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Abstract

Three principles governing the operation of the lexical
pathway in s model of reading single words aloud were
applied to the question of learning, as measured by times
to initiate correct pronunciations. I. At the lexical level, a
target word activates a neighborhood of orthographically
similar entries in the lexicon. I1. At the phoneme level,
the correct phonemes in the phonemic spelling of the word
compete with the other active phonemes. IIl. At the
naming level, the pronunciation is composed of a
conjunction of phonemes. These principles were tested
using the data from a 4-year-old beginning reader (LT),
resulting in a goodness-of-fit R? = 44. When a rule
pathway using grapheme-phoneme correspondences was
added to the lexical pathway, the goodness-of-fit was
comparable (R2 = .46). When single entries were accessed
along the lexical pathway, instead of word neighborhoods,
and grapheme-phoneme correspondences were accessed
along the rule pathway, as in standard dual-route models,
the goodness-of-fit RZ fell to .27. Although the model-
fitting supported the importance of neighborhood
activation and failed to support the importance of rules,
grapheme-phoneme correspondences were overtly used by
IT in the initial wials with words and when feedback
indicated an errorful pronunciation. Thus, rule application
may be relatively slow in normal fluent word naming, but
may still play a strategic role in attempis to initially
decode letter strings or lo correct errors.

Two related questions are central to an understanding of
reading single words aloud. One concerns what gets activated
in a mental lexicon, which is a person’s store of knowledge
ibout words. Another is whether a lexical pathway is
sufficient for the task. Dual-route theorists (e.g. Baron &
Strawson, 1976; Coltheart, 1978; Forster & Chambers,
1973) proposed that a person can “look up” the
yronunciation of a familiar word along a lexical route.
However, because most people have no difficulty reading
»seudowords, like gok, for which they have no lexical entry,
t seemed that individuals also had a store of rules available,
vhich they accessed and applied along a rule route. These
‘ules relate graphemes (the letter or letters that spell
>honemes) to phonemes (the simplest units of spoken
sound). The suggestion that rule knowledge is part of the
nechanism for pronunciation is plausible, particularly for
seginning readers. Children are often taught spelling-sound
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correspondences in reading programs and children and adults
use this knowledge readily (Coltheart & Leahy, 1992;
Siegler, 1988). An awareness of phonemes and an
understanding that letters map into sound are also strong
predictors of reading development (see Rayner & Pollatsek,
1989, for a summary).

Others have disputed the need for a rule route, arguing
that a lexical route is sufficient. On this account, a target
word does not simply access a single entry in the lexicon, as
in standard dual-route models. Rather, the target word
activates “neighborhoods™ of words in the lexicon, based on
their orthographic overlap (shared letters) with the input; the
activated entries are then synthesized into a pronunciation
(e.g. Glushko, 1979; McClelland & Rumelhart, 1981;
Seidenberg, Waters, Bamnes, & Tanenhaus, 1984; Taraban &
McClelland, 1987). Single-route lexical models have been
successful in explaining many of the empirical results that
dual-route models can explain, like the difficulty in
pronouncing exception words (words that do not follow the
typical spelling-sound correspondences in English, like
have ) compared to regular words (words that do conform to
the typical correspondences, like fish ), as well as results
that dual-route models cannot easily explain, like the
difficulty in pronouncing regular words with exception
neighbors (so-called regular-inconsistent words, like gave).

The two questions posed at the outset were addressed
using mathematical analyses of pronunciation latencies that
were collected while teaching a 4-year-old to read her first set
of words. Three models, depicted in Figure 1, were tested: a
lexical model in which a target word activated a word
neighborhood in the lexicon; the standard dual-route model ,
in which the target word was the only word accessed on the
lexical route and in which grapheme-phoneme
correspondence rules were accessed on a rule route; and a
maodified lexical model, which added the rule route from the
standard dual-route model to the lexical model. The lexical
model was motivated by findings with adult subjects
reported in Taraban and McClelland (1987). Although
Taraban and McClelland rejected the idea that a rule route
was necessary, as stipulated by dual-route models, it was not
clear that this was the case throughout development,
particularly during early reading instruction. The 4-year-old
subject in this experiment knew the grapheme-phoneme
correspondences for regular consonant sounds prior to
learning any words. Thus, in this case, there were strong
reasons 10 hypothesize that further rule leaming would occur



along with new lexical learning, which could be neighbor
leaming (the modified lexical model) or single whole word
leamning (the standard dual-route model). The lexical model
is described in detail next. The equations for testing all the
models are provided in the Appendix.

The Lexical Model

Before describing the experiment, it may be useful to focus
on the cognitive components of the lexical model depicted in
Figure 1 and described mathematically in Figure 2. First,
consider the equation for the activation of exemplars (i.e.
entries) at the lexical level. Given a target word L, the
activation of each exemplar (a, ) in the lexicon is a

multiplicative function of its match to the input. Given
weight strengths between letter detectors and exemplars in
the range .5 < w < 1.0, with .5 representing a neutral
value, a letter match in position i contributes w; to the

activation of the exemplar, and a letter mismatch contributes
I- Wi (See Taraban & Palacios, 1993, for details of this

activation function). Activation of the i th phoneme ( p; )

in word L is represented at the phoneme level as the
sum of the activations of all exemplars whose
pronunciations match the correct phoneme in the i th
position, divided by the sum of the activations of all the
exemplars (cf. Luce, 1959; McClelland, 1991; McClelland
& Rumelhart, 1981; Medin & Schaffer, 1978; Taraban &
Palacios, 1993).' The composition of the pronunication at
the naming level is conjunctive, that is, it consists of

nout Letter Actvation of Proneme Composition of
(prnt) *dlmttors-"uw neighbors -'mmm--prwm'm
nput Letter & of Comp of
(prwt) detectors™ target word ’ pronuncetion
Actrvation of
= - graph ph
cofmespondences
nput Letter Actvabon of Phoneme Composition of
(pont) TP setectors™ ™ word neighbors = -
Activaton of 1
i grapheme-ph
Commespondences

Figure 1. A depiction of (A) the lexical model, (B) the
standard dual-route model, and (C) the modified lexical
model.

' The specific set in the denominator of the expression is
an artifact of our learning set (described later). That is, every
exemplar has an i th letter, thus the full set of alternatives is
represented by the activations of all the exemplars (the set E); if
this were not the case, then the denominator would be a subset
of the activations of all the exemplars.
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p; AND p; AND p; (for three phonemes) which is

implemented through the multiplicative function. Later, we
verify that the appropriate operator is AND, not OR, or
some intermediate operatoc

Naming
Level

m=npa

(where n is the activation of the name for word L, and
k is the number of phonemes in the phonemic spelling)

lovel T X
— ek
Y a

eeE

i=12, ..k

P

(where pr is the activation of the correct phoneme in
position i, Ei is the set of exemplars whose pronuncia-
tion matches the correct phoneme in the i-th position,
k is the number of phonemes in the phonemic spelling)

Lexical
Level

We.i= .

{1 - wi, otherwise
(where ae is the activation of exemplar e, E is the set
of exemplars, word L = I1, 12, I3, and n is the number
of letters in word L)

e e E

&= Hfﬂt.i

wi, if li matches the i - th letter of e;

Figure 2. The computation of pronunciations in the lexical
model.
The Experiment

The subject (LT) was the 4-year 5-month old daughter of the
experimenters. At the beginning of the expeirment, LT could
visually identify the letters of the alphabet and the typical
sound that each consonant made. The rules relating letters to
sounds constituted a major part of what LT knew about
reading. The learning set consisted of 36 three-letter words®
that were presented on a computer screen and that were read

* The words were: bag, bib, bud, bug, bun, but, den, did,
dig, dim, dip, gag, god, got, gum, leg, lip, lot, mad, man, map,
mat, men, mug, nag, nap, not, pad, pen, pig, pot, tag, tap, len,
top, tub. These words were chosen for a priming manipulation
that is not discussed here. LT was familiar with the meaning of
the wards.



aloud for speed and accuracy. A single-subject design was
appropriate because it allowed for precise control over the
frequency of presentation of specific words and for a test of
the various models when all the lexical entries in visual
memory were known.

The data were collected over 54 meetings. The newness
of the task and the age of the subject did not allow the
immediate collection of pronunciation latencies using a
computer. Rather, for the first 12 meetings, words were
presented on index cards, printed in one-inch capital letters.
Error data were collected but latencies were not. Throughout
the experiment, LT was given explicit feedback after each
trial about the accuracy of her response. During the first few
meetings, LT would sometimes ask about the sound
associated with a letter in a word, and was told what the
sound was. Within six meetings, she always generated a
pronunciation before receiving any feedback, which from
that point forward was simply “Right” or “Wrong, try
again” (unless the error was reading the word backwards, in
which case she was told explicitly that this was the error).
Whenever an error was made, LT usually got the
pronunciation right on the second attempt. Beginning with
the seventh meeting, LT was encouraged not to vocalize
before naming the word (This was done to prepare her for the
shift to the timed computer paradigm). At the computer,
trials were initiated by LT by pressing a swiltch interfaced
with the computer after a fixation mark appeared on the
screen. The switch closure started a timer accurate to 1
millisecond. LT pronounced the word into a microphone that
was also interfaced with the computer, which stopped the
timer. If LT named the word incorrectly, the experimenter
verbally indicated that the pronunciation was incorrect and
LT wried again. There was a computer-controlled delay of 5
seconds after the correct pronunciation during which the
word remained on the screen. The screen was then replaced
with a fixation mark.

In order to avoid empty cells for any of the items in the
statistical analyses, the reading times and error probabilities
for sets of six consecutive meetings were pooled item-by-
item and the means for each item were computed. These 252
means (36 items X 7 pooled meetings) were also used for
model fitting. An analysis of variance using pooled meeting
as the factor for the seven pooled meetings at the computer
showed a significant effect in the analysis of error
probabilities (F (6, 210) = 4.46, p < .001) and in the
analysis of times 1o initiate correct pronunciations (F (6,
210) = 39.13, p < .001). The mean times in milliseconds
and the error probabilities (including the off-line sessions
prel and pre2) are summarized in Figure 3. These results
show a consistent decrease in times o initiate pronunciation
and a reduction in errors, with practice. The most interesting
anecdotal data from this experiment involved LT’s attempts
in the earliest trials to first identify the sound of each letter
in the word and then to repeat the combination of sounds
quickly over and over until she recognized a word. In a
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related fashion, if she made an error at the computer, she
would sometimes appear 10 guess but would usually analyze
the sounds, letter by letter, before trying another
pronunciation. These observations suggested a strong role
for the rule pathway. The fits of the data to alternative
models, presented next, provided a test of this possibility.
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Figure 3. (A) Mean error probabilites; (B) Mean times (ms)
to initiate correct pronunciations.

The Analyses

The purpose of the analyses was 1o assess the roles of the
lexicon and rules in learning pronunciations. The data were
the imes to initiate correct pronunciations.” For each of the
threec models that was fit, learning was interpreted as a
change in associative strengths of lexical and rule
knowledge. These weight changes were expressed as the
natural log of the pooled meeting, as shown in Eq 1. At
pooled meeting m,

m=1,2,..7 1)

Wim=S*5 In(m),

* Only correct pronunciations were modeled because it was
not clear how to relate times for errors to the learning expressed
in Eq 1 and to the models in the Appendix. More detailed
process models could model all the latencies. Error
probabilities could have been modeled but we chose not 1a
because for any given trial “correct” (1) and “incorrect” (0) are
crude measures of performance.



where ¢; is a constant, r; is a leaming rate parameter, and

w; represents the associative strength of a letter o an

exemplar (lexical models), a whole word to a lexical entry
(standard dual-route model), or a letter to a phoneme
(standard dual-route model).

First, consider leamning in the lexical model. For a
particular target word, like por, the lexical representation for
pot would have a relatively high activation level, and close
neighbors (that share two letters) like got and /ot would be
relatively more active than distant neighbors, like bur and
pad, or non-neighbors, like dim. This is because close
neighbors match the target in more letter positions than
distant neighbors (See Figure 2). In the lexical model, the
associative strengths of these word neighborhoods changed
with practice. In the standard dual-route model, in contrast,
a single lexical entry was strengthened for any particular
target, as well as the grapheme-phoneme correspondence
rules for the letters in the target (see the Appendix for
details). The modified lexical model combined the
neighborhood learning of the lexical model and the rule
learning of the standard dual-route model.*

In order to test the conjunctive nature of pronunciation
at the naming level in the lexical model, we additionally
tested a version that incorporated a tuneable negation
operator (Neg) (Oden, 1992). The negation operator is based
on De Morgan’s Law:

A ANDB=NOT(NOTAORNOTB) (2)

In the range of vj values tested, which was -1.0 0 1.0, the

tuneable operator acts like an OR (at -1.0) or AND (at 1.0)
at the boundary values and like a fuzzy operator in between
(see Oden, 1992, for details). The operator was implemented
using Eq 3 for the p; values from Figure 2, with negation
beginning with p; and applying from left to right, requiring

six v j parameter estimates.

Neg®p) =p;¥) 7 (;¥ + (1-p) ") 3)

In order to assess how well the models accounted for the
data, a goodness-of-fit R? was calculated for each of the

models, as R? =1 - Residual SS | Corrected SS, which
indicates how much better the model fit the data compared to
simply using the mean. The standard dual-route model (R2 =
.27) did considerably worse than the lexical model (R2 =

.44), supporting the validity of neighborhood activation and
learning, as well as the remaining components in Figure 2.

* This model is similar to a version of a dual-route model
suggested in Coltheart, Curtis, Atkins, and Haller (1993), which
incorporates a lexical pathway that accesses neighborhoods of
words, not just the target word.
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The tuneable negation operator improved the fit only

marginally (R2 = .45), which supported the use of
conjunctive combination at the naming level rather than an
operation between logical AND and OR. Finally, the fit of

the modified lexical model (R? = .46) was comparable o the
fit of the lexical model.

Two findings argued against the importance of rules: the
poor fit of the dual-route model compared to the lexical
model and the comparable fit of the modified lexical model
compared to the lexical model. If rules were of any
consequence, there should have been more of a discrepancy
in the fits for the lexical and modified lexical models.

A comparison of the lexical model with neighborhood
activation to the dual-route model without neigborhood
activation argues for the importance of neighbors. If LT were

simply learning about the target word, then the R? for the
standard dual-route model should have been comparable to,

or perhaps even better than, the R? for the lexical model.
The mathematical expression for the dual-route model (See
the Appendix) presumed single whole word learning by
assigning a single weight to the lexical pathway, on the
assumption that on a given trial only one lexical
representation was strengthened and that from meeting to
meeting each lexical representation was strengthened by
roughly the same amount. A related question is whether the
lexical model simply fit a global leaming curve better than
the dual-route model. If this were the case, then the actual
times would be randomly distributed among the slower and
the faster times that the lexical model predicted. To examine
this possibility, the predicted times to initiate
pronunciations were divided into slower and faster times, for
each pooled meeting, according to a median split. An
examination of Table 1 shows that the model consistently
predicted the actual slower and the faster times. This is
important, because it indicates that the times themselves are
based on more than a strengthening of unrelated lexical
items, as would be the case if the lexical model simply fit a
global learning curve.

Table 1. Predicted (Pred) and actual means (LT), in
milliseconds, for slower and faster pronunciations, based on
a median split of predicted tmes to initiate pronunciation.

Slower Words Faster Words

Pooled Pred LT Pred LT
Meeting

1 5472 5578 4411 4767
2 4661 4350 3478 3472
3 4144 3872 2917 2917
4 3783 3311 2517 2450
5 3489 3250 2178 2267
6 3250 2833 1917 2011
7 3039 3294 1683 2389



Overall, the analyses provided support for the three
principles embodied in the levels in Figure 2. 1. At the
lexical level, a target word activates a “neighborhood” of
orthographically similar entries in the lexicon. II. At the
phoneme level, the correct phonemes in the phonemic
spelling of the word compete with the other active
phonemes. III. At the naming level, the pronunciation is
composed of a conjunction of phonemes. These three
principles help to explain essential aspects of the learning
that took place. In order to provide a sense of the overall
goodness-of-fit for the reading times, the predicled times
from the lexical model are plotted against the actual times in
Figure 4 for the 252 fitted data points.
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Figure 4. Times predicted by the lexical model versus actual
times to initiate pronunciations. The actual times were

multiplied by 10% prior to model fitting.
Discussion

LT's knowledge of letter-sound rules at the outset of the
experiment and the anecdotal data from the experiment
suggested that there might be an important role for rules in
the cognitive mechanism that she relied on for reading single
words aloud. LT overtly used letter-sound rules in the initial
trials and when she made an error. However, the fits of the
models to the reading time data for correct pronunciations
indicated that letter-sound rules were not important. How can
we resolve this apparent paradox?

It would be incorrect to conclude from the success of the
lexical model in fitting LT’s data that the prerequisite skills
commonly associated with starting to read were
unimportant, particularly some specific knowledge of how
letters map into sound. This knowledge allows a child to
confront the task of decoding letter strings into speech with
some hope of success. We question the suggestion, however,
that rules play a central role in generating pronunciations
for words after a person gains some fluency in reading.
From this it would follow that rules are not strengthened as
part of the weight strengthening (error correction) process in
fluent reading but lexical neighborhoods are. Rudimentary
spelling-sound mappings could still provide the means of
bootstrapping the creation of lexical representations that are
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strengthened through practice.

Our observations suggested that LT’s knowledge of
letter-sound correspondences supported an overt back-up
strategy for correcting errorful pronunciations. Her reliance
on these rules was not surprising, as these correspondences
constituted part of what she had learned about writien codes
prior to the experiment. On this interpretation, rules can be
used strategically when novel letter strings are confronted or
when the person is aware of an error in pronunciation. A
promising way of thinking about this restricted use is in
terms of a backup strategy that can be applied independently
when retricval along the lexical pathway either fails or is
intuited as likely to fail. The strategy choice paradigm in
Siegler (1988) should be helpful in further exploring this
possibility.

Appendix

The cquations for the specific models (Eqgs 4, S, 6) were
dcveloped by reasoning as follows. A particular cognitive
component, like the lexical route in Figure 1, modulated
times to initiate pronunciation. Because the equation for any
particular component quantificd the fit of the component’s
output to the correct pronunciation, the contributions of the
(scaled) cognitive components were subtracted from a
baseline value (the By or B, ). Basically, the better the fit,
the faster the response time. In all cases, learning was
quantified as a change in associative strengths (w), as

specified in Eq 1.
Equation 4 was used to fit reading times to the lexical

model:
RT| = []0 -Bp np @)

where RT|_ is the predicted time to initiate pronunciation for
word L, BO is a baseline parameter, BD is the scaling
parameter for the word name activations, and ny  is defined

in Figure 2. The second model tested was the standard dual-
route modcl, in which one component consisted of changes
to the associative strengths of whole words and another
componcnt consisted of changes in the associative strengths
of graphcme-phoneme correspondence rules. In Eq S, the
first additive factor represents the lexical lookup route.
Because LT saw all the words with equal frequency, the
strengthening of all the lexical representations was assumed
to be roughly the same, as reflected in the wp, parameter; the

second factor represents the rule route:

RTL =By -Bp wp) + By -Br iy x fLiw) ©)

where fL i is the frequency of the grapheme-phoneme rule

for the correct phoneme in the i-th position in the phonemic
spelling of word L (see Coltheart et al., 1993), k is the
number of phonemes in the phonemic spelling, and w; is



the associative strength of rules in phoneme position i.
Values for fL j are constants that were computed directly

from an examination of the leaming set. The third model
combined the lexical model and the rule component from the
standard dual-route model:

RTL =Py~ Mizy k GpPri+ Br fLiw)

where py ; is the i-th phoneme in the phonemic spelling of

word L, and represents the lexical route, as defined in Figure
2,and f; ; w; represents the rule route as defined in Eq 5.

©)

The best-fitting parameters for the three models were
found using an iterative search algorithm. The algorithm is
available in the non-linear regression procedures in SPSS
4,0; also see Gill, Murray, Saunders, & Wright, 1984,
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