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Abstract
This research demonstrates the utility of automatically 
monitoring a student’s posture to track the affective states 
of boredom (low engagement) and flow (high engagement), 
which have been shown to influence learning. After a tutoring 
session with AutoTutor, the affective states of the student 
were rated by the learner, a peer, and two trained judges. Our 
results indicated that the affective state of flow was manifested 
through heightened pressure exerted on the seat of a pressure 
sensitive chair. Boredom, in turn, was associated with an 
increase in the pressure exerted on the back coupled with a 
rapid change in pressure on the seat, perhaps indicative of a 
state of restlessness. We also investigated the diagnosticity of 
each of the posture features and the reliability of a computer 
automatically discriminating episodes of boredom versus flow, 
which is a major discrimination in any affect-sensitive tutoring 
system.

Keywords: Posture patterns; affective states; emotions; 
learning; AutoTutor; classifying affect; Intelligent Tutoring 
Systems

Introduction
The task of maintaining a student’s engagement in 
educational activities is extremely challenging. Establishing 
and maintaining the engagement of learners is especially 
critical in situations with high degrees of learner control, 
such as in distance education, computer-based tutoring, and 
informal learning environments. For instance, with web-
based instruction, individuals are one-mouse-click-away 
from ending the session. Several traditional approaches 
have directly addressed this problem, such as collaborative 
learning (Palincsar & Brown, 1984), apprenticeship learning 
(Rogoff, 1990), educational games and simulations (Ferrari, 
Taylor, & VanLehn, 1999), and inquiry learning (Chinn & 
Malhotra, 2002). All of these approaches both promote active 
learning and offer scaffolding to sustain motivation and 
engagement.  They also  structure the learning environment 
so that it matches a student’s zone of proximal development 
(Brown, Ellery, & Campione, 1998) and learning rate 
(Metcalfe & Kornell, 2005). Determining the appropriate 
level of difficulty is a non-trivial task, however. It is not 
obvious what metrics accurately scale the relative difficulty 
of complex topics such as those in undergraduate science 
courses. Each individual has his/her own specific zone of 
proximal development which changes over time in response 
to instruction.  The goal of providing training that hits this 
‘moving target’ is exceptionally difficult.

An exciting new alternative involves the use of emotion-
sensitive intelligent tutoring systems (ITSs).  These tutoring 
systems attempt to incorporate the learner’s emotions (or 
affective states) into their pedagogical strategies in order to 
enhance engagement, motivation, and learning (D’Mello, 
et al., 2005; Forbes-Riley & Litman, 2004; Kort, Reilly, & 
Picard, 2001). A fundamental challenge in the development 
of an emotion-sensitive ITS involves reliably measuring the 
affective states of the learner. This requires the development 
of a user model that captures the manner in which learners 
intentionally or implicitly exhibit affect in a naturalistic 
learning environment. With the user model in hand, the next 
step is to develop a computational system to automatically 
diagnose and incorporate the emotions of learner into the 
pedagogical strategies of the ITS.

This paper addresses these challenges by an in-depth 
analysis of body posture, a dimension that has been rarely 
investigated by cognitive scientists.  We identified the 
manner in which learners express particular emotions by 
modulating their gross body language. We used automated 
posture tracking hardware and software instead of human 
coders.  This allowed us to develop automated algorithms to 
identify learner emotions on the basis of the detected patterns 
between posture and affect.

The use of posture to infer affect is interesting because it 
is rarely the case that posture is intentionally monitored by 
humans. The significance of nonverbal behaviors in expressing 
affect is widely acknowledged, but the vast majority of the 
scientific literature is restricted to the monitoring of facial 
features (Ekman & Friesen, 1978), speech contours (Ang et al., 
2002), and physiological signals such as electromyography, 
heart rate, and skin conductance. Our rationale for expecting 
posture features to be diagnostic of affect in learning 
environments is motivated by embodied theories of cognition 
(Clark, 1997; Glenberg, Havas, Becker & Rinck, 2005; de 
Vega, 2002). Theories of embodied cognition postulate that 
cognitive processes are constrained substantially by the 
environment and by the coupling of perception and action. 
If the embodied theories are correct, then the cognitive 
and emotional states of a learner are manifested in their 
body language. An added advantage of monitoring posture 
patterns is that these motions are ordinarily unconscious, 
unintentional, and thereby not susceptible to social editing, at 
least compared with facial expressions and gestures. Ekman 
and Friesen (1969), in their studies of deception, have coined 
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the term nonverbal leakage to refer to the increased difficulty 
faced by liars, who attempt to disguise deceit, through less 
controlled channels such as the body when compared to 
facial expressions.

A few studies have documented the importance of posture 
in expressing affect (e.g. Coulson, 2004; Schouwstra & 
Hoogstraten, 1995; Wallbott, 1998). However, the impetus 
of these investigations has been directed towards “basic” 
emotions (i.e. anger, fear, sadness, enjoyment, disgust, 
and surprise, Ekman & Friesen, 1978). While these basic 
emotions are ubiquitous in everyday experience, there is a 
growing body of evidence that suggests that they rarely play 
a significant role in learning (D’Mello, et al. 2006; Graesser 
et al., 2006; Kort, Reilly, & Picard, 2001). In particular, the 
prominent affective states during tutoring are boredom, flow, 
frustration, and confusion (Graesser et al., 2006).

Some of these emotions (i.e., affect states) might be viewed 
as being cognitive states rather than emotions by some 
colleagues, whereas other researchers would classify them as 
either emotions or affect states (Barrett, 2006; Meyer & Turner, 
in press).  Our position agrees with the latter group because 
these states are accompanied by enhanced physiological arousal 
(compared with neutral) and affect-cognition amalgamations 
are particularly relevant to complex learning.   

Within the context of engagement, the two most relevant of 
these affect states are boredom and flow.  Craig et al. (2004) 
reported that increased levels of boredom were negatively 
correlated with learning (r = -.39) while students learned about 
computer literacy topics with an intelligent tutoring system.  
In contrast, the flow experience (i.e., high engagement, 
Csikszentmihalyi, 1990) was positively correlated with 
learning (r = .29).

Therefore, our first step in exploring body posture and 
emotions during learning examined the affective states of 
boredom (low engagement) and flow (high engagement), 
viewing them as approximate endpoints on a continuum of 
engagement. Perhaps the most relevant research involving 
the monitoring of posture patterns to infer engagement 
was conducted by Mota and Picard (2003). They analyzed 
temporal transitions of posture patterns to classify the interest 
level of children while they performed a learning task on a 
computer. Children are much more active than the college 
students we investigated, so the algorithms to detect affective 
states might be more subtle than their temporal transitions.  

Methods

Participants
The participants were 28 undergraduate students from a mid-
south university who participated for extra course credit. 

Materials 
AutoTutor. AutoTutor is a fully automated computer tutor 
that simulates human tutors and holds conversations with 
students in natural language (Graesser et al., 2005; Graesser, et 

al, 1999). AutoTutor helps students learn Newtonian physics 
and computer literacy by presenting challenging problems (or 
questions) from a curriculum script and engaging in a mixed-
initiative dialog while the learner constructs an answer.
Body Pressure Measurement System (BPMS). The BPMS 
system, developed by Tekscan™ (1997), consisted of a thin-
film pressure pad (or mat) that could be mounted on a variety 
of surfaces. The pad was paper thin with a rectangular grid of 
sensing elements. Each sensing element provided a pressure 
output in mmHg. Our setup had one sensing pad placed on 
the seat of a Steelcase™ Leap Chair and another placed on 
the back of the chair (see Figure 1).

Figure 1: Body Pressure Measurement System

The output of the BPMS system consisted of 38x41 matrix 
(rows x columns) with each cell in the matrix monitoring the 
amount of pressure as reported by the corresponding sensing 
element.  Therefore, in accordance with our setup, at each 
sampling instance (1/4 second), matrices corresponding to the 
pressure in the back and the seat of the chair were recorded 
for future, offline analyses.

Procedure
The study was divided into two phases. The first phase 
was a standard pretest–intervention–posttest design. The 
participants completed a pretest with multiple-choice 
questions, then interacted with the AutoTutor system for 
32 minutes on one of three randomly assigned topics in 
computer literacy (Hardware, Internet, Operating Systems), 
and then completed a posttest. During the tutoring session, 
the system recorded a video of the participants’ face, their 
pressure patterns, and a video of their computer screen. 

The second phase involved affect judgments by the learner, 
a peer, and two trained judges. A list of the affective states 
and definitions was provided for all judges. The states were 
boredom, confusion, flow, frustration, delight, neutral and 
surprise. The selection of emotions was based on previous 
studies of AutoTutor (Craig et al., 2004; D’Mello et al., 2006; 
Graesser et al., 2006) that collected observational data and 
emote aloud protocols while college students learned with 
AutoTutor.

The affect judging session proceeded by displaying 
video streams of both the learner’s screen and face, which 
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were captured during the AutoTutor session. The raters were 
instructed to make judgments on what affective states were 
present in each 20-second interval; at these points the video 
automatically paused for their affect judgments. Four sets 
of emotion judgments were made for the observed affective 
states of each participant’s AutoTutor session. First, for 
the self judgments, the participant watched his or her own 
AutoTutor session immediately after having interacted with 
it. Second, for the peer judgments, participants came back 
a week later to watch and rate another participant’s session 
on the same topic in computer literacy. Finally, two trained 
judges independently rated all of the sessions.  These judges  
had been trained on how to detect facial action units according 
to Ekman’s Facial Action Coding System (Ekman & Friesen, 
1978) and on characteristics of dialogue. 

Data Treatment
Analysis of Agreement among Judges. Interjudge reliability 
was computed using Cohen’s kappa for all possible pairs of 
judges: self, peer, trained judge1, and trained judge2. There 
were 6 possible pairs altogether. The kappas were reported 
in Graesser et al. (2006): self-peer (.08), self-judge1 (.14), 
self-judge-2 (.16), peer-judge1 (.14), peer-judge2 (.18), and 
judge1-judge2 (.36). These kappa scores revealed that the 
trained judges had the highest agreement, the self and peer 
pair had lowest agreement, and the other pairs of judges were 
in between. It should be noted, however, that the kappa scores 
increase substantially [self-peer (.12), self-judge1 (.31), self-
judge2 (.24), peer-judge1 (.36), peer-judge2 (.37), and judge1-
judge2 (.71)] when we focused on observations in which the 
learner declared they had an emotion, as opposed to many 
random points when they were essentially neutral. The kappa 
scores are on par with data reported by other researchers who 
have assessed identification of emotions by humans (e.g. Ang 
et al., 2002; Forbes-Riley & Litman, 2004).
Extraction of Posture Features. At each sampling point 
(1/4 second) the BPMS system provides a spatial map of 
the pressure exerted on the seat and the back of the chair. 
By averaging across each of the 1558 sensing elements on 
the back and seat pads one obtains the back net pressure 
and the seat net pressure. However, since we are primarily 
interested in posture patterns during an emotional experience 
(as indicated by the self, peer, or 2 trained judges) these 
features were only computed when an emotional episode was 
recorded. 

We also considered two additional features that attempted 
to measure the rate of change in pressure exerted by the 
learner on the back and seat of the chair during an emotional 
episode. That is, by computing the rate of change in pressure 
2 seconds before and 2 seconds after the learner was judged to 
have experienced an emotion, we were able to operationally 
define a measurement of the amount of body activity of 
the learner when he or she experienced an emotion. These 
features are termed the back pressure change and the seat 
pressure change.

Data Selection. Three data sets were constructed by 
temporally integrating the 4 posture features with the emotion 
judgments of the raters. Specifically, the four posture features 
(independent variables) were assessed in  predicting the 
emotion of the learner (dependent variable). The first two 
models consisted of posture features aligned with judgments 
of the affective states of boredom and flow provided by the 
self (NBOREDOM = 483; NFLOW = 593) and the peer (NBOREDOM 
= 582; NFLOW = 605). The third model was constructed by 
considering affect ratings where both trained judges agreed 
on whether the learner was experiencing boredom or flow 
(NBOREDOM = 268; NFLOW = 224).

Results

Relating Posture with Boredom and Flow
Figure 2 presents descriptive statistics (mean + 95% 
confidence interval, CI) of an item-level analysis for each of 
the posture features, segregated by boredom and flow. The 
results indicate that boredom is accompanied by an increase 
in the pressure exerted on the back of the chair (see Figure 
2a). This pattern was statistically significant for the data sets 
in which the affect judgments were provided by the peer 
(F(1,1185) = 8.51, p� < .01) and the trained judges (F(1,490) 
= 9.53) but not the self judgments (F < 1.6). In contrast, 
the affective state of flow appears to be manifested by a 
heightened pressure exerted on the seat of the chair (Figure 
2b). This relationship was statistically significant across all 
three data sets, FSELF(1,1076) = 13.78; FPEER(1,1185) = 5.44, p 
< .05; FJUDGES(1, 490) = 52.47.

Figure 2: Descriptive Statistics for Posture Features 
Segregated by Boredom and Flow

It appears that the change in pressure exerted on the back 
of the chair is quantitatively similar for boredom and flow.  

� p < .01 in all analyses unless specified otherwise.
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Therefore, this feature does not appear to be very useful 
in discriminating these emotions (Figure 2c). However, 
Figure 2d indicates that boredom is typically accompanied 
by heightened level of activity on the seat of the chair (i.e., 
fidgeting). This trend was observed for the data sets where 
the affect judgments were provided by the peer (F(1,1185) 
= 13.41) and the trained judges (F(1,490) = 7.43) but not the 
self judgments (F < 1). 

The above mentioned relationships between the posture 
features and the affective states of boredom and flow can be 
aligned within a proclivity-arousal framework. One can think 
of heightened pressure in the seat as resonating with a tendency 
to position one’s body towards the source of stimulation (i.e., 
high proclivity for inclining toward the AutoTutor interface, 
or a short distance between the nose and the screen).  On 
the other hand, an increase in pressure on the back of the 
chair suggests that the learner is leaning back and detaching 
himself or herself from the stimulus (low proclivity). On the 
basis of these operational definitions of proclivity to a stimuli, 
our results are in the expected directions. Specifically, the 
affective state of flow is being manifested by an increased 
pressure on the seat of the chair, which would be indicative 
of high proclivity to the tutoring stimulus during periods 
of engagement.  However, during episodes of boredom the 
learners seem to lean back, presumably disengaging from the 
learning environment. 

Our results also indicate that boredom is accompanied 
by an increase in the rate of change of pressure exerted on 
the seat. Heightened arousal is associated with the boredom 
experience, as learners mentally disengage from the tutor and 
divert their cognitive capabilities to fidget around and  alleviate 
their ennui. This pattern of increased arousal accompanying 
disengagement (or boredom) replicates the general findings 
by Mota and Picard (2003), where they monitored activity 
related posture features and discovered that children fidget 
when they were bored while performing a learning task on a 
computer.

Diagnosticity of Posture Features
Our discovery, in summary, is that the level of pressure in the 
seat and the back of the chair, and the level of activity in the 
seat are the main posture features that discriminate boredom 
from flow, two ends of the engagement continuum.  This 
raises the question as to which of these features is the most 
diagnostic of engagement. We conducted a small computer 
simulation in which the C4.5 algorithm (Quinlan, 1993) was 
used to construct a decision tree capable of discriminating 
between boredom and flow. For ease of interpretation, each 
posture feature was dichotomized (i.e. low vs. high) and we 
only present the decision tree obtained from the data set in 
which the two trained judges agreed on the learner’s emotion 
(Figure 3).

The C4.5 algorithm operates by first computing the 
entropy (noise or impurity) associated with the data. Then, 
the information gain (the reduction in the entropy) that each 

feature provides is estimated. Hence, features that yield a 
higher information gain achieve greater diagnostic power and 
are subsequently used as branching nodes (seat net pressure) 
before features with lower information gain (back net pressure 
and seat pressure change). 

Figure 3: Decision Tree to Discriminate Boredom and Flow

Discriminating between Boredom and Flow
The next important step is to investigate how well a computer 
can automatically discriminate between boredom and flow 
on the basis of the learner’s posture patterns.  The analyses 
proceeded by first expanding the set of posture features to 
include small changes in the pressure exerted on the back and 
the seat before and after the learner’s emotional experiences. 
Specifically, we computed the difference between the net 
pressure exerted three seconds before and after an emotional 
episode. We also measured the difference between the net 
pressure exerted on the back and the seat during emotion 
Et and Et-1 (i.e., the net pressure for the previous emotional 
episode). Finally, two features that examined the net pressure 
coverage on the back and the seat were included. These 
variables measure the proportion of non-negative sensing 
units on each pad.

We investigated the reliability by which three, theoretically 
distinct, machine learning techniques could discriminate 
between engagement (flow) and lack thereof (boredom). 
These included a Bayesian model, a neural network, and a 
simple nearest neighbor classifier. 

Table 1. Classification Accuracy (Kappa Scores)

Affect 
Judge

Overall Boredom Flow
K B N K B N K B N

Self .37 .27 .28 .36 .01 .19 .38 .53 .37
Peer .55 .27 .35 .52 .00 .20 .58 .56 .49
Judges .48 .35 .40 .39 .16 .37 .57 .54 .43
Mean .47 .29 .34 .42 .05 .25 .51 .54 .43

Notes.	 K: Nearest Neighbor, B: Bayes, N: Neutral Network

The reliability (kappa scores) associated with each of 
the aforementioned classifiers was computed for each of 
the 3 data sets. K-fold cross-validation (k = 10) was run 
in tests with training and testing components. In k-fold 
cross-validation the data set (N) is divided into k subsets of 
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approximately equal size (N/k). The classifier is trained on 
(k-1) of the subsets and evaluated on the remaining subset. 
Accuracy statistics are measured after the process is repeated 
k times. The overall accuracy is the average of the k training 
iterations. Goutte (1977) has shown k-fold cross-validation 
to be superior to other techniques for small data sets. The 
Waikato Environment for Knowledge Analysis (WEKA, 
http://www.cs.waikato.ac.nz/ml/weka/) was used to perform 
the requisite computation.

Table 1 presents overall kappa scores as well as individual 
accuracy metrics in assessing the reliability by which the 
three machine learning schemes discriminated between 
boredom and flow when the affective states of a learner were 
categorized by three different judges. The results indicate 
that the classifiers were successful in discriminating between 
boredom and flow at rates significantly higher than chance. 
The simplest strategy of assigning emotion categories by 
consulting the neighbors of a test instance yielded performance 
scores that were quantitatively higher than algorithms that 
attempted to construct an explicit model from the data (i.e., 
Bayesian Classifiers and Neural Networks). Classifiers that 
were trained and evaluated with the data sets of peers and 
trained judges were on par and higher than those obtained 
by the self judges. This might be because the differences 
associated with back pressure (Figure 2a) and the changes in 
seat pressure (Figure 2d) were not significant when emotion 
judgments were provided by the self judges.  

Discussion
This exploratory research provides new findings on the 
relationship between a learner’s posture and the affective states 
related to engagement.  Our results indicated that boredom 
is manifested in two distinct forms. The first is consistent 
with the preconceived notion of boredom in which a learner 
stretches out, lays back, and simply disengages. However, a 
counter-intuitive finding is that boredom was associated with 
a form of restlessness manifested by rapid changes in pressure 
on the seat of the chair. It is not clear as to whether these 
two bodily expressions of boredom are isolated, combine, or 
interact during experience. Finer grained analyses would be 
required to tease apart these alternatives.

The affective state of flow was associated with a heightened 
pressure in the seat of the chair with minimal movement. This 
may imply that the learner is mentally engaged in absorbing 
the material and thereby devotes a smaller amount of cognitive 
processing towards trivial bodily motion as explained by the 
proclivity-arousal framework.

It is interesting to note that posture predicts affect even 
though posture information was not on the radar of the judges 
during their ratings of the learners’ affect states of the learners. 
Perhaps some basic bodily movement could conceivably be 
inferred from the video of the participants’ faces. It is also 
unclear why the posture patterns associated with the peer and 
trained judges’ affect ratings were more synchronous than the 
self judgments. 

Uncertainty remains as to what exactly should be the 
gold standard for deciding what emotions a learner is truly 
having.  Should it be the learner, a peer, or the trained judges?  
We are uncertain about the answer to this question, but it is 
conceivable that some emotions may best be classified by 
learners and others by peers or trained judges. One possibility 
is “social desirability;” self judgments are less accurate when 
posture indicates boredom because learners do not want to 
admit feeling bored. An alternative position is that the self 
judges were utilizing internal cues (such as recollection from 
episodic memory) in judging their emotions. These were 
obviously unavailable to the other judges.  Therefore, the peer 
and trained judges were forced to rely on bodily measures in 
inferring the learner’s affect. Perhaps a composite score from 
all viewpoints is most defensible.

This research has highlighted the efficacy of monitoring 
bodily measures of a learner as a viable channel to infer 
complex mental states.  Some researchers have challenged 
the role of non-verbal behaviors in communicating affect 
(Trimboli & Walker, 1987). They argue that experiments 
that extoll the virtues of non-verbal communication of affect 
are typically plagued by problems related to experimenter 
bias (i.e., the nature of the stimuli or the intention of the 
experimenter are not camouflaged). However, our research 
on body movements and those of others (Mota & Picard, 
2003) were conducted in ecologically valid settings in which 
no actors are used and no attempts were made to intentionally 
invoke affect.

Many questions remain unanswered in this exploration of 
body movements, emotions, and learning.  Are the significant 
relationships between cognition and bodily movements 
predicted by the various theories of embodied cognition 
(Clark, 1997; Glenberg, 2005; de Vega, 2002)? To what 
extent can affect and cognition individually predict bodily 
activity? Does a combination of these channels increase their 
predictive power? Do relationships between cognition, affect, 
and bodily movement generalize above and beyond individual 
differences in experiencing and manifesting affect?  Answers 
to these questions will help us explore theories of embodied 
cognition in addition to the synchronization of emotions with 
complex learning.
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