryotes in RefSeq.
Plants (green) have significantly lower r1/L compared to invertebrates (pink), mammals (yellow),
and other vertebrates (blue). P-values shown on the figure, are the result of statistical tests that
the uniqueness ratio is lower among plants compared to other groups. Also, to understand
the extent of difference, we tested if the ratios are lower among plants by X% margin. The
results are 5% p-value = 1.1×10−6, 10% p-value = 4.3×10−6, and 10% p-value = 4.2×10−6

when comparing plants against invertebrates, mammals, and other vertebrates, respectively. (c)
Dot-plot of V. jocobsoni genome’s (self)alignment with very few off-diagonal points, and a
rapidly decaying repeat spectrum (r1/L = 0.99). (d) Dot-plot of D. citri’s highly-repetitive
genome marked by many off-diagonal elements and a smoothly decreasing repeat spectrum
(r1/L = 0.51).

random variable Oh that depends upon the parameter set Φ = {λ ,ε,r} (See Methods: ‘Modeling

genomic parameters’). Specifically, we assume that each k-mer with copy number j in the

genome is sampled h times according to a Poisson distribution with rate dependent upon k,Φ.

67



Let Ph j represent the probability of h observances of a k-mer with copy number j. Then, in

expectation,

E [O] = rPT +1h=1E (4.1)

where E is the expected number of erroneous k-mers that in turn depends upon Φ. Φ could be

estimated using:

Φ = argmin
Φ
∥o−E [O]∥= argmin

Φ
∥o− (rPT +1h=1E)∥ (4.2)

In principle, an iterative procedure could be used to solve the optimization; we start with initial

estimates of λ and ε , and use them to compute P and E. Then, we can use the least-square (LS)

method to find r which minimizes ∥o−(rPT+1h=1E)∥ (Eqn. 4.2) (See Methods: ‘Least-squares

estimate of repeat spectrum’).

To study the accuracy of this model for repeat spectra estimation, we simulated genome

skims at 1X coverage with no sequencing errors (E = 0) for all 622 genomes in RefSeq in

four major taxonomic groups of eukaryotes. A subset of 66 species was selected as the test

set. The test genomes were sampled such that their uniqueness-ratio (r1/L) values matched

the distribution of uniqueness-ratios of all 622 RefSeq genomes (Supplementary Fig C.4, see

Methods: ‘Comparing r1/L distribution over different sets’). In the following text, all parameters

were trained on the 556 training genomes, and all test results shown on the 66 test genomes.

For a baseline test, we assumed that the coverage λ was known, so that r could be

estimated using ∥o− rPT∥2 (Eqn. 4.2). Using an LS solver (see Methods: ‘Least-squares

estimate of repeat spectrum’), we obtained highly accurate estimates of r1 on the test data

(Fig 4.2A; LS method). However, even in this simple case with perfect knowledge of coverage

and no sequencing error, the error in estimating r j increased rapidly with increasing j, as the LS

solution was often sparse and the estimation set r j = 0 for many j’s, contrary to its true value in

the genome.
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Figure 4.2. Repeat spectra estimation. (a) The relative error in estimating repeat spectra using
Least-Squares (LS), constrained Linear Programming (LP), and Spline Linear Programming
(SLP). The genome-skims are simulated at 1X with no sequencing error. (b) Correlation between
true r2/r1 ratios, and our estimates of r1/∑i=1 ri for each genome. (c) Similar correlation plot
between true r3/r2 and estimated r2/∑i=2 ri. In both (b) and (c), true spectral ratios on Y axis
are computed from the assemblies, and the estimated indices on X axis are obtained by applying
the LP method to the simulated skims described in (a).

Empirical and theoretical results showed that the poor performance could be attributed to

severe ill-conditioning. We proved that the condition number of P grows exponentially with the

number of spectra (see Supplementary Methods). Therefore, small changes in o relative to E [O]

(Eqn. 4.1), for example due to the sampling variability or the simplifying assumptions of model,

led to very large errors in estimates of r.
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4.2.2 Overview of RESPECT algorithm.

The negative result suggested a fundamental limitation to the use of k-mer based methods

for estimating repeat spectra. Regularization is a proposed remedy for ill-conditioned matrices.

However, most regularization methods enforce sparsity and r is known to be not sparse. A

second challenge is that both observed counts and k-mer spectra are very skewed towards lower

indices. Thus, a small (even 1%) relative error in r1 could lead to a larger error in r j for j > 1.

To get around the ill-conditioning problem, we focused on constraining possible values of r. We

observed empirically that ratio of consecutive spectral values r j+1/r j was tightly constrained.

Fig 4.2B traces r2/r1 as a function of r1
∑i≥1 ri

on the training data and notes the tight correlation

across all taxonomic groups. A similar, albeit less tight, constraint was observed for r3/r2

(Fig 4.2C) and other values as well (Supplementary Figs C.5-C.7).

These ideas provided the basis of a constrained linear-program for estimating r. As a first

step, we added the constraint that L j ≤
r j

r j+1
≤U j for each j, where L j and U j are the smallest

and the largest r j
r j+1

ratios over the training genomes, and solved the following LP to find r (see

Methods: ‘Linear programming for constrained optimization based estimates’)

r = argmin
r

E = argmin
r

n

∑
h=2

∣∣∣oh−
n

∑
j=1

Ph jr j

∣∣∣ (4.3)

This approach significantly improved the average error in estimating the spectra at multiplicity

j = 3 and higher (Fig 4.2A; LP method), and resulted in small improvement at j = 1,2 as well.

Using the repeat spectra from 556 training genomes, we observed a strong correlation

between r2/r1 and r1/∑i≥1 ri (Fig 4.2B). Therefore, we estimated r2/r1 by using the LP estimate

of r1/∑i≥1 ri and a spline fitted on the training data based on a generalized additive model [117,

118] (see Methods: ‘Spline Linear programming’). The estimated r2/r1 value and the LP

estimated r1 value provided a new estimate (named SLP) of r2. In a similar fashion, we

computed SLP estimates of r j+1 from LP estimate of r j and r j/∑i≥ j ri for j = 2,3,4,5 (Fig 4.2C,
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Supplementary Figs C.5-C.7, and Methods: ‘Spline Linear programming’). Using the additional

information learned from the training genomes captured by the fitted splines, we obtained

significant reduction in the average error of repeat spectra estimation (SLP vs. LP in Fig 4.2A).

To solve the full optimization problem in Eqn. 4.2, we used a simulated annealing procedure.

Specifically, starting with initial estimates of parameters obtained under no-repeat assumption,

at each iteration a new values for λ is suggested, and SLP method is used to estimate r. If a

candidate λ results in a reduction in error, the algorithm accepts the move. Moreover, to avoid

getting stuck at local minima, occasionally moves to states with higher error are also accepted.

Lastly, the initial estimate of ε is corrected for the repetitiveness of genome using a regression

learned over a subset of training genomes (Supplementary Fig C.8). The algorithm is outlined

below (also see Methods: ‘RESPECT algorithm’ for a detailed description).

1. Generate initial estimates of λ , ε , and r.

2. Compute the initial values of P and error function E .

3. For t = 1, · · · ,N repeat:

3.1. Choose λnext randomly within a neighborhood of current λ , and compute Pnext.

3.2. Solve for rnext using SLP method.

3.3. Use Pnext and rnext to compute Enext.

3.4. Set λ ← λnext, E ← Enext, and r← rnext with probability min{1,exp(−(Enext−

E )t/N)}.

4. Correct the initial estimate of ε , and update λ

5. Output c = λℓ/(ℓ−k+1), r, L = B/c, and ε at the end of iterations (B is the total amount

of nucleotides sequenced).

4.2.3 Estimating genome lengths

We applied RESPECT and CovEst to simulated genome-skims–Illumina reads sampled

from the 66 test genomes skimmed at 1X coverage with 1% sequencing-error rate–and compared
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their relative error in the estimation of r1 through r5 and genome length (Fig 4.3), after their con-

vergence (see Supplementary Figs C.9-C.14 for the convergence of RESPECT’s estimates). The

median RESPECT error in estimating r1 was less than 1.5% (average: 2.9%), while the median

error of CovEst was 15% (average: 34%). The error profile extended to higher multiplicities,

where, as noted earlier, CovEst used a parametric model. The tight relation between r1 and r2

and the large absolute differences between the two values implied that a small error in r1 would

translate into a large relative error for r2, and we observed that for r2. Similarly, the RESPECT

estimates of genome length were highly accurate with median error 2.2% (average: 4.1%), in

contrast to 27% (average: 40%) for CovEst (Fig 4.3B). RESPECT estimates were better than

CovEst in 62 out of 66 species, often by considerable margins (Fig 4.3C). For example, in 54/66

species, RESPECT error was less than 5%, while CovEst error exceeded 50% in one third of test

genomes. In fact, CovEst severely underestimates the length for these genomes (Supplementary

Fig C.15). For 18/66 test genomes, the CovEST estimate was less than the true length by a

factor of 4 or higher (Supplementary Fig C.16). SSRESPECT relies on models trained using

available assemblies. We tested if the performance depended on the amount of training data

and the taxonomic composition of the training data. RESPECT performance remained robust in

these scenarios (Supplementary Fig C.17a). Moreover, its performance improved slightly (had

fewer outliers) with additional training data (Supplementary Fig C.17b).

We repeated the same experiment at sequence level coverage of 0.5X, 2X, and 4X

(Supplementary Fig C.18). At 0.5X coverage, the median error of RESPECT was 16% (average:

18%), while CovEst had 88% median error (average: 75%) and underestimated the length by

a factor of 8 or more in half of the species (Supplementary Fig C.19). CovEst performance

improved at higher coverage but RESPECT continued to have lower error (Supplementary

Fig C.20). At 4X, CovEst had median error 3.3% (average: 7.6%), while RESPECT median

error was < 1% (average: 1.9%). Moreover, CovEst error exceeded 10% error in a third of

species, while RESPECT had < 10% error in 64/66 species (Supplementary Fig C.21).

SSWe also compared the performance of RESPECT among different taxonomic groups.
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Figure 4.3. Iterative estimation of genome length. (a) Comparing the error of RESPECT and
CovEst in estimating the repeat spectrum. The first 5 spectra are shown. (b) The distribution of
error in CovEst and RESPECT. The absolute value of relative error in genome length estimation
is used (in logarithmic scale). (c) Per-genome error of RESPECT and CovEst in estimating the
genome length of 66 species with genomes skimmed at 1X coverage.

In general, plants and invertebrates had higher error rates compared to both vertebrate groups

(Supplementary Fig C.22), consistent with their lower uniqueness ratios (Fig 4.1B). In fact, we

observed a statistically significant negative correlation between the estimation error and the

uniqueness ratio (Supplementary Fig C.23). We additionally tested RESPECT on simulated

genome-skims at 1X coverage from 10 bacterial genomes, and the results did not suggest any

bias against prokaryotic genomes (Supplementary Fig C.24), despite the fact that we trained our

model on eukaryotic genomes.
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4.2.4 Estimating genome length using sequenced short reads

A key difference between sequenced reads versus simulated reads is the presence of

‘contaminants’ or reads from non-target species. Differences may also include presence of adapter

sequences, duplications of reads from the sequencing platform, lower or higher sequencing error

rates due to DNA quality, and length variation of reads. Therefore, we tested RESPECT in

genome-skims obtained from NCBI’s Sequence Read Archive (SRA) database [119]. We

downloaded high-coverage raw reads from 29 test species (from all four major taxonomic

groups of eukaryotes in RefSeq) including highly repetitive plant genomes, and compared the

results with the corresponding genome assemblies of the same data. After preprocessing the

raw reads using BBTools [120] to remove adapter sequences and duplicate reads, we used

Kraken[121] to remove contaminant reads with microbial or human origin (see Methods: ‘SRA

preprocessing and contamination filtering’). We note that this is an imperfect process as these

tools work only when the contaminating organisms have a highly related member in the reference

databases[122]. We discarded 10 samples because > 40% of reads (after removing adapters)

were either duplicates of other reads, or came from external DNA sources (Supplementary

Table C.1). For the remaining 19 samples, duplicates and reads classified as contaminant were

removed, and unclassified reads were sub-sampled to 1X coverage. In 16 out of 19 samples,

RESPECT error was less than 11% (median: 4%), including highly repetitive genomes such as A.

tauschii (r1/L = 0.29), Z. mays (maize) (r1/L = 0.32), S. salar (salmon) (r1/L = 0.48), and N.

tabacum (r1/L = 0.57), where the abundance of repeats made the length estimation challenging

(Fig 4.4, Table 4.1). In contrast, CovEst had less than 30% error in only 4 samples (median error

80%) (Fig 4.4). For the highly repetitive genomes, CovEst length estimates ranged from 1/11

to 1/7 of the assembled sequence lengths or 10 to 30 times larger error compared to RESPECT

(see Table 4.1). In 3 samples, RESPECT had relatively high errors. For SRR085103 (domestic

ferret), 99.9% of the reads did not in fact map to the available reference assembly of the domestic

ferret M. putorious. Together with the relatively low percentage of duplication (9%) the data
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suggest a mislabeling of the sample species. For Coquerel’s sifaka (P. coquereli), we observed

a large gap between the total sequence length (2.8 Gbp) and the total ungapped length (2.1

Gbp) of the assembly, suggesting some challenges with the assembly. Cape elephant shrew (E.

edwardii) was the last sample where RESPECT length estimate of 4.5Gbp exceeded the RefSeq

(GCF 000299155.1) assembly length (3.8Gbp) by over 10%. Interestingly, the uniqueness ratio

of the assembly was r1/L = 0.72, which contrasted with the RESPECT estimated uniqueness

ratio of r1/L = 0.65 from the short-read data. Upon investigation, we found that a more recent

assembly for E. edwardii (GCA 004027355.1), not yet in RefSeq, had an assembled length equal

to 4.3 Gbp, with r1/L = 0.66, matching the RESPECT estimates (4.5Gb, 0.65, respectively).

The difference between total sequence length and ungapped length in GCA 004027355.1 was

only 1 Mbp, in contrast to > 500 Mbp for GCF 000299155.1. Together, these data suggest that

GCA 004027355.1 better assembles repetitive regions, and the RESPECT length estimation

error was < 5%, despite using only 1X coverage.

Table 4.1. Comparing RESPECT and CovEst accuracy on SRA’s of highly repetitive
genomes. The numbers in parentheses are the percentage errors.

Species A. tauschii (goat grass) Z. mays (maize) S. salar (salmon) N. tabacum (tobacco)

r1/L 0.29 0.32 0.48 0.57
Assembly length (Gbp) 4.3 2.1 3.0 3.6
RESPECT 3.9 (-10.7%) 2.0 (-8.2%) 2.8 (-4.9%) 3.7 (2.6%)
CovEst 0.4 (-90%) 0.2 (-90%) 0.3 (-90%) 0.5 (-86%)

4.2.5 The role of WGD versus high copy repeat elements in shaping
genome repeat structure

Predicting polyploidy and recent WGD is challenging because mutation and gene loss

after a WGD event can reduce the polyploidy signal. Specifically, a WGD event results in

the uniqueness ratio (r1/L) becoming 0. Subsequently, as mutations accumulate, r1/L ratio

moves gradually towards 1 in a process that may be specific to the species, and hard to predict.

Nevertheless, it should be skewed toward smaller values for recent WGD events. Independently,
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Figure 4.4. Estimating genome length using SRA data. Comparing the error of CovEst and
RESPECT. High coverage SRA were preprocessed and later downsampled to 1X coverage. Both
methods are applied to genome skims (after preprocessing) and the absolute values of the relative
error in estimating the genome lengths are compared.

the presence of high copy repeats due to DNA transposons and retrotransposons can lead to very

high copy numbers of a small set of oligomers. To capture the contribution of high copy repeat

elements, we defined the ‘High Copy Repeats per Million (HCRM)’ value as the average count

(per million base-pairs) of the 10 most highly repetitive k-mers. HCRM values varied across the

species, ranging from 2 to 3738 among our set of 622 RefSeq genomes (Supplementary Fig C.25).

We observed some correlation between HCRM values of species of the same genus, especially

among vertebrates (Supplementary Fig C.26). However, similar to the case of uniqueness ratios,
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the phylogenetic signal was not pronounced enough to predict HCRM based on the taxonomy.

Analytical calculations showed that the probability of high HCRM values ≥ 200 in a

genome with random set of k-mers was negligibly small (P≤ 10−100) (See Methods: ‘Statistical

analysis of the repeat structure’), suggesting that high HCRM values could not be explained

solely by WGD events, and were likely due to high copy (transposon) repeats. Fig 4.5 shows

the (r1/L, HCRM) value of 622 genome-skims, which tightly matched the true values computed

from assembled genomes (Supplementary Fig C.27). To analyze the r1/L and HCRM values of

genomes with recent WGD, we compiled a partial list of species with known WGD events within

the last 150M years based on the available literature[123, 124, 125] (See Methods: ‘Selecting

species with known recent WGD events’ and Supplementary Table C.2).

Species with known recent WGD events had expectedly low r1/L. For example, only 14%

of species with recent WGD had r1/L values ≥ 0.8, in contrast with 64% of all species that had

r1/L values higher than 0.8. Surprisingly, 93% of species with recent WGD also had low HCRM

values (≤ 200) (Fig 4.5), and there was a strong association between the occurrence of recent

WGD events and the (r1/L, HCRM) values (p-value: 1.8× 10−23; See Methods: ‘Statistical

analysis of the repeat structure’). Our results suggest that genomes with low HCRM and r1/L

are strong candidates for WGD events.

4.3 Methods

Comparing r1/L distribution over different sets

To compare two sets of values and see if the values in one set are greater than the

other set, we used the Mann–Whitney U test. Formally, if X and Y are random samples from

populations X and Y , the test statistic, U , is given by the number of times x is greater than y

for all (x,y) ∈X ×Y . The Mann–Whitney U test is non-parametric and does not restrict the

samples to be from a certain family of distributions. The test also allows the user to specify a

location shift µ and examine the alternative hypothesis that X−Y > µ . By gradually increasing

µ and computing the p-value, we can understand the extent of difference between X and Y .
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Figure 4.5. High copy repeats per million versus uniqueness ratio among genomes with and
without known recent WGD events. Most of genomes with known recent WGD events had
r1/L < 0.8 and HCRM < 200. The y-axis is in a logarithmic scale. HCRM values are computed
from genome-skims simulated at 1X coverage with no sequencing error. Some of the species
with a recent WGD are labeled by their common names.

To test if two sets of numbers are drawn from the same distribution, we used the two-

sample Kolmogorov–Smirnov (KS) test. The test statistic is a distance between the empirical

distributions functions of the samples from the two sets. We used R ‘stats’ package [126] to

compute the p-values for both tests.

Modeling genomic parameters

We consider k-mers in a genome of length L and assume that k≫ log4 L so that any

k-mer is unlikely to appear more than once, unless it is part of a repeated sequence. Denote the

(unknown) k-mer spectrum of a genome that contains repeats using r, where r j describes the
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number of distinct k-mers that appear exactly j times in the genome.

The genome is shotgun sequenced using reads of length ℓ with average sequencing depth

c. The total number of nucleotides sequenced is given by B = cL. As there are l− k+1 k-mers

in each read, the k-mer coverage is given by

λ = (1− (k−1)/ℓ)c =
(1− (k−1)/ℓ)B

L
. (4.4)

Let o denote the histogram of observed k-mer counts. The observed number of k-mers of

abundance h, oh, can be thought of as a sample allocation to random variable Oh, whose expected

value, mh = E [Oh], depends upon r, λ , L, and also on sequencing error. We assume that any

base-pair is sequenced erroneously with probability ε , and sequencing errors only result in novel

k-mers. We further assume that the number of times a unique k-mer repeated j times is sampled

follows a Poisson distribution with rate λ j(1− ε)k. Therefore

m = rPT +1h=1E , (4.5)

where Ph j = e− jλ (1−ε)k ( jλ (1−ε)k)h

h! denotes the probability that a k-mer repeated j times in the

genome is observed with count h in the genome skim, 1h=1 = [1,0,0, . . .], and E = Lλ (1− (1−

ε)k) is the expected number of erroneous k-mers. As λ and L are connected through Eqn. 4.4,

we choose λ as the independent variable and consider L as a function of λ . Under this model,

we would like to estimate (r,λ ,ε) = argminr,ε E (P,r,ε,o), where E is a weighted p-norm of

the difference between expected and observed counts

Ew,p(P,r,ε,o) =

(
∑
h

wh

∣∣∣mh−oh

∣∣∣p
)1/p

=

(
∑
h

wh

∣∣∣(rPT +1h=1E)h−oh

∣∣∣p
)1/p

. (4.6)

Note that the optimization is non-trivial because P and E are functions of (r,λ ,ε), and must be

simultaneously estimated.
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A generic iterative optimization for parameter estimation

The dimensions of o and r in Eqn. 4.5 are determined entirely by data and are not neces-

sarily identical. However, we truncated both to a common dimension n = 50 for computational

expediency. A generic optimization method could be described as below.

1. Generate initial estimates of λ ,ε,L.

2. Solve for r using Eqn. 4.6.

3. Use estimated r and grid-search to re-estimate λ ,ε .

4. Repeat step 2 onwards until the error has converged.

Step 2 is the key step in this procedure, and we devised a number of approaches to solve it.

Least-squares estimate of repeat spectrum

Choosing p = 2 (Euclidean norm) and wh = 1,∀h in Eqn. 4.6, the problem is turned

into a Least-Squares (LS) optimization. To test an LS method for estimating r, we considered

the simplest sequencing-error-free case (ε = 0), where coverage λ was known. Therefore,

E [O] = m = rPT, where P is an n×n matrix with

Ph j = e− jλ ( jλ )h

h!
.

We showed (Supplementary Methods) that P is non-singular and in the error-free case, it should

be possible to use the estimate r(est) = oP−T. However, we observed that its effective rank was

very small as Λ,E each have rapidly diminishing eigenvalues. Therefore, instead of decomposing

P and explicitly computing P−1, we used the non-negative least squares (NNLS) method[127] to

solve

r(est) = argmin
r
∥o− rPT∥2 .

We used nnls method from SciPy’s [128] Optimize library. Unfortunately, the LS estimates

were very unreliable and showed high error. In fact, we proved, for λ = 1 (see Supplementary
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Methods), that

cond(P)≥ 2n

n
.

The condition number grows exponentially with n suggesting a highly ill-conditioned matrix P

where small changes in o from the expected values m would lead to large errors in estimate of r.

For these reasons, we adopted constrained optimization methods to solve for r.

Linear programming for constrained optimization based estimates

We used Eqn. 4.6 with w = [0,1,1, . . . ,1] and p = 1 to design a Linear programming

estimate of r as:

min
r

n

∑
h=2

∣∣∣oh−
n

∑
j=1

Ph jr j

∣∣∣ , (4.7)

such that

Lh ≤
rh

rh+1
≤Uh, h = 1,2, · · · ,n−1

The rationale behind setting w1 = 0 was that o1 contains a large number of erroneous k-mers, so

we exclude it from the objective function and use the rest of the bins to estimate r. As ε is not

known in general, o1 was used to estimate the (average) sequencing error rate, and subsequently

the k-mer coverage λ .

The lower and upper bounds on r j
r j+1

were determined based on the distribution R j of

spectral ratios in 556 training genomes, and therefore we only search for candidate solutions r that

satisfy the constraints. Specifically, we profiled the repeat spectra of the training genomes and set

[L j,U j] equal to the empirical support of R j distribution, i.e., L j and U j are the smallest and

the largest samples observed from R j over the training genomes. We use Gurobi Optimizer [129]

to solve the constrained optimization problem formulated in Eqn. 4.7.

Spline Linear programming

The final method of estimating r is based on the LP estimate of r and the splines fitted

on spectral ratios r j/r j+1 as functions of r j
∑i≥ j ri

. Formally, let rLP
j denote the LP estimate of r j

by constraining the spectral ratios to be within the support of R j among the training genomes,
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as discussed above. For each j ∈ {1,2,3,4,5}, we used a generalized additive model (GAM),

learned from 556 training genomes, to predict r j/r j+1 based on
rLP

j

∑i≥ j rLP
i

. Specifically, we model

y j = r j/r j+1 for different genomes as samples drawn from dependent random variable Y j, which

follows gamma distribution and its mean is determined by

g j(E
[
Yj
]
) = s j(

r j

∑i≥ j ri
) , (4.8)

where g j is called the link function, and s j is the smoothing spline. These functions allow us

to capture nonlinear dependencies between the variables in our model. For j = 1,2, we use a

logarithmic link function to account for the large dynamic range of r j/r j+1 over the training

set, and use identity link for j = 3,4,5. For each fitted GAM, we empirically set the smoothing

parameter to balance the over-fitting against the goodness of fit. We used R ‘mgcv’ package [130]

for GAM fitting.

Using the LP estimates of r j’s and plugging them into Eqn. 4.8, we predict the spectral

ratios. Let ySLP
j denote the estimate of y j using Eqn. 4.8 on previous estimates of r. We

recursively re-estimate r j for j ∈ {2,3,4,5,6} and call them rSLP
j :

rSLP
j =


rLP

j j = 1 and j > 6

rSLP
j−1/ySLP

j−1 2≤ j ≤ 6
(4.9)

RESPECT algorithm

For the RESPECT algorithm, we replaced the basic iterative method described above

with a simulated annealing procedure outlined in Algorithm 1 to speed up the computations.

To initialize the algorithm, we started with the assumptions that genome has no repeats r =

[L,0,0, . . .], and the error-free k-mer counts follow a Poisson distribution (Eqn. 4.5). Defining

λef = λ (1− ε)k as the error-free k-mer coverage, we estimate its initial value from the ratio of
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observed counts

λef =
(h∗+1)oh∗+1

oh∗
, where h∗ = argmax

h>1
oh ,

and set

λ = e−λef
λ h∗

ef
h∗!

o1

oh∗
+λef(1− e−λef), ε = 1− (λef/λ )1/k

(see Supplementary Methods). The above estimate of ε is used throughout the algorithm, but

is corrected at the end based on the estimated uniqueness ratio (described below). Using the

estimate of λef, we compute P, and thus the error function E at the start of the algorithm. For E ,

we chose w = [0,1,1, . . . ,1] and p = 1 in Eqn. 4.6, so

E =
n

∑
h=2

∣∣∣oh−
n

∑
j=1

Ph jr j

∣∣∣
With the initial values of the parameters known, RESPECT runs a simulated annealing

optimization until the error converges. At each iteration, a candidate λnext in [1
2λ ,3λ ] is selected

uniformly at random, and Pnext is computed from λnext(1− ε)k. Next, we run SLP method on (o,

Pnext) to get rnext. Throughout the algorithm, we used truncated o1×m, r1×n, and Pm×n where the

number of spectra is fixed at n = 50 (a reasonable compromise between accuracy and speed), and

the number of observed counts m = n ·max(1,λef) scales proportionally with the initial estimate

of error-free k-mer coverage. Using (o, Pnext, rnext), error function for the candidate state Enext is

calculated. If moving to the candidate state results in a reduction in the error (Enext < E ), the

algorithm accepts the move and updates the current estimate of parameters. In addition, to help

the algorithm deal with local minima and find better solutions, a simulated annealing scheme is

implemented such that the algorithm probabilistically decides to move to states with higher error.

Specifically, at iteration t, even if Enext > E , the algorithm accepts the move with probability

exp(−(Enext−E )t/N).

At the end of iterations, the initial estimate of ε (obtained under no-repeats assumption)

is corrected based on the estimated value of r1/L. The correction was learned over 120 genomes
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Algorithm 1: The RESPECT method.

Start with λef = λ (0)(1− ε)k =
(h∗+1)oh∗+1

oh∗
, where h∗ = argmaxh>1 oh ;

Compute P(0), E (0) = minr E (P(0),r(0),o), and r(0) = argminr E (P(0),r(0),o) ;

Find E = o1−∑ j P(0)
1 j r(0)j ;

Set λ (0) = e−λef λ h∗
ef

h∗!
o1
oh∗

+λef(1− e−λef), and compute ε from λef and λ (0) ;
for 1≤ t ≤ N do

λ (t)←U [1
2 ·λ

(t−1), 3 ·λ (t−1)] ;
Use λ (t) and ε to compute P(t), r(t) = argminr E (P(t),r(t),o), and
E (t) = minr E (P(t),r(0),o) ;

Move to λ (t) with probability min
{

1,exp
(

E (t−1)−E (t)

N−t+1

)}
;

end
Correct ε and set λ = λ (N)(1− ε)k/(1− εcorrected)

k ;
Output c = ℓ

ℓ−k+1 λ , L = B/c, εcorrected, and r(N)

randomly selected from the training set, and applied if the estimated coverage is smaller than

1.5X. Then, λ is re-computed based on the corrected ε , and is used to compute the final estimates

of coverage and genome length. The estimated sequencing error rate and repeat spectrum are

also provided by the algorithm.

SRA preprocessing and contamination filtering

After downloading SRA accessions and converting them to FASTQ using SRA Toolkit [131],

we used BBDuk and Dedupe from BBTools package to trim adapter sequences and remove

duplicate reads. We then ran Kraken2 to remove contamination with prokaryotic or human

origin. For plant and invertebrate samples, we filtered out any read that was classified to the

Kraken database at 0 confidence level (very sensitive, a single matched k-mer is enough for the

classification). For vertebrates, due to their smaller evolutionary distance to homo sapiens, we

required 0.5 confidence level (more specific, half of the read’s k-mers should match) for human

classification, and 0 confidence level for everything else in the database.

Implementation details and running time

We use ‘count’ and ‘histo’ commands from Jellyfish [68] command line tool to compute

the k-mer histogram of input genome-skims. In each iteration of RESPECT algorithm, we
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solve a constrained optimization problem using the tools provided by Gurobi Python interface

in ‘gurobipy’ package. The running time of RESPECT slowly increases with the coverage as

the size of P (and hence the size of optimization problem at each iteration) scales with the

(initial) estimate of coverage. On average, for a typical 0.5X-4X coverage of genome-skims, it

takes about 2 hours for RESPECT algorithm to converge and produce the final estimate of the

parameters.

Selecting species with known recent WGD events

From the total of 83 RefSeq genomes in our database, we obtained the WGD annotation

(with estimated age) for 44 plant species [124]. WGD annotations for the remaining 32 plant

species in our database were based on the data provided by the 1000 plants project [125], where

either the exact same species or a species from the same genus is identified to have undergone a

WGD event using transcriptomic data. We also have 7 Salmonid genomes where their common

ancestor is thought to have had a WGD event about 80My ago [123].

Statistical analysis of the repeat structure

In a random genome with length L, there are L− k+ 1 ≃ L k-mers, and assuming the

random selection of k-mers is uniform over the space of all 4k possible k-mers, the probability

distribution for the copy number (CN) of each k-mer is

Prob[CN = x] =
(

L
x

)
(

1
4k )

x(1− 1
4k )

L−x .

For typical values of L∼ 100−1000 Mbp and k = 31, the conditions to use a Poisson distribution

to approximate a Binomial (see e.g., Section 5.4 of [132]) are met, i.e., L≫ 1 and 4−k ≪ 1,

hence we have

Prob[CN = x] = e−L/4k (L/4k)x

x!
.
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If the genome subsequently undergoes nw whole genome duplication events, the genome length is

multiplied by 2nw . However, the multiplicity of each k-mer increases by at most 2nw , as mutations

reduce the copy number of k-mers. Therefore, to have an HCRM value of H, there should exist

at least a k-mer with copy number x ≥ HL in the original random genome. Now, considering

that under random-genome model the selection of any k-mer is equally likely, we can use the

union bound (see e.g., Section 1.5 of [132]) and have

Prob[HCRM ≥ H] < ∑
all

k-mers

∑
x=HL

e−L/4k (L/4k)x

x!

< 4k
∑

x=HL
e−L/4k (L/4k)x

x!
. (4.10)

We used WolframAlpha [133] to compute the bound in (4.10) for several values of H. For

H = 200 and L ∈ [100−1000] Mbp, the resulting p-values were less than 10−100.

To test the association between WGD events and the values of r1/L and HCRM, we used

the assembled genomes of 622 RefSeq species and constructed a two by two contingency table

where columns represent the species with or without an identified recent WGD, and the rows

specify whether or not the genome has r1/L and HCRM values less than 0.8 and 200, respectively.

We filled the table by the count of genomes that satisfied each of these four conditions, and

performed a Fisher’s exact test (using R ‘stats’ package [126]) and got the p-value = 1.8×10−23

for the correlation between the rows and columns of the table.

4.4 Discussion

In this chapter, we revisited the problem of estimating genomic parameters (length,

sequence coverage, k-mer spectra) based on low coverage shotgun sequencing data. The problem

has been studied previously and was considered challenging due to the need for simultaneous

inference of coverage and sequencing errors along with the k-mer spectra. However, our results
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suggest that the problem remains challenging even when there is no error and the coverage is

known. This is due to two factors. (a) The linear system is ill-conditioned, so that a small change

in the k-mer counts due to random sampling can lead to large changes in the estimated k-mer

spectra (b) Values in the k-mer spectra show a skewed and non-sparse distribution, where r1

dominates; r1 is important for length estimation, but controlling for small errors in r1 leads to

larger errors in the other rh values. We provide evidence of both, but future work will clarify the

importance of each facet of the identification.

Proposed solutions for ill-conditioning use regularization but those methods generally

enforce sparse solutions. However, the true k-mer distribution is not sparse. Our work resolved

this issue through an empirical estimation of k-mer ratios based on finished genomes. This

approach is viable given the many finished genomes with different repeat characteristics. Our

study, with 662 genomes of which around 10% were isolated for testing, is the largest empirical

study of its kind.

As expected, accurately estimated k-mer spectra led to better estimation of genomic

parameters such as length, with Skmer-genome performing significantly better than the previous

best method, sometimes by orders of magnitude. Our results also have lower variance than those

of other methods.

As coverage increases, all methods perform well. However, at coverage 8X and higher,

partial assemblies are possible and small contigs can start to be assembled. In those cases,

alternative methods to estimate genome lengths may be possible, but our methods work well

even for 0.5X coverage.

SSWe had used every genome for which the assembled sequence and the raw-reads were

available at the time of submission. Recently, new data has been been released, and we tested

our method on 10 additional samples with very similar performance (Supplementary Fig C.28).

The presence of contaminants is a significant barrier to accurate estimations, and in fact

is challenging even for assembling the data. As data sampling and DNA extraction methods

improve, this problem will likely be less problematic. In parallel, we are also working to improve
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computational approaches to removing contamination.

While most k-mer based statistics were developed as an initial first step prior to deep

sequencing and assembly, they may have an important role to play in independent analysis of

genomes. Many genomes are ≤ 1Gb or lower. Therefore acquiring genome-skims for a majority

of organisms and even multiple individuals in a population is a feasible goal. Methods that work

on these reduced representations can be transformative for studying dramatic and short-term

changes in bio-ecology. We can envision technologies where a sampled individual’s genome-

skim can be used to quickly estimate its genome-length, repeat structure, remove contaminating

reads, identify the organism or place it confidently in the tree of life, and finally, identify the

robustness of population through analysis of heterozygosity. Our work contributes to the first

step of this vision.

Chapter 4, in full, is a reprint of the material as it appears in PLOS Computational Biology

17(11): e1009449. “Estimating repeat spectra and genome length from low-coverage genome

skims with RESPECT”. Shahab Sarmashghi, Metin Balaban , Eleonora Rachtman, Behrouz

Touri, Siavash Mirarab, and Vineet Bafna. The dissertation author was the primary investigator

and author of this paper.
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Appendix A

Supplementary material: ISTAT

A.1 Generalized overlap

We can be more strict about declaring an intersection by accepting only those overlaps

which include z or more base pairs (units). The dynammic programming algorithm and Poisson

binomial approximation can both be easily generalized for that:

A.2 DP algorithm

For c(i,h), the intersection conditions should change to j1 ≤ h− z and j2 ≥ h− li + z,

which can be compressed into the single condition min{ j2,h}−max{ j1,h− li} ≥ z. For f (h)

we need to modify the defintion of “span”, so interval ( j1, j2) spans h if j1 ≤ h−z and j2 ≥ h+z,

which allows it to have the opportunity of overlap (under this new criteria) with both intervals

starting and ending at h.

A.3 Poisson binomial approximation

In this case, pi j is given by

pi j =


0 if z > min{x j, li}

li+x j−2z+1
g Otherwise
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A.4 Dynamic programing with disjointed Intervals

As described earlier, for i-th interval in Ir, genomic location h, (1≤ h≤ g), 0≤ k ≤ m,

a ∈ 0,1, let N(i,h,k,a) denote the number of arrangements of the first i intervals in Ir such that

(See Figure 2.2):

• The i-th interval ends exactly at location h.

• k intervals in I f are hit by the first i intervals in Ir.

• a = 0 if the interval from I f that spans j (if any) has not been counted earlier; a = 1

otherwise.

We also define N1(i,h,k,a) identically to N(i,h,k,a) with the exception that the i-th interval

ends at or before location h. If we consider the restriction that the intervals in Ir must be disjoint,

which means that for any ordered pair of intervals (i1, i2) and (i3, i4), i2 has to be strictly less

than i3, then the recurrence relation for N(i,h,k,a) has to be modified as:

N(i,h,k,a) =


0 h < ∑

i
x=1 lx + i−1 or k < c(i,h)−a

1 i = 1 and k = c(i,h)−a

N1(i−1,h− li−1,k− c(i,h)+a,min{ f (h− li−1), f (h− li)}) Otherwise

A.5 Log-scale computations

Let a = logA and b = logB, then the following simple math trick enables us to calculate

c = log(A±B) without explicitly converting a and b to their intractably large counterparts

A = exp(a) and B = exp(b)

c =


a+ log(1± exp(b−a)) if b > a

b+ log(1± exp(a−b)) if a > b
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As a matter of fact, this trick is useful when A and B are both large, but the ratio A
B = exp(a−b)

is computable, which is the case in the recurrence relation given by Eqn. 2.2.1. In fact, as we

proceed along the four dimensions of N1(. , . , . , .), configurations accumulate and their count

increases gradually. Therefore, whenever two numbers are added, their ratio is within the

admissible range, even if their absolute values are not. The multiplication and division can be

also done trivially.

A.6 The null model with multiple chromosomes

Consider Q chromosomes. For arbitrary chromosome q, let Iq ⊆ I and I f ,q ⊆ I f denote

the subsets of intervals paced on q, containing nq and mq intervals, respectively. Similarly, we

can define Ir,q to be a random reordering of Iq on chromosome q. Let Nq(kq) denote the number

of configurations of intervals in Ir,q s.t. |I f ,q ⊑ Ir,q|= kq. Using dynamic programming on each

of Q chromosomes, we can obtain Nq(kq) 1≤ q≤ Q,0≤ kq ≤ mq. For k ∈ [0,m] we define the

p-value to be

P-value(k) = Pr(
Q

∑
q=1

kq ≥ k).

With the equiprobability assumption and using simple arguments based on multiplication princi-

ple to count the number of desired configurations, we can compute the p-value as

P-value(k) =
∑(k1,k2,...,kQ)∈Tk ∏

Q
q=1 Nq(kq)

∑(k1,k2,...,kQ)∈T0 ∏
Q
q=1 Nq(kq)

,

where Tk is the set of all Q-tuples (k1,k2, . . . ,kQ) such that ∑
Q
q=1 kq ≥ k. While the denominator

can be easily computed via the following identity

∑
(k1,k2,...,kQ)∈T0

Q

∏
q=1

Nq(kq) =
Q

∏
q=1

mq

∑
kq=0

Nq(kq) ,
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it is not efficient to iterate over Tk to compute the numerator for each k. Instead, we use a simple

recursive procedure to compute it. Let M(q,k) be the number of configurations that the first q

chromosomes have k intersections. The p-value can be expressed in terms of M(q,k) as

P-value(k) =
∑

m
κ=k M(Q,κ)

∑
m
κ=0 M(Q,κ)

.

The following recurrence relation lets us to efficiently compute the p-value for all k ∈ [0,m]

M(q,k) =
min{k,mq}

∑
l=0

M(q−1,k− l)Nq(l)

M(q,0) =
q

∏
u=1

Nu(0), M(1,k) = N1(k)

where the time complexity is O(Qm2). Nevertheless, the total time complexity of calculating the

p-value is definitely dominated by the compexity of applying DP algorithm to each chromosome

to compute all Nq(kq). As DP algorithm on each chromosome is done independently, we can

take advantage of parallel computing and the total running time would be O(max
q
{nqgqmq}).
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Figure A.1. Further evaluation of methods using simulated datasets. (a) Impact of scaling
parameter ν on DP p-value when li,x j ∼ U [100bp,4Kbp]. (b) Running time (secs.) of DP
algorithm as a function of m, with n = 100, g = 200Mbp. (c) Running time (secs.) of DP
algorithm as a function of g, with n = m = 100. (d–f) Impact of approximation on p-value
computation. Simulations are run with g= 200Mbp, m= 100, n= 1000, li,x j∼U [1Kbp,2Kbp];
(d) η = 0.0079. (e) η = 0.062. (f) η = 0.68.
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Appendix B

Supplementary material: Skmer

B.1 Theoretical results

Consider two genomes of identical length L and separated by hamming distance D where

the hamming distance is defined as the fraction of variant sites between the perfect alignment of

the two genomes. We would like to estimate D from two genome-skims.

Mutations

We model the two genomes as the outcome of a random process that copies a genome

and introduces mutations at each position i.i.d with a fixed probability d. Indexing from left

to right, we can define n = L− k+ 1 k-mers (note that n ≈ L for any reasonable choice of k

and genome length). Let Xi be a binary random variable (r.v.) that indicates whether k-mer i is

identical between the two genomes. Clearly, in our model, Xi ∼ Bern(p) where p = (1−d)k.

Then, W = ∑
n
1 Xi gives the number of shared k-mers. If J is defined as the Jaccard index over

the set of all k-mers from both genomes, it’s easy to see that J = W
2n−W and thus, W

n = 2J
1+J . We

further make a simplifying assumption. We assume all Xi r.v.s are independent, an assumption

that is true for most pairs of k-mers but ignores the fact that each k-mer overlaps with k-1 other

k-mers. With this assumption, the maximum likelihood estimate of p is simply

p̂ =
W
n

=
2J

1+ J
.
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By the functional invariance of maximum likelihood, the ML estimate of d is given by:

d̂ = 1−
( 2J

1+ J

) 1
k .

k-mer sampling

We now assume that each genome is covered uniformly at random. Thus, k-mers are also

sub-sampled and we assume each k-mer is sampled at least once with probability η1 in the first

genome and η2 in the second genome; we derive the relationship between these probabilities

and genome coverage below. We estimate η values separately (also described below) and here

consider them as given. For each 1≤ i≤ n and j ∈ {1,2}, let Yj,i ∼ Bern(η j) be the indicator of

whether the k-mer i is sampled at least once in the genome j. Under this scenario, the number

of k-mers shared between the two genomes is given by the r.v. W = ∑
n
1 XiY1,iY2,i. Defining

Z = XiY1,iY2,i, we get W = ∑
n
1 Zi and Zi ∼ Bern(r) where r = pη1η2 by the independence of

the mutation process and each of the two k-mer sampling processes. Assuming independence

between Zi r.v.s (again ignoring the overlap between consecutive k-mers) we get the ML estimate

r̂ = W
n , and thus (for a given η1 and η2) we have

r̂ = p̂η1η2 =
W
n

(B.1)

Let U = ∑
n
1 Si where Si = Y1,i +Y2,i−Y1,iY2,iXi. It is easy to see that U gives the total

number of sampled k-mers in both genomes. However, Si is not a Bernoulli and thus, U

is not Binomial. Nevertheless, the same assumptions that we used to treat Xi and Zi r.v.s

as independent also give us independence between Si values; therefore, by the central limit

theorem, U
n can be approximated by a Gaussian with mean q = E [Si]. Moreover, E [Si] =

E [Y1,i]+E [Y2,i]−E [Y1,iY2,iXi] = η1 +η2−η1η2 p (note that Xi, Y1,i and Y2,i are independent).

95



By this Gaussian approximation, the ML estimate of q given η1,η2 is given by:

q̂ = η1 +η2−η1η2 p̂ =
U
n
. (B.2)

Note that J = W
U . Equations B.1 and B.2 give two different ML estimators of the same parameter

p given two different types of data (W and U). While the two estimators are not the same,

because n is extremely large, both estimators have a very low variance. Exploiting the low

variance, we treat the two estimates of p as equal and divide both sides of Equation B.1 by

Equation B.2 to get:

r̂
q̂
=

W
U

= J =
p̂η1η2

η1 +η2−η1η2 p̂
.

Solving for p̂ and replacing d̂ = 1− p̂
1
k gives

d̂ = 1−
( (η1 +η2)J

η1η2(1+ J)

) 1
k .

Note that we have assumed a known coverage and thus we are not co-estimating η j’s and

d. In practice, we need to first estimate η1 and η2, and we do it as we will describe.

Connection of η to read coverage

A k-mer stretching from position y to y+ k on the genome is covered by the reads that

start in the interval [y+ k− ℓ,y]. Assuming that there is no sequencing error, and a uniform

spread of of the N reads across the genome of length L. We show that the probability η that a

k-mer is sampled by at least one read is given by

η = 1− e−c(1− k
ℓ )

Let X be a r.v. denoting the number of reads that cover a specific k-mer. Assuming a

uniform spread of N reads across the genome of length L, the probability of x reads covering a
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k-mer (starting in an interval of length ℓ− k) is given by

Prob(X = x) =
(

N
x

)
(
l− k

L
)x(1− l− k

L
)N−x

As N is large and N(l−k)
L is constant, it can be closely approximated by

Prob(X = x) =
λ x

x!
e−λ

where λ = N(l−k)
L is the k-mer coverage, and is related to the coverage c by

λ =
l− k

l
c

As the number of reads covering a k-mer follows Poisson distribution, the fraction of k-mers

covered by 1 or more reads is

η = 1− e−λ (B.3)

Sequencing error

We model the sequencing error as an i.i.d process that corrupts each position of each read

with a fixed probability ε . To extend our previous results to cover this scenario, we need to see

how the intersection r.v. (W ) and the union r.v. (U) get affected.

We start with the intersection (W ). We change the meaning of η to denote the probability

that a k-mer is covered by at least one error-free read. The probability of a k-mer within a read

being error-free is clearly

ρ = (1− ε)k ≃ e−kε (B.4)

By conditioning on the number of reads covering a k-mer, the probability of not covering
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a k-mer with an error-free read is given by

Prob(no error-free read) =
∞

∑
i=0

Prob(all reads have error|i reads)Prob(i reads)

=
∞

∑
i=0

(1−ρ)i Prob(i reads)

=
∞

∑
i=0

(1−ρ)i λ
i

i!
e−λ

= e−λρ

(B.5)

Hence, the probability that a k-mer is covered by at least one error-free read is given by

η = 1− e−λρ (B.6)

Note that Eqn. B.6 reduces to Eqn. B.3 when there is no sequencing error, i.e., ρ = 1.

Similar to the case of no error, given η1 and η2, the r.v. W
n (where W is the number of shared

k-mers) can be used with Equation B.1 to estimate r.

We now turn to the union (r.v. U). For large enough k, and for genomes that are random

and repeat-free, with high probability (> 1− 2L
4k ) an error produces a new k-mer that is not

observed in either of the input genomes. Ignoring the exceedingly unlikely event that two errors

produce the same k-mer or that they produce a k-mer present in one of the two genomes, we can

assume that the sequencing error generates as many new k-mers as the number of reads being

affected by errors.

In the regime that includes errors, U = ∑
n
1(T1,i +T2,i)−W where the r.v.s T1,i and T2,i

give the total number of k-mers generated from the position i from the first and second genomes,

respectively. W.l.o.g, consider T1,i. By conditioning on the number of reads covering a k-mer we

have

E[T1,i] = E[E[T1,i|x reads]] =
∞

∑
x=0

E[T1,i|x reads]Prob(x reads) (B.7)
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Given that x reads are covering a k-mer, T1,i equals the number of erroneous k-mers E, plus 1 if

there is any error-free k-mer. As E ∼ Binom(x,1−ρ)

E[T1,i|x reads] =
x

∑
j=0

( j+1 j ̸=x)

(
x
j

)
(1−ρ) j

ρ
x− j

= x(1−ρ)+(1− (1−ρ)x)

(B.8)

and substituting into (B.7)

E[T1,i] =
∞

∑
x=0

((1− (1−ρ)x)+ x(1−ρ))Prob(x reads)

=
∞

∑
x=0

((1− (1−ρ)x)+ x(1−ρ))
λ x

1
x!

e−λ1

= 1− e−λ1ρ +λ1(1−ρ)

= η1 +λ1(1−ρ)

= η1 +λ1(1− (1− ε)k)

(B.9)

Letting ζ1 =E [T1,i] and using the same central limit argument we used before, U
n becomes

approximately a Gaussian with expectation ζ1 +ζ2−η1η2 p. Similar to Equation B.2, given ζ1,

ζ2, η1, and η2, the Gaussian approximation gives us:

ζ1 +ζ2−η1η2 p̂ =
U
n
. (B.10)

Again, assuming that estimates of p in Equation B.1 (with the new definition of η) and

Equation B.10 are the same (due to low variance), we divide the two equations and solve for d to

get the estimator:

D = 1−
(

(ζ1 +ζ2)J
η1η2(1+ J)

)1/k

.
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Excluding low-copy k-mers from the Jaccard index calculation

If we discard k-mers observed less than m times, then a k-mer will survive if it is covered

by m or more error-free reads. Hence, η becomes the probability of m or more error-free reads

covering a k-mer

η = 1−
m−1

∑
t=0

Prob(t error-free read)

= 1−
m−1

∑
t=0

∞

∑
i=t

Prob(t error-free read|i reads)Prob(i reads)

= 1−
m−1

∑
t=0

∞

∑
i=t

(
i
t

)
pt(1− p)i−t λ i

i!
e−λ

= 1−
m−1

∑
t=0

(λ p)t

t!
e−λ p

(B.11)

In general, we have shown that the probability distribution of the number of error-free k-mers is

a Poisson with parameter λ p.
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B.2 Computing GTR distances

To compute the GTR matrix using the log-det approach, we need a 4×4 matrix F where

each element is the fraction of sites where one genome has one letter while the other genome has

the other letter. Given this matrix, d =− log(det(F)).

As elsewhere, we assume a no-indel scenario so that each k-mer mismatch can be

attributed to a single nucleotide substitution. For i, j ∈ {A,C,G,T}, let xi j = x ji denote the

number of mutations of the form i↔ j. Our goal is to estimate xi j for all i, j. However, the

paradigm of computing distance by hashing/sketching k-mers treats all mutations alike. Formally,

the estimated distance d equals

d = xAC + xAG + xAT + xCG + xCT + xGT

We do the following:

1. Replace G and T with C, and compute distance dA = xAC + xAG + xAT.

2. Replace G and T with A, and compute distance dC = xAC + xCG + xCT.

3. Replace G with T , and compute distance dAC = xAC + xAG + xAT + xCG + xCT.

Combining, we get

xAC = dA +dC−dAC

A similar procedure can be used to compute all xi j and normalization gives us F .

Note that this procedure reduces the space of possible k-mers of length k to 2k possibilities

instead of 4k. Therefore, it will likely be required that k is increased for high accuracy when this

approach is used.
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B.3 Supplementary method details and commands

Here we provide the exact procedures and commands that we used to run external

softwares throughout our experiments.

Simulating genome-skims using ART

To simulate short reads with length ℓ = 100 and (default) error profiles of Illumina

HiSeq2000, we ran

art_illumina -i FASTA_FILE -l 100 -f c -o FASTQ_FILE

To simulate reads with constant error rate ε = 0.01 (Phred score = 20) at coverage c, we used

art_illumina -i FASTA_FILE -l 100 -qL 20 -qU 20 -f c -o FASTQ_FILE

Computing k-mer frequencies using JellyFish

To count all k-mers of length k = 31 in a genome-skim, we used

jellyfish count -m 31 -s 100M -C -o COUNT_FILE FASTQ_FILE

and to get the histogram of k-mer counts

jellyfish histo COUNT_FILE

Computing Jaccard index and estimating distance using Mash

We first sketch input genome-skims or assemblies with k-mer length k = 31 and sketch

size s = 107. For genome-skims (in FASTQ format) when no k-mer filtering is applied, we run

mash sketch -r -k 31 -s 10000000 -o SKETCH_FILE FASTQ_FILE

To sketch genome-skims while filtering k-mers with less than C copies, we use

mash sketch -m C -k 31 -s 10000000 -o SKETCH_FILE FASTQ_FILE
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For genome assemblies (in FASTA format), we used

mash sketch -k 31 -s 10000000 -o SKETCH_FILE FASTA_FILE

Then, the Jaccard index and Mash distance between sketches is computed by running

mash dist SKETCH_FILE_1 SKETCH_FILE_2

Estimating distances using AAF

To count the k-mers (k = 31) in a dataset of genome-skims using 24 cores and 120GB

memory, we first ran

python PATH_to_FILE/aaf_phylokmer.py -k 31 -t 24 -o KMER_COUNT_FILE \

-d INPUT_DIR -G 120

Next, to get the (uncorrected) distances and phylogeny, we used

python PATH_to_FILE/aaf_distance.py -i KMER_COUNT_FILE -t 24 -G 120 \

-o OUTPUT_FILE_PREFIX -f KMER_DIVERSITY_FILE

where KMER_DIVERSITY_FILE is an output of previous command. Finally, to correct tip branches

of phylogeny tree for low coverage and sequencing error, we used

python PATH_to_FILE/aaf_tip.py -i TREE_FILE -k 31 \

--tip TIP_INFO_FILE -f KMER_DIVERSITY_FILE

where we had to provide TIP_INFO_FILE containing estimates of coverage and sequencing error.

To estimate coverage, we followed the procedure suggested in AAF user manual. We first used

JellyFish to find the k-mer counts Mi’s as described before. They suggest when there is a clear

peak in the k-mer frequency distribution, estimate k-mer coverage λ to be the maximum bin.

As they do not suggest a specific rule for that, we first find j = argmaxi>1 Mi, excluding the

count of the first bin M1, which is always large because of erroneous k-mers due to sequencing

error. If j > 2, it means that we can see a peak in k-mers distribution at j, so we use λ = j.
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Otherwise, if j = 2, we follow their suggested formula λ = ∑ iMi
∑Mi

for the case of low coverage

or high sequencing error that there is no clear peak in the k-mer frequency distribution. We

should also mention that no k-mer filtering used for AAF, as the coverage was heterogeneous

over genome-skims. In fact, in AAF the filtering is applied to all genome-skims if used, and so

they suggest to not apply filtering when there is any taxon with low coverage (c < 5) within the

dataset.

Preprocessing raw reads using fastp

We used the following command to filter low-quality reads and trim the adapter sequences

fastp -t 1 -i INPUT_READS_R1 -I INPUT_READS_R2 \

-o OUTPUT_READS_R1 -O OUTPUT_READS_R2

Contamination removal

To remove bacterial and mitochondrial sequences, we first created a BLAST database

from the assemblies of contaminant genomes by running

makeblastdb -in CONTAMINANTS_FASTA_FILE -dbtype nucl -out BLAST_DB

and then searched the reads against these genomes using Megablast

blastn -db BLAST_DB -query READS_FILE -outfmt 6 -out MEGABLAST_OUTPUT

We also used Bowtie2 to find the reads aligned to the human reference genome

bowtie2 -x HUMAN_REFERENCE -U READS_FILE \

-S BOWTIE_OUTPUT --very-sensitive-local

We then removed any read found in MEGABLAST_OUTPUT or BOWTIE_OUTPUT.
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B.4 Supplementary figures and tables
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Figure B.1. Comparing the accuracy of Mash and Skmer on simulated genomes. Genome-skims are
simulated using ART with read length ℓ= 100. Substitutions applied to the assembly of C. vestalis at six
different rates (x-axis), and genome-skims simulated at varying coverage range from 1

8 X to 16X (colors).
The estimated distance (y-axis) by Mash (left) and Skmer (right) is plotted versus the real distances
(x-axis). The mean (dots) distances are shown as dots (10 repeats) but standard errors are too small to see.
The unit line is shown as a dashed line.
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Figure B.2. Comparing distances estimated by Mash and Skmer for simulated data at very
low coverages. Skims of C. vestalis v.s. genomes simulated to be at different distances from C.
vestalis, with varying coverage. The mean and standard error of distances are shown over 10
repeats of the experiment. The coverage ranges from 1

64X to 1X.
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Genomes simulated at different distances from the genomes of C. vestalis and D. melanogaster
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Figure B.4. The resolution of Skmer at different genomic distances. Skims of D.
melanogaster v.s. genomes simulated to be at different distances from D. melanogaster, with
varying coverage. (a) Estimated distance versus the true distance. (b) The ratio of estimated
distance to the true distance.
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Figure B.5. Comparing the accuracy of Mash and Skmer on pairs of insects and birds genomes.
Genome-skims simulated at coverage 1

8 X to 8X. On each subplot, the estimated distance (y-axis) is plotted
versus the coverage (x-axis) for a pair of species. Dashed line shows Mash* run on assemblies, which
is taken as the true distance. Skmer estimates (light-colored curves) are very close to the true distance
while Mash (gray curves) largely overestimates at lower coverages. (a) Six pairs of insects. (b) Six pairs
of birds.
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Figure B.6. Comparing the error of Mash, Skmer, and AAF in distance estimation with fixed
amount of sequence from each species. The dataset of 22 Anopheles genomes, subsampled
with 0.1Gb, 0.5Gb, and 1Gb sequence.
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Figure B.7. Comparing the error of Mash, Skmer, and AAF in distance estimation with fixed
amount of sequence from each species. The dataset of 21 Drosophila genomes, subsampled
with 0.1Gb, 0.5Gb, and 1Gb sequence.
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Mash − Skmer AAF(uncorrected) − AAF(corrected)
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Figure B.8. Comparing the error of Mash, Skmer, and AAF in distance estimation with
fixed amount of sequence from each species. The dataset of 47 avian genomes, subsampled
with 0.1Gb, 0.5Gb, and 1Gb sequence.
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Figure B.9. Comparing the error of Mash, Skmer, and AAF on the Avian dataset with mixed
coverage. Species have random amount of sequence chosen uniformly among 0.1Gb, 0.5Gb, and 1Gb.
Similar to (Fig. 3.5), we have excluded one of the eagles (H. albicilla). The error of Mash, AAF, and
Skmer in estimating the distance between the two eagles are 2193%, 884%, and 4.2%, respectively (both
of the eagles are subsampled at 0.5Gb here).
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Figure B.10. The mean rank error of the best remaining match in leave-out experiments on
the Drosophila dataset. Drosophila willistoni has been excluded.
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Figure B.11. Maximum-likelihood trees inferred from COI barcodes. (a) Anopheles tree.
(b) Drosophila tree.
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Figure B.12. The histogram of genomic distances between species from the same genus
among the Anopheles, Drosophila, and birds datasets. Distances computed based on full
assemblies. The only species from the same genus with hamming distance less than 0.01 were
the two eagle species (H. albicilla and H. leucocephalus).
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Figure B.13. The performance of Skmer coverage estimation. Comparing distances estimated
by Mash, Skmer with estimated coverages, and Skmer with true coverages (Skmer*), on genome-
skims of C. vestalis and genomes simulated at different distances from it.
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Figure B.14. The fraction of unique k-mers in selected species of insects and birds.
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Table B.1. GenBank accession numbers of microbial species used in contamination removal.

Species GenBank assembly accession

Pasteurella langaaensis GCA 003096995.1
Providencia stuartii GCA 001558855.2
Serratia marcescens GCA 000783915.2
Shigella flexneri GCA 000006925.2
Commensalibacter intestini GCA 002153535.1
Acetobacter malorum GCA 002153605.1
Acetobacter pomorum GCA 002456135.1
Lactobacillus plantarum GCA 000203855.3
Lactobacillus brevis GCA 003184305.1
Enterococcus faecalis GCA 002208945.2
Vagococcus teuberi GCA 001870205.1
Wolbachia GCA 000022285.1
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Table B.2. GenBank accession numbers and URLs for Anopheles genomes.

Species GenBank assembly accession URL

Anopheles albimanus GCA 000349125.1 http://www.insect-genome.com/data/genome download/Anopheles
albimanus/Anopheles albimanus genomic.fasta.gz

Anopheles arabiensis GCA 000349185.1 http://www.insect-genome.com/data/genome download/Anopheles
arabiensis/Anopheles arabiensis genomic.fasta.gz

Anopheles atroparvus GCA 000473505.1 http://www.insect-genome.com/data/genome download/Anopheles
atroparvus/Anopheles atroparvus genomic.fasta.gz

Anopheles christyi GCA 000349165.1 http://www.insect-genome.com/data/genome download/Anopheles christyi/
Anopheles christyi genomic.fasta.gz

Anopheles coluzzii - http://www.insect-genome.com/data/genome download/Anopheles coluzzii/
Anopheles coluzzii genomic.fasta.gz

Anopheles culicifacies GCA 000473375.1 http://www.insect-genome.com/data/genome download/Anopheles
culicifacies/Anopheles culicifacies genomic.fasta.gz

Anopheles darlingi GCA 000211455.3 http://www.insect-genome.com/data/genome download/Anopheles darlingi/
Anopheles darlingi genomic.fasta.gz

Anopheles dirus GCA 000349145.1 http://www.insect-genome.com/data/genome download/Anopheles dirus/
Anopheles dirus genomic.fasta.gz

Anopheles epiroticus GCA 000349105.1 http://www.insect-genome.com/data/genome download/Anopheles
epiroticus/Anopheles epiroticus genomic.fasta.gz

Anopheles farauti GCA 000956265.1 http://www.insect-genome.com/data/genome download/Anopheles farauti/
Anopheles farauti genomic.fasta.gz

Anopheles funestus GCA 000349085.1 http://www.insect-genome.com/data/genome download/Anopheles funestus/
Anopheles funestus genomic.fasta.gz

Anopheles gambiae GCA 000150785.1 http://www.insect-genome.com/data/genome download/Anopheles gambiae/
Anopheles gambiae genomic.fasta.gz

Anopheles koliensis GCA 000956275.1 http://www.insect-genome.com/data/genome download/Anopheles koliensis/
Anopheles koliensis genomic.fasta.gz

Anopheles maculatus GCA 000473185.1 http://www.insect-genome.com/data/genome download/Anopheles
maculatus/Anopheles maculatus genomic.fasta.gz

Anopheles melas GCA 000473525.2 http://www.insect-genome.com/data/genome download/Anopheles melas/
Anopheles melas genomic.fasta.gz

Anopheles merus GCA 000473845.2 http://www.insect-genome.com/data/genome download/Anopheles merus/
Anopheles merus genomic.fasta.gz

Anopheles minimus GCA 000349025.1 http://www.insect-genome.com/data/genome download/Anopheles minimus/
Anopheles minimus genomic.fasta.gz

Anopheles nili GCA 000439205.1 http://www.insect-genome.com/data/genome download/Anopheles nili/
Anopheles nili genomic.fasta.gz

Anopheles punctulatus GCA 000956255.1 http://www.insect-genome.com/data/genome download/Anopheles
punctulatus/Anopheles punctulatus genomic.fasta.gz

Anopheles quadriannulatus GCA 000349065.1 http://www.insect-genome.com/data/genome download/Anopheles
quadriannulatus/Anopheles quadriannulatus genomic.fasta.gz

Anopheles sinensis GCA 000441895.2 http://www.insect-genome.com/data/genome download/Anopheles sinensis/
Anopheles sinensis genomic.fasta.gz

Anopheles stephensi GCA 000300775.2 http://www.insect-genome.com/data/genome download/Anopheles
stephensi/Anopheles stephensi genomic.fasta.gz
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Table B.3. GenBank accession numbers and URLs for Drosophila genomes.

Species GenBank assembly accession URL

Drosophila ananassae GCA 000005115.1 http://www.insect-genome.com/data/genome download/Drosophila ananassae/
Drosophila ananassae genomic.fasta.gz

Drosophila biarmipes GCA 000233415.2 http://www.insect-genome.com/data/genome download/Drosophila biarmipes/
Drosophila biarmipes genomic.fasta.gz

Drosophila bipectinata GCA 000236285.2 http://www.insect-genome.com/data/genome download/Drosophila
bipectinata/Drosophila bipectinata genomic.fasta.gz

Drosophila elegans GCA 000224195.2 http://www.insect-genome.com/data/genome download/Drosophila elegans/
Drosophila elegans genomic.fasta.gz

Drosophila erecta GCA 000005135.1 http://www.insect-genome.com/data/genome download/Drosophila erecta/
Drosophila erecta genomic.fasta.gz

Drosophila eugracilis GCA 000236325.2 http://www.insect-genome.com/data/genome download/Drosophila eugracilis/
Drosophila eugracilis genomic.fasta.gz

Drosophila ficusphila GCA 000220665.2 http://www.insect-genome.com/data/genome download/Drosophila ficusphila/
Drosophila ficusphila genomic.fasta.gz

Drosophila grimshawi GCA 000005155.1 http://www.insect-genome.com/data/genome download/Drosophila grimshawi/
Drosophila grimshawi genomic.fasta.gz

Drosophila kikkawai GCA 000224215.2 http://www.insect-genome.com/data/genome download/Drosophila kikkawai/
Drosophila kikkawai genomic.fasta.gz

Drosophila melanogaster GCA 000778455.1 http://www.insect-genome.com/data/genome download/Drosophila
melanogaster/Drosophila melanogaster genomic.fasta.gz

Drosophila miranda GCA 000269505.2 http://www.insect-genome.com/data/genome download/Drosophila miranda/
Drosophila miranda genomic.fasta.gz

Drosophila mojavensis GCA 000005175.1 http://www.insect-genome.com/data/genome download/Drosophila
mojavensis/Drosophila mojavensis genomic.fasta.gz

Drosophila persimilis GCA 000005195.1 http://www.insect-genome.com/data/genome download/Drosophila persimilis/
Drosophila persimilis genomic.fasta.gz

Drosophila rhopaloa GCA 000236305.2 http://www.insect-genome.com/data/genome download/Drosophila rhopaloa/
Drosophila rhopaloa genomic.fasta.gz

Drosophila sechellia GCA 000005215.1 http://www.insect-genome.com/data/genome download/Drosophila sechellia/
Drosophila sechellia genomic.fasta.gz

Drosophila simulans GCA 000259055.1 http://www.insect-genome.com/data/genome download/Drosophila simulans/
Drosophila simulans genomic.fasta.gz

Drosophila suzukii GCA 000472105.1 http://www.insect-genome.com/data/genome download/Drosophila suzukii/
Drosophila suzukii genomic.fasta.gz

Drosophila takahashii GCA 000224235.2 http://www.insect-genome.com/data/genome download/Drosophila takahashii/
Drosophila takahashii genomic.fasta.gz

Drosophila virilis GCA 000005245.1 http://www.insect-genome.com/data/genome download/Drosophila virilis/
Drosophila virilis genomic.fasta.gz

Drosophila willistoni GCA 000005925.1 http://www.insect-genome.com/data/genome download/Drosophila willistoni/
Drosophila willistoni genomic.fasta.gz

Drosophila yakuba GCA 000005975.1 http://www.insect-genome.com/data/genome download/Drosophila yakuba/
Drosophila yakuba genomic.fasta.gz
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http://www.insect-genome.com/data/genome_download/Drosophila_willistoni/Drosophila_willistoni_genomic.fasta.gz
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Table B.4. GenBank accession numbers and URLs for avian genomes.

Species GenBank assembly accession URL

Acanthisitta chloris GCA 000695815.1 http://dx.doi.org/10.5524/101015
Anas platyrhynchos GCA 000355885.1 http://dx.doi.org/10.5524/101001
Antrostomus carolinensis GCA 000700745.1 http://dx.doi.org/10.5524/101019
Apaloderma vittatum GCA 000703405.1 http://dx.doi.org/10.5524/101016
Aptenodytes forsteri GCA 000699145.1 http://dx.doi.org/10.5524/100005
Balearica regulorum GCA 000709895.1 http://dx.doi.org/10.5524/101017
Buceros rhinoceros GCA 000710305.1 http://dx.doi.org/10.5524/101018
Calypte anna GCA 000699085.1 http://dx.doi.org/10.5524/101004
Cariama cristata GCA 000690535.1 http://dx.doi.org/10.5524/101020
Cathartes aura GCA 000699945.1 http://dx.doi.org/10.5524/101021
Chaetura pelagica GCA 000747805.1 http://dx.doi.org/10.5524/101005
Charadrius vociferus GCA 000708025.2 http://dx.doi.org/10.5524/101007
Chlamydotis macqueenii GCA 000695195.1 http://dx.doi.org/10.5524/101022
Colius striatus GCA 000690715.1 http://dx.doi.org/10.5524/101023
Columba livia GCA 000337935.1 http://dx.doi.org/10.5524/100007
Corvus brachyrhynchos GCA 000691975.1 http://dx.doi.org/10.5524/101008
Cuculus canorus GCA 000709325.1 http://dx.doi.org/10.5524/101009
Egretta garzetta GCA 000687185.1 http://dx.doi.org/10.5524/101002
Eurypyga helias GCA 000690775.1 http://dx.doi.org/10.5524/101024
Falcons peregrine GCA 000337955.1 http://dx.doi.org/10.5524/101006
Fulmarus glacialis GCA 000690835.1 http://dx.doi.org/10.5524/101025
Gallus gallus GCA 000002315.3 ftp://climb.genomics.cn/pub/10.5524/

100001 101000/101000/chicken/
Gavia stellata GCA 000690875.1 http://dx.doi.org/10.5524/101026
Geospiza fortis GCA 000277835.1 http://dx.doi.org/10.5524/100040
Haliaeetus albicilla GCA 000691405.1 http://dx.doi.org/10.5524/101027
Haliaeetus leucocephalus GCA 000737465.1 http://dx.doi.org/10.5524/101040
Leptosomus discolor GCA 000691785.1 http://dx.doi.org/10.5524/101028
Manacus vitellinus GCA 000692015.2 http://dx.doi.org/10.5524/101010
Meleagris gallopavo GCA 000146605.3 ftp://climb.genomics.cn/pub/10.5524/

100001 101000/101000/turkey/
Melopsittacus undulatus GCA 000238935.1 http://dx.doi.org/10.5524/100059
Merops nubicus GCA 000691845.1 http://dx.doi.org/10.5524/101029
Mesitornis unicolor GCA 000695765.1 http://dx.doi.org/10.5524/101030
Nestor notabilis GCA 000696875.1 http://dx.doi.org/10.5524/101031
Nipponia nippon GCA 000708225.1 http://dx.doi.org/10.5524/101003
Pelecanus crispus GCA 000687375.1 http://dx.doi.org/10.5524/101032
Phaethon lepturus GCA 000687285.1 http://dx.doi.org/10.5524/101033
Phalacrocorax carbo GCA 000708925.1 http://dx.doi.org/10.5524/101034
Phoenicopterus ruber GCA 000687265.1 http://dx.doi.org/10.5524/101035
Picoides pubescens GCA 000699005.1 http://dx.doi.org/10.5524/101012
Podiceps cristatus GCA 000699545.1 http://dx.doi.org/10.5524/101036
Pterocles gutturalis GCA 000699245.1 http://dx.doi.org/10.5524/101037
Pygoscelis adeliae GCA 000699105.1 http://dx.doi.org/10.5524/100006
Struthio camelus GCA 000698965.1 http://dx.doi.org/10.5524/101013
Taeniopygia guttata GCA 000151805.2 ftp://climb.genomics.cn/pub/10.5524/

100001 101000/101000/zebrafinch/
Tauraco erythrolophus GCA 000709365.1 http://dx.doi.org/10.5524/101038
Tinamus guttatus GCA 000705375.2 http://dx.doi.org/10.5524/101014
Tyto alba GCA 000687205.1 http://dx.doi.org/10.5524/101039
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Table B.5. The coverage of genomes over three datasets. Each genome is skimmed with
100Mb sequence.

Dataset Min Mean Max

Drosophila 0.45X 0.60X 0.79X
Anopheles 0.37X 0.57X 1.02X
Birds 0.082X 0.090X 0.107X

Table B.6. Comparing the average error of Mash, Skmer, and AAF over three datasets.
Fixed sequencing effort from each species.

Dataset Sequencing effort Mash Skmer AAF (uncorrected) AAF (corrected)

Anopheles
0.1Gb 48.02% (1.54%) 2.02% (0.05%) 40.22% (1.67%) 9.62% (0.52%)
0.5Gb 24.89% (0.59%) 0.75% (0.02%) 17.60% (0.70%) 7.35% (0.26%)
1Gb 18.43% (0.54%) 0.55% (0.02%) 16.94% (0.61%) 4.74% (0.22%)

Drosophila
0.1Gb 47.98% (0.82%) 1.65% (0.06%) 40.67% (0.94%) 9.00% (0.20%)
0.5Gb 25.25% (0.34%) 0.72% (0.03%) 18.63% (0.45%) 7.00% (0.19%)
1Gb 13.00% (0.16%) 0.50% (0.02%) 19.69% (0.52%) 2.18% (0.06%)

Birds
0.1Gb 95.57% (2.54%) 5.72% (0.06%) 86.45% (3.18%) 49.48% (1.94%)
0.5Gb 56.61% (1.40%) 2.14% (0.02%) 49.13% (1.75%) 13.73% (0.56%)
1Gb 41.25% (0.97%) 1.32% (0.01%) 34.33% (1.22%) 1.05% (0.09%)

* The standard error of the mean is provided in parentheses.
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Appendix C

Supplementary material: RESPECT

C.1 Supplementary methods

Initial estimate of parameters

With the assumption that a genome has no repeating k-mers r = [L,0,0, . . .], Eq. (4.5)

reduces to

E [oh] = mh =


Lλ (1− ε)ke−λ (1−ε)k

+Lλ (1− (1− ε)k) h = 1

L (λ (1−ε)k)h

h! e−λ (1−ε)k
h > 1

. (C.1)

We use the method of moments (see e.g., Section 7.6 of [132]) and set mh = oh to estimate the

underlying parameters λ and ε . Specifically, let h∗ = argmaxh>1 oh be the multiplicity with the

largest number of observed k-mers (excluding the unique ones h = 1). We use oh∗+1/oh∗ to

estimate λef = λ (1− ε)k

λef =
(h∗+1)oh∗+1

oh∗
. (C.2)

Then, using oh∗/o1, we estimate λ as

λ = λ
h
ef e−λef

o1

h∗!oh∗
−λef e−λef +λef , (C.3)
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and estimate ε from the ratio of λef and λ

ε = 1− (
λef

λ
)1/k . (C.4)

Least-squares estimate of repeat spectrum

Consider the cost function defined in Eq. (4.6) with p = 2 and wh = 1 for all h

Ew,p(P,r,ε,o) =

(
∑
h

∣∣∣mh−oh

∣∣∣2
)1/2

=

(
∑
h

∣∣∣(rPT +1h=1E)h−oh

∣∣∣2
)1/2

. (C.5)

We considered the simplest sequencing-error-free case (ε = 0), where coverage λ was known.

Therefore, E [O] = m = rPT, where P is an n×n matrix with

Ph j = e− jλ ( jλ )h

h!
. (C.6)

P can be decomposed as P = ΛΛΛVE where ΛΛΛ is a diagonal matrix with ΛΛΛhh =
λ h

h! , E is a diagonal

matrix with E j j = je− jλ , and V is the transpose of a Vandermonde matrix with the second

column given by the vector (1,2,3, . . . ,n)T ; thus Vh j = jh−1, and

V =



1 1 1 · · · 1

1 2 3 · · · n

1 22 32 · · · n2

...
...

...
. . .

...

1 2n−1 3n−1 · · · nn−1


. (C.7)

Note that ΛΛΛ and E are diagonal matrices with non-zero diagonal elements and hence, they are

non-singular. Also, since V is a Vandermonde matrix, we have det(V) = ∏1≤i< j≤n( j− i)> 0

which renders V a non-singular matrix. Thus, it enables us to use the estimate r(est) = oP−T.
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However, for the case λ = 1 we prove that

cond(P)≥ c
2n

n
,

suggesting a highly ill-conditioned matrix, and making the LS estimates unreliable.

Bound on cond(P)

To establish the aforementioned bound for cond(P), as P is non-singular, we have (see

e.g., Section 3.8 of [134])

cond(P) = ∥P∥∥P−1∥= ∥ΛΛΛVE∥ · ∥E−1V−1
ΛΛΛ
−1∥, (C.8)

where ∥A∥ is the induced 2-norm of the matrix A. Since both E and ΛΛΛ are diagonal, we have

cond(ΛΛΛ) = cond(ΛΛΛ−1) =
maxi

{
λ i/i!

}
mini {λ i/i!}

=
λ ⌊λ⌋/⌊λ⌋!

min(1,λ n/n!)

cond(E) = cond(E−1) =
maxi

{
ie−iλ

}
mini

{
ie−iλ

} =
f (λ )

min(e−λ ,ne−nλ )
,

where

f (λ ) =


max(⌊λ⌋e−λ⌊λ⌋,(⌊λ⌋+1)e−λ (⌊λ⌋+1)) λ < 1

e−λ λ ≥ 1
.

For the simplicity of exposition, we use λ = 1. Hence,
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cond(ΛΛΛ) = cond(ΛΛΛ−1) = n!,

cond(E) = cond(E−1) =
1
n

en−1. (C.9)

Note that for the 2-norm ∥ · ∥, we have

∥AB∥ ≤ ∥A∥∥B∥ (C.10)

hence, for any matrix B and any invertible matrix A, we have ∥B∥= ∥A−1AB∥ ≤ ∥A−1∥∥AB∥,

implying

∥AB∥ ≥ ∥B∥
∥A−1∥

. (C.11)

By repeated application of this inequality to Eq. (C.8) and using (C.9), we have

cond(P)≥ cond(V)

cond(E) · cond(ΛΛΛ)
=

n
n!en−1 cond(V). (C.12)

To show that cond(P) grows exponentially, we use the following lemma.

Lemma 1. For the matrix V given in (C.7), we have

c
1

n3/2 (2n)n ≤ cond(V)≤C(2n)n. (C.13)

for some c,C > 0.

Proof. Since V is non-singular, cond(V) = ∥V∥∥V−1∥ and hence, it remains to bound ∥V∥ and

∥V−1∥. To do this, we use the following inequalities relating several norms of a matrix A (see

e.g., Section 10.4.4 of [135])
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1√
n
∥A∥F ≤ ∥A∥ ≤ ∥A∥F , (C.14)

1√
n
∥A∥∞ ≤ ∥A∥ ≤

√
n∥A∥∞, (C.15)

where ∥A∥F and ∥A∥∞ are the Frobenius and the induced ∞-norm of A, respectively.

1. Bounding ∥V∥: Using (C.14) and ∥V∥2
F = ∑

n
i=1 ∑

n
j=1 j2i−2 ≥ n2(n−1), we get

∥V∥F ≥ nn−1.

For an upper bound on ∥V∥F , we have

∥V∥2
F =

n

∑
i=1

n

∑
j=1

j2i−2

≤
n

∑
i=1

(
n2i−2 +

∫ n

1
x2i−2dx

)
=

n

∑
i=1

(
n2i−2 +

n2i−1−1
2i−1

)
=

n

∑
i=1

n2i−2 +
n

∑
i=1

n2i−1

2i−1
,

where the inequality follows from xk being a monotonically increasing function for positive

x and all k ≥ 1. But

n

∑
i=1

n2i−2 =
n

∑
i=1

(n2)i−1 =
n2n−1
n2−1

≤ n2n

n2−1
. (C.16)

Therefore, for n≥ 3, we have
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∥V∥2
F ≤

n2n

n2−1
+

n

∑
i=1

n2i−1

2i−1

=
n2n

n2−1
+

n2n−1

2n−1
+

n−1

∑
i=1

n2i−1

2i−1

≤ n2n

n2−1
+

n2n−1

2n−1
+(n−1)

n2n−3

2(n−1)−1

≤ (
1

1−n−2 +
1

2−n−2 +
1

2n−3
)n2n−2

≤ 2n2n−2,

where the second inequality follows from n2i−1

2i−1 being an increasing function of i for n≥ 3.

It can be verified that the above bound holds for n = 1,2 too. Using this fact, and the lower

bound on ∥V∥F , we have

1√
n

nn−1 ≤ ∥V∥ ≤
√

2nn−1. (C.17)

2. Bounding ∥V−1∥: Using Theorem 1 by Gautschi (1962) [136], we have:

∥V−1∥∞ = max
i ∏

j ̸=i

1+ j
| j− i|

. (C.18)

Note that for a fixed i,

∏
j ̸=i

(1+ j) =
(n+1)!

i+1
,

and

∏
j ̸=i

1
| j− i|

=
1

(i−1)!(n− i)!
.

Therefore,

∏
j ̸=i

1+ j
| j− i|

=
(n+1)!

(i+1)(i−1)!(n− i)!
=

(
n
i

)
i

i+1
(n+1).
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Replacing this in (C.18), we get

1
2
(n+1)max

i

(
n
i

)
≤ ∥V−1∥∞ ≤ (n+1)max

i

(
n
i

)
. (C.19)

But maxi
(n

i

)
=
( n
⌊n/2⌋

)
and hence, by the Sterling’s approximation [137], we have

a
1√
n

2n ≤max
i

(
n
i

)
≤ A

1√
n

2n

for some a < A. Using this in (C.19), we arrive at

b
√

n2n ≤ ∥V−1∥∞ ≤ B
√

n2n,

for some b,B > 0. Therefore, using (C.15), we get

b2n ≤ ∥V−1∥ ≤ Bn2n. (C.20)

Finally, combining the bounds (C.17) and (C.20) on ∥V∥ and ∥V−1∥, respectively, and

using cond(V) = ∥V∥∥V−1∥, we get the desired result

c
1

n3/2 (2n)n ≤ cond(V)≤C(2n)n,

for some constants c,C > 0.

Now, we are ready to show that P is a highly ill-conditioned matrix.

Lemma 2. For the matrix P (given by (C.6)), we have

cond(P)≥ c
2n

n
, (C.21)
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for some c > 0.

Proof. By the application of the lower-bound of Lemma 1 to (C.12), we have

cond(P)≥ n
n!en−1 cond(V)≥ n

n!en−1 · c
1

n3/2 (2n)n =
c(2n)n
√

nn!en−1 .

Therefore, using the Sterling’s approximation n!≤ nn+1/2e−(n−1), we get

cond(P)≥ c
2n

n

for some constant c > 0.

Since the bound (C.21) can be written as

cond(P)≥ c2n−log2 n,

and for any ε > 0, we have n− log2 n ≥ (1− ε)n for sufficiently large n, we have cond(P) ≥

c2(1−ε)n. Therefore, cond(P) grows exponentially and in fact, cond(P) = Ω(αn) for any α < 2.
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C.2 Supplementary figures and tables
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Figure C.1. Whole RefSeq taxonomy with r1/L annotation. (a) Plants. (b) Invertebrates. (c)
Mammals. (d) Other vertebrates.
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Figure C.2. Distributions of intra-generic versus inter-generic differences in r1/L for pairs
of RefSeq species. (a) Plants. (b) Invertebrates. (c) Mammals. (d) Other vertebrates.
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Figure C.3. Correlation of r1/L with spectral ratios. (a) r1/r3 versus r1/L, (b) r1/r5 versus
r1/L.
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Figure C.4. Comparing the distributions of r1/L among test and all RefSeq genomes. The p-
value for the hypothesis that the distributions are different using two-sided Kolmogorov–Smirnov
test is 0.93. Highly-repetitive genomes are slightly over-represented in the test set.
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Figure C.5. Correlation between true r4/r3 and estimated r3/∑i=3 ri.
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Figure C.6. Correlation between true r5/r4 and estimated r4/∑i=4 ri.
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Figure C.7. Correlation between true r6/r5 and estimated r5/∑i=5 ri.
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Figure C.9. r1 estiamtion convergence with time.
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Figure C.10. r2 estiamtion convergence with time.
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Figure C.11. r3 estiamtion convergence with time.
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Figure C.12. r4 estiamtion convergence with time.

0.5 1.0 2.0 4.0

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

10%

20%

40%

100%

iteration

r 5
 r

el
at

iv
e 

er
ro

r

Figure C.13. r5 estiamtion convergence with time.
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Figure C.14. Genome length convergence with time.
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Figure C.15. Genome length estimation error of RESPECT and CovEst. The coverage
is 1X, and the y-axis is in square-root scale. The sign of error indicates overestimation or
underestimation. The dashed lines mark the region that the absolute value of error is less than
5%.
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Figure C.16. Estimated to true genome length ratio. Comparing RESPECT and CovEst over
66 test species with genomes skimmed at 1X coverage. The y-axis is plotted in log scale, and the
red dashed line at y = 1 is the grand truth (no error). Two genomes (A. tauschii (0.002) and Z.
mays (0.003)) that CovEst had extremely low estimated to true ratios were removed to improve
readability
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Figure C.17. Impact of training data on length estimation accuracy. RESPECT was trained
on a subset of genomes (50 of 129 mammalian genomes and 50 of 195 invertebrate genomes
were removed), and the error plotted (circles) along with the error on the original training set
(triangles). (a) The error per genome is plotted in log scale on the y-axis. (b) The distribution of
error values with RESPECT trained on the subset (blue) and the entire data set (red).
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Figure C.19. Estimated to true genome length ratio. Comparing RESPECT and CovEst over
66 test species with genomes skimmed at 0.5X coverage. The y-axis is plotted in log scale, and
the red dashed line at y = 1 is the grand truth (no error). Four genomes (D. grimshawi (0.0004),
S. salar (0.0006), A. tauschii (0.0012), and Z. mays (0.0016)) that CovEst had extremely low
estimated to true ratios were removed to improve readability.
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Figure C.20. Estimated to true genome length ratio. Comparing RESPECT and CovEst over
66 test species with genomes skimmed at 2X coverage. The y-axis is plotted in log scale, and the
red dashed line at y = 1 is the grand truth (no error).
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66 test species with genomes skimmed at 4X coverage. The y-axis is plotted in log scale, and
the red dashed line at y = 1 is the grand truth (no error). Four genomes (D. grimshawi (0.0004),
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Figure C.25. Whole RefSeq taxonomy with HCRM annotation. Colors are based on logarithm
of HCRM values for each genome. (a) Plants. (b) Invertebrates. (c) Mammals. (d) Other
vertebrates.
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Figure C.26. Distributions of intra-generic versus inter-generic differences in HCRM for
pairs of RefSeq species. (a) Plants. (b) Invertebrates. (c) Mammals. (d) Other vertebrates.
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Figure C.27. High copy repeats per million versus uniqueness ratio among genomes with
and without known recent WGD events. HRCM values are computed directly from the genome
assemblies.
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Figure C.28. Estimating genome length using SRA data. RESPECT was test on 10 new
samples (chosen at random) made available since the original submission of the manuscript. One
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Table C.2. List of species with recent WGD events.

Species UR HCRM

Amborella trichopoda 0.85 48

Ananas comosus 0.71 113

Arabidopsis lyrata 0.71 26

Arabidopsis thaliana 0.91 14

Asparagus officinalis 0.51 60

Beta vulgaris 0.74 77

Brachypodium distachyon 0.83 5

Brassica napus 0.40 25

Brassica oleracea 0.71 21

Brassica rapa 0.80 112

Cajanus cajan 0.67 38

Cannabis sativa 0.51 67

Carica papaya 0.81 21

Chenopodium quinoa 0.50 165

Chlamydomonas reinhardtii 0.85 242

Chondrus crispus 0.51 6

Cicer arietinum 0.66 106

Citrus clementina 0.75 41

Citrus sinensis 0.68 154

Coccomyxa subellipsoidea 0.96 27

Cucumis melo 0.84 49

Cucumis sativus 0.82 26

Daucus carota 0.66 35

Continued on next page
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Table C.2 – Continued from previous page

Species UR HCRM

Dendrobium catenatum 0.79 30

Eucalyptus grandis 0.69 50

Fragaria vesca 0.82 57

Glycine max 0.65 107

Glycine soja 0.63 95

Gossypium raimondii 0.76 13

Ipomoea nil 0.55 547

Ipomoea triloba 0.67 193

Jatropha curcas 0.79 55

Juglans regia 0.60 45

Lactuca sativa 0.53 36

Lupinus angustifolius 0.73 60

Malus domestica 0.65 38

Manihot esculenta 0.67 17

Medicago truncatula 0.77 57

Morus notabilis 0.72 57

Musa acuminata 0.79 85

Nelumbo nucifera 0.82 27

Nicotiana attenuata 0.49 46

Nicotiana sylvestris 0.56 41

Nicotiana tabacum 0.57 20

Nicotiana tomentosiformis 0.60 37

Nymphaea colorata 0.78 152

Olea europaea 0.65 40

Continued on next page
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Table C.2 – Continued from previous page

Species UR HCRM

Oncorhynchus kisutch 0.52 370

Oncorhynchus mykiss 0.59 221

Oncorhynchus nerka 0.68 182

Oncorhynchus tshawytscha 0.57 92

Oryza sativa 0.75 44

Panicum hallii 0.56 28

Papaver somniferum 0.44 18

Phalaenopsis equestris 0.72 25

Phoenix dactylifera 0.77 21

Physcomitrella patens 0.73 47

Populus trichocarpa 0.77 49

Prunus avium 0.68 155

Prunus mume 0.77 60

Prunus persica 0.75 69

Punica granatum 0.72 42

Pyrus x bretschneideri 0.54 133

Quercus lobata 0.63 62

Quercus suber 0.62 60

Ricinus communis 0.73 69

Rosa chinensis 0.61 70

Salmo salar 0.48 356

Salmo trutta 0.55 330

Salvelinus alpinus 0.69 185

Selaginella moellendorffii 0.42 39

Continued on next page
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Table C.2 – Continued from previous page

Species UR HCRM

Sesamum indicum 0.84 12

Setaria italica 0.76 14

Solanum lycopersicum 0.80 39

Solanum pennellii 0.76 39

Solanum tuberosum 0.74 54

Sorghum bicolor 0.52 46

Syzygium oleosum 0.75 48

Theobroma cacao 0.79 14

Vitis vinifera 0.73 44

Volvox carteri 0.80 151

Zea mays 0.32 32

Ziziphus jujuba 0.58 90
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