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Abstract 

The problem of multiple global comparisons 
of families of biological sequences has been 
well-studied. Fewer algorithms have been de­
veloped for identifying local consensus pa~ 
terns or motifs in biological sequences. These 
two important problems have different bio­
logical constraints and, consequently, differ­
ent computational approaches. The difficulty 
of finding the biologically meaningful motifs 
results from the variability in (1) the bases 
at each position in t he motif, (2) the location 
of the motif in the sequence and (3) the mul­
tiplicity of motif occurrences within a given 
sequence. In addition the short length of 
many biologically significant motifs and the 
fact that motifs gain biological significance 
only in combinations, makes them difficult 
to determine using standard statistical meth­
ods. In this paper we introduce our own ap­
proach, DMS, which combines multiple o~ 
jective functions with an improved iterative 
sampling search method. We compare the 

· main approaches for finding motifs and test 
the effectiveness of the various algorithms by 
comparing them on ten real domains and 
fourteen artificial domains. The main advan­
tage of DMS is that it is better able to find 
shorter motifs. 

1 Introduction 

Genome projects are genera.ting large data sets of g~ 
nomic sequence data. However, the size and speed of 
acquisition of these data sets exc~eds the pace of ex­
perimental analyses and interpretations. In 1996, with 
the international collaboration of over 100 laboraties, 
tlie yeast genome w~ completely sequenced. It has 
12 million base pairs (bps) and about 6,000 genes. To 
the surprise of biologists, the biological functions of 

only about 2,000 genes were known. The functioJ1.s of 
another 2,000 genes could be inferred by comparison. 
The functions of the remaining 2,000 genes, called or­
phans, are unknown. Recently the complete genome 
(approximately 100 million bps) of a multi-celled an­
imal ( C. elegans) was sequenced. Within a few years 
the sequencing of the human genome ( approximately 
3 billion bps) is anticipated. Once the genome and 

·genes have been determined, there are two essential 
questions to be answered: 1) What is the function of 
each gene, and 2) When are genes expressed? 

The first question has been heavily studied and · pri­
marily depends on both experimental tests of gene ac­
ti vities and predictions of gene activity base on struc­
ture. Computationally, the most successful way of 
characterizing a gene has been based on probabilis­
tic models, usually via some instantiation of Hidden 
Markov Models (HMMs). HMMs work well for this 
problem since they provide a global model which al­
lows insertions, deletions, and substitutions .. These ca­
pabilities match the intuition that similar genes have 
had a common evolutionary history and the evolution 
process involves insertions, deletions and changes to 
the base pairs. 

The second question has been less well studied and has 
a very different character. Biologists have determined 
that the control or regulation of gene expression is pri­
marily determined by relatively short sequences in the 
region surrounding a gene. These sequences vary in 
length, position, redundancy, orientation, and bases. 
Insertions and deletions are uncommon in regulatory 
motifs. These qualities prohibit the simple application 
of HMMs. 

Several metho.ds have been developed for detecting 
patterns shared by functionally related biosequences 
(Heiden et. al., 1998; Hertz & Stormo, 1995; Hertz 
et. al., 1990; Bailey & Elkan, 1995; Lawrence et. al., 
1993; Hughey and Krogh, 1996; Eddy, 1995). We r~ 
view these methods according to their representations, 
objective functions, and search strategies. 
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In addition, we present a new approach called 'DMS 
to detect motifs from sequences. DMS extends pre­
vious work by combining multiple objective functions 
with an improved iterative sampling technique. The 
performance of our algorithm and several others are 
compared on ten problems taken from the biological 
literature. Each of these problems consists of a set of 
biological sequences with known motifs. To further un­
derstand the limitations and value of these programs, 
we also compared the programs on fourteen artificial 
problems, which were designed to mimic real data. 

2 Characteristics of Motif-finding 
Problem 

, Fundamentally gene regulation is determined by chem­
ical reactions which are, in turn, controlled by the 
shape and electrostatic charges of the molecules in­
volved. One such instance of this is the interaction 
between regulatory proteins and their target binding 
site. The significance of this is that this can lead to 
a coordination of regulation via a combination of mo­
tifs. Unfortunately this information is not typically 
available. We expect that the local shape of a binding 
or receptor site will be primarily determined by the 
bases involved, _acknowledging the fact that non-local 
base changes can affect local shape. · 

T here are a number of consequences that we can ex­
pect from this view. T hese consequences are supported 
by the structure of known motifs. 

• Patterns are relatively short since they only -define 
a local shape. 

• Patterns are not defined by an exact sequence of 
bases, and variation is allowed. Typically the vari­
ation is represented via a probability matrix. 

• T he precise location of the receptor site may not 
be important, as the goal of the receptor site is to 
bind to another molecule. 

• Multiple occurrences of · a receptor site may be 
important since each occurrence would give a 
molecule a greater chance of finding the binding 
site and since bound molecules may interact, mod­
ifying the structure and the binding properties. 

• Insertion and deletions are less likely to occur 
than base variation, as this would have a drastic 
effect on the conserved features of the receptor. 

• T he pattern or motif should be ·common to most 
of these sequences in a family and uncommon in 
the entire genome. It is essential that not all genes 
are expressed, but only a selected few. Also there 
!11~Y be multiple ways of turning on a gene, so 
it 1s not required that the motif occur in every 
sequence in a given family. 

These characteristics make the problem somewhat ill­
defined. The . terms of "common", "pat tern", and 
"most" require precise definitions. While various def­
initions are possible, which best corresponds to the 
underlying biological problem is unclear. 

ln any case these characteristics make the problem 
computationally difficult. For example, a typical prob­
lem would be: given 30 DNA sequences, each of length 
800, find a common pattern of length 8. Let us sim­
plify the problem, as many algorithms do, and assume 
the pattern occurs exactly once in each sequence. This 
means that there are approximately 80030 potential lo-
cations for a motif candidate. · 

3 Issues in Motif-Finding Algorithms 

There are three main interrelated computational is­
sues: the representation of a pattern, the definition of 
the objective function, and the search strategy. While 
we examine the algorithms on computational grounds, 
the final, gold-standard is how well the algorithm does 
at predicting motifs. 

3.1 Representation 

,As the· primary DNA sequences are described by a 
double-stranded string of nucleic bases {A,C,G,T}, the 
most basic pattern representation is the exact base 
string. Due to the complexity and flexibility of the mo­
tif binding mechanism, there is rarely a.ny motif that 
can be exactly described by a string of nucleic bases. 
To obtain more flexibility, t he IUPAC code was de­
signed, which extends the expressiveness of the simple 
base string representation by including all disjunctions 
of nucleotides. In this language there is a new symbol 
for each possible disjunction, e.g. W represents A or 
T. 

A more informative pattern representation is a proba­
bility matrix in which ea.ch element reflects the impor­
tance of the base at a particular position . Such ma.­
trices can be easily translated into the IUPAC code, 
while the converse is not true. These matrices are often 
transformed from the observed occurrence frequencies. 
One limitation of probability matrices is that correla­
tion or dependence between positions are not repre­
sented. 

3.2 Obje<;tive Function 

The purpose of an objective function is to approxi­
mate the biological meanings of the patterns in terms 
of a mathematical function . The objective function 
a.re heuristics. Once the objective function i.s deter­
mined, the goal is to find those patterns with high 
objective function value. Different objective func-



tions have been derived from the background knowl­
edge, such as the secondary strucfures of homologous 
proteins, the relation between the energetic interac­
tions among residues and the residue frequencies, etc 
(Stormo, 1990; Lawrence et. al., 1993). Objective 
functions based on the information content or its. vari­
ants were proposed (Hertz et. al., 1990; Lawrence et. 
al., 1993). Others.evaluate the quality of the pattern 
by its likelihood or by some other measures of statisti­
cal significance (Bailey & Elkan, 1995; Heiden et. al., 
1998). In addition, some define the pattern as a model 
of a probabilistic sequence generator and evaluate the 
model by the probability that the given sequence data 
is generated by the model (Hughey and Krogh, 1996; 
Eddy, 1995). 

Even though there are many different objective func­
tions currently used, it is still uriclear what is the most 
appropriate object function or the best representation 
for patterns that will correspond to biological signif­
icant motifs. More likely, additional knowledge will 
need to be incorporated to improve motif character­
ization. In the final analysis, the various algorithms 
can only produce candidate motifs that will require 
biological experiments to verify. 

3.3 Search Strategy 

If one adopts the exact string representation, then 
one can exhaustively check every possible candidate. 
However this approach is only able to identify short 
known motifs or partial long motifs (Heiden et. al., 
1998). Therefore, the primary representation used is 
a probability matrix (Harr et. al., 1983; Staden, 1984; 
Hertz et. al., 1990; Lawrence et. al. , 1993; Bailey 

. and Elkan, 1995). Once one accepts a probability ma­
trix as the representation , then there is no possibility 
for an exhaustive search. Initial approaches started 
with hill-climbing strategies, but these typically fell 
into local optimum. Standard approaches to repair­
ing hill-climbing, such as beam and stochastic search, 
were tried next. The current approaches involve a mix­
ture of sampling and stochastic iterative improvement. 
This avoids the computational explosion and main­
tains or improves the ability to find motifs (Lawrence 
et. al., 1993; Bailey and Elkan, 19Q5). 

4 The OMS Algorithm 

DMS adopts the probability matrix representation for 
motifs. The user provides a family of sequences and 
how many motifs he would like returned. The system 
returns that number of motifs, ranked by a significance 
measure, which will be defined. 

The probability matrix representation has been used 
in various pattern identification problems (Harr et: al., 
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1983; Staden, 1984; Hertz et. al., 1990; Lawrence et. 
al., 1993). It is usually built from the base frequency 
of example biosequences. For example, in the NIT 
regulatory family (Heiden, et al. ,19.98) which contains 
7 members, a possible 6-base motif matrix is illustrated 
in Figure 1. The normalized matrix is also shown in 
this figure. 

Based on the normalized motif matrix , we could calcu­
late the match score of any 6-base sequence by dividing 
the sum of the values for each position of the motif. For 
example, given a 6-base sequence, GATAAG, its match 
score is o.ss+l+~+l+l+l. The success of these analy­
ses confirms the fact that the frequencies of bases at 
positions within sites are related to the importance of 
the bases to the functioning within the sites (Stormo, 
1988). The challenge is to find a matrix that well rep­
resents the motif in terms of the objective function. 

We propose a new motif-finding algorithm, DMS. Un­
like other approaches, DMS uses mult iple types of 
objective functions, the motif consensus quality, the 
motif multiplicity significance and the motif coverage. 
The consensus quality is only used to guide the search 
for well-conserved motif candidates, the motif multi­
plicity significance reflects the value of multiple copies 
of motifs, and the motif coverage addresses the impor­
tance of a motif's being commonly shared by a given 
family of sequences. 

The consensus quality of a matrix is derived from the 
entropy, the lower the entropy, the better conserved 
the motif. The entropy is calculated from the prob­
ability that each base occurs at each position in the 
motif, Pmba••· More precisely, the entropy for ·a par­
ticular column n in the matrix is given by: 

En = - I::~01 Pmi lg Pm; 

where b1 .. b4 are the bases A, G, C, T. If the bases are 
uniformly distributed over a position, then the max­
imum value of 2 is obtained. If only a single base 
appears in a position then the minimum value of O is 
obtained. Thus we define the consensus quality of col­
umn n as: 

Cn = 2-En 

The final consensus quality of a matrix b, is defined as 
the average of all position quality. 

con(b) = ~ I::=l Cn 

where W is the width of the motif. 

The m ultiplicity significance is derived from the mea­
sure of precision as defined in the information retrieval 
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A 0 7 0 7 7 0 
G 6 0 0 0 0 7 normalized to 
C 1 0 0 0 0 0 
TOO 7 .o O 0 

A 0.00 1.00 0.00 1.00 1.00 0.00 
G 0.86 0.00 0.00 o:oo 0.00 1.00 
C 0.14 0.00 0.00 0.00 0.00 0.00 
T 0 . 00 0.00 1.00 0.00 0.00 0 .00 

Figure 1: A 6-base Motif Matrix Example 

paradigm. It is simple and empirically effective. We 
define the multiplicity significance of a motif b as: 

where occs(b) is b's occurrences in S, occc(b) is b's 
occurrences in genome. 

The motif coverage is defined as the ratio of the num­
ber of the sequences containing b to the total number 
of sequences given, i.e.: 

cov(b) = co,Wb) 

where conts(b) is the number of sequences in S that 
contain b, and ISi is the total number of sequences in 
s. 
Given a set of N biosequences, DMS carries out an it­
erative improvement search strategy that attempts to 
find a user-defined number, d, of matrices that max­
imize the consensus quality defined above. These d 
matrices are motif candidates. DMS then ranks these 
motifs according to a merit measure based on the com­
bination of the consensus quality, the multiplicity sig­
nificance and the motif coverage. Given the d motifs, 
we first normalize the consensus quality, the multiplic­
ity significance and the motif coverage of each motif b, 
using the maximum value, as defined below : 

C (b) conf b) Onnorm4l = MAX con) 

M I (b) mul(b) 
U norm4l = M AX(mul) 

Covnorm4/( b) = M ~o; ~ov 

where M AX(con) is the maximum consensus quality 
of the d motifs, M AX(mul), the maximum multiplic­
ity significance of the d motifs, and M AX(cov), the 
maximum motif coverage of the d motifs. 

We assign the equal weight to every measure discussed 
above and propose a final merit measure of a motif b 
defined as : 

The value of merit reflects the synergy of the consen­
sus quality, the multiplicity significance and the motif 
coverage. There a.re three steps in DMS which are 
detailed in the following subsections. 

4.1 Translation: S_ubsequences into Matrices 

If we knew the motif location(s) in every sequence, we 
could start with a probability matrix corresponding to 
these positions. As this is unknown, we begin by al­
lowing each subsequence of length W to be a candidate 
motif. We convert this particular subsequence into a 
probability matrix in two steps, adopting an idea from 
(Bailey and Elkan, 1995). First we fix the probabil­
ity of every base in the subsequence to some value 
0 < X < 1, and assign probabilities of the other bases 
according to 1

4-:_1 ( 4 nucleic bases). Following Bailey 
and Elkan , we set X to 0.5. This gives us a set of seed 
probability matrices to be used as starting points for 
iterative improvement. Since motifs should occur in 
most sequences, we can select a random subset of the 
sequences and only generate candidate starting points 
from this subset. 

4 .2 Determining Possible Motif Occurrences 

Rather than making the common assumption that 
each motif occurs only once per sequence, we allow for 
the possibility that a motif may occur multiple times in 
a single sequence. For each matrix and ea.ch sequence, 
we find the position that maximizes the match score. 
Now we set the threshold for deciding if a motif occurs 
at any position as the mean of match scores. Finally 
we add to the list of motif positions any position whose 
match score is greater than this threshold. This pro­
cess defines a set of potential motif positions. Once 
these motif positions are defined, the seed probability 
matrices are no longer used. 

4.3 Finding and Ranking Motif Candidates 

After the likely motif positions are determined, DMS 
performs an iterative optimization procedure to find 
the motif probability matrix. Unlike current ap­
proaches that search all possible positions within a 
sequence, OMS only considers the potential motif po-



sitions determined in the previous step. This strategy 
significantly constrains the search space. For initial­
ization, a randomly selected motif position from the 
potential positions in each sequence forms the initial 
probability matrix. 

A sequence is then chosen at random for optimization. 
DMS optimizes the information content of the matrix 
by checking every potential motif position within the 
selected sequence. The position that gains the high­
est information content is chosen to update the ma­
trix. The process is repeated until no improvement 
is noted. In each optimization cycle, the order of se­
quences is randomly shuffled. The randomization in 
each trial cycle is important to remove implicit biases, 
such as the order of the sequences, that can be harm­
fu l in search algorithms (Hampson and Kibler, 1996). 
At this point , in each sequence, the subsequence that 
contributes to the last updated matrix is determined. 
We then compute the mean of the match scores of the 
subsequences that form the matrix, and isolate all sub­
sequences with a match score over the mean as possible 
motifrepeats in each sequence. All these motif repeats 
in sequences are used to form the final motif matrix. 

The same procedure is performed on all matrices to 
produce the motif candidates. Finally, DMS ranks the 
motif candidates according to its significance measure. 
Unlike other algorithms that use a probabilistic repre­
sentation, DMS sets a threshold which defines whether 
or not a subsequence is a motif. This permits DMS to 
use the merit measure for ranking motifs. Other algo­
rithms cannot directly apply the same merit measure. 

A pseudocode description of matrix optimization pro­
cedure is given in Figure 2. 

5 History / Related Work 

We review some of the methods developed for the de­
tection of the motifs. These methods were selected 
since they have been well-developed, are freely avail­
able over the internet, and represent a spectrum of 
different approaches. 

CONSENSUS (Hertz et. al., 1990; Hertz and Stormo, 
1995) were pionneers in using computer search algo­
rithms for identifying motifs. Their algorithms ;is­

sume that there is exactly one occurrence per string 
and uses a beam search method with an information 
content evaluation function. The algorithms are some­
what limited in that they find a single motif(and vari­
ants) from a set of sequences and may lodge in local 
optima. 

The Gibbs sampler (Lawrence et. al., 1993) uses a 
probabilistic matrix to describe motifs, and adopts a 
search strategy based on random, iterative sampling. 
It is capable of finding multiple motifs in sequences 
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when the number of occurrences of each motif in each 
sequence is known (Bailey & Elkan, 1995). It is com­
putationally expensive and has difficulty learning short 
motifs. · 

The MEME algorithm (Bailey & Elkan, 1995) is a 
development of the Expectation Maximization (EM) 
algorithm introduced by Lawrence and Reilly, 1990. 
Similar to the Gibbs sampler, it uses a probabilistic 

. representation. By repeatedly applying EM, MEME 
finds a matrix with maximum likelihood. MEME 
works particularly well on longer sequences. A po­
tential limitation is that MEME performs less well on 
sqorter patterns, as indicated by trials on real and ar­
tificial data. 

Heiden et. a(. designed a simple, fast algorithm 
that detects over-represented oligonucleotides within 
sequences (Heiden et. al., 1998). This method ex­
haustively counts all oligonucleotide occurrences in the 
sequences, and estimates their statistical significance. 
This work highlighted the value of using multiplicity 
in identifying motifs with biological significance. How­
ever final identification of the motif is done manually 
using the program's output. To maintain the simplic­
ity of the string representation, this approach sacrifices 
the expressiveness of probability matrices, making it 
less powerful in finding motifs with a large amount of 
variability. 

We summarize the main design features of the various 
algorithms in Table 1. 

6 Experiments on Real Domains 

Recall that our goal is to describe the motif(s) that 
determines when a gene is expressed. From the litera­
ture, Heiden et. al. defined ten families of genes that 
contain a number of know·n and probably unknown 
motifs. The known motifs for each family of yeast 
genes define ten learning tasks-for evaluating the var­
ious motif algorithms. These families are listed in Ta­
ble 2. Also recall that the ( transcriptional) regulation 
of a yeast gene is primarily determined by motifs in 
the upstream region. As in the Heiden study, we used 
the 800 bp upstream region of each ORF. These data 
are available from Saccharomyces Genome Database 
at Stanford1 . 

We ran all the motif-finding algorithms above on these 
regulatory families except for the Heiden algorithm, 
since his results were published. Except for DMS, none 
of the algorithms we tested provides any ranking infor­
mation in its output. As they all adopt the matrix as· 
the representation, and the matching threshold is im­
plicit in the programs, our objective is to test whether 
they can identify the published motifs based on other 

1http://genome-www.stanford.edu/Sa.ccharomyces 
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Given: a set of biosequences, B 
A random subset of B, S 
the width of motif, W 

Return : a set of ranked motif candidates, C 

Step 1. Translation 
For each subsequences in B Do 

Translates into candidate probability matrix m via: 
m(i,base) = .SO if base occurs in position i 

= .17 otherwise 

Step 2. Determine possible motif positions 
For each sequences in S Do 

Find highest match scoring subsequence ins 
Compute the mean of the highest match scores in S 
For each sequences in S Do 

Set Potential Positions to those with match 
score>= mean 

Step 3. Find and ranlt motif candidates 
Randomly choose a Potential Position in each sequence 
to initialize matrix M 
Repeat 

Randomly pick a sequences in S 
Check if M's quality can be improved by using a 
different Potential Position ins 
Update matrix M 

Until no improvement in M's quality 
Compute the mean of match scores of subsequences 
contributing to M 
For each sequences in S Do 

Isolate motif repeats to those with match score>= mean 
Form the final matrix FM with all repeats in S 
Put FM in C 

Sort all motif candidates in C according to significance 
Return C 

Figure 2: Pseudocode of OMS 
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Table l:' Characteristics of Motif-Finding Algorithms 

Jective Function Representation 
m ormat1on requency 

content matrix 
i s stoc ast1c ratio o pattern pro a 1 1stic 

hill-climbing probability to matrix 
background probability 

M M variant pro a ilist1c 
matrix 

e en ex aust1ve stat1st1ca ase string 
significance 

assuming binomial 
distribution 

DM stoc astic m ormat1on pro a i istic 
hill-climbing content and matrix 

significance 

Table 2: Ten regulatory.families and the associated published motifs 
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controllable parameters, e.g., the motif width and the 
number of motifs desired. Because of the variation in 
strategies of the algorithms, we allowed each algorithm 
to construct 100 motifs from each family. As biolog­
ical experimentation is complex, expensive, and sub­
ject to noise, the litera.ture typically only publishes the 
IUPAC code for regulatory motifs. Consequently we 
needed to construct a way to credit the algorithms that 
determined a probability matrix. Also the biological 
published motif contain some noise, We adopted the 
following procedure for determining a match. From 
each probability matrix we constructed a-consensus 
pattern. If this consensus pattern matched the pub­
lished motif in 80% of the positions of the motif, we 
counted this as a correct match. A base in the con­
sensus sequence was allowed t~ match a disjunction of 
bases (as described by the IUPAC code) if the disjunc­
tion contained the base. 

The experimental results are presented in Table 3. 
Column 2 to 5 shows whether the algorithm success­
fully identified the motifs. A "•" means the motifs(s) 
was successfully found, a "ll" shows the motif(s) was 
contained in a longer pattern, and a blank indicates a 
failure. 

In these trials, CONSENSUS did not find the 
GATAAG motif in the NIT family, which was reported 
by Belden et. al.. The algorithm requires setting 
several parameters whose influence is unclear. There 
may be some settings which permit the motif to be 
found. Moreover CONSENSUS failed to identify the 
published motifs in GCN, HAP, YAP and TUP reg­
ulatory families. Gibbs sampler found the published 
motifs in each family except the motifs in the HAP 
family, and the less conserved GCACGTTTT motif 
in PHO family. Gibbs is very sensitive to the setting 
of the expected number of motif occurrences. Wrong 
settings may hinder Gibbs sampler from isolating the 
correct motifs. MEME also identified all the published 
motifs except for the motifs in the HAP family, but it 
is also sensitive to whether to allow multiple appear­
ances of a motif in any sequence or not. For exam­
ple, allowing multiple appearances of a motif in any 
sequence prohibits MEME from detecting" the target 
motif in the TUP family. In addition, MEME tended 
to detect longer elements even if we set it tG find short 
motifs. Some of the shorter patterns are contained in 
longer ones, such as the motifs in the NIT family, the 
YAP and the MET. DMS identified all the published 
motifs in all regulatory families. 

7 Experiments on Artificial Domains 

~he pri_mar~ standard is how effectively these algo­
rithms 1dent1fy the reported motifs on real domains. 
However, as the biologists do not always have a com-

plete idea of these regulatory families, and the collec­
tion of data sets is not extensive at tne moment, it is 
useful to use synthetic domains to evaluate the various 
algorithms. While we have tried to maintain fidelity 
with real domains, we also had the ability to create 
motifs with known and controllable properties. 

As the size of the families varied from 5 to 38 in the 
real domains, we used artificial families with sizes of 
10 to 40 sequences. For the most part in real domains, 
the various algorithms did well at finding large motifs, 
but as the motif got shorter, the difficulty of finding 
them became higher. Consequently we created test 
sets with motif widths varying from 4 to 8 bases. The 
background sequences were generated either at ran­
dom or by randomly shuffling real upstream regions 
from the yeast genome, e.g., the sets of 38 sequences 
are derived from the GCN family. To insert the motif 
into a sequence, we used four probabilities. 

1. Po the probability of no artificial motif in a se­
quence 

2. P1 the probability of one artificial motif in a se­
quence, 

3. P2 the probability of two artificial motifs in a se­
quence, 

4. PB the probability of the preferred bases in the 
motif, 

These fourteen artificial regulatory families are .de­
scribed in Table 4. The results are presented in Table 
5, where we used the same test methodology as in the 
real domains. First, this data reinforces the conclu­
sions from the experiments on real data, namely that 
CONSENSUS is unable to deal with variability in the 
motifs and that the stochastic search process of Gibbs 
only occasionally, but not always, lets it find the motif. 
M_EME, which performed well on long motif patterns, 
failed to find the small seeded small motifs. On the 
other hand , DMS found all the seeded motifs. 

8 Conclusions 

Finding local consensus patterns in biosequences, i.e., 
motifs, is a very different problem than finding global 
alignments. We have reviewed the computational de­
sign of the leading approaches for finding motifs and 
provided the first empirical comparison of these on a 
common set of real and artificial problems. We have 
also introduced our own algorithm DMS for finding 
motifs, which combines many of the aspects of pre­
vious algorithms. This algorithm incorporated some 
novel constraints on the search that increases speed 
significantly without losing its ability to find motifs. 
On the chosen real domains, DMS and MEME per­
formed nearly equivalently and much better than the 



Detecting Motifs from Sequences 189 

Table 3: Results of ten regulatory families 

TTTT 

Table 4: 14 artificial regulatory families and the seeded motifs 

Family ::;1ze ::;eq Length( bps) Motif Po P1 P2 PB 
1 10 800 CGCAA 0.0 0.8 0.2 1.0 

· 2 10 800 l...ivT'l"l 0.0 0.8 0.2 1.0 
3 38 800 CGCAA o.o 0.8 0.2 1.0 
4 38 800 CAGACA 0.0 0.8 0.2 1.0 
5 38 800 CAGTC 0.0 0.8 0.2 0.9 
6 38 800 CAGACA 0.0 0.8 0.2 0.9 
7 38 800 CAGTCA 0.2 0.6 0.2 0.9 
8 38 800 G1uTG'1·1 0.2 0.6 0.2 0.9 
9 38 · 800 vl...ivAATl 0.2 0.6 0.2 0.9 
10 38 800 CA<.,;GATA 0.2 0.6 0.2 0.9 
11 40 500 l...il...il...i'l 0.0 1.0 0.0 1.0 
12 40 500 WCKGMCWG 0.0 1.0 0.0 1.0 
13 40 500 VVl...iT::SACTG 0.0 1.0 0.0 0.9 
14 40 500 Wi..;r::;A<.,;Tv 0.0 1.0 0.0 0.8 

Table 5: Results of 14 artificial families 

Family vvNSEN::;us Gibbs Mt;Mt; DM::; 
1 ,. ,. 
2 • * 
3 "' 
4 ,. 

~ 
,. 

5 "' 
6 * "' 
7 "' 
8 "' 
9 * 
10 "' 
11 • 
12 "' "' * 
13 ,. "' • 
14 

,. 
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alternative algorithms. We believe that the DMS algo­
rithm is superior at finding short motifs and that con­
clusion was supported by artificial experiments with 
seeded, variable, short motifs. 

This research is part of a larger system that be­
gins with collecting genes expression patterns using 
an Affymetrix gene-chip machine. Genes are then 
grouped into families with similar expression patterns 
via a new clustering algorithm. This affords us an au­
tomatic way to acquire families of similarly regulated 
genes. When DMS is run on these clusters, it has re­
discovered know regulatory motifs and suggested ad­
dit ional motifs. 
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