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Polynomial Roots from Companion Matrix Eigenvalues 

Alan Edelma,n * 
H. Murakamit 

January 1, 1994 

Abstract 

In classical linear algebra, the eigenvalues of a matrix are sometimes defined as the roots of the char­
acteristic polynomial. An algorithm to compute the roots of a polynomial by computing the eigenvalues 
of the corresponding companion matrix turns the tables on the usual definition. We derive a first order 
error analysis of this algorithm that sheds light on both the underlying geometry of the problem as well as 
the numerical error of the algorithm. Our error analysis expands on work by Van Dooren and Dewilde in 
that it states that the algorithm is backwards normwise stable in a sense that must be defined carefully. 
Regarding the stronger concept of a small componentwise backwards error, our analysis predicts a small 
such error on a test suite of eight random polynomials suggested by Toh and Trefethen. However, we 
construct examples for which a small componentwise relative backwards error is neither predicted nor 
obtained in practice. We extend our results to polynomial matrices, where the result is essentially the 
same, but the geometry becomes more complicated. 

1 Introduction 

Computing roots of polynomials may be posed as an eigenvalue problem by forming the companion matrix. 

The eigenvalues of this matrix may be found by computing the eigenvalues of this nonsymmetric matrix 

using standard versions of balancing (very important for accuracy!!) [6] followed by the QR algorithm as 

may be found in LAPACK or its precursor EISPACK. This is how the MATLAB command roots performs 

its computation. 
I 

As Cleve Moler has pointed out in [5], this method may not be the best possible because 

it uses order n 2 storage and order n3 time. An algorithm designed specifically for polynomial 

roots might use order n storage and n2 time. And the roundoff errors introduced correspond to 

perturbations in the elements of the companion matrix, not the polynomial coefficients. 

Moler continues by pointing out that 

We don't know of any cases where the computed roots are not the exact roots of a slightly 

perturbed polynomial, but such cases might exist. 

This paper investigates whether such cases might exist. Let i';, i = 1, ... , n denote the roots of p( x) = 
ao+a1x+ ... +an-1Xn- 1 +xn that are computed by this method. Further assume that the f; are the exact 

roots of 
-c ) - + - - n-1 n p x = ao a1x + ... + an-1X + x . 

•Department of Mathematics Room 2-380, Massachusetts Institute of Technology, Cambridge, MA 02139, 
edelman~math .mit. edu. Supported by NSF grant DMS-9120852 and the Applied Mathematical Sciences subprogram of the 
Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098. 

tQuantum Chemistry Lab., Department of Chemistry, Hokkaido University, Sapporo 060, Japan, 
hiroshi~chem2.hokudai.ac.jp. 
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What does it mean to say that p is a slight perturbation of p? We give four answers, the best one is 

saved for last. In the definitions, 0( t") is meant to signify a small though unspecified multiple of machine 

precision. 

1. The "calculus" definition would require that first order perturbations of the matrix lead to first order 

perturbations of the coefficients. 

2. A normwise answer that is compatible with standard eigenvalue backward error analyses is to require 

that 

where C denotes the companion matrix corresponding to p, and f denotes the machine precision. 

3. A second normwise answer that would be even better is to require that 

max Ia;- ad= O(f)llbalance(C)II-

Standard algorithms for eigenvalue computations balance a matrix C by finding a diagonal matrix T 

such that B = r-1 CT has a smaller norm than C. 

4. The strongest requirement should be that 

Ia;- ad 
max la;l = 0(€). 

This is what we will mean by a small componentwise perturbation. If a; = 0, then one often wants a; 
to be 0 too, i.e., ideally one preserves the sparsity structure of the problem. 

It was already shown by Van Dooren and Dewilde [10, p.576] by a block Gaussian elimination argument 

that the calculus definition holds. Their argument is valid in the more complicated case of polynomial 

matrices. It· immediately follows that good norm wise answers are available, though it is not clear what 

exactly are the constants involved. We found that integrating work by Arnold [1] with Newton-like identities 

allows for an illuminating geometrical derivation of a backward error bound that is precise to first order. 

Our work improves on [10] in that we derive the exact first order perturbation expression which we test 

against numerical experiments. Numerical experiments by Toh and Trefethen [8] compare this algorithm 

with the Jenkins-Traub or the Madsen-Reid algorithm. These experiments indicate that all three algorithms 

have roughly similar stability properties, and further that there appears to be a close link between the 

pseudospectra of the balanced companion matrix and the pseudozero sets of the corresponding polynomial. 

2 Error Analysis 

2.1 Problem Statement and Solution 

Let p(z) = a 0 +a1z+ .. . +an_1zn- 1+zn be any monic polynomial. The companion matrix of this polynomial, 

0 -ao 
1 0 -a1 

C= 1 0 -a2 (1) 

1 -an-1 

has characteristic polynomial Pc(z) = det(zi- C)= p(z). 
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If E is a dense perturbation matrix with "small" entries, the natural error analysis question is the 

computation of Pc+e(z)- Pc(z) = 6a0 + 6a1z + ... + 6an_ 1zn- 1. In MATLAB style notation, we are 

studying poly(C +E)- poly( C) to first order. 

Our result is 

Theorem 2.1 To first order, the coefficient of zk- 1 in Pc+E(z)- Pc(z) is 

k-1 n n k 

L am L E;,i+m-k - L am L E;,i+m-k, (2) 
m=O i=k+1 m=k i=1 

where an is defined to be 1. 

In particular, we see that a small perturbation E introduces errors in the coefficients that are linear in 

the E;j. Since it is well known that standard eigenvalue procedures compute eigenvalues of matrices with 

a "small" backward error, we have a precise sense in which we claim that there is a polynomial near Pc(z) 

whose exact roots are computed in this manner. 

For convenience, we state this result in a matrix times vector format. Let 

!k,d = 2:;=1 Ei,i+d and 
b~c,d:: 2:7=k E;,i+d· 

These are the forward and backward "plus-scans" or "prefixes" of the dth diagonal of E. Our result is that 

the matrix-vector product 

6ao b2,-1 -!I,o -!I.1 - JI,n-3 - JI,n-2 - JI,n-1 
6a1 b3,-2 b3,-1 -ho -h,n-4 -h,n-3 -h,n-2 
6a2 

bn,-(n-1) bn,-(n-2) bn,-(n-3) bn,-1 - fn-1,0 - fn-1,1 
ban-1 0 0 0 0 0 -fn,O 

(3) 

is correct to first order. The n x ( n + 1) matrix above contains backward prefixes in the lower triangular part 

and forward prefixes in the upper triangular part. The last row of the matrix equation states that perturbing 

the trace of a matrix perturbs the (negative of the) coefficient of zn- 1 by the same amount. 

If we further assume that the E is the backwards error matrix computed by a standard eigenvalue 

routine, then we might as well assume that E is nearly upper triangular. There will also be elements on 

the subdiagonal, and possibly on the next lower diagonal, depending on exactly which eigenvalue method is 

used. 

A result analagous to Theorem 2.1 for matrix polynomials may be found in Section 4. 

2.2 Geometry of Tangent Spaces and Transversality 

Figure 1 illustrates matrix space (Rnxn) with the usual Frobenius inner product: 

The basic players are 

p(z) 
c 
Orb 
Tan 
Normal 
Syl 

(A, B) :: tr(ABT). 

a polynomial (not shown) 
corresponding companion matrix 
manifold of matrices similar to C 
tangent space to this manifold = { C X - XC : X E Rn x n} 
normal space to this manifold = { q( CT) : q is a polynomial} 
"Sylvester" family of companion matrices 
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Normal 

Syl = Companion Matrices 

Orb 

Figure 1 Matrix space near a companion matrix 

• The curved surface represents the orbit of matrices similar to C. These are all the non-derogatory 

matrices that have eigenvalues equal to the roots of p with the same multiplicities. (The dimension of 

this space turns out to be n2 - n. An informal argument is that only n parameters are specified, i.e., 

the eigenvalues. ) 

• The tangent space to this manifold, familiar to anyone who has studied elementary Lie algebra (or 

performed a first order calculation), is the set of commutators {CX- XC: X E Rnxn}. (Dimension 

=n2 -n.) 

• It is easy to check that if q is a polynomial, then any matrix of the form q(CT) is perpendicular to 

every matrix of the form CX- XC. Only slightly more difficult [1] is to verify that all matrices in the 

normal space are of the form q(CT). (Dimension= n.) 

• The set of companion matrices (also known as the "Sylvester" family) is obviously an affine space 

through C. (Dimension= n.) 

Proposition 2.1 The Sylvester space of companion matrices is transversal to the tangent space i.e. every 

matrix may be expressed as a linear combination of a companion matrix and a matrix in the tangent space. 

This fact may be found in [1]. When we resolve E into components in these two directions, the former 

displays the change in the coefficients (to first order) and the latter does not affect the coefficients (to first 
order). Actually, a stronger statement holds: the resolution is unique. In the language of singularity theory, 

not only do we have transversality, but also universality: unique + transversal. We explicitly perform the 

resolution, and thereby prove the proposition, in the next subsection. 

In numerical analysis, there are many examples where perturbations in "non-physical" directions cause 

numerical instability. In the companion matrix problem, only perturbations to the polynomial coefficients 

are relevant to the problem. Other perturbations are by-products of our numerical method. It is fortunate in 

this case that the error produced by an entire n2 - n dimensional space of extraneous directions is absorbed 

by the tangent.space. 
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2.3 Algebra- The centralizer 

Let us take a close look at the centralizer of C. This is the n dimensional linear space o~ polynomials in 

C, because C is non-derogatory. Taking the ak as in (1), for k = 0, ... , n- 1 and letting an=1, ai = 0 for 

j ft [0, n], we define matrices 
n 

Mk = ~=>jcj-k. 
j:k 

Clearly M 0 = 0, Mn =I and the Mk, k = 1, .. . n span the centralizer of C. 
An interesting relationship (which is closely related to synthetic division) is that 

n 

p(t)(t- cl)-1 = L Mktk-1 
k=1 

[2, p. 85, Eq. (32)]. The trace of the above equation is the Newton identities in generating function form; a 

variation on the above equation gives the exact inverse of a Vandermonde matrix [9]. 

A more important relationship for our purposes is that 

from which we can inductively prove (the easiest way is backwards from k = n) that 

n-k 
-ao 

-ao 

an=1 

This is almost the Toeplitz matrix with (i, j) entry equal to ±ak+i-j except that the left side of the matrix 

is lower triangular and the right side is strictly upper triangular. 

We are now ready to resolve any E into 

E = Etan + Esyl. 

All we need is the relationship that expresses how Etan is perpendicular to the normal space: 

tr(MkEtan) = 0 for k = 1, ... , n. 

We therefore conclude from ( 4) that 

(4) 

(5) 

Because of the almost Toeplitz nature of the Mk. the trace of MkE involves partial sums of elements of 

E along certain diagonals. Writing out this trace we have that 
k-1 n n k 

-E~:! =Lam L Ei,i+m-k- Lam LEi,i+m-k· 
m:;::O i=k+1 m:;:k i=1 

The above expression gives the coefficient of the perturbed characteristic polynomial correct to first order. 

(Since the coefficients are negated in ( 1), we are interested in - E~Y!.) 
Since Esyl is zero in every column other than the last, we may 'also use ( 4) to calculate Etan, should we 

ili~~. 0 
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3 Numerical Experiments 

3.1 A pair of 2x2 examples 

The companion matrices 

( 
0 -1 ) 

A= 1 2k , 

for k not too small illustrate many subtleties that occur in floating point arithmetic. For convenience, we 

assume our arithmetic follows the IEEE double precision standard for which k = 27 is large enough to 

illustrate our point. 

To machine accuracy, the eigenvalues of A are 2k and 2-k. The eigenvalues of B are 1 and -1. LAPACK 

and MATLAB compute 2k and 0 for the eigenvalues of A, while the eigenvalues of B are computed to be 

1- 2-52 and -1. Neither of these matrices are affected by balancing. Both of these answers are consistent 

with the error estimate in (2). Neither of these matrices gives answers with a small componentwise backward 

error. In the first case, the given product of the roots is 1 while the exact product of the computed roots 

is 0. In the second case, the given sum of the roots is 2-81 , while the exact sum of the computed roots is 
-2-52. 

However, MATLAB and LAPACK could be more accurate! Both packages compute the Schur form of 

a 2 x 2 matrix using an algorithm that is more unstable for the smaller eigenvalue than is necessary. We 
propose that SUch high quality packages should compute the eigenvalues of a general 2 X 2 matrix by solving 

the quadratic equation as accurately as possible given the rounded values of the trace and the determinant. 

If we have a 2 x 2 companion matrix, then there will be no roundoff error in the trace and the determinant. 

The lesson of these examples is that the roots could be computed far more accurately than would be 

predicted by our error bound 2, but currently LAPACK and MATLAB return eigenvalues that are consistent 

with our bound. The other lesson is that without further assumptions it is impossible to require a small 

componer:itwise backward error. Fortunately, these examples are rather pathological. As we will see in the 

next subsection, in practice we do expect to compute roots with a small componentwise backwards error. 

3.2 A more "realistic" set of tests 

In this subsection we use Theorem 2.1 to predict the componentwise backward error. We also perform 

numerical experiments to measure the componentwise backward error. Our results show that Theorem 2.1 

always predicts a small backward error and is most only pessimistic by one, two, or maybe three digits. 

To predict the error, we must model the backwards error introduced by the QR algorithm. We decided to 

choose a model that is designed to compensate for pessimistic factors often found in rounding error analyses. 

Therefore, the model does not provide a rigorous bound, but at least in our test cases it seems to work well 

in practice. 

What we do is consider an error matrix E with entries f = 2-52 in all entries (i,j) with j- i 2:-2. For 

example, when n = 6, 
( ( ( ( ( ( 

( ( ( ( ( ( 

E= 
( ( ( ( ( ( 

0 ( ( ( ( ( 

0 0 ( ( ( ( 

0 0 0 ( ( ( 

This structure allows (with some overkill) for the possibility of double shifting in the eigenvalue algorithm. 

A dense perturbation matrix did not make a substantial difference in our test cases. 
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The standard algorithms balance the matrix by finding a diagonal matrix T such that B = r-1 AT has a 

smaller norm than A. Our model will be that the eigenvalue algorithm computes the exact eigenvalues of a 

matrix B + E', where IE'I ~ E, i.e. each element of E' has absolute value at most c above the second lower 

diagonal and is 0 otherwise. Therefore we are computing the exact eigenvalues of A + T E'T- 1 . To first 
order, then, the error in the coefficients is bounded by the absolute value of the matrix times the absolute 

value of the vector in the product (3), where the scans are computing using T ET- 1 . This is how we predict 

the 6;. Further details appear in our MATLAB code in the Appendix. 

Following [8] exactly, we explore the following degree 20 monic polynomials: 

(1) "Wilkinson polynomial": zeros 1,2,3, ... ,20. 

(2) the monic polynomial with zeros equally spaced in the interval [-2.1, 1.9]. 

(3) p(z) = (20!) I:~~o zk fk!. 
( 4) the Bernoulli polynomial of degree 20. 
(5) the polynomial z20 + z19 + z18 + ... + 1. 

(6) the monic polynomial with zeros 2- 10,2-9,2-8, ... , 29. 

(7) the Chebyshev polynomial of degree 20. 

(8) the monic polynomial with zeros equally spaced on a sine curve, viz., 

(271' /19(k + 0.5)) + i sin(27T /19(k + 0.5)), k = -10, -9, -8, ... , 9. 

' 
Our experimental results consist of three columns for each polynomial. To be precise, we first computed 

the coefficients either exactly or with 30 decimal precision using Mathematica. We then read these numbers 

into MATLAB which may not have rounded the last bit or two correctly.1 Though we could have rounded 
the result correctly in Mathematica, we chose not to do so. Rather we took the rounded polynomials stored 
in MATLAB to be our "official" test cases. 

Column 1: Log Predicted Error: In the first column we model the predicted error from (2) in the manner 

we described above. First we compute the modeled oa;, and then display the rounded value of log10 loa;/ a;l. 

Column 2: Log Computed Error: We computed the eigenvalues using MATLAB, and then translated the 

IEEE double precision numbers to Mathematica without any error. We then computed the exact polynomial 

with these computed roots and compared the relative backward error in the coefficients. 

Column 3: Pessimism Index: By taking the ratio of the computed error in column 2 to the predicted 

error described in column 1 and then taking the logarithm and rounding, we obtain a pessimism index. 

Indices such as 0,-1, and -2 indicate that we are pessimistic by at most two orders of magnitude; and index 

of -19 indicates a pessimism of 19 orders of magnitude. (Since we are using negative numbers, perhaps we 
should more properly call this an optimism index.) 

There are no entries where the polynomial coefficient is zero. (The Bernoulli polynomial is a little funny 

in that it has a z19 term, but no other odd degree term.) The computed relative error would be infinite in 

many of these cases. The top coefficient is the log relative error in the determinant, i.e. the coefficient of 

the constant term; the bottom coefficient refers to the trace, i.e., the coefficient of t 19 . 

1 Try entering 1. 00000000000000018, 1 . 00000000000000019, and 1 . 0000000000000001899999999 into MATLAB (fifteen zeros 
in each nwnber). The results that we obtained on a SUN Spare Station 10 were 1, 1 + 2-52 , and 1- 2-52 respectively, though 
the correctly rounded result should be 1 + 2-52 in all instances. Cleve Moler has responded that a better string parser is needed. 
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(1) (2) 
det~ -12 -13 -1 -12 -12 0 

-12 -14 -2 -13 -14 -1 
-12 -13 -2 -12 -12 0 
-12 -13 -2 -13 -14 -1 
-12 -15 -3 -12 -14 -2 
-12 -16 -4 -13 -14 -1 
-12 -14 -2 -13 -14 -1 
-12 -15 -2 -13 -15 -2 
-12 -15 -2 -13 -15 -2 
-13 -15 -3 -13 -15 -2 
-13 -15 -2 -13 -14 -1 
-13 -15 -2 -13 -15 -1 
-13 -15 -3 -13 -14 -1 
-13 -14 -1 -13 -14 -1 
-13 -14 -1 -13 -14 -1 
-13 -15 -2 -13 -14 -1 
-13 -15 -2 -14 -14 -1 
-13 -15 -2 -14 -14 -1 
-14 -16 -2 -14 -15 -1 

trace~ -14 -16 -2 -14 -14 0 

Relative errors in the Coefficients (log base 10) 
for eight different degree 20 polynomials 

Key to each panel in the table below 
Col 1 Col 2 Col 3 

Predicted Observed 
Rel Error Rel Error 

Pessimism 
Index 

(3) (4) (5) (6) 
-13 -14 -1 -13 -14 -1 -14 -14 -1 -8 -14 -6 
-13 -14 -1 -13 -14 -1 -8 -14 -5 
-13 -14 -1 -13 -15 -2 -13 -14 -1 -9 -14 -5 
-13 -14 -1 -13 -16 -3 -9 -14 -5 
-13 -14 -2 -13 -14 -1 -13 -14 -1 -9 -14 -5 
-13 -14 -1 -13 -14 -1 -10 -14 -4 
-13 -14 -1 -13 -14 -1 -13 -14 -1 -10 -15 -5 
-13 -14 -1 -13 -14 -1 -10 -14 -4 
-13 -15 -2 -13 -14 -1 -13 -14 -1 -11 -15 -5 
-13 -16 -3 -13 -14 -1 -11 -14 -3 
-13 -15 -2 -13 -14 -1 -13 -14 -1 -11 -14 -3 
-13 -15 -1 -13 -14 -1 -11 -14 -3 
-13 -15 -1 -13 -14 -1 -13 -14 -1 -12 -15 -4 
-13 -14 -1 -13 -14 -1 -12 -15 -3 
-13 -14 -1 -14 -14 -1 -13 -14 -1 -12 -15 -2 
-13 -14 -1 -13 -14 -1 -13 -14 -2 
-13 -14 -1 -13 -15 -2 -13 -15 -1 -13 -16 -3 
-13 -14 -1 -13 -15 -2 -13 -15 -2 
-14 -14 -1 -14 -16 -3 -13 -14 -1 -14 -15 -1 
-14 -14 -1 -14 -16 -2 -14 -14 0 -14 -16 -2 

(7) 
-12 -14 -2 

-12 -14 -2 

-12 -14 -2 

-13 -14 -1 

-13 -14 -1 

-13 -15 -1 

-14 -15 -1 

-14 -15 -1 

-14 -15 -1 

-14 -15 -1 

(8) 
-13 -14 -2 

-13 -15 -2 

-13 -15 -2 

-13 -15 -2 

-13 -15 -1 

-13 -15 -1 

-14 -15 -1 

-14 -14 -1 

-14 -15 -1 

-14 -15 -1 

In all cases, we see that the computed backward relative error was excellent. With the exception of 

column (6), this is fairly well predicted usually with a pessimism index of one to three orders of magnitude. 

Column (6) is an exception, where the backward error is far more favorable tlian we predict. 

Why this might be possible was explained in the previous subsection. We know the determinant to 

full precision (very rare when performing matrix computations!!). So long as our QR shifts and deflation 

criteria manage not to destroy the determinant, it will remain intact. In column (6) we see a case where this 

occurred. By contrast, in the previous subsection we illustrated a case where this did not occur. 

We suspect that for any companion matrix, it is often if not always possible to choose shifts and deflation 

criteria to guarantee high (backward relative) accuracy even with the smallest of determinants, but we have 

not proven this. 

4 Generalization to Matrix Polynomials 

A monic matrix polynomial has the form 

where we assume that the coefficients A; (and An :: Ip) are p x p matrices, and xis a scalar. It is of interest 

[3, 4) to find the x for which det(P(x)) = 0 and the corresponding eigenvectors v(x) such that P(x)v(x) = 0. 
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Such information may be obtained from the pn x pn block companion matrix 

0 -Ao 
Ip 0 -A1 

C= Ip 0 -A2 (6) 

Ip -An-1 

The Sylvester space now has dimension np2 , while the tangent space to the orbit of C generically has 

dimension n 2p 2 - np, though it can be smaller. It seems that if p > 1, we have too many dimensions! We 

will now show that we may proceed in a manner that is analogous to that of Section 2.3 to obtain what is 

roughly the same answer, but to do so we must carefully pick a natural subspace of the tangent space that 

will give a universal decomposition. This is not necessary when p = 1. The natural subspace of the tangent 

space consists of all matrices of the form CX- XC where the last prows of X are. 0. 

Lemma 4.1 Define 
n 

M~c = L ci-k(In 0 Aj ), 
i=k 

where 0 denotes the Kronecker product and In is the identity matrix of order n. Then 

and 

An=Ip 

Proof These statements are readily verified by induction. 

We now introduce the p x p block trace of a matrx: 

n-k 
-Ao 

-A1 

-Ao 

Definition 4.1 If Z is a pn x pn matrix whose p x p blocks are denoted Z;i, then we define 

n 

trp(Z) = L Z;;. 
i=l. 

Notice that trp(Z) is a p x p matrix, not a scalar. 

Theorem 4.1 Given the first n- 1 block columns of a pn x pn matrix Z, the condition that 

0 = .trp(ZMk), k = 0, ... , n 

is equivalent to the condition that 

Z = CX- XC for some X with 0 bottom block row. 

D 

(7) 

(8) 

Moreover, either condition determines the final block column of Z uniquely given the remaining columns. 
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Proof The (n, k) block entry of M~c is Ip and this determines Z~cn uniquely from (7). If X has 0 as its 

bottom block row, it is easy to verify that the map from X to the first n- 1 block columns of CX- XC 

has a trivial nullspace. Thus Z is uniquely determined by (8). 

What remains is to show (8) implies (7). Suppose that Y has a zero bottom block row. Then trp(CY) = 
trp(YC) = 2:::~:::-/Yi,i+l· Therefore, if X has a zero bottom block row, then trp(CXM~c) = trp(XM~cC) by 

choosing Y = XM~c. Finally trp(XCi(In ® A)C- XCiC(In ®A))= 0 for any p x p matrix A, because 

(In® A)C- C(In ®A) is 0 except for the last block column. Therefore XM~cC = XCM~c, from which we 

conclude that trp(CXM~c) = trp(XM~cC) = trp(XCM~c). D 

We now summarize the geometry. 

Corollary 4.1 In the n 2p 2 dimensional space of np x np matrices, the n 2p2 - np2 subspace of the tangent 

space of the orbit of C defined either by {7) or {8) is transveral at C to the np2 dimensional Sylvester space 

consisting of block companion matrices. 

We may now resolve any perturbation matrix E into 

(9) 

as in ( 4), except now Etan must be in this n 2p2 - np2 dimensional subspace, and Esyl is 0 except in the 

final block column. Because trp(ZM~c) ::/; trp(M~cZ), the correct result is that 

k-1 n . n k 

-E~:! = L( L Ei,i+m-k)Am- L(LEi,i+m-k)Am. 
m=O i=k+l m=k i=l 

The above expression gives the block coefficient of a perturbed matrix polynomial correct to first order. 

D 
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A MATLAB program used in experiments 
The numerical part of our experiments was performed in MATLAB, while the exact component of the 
experiments was performed with Mathematica. We reproduce only the main MATLAB code below for the 
purpose of specifying precisely the crucial components of our experiments. The subroutines scan and scanr 
compute the plus-scan and the reversed plus-scan of a vector respectively. 

7. Predict and compute the componentwise backward error in the eight 
7. polynomial test cases suggested by Toh and Trefethen. 
7. --- Alan Edelman, October 1993 

7. Step 1 ..• Run Mathematica Program to Compute Coefficients. 
7. Output will. be read into matlab as the array 
7. d1 consisting of eight columns and 
7. 21 rows from the constant term (det) on top 
7. to the x-19 term (trace), then 1 on the bottom 
7. (Code not shown.) 

7. Step 2 ... Form the eight companion matrices 
for i=1:8, 

eval(['m' num2str(i) '=zeros(20);']); 
eval(['m' num2str(i) '(2:21:380)=ones(1,19);']); 
eval(['m' num2str(i) '(: ,20)=-d1(1:20,' num2str(i), '); ']); 

end 

7. Step 3 ... Obtain an "unbalanced" error matrix. 
e=eps•ones(20);e=triu(e,-2); 
for i=1:8, 

eval(['[t,b]=balance(m' num2str(i) ');']); 
ti=diag(1./diag(t)); 
eval(['e' num2str(i) '=(t•e•ti)•norm(b); ']); 

end 

7. Step 4 ... Compute the first order perturbation matrix: er. 
for j=1:8, 

eval(['e=e' num2str(j) ';']); 
forw=zeros(20);back=zeros(20);er=zeros(20,21); 
for i=1: 19 

forw = forw + diag(scan(diag(e,i-1)),i-1); 
back= back+ diag(scanr(diag(e,-i)),-i); 

end 
er(1:19,1:19)=back(2:20,1:19);er(:,2:21)=er(:,2:21)-forw; 
eval(['er' num2str(j) '=er;']); 

end 

7. Step 5 ... Compute the predicted relative errors in the coefficients 
predicted= zeros(20,8); 
for i=1:8, 
eval(['predicted(:,' num2str(i) ')=abs(er' num2str(i) ')•abs(d1(:,i)); ']); 

end 
predicted=abs(predicted./d1(1:20,:)); 

7. Step 6 ... Compute the exact relative errors in the coefficients 
7. .using Mathematica and finally display all relevant 
7. quantities by taking the base 10 logarithm. (Code not. shown.) 
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