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An Exploration of the Exact Distribution and Probabilities 
for Sample Means  

 

1. INTRODUCTION 

 

One of the authors regularly teaches an upper division undergraduate two semester sequence in 
probability and statistics theory using the textbook Probability and Statistical Inference written by Hogg 
and Tanis (2010). The students are secondary mathematics majors and applied statistics undergraduate 
majors.  When introducing the Central Limit Theorem (CLT) concept, the textbook uses the distribution 
of the sum of  independent uniform random variables for samples sizes n=2 and n=4.  These sampling 
distributions can be approximated using the normal distribution.  Several graphs are displayed in an 
attempt  to  show  the  ‘closeness’  of  the exact distributions to their normal-based approximations.  It is 
explained that finding exact distributions can be very tedious (p. 258), hence the relatively simple-to-
compute normal-based approximations.  

After providing information on the CLT, probability and statistics textbooks commonly ask students to 
approximate answers to probability questions involving the sum or mean of independent samples drawn 
from  probability  density  functions  (pdf’s).  The approximations are based on parameter estimates, 
transformations, and probability tables.  

The process generally stops here, depriving students of an additional learning opportunity.  Students can 
still  benefit  from  the  process  of  evaluating  integrals  of  exact  pdf’s  to  calculate  probabilities.    They  can  
then determine the accuracy of the normal approximations.  As normal-based methods are commonly 
used in statistical inference, students would greatly benefit from a better understanding of the limitations 
of the normal-based approximations.   

The purpose of this article is to demonstrate how the inverse LaPlace transformation (ILT) can be used in 
Mathematica or similar computer algebra systems to calculate exact sampling distributions for means as 
well as the errors associated with using the analogous normal approximations.  

It should be noted that students who take calculus at the University of Northern Colorado have lab 
assignments that use Mathematica commands.  The students are given the commands and are asked to 
analyze the output.  Similarly, students in the probability and statistics sequence are given the commands 
and asked to analyze the output of the approximation methods described in this article.  

 This methodology can be expanded to include exact sampling distributions of sums.  Because these 
methods are demonstrated using computer software, they are less tedious and less prone to error than 
manual computations and allow extensive calculations that are often not manually tractable.  This 
methodology can benefit classes of advanced  undergraduate  or  master’s  level mathematical statistics 
courses at the level of Hogg, McKean, and Craig (2005) or Bain and Engelhardt (2000). 
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2. INVERSE LAPLACE TRANSFORM METHODOLOGY 

 

Computing exact sampling distributions is largely absent from modern textbooks because of the 
complexity and tedium of doing so, as well as the widely-accepted use of normal approximations.  
Computer algebra systems (CAS) like Mathematica can be used to automate the hand calculations to 
relieve some of the tedium. 

The following three definitions will be used throughout the paper: 

Definition 1. Moment Generating Function (MGF), MX(t), for a continuous random variable X  with 

pdf f(x) with support space, S, is given by MX(t) = ∫ 𝑒௧௫𝑓(𝑥)𝑑𝑥ௌ  provided the integral exists for some 
interval  -h < t < h where h > 0.  

Definition 2. The LaPlace transform for a function F(t) is defined to be L{F(t)} =  ∫ 𝑒ିఏ௧𝐹(𝑡)𝑑𝑡ஶ
଴ = 

L(θ)  provided  the  integral  exists. 

Definition 3. The inverse LaPlace transform (ILT) for a function L(θ) , sometimes called the 

Bromwich integral, is given by the line integral ℎ(𝑥) = ଵ
ଶగ௜

lim௫→ஶ ∫ 𝑒௫ఏఈା௜௫
ఈି௜௫ 𝐿(𝜃)𝑑𝜃.  The following are 

sufficient conditions for the existence of the ILT:  h(x) is piecewise continuous and an exponentially-
restricted function such that L(h(t)) = L(θ). 

Rooney (1955) presents the mathematical background for the ILT process when working with real-valued 
functions.    Existence  conditions  and  properties  of  the  inversion  operator  are  given.    Many  common  pdf’s  
satisfy the existence conditions if (1) the MGF can be found and (2) the inversion process returns the 
initial pdf. 

To use the ILT process in Mathematica to determine an exact sampling distribution of the mean of a 
random sample of size n taken from the given pdf f(x), the steps below can be used. (For  the  reader’s  
convenience, Mathematica code is in bold typeface.) 

1. Assign the pdf to a function, say f[x_] with support space S=(a,b).   

2. Compute the MGF and assign it to M[t_]. 

M[t_]:=Integrate[Exp[x t] f[x],{x,a,b}] 

The M[t] command can be used to view the MGF. 

3. To compute the ILT,  t is replaced with –s/n in the function M[t_], thus converting the MGF into a 
Laplace transform.  Taking this function to the power of n before invoking the ILT routine results in 
the exact distribution of the mean of a random sample of size n.   

ILT=InverseLaplaceTransform[M[-s/n]^n,s,x]  
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The MGF is taken to the nth power consistent with finding the MGF for the mean of a sample of 
independent observations of size n.  

4. Because the distribution of the mean is a piecewise function, the ILT will have to be parsed 
accordingly.  The following two lines of code operate on the ILT and parse out each polynomial piece 
for each domain segment of length 1/n using the HeavisideTheta function. The HeavisideTheta 
function in  Mathematica  is  an  indicator  function  for  pdf’s  that  have  piecewise  intervals.    This  allows  
the piecewise function to define the pdf for all interval domain segments in the output. 

ILT /. HeavisideTheta[e_] :> Piecewise[{{1,e > 0}}] 

PiecewiseExpand[%] 

The resulting output contains the exact sampling distribution, parsed over domain segments. 

5. Construct a functional definition for each of the n polynomial pieces that appear in the output.   

gm0[x_], gm1[x_],  …,  gm(n-1)[x_]  

For notation purposes, the exact distribution of the mean may be defined as the following: 

𝑔𝑚[𝑥] = ൜𝑔𝑚𝑖[𝑥], 𝑖/𝑛 < 𝑥 ≤ (𝑖 + 1)/𝑛, 𝑖 = 0, 1, 2. . , 𝑛 − 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Appendix A.1 contains the equivalent code in the CAS, Maple for the ILT process described above. 

Example: Consider the pdf f(x) = 3xଶ, 0 < x < 1, 0  elsewhere.  The parameters are 𝜇 = 0.75, 𝜎ଶ =
0.0375, and  skewness  𝛾ଵ~  − 0.86066. 

Consider the case where n=3 and the pdf of the mean of the random sample is to be found.  The following 
list gives the steps in sequence to find that pdf: 

1. Assign the pdf, 3𝑥ଶ to f[x_]. 

f[x_]:=3 x^2 

2. Compute the MGF and assign it to M[t_]. 

M[t_]:=Integrate[Exp[x t] f[x],{x,0,1}] 

Using the command M[t] the following output results. 

3൫−2 + 𝑒௧(2 − 2𝑡 + 𝑡ଶ)൯
𝑡ଷ

 

3. Invoke the ILT routine using the third power of the MGF 

ILT3=InverseLaplaceTransform[M[-s/3]^3,s,x] 

4. The following two lines of code operate on ILT3 and parse out each polynomial piece.  
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ILT3 /. HeavisideTheta[e_] :> Piecewise[{{1,e > 0}}] 

PiecewiseExpand[%] 

The output is shown below as 8th degree polynomials defined over specific regions. 

 

5. Construct a functional definition for each of the n polynomial pieces that appear in the output.   

gm30[x_]:=(59049/560) x^8 

gm31[x_]:=(-81/560) (7 -120 x +840 x^2 -3024x^3 +5670 x^4 -4536 x^5 +1458 x^8) 

gm32[x_]:=(729/560) (49 -200 x +280 x^2 -336 x^3 +630 x^4 -504 x^5 +81 x^8) 

Once the functional definitions have been assigned, they can be used for finding mean, variance, 
probabilities, etc. 

There are several validation checks of the ILT process that can be examined to demonstrate the accuracy 
of that process.  Two such processes have been included in Appendices A.2 and A.3. 

The exact distribution for the sample sum can be obtained directly by using the ILT process described 
above where t is replaced by –s rather than –s/n (see Appendix A.4 for more information). 

The following graph, Figure 1, shows the exact distributions for the mean compared with the original pdf 
for three values of n: 3, 5, and 10.  This, and all other plots in this article, was created using a series of 
basic PLOT commands in Mathematica.  The pdfs were assigned to functions and integrated over the 
desired range to yield the probabilities.  As can be seen in the graph, the curve associated with the largest 
sample size (n=10) is more symmetric and thereby more closely resembles a bell shape than the curve 
associated with the smallest sample size (n=3) as one might expect according to the CLT. 

 

59049𝑥଼

560
 𝑥 ≤

1
3

 

−
81
560

(7 − 120𝑥 + 840𝑥ଶ − 3024𝑥ଷ + 5670𝑥ସ − 4536𝑥ହ + 1458𝑥଼) 
1
3
< 𝑥 ≤

2
3

 

729
560

(49 − 200𝑥 + 280𝑥ଶ − 336𝑥ଷ + 630𝑥ସ − 504𝑥ହ + 81𝑥଼) 
2
3
< 𝑥 ≤ 1 

0 True 
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Figure 1: Sampling distribution of the mean, for samples of size n= 3, 5, 10 (in increasing order of 
thickness).   The 3𝑥ଶ pdf is dashed. 

 

3. AN ACADEMIC EXERCISE 

 

Given the capability of obtaining the exact distributions of the mean of random samples from the given 
pdf, consider the following academic question adapted from the CLT section of Hogg, McKean, and 
Craig (2005). 

Compute an approximate probability that the mean of a random sample of size n=5 from a distribution 
having pdf  f(x)=3x2, 0<x<1, 0 elsewhere, is between 3/5 and 4/5. 

The above question could be expanded as follows: 

(1) Using the normal distribution (CLT), approximate the probability 𝑃[3/5 < 𝑋ത < 4/5]. 

(2) Determine the exact sampling distribution for the sample mean and calculate the exact probability 
𝑃[3/5 < 𝑋ത < 4/5]. 

(3) Using the results of parts (1) and (2), compare the two probabilities. 

The additional parts (1), (2), and (3) above could further be expanded to include additional sample sizes.  
Figure 2 below graphically depicts the academic question. 
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Figure 2: Sampling distribution of the mean for samples of size n=5 (gm5 bold), with the corresponding 
normal (nm5 dashed).  The academic exercise limits of integration are identified. 

 

The portion of the 14th degree polynomial for this distribution that is defined over the interval 3/5 < 𝑋ത <
4/5 includes gm53[x] and is coded as 

gm53[x]:=(1/448448)(-482306682 + 5137065780 x - 23219070875 x^2 + 60276352500 x^3  

- 110607997500 x^4 + 177101925000 x^5 - 247325203125 x^6 + 237290625000 x^7  

- 129035156250 x^8 + 70382812500 x^9 - 87978515625 x^10 + 53320312500 x^11  

- 4882812500 x^14) 

The other portions of the distribution, gm50[x], gm51[x], gm52[x], and gm54[x], are omitted as they are 
not needed for calculations within the interval 3/5 < 𝑋ത < 4/5.  Had the desired interval for calculations 
covered multiple portions of the distribution, those additional portions would need to be included in the 
calculations.  See the calculation of the area in Appendix A.3 for an example of a calculation that covers 
multiple portions of the sampling distribution. 

For part (1) of the academic exercise, assume the approximating normal has been defined as follows: 

𝜇 = 𝑚 = 3 4⁄  

𝜎ଶ

𝑛
= 𝑣 = (3 80⁄ )/5 

m:=3/4 

v:=(3/80)/5 

nm5[x_]:=(1/Sqrt[2 Pi v]) Exp[-0.5 (x-m)^2/v] 
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The normal-based approximation is found by the following code: 

approx_answer=NIntegrate[nm5[x],{x,3/5,4/5}] 

The answer is 0.67652. 

For part (2) of the academic exercise, use the gm53[x] portion of the sampling distribution of the mean, to 
compute the exact probability with the following code: 

 exact_answer=NIntegrate[gm53[x],{x,3/5,4/5}] 

The answer is 0.64592. 

To answer part (3) of the academic exercise, compare the two probabilities found above.  

Let the normal approximation error (NAE) be defined as the normal approximation minus the exact 
answer found by the ILT process.  For the distribution of the mean, the error for 𝑃[𝑎 < 𝑋ത < 𝑏], 0 < 𝑎 <
𝑏 < 1 is found by 𝑁𝐴𝐸 = ∫ ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡௕

௔ .  Note that ∫ ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡ஶ
ିஶ = 0. 

For the 3𝑥ଶ pdf, the NAE for n=5 is computed as follows: 

𝑁𝐴𝐸ହ = ∫ ൫𝑛𝑚5(𝑡) − 𝑔𝑚5(𝑡)൯𝑑𝑡ସ/ହ
ଷ/ହ = 0.67652 − 0.64592 = 0.03060   

which accounts for the difference between the exact and approximate probabilities.  That concludes the 
answers to parts (1), (2), and (3) of the academic exercise for n=5. 

Next, consider the NAE’s  for  the  𝑃[3/5 < 𝑋ത < 4/5] academic question calculated for samples of size 
10, 15, 20, 25 and 30.   

Table 1: Exact and normal approximation for 𝑃[3/5 < 𝑋ത < 4/5] and  NAE’s  by  sample  size. 

 n=5 n=10 n=15 n=20 n=25 n=30 
Normal 
approximation 0.67652 0.78574 0.84000 0.87563 0.90159 0.92134 

Exact probability 0.64592 0.77499 0.83770 0.87709 0.90479 0.92531 
Normal 
approximation 
error (NAE) 

0.03060 0.01075 0.00230 -.00146 -.00320 -.00397 

 

Notice that for larger sample sizes, the  NAE’s  become small quickly. The limit of the magnitude of the 
NAE’s  goes  to  zero,  as  required  by  the  Central  Limit  Theorem.    However,  the  magnitude  of  the  NAE’s,  as  
sample sizes increase, may not go to zero monotonically, as is the case in line three of Table 1 above.  

It is important to note that when using various CAS systems to perform integrations of the pdf for the 
sample mean, there can be convergence problems with the integral calculations due to the small interval 
domains of length 1/n.  Such convergence problems can be avoided by performing the desired 
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calculations using the pdf of the sample sum, which always has unit interval domains, and then 
converting the resulting distribution function using the sample size.  Appendix A.4 provides an example 
of computer coding for computing the distribution of the sample sum as well as demonstrating how to 
convert that distribution into the distribution of the sample mean, avoiding the potential convergence 
problems described above. 

Given the results in Table 1, a natural extension of this exercise is to consider the maximum error 
incurred by using the Central Limit Theorem when calculating approximations for probabilities for the 
sample mean.  

  

4. MAXIMUM ABSOLUTE NORMAL APPROXIMATION ERRORS 

 

To examine the closeness of the normal approximation for probability statements for the sample mean, 
consider the difference between the normal approximation and the actual probability for the exact 
distribution of the sample mean.  This process involves the following three steps: 

1. For the given pdf and a sample size n, the cumulative error (CE) is defined for the sampling 
distributions of the mean as 𝐶𝐸(𝑥) = ∫ ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡, −∞ < 𝑥 < ∞௫

ିஶ . 

The approximating normal is defined over the interval −∞ < 𝑥 < ∞ and the pdf is defined over the 
interval 0 < 𝑥 < 1.  Consequently, the CE function is defined over the interval −∞ < 𝑥 < ∞ and is 
applied over the appropriate domain region.  Also note that lim௫→ஶ 𝐶𝐸(𝑥) = 0. 

The ILT process results in points of intersection between the gm5 and nm5 functions at the 
approximate domain values x=0.07, 0.605, 0.764, and 0.904 as shown in Figures 3.  These domain 
values will be used in subsequent calculations involving the CE function. 
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Figure 3: Sampling distribution of the mean (gm5 bold) intersections with normal (nm5 dashed).  
Domain values are approximate. 

 

Consider the following CE graph constructed by calculating CE values across domain values in .005 
increments with smaller increments in the vicinity of relative extrema.  To produce the CE function, a 
list of {x,CE(x)} is created and graphed with ListLinePlot for sample sizes n=5, 15, and 30.  The CE 
relative extrema occur at the domain values where intersections occur (as shown in Figure 3). 

 

 

Figure 4: Cumulative error functions, n=5 (bold), 15, 30, with absolute extrema identified. 

 
2. Next, consider the interval probability statement (𝑃[𝑎 < 𝑋ത < 𝑏], 0 < 𝑎 < 𝑏 < 1) encountered when 

working with the sample mean similar to the probability statement in the academic exercise in Section 
3.    Using the CE definition, a method for calculating the NAE for interval probabilities  is 
developed.  The NAE for sample size n is as follows: 

𝑁𝐴𝐸௡ = න ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡
௕

௔
 

= 0 +න ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡
௕

௔
 

= න 𝑛𝑚(𝑡)𝑑𝑡
଴

ିஶ
− න 𝑛𝑚(𝑡)𝑑𝑡

଴

ିஶ
+ න ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡

௕

଴
− න ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡

௔

଴
 

= න 𝑛𝑚(𝑡)𝑑𝑡
଴

ିஶ
+ න ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡

௕

଴
− න 𝑛𝑚(𝑡)𝑑𝑡

଴

ିஶ
− න ൫𝑛𝑚(𝑡) − 𝑔𝑚(𝑡)൯𝑑𝑡

௔

଴
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= 𝐶𝐸(𝑏) − 𝐶𝐸(𝑎). 

Thus, for any sample size 𝑁𝐴𝐸{𝑃[𝑎 < 𝑋ത < 𝑏]} = 𝐶𝐸(𝑏) − 𝐶𝐸(𝑎).  

3. It is possible to determine the worst possible case for accuracy when using the CLT and the normal 
distribution to approximate probabilities involving the sample mean.  This case will be referred to as 
the Maximum Absolute Normal Approximation Error.  The absolute value is used since the CLT may 
underestimate or overestimate the desired probability.  Of interest is the magnitude of that error and 
that this maximum absolute NAE depends on sample size and skewness of the original distribution.  

For interval probabilities referring to Figure 4, 𝐶𝐸(0.764) is the absolute maximum of the CE 
function and 𝐶𝐸(0.904) is the absolute minimum.  For the interval probability 𝑃[𝑎 < 𝑋ത < 𝑏] =
𝑃[0.764 < 𝑋ത < 0.904] = 𝐶𝐸(0.904) − 𝐶𝐸(0.764) ≅ −0.01561 − 0.02717 = −0.04278 is 
calculated as the numerically largest NAE possible for 0 < 𝑎 < 𝑏 < 1.  The absolute value of this 
result (0.04278) is termed the maximum absolute NAE for interval probabilities, for the given pdf and 
the n=5 sampling situation.  

For larger samples of size n=10, 15, 20, 25, and 30, the maximum absolute NAE for interval 
probability statements are calculated in a similar manner as for n=5.  The results are displayed in 
Table 2. 

 

Table 2: Computed maximum absolute NAE, by sample size for 3𝑥ଶ  pdf. 

 n=5 n=10 n=15 n=20 n=25 n=30 

Maximum |NAE| 
for interval 
probabilities 

0.04279 0.02830 0.02260 0.01934 0.01718 0.01560 

 

As expected, maximum absolute NAE are smaller for larger sample sizes. 

To further demonstrate this method, a brief comparison of the maximum absolute NAE for five other 
pdf’s is presented.  These additional pdf’s  have  the  absolute  value  of  skewness,  |𝐸[(𝑋 − µμ)ଷ]/  𝜎ଷ|, that 
range from 0 to 2.  See Figure 5 below. 
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Figure 5: All  pdf’s,  pictured  by  skewness  (ordered left to right): 2, -1.183, -0.861, -0.566, -0.229, 0 
(decimals approximate). 

 

Table 3 below presents the maximum absolute NAE’s for each pdf.  The pdf used throughout this paper, 
3𝑥ଶ, is also included in the table for comparison purposes. Also note that 5𝑥ସ values terminate at n=15 
due to the complexity of the polynomials produced by the ILT process for larger sample sizes.  The 



12 
 

computational complexity of the ILT process for a combination of high degree polynomials (>3) at larger 
sample sizes (>15) should be seen as a limitation to exclusive use of this method for all situations.  It is 
rather suggested that this be used as a very effective teaching tool for better conceptual understanding of 
the exact sampling distributions vs. normal approximations using basic examples with relatively small 
sample sizes (𝑛 ≤ 15). 

 

Table 3.  Computed maximum absolute NAE, by pdf and sample size. 

              n=5      n=10      n=15               n=20      n=25      n=30 
Exp 0.10013 0.06721 0.05374 0.04599 0.04081 0.03705 

𝟓𝒙𝟒 0.05956 0.03928 0.03134    

𝟑𝒙𝟐 0.04279 0.02830 0.02260 0.01934 0.01718 0.01560 

𝟐𝒙 0.02839 0.01867 0.01488 0.01269 0.01130 0.01026 

𝟐
𝟑
(𝒙 + 𝟏) 0.01491 0.00883 0.00671 0.00558 0.00488 0.00438 

Uniform 0.01142 0.00562 0.00372 0.00278 0.00222 0.00185 

 

The tabled values are graphed in Figure 6. 
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Figure 6: Maximum absolute NAE’s for interval probabilities (by pdf). 

 

Notice that the size of the maximum absolute NAE decreases with the magnitude of skewness for any 
sample size.  Notice  also  that  for  all  pdf’s,  the  maximum  absolute  NAE  decreases  as  sample  size  
increases.   

 

5. SUMMARY 

 

In summary, when studying the Central Limit Theorem and normal approximations, students can benefit 
from the process of evaluating exact sampling distributions to find probabilities.  This process can help 
students better understand the level of accuracy attained by using the normal approximation.  This process 
can be facilitated using a CAS such as Mathematica.  The academic exercise from Section 3 is one 
example as to how this process can be explored. 

This paper demonstrates that students can determine exact answers to probability questions and, coupled 
with CLT approximations, find normal approximation errors for interval probability statements.  More 
importantly, this paper presents the results of extensive computations (as seen in Table 2) to show the 
trend of maximum absolute NAE, by sample size, for the study case pdf, 𝑓(𝑥) = 3𝑥ଶ. 
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This  paper  also  demonstrates  that  the  techniques  presented  can  be  extended  to  other  pdf’s,  selected  for 
their differences in skewness, to show that absolute  maximum  NAE’s  vary  by  the  absolute  value  of  
skewness, for various sample sizes (as shown in Table 3 and Figure 6). 

 

6. REFERENCES 

 

Bain, Lee. J. and Engelhardt, Max, (2000), Introduction to Probability and Mathematical Statistics (2nd 
edition), Boston, MA, PWS-Kent Publishing.  

Belinfante, J. G. F. (2007), “Random  Samples  from  a  Uniform  Distribution,” 
http://www..math.gatech.edu/~belinfan/3770su08/pdf/u-sample.nb.pdf.  

Hogg, R. V., McKean, J. W., and Craig, A. T. (2005), Introduction to Mathematical Statistics (6th 
edition), Upper Saddle River, NJ: Prentice Hall. 

Hogg, R.V. and Tanis, Elliot (2010), Probability and Statistical Inference (8th edition), Upper Saddle 
River, NJ: Prentice Hall. 

Rooney, P. G. (1955), “On  an  inversion  formula  for  the  Laplace  transform,” Canadian Journal of 
Mathematics, VII (1), pp. 101-115. 

 

APPENDICES 

 

A.1:  Maple Code for the ILT Process 

1. f:=  x→3  x2 

2. M:=t→integrate(ex tf(x), x=0..1) 

3. _EnvUseHeavisideAsUnitStep:= true 

4. inttrans[invlaplace] (M(-s/n)n, s,x ) 

5. simplify (convert (inttrans[invlaplace] (M(-s/n)n, s, x), piecewise)) 

 

A.2: ILT Methodology Validation #1 
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The first validation check compares the exact sampling distributions for the mean of random samples of 
size n=2 or 3 derived by the ILT process, with the sampling distribution obtained by the mathematical 
statistics  “pdf  to  pdf”  (Jacobian)  transformation  process.  Theoretically, this validation method extends to 
sample sizes larger than n=3.  However, it quickly becomes intractable. 

Steps: 

(1) Define a transformation. 

(2) Calculate the Jacobian. 

(3) Form the joint distribution. 

(4) Define the transformed space. 

(5) Integrate out excess variables to yield the distribution of the mean. 

(6) Compare the results found using the Jacobian process to the results found using the ILT process. 

Example: For the sampling distribution of the mean of a sample of size n=3 from the 3𝑥ଶ pdf, the ILT 
results derived in Section 2 are gm30, gm31, and gm32.  These functions are defined over domain regions 
(0,1/3), (1/3,2/3), and (2/3,1), respectively. 

Steps: 

(1) Define a transformation: 𝑌 = (௑భା௑మା௑య)
ଷ

, 𝑌ଶ = 𝑋ଶ, 𝑌ଷ = 𝑋ଷ  

(2) Calculate the Jacobian: answer is 3 

(3) Form the joint distribution: 𝑔𝑛𝑒𝑤(𝑌, 𝑌ଶ, 𝑌ଷ) = |𝐽|(3(3𝑌 − 𝑌ଶ − 𝑌ଷ)ଶ  3(𝑌ଶ)ଶ  3(𝑌ଷ)ଶ)   

(4) Transformed space: bounded by 0 < 𝑌ଶ < 1, 0 < 𝑌ଷ < 1, and two planes with equations below 
(see Figure A1) 

Ytop[Y2_,Y3_]:=Y2/3 +Y3/3 + 1/3 

Ybot[Y2_,Y3_]:=Y2/3 +Y3/3 
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Figure A.1: Integration region for n=3 sampling. Transformation space is between the planes. 

 

(5) Integrate out 𝑌ଶ and 𝑌ଷ resulting in the exact distribution of the mean. 

Let 𝑔𝑛𝑒𝑤(𝑌, 𝑌ଶ, 𝑌ଷ) = 3ସ(3𝑌 − 𝑌ଶ − 𝑌ଷ)ଶ  (𝑌ଶ)ଶ  (𝑌ଷ)ଶ. 

𝑖0 = ∫ ∫ 𝑔𝑛𝑒𝑤(𝑌, 𝑌ଶ, 𝑌ଷ)𝑑𝑌ଶ𝑑𝑌ଷ, 0 < 𝑌 < ଵ
ଷ

ଷ௒ି௒య
଴

ଷ௒
଴ . 

𝑖1 = න න 𝑔𝑛𝑒𝑤(𝑌, 𝑌ଶ, 𝑌ଷ)𝑑𝑌ଶ𝑑𝑌ଷ
ଵ

଴

ଵ

଴
− න න 𝑔𝑛𝑒𝑤(𝑌, 𝑌ଶ, 𝑌ଷ)𝑑𝑌ଶ𝑑𝑌ଷ

ଵ

ଷ௒ି௒య

ଵ

ଷ௒ିଵ
 

−∫ ∫ 𝑔𝑛𝑒𝑤(𝑌, 𝑌ଶ, 𝑌ଷ)𝑑𝑌ଶ𝑑𝑌ଷ
ଷ௒ି௒యିଵ
଴

ଷ௒ିଵ
଴ , ଵ

ଷ
< 𝑌 < ଶ

ଷ
. 

𝑖2 = ∫ ∫ 𝑔𝑛𝑒𝑤(𝑌, 𝑌ଶ, 𝑌ଷ)𝑑𝑌ଶ𝑑𝑌ଷ
ଵ
ଷ௒ି௒యିଵ

ଵ
ଷ௒ିଶ , ଶ

ଷ
< 𝑌 < 1. 

The following code performs the integrations, with the pieces defined on the appropriate domain 
segments. 

I0[Y_]=Integrate[gnew[Y,Y2,Y3],{Y3,0,3 Y},{Y2,0,3 Y-Y3}] 
I1[Y_]=Integrate[gnew[Y,Y2,Y3],{Y3,0,1},{Y2,0,1}] 

-Integrate[gnew[Y,Y2,Y3],{Y3,3 Y-1,1},{Y2,3 Y-Y3,1}] 
-Integrate[gnew[Y,Y2,Y3],{Y3,0,3 Y-1},{Y2,0,3 Y-Y3-1}] 

I2[Y_]=Integrate[gnew[Y,Y2,Y3],{Y3,3 Y-2,1},{Y2,3 Y-Y3-1,1}] 

(6) Compare the results: The gm30, gm31, and gm32 functions found by the ILT process are 
compared with I0, I1, and I2 found by the Jacobian process.  The two results are identical 
demonstrating the equality between exact sampling distributions derived by two very different 
processes.  Similar calculations are used for the n=2 sampling situation also yielding equal 
results.   
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A.3: ILT Methodology Validation #2 

 

The second ILT validation involves computing the area, mean, and variance of the sampling distributions 
produced by the ILT process. 

Consider the ILT process as described in Section 2.  Part 5 of that process constructs a functional 
definition for each of the n polynomial pieces.   

gm0[x_],  gm1[x_],  …,  gm(n-1)[x_]  

For notation purposes, the exact distribution of the mean may be defined as the following: 

𝑔𝑚[𝑥] = ൜𝑔𝑚𝑖[𝑥], 𝑖/𝑛 < 𝑥 ≤ (𝑖 + 1)/𝑛, 𝑖 = 0, 1, 2. . , 𝑛 − 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Area: The area is computed for the distribution obtained using the ILT process by integrating each 
polynomial piece over its entire domain and summing the results.  The result of the sum should equal one.  
The following code gives an example of what the code might look like for the first three polynomial 
pieces. 

area=NIntegrate[gm0[x],{x,0,1/n}] 
+NIntegrate[gm1[x],{x,1/n,2/n}] 
+NIntegrate[gm2[x],{x,2/n,3/n}] 

 

Mean: The mean is computed for the distribution obtained using the ILT process to ensure that it equals 
its theoretical mean by integrating the product of x and the polynomial piece 𝑔𝑚𝑖[𝑥_] over the entire 
domain of that piece and then summing the results.  The following code gives an example of what the 
code might look like for the first three polynomial pieces. 

mean=NIntegrate[x gm0[x],{x,0,1/n}] 
+NIntegrate[x gm1[x],{x,1/n,2/n}] 
+NIntegrate[x gm2[x],{x,2/n,3/n}] 

 

Variance: The variance is computed for the distribution obtained using the ILT process to ensure that it 
equals its theoretical variance by integrating the function (𝑥 − 𝜇)ଶ𝑔𝑚𝑖[𝑥_] over the entire domain of that 
piece and then summing the results.  The following code gives an example of what the code might look 
like for the first three polynomial pieces. 

variance=NIntegrate[(x-mean)^2 gm0[x],{x,0,1/n}] 
+NIntegrate[(x-mean)^2 gm1[x],{x,1/n,2/n}] 
+NIntegrate[(x-mean)^2 gm2[x],{x,2/n,3/n}] 
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Example: For the sampling distribution of the mean of a sample of size n=3 from the 3𝑥ଶ pdf, the ILT 
results derived in Section 2 are gm30, gm31, and gm32.  These functions are defined over domain regions 
(0,1/3), (1/3,2/3), and (2/3,1), respectively. 

The computational checks are then performed.  First, the area is computed to ensure that it equals one. 

area=NIntegrate[gm30[x],{x,0,1/3}] 
+NIntegrate[gm31[x],{x,1/3,2/3}] 
+NIntegrate[gm32[x],{x,2/3,1}]  

 

The resulting area is one, exactly.  Next, the mean is computed to ensure that it equals 3/4 =0 .75. 

mean=NIntegrate[x gm30[x],{x,0,1/3}] 
+NIntegrate[x gm31[x],{x,1/3,2/3}] 
+NIntegrate[x gm32[x],{x,2/3,1}] 

 
The resulting mean is 0.75, exactly.  Next, the variance is computed to ensure that it equals 
(3/80)/3=0.0125. 

variance=NIntegrate[(x-(3/4))^2 gm30[x],{x,0,1/3}] 
+NIntegrate[(x-(3/4))^2 gm31[x],{x,1/3,2/3}] 
+NIntegrate[(x-(3/4))^2 gm32[x],{x,2/3,1}] 
 

The resulting variance is 0.0125, exactly.   

 

A.4: Large Sample Means Methodology 

 

As mentioned in Section 3, convergence problems can occur when using the ILT process to find the 
distribution for a sample mean with large sample sizes due to the small interval domains of length 1/n.  
To avoid these convergence problems, find the distribution of the sample sum and then convert it to the 
distribution of the sample mean.  The steps are very similar to those described in Section 2.  Replace 
Steps 3-5 from Section 2 with the following Steps 3-5. 

3. To compute the ILT,  t is replaced with –s in the function M[t_], thus converting the MGF into a 
Laplace transform.  Taking this function to the power of n before invoking the ILT routine results in 
the exact distribution of the sum of a random sample of size n.   

ILT=InverseLaplaceTransform[M[-s]^n,s,x] 

where the MGF is taken to the nth power consistent with finding the MGF for the sum of a sample of 
size n.  

4. Because the distribution of the sum is a piecewise function, the ILT will have to be parsed 
accordingly.   
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ILT /. HeavisideTheta[e_] :> Piecewise[{{1,e > 0}}] 

PiecewiseExpand[%] 

The resulting output contains the exact sampling distribution, parsed over domain segments. 

5. Construct a functional definition for each of the n polynomial pieces that appear in the output.   

gs0[x_], gs1[x_],  …,  gs(n-1)[x_]  

For notation purposes, the exact distribution of the sum may be defined as the following: 

𝑔𝑠[𝑥] = ൜𝑔𝑠𝑖[𝑥], 𝑖 < 𝑥 ≤ 𝑖 + 1, 𝑖 = 0, 1, 2. . , 𝑛 − 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Next, use the transformation 𝑥ᇱ = (1/𝑛)𝑥.  After the transformation, 𝑥ᇱ is replaced by x.  The following 
computer code will accomplish the transformation from the distribution of sums to the distribution of 
means: 

gm0[x_]:= n gs0[n x] 

gm1[x_]:= n gs1[n x] 

… 

This process is continued for gmi[x_]:= n gsi[n x] for n=sample size and i=0,  1,  …,  n-1 

The resulting distribution of the mean is the following. 

 

𝑔𝑚[𝑥] = ቊ𝑛  𝑔𝑠𝑖[𝑛  𝑥],
௜
௡
< 𝑥 ≤ (௜ାଵ)

௡
, 𝑖 = 0,1,2, … , 𝑛 − 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

By performing the integration on the distribution of the sample sum first, and then converting the 
resulting distribution to that of a sample mean, integration using domains of length 1/n is avoided in favor 
of unit-length domains, eliminating the convergence problems that small domain-length integration might 
cause in CAS algorithms. 




