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Electrochemical capacitors (ECs) serve as promising electrical energy storage sys-

tems due to their potential to achieve both high energy and high power densities.

They can be classified as either electric double layer capacitors (EDLCs) or pseu-

docapacitors depending on the charge storage mechanism. EDLCs store charge

in the electric double layer (EDL) forming at the electrode/electrolyte interface.

Pseudocapacitors store energy both in the EDL and in the redox reactions oc-

curring at or near the electrode surface along with ion intercalation into the elec-

trodes. However, the interpretations of experimental results and the electrode

optimization of such systems are made difficult by the coupling effect of EDL

formation, redox reactions, and ion intercalation in the multidimensional porous

electrode structures. This dissertation presents rigorous physical interpretations

of conventional experimental characterization methods and provides design rules

for EC electrodes using a multidimensional physicochemical model.

First, electrochemical impedance spectroscopy (EIS) measurements (Nyquist

plots) of planar EDLC electrodes and devices were reproduced numerically for dif-

ferent electrode conductivity and thickness, electrolyte domain thickness, as well

as ion diameter, diffusion coefficient, and concentrations. The electrode resistance,

electrolyte resistance, and the equilibrium differential capacitance were identified
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from Nyquist plots without relying on equivalent RC circuits. These results and

interpretations were then confirmed experimentally for EDLC devices consisting

of two identical activated-carbon electrodes in both aqueous and non-aqueous

electrolytes. Similarly, EIS measurements of planar redox active electrodes were

reproduced numerically for a wide range of electrode electrical conductivity, elec-

trolyte thickness, redox reaction rate constant, and bias potential. The electrode,

bulk electrolyte, charge transfer, and mass transfer resistances could be identi-

fied from the Nyquist plots. The results were then confirmed experimentally for

LiNi0.6Co0.2Mn0.2O2 and MoS2 electrodes in organic electrolytes.

Moreover, multidimensional simulations under cyclic voltammetry were per-

formed for EDLC electrodes of different thicknesses consisting of spherical nanopar-

ticles arranged in either simple cubic (SC) or face-centered cubic (FCC) packing

structure. The capacitance under quasi-equilibrium (low charging/discharging

rate) and rate-dependent (high charging/discharging rate) conditions were com-

pared for different electrode nanoarchitectures and design suggestions were drawn.

Moreover, multidimensional simulations were carried out for pseudocapacitive

electrodes consisting of ordered conducting nanorods coated with a thin film of

pseudocapacitive material. The contributions of EDL formation and redox reac-

tions were discriminated and an optimum pseudocapacitive layer thickness that

maximized total areal capacitance was identified as a function of scan rate and

confirmed by scaling analysis.

Finally, commonly used methods to calculate energy and power densities of

EDLC and hybrid pseudocapacitors were compared and evaluated. Energy con-

servation law was applied to the devices to identify the most appropriate method

to calculate energy and power densities. The findings were confirmed by experi-

mental measurements on EDLCs and hybrid pseudocapacitors.
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CHAPTER 1

Introduction

1.1 Electrical energy storage

Electrical energy storage (EES) systems can be used in various applications includ-

ing (i) regenerative braking in hybrid or all-electric vehicle applications, (ii) digi-

tal telecommunication, and (iii) dynamic stabilization of the utility grid [2,7–10].

They can be classified into two major types namely (i) chemical energy storage

systems including batteries, fuel cells, and pseudocapacitors and (ii) capacitive

energy storage systems including electric double layer capacitors [2]. The funda-

mental difference is that chemical energy storage system store energy via electro-

chemical reactions while capacitive energy storage system store energy physically

via separation of positive and negative charges [2].

Batteries store electrical energy via reversible redox reactions between ions

present in an electrolyte and the electrode material [2]. Figure 1.1 shows the

principle of a lithium-ion rechargeable battery system consisting of lithium cobalt

oxide and carbon-based electrodes separated by an electrolyte solution containing

Li+ ions [11]. During charging, cations Li+ are released at the cathode through a

redox reaction by Li atom in the LiCoO2 cathode, along with the production of

electrons e−, i.e., 2LiCoO2 → 2Li0.5CoO2 + Li+ + e−. Then, the Li+ ions migrate

towards the anode across the electrolyte separator while the electrons migrate

from the cathode to the anode via the external circuit. Finally, Li+ react with the

carbon based anode according to 6C + Li+ + e− → LiC6 [2]. During discharging,

the redox reactions at each electrode and the migration of cations and electrons

occur in the opposite direction.
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Moreover, the redox reactions for charge storage in a battery occur throughout

the volume of the electrode material [2]. This results in a relatively high energy

density. However, solid-state diffusion of Li+ ions in the electrode is slow resulting

in relatively low power density [2]. In addition, batteries feature a limited cycle

lifetime due to the large changes in the crystalline structure of the electrode ma-

terial caused by ion intercalation/deintercalation in the electrode along with the

growth of the solid electrolyte interphase (SEI) layer during charging/discharging

cycles. This results in irreversible changes in the electrode material and morphol-

ogy [2].

Cathode

(LiCoO2)
Electrolyte

Anode

(carbon)

Separator e-

e-

Current 

collector
Current 

collector

Figure 1.1: Illustration of the charge storage mechanism of a lithium-ion battery
during charging and discharging (Adapted with permission under the Creative
Commons Attribution-Share Alike 2.0 Germany license, Credit: Cepheiden via
Wikimedia Commons).

Conventional dielectric capacitors store energy by physically separating posi-

tive and negative charges on metallic electrodes separated by an electrically insu-

lating layer, as illustrated in Figure 1.2 [12]. Dielectric capacitors have relatively

high power density but very low energy density because the electrostatic charge

storage occurs only at the planar electrode surfaces [2,12]. Electrochemical capaci-
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Figure 1.2: Illustration of the charge storage mechanism of a dielectric capacitor
when a voltage is applied.

tors (ECs) store electrical energy via physical and/or chemical processes [2]. They

consist of two electrodes separated by an ionic conducting electrolyte. In addition,

ECs can be classified as either electric double layer capacitors (EDLCs) or pseu-

docapacitors depending on the charge storage mechanism. EDLCs store charge in

the electric double layer (EDL) forming at the electrode/electrolyte interface and

consisting of a layer of electronic charge in the electrode and a layer of ions with

opposite charge in the electrolyte [2]. Figure 1.3 shows the Stern model for the

EDL structure forming at an electrode/electrolyte interface [1]. The ions in the

electrolyte can be divided into two regions: the Stern layer and the diffuse layer.

The Stern layer is a compact layer of ions near the electrode/electrolyte interface

with no free charge. The Stern/diffuse layer interface is the closest distance to
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Figure 1.3: Illustration of the EDL forming at an electrode/electrolyte interface
in EDLC according to the Stern model (from Ref. [1]).

the electrode surface of physically adsorbed ions. Ions in the diffuse layer are mo-

bile under the competing effects of concentration gradients and electrostatic forces.

EDLCs’ energy storage capacity of EDLCs increases with increasing electrode sur-

face area. For this reason, nanoporous carbon electrodes have been widely used

in EDLCs to achieve high specific surface area (on the order of 1000−2000 m2/g)

and low electrical resistance. This results in significantly larger energy densities

for EDLCs compared with the conventional dielectric capacitors. In addition,

EDLCs feature fast charging and discharging rates and thus large power density

compared with batteries. Finally, unlike batteries, EDLCs also have long cycle

lifetime thanks to the reversible EDL formation and dissolution.

Finally, hybrid pseudocapacitors consist of a pseudocapacitive electrode and

an EDLC-like electrode separated by an electrolyte [2,12]. Besides the physical en-
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ergy storage in the EDL at the electrode/electrolyte interfaces, pseudocapacitive

electrodes also store energy chemically either from the reversible redox reactions

occurring at the electrode/electrolyte interface or from ion intercalation into the

tunnels or layers of the electrode [2, 13–15], as shown in Figure 1.4. By combin-

ing both physical and chemical mechanisms for electrical energy storage, hybrid

pseudocapacitors have the potential of achieving the energy density of batteries

combined with the power density of EDLCs.

Stern layer Diffuse layer
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cation
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solvent molecule

DIFFUSION

ELECTRIC FIELD

r

-
-

-
-

-

-
-

R0

LinMpOq

MpOq-

LinMpOq

MpOq
-

Figure 1.4: Illustration of the EDL formation and redox reation at an elec-
trode/electrolyte interface (from Ref. [1]).
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1.2 Electrochemical characterization methods

1.2.1 Cyclic voltammetry

Cyclic voltammetry consists of imposing a triangular potential ψs(t) varying with

time and measuring the resulting current js. The imposed potential can be ex-

pressed as [16]

ψs(t) =

{

ψmin + v[t− (nc − 1)τCV ] for (nc − 1)τCV ≤ t < (nc − 1/2)τCV

ψmax − v[t− (nc − 1/2)τCV ] for (nc − 1/2)τCV ≤ t < nc τCV (1.1)

where v is the scan rate, nc is the cycle number and τCV is the cycle period while

ψmin and ψmax are the minimum and maximum values of the imposed potential

ψs(t), respectively. Cyclic voltammetry (CV) curves consist of plotting js as a

function of ψs. Figure 1.5 shows typical CV curves at different scan rates v for (a)

EDLC and (b) pseudocapacitive electrodes. The CV curves were nearly rectangle

for EDLC electrodes. On the other hand, it featured a peak both during charging

and during discharging for pseudocapacitive electrodes. This peak was usually

linked to the presence of redox reactions [17].

1.2.2 Galvanostatic cycling

For galvanostatic cycling, the current density js(t) at the current collector/electrode

interface is imposed as

js(t) =

{

jGC for t0 ≤ t ≤ t0 + tc

−jGC for t0 + tc < t ≤ t0 + tc + td (1.2)

where jGC is the magnitude of the imposed current density, t0 is the starting time,

tc is the time of charging, and td is the time of discharging. Then, the potential

at the electrode/current collector interface is measured or computed. Figure 1.6

shows the typical potential evolution under galvanostatic cycling for different im-
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pseudocapacitive electrodes.
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imposed current iGC for (a) EDLC and (b) pseudocapacitive electrodes.
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posed current iGC for (a) EDLC and (b) pseudocapacitive electrodes. The po-

tential evolution for EDLCs was symmetric during charging and discharging and

nearly linear during discharging. On the other hand, the potential evolution for

pseudocapacitive electrodes was asymmetric during charging and discharging and

non-linear during discharging.

1.2.3 Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) consists of imposing a time har-

monic oscillating electric potential ψs(t) around a time-independent “DC poten-

tial” at the electrode surfaces and measuring the resulting harmonic current den-

sity js(t) [18–20]. The amplitude of the oscillating potential is typically small and

less than 10 mV. Using complex notations, the imposed electric potential ψs(t)

and the resulting current density js(t) can be expressed as [8, 18, 21, 22],

ψs(t) = ψdc + ψ0e
i2πft and js(t) = js,dc + js,0e

i[2πft−φ(f)] (1.3)

where ψdc is the bias potential, ψ0 is the amplitude of the oscillating potential at

frequency f , js,dc is the time-independent DC current density, js,0 is the amplitude

of the oscillating current density, and φ(f) is the frequency-dependent phase angle

between the imposed potential ψs(t) and the current density js(t). Then, the

electrochemical impedance Z can be defined as [8, 18, 21, 22]

Z =
ψs(t)− ψdc
js(t)− js,dc

=
ψ0

js,0
eiφ = Zre + iZim (1.4)

where Zre and Zim (expressed in Ω m2) are the real and imaginary parts of the

complex impedance, respectively. The Nyquist plot consists of plotting −Zim
as a function of Zre. Figure 1.7 shows typical Nyquist plots for (a) EDLC and

(b) pseudocapacitive electrodes made of redox active material, respectively. For

EDLC electrodes, it consists of a semi-circle at high frequencies between points
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A and B, a non-vertical line at intermediate frequencies between points B and C,

and a nearly vertical line with respect to the real axis at low frequencies beyond

point C. For pseudocapacitive electrodes, the Nyquist plot consists of two semi-

circles, i.e., a semi-circle at high frequencies between points A and B and one at

intermediate frequencies between points B and C, as well as a non-vertical line

with respect to the real axis at low frequencies beyond point C. Note that the

non-vertical line may be absent for some electrodes [6, 23–29].

1.3 Motivation of the present study

The performance of different EC devices can be compared and assessed based

on their capacitances and resistances. They can be obtained from electrochem-

ical characterization measurements including cyclic voltammetry, galvanostatic

cycling, and electrochemical impedance spectroscopy (EIS) [7]. Previous stud-

ies have established physical interpretation of cyclic voltammetry [16, 30–32] and

galvanostatic cycling [33] measurements using one-dimensional numerical simu-

lations. Still, multiple and often contradictory interpretations of experimental

Nyquist plots for both EDLC and pseudocapacitive electrodes have been proposed

in the literature [6, 23–29, 34–60] and clarification is needed.

In addition, the performances of ECs are greatly influenced by the electrode

material as well as by the morphology of the electrodes [2,4,61–74]. Experimental

synthesis have been performed on different electrode materials including (i) porous

carbon electrode with ordered or disordered carbon spheres for EDLCs and (ii)

pseudocapacitive electrodes made of transition metal oxides of RuO2, MnO2, or

MoO3 films or pseudocapacitive material coated on electrically conducting scaf-

fold [2,4,61–74]. However, most experiments have been done by trial and error in-

formed by physical intuition. Unfortunately, this approach is time-consuming and

costly. On the other hand, most previous numerical models treated the electrode
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microarchitecture as homogeneous with some effective macroscopic properties de-

termined from effective medium approximations (EMA) and assumed transport

phenomena as one-dimensional [75–86]. These models cannot account for the de-

tailed porous electrode architecture. Therefore, multidimensional modeling tools

for interfacial and transport phenomena in electrodes and electrolyte of ECs under

dynamic charging/discharging cycles should be developed. This would enable one

to predict and optimize the performance of electrodes with different morphology

and dimensions and to develop design rules for electrodes and electrolytes. This

could accelerate the development of ECs with high energy and power densities.

Finally, to compare the performance of ECs with other types of EES systems

including batteries and fuel cells, energy (in J/kg) and power (in W/kg) densities

are usually estimated. Ragone charts plot the energy density as a function of

power density, as illustrated in Figure 1.8. To date, multiple data processing

Figure 1.8: Comparison of energy and power densities of different EES systems
(from Ref. [2]).

methods have been applied to generate Ragone plots of energy density versus

power density for ECs [19, 35, 37, 87–114]. However, it is not clear which of these

different methods is appropriate and whether they lead to the same estimation of
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energy and power densities. In addition, the use of different methods makes the

comparison of the performance of various ECs reported in the literature difficult.

Thus, the different commonly used methods need to be compared and evaluated.

1.4 Objectives of the present study

The present study aims to (i) provide rigorous physical interpretations of EIS re-

sults for EDLC and pseudocapacitive electrodes, (ii) develop design rules for the

3D morphology of EDLC and pseudocapacitive electrodes and the associated elec-

trolyte, and (iii) compare and evaluate the commonly used methods to estimate

energy and power densities for EDLC devices and hybrid pseudocapacitors. To do

so, multidimensional transient simulation tool was developed based on physical

models previously derived in our group. The model accounted for (i) interfacial

phenomena taking place at the electrode/electrolyte interface, (ii) multidimen-

sional transport phenomena occurring in the electrolyte, (iii) redox reactions at

the electrode surface, and (iv) intercalation of the reaction products in the pseu-

docapacitive electrode. The simulation tools were used to faithfully reproduce

and to physically interpret experimental measurements.

1.5 Organization of the document

Chapter 2 provides background information relevant to this PhD thesis including

(i) commonly used materials for electrodes and electrolytes, (ii) different electrode

morphologies synthesized experimentally, and (iii) existing psysicochemical mod-

els of ECs. Chapter 3 provides rigorous physical interpretations of electrochemical

impedance spectroscopy (EIS) for EDLC electrodes and devices. The electrode

resistance, electrolyte resistance, and the equilibrium differential capacitance were

identified from numerically-generated Nyquist plots without relying on equivalent

RC circuits. Similarly, Chapter 4 provide physical interpretations of electrochem-
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ical impedance spectroscopy (EIS) measurements for pseudocapacitive electrodes

in three-electrode configurations. Here also, the electrode resistance, bulk elec-

trolyte resistance, charge transfer resistance, and mass transfer resistance could

be unequivocally identified from numerically-generated Nyquist plots. In both

Chapters 3 and 4, effort is made to compare numerical results with experimental

measurements. Chapter 5 presents a multidimensional simulation tool for porous

carbon EDLC electrodes consisting of highly-ordered carbon spheres under cyclic

voltammetry. The model enabled us to interpret CV curves as well as to predict

the capacitance of EDLC electrodes as a function of carbon sphere diameters, over-

all electrode thicknesses, and packing arrangements. Then, the design rules for

such EDLC electrodes under specific working conditions were discussed. Chapter

6 investigates numerically the effect of electrode morphology on the performance

of pseudocapacitive electrodes consisting of a redox active material coated on an

array of electrically conducting nanorods. The contribution of EDL formation

and faradaic reaction to the capacitances of the electrodes were discriminated and

an optimum redox layer thickness was derived. Chapter 7 compares and evalu-

ates commonly used methods for estimating the energy and power densities of

electrochemical capacitors and the associated Ragone charts. Finally, Chapter

8 summarizes the finding of this PhD thesis and provides recommendations for

future research.
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CHAPTER 2

Background

2.1 Material considerations for ECs

Desirable properties for EC electrodes include high specific area (on the order

of 1000 − 2000 m2/g), low electrical resistance, good wettabilities for electrolyte

to penetrate into the pores and create the necessary electrode/electrolyte in-

terface, and low cost [7]. In addition, EDLC electrodes should not react with

the electrolyte or current collector [7]. In fact, EDLC electrodes are typically

made of porous carbon such as activated carbon [3,115], ordered mesoporous car-

bon [4, 116, 117], carbon nanotubes [118, 119], and graphene [120–122]. These

carbon-based materials have the advantage of low cost and well established fabri-

cation techniques. For example, Figure 2.1 shows the SEM images of (a) activated

carbon [3] and (b) ordered carbon spheres [4].

On the other hand, pseudocapacitive materials typically consist of transi-

tion metal oxides or conductive polymers and react with cations in the elec-

trolyte including Li+, K+, H+ etc [12]. The most commonly used pseudoca-

pacitive electrodes are made of (i) materials such as RuO2 · xH2O and MnO2

for surface reactions or (ii) materials like Nb2O5 and MoS2 for ion intercala-

tions [12, 13, 55, 71, 72, 123–138].

Electrolyte consist of a salt (e.g., Na2SO4, LiPF6) dissolved in a solvent (e.g.,

water, organic liquid). Desirable properties for the electrolytes used in ECs in-

clude (i) large relative permittivity or dielectric constant, (ii) high decomposition

voltage, (iii) large ionic conductivity, as well as (iv) a wide usable temperature

range [7]. They should also be environmentally friendly and inexpensive. In ad-
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Figure 2.1: SEM images of the (a) meso-microporous activated carbon sample and
(b) FCC packing monodispersed carbon sphere arrays in the view of (111) plane.
(Adapted with permission from [3]. Copyright (2015) Royal Society of Chemistry.
Adapted with permission from [4]. Copyright (2009) Royal Society of Chemistry.)

dition, the electrolyte should have low chemical and electrochemical activity to

electrodes and current collectors for EDLCs. For pseudocapacitors, ions in the

electrolyte should (i) react rapidly with the electrode material via reversible re-

dox reactions and/or (ii) be capable of intracalating into the pseudocapacitive

electrodes [7, 139]. Aqueous solutions including Na2SO4 or KOH offer high di-

electric constant and high conductivity. However, water has a relatively low de-

composition voltage of approximately 1.23 V that limits the working potential

window and a relatively high freezing point that limits the working temperature

range [7, 12]. Alternatively, non-aqueous solvents such as propylene carbonate

(PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl-methyl

carbonate (EMC) offer high decomposition voltages but features relatively lower

dielectric constant and ionic conductivity [7]. In addition, during the past sev-

eral decades, the operating potential window of aqueous electrolyte-based ECs

has been reported to be greatly increased to about 2 V by using neutral aqueous

electrolytes that are electrochemically stable, i.e., lithium, sodium and potassium
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sulfate solutions [139, 140]. For example, Fic et al. [140] performed experiments

on EDLCs in 1 mol/L Li2SO4 aqueous solution and confirmed the wide poten-

tial range of 2.2 V without any significant capacitance fade during 15,000 cycles.

In addition, a wide variety of new organic electrolytes with wider operating po-

tential windows and reduced toxicity when compared to the commercial organic

electrolytes have also been developed for ECs [139].

2.2 Modeling ion transport in electrochemical capacitors

2.2.1 Poisson-Nernst-Planck model

The Poisson-Nernst-Planck (PNP) model governed the spatiotemporal evolution

of the electric potential ψ(r, t) and concentrations of the two ion species ci(r, t)

in the binary and symmetric electrolyte. The model treated ions as point charge

with motion under the effect of diffusion, electromigration, and advection. The

potential is governed by the Poisson equation according to [141–143]

∇ · (ǫ0ǫr∇ψ) =
{

0 in the Stern layer (2.1a)

−zF (c1 − c2) in the diffuse layer (2.1b)

Here, ǫ0 = 8.854 × 10−12 F m−1 is the vacuum permittivity, ǫr is the field-

dependent dielectric constant of the electrolyte, and F = eNA is the Faraday

constant with e and NA being the elementary charge and Avogadro number, re-

spectively. The concentrations of ion species 1 and 2 in the electrolyte are governed

by the Nernst-Planck equations and given by [142]

∂ci
∂t

= −∇ ·Ni in the diffuse layer, for i = 1, 2. (2.2)
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Here, the mass flux vector Ni(r, t) of ion species “i” (in mol/m2s) at location r

and time t was defined as [16]

Ni(r, t) = −D∇ci −
zFDci
RuT

∇ψ + ciu (2.3)

where D is the diffusion coefficient of both ion species. The three terms on the

right-hand side of Equation (2.3) correspond to the ion fluxes due to diffusion,

electromigration, and advection, respectively [141, 144].

2.2.2 Modified Poisson-Nernst-Planck model

The modified Poisson-Nernst-Planck (MPNP) model was derived to account for

Steric effects in the free energy of the electrolyte used to determine the chemical

potentials and the corresponding ion fluxes. The model assumed binary and

symmetric electrolyte. It used the same Poisson Equation [Equation (2.1)] and

mass conservation equation [Equation (2.2)] and modified the mass flux vector

as [16]

Ni(r, t) = −D∇ci−
zFDci
RuT

∇ψ− DNAa
3ci

1−NAa3(c1 + c2)
∇(c1+c2) for i = 1,2 (2.4)

where D is the diffusion coefficient of both ion species. The three terms on the

right-hand side of Equation (2.4) correspond to the ion fluxes due to diffusion,

electromigration, and steric effects, respectively [141, 144]. This model accounts

for finite ion size and is applicable to cases with large electric potential and/or

electrolyte concentrations.

2.2.3 Generalized modified Poisson-Nernst-Planck model

The generalized modified Poisson-Nernst-Planck (GMPNP) model was developed

by Wang et al. [16] to account for asymmetric and multi-species electrolytes with
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finite ion size. The equations governing the temporal evolution of potential and ion

concentrations remained the same as the modified Poisson-Nernst-Planck model

while the mass flux vector Ni(r, t) of ion species “i” (in mol/m2s) at location r

and time t was generalized to account for multi-species electrolytes and defined

as [16]

Ni(r, t) = −D∇ci −
zFDci
RuT

∇ψ − DNAci

1−NA

N
∑

i=1

a3i ci

N
∑

i=1

a3i∇ci (2.5)

2.3 Modeling pseudocapacitance

Pseudocapacitors store energy in (i) the EDL at the electrode/electrolyte inter-

faces and in (ii) reversible redox reactions occurring either at the electrode surface

and/or by ion intercalation into the electrode [2, 13–15]. In this study, the pseu-

docapacitance was modeled as a surface reaction followed by ion intercalation

(diffusion) into the pseudocapacitive electrode.

The faradaic current density jF (rP/E,t) caused by the redox reactions can be

defined by the generalized Frumkin-Butler-Volmer model evaluated at the pseu-

docapacitive layer/electrolyte interface and expressed as [8]

jF (rP/E, t) = jF,ex(t)

{

exp

[

(1− α)zFη(rP/E, t)

RuT

]

− exp

[−αzFη(rP/E , t)
RuT

]}

(2.6)

where jF,ex(t) is the so-called exchange current density, α is the transfer coefficient,

and η(rP/E, t) is the surface overpotential. The exchange current density jF,ex(t)

can be written as [145, 146]

jF,ex(t) = zFk0[c1(rH , t)]
1−α[c1,P,max − c1,P (rP/E , t)]

α[c1,P (rP/E, t)]
α (2.7)

where the reaction rate constant k0 is expressed in m1+3αmol−αs−1 and c1,P,max is

the maximum concentration of intercalated Li+ in the pseudocapacitive layer. In
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addition, the surface overpotential η(rP/E, t) can be expressed as [8]

η(rP/E, t) = ∆ψH(rP/E, t)−∆ψeq(t) (2.8)

where ∆ψH(rP/E) is the potential drop across the Stern layer at the pseudocapac-

itive layer/electrolyte interface and ∆ψeq is the equilibrium potential difference.

The ion intercalation into the pseudocapacitive electrode was modeled as a

mass diffusion process given by [146, 147]

∂c1,P
∂t

=
∂

∂x

(

D1,P
∂c1,P
∂x

)

in the pseudocapacitive electrode (2.9)

where D1,P is the diffusion coefficient of intercalated lithium atoms in the pseu-

docapacitive electrode.
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CHAPTER 3

Physical Interpretations of Nyquist Plots for EDLC Electrodes and

Devices

This chapter aims to provide unequivocal physical interpretations of electrochemi-

cal impedance spectroscopy (EIS) results represented by Nyquist plots for electric

double layer capacitor (EDLC) electrodes and devices. To do so, EIS measure-

ments of (i) EDLC electrodes based on three-electrode setup and (ii) two-electrode

EDLC cells were numerically reproduced for different electrode conductivity and

thickness, different electrolyte domain thickness, as well as for different ion diam-

eter, diffusion coefficient, and concentration in the electrolyte. The chapter also

focuses on retrieving equilibrium differential capacitance and internal resistance

from EIS simulations. Finally, it aims to validate experimentally the physical in-

terpretations of EIS measurements developed numerically using EDLC cells con-

sisting of two identical electrodes made of activated carbon and different aqueous

and organic electrolytes.

3.1 Background

Figure 3.1 shows the schematic of a typical Nyquist plot presenting the imaginary

part−Zim as a function of the real part Zre of the complex impedance of an electric

double layer capacitor (EDLC). It consists of a semi-circle at high frequencies

between points A and B, a non-vertical line at intermediate frequencies between

points B and C, and a nearly vertical line at low frequencies beyond point C.

Multiple and often contradictory physical interpretations of experimental Nyquist

plots of EDLCs have been proposed in the literature [34–48]. For example, the
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Figure 3.1: Schematic of typical Nyquist plots for EDLC electrodes or devices.

resistance RA at point A (Figure 3.1) has been attributed to (i) the bulk elec-

trolyte resistance [34–40] or (ii) the equivalent series resistance (ESR) also known

as the internal resistance defined as the sum of the resistances of the bulk elec-

trolyte, the electrode, and the contact resistance between the electrode and the

current collector [41–45]. The diameter of the semi-circle RAB = RB − RA (Fig-

ure 3.1) has been assigned to (i) the electrolyte resistance in the pores of the

electrodes [38, 41, 42], (ii) the contact resistance between electrode and current

collector [46], (iii) the sum of the electrode resistance and contact resistance be-

tween the electrode and the current collector [39], or (iv) the so-called charge

transfer resistance [34, 37]. For EDLC devices, the charge transfer resistance cor-

responds to the sum of the electrolyte resistance in the porous structure of the

electrode, the electrode resistance, and the contact resistance between the elec-
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trode and the current collector [37]. Based on this interpretation along with the

previous interpretation of RA as the bulk electrolyte resistance [34–40], the resis-

tance RB (Figure 3.1), i.e., RB = RA + RAB, can be interpreted as the internal

resistance, i.e., the sum of bulk electrolyte resistance and the so-called charge

transfer resistance [34, 37, 39]. Furthermore, the existence of the non-vertical line

BC (Figure 3.1) at intermediate frequencies has been assigned to (i) ion transport

limitation in the electrolyte in porous electrode structures [34–36,39,41,44], (ii) ion

transport limitation in the bulk electrolyte [40], or (iii) non-uniform pathway for

ion transport from the bulk electrolyte to the porous electrode surface caused by

non-uniform electrode pore size and electrode roughness [43,45,46]. Based on the

latter interpretation, the resistance RBC (Figure 3.1) was called the “equivalent

distribution resistance” [45]. Finally, the vertical line at low frequencies beyond

point C (Figure 3.1) was attributed to the dominant capacitive behavior of the

electric double layer formed at the electrode/electrolyte interface [38,39,41,42,46].

The intersection between the vertical line and the Zre-axis, corresponding to RC ,

(Figure 3.1) has been termed (i) the internal resistance [37], (ii) the equivalent

series resistance (ESR) [40], or (iii) the overall resistance [41] of the electrode or

the device. The multiple and contradictory interpretations of the Nyquist plots

are confusing and need clarification.

3.2 Analysis

3.2.1 Schematic and assumptions

Figure 3.2 shows (a) a one-dimensional (1D) simulated domain consisting of a

planar current collector supporting a working electrode of thickness Le and an

electrolyte domain of thickness L corresponding to a three-electrode setup and (b)

an EDLC device consisting of two identical electrodes of thickness Le separated

by an electrolyte domain of thickness 2L. The electrolyte near each electrode
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Figure 3.2: Schematics of (a) the simulated one-dimensional EDLC electrode in a
three-electrode setup and (b) EDLC devices consisting of two identical electrodes.
The dashed line encloses the computational domain simulated.

24



consisted of a Stern layer of thickness H and a diffuse layer of mobile ions of

thickness LD defined such that [ci(x = Le + H + LD, t) − c∞]/c∞ ≤ 5%, where

ci(x = Le+H+LD, t) is the local concentration of cations (i = 1) or anions (i = 2)

and c∞ is the bulk ion concentration. Here, we considered only planar electrodes

while practical EDLCs consist of porous electrodes. However, our previous work

established that the simulations for planar electrodes were qualitatively compara-

ble to experimental results, indicating that the model accounted for key physical

phenomena in EDLCs [30, 148, 149]. In addition, the porous electrode can be

accounted for as a curved electrode in three-dimensional simulations [150]. Fol-

lowing assumptions were made: (1) the electrolyte was binary and symmetric, i.e.,

it consisted of two ion species of opposite valency ±z (z > 0). The two ion species

were further assumed to have identical diameter a and diffusion coefficient D. (2)

The Stern layer contained no free charge and its thickness H was approximated

as the radius of the ions, so that H = a/2 [8, 16, 151], as commonly assumed

in continuum simulations of EDLCs [30, 148–150]. (3) The transport properties

of the electrode and electrolyte were taken as constant. (4) Bulk motion of the

electrolyte was negligible. (5) No redox reaction or ion intercalation took place at

the surface or within the electrode. (6) Heat generation was ignored and the tem-

perature was uniform and constant in the electrode and electrolyte. (7) Contact

resistance between the electrode and the current collector and the electrical resis-

tance of the current collector were negligible. (8) Self-discharge of the electrode

or the device was ignored.

3.2.2 Governing equations

Simulations reported in this chapter were based on the modified Poisson-Nernst-

Planck (MPNP) model for the spatiotemporal evolution of the potential ψ(x, t)

[Equation (2.1)] in the electrode and electrolyte as well as the ion concentra-

tions c1(x, t) of cations and c2(x, t) of anions [Equations (2.2) and (2.4)] in the
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binary and symmetric electrolyte for EDLC electrodes or devices. In addition,

the boundary conditions varied depending on whether EIS or galvanostatic cy-

cling were simulated. EIS simulations imposed potential ψs(t) at the current

collector/electrode interface or across the cell as a harmonic function of time t

[Equation (1.3)]. For galvanostatic cycling, the current density js(t) imposed at

the current collector/electrode interface or across the cell was a square wave of

magnitude jGC with respect to the cycle period [Equation (1.2)].

3.2.2.1 Single-electrode simulations

The boundary condition at the centerline, located at x = Le + L, was given by

ψ(Le + L, t) = 0 and ci(Le + L, t) = c∞. (3.1)

Moreover, the electric potential and current density were both continuous across

the electrode/electrolyte interface, located at x = Le, so that

ψ(L−

e , t) = ψ(L+
e , t) and − σe

∂ψ

∂x
(L−

e , t) = −ǫ0ǫr
∂2ψ

∂x∂t
(L+

e , t). (3.2)

The electric potential varied linearly across the Stern layer so that the electric field

at the planar Stern/diffuse layer interfaces, located at x = Le +H satisfied [1,16]

∂ψ

∂x
(Le +H, t) =

ψ(Le)− ψ(Le +H)

H
. (3.3)

These boundary conditions accounted for the presence of the Stern layers without

explicitly simulating them in the computational domain thus reducing significantly

the number of meshes [1].

Finally, based on assumption (5), no ion intercalated into the electrode. Thus,

the ion mass flux vanished at the electrode/electrolyte interface, located at x = Le,
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such that [16]

Ni(Le, t) = 0 for i = 1, 2, (3.4)

3.2.2.2 Two-electrode simulations

For two-electrode simulations, the potential at one electrode was imposed as ψs(t)

[Equation (1.3)] while the other electrode was grounded, i.e.,

ψ(2Le + 2L, t) = 0. (3.5)

Moreover, by virtue of symmetry, the electric potential, current density, and ion

flux at the electrode/electrolyte interface, located at x = Le + 2L were identical

to the boundary conditions described in Equations (3.2)-(3.4), i.e.,

ψ(Le + 2L−, t) = ψ(Le + 2L+, t) (3.6)

−σe
∂ψ

∂x
(Le + 2L+, t) = −ǫ0ǫr

∂2ψ

∂x∂t
(Le + 2L−, t), (3.7)

∂ψ

∂x
(Le + 2L−H, t) =

ψ(Le + 2L−H)− ψ(Le + 2L)

H
, (3.8)

Ni(Le + 2L, t) = 0 for i = 1, 2. (3.9)

3.2.3 Constitutive relationships

In order to solve the coupled transient 1D equations as well as the initial and

boundary conditions, a total of 12 parameters were necessary including (i) the

electrode electrical conductivity σe, (ii) the electrolyte properties ǫr, z, a, D, and

c∞, (iii) the dimensions of the simulated electrode and electrolyte domains Le and

L, along with (iv) the operating conditions ψdc, ψ0, and f for EIS simulations

and ψmin, ψmax and jGC for galvanostatic cycling, and (v) temperature T (in K).

The electrical conductivity σe and thickness Le of the electrode, the electrolyte

properties a, D, and c∞, the length of the electrolyte domain L were treated as
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Table 3.1: Value or range of electrode and electrolyte properties and dimensions
used in the simulations reported in this study

Parameter Symbol Value Unit
Electrode conductivity σe 5 x 10−8 - 5 x 10−5 S/m
Dielectric constant ǫr 64.4

Valency z 1
Ion diameter a 0.33 - 1.32 nm

Diffusion coefficient D 5 x 10−14 - 8 x 10−13 m2/s
Bulk ion concentration c∞ 0.0005 - 1 mol/L
Electrode thickness Le 10 - 100 nm
Electrolyte thickness L 40 - 1600 nm

DC potential ψDC 0.3 V
Amplitude of oscillating potential ψ0 5 mV

Frequency f 0.1 - 5 x 104 Hz
Magnitude of imposed current density jGC 10−3 - 0.01 mA/cm2

Potential window
ψmin 0 V
ψmax 1 V

Temperature T 298 K

variables to achieve various resistances and capacitances. On the other hand, the

temperature was set to room temperature (T = 298 K) and the dielectric constant

was taken as that of propylene carbonate, a commonly used organic solvent, i.e.,

ǫr = 64.4 [152]. The valency of the ion species was z = 1 [68]. Finally, in EIS

simulations, the DC potential was set arbitrarily as ψdc = 0.3 V, the oscillating

potential as ψ0 = 5 mV and the frequency f varied between 0.1 and 5 x 106 Hz.

In galvanostatic cycling, the magnitude of imposed current density jGC ranged

between 10−3 and 1 mA/cm2 while the potential window was set as ψmin = 0 V

and ψmax = 1 V. Table 7.1 summarizes the values or ranges of these parameters.

3.2.4 Data processing

3.2.4.1 Electrical resistances

The electrical resistance Re (in Ω m2) per unit surface area of the planar electrode

can be expressed as

Re = Le/σe. (3.10)
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To calculate the resistance of the electrolyte, current density due to ion transport

in the electrolyte needs to be considered and is given by [7]

j(x, t) = zF [N1(x, t)−N2(x, t)] (3.11)

where z is the valency, F = eNA is the Faraday constant, N1(x, t) and N2(x, t) are

the mass fluxes of cations and anions in the electrolyte (in mol/m2s) expressed in

Equation (2.3). Note that the local electric field E(x, t) = −∂ψ/∂x. Thus, the

local ionic conductivity σ(x) in the electrolyte, defined as j(x, t) = σ(x)E(x, t),

can be expressed as

σ(x) = zFD
∂

∂ψ
(c1−c2)+

z2F 2D(c1 + c2)

RuT
+

DNAa
3(c1 − c2)

1−NAa3(c1 + c2)

∂

∂ψ
(c1+c2) (3.12)

where D is the diffusion coefficient, c1(x, t) and c2(x, t) are the concentrations

of cations and anions at location x and time t in the electrolyte, ψ(x, t) is the

potential in the electrolyte, Ru = 8.314 J /mol K is the universal gas constant,

a is the effective ion diameter, and NA is the Avogadro’s number. Here, the

diffuse layer contained mobile ions with non-zero concentration gradients while

the ion concentrations in the bulk electrolyte remained constant. Thus, the ionic

conductivity σ(x) varied with location in the diffuse layer and was a harmonic

function of time that could be represented using complex notations. However, it

remained constant and real in the bulk electrolyte. The resistance, i.e., the real

part of the impedance, of the diffuse layer near one electrode can be expressed as

RD = Re

[
∫ Le+LD

Le

dx

σ(x)
)

]

. (3.13)

Note that the local ion concentrations c1(x, t) and c2(x, t) in the diffuse layer

as well as the diffuse layer thickness LD were unknown and were determined
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numerically. Finally, the bulk electrolyte resistance can be expressed as [7]

R∞ = (L− LD)/σ∞ with σ∞ = (2z2F 2Dc∞)/(RuT ) (3.14)

where σ∞ is the electrical conductivity of the bulk electrolyte.

Moreover, for EDLC cells (referred to by superscript “c”), the resistances of

the electrodes Rc
e, of the diffuse layer Rc

D, and the bulk electrolyte Rc
∞

can be

expressed as

Rc
e = 2Re (3.15)

Rc
D = Re

[
∫ Le+LD

Le

dx

σ(x)
+

∫ Le+2L

Le+2L−LD

dx

σ(x)

]

(3.16)

Rc
∞

= 2(L− LD)/σ∞ (3.17)

Finally, the internal resistance RGC (in Ω m2) retrieved from galvanostatic

cycling for both single-electrode and device simulations can be expressed as [153,

154]

RGC(jGC) =
∆ψ

2jGC
(3.18)

where ∆ψ is the potential drop observed at the beginning of discharge under

constant current density jGC .

3.2.4.2 Equilibrium differential capacitance

The differential capacitance (in µF/cm2) is defined as [7–9]

Cdiff =
dqs
dψs

(3.19)

where qs (in C/m2) is the surface charge density. For a given EDLC electrode

under equilibrium conditions, it is denoted by Cdiff,eq and can be expressed as,
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[142, 155]
1

Cdiff,eq
=

1

CSt
diff,eq

+
1

CD
diff,eq

(3.20)

where CSt
diff,eq and C

D
diff,eq are the equilibrium differential capacitances of the Stern

layer and diffuse layer near the electrode, respectively. They can be expressed

as [142, 155]

CSt
diff,eq =

ǫ0ǫr
H

and (3.21a)

CD
diff,eq =

ǫ0ǫr
λD

sinh

(

zeψD
kBT

)

[

1 + 2ν sinh2

(

zeψD
2kBT

)]

√

2

ν
log

[

1 + 2ν sinh2

(

zeψD
2kBT

)]

(3.21b)

where λD = [ǫ0ǫrkBT/(2e
2z2NAc∞)]1/2 is the Debye length, e is the elementary

charge, and kB is the Boltzmann constant, respectively. The packing parameter

ν is defined as ν = 2a3NAc∞. For planar electrode under equilibrium conditions,

the electric potential at the Stern/diffuse layer interface, denoted by ψD, can

be expressed as a function of the potential ψs imposed at the electrode/current

collector interface according to [156]

ψD
kBT/ez

= 0.37

(

ψs
kBT/ez

)1.16

. (3.22)

Note that for EIS simulations, ψs in Equation 3.22 corresponds to the time-

independent potential ψdc.

Finally, an EDLC cell with two identical electrodes can be treated as two

capacitors in series. Thus, the equilibrium capacitance of the EDLC cell can be

expressed as Cc
diff,eq = Cdiff,eq/2.
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Table 3.2: Simulation parameters and corresponding resistances Re, R∞, and RD and capacitance Cdiff,eq [Equation (3.20)]
and Cdiff,eq,EIS values for 25 EIS simulations for single electrodes (Cases 1-24) and an EDLC cell (Case 25)

Case σe c∞ D L Le a τD/τRC Re R∞ RD Cdiff,eq Cdiff,eq,EIS

number (S/m) (mol/L) (m2/s) (nm) (nm) (nm) (Ω m2) (Ω m2) (Ω m2) (µF/cm2) (µF/cm2)
2 1 x 10−7 0.001 2 x 10−13 160 10 0.66 0.72 0.1 0.105 0.07 94.8 94.8
3 5 x 10−8 0.001 2 x 10−13 160 10 0.66 0.68 0.2 0.105 0.07 94.8 95.0
4 5 x 10−5 0.01 2 x 10−13 160 10 0.66 7.13 2 x 10−4 0.0105 0.009 91.5 91.6
5 5 x 10−5 0.001 2 x 10−13 160 10 0.66 0.68 2 x 10−4 0.105 0.07 94.8 94.6
6 5 x 10−5 0.0005 2 x 10−13 160 10 0.66 0.37 2 x 10−4 0.20 0.14 92.7 94.4
7 5 x 10−5 0.001 2 x 10−13 80 10 0.66 0.38 2 x 10−4 0.05 0.04 94.9 92.2
8 1 x 10−7 0.002 2 x 10−13 160 10 0.66 1.47 0.1 0.05 0.04 95.5 93.5
9 5 x 10−5 0.002 5 x 10−14 80 10 0.66 0.78 2 x 10−4 0.105 0.09 95.6 93.7
10 5 x 10−5 0.002 2 x 10−13 160 10 0.33 0.62 2 x 10−4 0.05 0.05 206.4 197.1
11 5 x 10−5 0.0005 8 x 10−13 320 10 0.66 0.66 2 x 10−4 0.105 0.10 94.7 93.6
12 5 x 10−5 0.0005 2 x 10−13 160 10 1.32 0.91 2 x 10−4 0.20 0.19 38.1 38.4
13 5 x 10−5 0.001 2 x 10−13 80 10 1.32 1.04 2 x 10−4 0.05 0.04 37.1 36.6
14 5 x 10−5 0.001 2 x 10−13 320 10 0.33 0.66 2 x 10−4 0.20 0.19 194.4 197.4
15 5 x 10−5 0.001 2 x 10−13 160 10 1.32 1.84 2 x 10−4 0.105 0.10 37.1 37.1
16 5 x 10−5 0.001 2 x 10−13 160 10 0.33 0.33 2 x 10−4 0.105 0.10 194.9 197.2
17 5 x 10−5 0.001 1 x 10−13 80 10 0.66 0.37 2 x 10−4 0.105 0.09 94.9 93.0
18 5 x 10−5 0.0005 1 x 10−13 160 10 0.66 0.37 2 x 10−4 0.41 0.40 92.7 88.3
19 5 x 10−5 0.001 5 x 10−14 80 10 0.66 0.37 2 x 10−4 0.20 0.17 94.9 94.9
20 5 x 10−5 0.001 1 x 10−13 320 10 0.66 1.39 2 x 10−4 0.05 0.05 92.7 94.4
21 1 x 10−7 0.004 2 x 10−13 160 10 0.66 3.04 0.1 0.03 0.02 95.2 93.4
22 1 x 10−7 0.006 2 x 10−13 160 10 0.66 4.34 0.1 0.02 0.02 94.7 93.0
23 5 x 10−5 0.0075 2 x 10−13 160 10 0.66 5.50 2 x 10−4 0.01 0.01 92.3 92.2
24 5 x 10−5 1 2 x 10−13 1600 100 0.66 2.09 x 104 2 x 10−3 1.06 x 10−3 1.24 x 10−6 66.5 62.0
25∗∗ 5 x 10−5 1 2 x 10−13 1600 100 0.66 4.18 x 104 4 x 10−3 2.12 x 10−3 2.48 x 10−6 33.2 31.5



3.3 Results and discussion

3.3.1 Interpretation of the Nyquist plot for EDLC electrodes

Table 3.2 summarizes the different cases (Cases 1-24) considered to assess the

effects of electrode and electrolyte resistances and electrode capacitance on the

Nyquist plots of a single EDLC electrode.

3.3.1.1 Electrode resistance Re

Figures 3.3(a)-3.3(c) show the Nyquist plots for EDLC electrodes of Cases 1-3

featuring electrode electrical conductivity σe of (a) 2 x 10−7 S/m, (b) 1 x 10−7

S/m, and (c) 5 x 10−8 S/m, corresponding to electrode resistance Re [Equation

(3.10)] of (a) 0.05 Ω m2, (b) 0.1 Ω m2, and (c) 0.2 Ω m2, respectively. All other

parameters remained the same in these three cases. First, Figures 3.3(a)-3.3(c)

resembles remarkably experimental EIS measurements on single EDLC electrodes

[157–159]. In addition, they indicate that changing electrode resistance led to

a horizontal shift of the Nyquist plot along the Zre-axis. Moreover, the high-

frequency intersection of the Nyquist plot with the Zre-axis (corresponding to RA

in Figure 3.1) was systematically equal to the electrode resistance Re predicted

by Equation (3.10). Note that the present simulations ignored contact resistance

between the electrode and the current collector. However, it can be accounted for

as a resistance in series with Re and its sole effect on the Nyquist plot would also

be to shift the plot along the Zre-axis.

Furthermore, Figure 3.3(d) shows −Zim as a function of Zre−Re for the above

three cases. It indicates that the Nyquist plots for Cases 1-3 nearly collapsed on

the same line regardless of changes in electrode conductivity σe. In other words, σe

had no significant effects on the Nyquist plots at low and medium frequencies. In

addition, it is interesting to note that the diameter of the semi-circle in Figure 3.3
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Figure 3.3: (a)-(c) Nyquist plots for EDLC electrode for Cases 1-3 (Table 3.2)
featuring electrode resistance Re of (a) 0.05 Ω m2, (b) 0.1 Ω m2, and (c) 0.2 Ω m2,
as predicted by Equation (3.10). (d) Modified Nyquist plots −Zim versus Zre−Re

for the three cases.
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(corresponding to RAB = RB−RA in Figure 3.1) was equal to the bulk electrolyte

resistance R∞ predicted by Equation (3.14) and equal to 0.105 Ω m2 in all three

cases.

3.3.1.2 Electrolyte resistances R∞ and RD

To further explore the effect of electrolyte resistances R∞ and RD, Figures 4.5(a)-

4.5(c) show the Nyquist plots for EDLC electrodes for Cases 4-6 featuring bulk

ion concentration c∞ of (a) 0.01 mol/L, (b) 0.001 mol/L, and (c) 0.0005 mol/L,

corresponding to bulk electrolyte resistance R∞ [Equation (3.14)] and diffuse layer

resistance RD [Equation (3.13)] of (a) 0.01 Ω m2 and 0.009 Ω m2, (b) 0.106 Ω m2

and 0.07 Ω m2, and (c) 0.20 Ω m2 and 0.14 Ω m2, respectively. All other param-

eters remained the same in these three cases. Figures 4.5(a)-4.5(c) establish that

the diameter of the semi-circle RAB (Figure 3.1) was equal to the bulk electrolyte

resistance R∞ while the resistance RBC corresponded to the diffuse layer resis-

tance RD. In fact, the same observations could be retrospectively made in Figure

3.3. In addition, Figure 4.5(d) shows the dimensionless Nyquist plot −Zim/R∞

versus (Zre − Re)/R∞ for the three cases. It indicates that, unlike σe, the elec-

trolyte concentration c∞ had a significant impact on the slope kBC (Figure 3.1)

corresponding to intermediate EIS frequencies.

Moreover, Figure 3.5(a) shows the dimensionless Nyquist plot -Zim/R∞ as

a function of (Zre − Re)/R∞ for intermediate frequencies ranging between fC

and fB for Cases 6, 9, and 21 in Table 3.2. The frequency fB corresponded

to the intersection between the semi-circle and the non-vertical line (point B in

Figure 3.1) while frequency fC was such that fC ≈ fB/20 (point C in Figure 3.1).

These three cases were chosen arbitrarily for illustration purposes. The slope kBC

was retrieved by least square fitting between fB and fC for Cases 1-23 of Table

3.2 with coefficient of determination R2 systematically larger than 0.95. Figure

3.5(b) shows the slope kBC as a function of the ratio τD/τRC , for the 23 cases
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Figure 3.4: (a)-(c) Nyquist plots for EDLC electrodes for Cases 4-6 (Table 3.2)
featuring bulk electrolyte resistance R∞ of (a) 0.011 Ω m2, (b) 0.106 Ω m2, and
(c) 0.212 Ω m2, as predicted by Equation (3.14). (d) Dimensionless Nyquist plots
−Zim/R∞ versus (Zre − Re)/R∞ for the three cases.
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considered. Here, τD = L2/D is the time scale for ion diffusion in the electrolyte

and τRC = (R∞ +RD)Cdiff,eq is the RC time constant for the electrolyte domain.

Here, only the electrolyte domain was considered due to the fact that σe or Re did

not affect the slope kBC (Figure 3.3). Figure 3.5(b) indicates that the slope kBC

was only a function of the ratio τD/τRC , regardless of the different parameters

considered. In addition, the slope kBC increased with increasing characteristic

time ratio τD/τRC . This can be attributed to the fact that the behavior of the

electrolyte deviated from an ideal equivalent RC circuit consisting of a resistor

R∞ +RD in series with a capacitor Cdiff,eq represented by a vertical line starting

from point C (Figure 3.1). Deviation from such ideal equivalent RC circuit was

due to ion diffusion in the electrolyte featuring time scale of τD = L2/D. In other

words, the slope of the non-vertical line BC (Figure 3.1) can be used to indicate

whether the charging process was controlled by EDL formation (large slope) or

limited by ion diffusion in the electrolyte (small slope)

3.3.1.3 Differential capacitance Cdiff,eq

To retrieve the equilibrium differential capacitance from EIS simulations, one

needs to first determine the low-frequency regime corresponding to the vertical

line in the Nyquist plot. Figures 3.6(a) and 3.6(b) show the Nyquist plots of

(a) Case 16 and (b) Case 18 (Table 3.2) for illustration purpose. Here, the ver-

tical line indicates that the electrode can be approximated by a simplified RC

circuit with a resistor in series with a capacitor. Thus, the imaginary part Zim of

the complex impedance Z can be expressed as Zim = −1/(2πCdiff,eq,EISf) where

Cdiff,eq,EIS is the equilibrium differential capacitance retrieved from EIS simula-

tions. Figures 3.6(c) and 3.6(d) show −Zim as a function of 1/f for (c) Case 16

and (d) Case 18, respectively. They confirm that −Zim was proportional to 1/f

with the coefficient of proportionality corresponding to 1/2πCdiff,eq,EIS. Similar

results were obtained for all 24 cases considered. In fact, Table 3.2 compares the
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Figure 3.6: (a)(b) Nyquist plots for (a) Case 16 and (b) Case 18 (Table 3.2) and
(c)(d) corresponding imaginary part of the impedance −Zim as a function of 1/f
for low frequencies. Similar results were obtained for all other cases.
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equilibrium differential capacitance Cdiff,eq,EIS retrieved from low frequency EIS

simulations, as illustrated in Figures 3.6(c) and 3.6(d), and Cdiff,eq predicted by

Equation (3.20) for all 24 cases considered. The relative difference between the

two approaches e = |Cdiff,eq,EIS − Cdiff,eq|/Cdiff,eq was less than 5% for all cases

considered, confirming the validity of the retrieval method.

3.3.1.4 Comparison between resistances from EIS and from galvanos-

tatic cycling

Furthermore, Figures 3.7(a) and 3.7(b) show the Nyquist plots and the potential

ψs(t) as a function of time under galvanostatic cycling for jGC = 0.01 mA/cm2 for

Cases 1, 2, 5, 8 (Table 3.2). These four cases were chosen to study the effect of Re

and R∞ on the internal resistance such that (i) Cases 1, 2, and 5 featured the same

bulk electrolyte resistance R∞, (ii) Cases 2 and 8 had the same electrode resistance

Re, and (iii) the sum Re + R∞ were the same for Cases 1 and 8. Moreover,

Figures 3.7(c)-3.7(f) show the internal resistance RGC retrieved from the “IR drop”

estimated visually in galvanostatic cycling [Equation (3.18)] as well as RA = Re,

RB = Re+R∞, and RC = Re+R∞+RD retrieved from Nyquist plot (Figure 3.1)

as functions of imposed current density jGC in the range of 10−3 - 0.01 mA/cm2

for (c) Case 1, and (d) Case 2, (e) Case 5, and (f) Case 8. Figure 3.7 indicates that

the internal resistance RGC was nearly independent of the imposed current density

jGC . Moreover, RGC agreed well with the sum of the electrode and electrolyte

resistances, i.e., RGC = Re + R∞, for all four cases. The same conclusion was

drawn from all 24 cases considered.

3.3.2 EDLC devices

3.3.2.1 Simulations

Figures 3.8(a) and 3.8(b) compare the Nyquist plots for (a) an EDLC electrode
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Figure 3.7: (a) Nyquist plots and (b) Potential ψs(t) as a function of time under
constant current cycling jGC = 0.01 mA/cm2 for Cases 1, 2, 5, and 8 summarized
in Table 3.2. (c)-(f) Internal resistance RGC obtained from IR drop in galvanos-
tatic cycling as a function of current density jGC and RA, RB, and RC retrieved
from EIS simulations for (c) Case 1, (d) Case 2, (e) Case 5, and (f) Case 8.
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Figure 3.8: (a)(b) Nyquist plots for (a) an EDLC electrode corresponding to Case
24 (Table 3.2) and (b) an EDLC device (Case 25) consisting of two identical elec-
trodes described in Case 24. (c)Potential ψs(t) as a function of time for imposed
current density jGC of 0.1, 0.2, and 0.5 mA/cm2 and (d) Corresponding internal
resistance Rc

GC obtained from IR drop in galvanostatic cycling as a function of
current density jGC and Rc

A, R
c
B, and R

c
C retrieved from EIS simulations for Case

25.
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(Case 24) and (b) an EDLC device (Case 25) consisting of two electrodes identical

to that of Case 24 separated by twice the electrolyte domain thickness. All elec-

trode and electrolyte properties were identical for both cases, as summarized in

Table 3.2. The Nyquist plots for a single electrode or for the EDLC device showed

the same behavior. The real and the imaginary parts of the complex impedance

of the device [Figure 3.8(b)] were equal to twice the values for the individual elec-

trode [Figure 3.8(a)], for all frequencies considered. In addition, the resistance

Rc
A of the device corresponded to twice the resistance of an individual electrode,

i.e., Rc
A = Rc

e = 2Re. Similarly, the resistance Rc
AB for the device was such that

Rc
AB = Rc

∞
= 2R∞. In addition, the overlap of points B and C in both Cases

24 and 25 was due to the small diffuse layer resistance RD compared with R∞.

Indeed, the diffuse layer was thin compared with the relatively thick electrolyte

domain due to the large ion concentration (c∞ =1 mol/L).

Moreover, Figure 3.8 also shows (c) the potential ψs(t) as a function of time

under galvanostatic cycling for jGC = 0.01 mA/cm2, and (d) the internal resis-

tance RGC retrieved from the “IR drop” in galvanostatic cycling [Figure 3.8(c)] as

well as RA, RB, and RC retrieved from Nyquist plot [Figure 3.8(b)] as functions of

imposed current density jGC (0.1 - 1 mA/cm2) for Case 25. Figure 3.8(d) indicates

that, here also, RGC was in good agreement with resistance Rc
B = Rc

e + Rc
∞

for

simulations of two-electrode devices. Moreover, Table 3.2 compares the equilib-

rium differential capacitances Cdiff,eq,EIS retrieved from EIS and Cdiff,eq predicted

by Equation (3.20). The relative difference e = |Cdiff,eq,EIS−Cdiff,eq|/Cdiff,eq was
less than 5% for both cases considered. Overall, this section confirmed that all

interpretations of the Nyquist plots for single electrodes also apply to EDLC de-

vices. In addition, the interpretations discussed previously should also be valid for

EDLC devices with asymmetric electrolyte and/or non-identical electrodes. Then,

the resistances RA, RAB, and RBC (Figure 3.1) would correspond to (i) the sum

of the resistances of the positive and negative electrodes, (ii) the bulk electrolyte
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resistance, and (iii) the sum of the resistance of the two different diffuse layers

near the positive and negative electrodes, respectively.

3.3.2.2 Experiments

Finally, Figure 3.9(a) shows experimental Nyquist plots for three different EDLC

devices with footprint surface area of 1 cm2 consisting of two identical elec-

trodes made of 80 wt% activated carbon, 5 wt% TX100 as surfactant, 1.5 wt%

carboxymethyl cellulose as thickening agent and binder, and 13.5 wt% styrene-

butadiene rubber as binder with different electrolytes namely (i) 1 M LiPF6 in

EC:DMC(1:1), (ii) 1 M citric acid in DI water, and (iii) 1 M TEATFB in acetoni-

trile. Note that different types of binders and surfactants can affect the resistance

of the electrodes by changing particle-to-particle contact of activated carbon and

affect the capacitance of the electrodes by changing the available carbon surface

area. Thus, surfactant and binders can affect the Nyquist plot. Details of the

synthesis and characterization of the electrodes and of the EDLC devices were

reported in Ref. [5] and need not be repeated. In brief, Table 3.3 summarized (i)

the materials used for the electrode and electrolyte, (ii) the electrode Rexp
e and(iii)

bulk electrolyte Rexp
∞

resistances retrieved from the Nyquist plot based on the in-

terpretations discussed previously, (iii) the internal resistance RGC obtained from

galvanostatic cycling as well as (iv) the resistances Rexp
A , Rexp

B , and Rexp
C , and (v)

the equilibrium differential capacitance Cdiff,eq,EIS of the cell obtained from EIS

measurements. The IR drop was visually estimated from the potential-time curve

in galvanostatic cycling. In addition, the resistance Rexp
C was larger than the resis-

tance measured at the lowest frequency due to the lack of a clear “vertical line” for

low frequencies. Table 3.3 indicates that the sum of the electrode resistances Rexp
e

was small and did not vary significantly among the three devices. This is con-

sistent with the fact that the electrodes of all three devices were nearly identical

and made of activated carbon with a CMC binder [5]. In addition, the electrode
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Figure 3.9: (a) Nyquist plots for the three experimental EDLC devices with acti-
vated carbon electrodes and different electrolytes (Table 3.3) [5]. (b)-(d) Internal
resistance Rexp

GC obtained experimentally from galvanostatic cycling as a function
of current IGC and Rexp

A , Rexp
B , and Rexp

C obtained from EIS measurement for (b)
Device 1, (c) Device 2, and (d) Device 3.

45



46

Table 3.3: Electrode materials and electrolyte species, operating conditions, resistance and capacitance values of devices in
experiments [5]

Device Electrode Electrolyte
Potential window Current Resistances Capacitance
ψmin ψmax IGC Rexp

e Rexp
∞

Rexp
GC Rexp

A Rexp
B Rexp

C Cdiff,eq,EIS

(V) (V) (mA) (Ω) (Ω) (Ω) (Ω) (Ω) (Ω) (mF)
1 activated carbon 1M LiPF6 in EC:DMC(1:1) 0 1 2 - 6 6.0 16.5 22.5 - 27.5 6.0 22.5 > 38.0 102.2
2 activated carbon 1M citric acid in DI water 0 1 2 - 6 4.3 41.5 38.0 - 46.5 4.3 45.8 > 60.0 117.7
3 activated carbon 1M TEATFB in Acetonitrile 0 1 2 - 6 2.4 18.4 18.3 - 25.0 2.4 20.8 > 30.0 91.4



resistance Rexp
e was small compared with that of the bulk electrolyte resistance

Rexp
∞

, which contributed the most to the internal resistance. Moreover, the bulk

electrolyte resistance Rexp
∞

for Device 2 was much larger than that for Devices 1

and 3. This can be attributed to the fact that citric acid is a weak electrolyte

featuring low ionic conductivity [5]. Furthermore, Figures 3.9(b)-3.9(d) show the

internal resistance RGC retrieved from “IR drop” in galvanostatic cycling [Equa-

tion (3.18)] as a function of the imposed current IGC (2 - 6 mA) as well as Rexp
A ,

Rexp
B , and Rexp

C retrieved from Nyquist plots for (b) Device 1, (c) Device 2, and

(d) Device 3. Figure 3.9 indicates that here also, RGC was nearly independent of

the imposed current IGC and in good agreement with Rexp
B = Rexp

e + Rexp
∞

. These

results were consistent with numerical simulations Previously discussed.

3.4 Chapter summary

This chapter presented rigorous physical interpretations of Nyquist plots from

electrochemical impedance spectroscopy (EIS) for EDLC electrodes and devices

without using an equivalent RC circuit. The Nyquist plots presenting the imag-

inary and real parts of the complex impedance of individual EDLC electrodes

and devices were numerically reproduced based on the modified Poisson-Nernst-

Planck model and closely resembled experimental measurements. It established

that the electrode resistance, bulk electrolyte resistance, diffuse layer resistance,

and equilibrium differential capacitance can be retrieved directly from Nyquist

plots. In addition, the internal resistance retrieved from the sum of electrode and

bulk electrolyte resistances in EIS simulations showed good agreement with the

internal resistance retrieved from the so-called “IR drop” in galvanostatic cycling.

Finally, the above results and interpretations were confirmed experimentally for

EDLC devices with electrodes made of activated carbon and various electrolytes.
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CHAPTER 4

Physical Interpretations of Electrochemical Impedance Spectroscopy

(EIS) of Pseudocapacitive Electrodes

The previous chapter provided physical interpretations of EIS results for EDLC

electrodes. This chapter aims to extend the simulation tools and provide physical

interpretations of EIS measurements for pseudocapacitive electrodes. To do so,

EIS measurements of pseudocapacitive electrodes based on three-electrode setups

were numerically reproduced for a wide range of electrode conductivity, electrolyte

thickness, redox reaction rate constant, and bias potential. The chapter also

aims to validate experimentally the physical interpretation of EIS measurements

developed numerically.

4.1 Background

Nyquist plots present the imaginary part −Zim as a function of the real part

Zre of the complex impedance. They typically consist of one [23, 24, 49–55] or

two [6, 25–29, 56–60] semi-circles at relatively high frequencies and a non-vertical

line with respect to the real axis at low frequencies [49–60] for electrodes consisting

of transition metal oxides or conductive polymers capable of engaging in reversible

redox reactions with ions present in the electrolyte [12,13,55,71,72,123–133,135,

136]. Figure 4.1 shows a typical Nyquist plot for a pseudocapacitive electrode. It

consists of two semi-circles, i.e., a semi-circle at high frequencies between points

A and B and one at intermediate frequencies between points B and C, as well as

a non-vertical line at low frequencies beyond point C. Note that the non-vertical

line may be absent for some redox active electrodes [6, 23–29].
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Figure 4.1: Illustration of typical Nyquist plots obtained for pseudocapacitive
electrodes using three-electrode setup.

Multiple and often contradictory physical interpretations of experimental Nyquist

plots have been proposed in the literature [23–27, 49–60]. For example, the resis-

tance RA at point A (Figure 3.1) has been attributed to (i) the bulk electrolyte

resistance [23, 51, 52, 56] or to (ii) the sum of the electrode resistance, the bulk

electrolyte resistance, and the contact resistance between the electrode and the

current collector [24, 26, 49, 50, 54, 60]. For Nyquist plots with one semi-circle,

the diameter of the semi-circle has been interpreted as (i) the so-called charge

transfer resistance [23,24,51–54] or as (ii) the sum of the electrolyte solution and

electrode resistances [55]. For Nyquist plots with two semi-circles, the diameter

of the semi-circle at higher frequencies RAB = RB − RA (Figure 3.1) has been

assigned to (i) the electrode resistance [56], or to (ii) the charge transfer resis-

tance associated with pseudocapacitive charge storage including redox reactions

and/or ion intercalation [25, 57, 60], or to (iii) the electrolyte resistance in the

porous electrodes [26, 27, 58, 59]. The diameter of the semi-circle at lower fre-

quencies RBC = RC − RB (Figure 3.1) has been attributed to (i) the ionic or
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so-called diffusion resistance of the electrolyte [25, 60], or to (ii) the resistance of

the solid-electrolyte interphase (SEI) layer [29,160], or to (iii) the charge transfer

resistance [26, 27, 56–60]. More conservatively, it has also been pointed out that

“definitive assignment of each arc to a particular phenomenon is not possible given

the probed data” [60]. Finally, the non-vertical line beyond point C (Figure 3.1)

at low frequencies (if observed) has been assigned to (i) ion transport limitation in

the electrolyte in porous electrode structures [51] or to (ii) ion transport limitation

in the bulk electrolyte [56–58].

This chapter aims to provide a rigorous interpretation of Nyquist plots ob-

tained by EIS for redox active electrodes. To do so, EIS measurements of redox

active electrodes based on three-electrode configurations were numerically repro-

duced for a wide range of electrode conductivity, electrolyte thickness, redox re-

action rate constant, and bias potential. Then, the physical interpretation of EIS

measurements developed numerically was validated experimentally.

4.2 Numerical analysis

4.2.1 Schematic and assumptions

Figure 4.2 shows a one-dimensional (1D) simulated domain consisting of a planar

current collector supporting a planar redox active working electrode of thickness

LP and an electrolyte domain of thickness L corresponding to a three-electrode

configuration. Following assumptions were made: (1) the electrolyte was binary

and symmetric, i.e., it consisted of two ion species of opposite valency ±z (z > 0).

(2) The two ion species were also assumed to have identical diameter a and diffu-

sion coefficient D. (3) The Stern layer contained no free charge and its thickness

H was approximated as the radius of the ions, so that H = a/2 [8, 16, 151]. (4)

The transport properties of the electrode and electrolyte were taken as constant.

(5) Bulk motion of the electrolyte was negligible. (6) Ion intercalation in the
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Figure 4.2: Schematics of the simulated one-dimensional pseudocapacitive elec-
trode in a three-electrode setup. The dashed line encloses the computational
domain simulated.

electrode was modeled as a diffusion process. (7) Heat generation was ignored

and the temperature was uniform and constant in the electrode and electrolyte.

(8) The contact resistance between the electrode and the current collector and

the resistance of the current collector were negligible. (9) Self-discharge of the

electrode or the device was ignored.

Simulations reported in this chapter were based on the modified Poisson-

Nernst-Planck (MPNP) model for the spatiotemporal evolution of the potential

ψ(x, t) [Equation (2.1)] in the electrode and electrolyte as well as the ion con-

centrations c1(x, t) of cations and c2(x, t) of anions [Equations (2.2) and (2.4)]

in the binary and symmetric electrolyte for redox active electrodes. In addition,

the boundary conditions varied depending on whether EIS or cyclic voltammetry

were simulated. EIS simulations imposed potential ψs(t) at the current collec-

tor/electrode interface as a harmonic function of time t [Equation (1.3)]. For

cyclic voltammetry, the potential ψs(t) at the current collector/electrode inter-
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face was imposed as a triangular wave with respect to cycle period [Equation

(1.1)].

4.2.2 Constitutive relationships

In order to solve the coupled transient 1D equations as well as the initial and

boundary conditions, a total of 21 parameters were necessary including (i) the

electrode properties σP , k0 ∆ψeq, c1,P,max, c1,P,0, α, and D1,P , (ii) the electrolyte

properties c∞, z, ǫr, a, and D, (iii) the dimensions of the simulated electrode and

electrolyte domains LP and L, along with (iv) the operating conditions ψdc, ψ0,

and f for EIS simulations and ψmin, ψmax and v for cyclic voltammetry, and (v)

temperature T (in K).

The electrical conductivity σP of the electrode, the length of the electrolyte do-

main L, the redox reaction rate constant k0, and the bias potential ψdc were treated

as variables to achieve various resistances. Most parameters were taken from the

literature. For electrodes consisting of transition metal oxides, the equilibrium po-

tential difference ∆ψeq can be modeled as a linear function of the state-of-charge

(SOC) defined ad c1,P/c1,P,max, where c1,P,max is the maximum intercalated lithium

concentration in the pseudocapacitive electrode [82,83,161]. Note that for MnO2

dense films of thickness 100 µm, ∆ψeq(t) (in V) was measured as [162]

∆ψeq(t) = 10.5[4− c1,P (t)/c1,P,max]− 39.9. (4.1)

Here, c1,P,max was taken as c1,P,max ≈ 31.9 mol/L, corresponding to fully lithiated

metal oxide LiMnO2 [163, 164]. The initial concentration of Li+ in the electrode

c1,P,0 was chosen as the equilibrium concentration solution for electrode potential

equal to ψdc. The transfer coefficient α was assumed to be 0.5, corresponding

to identical energy barriers for forward and backward redox reactions [8]. The

diffusion coefficient D1,P of the intercalated Li+ in the transition metal oxides
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Table 4.1: Value or range of electrode and electrolyte properties and dimensions
used in the simulations reported in this study.

Parameter Symbol Value Unit
Electrode conductivity σP 10−5 - 5 x 10−4 S/m
Maximum ion concentration in the electrode c1,P,max 31.9 mol/L
Initial ion concentration in the electrode c1,P,0 6.38 - 6.58 mol/L
Reaction rate constant k0 10−9 - 10−8 m1+3αmol−αs−1

Transfer coefficient α 0.5
Diffusion coefficient in the electrode D1,P 10−14 m2/s
Bulk ion concentration c∞ 1 mol/L
Valency z 1
Dielectric constant ǫr 64.4
Ion diameter a 0.67 nm
Diffusion coefficient in the electrolyte D 2.6 x 10−10 m2/s
Electrode thickness LP 100 nm
Electrolyte thickness L 16 - 64 µm
Bias potential ψdc 0.1 - 0.6 V
Amplitude of oscillating potential ψ0 5 mV
Frequency f 0.1 - 5 x 104 Hz

Potential window
ψmin 0 V
ψmax 0.5 V

Scan rate v 0.001 mV/s
Temperature T 298 K

typically ranges from 10−16 to 10−10 m2/s [165]. Here, D1,P was chosen as 10−14

m2/s.

As for the electrolyte, we considered 1M LiClO4 salt in propylene carbonate

(PC) solvent such that the bulk ion concentration c∞ = 1 mol/L and valency

z = 1. The dielectric constant was taken as that of PC, i.e., ǫr = 64.4 [152]. The

effective solvated ion diameter a and diffusion coefficient D were taken as those

of solvated Li+ ion in PC such that a = 0.67 nm and D = 2.6 x 10−10 m2/s [166].

Finally, for EIS simulations, the oscillating potential amplitude was set as

ψ0 = 5 mV and the frequency f varied between 0.1 and 8 x 108 Hz. For cyclic

voltammetry, the potential window was ψmin = 0 V and ψmax = 0.5 V and the scan

rate v was very low, i.e., v = 0.001 mV/s, to reproduce conditions of no kinetic

limitations. The temperature T was set as T = 298 K. Table 7.1 summarizes the

values or ranges of these different parameters.
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4.2.3 Data processing

4.2.3.1 Faradaic and capacitive current densities

The current density at the electrode/electrolyte interface js(t) [Equation (1.3)]

can be expressed as the sum of (i) the capacitive current density jC(t) resulting

from the EDL formation and (ii) the faradaic current density jF (t) related to the

redox reactions, i.e., js(t) = jC(t)+jF (t). The capacitive current density jC(LP , t)

can be defined as [167]

jC(LP , t) = −ǫ0ǫr
∂2ψ

∂x∂t
(LP , t) (4.2)

where ǫ0 = 8.854 × 10−12 F/m is the vacuum permittivity. The faradaic current

density jF (LP ,t) can be defined by the generalized Frumkin-Butler-Volmer model

evaluated at the electrode/electrolyte interface and expressed as [8]

jF (LP , t) = jF,ex(t)

{

exp

[

(1− α)zFη(LP , t)

RuT

]

− exp

[−αzFη(LP , t)
RuT

]}

(4.3)

where jF,ex(t) [Equtaion (2.7)] is the so-called exchange current density, F =

eNA = 9.648× 104 C/mol is the Faraday’s constant, and Ru = 8.314 J mol−1 K−1

is the universal gas constant.

4.2.3.2 Electrical resistances

The electrical resistance RP (in Ω m2) per unit surface area of the planar electrode

and the bulk electrolyte resistance R∞ (in Ω m2) depend on the thicknesses LP

and L and the electrical conductivities σP and σ∞ of the electrode and electrolyte

according to [7, 168]

RP = LP/σP and (4.4)

R∞ ≈ L/σ∞ with σ∞ = (2z2F 2Dc∞)/(RuT ). (4.5)
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Moreover, the so-called charge-transfer resistance Rct (in Ω m2) under EIS

simulations can be expressed as [8]

Rct =
η − ηdc
jF − jF,dc

(4.6)

where η (in V) is the surface overpotential [Equation (2.8)], ηdc is the time-

independent DC overpotential, jF (in A/m2) is the resulting faradaic current

density, and jF,dc is the time-independent DC faradaic current density. Here, η

and jF can also be expressed in complex notation as

η(t) = ηdc + η0e
i[2πft−φη(f)] and jF (t) = jF,dc + jF,0e

i[2πft−φF (f)] (4.7)

where η0 is the amplitude of the oscillating overpotential, φη(f) is the frequency-

dependent phase angle between the imposed potential ψs(t) and the overpotential

η(t), jF,0 is the amplitude of the oscillating faradaic current density, and φF (f)

is the frequency-dependent phase angle between the imposed potential ψs(t) and

the faradaic current density jF (t).

Similarly, the mass-transfer resistance Rmt (in Ω m2) caused by ion transport

in the diffuse layer can be expressed as [8]

Rmt =
∆ψD −∆ψD,dc
jF − jF,dc

(4.8)

where ∆ψD (in V) is the potential drop across the diffuse layer of thickness LD and

located between x = LP +H and x = LP +H + LD (Figure 7.1) while ∆ψD,dc is

the time-independent DC potential drop across the diffuse layer. Similarly, using

complex notations, ∆ψD can be expressed as

∆ψD = ∆ψD,dc +∆ψD,0e
i[2πft−φD(f)] (4.9)
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where ∆ψD,0 is the amplitude of the oscillating potential drop across the diffuse

layer, and φD(f) is the frequency-dependent phase angle between the imposed

potential ψs(t) and the potential drop across the diffuse layer ∆ψD(t).

4.3 Experimental methods

In order to validate experimentally the physical interpretation of EIS obtained

numerically, a redox active MoS2 electrode was synthesized. First, a slurry was

prepared by mixing 70 wt% MoS2 nanoparticles, 10 wt% Super P (Alfa Ae-

sar), 10 wt% multiwall carbon nanotubes (mwCNT, Sigma Aldrich), and 10 wt%

polyvinylidene fluoride (PVDF, Kynar) in N-methyl-2-pyrrolidinone (NMP, Sigma

Aldrich). The MoS2 nanoparticles were synthesized through the sulfurization of

MoO2 nanoparticles according to a previously reported procedure [169]. Then,

the slurry was drop-cast onto a 1x1 cm2 carbon-coated aluminum current collec-

tor (MTI) with a weight loading of 0.4 mg MoS2 nanoparticles. The electrode was

dried in air overnight and under vacuum at 120oC for at least 2 h. Finally, the

electrode was placed in a three-neck half-cell with activated carbon counter and

(i) Li/Li+ or (ii) Na/Na+ reference electrodes where each electrode was clipped to

and immersed in (i) 1 M LiClO4 (Sigma Aldrich) in ethylene carbonate:dimethyl

carbonate (EC:DMC, 1:1 by volume) or (ii) 1 M NaClO4 (Alfa Aesar) in EC/DMC

(1:1 by volume) electrolyte. EIS measurements were performed on the MoS2 elec-

trode with potential amplitude ψ0 of 10 mV, bias potential ψdc versus reference

electrodes ranging between 1.8 and 2.2 V and frequency f ranging between 0.1

Hz and 2 x 105 Hz.

4.4 Results and discussion

Table 4.2 summarizes the 8 different cases considered to identify the electrode

RP , electrolyte R∞, charge transfer Rct and mass transfer Rmt resistances from
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Table 4.2: Simulation parameters and corresponding resistances RP , R∞, Rct, and Rmt values for 9 EIS simulations for
pseudocapacitive electrodes.

Case σP L k0 ψdc RP R∞ Rct Rmt

number (S/m) (µm) (m1+3αmol−αs−1) (V) (Ω cm2) (Ω cm2) (Ω cm2) (Ω cm2)

1 1 x 10−4 64 10−9 0.1 10 4.2 24.3 20.2
2 5 x 10−5 64 10−9 0.1 20 4.2 13.5 11.4
3 1 x 10−5 64 10−9 0.1 100 4.2 7.6 6.6
4 5 x 10−5 32 10−9 0.1 20 2.1 17.1 14.9
5 5 x 10−5 16 10−9 0.1 20 1.05 19.9 17.7
6 5 x 10−5 32 5 x 10−9 0.1 20 2.1 1.4 1.1
7 5 x 10−5 32 10−8 0.1 20 2.1 0.6 0.5

8 5 x 10−5 8 10−8

0.1 20 0.53 0.7 0.6
0.2 20 0.53 0.7 0.6
0.3 20 0.53 0.8 0.7
0.4 20 0.53 0.9 0.7
0.6 20 0.53 1.2 1.0

9 5 x 10−5 8 0
0.1 20 0.53 - -
0.3 20 0.53 - -
0.6 20 0.53 - -



the Nyquist plots of a pseudocapacitive electrode in a three-electrode setup.

4.4.1 Current densities and overpotentials

Figures 4.3(a)-4.3(c) show the (i) faradaic current density jF (t), (ii) capacitive

current density jC(t), and (iii) total current density js(t) = jC(t) + jF (t) as func-

tions of the dimensionless time ft during one EIS cycle for Case 1 (Table 4.2) at

frequency f equal to (a) 2 Hz, (b) 20 Hz, and (c) 2000 Hz. A phase shift between

capacitive and faradaic current densities was observed at all frequencies. In ad-

dition, the faradaic current density jF (t) always dominated over the capacitive

current density jC(t) (i.e., jF,dc > jC,dc) and their amplitudes were dependent on

frequency. Figure 4.3(d) shows the amplitudes of oscillations of (i) the faradaic

current density jF,0, (ii) the capacitive current density jC,0, and (iii) the total

current density js,0 as functions of frequency f . It indicates that the amplitude

of the faradaic current density jF,0 was the largest at low frequencies while that

of the capacitive current density jC,0 was the largest at high frequencies. In other

words, the major contribution to the impedance Z was the faradaic reactions at

low frequencies and the EDL formation at high frequencies.

Moreover, Figure 4.3(e) shows the overpotential η(t) and the faradaic current

density jF (t) as functions of the dimensionless time ft for Case 1 (Table 4.2) at

frequency f equal to 2, 20 and 2000 Hz. It indicates that η and jF were in phase

at all frequencies, i.e., φη(f) = φF (f) [Equation (4.7)]. Figure 4.3(f) shows jF as

a function of η for EIS simulations for Case 1. It established a linear relationship

between jF and η for all frequencies considered. In addition, the amplitude η0

of the overpotential oscillations were very small. Note that similar conclusions

can be drawn from the plot of jF as a function of ∆ψD (Figure S1 in supporting

information). Thus, the charge transfer resistance and mass transfer resistance,
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Figure 4.3: (a)-(c) Faradaic jF , capacitive jC , and total js = jC + jF current
densities as functions of the dimensionless time ft in one oscillating cycle for
frequency of (a) 2 Hz, (b) 20 Hz, and (c) 2000 Hz. (d) Amplitudes of current
density oscillations as functions of frequency. (e) Faradaic current density jF
and overpotential η as functions of dimensionless time ft and (f) jF vs. η for
frequencies f of 2, 20, and 2000 Hz under EIS simulations.
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given by Equations (4.6) and (4.8), can be estimated as

1

Rct
=

jF (t)− jF,dc
η(t)− ηdc

≈ ∂jF
∂η

∣

∣

∣

∣

η=ηdc

(4.10)

1

Rmt
=

jF (t)− jF,dc
∆ψD(t)−∆ψD,dc

≈ ∂jF
∂∆ψD

∣

∣

∣

∣

∆ψD=∆ψD,dc

(4.11)

In other words, 1/Rct and 1/Rmt correspond, respectively, to the slope of jF vs. η

and jF vs. ∆ψD near the DC operating points. Figure 4.3(f) also indicates that

Rct was independent of frequency. Similar observations can be made for the mass

transfer resistance Rmt [Figure S1(b) in supporting information].

4.4.2 Interpretation of Nyquist plots

4.4.2.1 Electrode resistance RP

Figure 4.4 shows the Nyquist plots for the electrodes of Cases 1-3 featuring elec-

trode electrical conductivity σP equal to (a) 1 x 10−4 S/m, (b) 5 x 10−5 S/m, and

(c) 1 x 10−5 S/m, corresponding to electrode resistance RP [Equation (4.4)] equal

to (a) 10 Ω cm2, (b) 20 Ω cm2, and (c) 100 Ω cm2, respectively. All other pa-

rameters remained the same in these three cases (Table 4.2). Figure 4.4 indicates

that the high-frequency intersection of the Nyquist plot with the Zre-axis (corre-

sponding to RA in Figure 3.1) increased with decreasing conductivity σP and was

systematically equal to the electrode resistance RP . The same observations have

already been made for simulations of EDLC electrodes [168].

Moreover, the diameter of the semi-circle at high frequencies (corresponding to

RAB = RB−RA in Figure 3.1) was not affected by the electrode conductivity and

was equal to 4.2 Ω cm2 in all cases. By contrast, the diameter of the semi-circle

at lower frequencies (corresponding to RBC = RC − RB in Figure 3.1) decreased

with decreasing electrode conductivity σP .
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Figure 4.4: Nyquist plots for redox active electrodes for Cases 1-3 featuring elec-
trode resistance RP equals to (a) 10 Ω cm2, (b) 20 Ω cm2, and (c) 100 Ω cm2.
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4.4.2.2 Bulk electrolyte resistance R∞

Figure 4.5 shows the Nyquist plots for electrodes of Cases 2, 4, and 5 featuring

electrolyte thickness L equal to (a) 64 µm, (b) 32 µm, and (c) 16 µm, correspond-

ing to bulk electrolyte resistance R∞ [Equation (4.5)] equal to (a) 4.2 Ω cm2, (b)

2.1 Ω cm2, and (c) 1.05 Ω cm2, respectively. All other parameters remained the

same in these three cases. Here, the electrode resistance RP was constant and

equal to 20 Ω cm2 for all three cases. Previous conclusion identifying RA = RP

was also valid for these cases. In addition, Figure 4.5 establishes that the diam-

eter of the semi-circle at high frequencies (corresponding to RAB = RB − RA in

Figure 3.1) was equal to the bulk electrolyte resistance, i.e., RAB = R∞. In fact,

the same observations were made for EDLC electrodes [168]. Moreover, increas-

ing the electrolyte thickness L reduced the diameter of the semi-circle at lower

frequencies, corresponding to RBC = RC −RB (Figure 3.1).

4.4.2.3 Charge transfer resistance Rct and mass transfer resistance Rmt

To further explain the diameter of the semi-circle at intermediate frequencies

(RBC in Figure 4.1), charge transfer resistance Rct and mass transfer resistance

Rmt were varied by changing the reaction rate constant k0. Figure 4.6 shows

the Nyquist plots for electrodes for Cases 4, 6, and 7 featuring redox reaction

rate constant k0 equal to (a) 10−9 m2.5mol−0.5s−1, (b) 5 × 10−9 m2.5mol−0.5s−1,

and (c) 10−8 m2.5mol−0.5s−1. These cases corresponded to charge transfer Rct

[Equation (4.6)] and mass transfer Rmt [Equation (4.8)] resistances equal to (a)

24.3 Ω cm2 and 20.2 Ω cm2, (b) 13.5 Ω cm2 and 11.7 Ω cm2, and (c) 7.6 Ω cm2

and 6.6 Ω cm2, respectively. All other parameters remained the same in these

three cases. In particular, RP and R∞ were equal to 20 Ω cm2 and 2.1 Ω cm2,

respectively. Previous identifications of RA = RP and RAB = R∞ remained valid

in these cases as well. Figure 4.6 establishes that the diameter of the semi-circle at
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Figure 4.5: Nyquist plots for redox active electrodes for Cases 2, 4, and 5 featuring
bulk electrolyte resistance R∞ equals to (a) 4.2 Ω cm2, (b) 2.1 Ω cm2, and (c)
1.05 Ω cm2.
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Figure 4.6: Nyquist plots for redox active electrodes for Cases 4, 6, and 7 featuring
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lower frequencies RBC (Figure 4.1) was systematically equal to the sum of charge

transfer resistance Rct and mass transfer resistance Rmt estimated using Equations

(4.10) and (4.11), i.e., RBC = Rct +Rmt.

In addition, Figures 4.4 and 4.5 indicate that Rct and/or Rmt decreased with

(i) decreasing electrode conductivity σP and (ii) increasing electrolyte thickness

L. To explain the trend in Rct, Figures 4.7(a)-4.7(b) show (i) jF versus η and jF

versus ∆ψD under cyclic voltammetry at very low scan rate (v = 0.001 mV/s)

where there are no kinetic limitations and (ii) the points (ηdc, jF,dc) and (∆ψD,dc,

jF,dc) obtained from EIS simulations and averaged from all frequencies considered

for different values of (a) σP in Cases 1-3 and (b) L in Cases 2, 4, and 5. The

figures indicate that the jF -η curve remained nearly the same for different values

of σP and L. In addition, the slope of the jF -η curve at (ηdc, jF,dc), corresponding

to 1/Rct [Equation (4.10)], decreased with increasing DC overpotential ηdc which

increased with increasing σP and decreasing L. Similar observations were made

for jF -∆ψD curve and 1/Rmt.

To further explain the trend in the overpotential ηdc = ∆ψH,dc − ∆ψeq,dc and

potential drop across the diffuse layer ∆ψD,dc, Figures 4.7(c)-4.7(d) shows the DC

potential drops across (i) the electrode ∆ψP,dc, (ii) the Stern layer ∆ψH,dc, (iii)

the diffuse layer ∆ψD,dc, and (iv) the bulk electrolyte ∆ψ∞,dc for different values

of (c) σP in Cases 1-2 and (d) L in Cases 2, 4, and 5. Note that the imposed DC

potential ψdc at the current collector is such that

ψdc = ∆ψP,dc +∆ψH,dc +∆ψD,dc +∆ψ∞,dc. (4.12)

Figure 4.7(c) indicates that the potential drops ∆ψH,dc, ∆ψD,dc, and ∆ψ∞,dc in-

creased with increasing σP to compensate for the decrease in the potential drop

across the electrode ∆ψP,dc so as to maintain the imposed ψdc. Similarly, Figure

4.7(d) establishes that the potential drops ∆ψP,dc, ∆ψH,dc, and ∆ψD,dc decreased

65



(a) (b)

0.00 0.01 0.02 0.03

0

10

20

30

40

 
D
, j

F
) from CV

 
D,dc

, j
F,dc

) from EIS

 , j
F
) from CV

 
dc

, j
F,dc

) from EIS

 Case 1, 
P
 = 10

-4
 S/m

 Case 2, 
P
 = 5 x 10

-5
 S/m

 Case 3, 
P
 = 10

-5
 S/m

 

F
a

ra
d

a
ic

 c
u

rr
en

t 
d

en
si

ty
 j

F
 (

A
/m

2
)

Overpotential,  (V)

0.00 0.01 0.02 0.03

Potential drop across the diffuse layer, 
D

 (V)

0.00 0.01 0.02 0.03

0

10

20

30

40

 
D
, j

F
) from CV

 
D,dc

, j
F,dc

) from EIS

 , j
F
) from CV

 
dc

, j
F,dc

) from EIS

 Case 2, L = 64 m

 Case 4, L = 32 m

 Case 5, L = 16 m

F
a

ra
d

a
ic

 c
u

rr
en

t 
d

en
si

ty
 j

F
 (

A
/m

2
)

Overpotential,  (V)

0.00 0.01 0.02 0.03

Potential drop across the diffuse layer, 
D

 (V)

(c) (d)

0.00000 0.00005 0.00010

0.00

0.02

0.04

0.06

0.08

0.10

0.12

dc
 = 

P,dc H,dc D,dc ,dc

 
P,dc

 
H,dc

 
D,dc

 
,dc

P
o

te
n

ti
a

l 
d

ro
p

, 
d

c (
V

)

Electrode conductivity
P
 (S/m)

0 20 40 60 80

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 
dc

 = 
P,dc H,dc D,dc ,dc

 
P,dc

 
H,dc

 
D,dc

 
,dc

P
o

te
n

ti
a

l 
d

ro
p

, 
d

c (
V

)

Electrolyte thickness, L ( m)

Figure 4.7: (a)(b) Faradaic current jF as a function of overpotential η and of
potential drop across the diffuse layer ∆ψD under cyclic voltammetry at very low
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with increasing electrolyte thickness L to compensate for the increase in the po-

tential drop across the bulk electrolyte ∆ψ∞,dc while ψdc remained constant. In

other words, both potential drops ∆ψH,dc and ∆ψD,dc increased with increasing

σP and decreasing L. In addition, under EIS simulations, the variation of state-of-

charge of the electrode was negligible, resulting in nearly constant ∆ψeq,dc. Thus,

the DC overpotential ηdc = ∆ψH,dc − ∆ψeq,dc and the charge transfer resistance

Rct varied like ∆ψH,dc, i.e., they increased with increasing electrical conductivity

σP and decreasing electrolyte thickness L. Note that the potential drop across

the diffuse layer ∆ψD,dc and the potential drop across the Stern layer ∆ψH,dc were

related [156] (see detailed derivation in supporting information). Therefore, the

charge transfer resistance Rct [Equation (4.6)] and the mass transfer resistance

Rmt [Equation (4.8)] were coupled and could not be separated in the Nyquist

plot.

4.4.2.4 Effect of bias potential ψdc

Figure 4.8(a) shows the Nyquist plot for Cases 8 and 9 with bias potential ψdc

ranging from 0.1 to 0.6 V. All parameters were identical in Cases 8 and 9 except

for k0 equals to k0 = 10−8 m2.5mol−0.5s−1 in Case 8 (redox active) and k0 = 0 in

Case 9 (EDLC) (Table 4.2). Two semi-circles were observed for Case 8 while only

one semi-circle and a nearly vertical line were observed for Case 9. It is important

to note that the high frequency semi-circle AB for Cases 8 and 9 overlapped. In

addition, the intercept of the Nyquist plot with the Zre axis (point A) and the

semi-circle AB at high frequency were independent of ψdc. Indeed, the resistances

of the electrode RP and bulk electrolyte R∞ are properties of the electrode and

electrolyte. They were both independent of redox reactions and of ψdc, as indicated

in Equations (4.4) and (4.5). Moreover, the nearly vertical lines observed for Case

9 were also nearly independent of DC potential ψdc, as previously observed for

EDLC electrodes [168]. The slope of the line indicated whether the charging
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Figure 4.8: (a) Nyquist plot for Cases 8 (redox reactions) and 9 (no redox reac-
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from EIS simulations for Case 8.
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process was controlled by EDL formation (large slope) or limited by ion diffusion

in the electrolyte (small slope) [168]. Here, the slope of the non-vertical line was

very steep, indicating that the charging process was controlled by EDL formation

in absence of faradaic reactions.

Furthermore, for Case 8, the diameter of the semi-circle BC at lower frequency,

i.e., the charge and/or mass transfer resistances Rct and Rmt, increased with

increasing ψdc. Indeed, Figure 4.8(b) plots the faradaic current density jF versus

overpotential η and jF versus potential drop across the diffuse layer ∆ψD under

cyclic voltammetry at very low scan rate (v = 0.001 mV/s), i.e., without kinetic

limitations. It also plots the corresponding points (ηdc,jF,dc) and (∆ψD,dc, jF,dc)

averaged from all frequencies under EIS simulations for the different bias potential

ψdc considered. It indicates that (i) the DC overpotential ηdc increased with

increasing bias potential ψdc and (ii) the slope of the jF -η curve at point (ηdc,jF,dc),

i.e., 1/Rct, decreased with increasing ηdc. Similar conclusion can be drawn for ∆ψD

and thus for 1/Rmt.

4.4.2.5 Comparison with experimental data

Figure 4.9(a) shows the Nyquist plots reported in the literature and obtained ex-

perimentally for LiNi0.6Co0.2Mn0.2O2 electrode in 1M LiPF6 in ethylene carbonate

and ethyl-methyl carbonate (EC/EMC, 3:7) electrolyte for bias potential ψdc of

3.7-4.2 V [6]. The experiment was performed in coin-type cells with lithium foil

as the counter and reference electrode [6]. The Nyquist plots featured two semi-

circles and closely resembled numerically-generated Nyquist plots illustrated in

Figure 4.8(a). In addition, neither the high-frequency intersection of the Nyquist

plot with the Zre-axis RA nor the diameter of the high frequency semi-circle RAB

was affected by ψdc. Similarly, the resistance RBC , interpreted as the charge Rct

and/or mass Rmt transfer resistances, increased with increasing ψdc, as observed

in the simulations.
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in 1M LiPF6 in EC/EMC(3:7) for bias potential ψdc of 3.7-4.2 V [6], (b,c) for
MoS2 mesoporous electrodes in (b) 1 M NaClO4 in EC/DMC and (c) 1 M LiClO4

in EC/DMC for bias potential ψdc of 1.8 - 2.2 V. (d) Internal resistance RGC

obtained experimentally from galvanostatic cycling as a function of current iGC
and RB obtained from EIS measurement shown in (b,c) for MoS2 electrodes.

70



Figures 4.9(b) and 4.9(c) show the Nyquist plots obtained experimentally for

MoS2 mesoporous electrodes in three-electrode configuration in (b) 1 M NaClO4

(EC/DMC) and (c) 1 M LiClO4 (EC/DMC) electrolytes for bias potential ψdc of

1.8 - 2.2 V. For both systems, Nyquist plots feature two partially overlapping semi-

circles at high frequencies as well as a non-vertical line at low frequencies. The

fact that the two semi-circles overlapped could be attributed to the fact that ion

transport in the electrolyte (corresponding to R∞) and ion intercalation into the

MoS2 electrode (related to Rct and/or Rmt) took place simultaneously throughout

the porous electrode. In addition, for both systems, the high-frequency intersec-

tion of the Nyquist plot with the Zre-axis (point A) and the high frequency arc

AB were not affected by ψdc. These experimental observations agreed with numer-

ical simulations presented earlier. Moreover, the resistance RA was identical in

both experimental systems. This was consistent with the interpretation that RA

corresponded to the electrode resistance and the fact that both electrodes were

nearly identical. In fact, the electrode resistance was equal to 10 Ω and similar

to that of activated carbon electrodes (5-10 Ω) of similar dimensions reported in

our previous study [168]. On the other hand, the resistance RAB for the system

with NaClO4 electrolyte [Figure 4.9(b)] was larger than that for LiClO4 electrolyte

[Figure 4.9(c)]. This was in line with the fact that RAB corresponded to the bulk

electrolyte resistance and that NaClO4 in EC/DMC feature lower ionic conduc-

tivity (∼5 mS/cm) [170] than LiClO4 in EC/DMC (∼8.4 mS/cm) [171] at room

temperature.

Furthermore, for both systems, the diameter of the second arc BC, i.e., the

resistance RBC , increased with increasing ψdc. This was consistent with numerical

simulations in presence of redox reactions (Case 8, Figure 4.8). In addition, for any

given bias potential, the resistance RBC for NaClO4 electrolyte was larger than

that for LiClO4 electrolyte. Note also that the pseudocapacitive charge storage

mechanism for MoS2 electrode is mainly due to ion intercalation [172]. However,
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the kinetics of Na+ intercalation into the MoS2 electrode was slower than that of

Li+ due to the larger radius and heavier mass of Na+ compared with Li+ [172,173].

This resulted in larger charge and mass transfer resistances in the NaClO4 than

in the LiClO4 electrolyte.

Moreover, the non-vertical line beyond point C could be assigned to ion trans-

port limitation in the electrolyte in the porous electrodes or in the diffuse layer

of the EDL. This feature was not observed (i) in numerical simulations for planar

redox active electrodes [Case 8, Figure 4.8(a)] or (ii) in experiments for electrodes

made of battery-type LiNi0.6Co0.2Mn0.2O2 material shown in Figure 4.9(a) [6]. The

latter can be attributed to the dominance of faradaic reactions at low frequencies

(beyond point C). However, similar non-vertical line was observed in numerically

generated Nyquist plots for EDLC electrodes [Case 9, Figure 4.8(a)], as previously

discussed. In fact, by contrast with planar pseudocapacitive electrodes or battery

electrodes [6], the current contribution from EDL formation was likely large in

the highly porous MoS2 electrodes due to the large electrode surface area.

Finally, Figure 4.9(d) shows the internal resistance RGC retrieved from the

“IR drop” in galvanostatic cycling (see supporting information) as a function of

the imposed current iGC (1-8 mA) as well as RB = RA + RAB retrieved from

the Nyquist plots for the two systems considered in Figures 4.9(b) and 4.9(c).

It indicates that RGC was nearly independent of the imposed current IGC and

was approximately equal to RB. Note that RGC has been attributed to the ohmic

resistance of the system [154] and is equal to the sum of the electrical resistance of

the electrode RP and the ionic resistance of the electrolyte R∞ [7,8,154,174,175].

This result confirms the physical interpretation developed from the numerical

simulations establishing that RB = RP +R∞.
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4.5 Chapter summary

This chapter presented physical interpretations of electrochemical impedance spec-

troscopy (EIS) results for redox active electrodes. The Nyquist plots present-

ing the imaginary and real parts of the complex impedance of individual elec-

trodes were numerically reproduced based on the modified Poisson-Nernst-Planck

model along with the generalized Frumkin-Butler-Volmer equation for redox re-

actions and closely resembled experimental measurements. It established that the

electrode, bulk electrolyte, charge transfer, and mass transfer resistances could

be identified from Nyquist plots. Furthermore, the electrode and bulk elec-

trolyte resistances were independent of the bias potential. On the other hand,

the charge and mass transfer resistance increased with increasing bias poten-

tial. Finally, these results and interpretations were confirmed experimentally for

LiNi0.6Co0.2Mn0.2O2 and MoS2 electrodes in organic electrolytes.
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CHAPTER 5

Interfacial and Transport Phenomena in EDLC Electrodes Made of

Ordered Carbon Spheres under Cyclic Voltammetry

Chapters 3-4 provided physical interpretations for EC electrodes based on one-

dimensional numerical simulations. This chapter aims to extend our simulation

tools to multidimensional systems and to investigate the effect of electrode nanoar-

chitecture on the performance of EDLC electrodes. The EDLC electrodes consid-

ered here consisted of highly-ordered monodisperse spherical carbon nanoparticles

arranged in either simple cubic (SC) or face-centered cubic (FCC) packing struc-

ture. Cyclic voltammetry (CV) curves were numerically reproduced for a wide

range of nanoparticle radius and electrode thickness. The integral capacitance

(in µF/cm2) obtained from cyclic voltammetry under different scan rates was the

main performance metrics of the EDLC electrodes.

5.1 Analysis

5.1.1 Schematic and assumptions

Figure 6.1 shows schematics of the simulated EDLC electrodes consisting of (a)

simple cubic (SC) or (b) face-centered cubic (FCC) packing of monodisperse car-

bon spheres of diameter d. By virtue of symmetry, a unit cell containing quarter-

spheres was simulated. The current collector, electrode and electrolyte thicknesses

were denoted by Ls, Le, and L, respectively.

Following assumptions were made: (1) The electrolyte was binary and sym-

metric, i.e., it consisted of two ion species of opposite valency ±z (z > 0). The

two ion species were further assumed to have identical diameter a and diffusion
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Figure 5.1: Schematics of the EDLC electrodes simulated made of ordered carbon
spheres of diameter d in (a) SC packing and (b) FCC packing.
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coefficient D. (2) The Stern layer contained no free charge and its thickness H

was approximated as the radius of the ions, so that H = a/2 [8, 16, 151]. (3)

The transport properties of the electrodes and electrolyte were taken as constant

except for the electrolyte dielectric constant ǫr(E) which depended on the mag-

nitude E of the local electric field vector. (4) Bulk motion of the electrolyte

was negligible. (5) No redox reaction or ion intercalation took place within the

electrode. (6) Heat generation was ignored and the EDLC was isothermal. (7)

Electrical contact resistance between the carbon spheres was neglected.

5.1.2 Governing equations

Simulations reported in this chapter were based on the modified Poisson-Nernst-

Planck (MPNP) model for the spatiotemporal evolution of the potential ψ(x, t)

[Equation (2.1)] in the electrode and electrolyte as well as the ion concentrations

c1(x, t) of cations and c2(x, t) of anions [Equations (2.2) and (2.4)] in the binary

and symmetric electrolyte.

5.1.3 Initial and boundary conditions

In order to solve Equations (2.5) to (2.8) for the time-dependent potential ψ(r, t)

and ion concentrations ci(r, t) in the three-dimensional space, one needs one initial

condition and two boundary conditions in each direction for each variable. Zero

electric potential and uniform ion concentrations equal to the bulk concentrations

c∞ were used as initial conditions for solving the MPNP model, i.e.,

ψ(r, 0) = 0V and ci(r, 0) = c∞, for i = 1,2 (5.1)

The potential at the current collector/electrode interface was imposed as ψs(t).

During cyclic voltammetry measurements, ψs(t) varied linearly with time [Equa-

tion (1.1)]. By virtue of symmetry in the two-electrode device, the boundary
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condition in the device centerline, located at rcl = (x = Le + L, y, z), was given

by

ψ(rcl, t) = 0 and ci(rcl, t) = c∞. (5.2)

Moreover, the electric potential and current density were continuous across

the spherical electrode/electrolyte interface located at rE/E and planar current

collector/electrolyte interface located at rC/E so that

ψ(r−k , t) = ψ(r+k , t) and−σe
∂ψ

∂n
(r−k , t) = −ǫ0ǫr

∂2ψ

∂n∂t
(r+k , t) with k = E/E or C/E

(5.3)

where ∂/∂n is the gradient normal to the electrode/electrolyte interface.

The electric potential varied linearly across the Stern layer so that the normal

electric field at the planar and spherical Stern/diffuse layer interfaces, located at

rH satisfied [1, 16]

∂ψ

∂n
(rH , t) =

ψ(rC/E)− ψ(rH)

H
, planar electrodes, (5.4)

−ǫ0ǫr
∂ψ

∂n
(rH , t) = CSts

(

d

d+ 2H

)2
[

ψ(rE/E , t)− ψ(rH , t)
]

, spherical electrodes.(5.5)

Here, the Stern layer capacitance for a sphere of diameter d is given by the

Helmholtz model expressed as [176]

CSt
s =

ǫ0ǫr
H

(1 +
2H

d
) (5.6)

These boundary conditions accounted for the presence of the Stern layers without

explicitly simulating them in the computational domain thus reducing significantly

the number of meshes and making possible the numerical solution of the strongly

coupled equations considered [1].

Based on assumption (5), no ion intercalated into the electrodes. Thus, the

ion mass flux vectors vanished at the electrode/electrolyte and current collec-
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tor/electrolyte interfaces such that [16]

Ni(rk, t) = 0 for i = 1, 2 with k = E/E or C/E. (5.7)

By virtue of symmetry in the electrode packings, the normal electric field at

the side walls of the simulated domain (Figure 6.1) and the ion flux across the

side walls also vanished, i.e., ∂ψ/∂n = 0, and Ni = 0 (i = 1, 2).

5.1.4 Constitutive relationships

In order to solve the transient 3D governing Equations (2.5) to (2.8) and their

initial and boundary conditions, a total of 14 parameters were needed. These

parameters include (i) the electrolyte properties ǫr, a, D, z, and c∞, (ii) the

electrode material conductivity σe, (iii) the electrode dimensions d, Ls, Le, L, and

(iv) the operating conditions ψmax, ψmin, T , and v.

The Booth model was used to account for the effect of the local electric field

E = −∇ψ on the electrolyte dielectric constant expressed as [1, 177–180],

ǫr(E) =







n2 + (ǫr(0)− n2)
3

βE

[

coth(βE)− 1

βE

]

E ≥ 107 V/m (5.8)

ǫr(0) E < 107 V/m (5.9)

where n is the refractive index of the electrolyte solution, ǫr(0) is the dielectric

constant at zero electric field, and β is a semi-empirical constant. The electrolyte

simulated was (C2H5)4NBF4 (TEABF4) in propylene carbonate at room tempera-

ture featuring n = 1.42 [181], ǫr(0) = 64.4 [152], and β = 1.314 x 10 −8 m/V [177].

In addition, the bare ion diameter a of (C2H5)4N
+ and BF−

4 were 0.68 nm and 0.33

nm [182]. However, as discussed in Refs. [141,183], “Smaller bare ions tend to be

more heavily solvated and therefore have larger effective diameters”. Moreover,

electrolyte ions are less solvated when the electrolyte concentration increases, re-

sulting in smaller effective ion diameter [4, 184–187]. Considering the fact that
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the solubility of (C2H5)4NBF4 in propylene carbonate at room temperature is 1

mol/L [188], the effective ion diameters of (C2H5)4N
+ and BF−

4 were assumed to

be identical and equal to 0.68 nm. Furthermore, the diffusion coefficient D of

(C2H5)4N
+ ions and BF−

4 in propylene carbonate at room temperature was taken

as 3.17 x 10−10 m2/s [189]. The ion valency was z = 1 and bulk concentration

of the ion species was chosen as c∞ = 1 mol/L, as commonly used experimen-

tally [68]. In addition, the value was chosen as σe = 5 S/m based on the typical

range of conductivity of carbon between 10−6 and 102 S/m [190, 191]. Moreover,

the thickness of the planar current collector was taken as Ls = 10 nm and the

length of the electrolyte domain simulated was L = 100 nm. The thickness of the

porous carbon electrode Le as well as the diameter of the carbon spheres d were

treated as variables. Finally, the temperature was taken as room temperature, i.e.

T = 298 K. The electrode was cycled between ψmin = 0 V and ψmax = 1 V. The

scan rate varied from 1 to 105 V/s.

5.1.5 Method of solution

The governing equations along with the initial and boundary conditions were

solved using COMSOL 4.4. Mesh element size was chosen to be the smallest at

the electrode/electrolyte interface where ion concentration gradient and potential

gradient were the largest. Moreover, the numerical convergence was considered

to be reached when the local electric potential ψ(r, t) and the normal current

density jn = j · n at the electrode/electrolyte interface changed within 1% when

reducing the minimum mesh element size and mesh growth rate in the boundary

layer near the electrode/electrolyte interfaces by a factor of two. For example,

the total number of finite elements was on the order of 107 for the simulations

of electrodes made of 5 ordered carbon spheres shown in Figure 6.1. In addition,

the adaptive time step was controlled by the relative and absolute tolerance set

to be 0.01 and 0.001. This enabled the use of smaller time step when potential
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and current density changed more rapidly. The simulations were run on Hoffman2

shared computing cluster of UCLA with 8 to 12 processors and 32 to 64 GB of

RAM.

Finally, several cycles were simulated and an oscillatory steady state in ψ(r, t)

and jn = j · n was considered to be reached when the maximum relative error

between the value of each variable at time t and its value at time t−τCV throughout

the computational domain was less than 1%. These conditions were typically met

by the third cycle for all conditions simulated. The CPU time for each simulation

reported ranged between 1 and 4 days.

5.1.6 Data processing

Cyclic voltammetry simulations consist of imposing a triangular time-dependent

potential ψs(t) [Equation (1.1)] and predicting the current density to plot CV

curves. The current density at the electrode/electrolyte and current collector/electrolyte

interfaces arising from the formation and dissolution of electric double layer was

expressed (in A/m2) as [16, 30]

jn(rk, t) = −ǫ0ǫr
∂

∂t

∂ψ

∂n
(rk, t) with k = E/E or C/E. (5.10)

The current densities averaged over the footprint area, electrode/electrolyte inter-

face area, and mass of the electrode respectively denoted by jfp (in A/m2), jBET

(in A/m2), and jg (in A/g) can be defined as

jfp(t) =

∫∫

ABET
jn(r, t)dABET

Afp
(5.11)

jBET (t) =

∫∫

ABET
jn(r, t)dABET

ABET
(5.12)

jg(t) =

∫∫

ABET
jn(r, t)dABET

m
(5.13)
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where Afp is the footprint area of the electrode, corresponding to the area of the

planar current collector, ABET is the electrode/electrolyte interfacial area that

can be measured experimentally by the Brunauer-Emmett-Teller (BET) method,

and m is the total mass of all the carbon spheres constituting the electrode.

The corresponding capacitances can be estimated from the predicted CV curves

according to [149]

Ck(v) =
1

ψmax − ψmin

∮

jk(t)

2v
dψs with k = fp, BET , or g. (5.14)

where jk(t) is given by Equation (5.13), v is the scan rate, and ψs is the potential

imposed at the current collector and given by Equation (1.1).

5.2 Results and discussion

5.2.1 Influence of carbon sphere number and diameter

CV curves of electrodes made of carbon spheres in SC packing were simulated

under quasi-equilibrium conditions corresponding to situations when the capac-

itance was independent of scan rate [16]. Figures 5.2(a) and 5.2(b) show the

footprint current density jfp as a function of the imposed potential ψs, at scan

rate v = 1 V/s, for electrodes made of N carbon spheres in SC packing with

diameter d equals to either 15 nm (1 ≤ N ≤ 9) or 30 nm (1 ≤ N ≤ 5), cor-

responding to BET surface area of 200 m2/g and 100 m2/g, respectively. These

figures indicate that for given sphere diameter and surface potential, the footprint

current density increased with increasing sphere number. This can be attributed

to the increasing electrode surface area with increasing carbon sphere number N

while the footprint remained unchanged. In fact, Figures 5.2(c) and 5.2(d) plot

the current density jBET per unit surface area of electrode/electrolyte interface

as a function of imposed potential ψs for d equals to 15 and 30 nm, respectively.
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Figure 5.2: (a, b) Footprint current density jfp and (c, d) areal current density
jBET as functions of surface potential ψs at scan rate v = 1 V/s for carbon spheres
in SC packing with diameter d of (a, c) d = 15 nm, and (b, d) d = 30 nm.
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These figures establish that the areal current density jBET was weakly dependent

of the number N of carbon spheres. In other words, the total current i (in A) was

proportional to the BET surface area ABET .

Moreover, Figure 5.3 shows (a) the footprint capacitance Cfp, (b) the areal

capacitance CBET , and (c) the gravimetric capacitance Cg of electrodes made of

multiple carbon spheres in SC packing with diameter d of 15, 30, and 40 nm as

functions of the electrode thickness Lc(= Nd) under quasi-equilibrium conditions.

It indicates that all three capacitances Cfp, CBET , and Cg decreased with increas-

ing sphere diameter d for a given electrode thickness Lc. On the other hand, for

a given sphere diameter d, Cfp increased with increasing electrode thickness Lc.

On the other hand, CBET first increased with increasing electrode thickness Lc

then reached a plateau for LC ≥ 75 nm. Finally, Cg remained nearly constant for

all electrode thicknesses considered. Note that the capacitance CBET ranged be-

tween 10 and 50 µF/cm2 while Cg ranged between 20 and 100 F/g. These values

were comparable with reported experimental measurements for electrodes with

similar nanoarchitecture [4, 62, 65]. For example, areal capacitance CBET was re-

ported to be between 10 and 15 µF/cm2 [4] and Cg between 60 and 110 F/g [4,65]

for electrodes made of ordered mesoporous carbon spheres in non-aqueous elec-

trolytes under cyclic voltammetry with potential window of 3 V [4] or 2 V [65]. In

addition, Kim et al. [62] reported gravimetric capacitance Cg around 60 F/g for

carbon electrodes with similar nanoarchitecture and potential windows in aqueous

electrolytes under galvanostatic cycling with small current. To explain the trends

in Cfp, CBET , and Cg as functions of sphere diameter d and electrode thickness

Lc, one needs to consider the normal electric field at the sphere surfaces.

Figure 5.4(a) shows the magnitude of the normal component En of the local

electric field (i.e., En = E ·n = −∂ψ/∂n) at the electrode/electrolyte interface for
N = 3 spheres in SC packing with diameter d of 15, 30, and 40 nm, at t = 0.49τCV

corresponding to ψs = 0.98 V, i.e., near the end of the charging stage. Note that,
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during charging, the normal electric field increased everywhere at the electrode

surface but the relative profile remained unchanged. Figure 5.4(a) indicates that

the magnitude of the normal electric field En increased with decreasing sphere di-

ameter d. This can be attributed to the fact that for smaller spheres, the electric

potential decayed from ψ(rE/E, t) ≈ ψs(t) at the electrode surface to zero in the

local bulk electrolyte within the porous electrode structure over a smaller distance.

To further illustrate the effect of sphere diameter on the normal electric field, Fig-

ure 5.4(b) plots the electric potential along the x-direction as a function of the

dimensionless position x/d at t = 0.49τCV for sphere diameter d equals to 15, 30,

and 40 nm. It indicates that the electric potential profile scaled with x/d. In

other words, the potential ψ(x/d) and its derivative ∂ψ/∂(x/d) were independent

of d, as were ∂ψ/∂(y/d) and ∂ψ/∂(z/d) (not shown). Therefore, the magnitude

of the normal electric field −∂ψ/∂n at the electrode surface was proportional to

1/d. Thus, for a given potential, electrodes consisting of smaller carbon spheres

attracted more ions to their surface resulting in larger areal or gravimetric charge

densities (see Figure S1 in supplementary material). Consequently, the capaci-

tances Cfp, CBET , and Cg increased with decreasing sphere diameter d [Figure

5.3(a)].

Figure 5.5 shows the magnitude of the normal electric field En for electrodes

made of 1 to 9 carbon spheres in SC packing for diameter d of 15 nm at t =

0.49τCV . The systematically smaller value of En resulted in less charge storage

on the surface of the first sphere facing the planar current collector (see Figure

S2 in supplementary material). This was due to the fact that the planar current

collector and the first sphere were at nearly the same potential ψs(t) at all times t.

On the other hand, the magnitude of the normal electric field En on other spheres

remained unchanged with increasing sphere number N . Thus, the initial rise and

the plateau in CBET with increasing electrode thickness Lc or sphere number N

[Figure 5.3(b)] can be attributed to the decreasing relative contribution of the
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Figure 5.5: Magnitude of the normal electric field En at the surface of carbon
spheres for electrodes made of 1 to 9 carbon spheres in SC packing with diameter
d = 15 nm at t = 0.49τCV (or ψs = 0.98 V).
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first sphere to the total charge storage.

5.2.2 Influence of electrode morphology

Figure 5.6 shows the areal capacitance CBET as a function of the dimensionless

electrode thickness Lc/d for the electrodes made of carbon spheres in either SC

or FCC packings with diameter d of 15 nm under quasi-equilibrium conditions,

i.e., low scan rate. It indicates that CBET increased with increasing thickness

for SC packing before reaching a plateau for Lc/d ≥ 5. By contrast, CBET for

electrodes with FCC packing was independent of electrode thickness. Moreover,

Figure 5.6 establishes that for any given electrode thickness, the areal capacitance

of electrodes made of carbon spheres in FCC packing was systematically larger
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than that in SC packing.

Figure 5.7 compares the magnitude of the normal electric field at the elec-

trode/electrolyte interface for electrodes made of multiple carbon spheres in SC

and FCC packings for diameter d of 15 nm, at t = 0.49τCV corresponding to

ψs = 0.98 V. It indicates that for similar electrode thickness Lc, the magnitude of

the normal electric field En at the carbon sphere surface was larger for FCC pack-

ing structure than for SC packing, resulting in larger capacitance CBET (Figure

5.6). This can be attributed to the fact that the FCC structure was denser and

featured less distance for the electric potential to decay from ψ(rE/E, t) ≈ ψs(t) at

the carbon sphere surfaces to zero in the local bulk electrolyte within the porous

electrode structure. Figure 5.8(a) shows the areal capacitance CBET for the elec-

trodes made of carbon spheres in FCC packing with 3 (Lc = 2.12d) and 10 (Lc

= 7.07d) rows of spheres and in SC packing with 2 (Lc = 2d) and 7 (Lc = 7d)

spheres as a function of scan rate v. It indicates that CBET was independent

of scan rate (quasi-equilibrium regime) for both FCC and SC packings at low

scan rates. In addition, the electrodes made of carbon spheres in FCC packing

had larger capacitance than that with SC packing, as previously observed (Figure

5.6). However, regardless of carbon sphere packing structure (SC or FCC), the

capacitance CBET dropped sharply at a critical scan rate which decreased with

increasing electrode thickness. This could be due to ion diffusion limitation in the

tortuous electrode structure and/or resistive losses in the potential propagation

across the electrode at high scan rates.

Figure 5.8(b) shows the areal capacitance CBET as a function of scan rate

v for the electrodes made of 2 carbon spheres in SC packing with ion diffusion

coefficient D equals to 3.17 x 10−9, 3.317 x 10−10, and 3.17 x 10−11 m2/s. It

indicates that the diffusion coefficient had no effect on the capacitance at any

scan rate considered. In other words, the decrease in capacitance at high scan

rates was not due to ion diffusion limitation through the porous electrode. On the
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Figure 5.8: (a) Areal capacitance CBET of electrodes made of FCC and SC
packing of carbon spheres with diameter d = 15 nm as functions of scan rate v
for different (a) electrode thicknesses, (b) diffusion coefficients, and (c) electrode
conductivities. (b) Dimensionless areal capacitance CBET/CBET,max of electrodes
made of FCC and SC packing of carbon spheres with diameter d = 15 nm as func-
tions of dimensionless scan rate v∗ with parameters Lc/d, D, σc and morphology
summarized in Table 5.1.
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other hand, Figure 5.8(c) shows the areal capacitance CBET as a function of scan

rate v for electrodes made of 2 spheres with diameter d = 15 nm in SC packing

and electrical conductivity σc of 5, 0.5, and 0.05 S/m. It indicates that the sharp

drop in CBET occurred at smaller critical scan rate as the electrical conductivity σc

decreased. In fact, the potential propagation across the electrode was limiting the

capacitance CBET at high scan rates. Note that Wang and Pilon [30] previously

observed ion diffusion limitation for planar (i.e., nonporous) electrodes resulting in

the sharp drop in CBET at high scan rates. However, the sharp drop in CBET was

observed at higher scan rate than in the present study. In the porous electrodes

under consideration, resistive losses limited capacitance before ion diffusion at

high scan rates.

Finally, Figure 5.8(d) shows the dimensionless capacitance CBET/CBET,max

as a function of dimensionless scan rate v∗ for both FCC and SC packings with

diameter d = 15 nm and for different values of electrical conductivity σc, ion

diffusion coefficient D, and electrode thickness Lc, as summarized in Table 5.1.

Table 5.1: Parameters for eight cases of dimensionless capacitances reported in
Figure 5.8(d)

Case number Lc/d Morphology D (m2/s) σc (S/m)
1 2 SC 3.17 x 10−10 5
2 2.12 FCC 3.17 x 10−10 5
3 7 SC 3.17 x 10−10 5
4 7.07 FCC 3.17 x 10−10 5
5 2 SC 3.17 x 10−9 0.5
6 2 SC 3.17 x 10−10 0.5
7 2 SC 3.17 x 10−11 0.5
8 2 SC 3.17 x 10−10 0.05

In addition, the dimensionless scan rate v∗ was expressed as [30]

v∗ =
vτe

ψmax − ψmin
=

τe
τCV /2

(5.15)

where τCV is the CV cycle period and the time scale τe is chosen to be the charac-
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teristic time for potential propagation (i.e., for electron transport in the electrode

material) instead of the diffusion time scale τD = L2/D used by Wang and Pi-

lon [30]. This time scale τe can be expressed as [192]

τe =
Lc
ue

=
ρcneeL

2
c

Mc(ψmax − ψmin)σc
. (5.16)

Here, Lc is the thickness of the porous carbon electrode, ue is the so-called

drift velocity, i.e., the average velocity of electrons under electric field E =

(ψmax − ψmin)/Lc, and expressed as ue = (McσcE)/(ρcnee), where ρc is the den-

sity of the electrode material, ne is the number of free electrons per atom in the

electrode material, Mc is the atomic mass (in u) of the electrode material and σc

is the electrode material electrical conductivity. For carbon nanospheres, ρc = 500

kg/m3 [191], ne = 1, and Mc = 12.01 u. Figure 5.8(d) indicates that the capac-

itance ratio CBET/CBET,max for electrodes with different electrical conductivity

σc, ion diffusion coefficient D, electrode thickness Lc, and packing structures col-

lapsed on the same curve when plotted as a function of dimensionless scan rate v∗.

In addition, for dimensionless scan rate v∗ smaller than 0.3, the areal capacitance

was maximum and rate-independent, corresponding to v ≤ α/[(ψmax − ψmin)
2L2

c ]

where α = 0.3Mcσc/ρcnee depends only on the electrode material. Thus, electrode

materials with large values of α are desirable to achieve high rate performance.

For example, α = 4.7 for gold [193] while α ranges between 7.5 x 10−8−1.2 x 10−3

for carbon nanoparticles [191] and between 4.1 x 10−13 − 1.5 x 10−4 for activated

carbon (porous) [190,191] depending on their electrical conductivity and density.

5.3 Chapter summary

This chapter presented three-dimensional transient simulations of EDLC elec-

trodes consisting of monodisperse carbon spheres with different diameters and or-

dered in FCC and SC packing structures under cyclic voltammetry. Simulations
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were based on a continuum model accounting for interfacial and transport phe-

nomena throughout the electrode and the electrolyte. For any given morphology,

the areal capacitance increased with decreasing sphere diameter. In addition, FCC

packing featured larger capacitance than SC packing. These results were explained

by considering the magnitude of the electric field at the carbon spheres/electrolyte

interfaces. Moreover, for all cases considered, the areal capacitance remained con-

stant at low scan rate but decreased beyond a critical scan rate when potential

propagation across the electrode could not follow the rapid changes in the po-

tential imposed at the current collector. In fact, the rate-dependent regime of

capacitance was reached at lower scan rates for thicker electrodes, regardless of

the electrode morphology. Finally, dimensional analysis was performed to collapse

capacitance versus scan rate plots, based on ratio of CV cycle period and the time

scale for electron transport in the electrode. These results and the computational

tools developed can be used to design and optimize EDLC electrodes to maximize

energy and/or power densities.
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CHAPTER 6

Interfacial and Transport Phenomena in Electrodes Consisting of

MnO2 Coated Carbon Nanorods under Cyclic Voltammetry

The previous chapter studied the effect of electrode morphology on the per-

formance of EDLC electrodes using multi-dimensional simulations under cyclic

voltammetry. This chapter aims to extend the study to pseudocapacitive elec-

trodes. To do so, two-dimensional axis-symmetric numerical simulations of pseu-

docapacitive electrodes consisting of ordered conducting nanorods coated with a

thin film of pseudocapacitive material were performed to identify an optimum

pseudocapacitive layer thickness that maximizes total areal capacitance.

6.1 Background

6.1.1 Empirical characterization of pseudocapacitive electrodes

A semi-empirical approach for analyzing cyclic voltammetry (CV) measurements

has been used extensively [172, 194–200] to determine whether the charge stor-

age process involves (i) surface-controlled mechanism when the measured current

density is proportional to scan rate or (ii) diffusion-controlled mechanism when

the measured current density is proportional to the square root of scan rate [201].

This approach assumed linear summation of the two contributions to the measured

current density jT at low scan rates according to [201],

jT (v, ψs) = k1(ψs)v + k2(ψs)v
1/2 or

jT (v, ψs)

v1/2
= k1(ψs)v

1/2 + k2(ψs). (6.1)
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Here, k1(ψs) and k2(ψs) are semi-empirical functions associated respectively with

surface-controlled and diffusion-controlled mechanisms. They correspond to the

slope and intercept in the plot of jT/v
1/2 versus v1/2 for a given potential ψs(t).

The functions k1(ψs) and k2(ψs) are independent of scan rate v but depend on

the imposed potential ψs [201].

Another approach commonly used experimentally [31, 194, 198, 199, 202–207]

assumed that the total current density obeys a power law with respect to the scan

rate v according to [202]

jT (v, ψs) = a0(ψs)v
b(ψs) (6.2)

where the so-called b-value was expected to vary between 1/2 (diffusion-controlled

mechanism) and 1 (surface-controlled mechanism) [202]. A b-value of 1 across the

potential window is highly desirable to achieve high charging rates [31]. Unfor-

tunately, a dip in the b-value when plotted as a function of ψs(t) has often been

observed experimentally and attributed to the redox peak from faradaic reactions

retrieved from CV curves [194, 198, 207]. However, recent modeling efforts have

clarified the physical phenomena responsible for the dip in the b-value [31].

Finally, note that the above data analysis methods can be applied to the

gravimetric (in A/g) or areal (in A/m2) current densities, or the total current iT

(in A).

6.2 Analysis

6.2.1 Schematic and assumptions

Figure 6.1(a) shows the schematic of a pseudocapacitive electrode consisting of

a planar current collector of thickness Ls supporting an array of electrically con-

ducting nanorods coated by a layer of pseudocapacitive material. According to
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Figure 6.1: Schematics of (a) electrodes consisting of highly ordered conducting
nanorods coated with pseudocapacitive material on a planar current collector(b)
simulated 2D cross-section of one rod along with the cylindrical coordinate system.

97



preliminary simulations, charge storage on an individual nanorod was not affected

by the presence of its neighbors if the distance between adjacent nanorods was

larger than 10 nm. Indeed, under this condition, the electric double layers (EDLs)

formed near two adjacent coated nanorods did not overlap. Thus, a single axi-

ally symmetric nanorod with a conducting nanorod of radius ri and length Lc

conformably coated by a pseudocapacitive layer of thickness Lr was simulated

in cylindrical coordinates, as illustrated in Figure 6.1(b). This generic electrode

was conceived as a representation of pseudocapacitive electrodes synthesized ex-

perimentally [71, 72, 125–127]. Similarly, the electrolyte consisted of LiClO4 in

propylene carbonate, as commonly used experimentally [208].

Following assumptions were made: (1) the electrolyte was binary and sym-

metric, i.e., two ion species were considered and featured the same ion diameter

a, valency ±z, and diffusion coefficient D. (2) The Stern layer contained no free

charges and its thickness H was approximated as the radius of the ions, so that

H = a/2 [8,16,151]. (3) The transport properties in the electrode and electrolyte

were constant. (4) Bulk motion of the electrolyte was negligible. (5) The system

was isothermal and its temperature remained constant.

6.2.2 Governing equations

Simulations reported in this chapter were based on the modified Poisson-Nernst-

Planck (MPNP) model for the spatiotemporal evolution of the potential ψ(x, t)

[Equation (2.1)] in the electrode and electrolyte as well as the ion concentrations

c1(x, t) of cations and c2(x, t) of anions [Equations (2.2) and (2.4)] in the binary

and symmetric electrolyte for EDLC electrodes or devices.

The local electric potential ψ(r, t) in the electrode consisting of a pseudocapac-

itive layer coated on conducting nanorods was governed by the Poisson equation
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[Equation (2.1)]. expressed as [16, 146]

∇ · (σP∇ψ) = 0 in the pseudocapacitive layer (6.3)

∇ · (σC∇ψ) = 0 in the conducting nanorod (6.4)

where σP and σC are the electrical conductivities of the pseudocapacitive material

and of the conducting nanorod, respectively.

The local molar concentration of the intercalated Li+ (species 1) in the pseudo-

capacitive layer, denoted by c1,P (r, t), was governed by the mass diffusion equation

[Equation (2.9)].

Moreover, the modified Poisson-Nernst-Planck (MPNP) model governed the

spatiotemporal evolutions of the electric potential ψ(r, t) [Equation (2.1)] and of

the two ion concentrations ci(r, t) [Equations (2.2) and (2.4)] in the electrolyte

[141–143].

6.2.3 Initial and boundary conditions

The initial electric potential was assumed to be uniform across the simulated

electrode and electrolyte and given by ψ(r, 0) = 0 V. In addition, the initial cation

(Li+) and anion (ClO−

4 ) concentrations in the electrolyte were taken as uniform

and equal to their bulk concentrations according to c1(r, 0) = c2(r, 0) = c∞.

Similarly, the initial concentration of intercalated Li+ in the pseudocapacitive

electrode was uniform and equal to c1,P,0, i.e., c1,P (r, 0) = c1,P,0.

The potential at the current collector surface (r, z = 0) was imposed as ψs(t).

For cyclic voltammetry, ψs(t) varied linearly with time [Equation (1.1)]. The

corresponding boundary condition in the centerplane located at rcp = (0 ≤ r ≤
rt, z = Ls + L) was given, by virtue of symmetry, as

ψ(rcp, t) = 0. (6.5)
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The electric potential in the EDL varied linearly across the Stern layer so that

the normal electric field at planar and cylindrical Stern/diffuse layer interfaces,

located at rH satisfied [1, 16]

∂ψ

∂n
(rH , t) =

ψ(rS/E,pl)− ψ(rH)

H
for planar interfaces (6.6)

−ǫ0ǫr
∂ψ

∂n
(rH , t) = CSt

s

(

ro
ro +H

)

[

ψ(rS/E,cy)− ψ(rH)
]

for cylindrical interfaces(6.7)

where rS/E,pl and rS/E,cy refer to the location of the planar electrode or current

collector/electrolyte interfaces and to that of the cylindrical solid/electrolyte in-

terfaces such that rS/E,pl = (ro ≤ r ≤ rt, z = Ls) ∪ (0 ≤ r ≤ ro, z = Ls+Lc+Lr)

and rS/E,cy = (r = ro, Ls ≤ z ≤ Ls + Lc + Lr), where ro is the total radius of the

coated nanorod, i.e., ro = ri + Lr. Here, the Stern layer capacitance CSt
s is given

by Helmholtz model for cylindrical electrode expressed as [176]

CSt
s =

ǫ0ǫr
ro ln(1 +H/ro)

. (6.8)

These boundary conditions accounted for the presence of the Stern layer without

explicitly simulating it in the computational domain. This approach significantly

reduced the number of finite elements necessary to numerically solve the equations.

In fact, it made possible the numerical solutions of the above coupled transient

2D governing equations [1].

Moreover, at the current collector/electrolyte interface located at rC/E = (ro ≤
r ≤ rt, z = Ls), only the capacitive current due to the electric double layer

formation contributed to the total current density so that

−σC
∂ψ

∂n
(rC/E , t) = jC(rH , t) (6.9)

where ∂/∂n corresponds to the gradient along the direction normal to the elec-

trode/electrolyte interface. Here, jC(rH , t) is the capacitive current density at the
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Stern/diffuse layer interface located at rH and defined as [167]

jC(rH , t) = −ǫ0ǫr
∂2ψ

∂n∂t
(rH , t). (6.10)

On the other hand, the current density at the pseudocapacitive layer/electrolyte

interface, located at rP/E = (r = ro, Ls ≤ z ≤ Ls + Lc + Lr) ∪ (0 ≤ r ≤ ro, z =

Ls + Lc + Lr) equaled to the sum of the capacitive current density jC(rH , t) (in

A/m2) due to EDL formation and the faradaic current density jF (t) (in A/m2)

due to redox reactions, so that [16, 145]

−σP
∂ψ(rP/E , t)

∂n
= jC(rH , t) + jF (rP/E , t). (6.11)

The faradaic current density jF (rP/E,t) can be defined by the generalized Frumkin-

Butler-Volmer model evaluated at the pseudocapacitive layer/electrolyte interface

and expressed as [8]

jF (rP/E, t) = jF,ex(t)

{

exp

[

(1− α)zFη(rP/E, t)

RuT

]

− exp

[−αzFη(rP/E , t)
RuT

]}

(6.12)

where jF,ex(t) [Equation (2.7)] is the so-called exchange current density, α is the

transfer coefficient, and η(rP/E, t) is the surface overpotential.

Moreover, the mass flux of the intercalated Li+ vanished at the conducting

nanorod/pseudocapacitive layer interface located at rN/P = (0 ≤ r ≤ ri, z =

Ls+Lc) ∪ (r = ri, Ls ≤ z ≤ Ls+Lc) and at the current collector/pseudocapacitive

layer interface located at rC/P = (ri ≤ r ≤ ro, z = Ls) such that

N1(rN/P , t) = N1(rC/P , t) = 0. (6.13)

The mass flux of Li+ intercalating or deintercalating through the pseudocapacitive

layer/electrolyte interface was related to the faradaic current density jF (rP/E, t)
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based on stoichiometry as [7]

N1(rP/E, t) =
jF (rP/E, t)

z F
nP/E. (6.14)

Finally, both the current collector and the pseudocapacitive layer were imperme-

able to ClO−

4 ions (i = 2) so that

N2(rP/E, t) = N2(rC/E , t) = 0. (6.15)

6.2.4 Constitutive relationships

A total of 23 input parameters were needed to solve the governing equations

[Equations (2.5) to (2.8)] along with the initial and boundary conditions. These

parameters include (i) the electrolyte properties ǫr, a, z, D, and c∞, (ii) the

pseudocapacitive layer properties ∆ψeq, c1,P,max, c1,P,0, D1,P , k0, α, and σP , (iii)

the electrical conductivity of the conducting nanorod and current collector σC , (iv)

the electrode dimensions ri, rt, L, Lc, Ls, and Lr, and (v) the operating conditions

T , ψmax, ψmin, and v. Typical values of these parameters were collected from the

literature [82, 83, 145, 146, 152, 161–163, 165, 166, 190, 191, 209–211].

The binary and symmetric electrolyte simulated corresponded to 1 M LiClO4

in propylene carbonate (PC) solvent, i.e., c∞ = 1 M [208]. The dielectric constant

of the electrolyte was taken as constant and equal to ǫr = 66.1 corresponding to

that of PC at zero electric field [152]. The effective solvated ion diameters a and

diffusion coefficient D were taken as those of Li+ ion (z = 1) in PC and equal to

a = 0.67 nm and D = 2.6 x 10−10 m2/s [166].

For electrode consisting of transition metal oxides, the equilibrium potential

difference ∆ψeq is typically determined experimentally based on open-circuit po-

tentials [145, 146]. It can be modeled as a linear function of the state-of-charge

(SOC) expressed as c1,P/c1,P,max [82, 83, 161]. For MnO2 dense films of thickness
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100 µm at low scan rates, ∆ψeq(t) (in V) was measured as [162]

∆ψeq(t) = 10.5[4− c1,P (t)/c1,P,max]− 39.9. (6.16)

This expression was used in the present study with the maximum intercalated

lithium concentration in the pseudocapacitive layer LimMpOq estimated as c1,P,max

= mρ/M where ρ and M are the density and molar mass of the fully intercalated

metal oxide. For LiMnO2, ρ andM were reported as ρ ≈ 3.0 g/cm3 andM = 93.9

g/mol [163] yielding c1,P,max ≈ 31.9 mol/L. Finally, the initial concentration of Li+

in the electrode was chosen as c1,P,0 ≈ 6.38 mol/L such that the initial equilibrium

potential difference ∆ψeq(t = 0) was zero. In addition, the value of the diffusion

coefficient D1,P of the intercalated Li+ in the transition metal oxides was chosen

as 10−12 m2/s, based on the typical range from 10−16 to 10−10 m2/s [165]. The

reaction rate constant k0 for transition metal oxides has been reported to range

between 10−11 and 10−8 m2.5mol−0.5s−1 [145, 146, 165]. Here, it was taken as

k0 = 10−8 m2.5mol−0.5s−1 to maximize contribution from redox reactions. The

transfer coefficient α was assumed to be 0.5, corresponding to identical energy

barriers for forward and backward redox reactions [8]. The electrical conductivity

of metal oxides may vary with the intercalation of lithium as well as the structure

of the material [209–211]. Here, a constant value σP = 10−5 S/m was selected

based on the range of electrical conductivity between 10−6 S/m and 10−3 S/m

for LixMnO2 (0 ≤ x ≤ 1) at room temperature [210]. On the other hand, the

electrical conductivity of the conducting nanorod and current collector was taken

as the same value of σC = 5 S/m based on the typical range of carbon conductivity

between 10−6 and 102 S/m [190, 191].

Moreover, the thicknesses of the current collector Ls and height of the con-

ducting nanorod Lc were taken as Ls = 10 nm and Lc = 100 nm. The radius

of the conducting nanorod ri and the thickness of the pseudocapacitive layer Lr
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were treated as variables. The thickness of the computational domain was taken

as L = 0.5 µm, corresponding to half the thickness of the device. The radius of

the computational domain rt was chosen as rt = ri + Lr + 40 nm.

Finally, the potential window was selected to be large enough to show all

relevant phenomena occurring during charging and discharging. Consequently,

the imposed potential ψs(t) was cycled between ψmin = −0.2 and ψmax = +0.85

V. The scan rate v varied from 10−3 to 104 V/s while the temperature was uniform

and constant at T = 298 K.

6.2.5 Method of solution

The governing equations along with the initial and boundary conditions were

solved using COMSOL 4.4 in parallel computing mode. Mesh element size was

chosen to be the smallest at the electrode/electrolyte interface, where the gradients

of ion concentrations c1(r, t) or c2(r, t) and potential ψ(r, t) were the largest.

Numerical convergence was considered to be reached when changes in the local

electric potential ψ(r, t) and the normal component of current density jn = j ·n at

the electrode/electrolyte interface were less than 1% when reducing the minimum

mesh size by a factor of two. In addition, the adaptive time step was controlled by

the relative and absolute tolerances set to be both 0.0004. This enabled the use

of smaller time steps when potential and current density changed more rapidly

with time. The total number of finite elements was on the order of 106. The

simulations were run on Hoffman2 shared computing cluster of UCLA with 4 to

8 processors and 32 to 64 GB of RAM.

Finally, several cycles were simulated and an oscillatory steady state was con-

sidered to be reached when the maximum relative error in ψ(r, t) and jn = j · n
between two consecutive cycles, at time t and t−τCV , was less than 1%. These

conditions were typically met by the third cycle for all conditions simulated. It
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took around 24 hours CPU time to obtain a numerically converged solution under

oscillatory steady-state conditions.

6.2.6 Data processing

The interfacial area-averaged capacitive current density jC,BET , due to EDL forma-

tion and dissolution, and faradaic current density jF,BET , associated with faradaic

reactions, (both in A/m2) were estimated as

jk,BET (t) =
1

ABET

∫∫

ABET

jk(r, t)dABET with k = C, or F (6.17)

where ABET is the total surface area of the solid/electrolyte interface, equivalent

to that measured experimentally by the Brunauer-Emmett-Teller (BET) method

[212]. In addition, the total areal current density was estimated as jT,BET =

jC,BET + jF,BET .

Moreover, the associated areal integral capacitance Ck,BET (in µF/cm2) can

be estimated from the predicted CV curves at scan rate v according to [149]

Ck,BET (v) =
1

ψmax − ψmin

∮

jk,BET (t)

2v
dψs with k = C, F , or T . (6.18)

Similarly, the gravimetric current density jk,g (in A/g) can be expressed as

jk,g = jk,BETABET/mP with k = C, F , or T (6.19)

where mP is the total mass of the pseudocapacitive material coated on the con-

ducting nanorod. Then, the gravimetric capacitance Ck,g(v) (in F/g) can be

expressed as

Ck,g(v) =
1

ψmax − ψmin

∮

jk,g(t)

2v
dψs with k = C, F , or T . (6.20)
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6.3 Results and discussion

6.3.1 Physical interpretation

This section considers an electrode consisting of 35 nm thick pseudocapacitive

material coated on a conducting nanorod with radius ri of 5 nm and length Lc of

100 nm [Figure 6.1(b)]. This configuration was chosen based on experimentally

synthesized electrodes consisting of multiple layers of MnO2 nanocrystals, 10 nm

in diameter, deposited on carbon nanotube with outer radius of 7.5 ± 2.5 nm [72].

Figure 6.2(a) shows the gravimetric (i) capacitive current density jC,g, (ii) faradaic

current density jF,g, and (iii) total current density jT,g as functions of the imposed

potential ψs(t) at scan rate v = 0.1 V/s. It also shows (b) the corresponding

concentrations c1(0, Ls + Lc + Lr, t) of the cation Li+ and c2(0, Ls + Lc + Lr, t)

of the anion ClO−

4 , (c) the concentration c1,P (t) of the intercalated Li+ in the

pseudocapacitive layer, and (d) the overpotential η as functions of the imposed

potential ψs(t). Note that the intercalated Li+ concentration c1,P (r, t) was uniform

throughout the thin pseudocapacitive layer, i.e., c1,P (r, t) = c1,P (t).

Figure 6.2(a) indicates that the CV curves displayed two regimes namely (i)

a faradaic regime in the lower portion of the potential window when contribu-

tion by the faradaic current density jF (t) dominated and (ii) a capacitive regime

in the higher portion of the potential window when the capacitive current den-

sity jC(t) dominated. The transition between faradaic and capacitive regimes

can be attributed to Li+ ion starvation in the electrolyte at the pseudocapaci-

tive layer/electrolyte interface during charging, represented by a blue square in

of Figure 6.2. Indeed, the exchange current density jF,ex [Equation (2.7)] de-

cayed to zero as Li+ starvation occurred in the electrolyte, i.e., c1(rH , t) → 0.

This was caused by faster Li+ electrodiffusion in the electrolyte away from the

electrode/electrolyte interface compared with Li+ deintercalation from the elec-

trode to the electrode/electrolyte interface due to faradaic reactions. In addi-
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Figure 6.2: (a) Gravimetric capacitive jC,g, faradaic jF,g, and total jT,g current
densities as functions of imposed potential ψs(t) for an electrode consisting of
conducting nanorod with radius ri of 5 nm supporting pseudocapacitive material
with thickness Lr of 35 nm, at scan rate v = 0.1 V/s. (b) Corresponding Li+ ion
concentration c1(0, Ls+Lc+Lr, t) and ClO−

4 ion concentration c2(0, Ls+Lc+Lr, t)
at the electrode/electrolyte interface, (c) intercalated Li+ concentration in the
pseudocapacitive layer c1,P (t), and (d) overpotential η as functions of ψs(t) at v
= 0.1 V/s.
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tion, Figure 6.2(b) indicates that ClO−

4 ions formed EDL at the pseudocapacitive

layer/electrolyte interface while Li+ ion concentration reached zero in the capaci-

tive regime. In fact, the ClO−

4 at the pseudocapacitive layer/electrolyte interface

reached saturation concentration soon after the onset of the capacitive regime, as

indicated by a red circle.

Moreover, Figure 6.2(c) indicates that the Li+ ion concentration c1,P (t) in

the pseudocapacitive layer varied linearly with imposed potential in the faradaic

regime but remained constant in the capacitive regime. Overall, Li+ intercalation

and deintercalation were fast and reversible despite a small hysteresis at the transi-

tion between faradaic and capacitive regimes. Finally, Figure 6.2(d) indicates that

the overpotential η(t) was nearly constant and close to zero in the faradaic regime.

However, it was large and varied linearly with time in the capacitive regime, as

theoretically explained previously for planar pseudocapacitive electrodes [31].

Further interpretation of the CV results was obtained by varying the scan rate

v between 0.01 and 103 V/s. Figure 6.3(a) shows the log-log graph of the total

gravimetric current density jT,g as a function of scan rate v in log scale for imposed

potential ψs(t) of 0.1, 0.3, 0.4, and 0.6 V. The slope of jT,g vs. v corresponds to

the so-called b-value [Equation (6.2)]. Figure 6.3(b) shows the b-value for different

values of ψs(t) during charging. It indicates that the b-value approached unity

in both the faradaic and capacitive regimes. However, it featured a dip at the

transition from faradaic to capacitive regimes corresponding to the steep drop

in the faradaic current density [Figure 6.2(a)] due to the ion starvation of Li+

in the electrolyte at the electrode/electrolyte interface [Figure 6.2(b)]. Similar

observations were made for planar pseudocapacitive electrodes [32].

Moreover, Figure 6.3(c) plots jT,g/v
1/2 as a function of v1/2 for the imposed

potential ψs(t) of 0.1, 0.3, 0.4, and 0.6 V for scan rate v less than 1 V/s. The slope

and intercept corresponded to k1(ψs) and k2(ψs) in Equation (6.1), respectively.

The coefficient of determination R2 for linear fitting of jT,g/v
1/2 and v1/2 was
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between 0.96 and 1. To the best of our knowledge, these results provides, for

the first time, theoretical validations of the semi-empirical relationship jT,g =

k1v+k2v
1/2 commonly used experimentally [172,194–200], as previously discussed.

Furthermore, Figure 6.3(d) shows the gravimetric capacitances (i) CC,g(v) due

to the formation of the EDL, (ii) CF,g(v) associated with faradaic reactions, and

(iii) CT,g(v) = CF,g(v) + CC,g(v) as functions of scan rate v. It indicates that

CC,g(v) was independent of scan rate for v ≤ 10 V/s and decreased sharply with

increasing scan rate for v ≥ 10 V/s. This was also observed in simulations of pla-

nar and porous EDLC electrodes [16] and can be attributed to the fact that the

potential propagation across the electrode and/or the ion transport in the elec-

trolyte cannot follow the fast changes in the imposed potential ψs(t) at high scan

rates. On the other hand, CF,g decreased continuously with increasing scan rate.

This was due to the fact that the intrinsically slow faradaic reactions cannot follow

the increasingly rapid changes in the imposed potential ψs(t). Consequently, the

faradaic capacitance CF,g dominated at low scan rates but decreased faster than

CC,g with increasing scan rate. Finally, the total capacitance values in Figure

6.3(d) at low scan rates (e.g., 65 F/g or 286 F/cm3 at v = 0.01 V/s) were quanti-

tatively comparable with experimentally measured capacitance of 175-250 F/cm3

for similar electrode structures at the same scan rate [72]. Note that the scan rate

in actual CV measurements for pseudocapacitive electrodes ranges typically from

10−3 to 1 V/s with no sharp decrease in the total capacitance with increasing scan

rate observed [71,72,126,127,130]. Similar observations could be made in Figure

6.3(d). Here, however, the scan rate v was varied over a wider range to study the

rate-dependent capacitance at very high scan rate.

6.3.2 Effect of conducting nanorod radius

Figure 6.4 shows (a) the areal capacitive current density jC,BET (in A/m2) and (b)

the gravimetric faradaic current density jF,g (in A/g) as functions of the imposed

110



(a) (b)

-0.2 0.0 0.2 0.4 0.6 0.8

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

C
a

p
a

ci
ti

v
e 

cu
rr

en
t 

d
en

si
ty

, 
j C

,B
E

T
 (

A
/m

2
)

Potential, 
s
 (V)

 r
i
=5 nm

 r
i
=35 nm

 r
i
=65 nm

v=0.1 V/s 

Charging 

Discharging 

-0.2 0.0 0.2 0.4 0.6 0.8

-6

-4

-2

0

2

4

6

F
a

ra
d

a
ic

 c
u

rr
en

t 
d

en
si

ty
, 

j F
,g
 (

A
/g

)
Potential, 

s
 (V)

 r
i
=5 nm

 r
i
=35 nm

 r
i
=65 nm

v=0.1 V/s 

Charging 

Discharging 

(c) (d)

0.01 0.1 1 10 100 1000

0

20

40

60

80

100

120

140

160

180

C
a

p
a

ci
ti

v
e 

ca
p

a
ci

ta
n

ce
, 

C
C

,B
E

T
 (

F
/c

m
2
)

Scan rate, v (V/s)

 r
i
=5 nm

 r
i
=35 nm

 r
i
=65 nm

0.01 0.1 1 10 100 1000

0

10

20

30

40

50

F
a

ra
d

a
ic

 c
a

p
a

ci
ta

n
ce

, 
C

F
,g
 (

F
/g

)

Scan rate, v (V/s)

 r
i
=5 nm

 r
i
=35 nm

 r
i
=65 nm

Figure 6.4: (a)(b) Areal capacitive current density jC,BET and gravimetric
faradaic current density jF,g as functions of imposed potential ψs(t) at scan rate v
= 0.1 V/s, as well as (c)(d) areal capacitive capacitance CC,BET and gravimetric
faradaic capacitance CF,g as functions of scan rates v for electrodes consisting of
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tive material with thickness Lr of 35 nm.
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potential ψs(t) for electrodes consisting of conducting nanorod with radius ri of

5, 35, and 65 nm supporting 35 nm thick pseudocapacitive layer, at scan rate v =

0.1 V/s. Figure 6.4(a) indicates that the areal capacitive current density jC,BET

was independent of ri. In other words, the total capacitive current iC (in A) was

linearly proportional to the BET surface area ABET such that iC ≈ jC,BETABET ,

regardless of the radius of the conducting nanorod. Similarly, Figure 6.4(b) in-

dicates that the gravimetric faradaic current density jF,g was also independent

of ri and the total faradaic current was linearly proportional to the mass of the

pseudocapacitive layer, i.e., iF ≈ jF,gmP . This was attributed to the fast Li+

intercalation/deintercalation within the volume of the pseudocapacitive layer.

Moreover, Figure 6.4 shows (c) the areal capacitive capacitance CC,BET and

(d) the gravimetric faradaic capacitance CF,g as functions of scan rate v for

different values of conducting nanorod radius ri. These figures indicate that

CC,BET was independent of ri at low scan rates and decreased slightly with de-

creasing ri at high scan rates. On the other hand, CF,g was independent of

radius ri at all scan rates considered. Thus, the gravimetric capacitive capaci-

tance CC,g = CC,BET/(mP/ABET ) decreased and the areal faradaic capacitance

CF,BET = CF,gmP/ABET increased with increasing mass loading of the pseudo-

capacitive material mP/ABET at low scan rates. This explains the fact that the

total capacitance CT = CC + CF decreased with increasing mP/ABET when ex-

pressed per BET surface area but increased when expressed per unit mass of the

pseudocapacitive layer, as observed experimentally [125]. To further interpret the

behaviors of CC,BET and CF,g as functions of scan rate v, one needs to consider

the potential propagation across the electrode, the ion transport in the electrolyte

at different scan rates, and the Li+ ion concentration intercalated in the pseudo-

capacitive layer.

Figures 6.5(a) and 6.5(b) show the potential ψtip(t) at the tip of the coated

nanorod, located at (r, z) = (0, Ls + Lc + Lr), as a function of the dimension-
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Figure 6.5: Tip potential ψtip(t) as a function of the dimensionless time t/τCV ,
for electrodes consisting of conducting nanorod with radius ri of 5, 35, and 65 nm
supporting pseudocapacitive material with thickness Lr of 35 nm, at scan rate (a)
v = 0.1 and (b) 100 V/s. Li+ ion concentration c1(0, Ls+Lc+Lr, t) and ClO−

4 ion
concentration c2(0, Ls+Lc+Lr, t) at the electrode/electrolyte interface (c)(d) as
functions of the imposed potential ψs and (e)(f) as functions of the tip potential
ψtip(t) for the same electrodes at scan rates v = 0.1 and 100 V/s.
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less time t/τCV at scan rates v = 0.1 and 100 V/s, respectively, for electrodes

consisting of conducting nanorod with radius ri of 5, 35, and 65 nm supporting

35 nm thick pseudocapacitive material layer. At low scan rates, the conduct-

ing nanorod radius ri had no effect on ψtip(t) which was identical to the im-

posed potential ψs(t) [Figure 6.5(a)]. However, at high scan rates, a time lag

and a reduction in amplitude in ψtip(t) was increasingly apparent with decreas-

ing nanorod radius [Figure 6.5(b)]. This was due to the fact that the electrical

resistance RC of the conducting nanorod increased with decreasing ri according

to RC = Lc/(σCπr
2
i ). In addition, Figures 6.5(c) and 6.5(d) show the correspond-

ing concentrations c1(0, Ls + Lc + Lr, t) of cations Li
+ and c2(0, Ls + Lc + Lr, t)

of anions ClO−

4 at the electrode/electrolyte interface as functions of the imposed

potential ψs(t) at scan rates v = 0.1 and 100 V/s, respectively. Hysteresis in ion

concentrations in the electrolyte were observed only at high scan rates. Moreover,

Figures 6.5(e) and 6.5(f) show the same concentrations c1(0, Ls + Lc + Lr, t) and

c2(0, Ls+Lc+Lr, t) but as functions of the potential ψtip(t) at the tip of the coated

nanorod, at scan rates v = 0.1 and 100 V/s, respectively. It is interesting to note

that no hysteresis was observed for c1(0, Ls+Lc+Lr, t) and c2(0, Ls+Lc+Lr, t)

when plotted versus ψtip(t) at either scan rates. This indicates that the decrease

in CC,BET at high scan rates was due to the slow potential propagation across

the electrode. However, it was not due to ion diffusion limitation in the elec-

trolyte. Similar behavior was observed and the same conclusions were reached for

3D simulations of porous EDLC electrodes made of ordered carbon spheres with

various values of electrode electrical conductivity and ion diffusion coefficient in

the electrolyte [150]. Furthermore, the hysteresis in the concentration c1,P of the

Li+ in the pseudocapacitive layer occurred at all scan rates but was independent

of ri. This led to a continuous decrease in the contribution of faradaic reactions

to charge storage and to the decrease of CF,g with increasing scan rate v [Figure

6.4(d)].
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6.3.3 Effect of pseudocapacitive layer thickness

Figures 6.6(a) and 6.6(b) show the areal capacitive current density jC,BET and the

gravimetric faradaic current density jF,g as functions of the imposed potential ψs(t)

for electrodes consisting of conducting nanorod of radius ri of 5 nm supporting

pseudocapacitive layer of thickness Lr of 5, 20, 35, 50, and 100 nm, at scan rate v =

0.1 V/s. Figure 6.6(a) indicates that the areal capacitive current density jC,BET

was independent of Lr. This was also observed for other conducting nanorod

radii ri. In addition, Figure 6.6(b) indicates that the gravimetric faradaic current

density jF,g was nearly independent of Lr in the lower portion of the faradaic

regime (ψs(t) ≤ 0.2 V). However, for larger potential ψs(t), jF,g started decreasing

sharply to zero faster with increasing Lr.

To further investigate the effect of Lr, the scan rate v was varied between 10−3

V/s and 104 V/s. Figure 6.6(c) shows the b-value as a function of the imposed

potential ψs(t) for different values of coating thickness Lr. It indicates that the

dip in the b-value became more prominent with increasing pseudocapacitive layer

thickness Lr due to a sharper decrease in the total current density jT,g during the

transition between the faradaic and capacitive regimes [Figure 6.6(b)].

Moreover, Figures 6.6(e) and 6.6(f) show respectively the areal capacitive ca-

pacitance CC,BET and the gravimetric faradaic capacitance CF,g as functions of

scan rate v for different values of thickness Lr. It indicates that CC,BET was in-

dependent of Lr at low scan rates, corresponding to the equilibrium capacitance,

as observed previously for EDLC electrodes [30]. However, it started decreasing

sharply and at lower scan rates as Lr increased. In addition, the gravimetric

faradaic capacitance CF,g decreased continuously with increasing coating thick-

ness Lr for any given scan rate. Here also, to explain these observations, one

needs to consider the temporal evolution of the electrode tip potential, the ion

concentrations in the electrolyte at the solid/electrolyte interfaces, as well as the
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Figure 6.6: (a)(b) Areal capacitive current density jC,BET and gravimetric
faradaic current density jF,g as functions of imposed potential ψs(t) at scan rate
v = 0.1 V/s, (c) b-value as a function of the imposed potential ψs(t), and cor-
responding (e) areal capacitive capacitance CC,BET and (f) gravimetric faradaic
capacitance CF,g as functions of scan rates v for electrodes consisting of conduct-
ing nanorod with radius ri of 5 nm supporting pseudocapacitive material with
thickness Lr of 5, 20, 35, 50, and 100 nm.
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total changes in the state of charge (SOC) during charging.

Figures 6.7(a) and 6.7(b) show the potential ψtip(t) at the tip of the electrode,

located at (r, z) = (0,Ls + Lc + Lr), as a function of the dimensionless time

t/τCV , for the same electrodes as those simulated in Figure 6.6, at scan rates

v = 0.1 and 100 V/s, respectively. Here also, a time lag in the tip potential

was observed only at high scan rates associated with a reduction in amplitude

in ψtip(t) which became more apparent with increasing Lr. This was attributed

to the increase in electrical resistance RP ≈ Lr/[σP (πr
2
i + 2πriLc)] across the

pseudocapacitive layer with increasing Lr at high scan rates. Note that, Lr had

a significantly stronger effect on ψtip(t) than ri [Figure 6.5(b)]. This was due to

the significantly smaller electrical conductivity of the pseudocapacitive layer σP

compared with that of the conducting nanorod σC . Here also, Figures 6.7(c) and

6.7(d) show that the corresponding concentrations c1(0, Ls+Lc+Lr, t) of cations

Li+ and c2(0, Ls+Lc+Lr, t) of anions ClO
−

4 at the electrode/electrolyte interface

as functions of the potential ψtip(t) at the tip of the coated nanorod did not feature

any hysteresis, at scan rates v = 0.1 and 100 V/s, respectively. Therefore, the

decrease in CC,BET at high scan rates, observed in Figure 6.6(e), was only due to

slow potential propagation across the electrode and not to ion diffusion limitations

in the electrolyte.

Moreover, Figures 6.7(e) and 6.7(f) show the total change in SOC, ∆c1,P/c1,P,max,

during charging as a function of pseudocapacitive layer thickness Lr, at scan rates

v = 0.1 and 100 V/s. It indicates that the total change in SOC during charging

decreased with increasing scan rate v and thickness Lr. This led to the continuous

decrease in charge storage by faradaic reactions and thus to the continuous de-

crease in CF,g with increasing scan rate v and coating thickness Lr [Figure 6.6(f)].

Finally, Figure 6.8(a) shows the areal capacitive capacitance CC,BET shown in

Figure 6.6(e), for different values of thickness Lr, but as a function of dimensionless
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Figure 6.7: Tip potential ψtip(t) as a function of dimensionless time t/τCV , for
electrodes consisting of conducting nanorod 5 nm in radius ri supporting pseudo-
capacitive material with thickness Lr of 5, 20, 35, 50, and 100 nm, at scan rate (a)
v = 0.1 and (b) 100 V/s. Corresponding Li+ ion concentration c1(0, Ls+Lc+Lr, t)
and ClO−

4 ion concentration c2(0, Ls+Lc+Lr, t) at the electrode/electrolyte inter-
face as functions of the tip potential ψtip(t) for (c) v = 0.1 and (d) 100 V/s. SOC
variation ∆(c1,P/c1,P,max) as a function of the pseudocapacitive layer thickness for
(e) v = 0.1 and (f) 100 V/s.
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Figure 6.8: (a) Areal capacitive capacitance CC,BET as a function of dimension-
less scan rates v∗1 and (e) gravimetric faradaic capacitance CF,g as a function of
dimensionless scan rates v∗2 for electrodes consisting of conducting nanorod with
radius ri of 5 nm supporting pseudocapacitive material with thickness Lr of 5, 20,
35, 50, and 100 nm.
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scan rate v∗1 expressed as [30]

v∗1 =
τe

τCV /2
=

vτe
ψmax − ψmin

. (6.21)

Here, the time scale τe was the characteristic time for electron transport across

the pseudocapacitive layer expressed as [192]

τe =
Lr
ue

=
ρneeL

2
r

Mu(ψmax − ψmin)σP
(6.22)

where ue is the so-called drift velocity, i.e., the average velocity of electrons under

electric field E = (ψmax − ψmin)/Lr expressed as ue = (MuσPE)/(ρnee), with ne

the number of free electrons per atom in the pseudocapacitive layer and Mu the

atomic mass (in u) of the pseudocapacitive layer. For LiMnO2, ne = 1 and Mu =

93.9 u [193]. Figure 6.8(a) indicates that the areal capacitive capacitance CC,BET ,

for different values of Lr, collapsed on a single curve and featured self-similar

behavior when plotted as a function of dimensionless scan rates v∗1. Note that

Wang and Pilon [30] obtained similar results by scaling τCV by the ion diffusion

time scale in the electrolyte τD = L2/D instead of τe. However, unlike in Ref. [30],

the present simulations established that limitations due to potential propagation

in the electrode prevailed over ion diffusion limitations in the electrolyte. In

addition, the areal capacitive capacitance CC,BET remained constant for v∗1 ≤ 10.

Similarly, Figure 6.8(b) shows the gravimetric faradaic capacitance CF,g, shown

in Figure 6.6(f), but as a function of dimensionless scan rate v∗2 expressed as [30]

v∗2 =
τf

τCV /2
=

vτf
ψmax − ψmin

(6.23)

where the time scale τf associated with faradaic reactions and ion intercalation in
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the pseudocapacitive layer can be expressed as

τf =
√
τiτr. (6.24)

Here, τi = L2
r/D1,p is the time scale for ion intercalation in the pseudocapacitive

layer treated as a diffusion process [213]. On the other hand, τr is the effective

time for faradaic reactions that can be expressed as [214]

τr =

√
K

k0(ABET/m)
≈

√
KLr
k0

(6.25)

whereK is the equilibrium constant for redox reactions m Li++MpOq+m e– −−⇀↽−−
LimMpOq taking place at the pseudocapacitive layer/electrolyte interface. Ac-

cording to chemical thermodynamics, K can be expressed as K = ezFE
0/RuT [215]

where E0 is the standard reduction potential for the above reaction reported rel-

ative to standard hydrogen electrode at 1 atm pressure, 298 K temperature, and

for 1 M reactant ion (Li+) concentration in the electrolyte [216]. For Li+ reacting

with MnO2, E
0 = −0.16 V [217] and K = 1.9 × 10−3 at 298 K. Here also, Fig-

ure 6.8(b) establishes that the capacitance CF,g collapsed on a single curve when

plotted as a function of v∗2 . In addition, CF,g was proportional to (v∗2)
−1 at high

scan rates such that v∗2 > 0.2.

6.3.4 Total capacitances and optimum dimensions

Figure 6.9 shows (a) the total gravimetric capacitance CT,g and (b) the total areal

capacitance CT,BET as functions of pseudocapacitive layer thickness Lr for elec-

trodes consisting of conducting nanorod with radius ri of 5 nm for scan rate v

= 1, 2.5, 5, 10, 30, and 100 V/s. Figures 6.9(a) and 6.9(b) also show CT,g and

CT,BET as functions of Lr for a planar electrode with the same electrolyte and

electrode properties for scan rate v = 1 V/s [32]. The predicted values of the

total gravimetric capacitance CT,g ranged between 20 F/g and 200 F/g. These
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Figure 6.9: Total (a) gravimetric CT,g and (b) areal CT,BET capacitances as
functions of the thickness Lr of pseudocapacitive layer for planar electrodes at scan
rate v = 1 V/s and for electrodes consisting of conducting nanorod with radius ri
of 5 nm, at scan rates v = 1 to 100 V/s. (c) Total CT,BET and maximum possible
CT,BET,max areal capacitances as functions of scan rate v for electrodes consisting
of conducting nanorod with radius ri of 5 nm. (d) The optimum thickness Lr,opt
as a function of the scan rate v for electrodes consisting of conducting nanorod
with radius ri of 5, 35, and 65 nm.
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values were comparable with capacitances measured for electrodes with similar

morphologies and ranging between 60 F/g and 800 F/g [71, 73, 74]. Note that

the total gravimetric capacitance systematically increased with decreasing pseu-

docapacitive layer thickness for all scan rates considered. The same trend was

also observed for other nanorod radii ri (not shown). Note that for given elec-

trode and electrolyte dimensions, the total capacitance CT,g or CT,BET for planar

pseudocapacitive electrodes increased with increasing electrical conductivity σP

and ion diffusion coefficient D1,p in the electrode [32]. Moreover, during charging,

transport properties D1,p decreased [218] and σP increased [219–221] due to the

presence of Li+ intercalated in the metal oxide structure. The dependence of D1,p

and σP on the local intercalated Li+ concentration does not seem to be avail-

able in the literature and accounting for these processes falls outside the scope of

the present simulations. Figure 6.9(b) indicates that the total areal capacitance

reached a maximum CT,BET,max at an optimum pseudocapacitive layer thickness

Lr,opt(v), for a given scan rate v. The existence of Lr,opt(v) can be attributed to the

trade-off between offering large volume of pseudocapacitive layer for volumetric

faradaic intercalation of Li+ while maintaining acceptable potential drop across

the electrode. Moreover, Figures 6.9(a) and 6.9(b) indicate that the total capaci-

tances CT,g and CT,BET as well as the optimum thickness Lr,opt for electrodes with

conducting nanorod scaffold were much larger than those for planar electrodes [32]

for a given scan rate (1 V/s). These observations confirm the positive effect of

the conducting scaffold on the electrode performance.

Furthermore, Figure 6.9(c) shows the total capacitance CT,BET along with the

maximum possible areal capacitance CT,BET,max as functions of scan rate v for

pseudocapacitive layer thickness Lr from 5 to 100 nm. The curve for CT,BET,max

represents the envelop of the CT,BET - v curves. Any pair (v, CT,BET ) on the right

side of CT,BET,max(v) cannot be reached regardless of thickness Lr.

Finally, Figure 6.9(d) shows the optimum pseudocapacitive layer thickness
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Lr,opt as a function of scan rate v for electrodes consisting of conducting nanorod

with radius ri of 5, 35 and 65 nm. It indicates that ri had a negligible ef-

fect on the optimum thickness Lr,opt at all scan rates. In addition, the op-

timum pseudocapacitive layer thickness Lr,opt was proportional to v−2/3. The

power law can be explained by considering the expression of the total capacitance

CT,BET as the sum of capacitive and faradaic contributions, i.e., CT,BET (v, Lr) =

CC,BET [v
∗

1(Lr)] + CF,g[v
∗

2(Lr)]m/ABET ≈ CC,BET [v
∗

1(Lr)] + CF,g[v
∗

2(Lr)]Lr. In ad-

dition, the optimum thickness at any scan rate corresponded to 0.1 ≤ v∗1 ≤ 10

and v∗2 > 1. Under these conditions, CC,BET (v
∗

1) remained constant while CF,g(v
∗

2)

was proportional to (v∗2)
−1, as discussed previously (Figure 6.8). Therefore,

∂CT,BET
∂Lr

≈ ∂CF,g
∂v∗2

∂v∗2
∂Lr

Lr + CF,g (6.26)

Substituting Equation (6.23) for v∗2(Lr) into Equation (6.26) and solving for the

equation ∂CT,BET/∂Lr(v, Lr,opt) = 0 yielded Lr,opt = C/v2/3, where C is a con-

stant depending on the electrode and electrolyte properties as well as the working

conditions discussed in Section 6.2.4.

6.4 Chapter summary

This chapter investigated the effect of nanoarchitecture on the performance of

pseudocapacitive electrodes. It presented the first transient multidimensional sim-

ulations based on a physicochemical model derived from first-principles for pseudo-

capacitive electrodes consisting of a pseudocapacitive layer coated on conducting

nanorods. First, two semi-empirical approaches commonly used in experiments

relating the total current density to the scan rate were numerically reproduced

and validated. The simulation tools were also used to determine the respective

contributions of EDL formation and faradaic reactions to the total charge storage

for different electrode dimensions and scan rates. The areal capacitive capaci-

124



tance, due to EDL formation, remained constant and independent of electrode

dimensions at low scan rates. However, at high scan rates, it decreased more

sharply with decreasing conducting nanorod radius and increasing pseudocapaci-

tive layer thickness due to resistive losses. By contrast, the gravimetric faradaic ca-

pacitance, arising from reversible faradaic reactions, decreased continuously with

increasing scan rate and coating thickness but remained independent of the con-

ducting nanorod radius. Moreover, the predicted total gravimetric capacitance

featured realistic values comparable with experimental measurements. Finally, an

optimum pseudocapacitive layer thickness to maximize total areal capacitance (in

µF/cm2) was identified as a function of scan rate and corresponded to a trade-off

between achieving large charge storage by using thick pseudocapacitive layer and

minimizing resistive losses across the electrode.
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CHAPTER 7

Critical Assessments of Methods Commonly Used to Generate

Ragone Plots for Electrochemical Capacitors

Chapters 5-6 studied performance of EC electrodes with capacitance as the main

criteria. However, the capacitance is not the main performance metrics for bat-

teries or fuel cells. Thus, in order to compare the performance of EC devices with

batteries and fuel cells, energy and power densities are commonly considered. This

chapter aims to compare and evaluate commonly used methods for estimating the

energy and power densities and producing Ragone charts of electrochemical ca-

pacitors (ECs).

7.1 Background

Increasing power requirements for modern applications such as electric vehicles

[7,45,222] have resulted in increasing demand for electrical energy storage devices

capable of delivering large power and energy densities. The energy density can be

defined as the total energy released during discharging per unit volume (in J/m3),

mass (in J/kg), or surface area (in J/m2) of the electrode of the energy storage

device. For example, the energy density ED per unit surface area of the electrode

(in J/m2) can be expressed as [92, 223]

ED = −
∫ t0+tc+td

t0+tc

js(t)ψs(t)dt (7.1)

where t0 is the starting time of a cycle, tc and td are the durations of charg-

ing and discharging, js(t) is the current density (in A/m2) at the current col-

lector/electrode interface, and ψs(t) is the cell potential (in V). The product
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−js(t)ψs(t) represents the instantaneous output power density at time t during

discharging. Similarly, the time-averaged power density PD (in W/m2) released

during discharging can be expressed as [92, 223]

PD = − 1

td

∫ t0+tc+td

t0+tc

js(t)ψs(t)dt =
ED
td
. (7.2)

7.1.1 Direct integration method

The energy and power densities under either galvanostatic cycling or cyclic voltam-

metry can be calculated directly using Equations (7.1) and (7.2), respectively

[37, 87, 88]. For galvanostatic cycling, the current density js(t) is imposed to be

constant and of opposite sign ,i.e., js(t) = ±jGC (jGC > 0) during charging and

discharging while the cell potential ψs(t) is measured or computed. For cyclic

voltammetry, the imposed cell potential ψs(t) varies linearly with time at con-

stant scan rate v = |dψs/dt| within the bounds of the potential window [ψmin,

ψmax] while the current density js(t) is measured or computed. Note that the in-

tegration method for energy and power densities may be mathematically involved

and simpler methods such as RC circuit and integral capacitance methods are

more straightforward and have been used extensively [35, 92–109].

7.1.2 RC circuit method

The electrical RC circuit method assumes that an EC device consists of an ideal

capacitor of capacitance C (in µF/cm2) in series with an ideal resistor of resistance

R (in Ω m2). Here, the capacitance and resistance are assumed to remain constant

during charging and discharging. Then, the cell potential ψs(t) and the current

density js(t) are related by the expression [92, 93]

ψs(t) =
qs(t)

C
+ js(t)R (7.3)
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where qs(t) is the surface charge density of the capacitor’s electrode (in C/m2)

such that dqs(t)/dt = js(t) [9]. The resistance R (in Ω m2) responsible for the

ohmic potential drop across the cell can be retrieved from the sharp potential drop

∆ψGC , also called “IR drop”, observed at the transition between charging and

discharging in galvanostatic cycling at constant current density jGC as [153, 154]

R = ∆ψGC/(2jGC). (7.4)

Equation (7.3) indicates that the cell potential ψs(t) varied linearly with time dur-

ing charging or discharging at constant current density jGC . Thus, the expressions

for energy and power densities in Equations (7.1) and (7.2) simplify as [93]

ED =
1

2
jGCtd(ψmax − ψmin − jGCR) and PD = ED/td (7.5)

where ψmin and ψmax are, respectively, the minimum and maximum values of the

measured or computed cell potential ψs(t). Note that jGCtd corresponds to the

total charge released during constant current discharging.

7.1.3 Integral capacitance method

Another simplified method for estimating energy ED and power PD densities as-

sumes that an EC device behaves as a conventional dielectric capacitor. In other

words, the differential capacitance Cdiff = dqs/dψs [7] of the EC remains constant

during charging and discharging and is equal to the integral capacitance Cint (in

µF/cm2) expressed as [94]

Cint = (jGCtd)/(ψ1 − ψmin) for galvanostatic cycling (7.6)

and Cint =
1

ψmax − ψmin

∮

js(t)

2v
dψs for cyclic voltammetry (7.7)
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where ψ1 = ψmax − ∆ψGC is the cell potential immediately after the IR drop at

the transition from constant current charging to discharging and v is the scan

rate of cyclic voltammetry. Note that assuming Cdiff to be constant implies

that (i) the potential ψs(t) varies linearly with time under galvanostatic cycling,

i.e., dψs/dt = jGC/Cdiff and (ii) the current density js remains constant under

cyclic voltammetry js = dqs/dt = Cdiffdψs/dt = Cdiffv. In addition, assuming

Cdiff = Cint implies that the current density can be expressed in terms of the cell

potential as [224]

js(t) = Cint
dψs(t)

dt
(7.8)

Substituting Equation (7.8) into Equations (7.1) and (7.2) yields the following

commonly used expressions for the energy and power densities of EC devices

[35, 94–114, 224]

ED =
1

2
Cint(ψ1 − ψmin)

2 and PD =
1

2
Cint(ψ1 − ψmin)

2/td (7.9)

7.2 Analysis

7.2.1 Schematics and Assumptions

Figure 7.1 illustrates the one-dimensional (a) EDLC device and (b) hybrid pseu-

docapacitor simulated in the present study along with the associated coordinate

system. The simulated EDLC consisted of two parallel planar carbon electrodes

separated by an electrolyte solution. The hybrid pseudocapacitor consisted of a

planar carbon electrode and a planar pseudocapacitive electrode separated by an

electrolyte solution. Following assumptions were made: (1) The electrolyte was

binary and symmetric, i.e., it consisted of two ion species of opposite valency ±z
(z > 0). (2) The electrolyte properties were assumed to be constant and indepen-

dent of electrolyte concentration. (3) The Stern layer thickness H was assumed

to be half of the larger ion effective diameter, i.e., H = max(a1/2, a2/2) [16]. (4)
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Figure 7.1: Schematics of the simulated 1D (a) EDLC and (b) pseudocapacitor
device.
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The ion intercalation in the pseudocapacitive electrode was modeled as a diffusion

process. (5) The temperature of the EC device was constant and uniform. (6)

Advection of the electrolyte was assumed to be negligible.

Simulations reported in this chapter were based on the generalized modified

Poisson-Nernst-Planck (GMPNP) model for the spatiotemporal evolution of the

potential ψ(x, t) [Equation (2.1)] in the electrode and electrolyte as well as the ion

concentrations c1(x, t) of cations and c2(x, t) of anions [Equations (2.2) and (2.5)]

in the electrolyte for EDLC devices and hybrid pseudocapacitors. In addition,

the boundary conditions varied depending on whether galvanostatic cycling or

cyclic voltammetry were simulated. EIS simulations imposed potential ψs(t) at

the current collector/electrode interface as a harmonic function of time t [Equation

(1.3)]. For galvanostatic cycling, the current density js(t) imposed at the current

collector/electrode interface or across the cell was a square wave of magnitude

jGC with respect to the cycle period [Equation (1.2)]. For cyclic voltammetry,

the potential ψs(t) at the current collector/electrode interface was imposed as a

triangular wave with respect to cycle period [Equation (1.1)]. Other boundary

conditions remained the same as described in Chapter 3 for device simulations.

7.2.2 Constitutive relationships

In order to solve the coupled transient 1D equations as well as the initial and

boundary conditions, a total of 24 parameters were necessary, including (i) the

electrolyte properties ǫr, z, a1, a2, D1, D2, c∞,1 and c∞,2, (ii) the electrical conduc-

tivity σc of the carbon electrode, (iii) the pseudocapacitive electrode properties

∆ψeq, c1,P,max, c1,P,0, D1,P , k0, α, and σP , (iv) the dimensions of the simulated

electrode and electrolyte domains Lc, LP and L, along with (v) the operating

conditions including the potential window ψmin, ψmax, the scan rate v for cyclic

voltammetry or the imposed current density jGC for galvanostatic cycling, and

(vi) temperature T (in K).
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Table 7.1: Value or range of electrode and electrolyte properties and dimensions used in the simulations reported in this
study.

Parameters
Electric double layer capacitors Pseudocapacitors
Case 1 Case 2 Case 3 Case 4 Case 5

Carbon electrode conductivity σe (S/m) 0.5 0.5 0.5 0.5 0.5
Dielectric constant ǫr 64.4 64.4 64.4 64.4 64.4
Valency z 1 1 1 1 1

Ion diameter
a1 (nm) 0.41 0.83 0.41 0.41 0.83
a2 (nm) 0.41 0.83 0.51 0.41 0.83

Diffusion coefficient
D1 (m2/s) 1 x 10−10 1 x 10−10 0.69 x 10−10 1 x 10−10 1 x 10−10

D2 (m2/s) 1 x 10−10 1 x 10−10 1.31 x 10−10 1 x 10−10 1 x 10−10

Bulk ion concentration
c∞,1 (mol/L) 1 1 1 1 1
c∞,2 (mol/L) 1 1 1 1 1

Carbon electrode thickness Lc (nm) 100 100 100 100 100
Pseudocapacitive electrode thickness LP (nm) - - - 100 100
Electrolyte thickness 2L (µm) 20 20 20 20 20

Potential window
ψmin (V) 0 0 0 0 0
ψmax (V) 1 1 1 1 1

Imposed current density jGC (mA/cm2) 2 - 2000 2 - 2000 2 - 2000 2 - 2000 2 - 2000
Scan rate v (V/s) 50 - 5000 50 - 5000 50 - 5000 50 - 5000 50 - 5000
Temperature T 298 298 298 298 298
Maximum concentration in pseudocapacitive electrode c1,P,max (mol/L) - - - 6.38 6.38
Initial concentration in pseudocapacitive electrode c1,P,0 (mol/L) - - - 31.9 31.9
Reaction rate constant k0 (m2.5mol−0.5s−1) - - - 10−8 10−8

Transfer coefficient α - - - 0.5 0.5
Diffusion coefficient in pseudocapacitive electrode D1,P (m2/s) - - - 1 x 10−12 1 x 10−12

Pseudocapacitive electrode conductivity σP (S/m) - - - 0.5 0.5



Table 7.1 summarizes the values or range of the 24 parameters for the five cases

considered in the present study. Cases 1-3 correspond to simulations of EDLC

devices and Cases 4 and 5 to simulations of hybrid pseudocapacitors. Cases 1 and

2 assumed that the two ion species had the same diameter and diffusion coefficient

with a1 = a2 = 0.41 nm and D1 = D2 = 10−10 m2/s for Case 1 and a1 = a2 = 0.83

nm and D1 = D2 = 10−10 m2/s for Case 2. Case 3 corresponds to the more

realistic situation of asymmetric effective ion diameter and diffusion coefficient in

the electrolyte such that a1 = 0.41 nm, a2 = 0.51 nm [225,226], D1 = 0.69×10−10

m2/s, and D2 = 1.31 × 10−10 m2/s [227]. Note that all other properties of the

electrolyte in all cases were evaluated at approximately T = 293 K for LiPF6 in

propylene carbonate (PC) [68,152,225–228]. In all three cases, the valency of the

ion species were ±z with z = 1 [68]. The dielectric constant was estimated as

ǫr = 64.4 for PC [152]. The bulk ion concentrations were taken as c∞,1 = c∞,2 = 1

mol/L, as often used experimentally [208]. Moreover, the two electrodes simulated

were separated by a distance of 2L = 40 µm and had thickness Lc = 100 nm with

electrode electrical conductivity σc = 0.5 S/m, based on the range of conductivity

of carbon reported between 10−6 and 102 S/m [190, 191].

Cases 4 and 5 use the same properties of carbon electrode and electrolyte as

Cases 1 and 2, respectively. For pseudocapacitive electrode consisting of transition

metal oxides, the equilibrium potential difference ∆ψeq was modeled as a linear

function of the state-of-charge (SOC) c1,P/c1,P,max [82, 83, 161]. For MnO2 dense

films of thickness 100 µm at low scan rates, ∆ψeq(t) (in V) was measured as [162]

∆ψeq(t) = 10.5[4− c1,P (t)/c1,P,max]− 39.9. (7.10)

Here, c1,P,max ≈ 31.9 mol/L is the maximum intercalated lithium concentration in

the pseudocapacitive electrode, corresponding to fully lithiated metal oxide MnO2

[163,164]. The initial concentration of Li+ in the electrode was c1,P,0 ≈ 6.38 mol/L
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such that the equilibrium potential was zero initially [164]. The reaction rate

constant k0 was taken as k0 = 10−8 m2.5mol−0.5s−1 to maximize contribution from

redox reactions, based on the range of k0 for transition metal oxides between 10−11

and 10−8 m2.5mol−0.5s−1 [145,146,165]. The transfer coefficient α was assumed to

be 0.5, corresponding to identical energy barriers for forward and backward redox

reactions [8]. The value of the diffusion coefficient D1,P of the intercalated Li+

in the pseudocapacitive electrode was taken as D1,p = 10−12 m2/s, based on the

typical range from 10−16 to 10−10 m2/s [165]. Moreover, the thickness and the

electrical conductivity of the pseudocapacitive electrode were chosen to be the

same as the carbon electrode to facilitate comparison among cases, i.e., LP = 100

nm and σP = 0.5 S/m.

Finally, the potential window was set as ψmin = 0 V and ψmax = 1 V for both

galvanostatic cycling and cyclic voltammetry. The magnitude of the imposed

current density jGC for galvanostatic cycling ranged between 2 and 200 mA/cm2.

The scan rate v in cyclic voltammetry ranged between 50 V/s and 5000 V/s.

The governing equations along with the initial and boundary conditions were

solved using COMSOL 5.2. Mesh and time-step selections to achieve numerical

convergence and oscillatory steady state conditions were discussed in detail in

Refs. [1, 148] and need not be repeated.

7.2.3 Data processing

First, the energy ED and power PD densities were estimated using Equations

(7.1) and (7.2) from the predicted current density js(t) and cell potential ψs(t)

for galvanostatic cycling and cyclic voltammetry. Similarly, the resistance R and

integral capacitance Cint were computed from galvanostatic cycling simulations

according to Equations (7.4) and (7.6), respectively. They were then used to

estimate ED and PD by the RC circuit [Equation (7.5)] and integral capacitance

[Equation (7.9)] methods.
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Furthermore, the energy provided to an EC during charging (in J/m2) can be

expressed as [92, 223]

EC =

∫ t0+tc

t0

js(t)ψs(t)dt (7.11)

It cannot be entirely retrieved during discharging because of irreversible heat

generation [5, 7, 229, 230]. In fact, over one cycle period, the energy conservation

equation for electrochemical capacitor can be written as [7]

EC = Qirr + ED (7.12)

where Qirr (in J/m2) is the irreversible thermal energy generated over the entire

cycle per unit electrode surface area [33]. For EDLC devices (Cases 1-3), the heat

generation for an entire cycle period tcd is equal to Joule heating QJ (in J/m2),

i.e., Qirr = QJ where QJ is expressed as [231]

QJ =

∫ t0+tcd

t0

Rj2s (t)dt (7.13)

where tcd is the cycle period, i.e., tcd = tc + td. On the other hand, for hybrid

pseudocapacitors (Cases 4-5), the faradaic reactions also contributes to the irre-

versible heat generation such that Qirr = QJ + QF where the heat generation

associated with faradaic reactions over a cycle period tcd can be expressed as [33]

QF =

∫ t0+tcd

t0

jF (t)η(t)dt. (7.14)

Here, jF (t) (in A/m2) is the faradaic current density, given by the generalized

Frumkin-Butler-Volmer model [Equation (S.15)]. In addition, η(t) = ∆ψH(t) −
∆ψeq(t) is the overpotential, ∆ψH is the potential drop across the Stern layer and

∆ψeq(t) is the equilibrium potential given by Equation (7.10) [8]. For each case,

we assessed whether each of the four methods used to estimate energy and power

densities satisfies the energy conservation principle given by Equation (7.12).
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7.3 Experiments

The four different methods of estimating ED and PD were also compared exper-

imentally on EDLC and hybrid pseudocapacitive devices. An EDLC device with

footprint surface area of 1 cm2 consisted of two identical electrodes separated by

a 350 µm glass fiber separator (GF85 filter, Advantec MFS Inc.) immersed in 1

M LiPF6 in EC:DMC (1:1) as electrolyte. The activated carbon electrode was

prepared by making a slurry consisting of (i) 70 wt% YP-50F activated carbon

(Kuraray), (ii) 20 wt% Super P, and (iii) 10 wt% PVDF as a binder in N-Methyl-

2-pyrrolidone (NMP). The resulting slurries were drop casted onto a 1x1 cm2 Ni

foil, serving as the current collector. The mass loading of each electrode was 2.3

mg activated carbon per cm2. The electrodes were dried under vacuum at 120oC

for at least 2 hr. Then, the EDLC device was assembled, installed, and cycled

between ψmin = 0 V and ψmax = 1 V under (i) galvanostatic cycling with constant

current iCC ranging between 0.05 and 8 mA and (ii) cyclic voltammetry with scan

rate v ranging between 0.5 and 100 mV/s.

A hybrid pseudocapacitor with footprint surface area of 1 cm2 was also assem-

bled and consisted of a pseudocapacitive MnO2-graphene electrode and an acti-

vated carbon (AC) electrode separated by a 350 µm glass fiber separator (GF85

filter, Advantec MFS Inc.) immersed in 0.5 M Na2SO4 in DI water. To pre-

pare the pseudocapacitive MnO2 electrode, first, MnO2-graphene composite were

synthesized using a microwave synthesis adapted from a previously reported pro-

cedure [127]. In a typical synthesis, 90 mg of KS6 synthetic graphite (Imerys) was

added to 50 mL of DI water and sonicated until a stable suspension was obtained

(1 hr). Then, 450 mg of KMnO4 (Sigma Aldrich) was added to the graphene sus-

pension and stirred for 5 min and sonicated for another 30 min. The suspension

was then heated to 185oC for 1 hr using a microwave oven (CEM Discover SP Mi-

crowave Synthesizer). The MnO2-graphene composite was washed and centrifuged
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with DI water five times before it was dried overnight in an oven at 100oC. Then,

a slurry was prepared by mixing 70 wt% of active material (85:15 MnO2:graphene

composite), 20 wt% of Super P (Alfa Aesar) as conductor, and 10 wt% polyvinyli-

dene fluoride (PVDF, Kynar) as a binder in N-Methyl-2-pyrrolidone (NMP, Sigma

Aldrich). Activated carbon electrode was synthesized as described previously. The

mass loading was 1.2 mg for MnO2 and 2.3 mg for activated carbon per cm2. The

electrodes were dried under vacuum at 120oC for at least 2 hr. Then, the hybrid

device was assembled, installed, and cycled between ψmin = 0 V and ψmax = 1.25

V under (i) galvanostatic cycling with constant current iCC ranging between 0.1

and 8 mA and (ii) cyclic voltammetry with scan rate v ranging between 5 and

200 mV/s.

7.4 Results and discussion

7.4.1 EDLC devices

7.4.1.1 Ragone plots

Figure 7.2 shows the Ragone plots of energy ED versus power PD densities for

EDLC devices numerically predicted for (a) Case 1, (b) Case 2, (c) Case 3, and

(d) experimentally measured using (1) the direct integration method under gal-

vanostatic cycling, (2) the direct integration method under cyclic voltammetry,

(3) the RC circuit method, and (4) the integral capacitance method. The power

density PD was varied by changing the current density jGC for galvanostatic cy-

cling or the scan rate v for cyclic voltammetry. All four plots show the typical

“hook” shape characteristic of Ragone plots [92]. The large decrease in energy

density at high charging/discharging rates, i.e., at high power density, indicates

the upper bound of the suitable range of charging/discharging rates [93]. In ad-

dition, Figures 7.2(a) and 7.2(b) indicate that the RC circuit method and the

integral capacitance method agreed with the direct integration methods for elec-

137



(a) (b)

10 100 1000

0.1

0.2

0.3

0.4

E
n

er
g

y
 d

en
si

ty
, 

E
D
 (

J
/m

2
)

Power density, P
D
 (W/m

2
)

 Eqs. (1)-(2), galvanostatic

 Eqs. (1)-(2), cyclic voltammetry

 RC circuit method, Eq. (4)

 Integral capacitance method, Eq. (5)

Simulation: Case 1

10 100 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

E
n

er
g

y
 d

en
si

ty
, 

E
D
 (

J
/m

2
)

Power density, P
D
 (W/m

2
)

 Eqs. (1)-(2), galvanostatic

 Eqs. (1)-(2), cyclic voltammetry

 RC circuit method, Eq. (4)

 Integral capacitance method, Eq. (5)

Simulation: Case 2

(c) (d)

10 100 1000

0.1

0.2

0.3

E
n

er
g

y
 d

en
si

ty
, 

E
D
 (

J
/m

2
)

Power density, P
D
 (W/m

2
)

 Eqs. (1)-(2), galvanostatic

 Eqs. (1)-(2), cyclic voltammetry

 RC circuit method, Eq. (4)

 Integral capacitance method, Eq. (5)

Simulation: Case 3

0.01 0.1 1

20

30

40

50

60

70

80

E
n

er
g

y
 o

u
p

u
t,

 E
 (m

J
)

Power output, P (mW)

 Eqs. (1)-(2), GC

 Eqs. (1)-(2), CV

 RC circuit method, Eq. (5)

 Integral capacitance method, Eq. (9)

Experiment: AC/AC in 1M LiPF6 (EC/DMC)

Figure 7.2: Energy density ED as a function of power density PD for EDLC
devices generated from four different methods (a)-(c) numerically for (a) Case 1,
(b) Case 2, (c) Case 3, and (d) experimentally.
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trolyte with small ions (Case 1) at low charging/discharging rates, i.e., at low

power density PD. However, for electrolyte with large ions (Case 2), these two

methods systematically predicted a larger energy density than that obtained by

the direct integration methods. On the other hand, Figures 7.2(a) and 7.2(c)

establish that asymmetry in the effective ion diameter and diffusion coefficient

in the electrolyte had negligible effect on the energy and power densities. Fur-

thermore, the experimentally obtained Ragone plot [Figure 7.2(d)] qualitatively

agreed with the simulation results for Case 3 corresponding to carbon electrodes

in 1 M LiPF6 in PC as electrolyte. Finally, for all numerical simulations and

experiments considered, the direct integration method under cyclic voltammetry

predicted lower energy and power densities at high rates than under galvanostatic

cycling.

To explain the discrepancies in the Ragone plots obtained from the four differ-

ent methods considered, Figures 7.3(a) and 7.3(b) show the cell potential ψs as a

function of the dimensionless time t/tcd for relatively low imposed current density

jGC = 2 mA/cm2 for (a) a1 = a2 = 0.83 nm (Case 1) and for (b) a1 = a2 = 0.41

nm (Case 2). Results assuming point charge ions (a1 = a2 = 0) are also presented

as a reference while all other parameters remained the same as those of (a) Case 1

and (b) Case 2. The figures indicate that when ions were treated as point charge,

the potential systematically varied linearly with time. By contrast, for ions of

finite size (Cases 1 and 2), the temporal evolution of cell potential fell under

the linear temporal evolution during both charging and discharging. In addition,

Figures 7.3(c) and 7.3(d) show the corresponding anion concentration c2(Lc, t) at

the positive electrode/electrolyte interface (x = Lc) as a function of dimension-

less time t/tcd. Note that the cation concentration c1(Lc + 2L, t) at the negative

electrode/electrolyte interface (x = Lc + 2L) had the same behavior by virtue of

symmetry. Figures 7.3(c) and 7.3(d) indicate that the temporal evolution of ion

concentrations in Case 2 (a1 = a2 = 0.83 nm) deviated significantly from that
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Figure 7.3: (a)(b) Electrical potential ψs(t) and (c)(d) anion concentration
c2(Lc, t) at the positive electrode/electrolyte interface as functions of dimension-
less time t/tcd for low current density jGC = 2 mA/cm2 for (a)(c) Case 1, (b)(d)
Case 2, compared with the corresponding cases where ions were treated as point
charge.
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obtained when treating ions as point charges. The deviation was less pronounced

in Case 1 featuring smaller ions (a1 = a2 = 0.41 nm). Therefore, the effect of fi-

nite ion size on the ion concentrations at the electrode surface was responsible for

the non-linear temporal evolution of cell potential. This was true for all imposed

current densities considered. Note also that the RC circuit [Equation (7.3)] and

integral capacitance [Equation (7.8)] methods are based on the assumption that

the capacitance is constant and thus the cell potential varies linearly with time

during discharging. Unfortunately, this assumption was not valid for finite ion

size (both numerically and experimentally) and led to overestimation of energy

and power densities by the RC and integral capacitance methods [Figure 7.2(a)].

This was particularly true for electrolyte consisting of large ion species (Case 2).

Furthermore, Figure 7.4 shows (a,b) the CV curves and (c,d) the corresponding

instant (input) power P (t) = is(t)ψs(t) as functions of dimensionless time t/tcd for

experimental results of EDLC devices under cyclic voltammetry with scan rate v

of (a,c) 0.5 mV/s and (b,d) 80 mV/s, respectively. Similar behavior was observed

for numerical results (see Appendix C). At high scan rates, the current remained

positive even after switching from charging to discharging. Consequently, the in-

stant input power density P (t) = is(t)ψs(t) was also positive at the beginning

of discharging instead of being negative, as observed at low scan rates. On the

other hand, Figures 7.4(e)-7.4(f) show the instant (input) power P (t) = is(t)ψs(t)

as functions of dimensionless time t/tcd for experimental results of EDLC devices

under galvanostatic cycling with imposed current iGC of (e) 0.5 mA and (f) 8

mA, respectively. They indicate that the instant input power P (t) was always

negative throughout the discharging process under galvanostatic cycling. This

resulted in the systematic discrepancy between cyclic voltammetry and galvano-

static cycling (Figure 7.2) in estimating the energy density using Equation (7.1)

at high charging/discharging rates.
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Figure 7.4: Experimentally measured (a)(b) CV curves and (c)-(f) instant power
P (t) as functions of dimensionless time t/tcd for EDLC devices under (a)-(d) cyclic
voltammetry at scan rates (a)(c) v = 0.5 mV/s and (b)(d) v = 80 mV/s and (e)(f)
galvanostatic cycling at imposed current (e) iGC = 0.05 mA and (f) iGC = 8 mA.
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7.4.1.2 Energy balance

Figure 7.5 shows the energy losses EC −ED predicted by the four methods under

consideration versus the irreversible heat generation Qirr = QJ [Equation (7.13)]

for (a) Case 1, (b) Case 2, and (c) Case 3. It indicates that, in all cases, the

direct integration methods under galvanostatic cycling and cyclic voltammetry

both satisfied energy conservation principle expressed by Equation (7.12). These

observations were despite the difference in predicting ED at high rates (Figure

7.2). In other words, underestimation of ED by the direct integration method

under cyclic voltammetry at high rates (Figure 7.2) was compensated by the

same underestimation of EC , possibly due to the symmetric charging/discharging

behavior of EDLC devices (Figure 7.3). By contrast, the RC circuit method

violated the first law of thermodynamics for the three cases considered for EDLC

devices. Similarly, the integral capacitance method did not satisfy the energy

conservation principle for electrolyte with large ions (Case 2).

Finally, energy balance for experimental measurements was not performed here

due to the fact that the experimental uncertainty of heat generation measurement

(2-4 mJ) over one cycle was on the same order of magnitude as the difference

in estimating energy densities using different methods (1-4 mJ). Thus, it was

impossible to distinguish the four methods by performing energy conservation

principle on experimental results.

7.4.2 Hybrid pseudocapacitors

7.4.2.1 Ragone plots

Figure 7.6 shows the Ragone plots for hybrid pseudocapacitors numerically pre-

dicted for (a) Case 4 and (b) Case 5 and (c) experimentally measured for MnO2-

graphene/AC device using the four methods under consideration. It indicates that

the experimental Ragone plot [Figure 7.6(c)] qualitatively agreed with the simula-
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Figure 7.5: Energy losses EC−ED as a function of irreversible heat generationQirr

for EDLC devices of (a) Case 1, (b) Case 2, and (c) Case 3. Energy conservation
principle requires that EC − ED = Qirr, as expressed by Equation (7.12).
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graphene/AC with aqueous Na2SO4 device.
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tion results. In all cases, the direct integration method under cyclic voltammetry

underestimated the energy and power densities at high rates compared with those

predicted under galvanostatic cycling, as previously observed for EDLCs (Figure

7.2). Here also, this can be attributed to the fact that the instant power density

P (t) = is(t)ψs(t) was positive at the beginning of discharging at high scan rates

under cyclic voltammetry but remained negative throughout the discharging pro-

cess under galvanostatic cycling both experimentally and in numerical simulations

(see Appendix C).

Moreover, the RC circuit and the integral capacitance methods systemati-

cally predicted larger energy density than the direct integration methods both

numerically and experimentally. To explain this trend, one needs to consider the

potential evolution for hybrid pseudocapacitors. Figure 7.7(a) shows the cell po-

tential ψs(t) as a function of the dimensionless time t/tcd numerically predicted

for Cases 1 (EDLC) and 4 (hybrid pseudocapacitor) with jGC = 50 mA/cm2.

Note that all parameters were the same in both cases except for those associated

with the redox reactions. Unlike for EDLCs, the potential evolution in hybrid

pseudocapacitors during charging and discharging was asymmetric. At the begin-

ning of the charging step, the time rate of change |dψs/dt| was relatively large

for a short period of time, after which |dψs/dt| sharply decreased, resulting in a

distinct “kink” in ψs(t). In addition, the potential evolution during discharging

of hybrid pseudocapacitors fell below that of EDLCs. Similar comparison can be

made between Cases 2 (EDLC) and 5 (hybrid pseudocapacitor) (see Appendix

C). In addition, Figures 7.7(b)-7.7(c) show the cell potential ψs(t) as a function

of dimensionless time t/tcd for galvanostatic cycling (b) numerically predicted for

Case 4 with jGC varying between 20 and 200 mA/cm2 and (c) experimentally

obtained with current iGC between 0.1 and 8 mA. Figure 7.7(b) indicates that

the “kink” during charging and the convex potential evolution during discharging

were observed for all current densities. Figure 7.7(c) establishes that experimental
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Figure 7.7: (a)-(c) Electrical potential ψs(t) as a function of dimensionless time
t/tcd (a) for Cases 1 and 4 under galvanostatic cycling with current density jGC =
50 mA/cm2, (b) for Case 4 under galvanostatic cycling with imposed current
density varying from 5 mA/cm2 to 100 mA/cm2, and (c) for experimental results
with imposed current varying from 0.5 mA to 8 mA. (d) Faradaic jF , capacitive
jC , and imposed jGC = jF + jC current densities as functions of dimensionless
time t/tcd for Case 4 under galvanostatic cycling with current density jGC = 50
mA/cm2.
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data were very similar to numerical simulations of Case 4 [Figure 7.7(b)] with a

sharper “kink” with increasing current.

Furthermore, Figure 7.7(d) shows the faradaic jF , capacitive jC , and total

js = jF + jC current densities as functions of dimensionless time t/tcd numerically

predicted for Case 4 with jGC = 50 mA/cm2. It establishes that a spike in

the capacitive current density occurred at the transition between charging and

discharging resulting in a relatively small differential capacitance Cdiff and thus

a large slope |dψs/dt| = jGC/Cdiff of the potential evolution [Figure 7.7(a)] [33].

This can be attributed to the fact that the relatively slow faradaic reactions cannot

follow the rapid current reversal between charging and discharging. However, the

faradaic current density jF dominated later in the charging/discharging process,

resulting in a relatively larger differential capacitance Cdiff and thus a smaller

slope |dψs/dt| [Figure 7.7(a)] [33]. This shift between the dominance of capacitive

and faradaic current densities contributed to the change in slope and thus the non-

linear and asymmetric cell potential ψs(t) in hybrid pseudocapacitors. However,

the RC circuit [Equation (7.3)] and integral capacitance [Equation (7.8)] methods

both assume that the cell potential varies linearly with time during discharging,

as previously discussed. Unfortunately, this assumption was not valid in presence

of faradaic reactions and led to the overestimation of energy and power densities

of hybrid pseudocapacitors by the RC and integral capacitance methods (Figure

7.6).

7.4.2.2 Energy balance

Figure 7.8 shows the energy losses EC−ED for hybrid pseudocapacitors predicted

by the four different methods under consideration versus the irreversible heat

generation Qirr = QJ + QF [Equations (7.13) and (7.14)] for (a) Case 4 and (b)

Case 5. It indicates that, unlike other methods, the direct integration method

under galvanostatic cycling satisfied the energy conservation principle expressed

148



(a)

-0.1 0.0 0.1 0.2 0.3

-0.1

0.0

0.1

0.2

0.3

E
n

er
g
y

 l
o
ss

es
, 
E

C
-E

D
 (

J
/m

2
)

Irreversible heat generation, Q
irr

 (J/m
2
)

 Direct integration, galvanostatic

 Direct integration, CV

 RC circuit method

 Integral capacitance method

 Eq. (11)

Simulation: Case 4

(b)

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

E
n

er
g
y

 l
o
ss

es
, 
E

C
-E

D
 (

J
/m

2
)

Irreversible heat generation, Q
irr

 (J/m
2
)

 Direct integration, galvanostatic

 Direct integration, CV

 RC circuit method

 Integral capacitance method

 Eq. (11)

Simulation: Case 5

Figure 7.8: Energy losses EC − ED as a function of irreversible heat generation
Qirr for hybrid capacitors of (a) Case 4 and (b) Case 5.
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by Equation (7.12) under all conditions. Therefore, the direct integration method

under galvanostatic cycling was the most appropriate method to evaluate energy

and power densities in order to generate Ragone plots for hybrid pseudocapacitors.

By contrast, the direct integration method under cyclic voltammetry did not

satisfy the energy conservation principle at high scan rates, corresponding to large

irreversible heat generation. In addition, the RC circuit and integral capacitance

methods systematically violated the energy conservation principle. Here also,

energy balance for experimental results was not performed due to the fact that the

uncertainty of heat generation measurements was on the same order of magnitude

as the difference in estimating energy densities using different methods. Thus, it

was impossible to distinguish the four methods by performing energy conservation

principle on experimental results.

7.5 Chapter summary

This chapter compared four different methods commonly used to generate Ragone

charts for EDLCs and hybrid pseudocapacitors namely (i) the direct integra-

tion method under galvanostatic cycling, (ii) the direct integration method under

cyclic voltammetry, (iii) the RC circuit method, and (iv) the integral capacitance

method. The numerically generated Ragone plots were qualitatively comparable

with experimental results for both EDLCs and hybrid pseudocapacitors. In addi-

tion, the direct integration under galvanostatic cycling was found to be the most

appropriate method not only conceptually but also because it intrinsically satis-

fies that first law of thermodynamics. By contrast, the direct integration method

under cyclic voltammetry underestimated the energy density at high scan rates,

i.e., at high power densities. The RC circuit and integral capacitance methods

systematically overestimated the energy and power densities for electrolyte with

large ions and/or in presence of redox reactions. Finally, the above observations

were confirmed by experimental measurements on EDLCs made of activated car-
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bon electrodes and organic electrolyte and on hybrid pseudocapacitors made of

MnO2-graphene and activated carbon electrodes in aqueous electrolyte.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

The objectives of the study were as follows (i) to provide rigorous physical inter-

pretations of EIS results for EDLC and pseudocapacitive electrodes, (ii) to develop

design rules for the 3D morphology of EDLC and pseudocapacitive electrodes and

the associated electrolyte, and (iii) to compare and evaluate the commonly used

methods to estimate energy and power densities for EDLC devices and hybrid

pseudocapacitors.

The first objective was achieved by performing 1D physicochemical model-

ing based on the modified Poisson-Nernst-Planck model along with the general-

ized Frumkin-Butler-Volmer equation for redox reactions under electrochemical

impedance spectroscopy for EDLC electrodes and redox active electrodes. For

EDLC electrodes and devices, the electrode resistance, bulk electrolyte resistance,

diffuse layer resistance, and equilibrium differential capacitance can be retrieved

directly from Nyquist plots. In addition, the internal resistance retrieved from the

sum of electrode and bulk electrolyte resistances in EIS simulations showed good

agreement with the internal resistance retrieved from the so-called “IR drop” in

galvanostatic cycling. Finally, the physical interpretation was confirmed experi-

mentally for EDLC devices with electrodes made of activated carbon in various

electrolytes. In addition, for redox active electrodes, the electrode, bulk elec-

trolyte, charge transfer, and mass transfer resistances could be identified from

Nyquist plots. These results and interpretations were confirmed experimentally

for LiNi0.6Co0.2Mn0.2O2 and MoS2 electrodes in organic electrolytes.

152



The second objective was met by multidimensional modeling of EDLC and

pseudocapacitive electrodes. Experimental cyclic voltammograms were repro-

duced numerically for EDLC electrodes of different thicknesses consisting of spher-

ical nanoparticles arranged in either simple cubic (SC) or face-centered cubic

(FCC) packing structure. For any given morphology, the areal capacitance in-

creased with decreasing sphere diameter. FCC packing featured larger capacitance

than SC packing. These results were explained by considering the magnitude of

the electric field at the carbon spheres/electrolyte interfaces. For all cases con-

sidered, the areal capacitance remained constant at low scan rate but decreased

beyond a critical scan rate when potential propagation across the electrode could

not follow the rapid changes in the potential imposed at the current collector. In

fact, a dimensional analysis was performed to collapse capacitance versus scan rate

plots, based on ratio of CV cycle period and the time scale for electron transport

in the electrode. Moreover, a similar approach was followed for pseudocapacitive

electrodes consisting of a pseudocapacitive layer coated on conducting nanorods.

First, two semi-empirical approaches commonly used in experiments relating the

total current density to the scan rate were numerically reproduced and validated.

Then, the respective contributions of EDL formation and faradaic reactions to

the total charge storage were discriminated for different electrode dimensions and

scan rates. Finally, an optimum pseudocapacitive layer thickness to maximize

total areal capacitance (in µF/cm2) was identified as a function of scan rate and

corresponded to a trade-off between achieving large charge storage by using thick

pseudocapacitive layer and minimizing resistive losses across the electrode.

The third objective was achieved by comparing four different methods com-

monly used to generate Ragone charts for EDLCs and hybrid pseudocapacitors

namely (i) the direct integration method under galvanostatic cycling, (ii) the di-

rect integration method under cyclic voltammetry, (iii) the RC circuit method,

and (iv) the integral capacitance method. The numerically generated Ragone plots
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were qualitatively comparable with experimental results for both EDLCs and hy-

brid pseudocapacitors. In addition, the direct integration under galvanostatic

cycling was found to be the most appropriate method not only conceptually but

also because it intrinsically satisfies that first law of thermodynamics, i.e., energy

conservation principle. The direct integration method under cyclic voltammetry

underestimated the energy density at high scan rates, i.e., high power densities.

By contrast, the RC circuit and integral capacitance methods systematically over-

estimated the energy and power densities for electrolyte with large ions and/or in

presence of redox reactions.

8.2 Future work

8.2.1 Realistic transport properties of ECs

Currently, a major challenge for continuum modeling of ECs lies in the difficulty

of finding accurate and realistic transport properties of the electrodes and of the

electrolytes. Several phenomena could occur during charging/discharging of ECs

that are not currently accounted for in the assumptions of constant properties

in the current model, namely, (i) variation of effective ion diameter a due to

partial desolvation of ion species during charging along with the EDL formation

and/or within the confinement in porous electrode, (ii) nonuniform ion diffusion

coefficient in the electrolyte Di and in the pseudocapacitive electrode D1,P due to

the nonuniform ion concentration, (iii) variation of the equilibrium potential ∆ψeq

for redox reactions due to the change in state-of-charge, and (iv) variation of the

reaction rate constant k0 during the charging and discharging processes, and (v)

material-dependent open-circuit potential ∆ψeq.

The effective ion size of an electrolyte solution can be evaluated either experi-

mentally or theoretically. Experimentally, X-ray scattering was usually applied to

measure the distance between ions in the system [185]. However, the results were
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in the form of a distance distribution [185] and the local ion desolvation cannot

be easily captured experimentally. Thus, alternatives such as MD simulations

based on inter-atom forces can be helpful to identify the local ion desolvation

occurring in the electric double layer. In fact, cation species as well as the elec-

trode confinement have significant effect on the ion desolvation occurring near the

electrode/electrolyte interface [232]. Therefore, it would be helpful to study the

extend of desolvation for the ion species commonly used in ECs. Moreover, this

extend of desolvation can be related to the effective ion diameter and can be com-

bined with the current GMPNP model accounting for the variation of effective ion

size locally near the electrodes during charging/discharging cycles. In addition,

the diffusion coefficient of ion species have been measured in dilute solutions using

dispersion techniques [233]. However, isolating the diffusion coefficient of each ion

species for concentrated solutions is challenging due to the electrical forces among

ions tending to keep the local concentrations of both ion species the same. Thus,

it would be helpful to perform molecular dynamic simulations to gain insight into

the concentration-dependent diffusion coefficient. Moreover, the SOC dependent

equilibrium potential of LixMnO2 was reported in literature [162]. It would be

helpful to extend similar measurements to other pseudocapacitive materials and

different electrode thickness.

8.2.2 Multidimensional thermal modeling of EC devices

Chapter 7 established that the energy losses of EC devices during one charg-

ing/discharging cycle is equal to the irreversible heat generation. Thus, it is

important to study the thermal behavior of ECs and to optimize working condi-

tions so as to minimize the irreversible heat generation. In fact, heat generation

measurements for EDLCs and hybrid devices are currently underway in our labo-

ratory [5]. However, many experimental observations can only be explained using

intuition. On the other hand, previous thermal modeling for ECs based on first
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principles developed in UCLA [229, 230] have been restricted to 1D geometries.

It is necessary to extend the thermal models to account for realistic morphologies

of electrodes. This could account for (i) the non-uniform current density in elec-

trode/electrolyte interface for porous electrodes that may result in non-uniform

local irreversible Joule heating, (ii) the geometry confinement of electrode struc-

tures resulting in local ion starvation, partially ion desolvation, or “overscreening”

effect, which may result in the decreasing heat generation due to diffusion, entropy

changes of ions, or redox reaction, (iii) the increasing EDL surface for porous elec-

trodes that may cause the polarization (non-Ohmic) behavior of the electrolyte at

the electrode/electrolyte interface to be significant, and (iv) the usage of oversize

carbon electrode in hybrid devices to exceed the limitation of carbon electrode in

hybrid devices.

Note that the multidimensional simulations of EC electrodes or devices are

very costly in terms of computing time and resources. Coupling heat generation

to 3D interfacial and transport phenomena would add significantly computational

complexity. Thus, it would be recommended to simulate highly ordered and sym-

metric electrode morphologies. Such simulations could be used to compare with

experimental heat generation measurements [5].

8.2.3 Experimental thermal characterizations of EC devices

Thermal behavior of EC devices are important to EC devices, as previously dis-

cussed. It would be interesting to perform thermal characterization methods such

as electrothermal impedance spectroscopy (ETIS) on EC devices to gain insights

into the thermal properties EC devices including the thermal resistance and heat

capacity. ETIS consists of imposing a sinusoidal oscillating heat flux of small

amplitude and measure the resulting temperature oscillations. Using complex

notation, the thermal impedance can be expressed in terms of temperature and

heat flux oscillations, similar to electrical impedance in EIS measurement. Then,
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thermal resistance and heat capacity of the cell can be identified from the elec-

trothermal impedance spectra. In fact, the ETIS measurement can be carried

out at different state-of charge (SOC) to investigate the temporal evolution of the

thermal properties of EC devices during charging and discharging. These thermal

properties could serve as performance indicators for life time comparison among

different electrical energy storage systems.
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APPENDIX A

Supplementary Materials for Chapter 4

A.1 Current density and potential drop across the diffuse layer

Figure A.1(a) shows the faradaic current density jF and potential drop across the

diffuse layer ∆ψD as functions of the dimensionless time ft for Case 1 (Table 2)

at frequency f of 2, 20 and 2000 Hz. It indicates that ∆ψD and jF were in phase.

This was true for all frequencies considered. Figure A.1(b) shows jF as a function

of ∆ψD for EIS simulations for Case 1. It established a linear relationship between

jF and ∆ψD for all frequencies considered. In addition, the amplitude ∆ψD,0 of

the oscillation of the potential drop across the diffuse layer was very small. Thus,

the mass transfer resistance 1/Rmt [Equation (12)] can be estimated as the slope

of the vs. ∆ψD plots near the DC operating points [Equation (15)]. Moreover,

Figure A.1(b) also indicates that Rmt was independent of frequency.

A.2 Experimental potential evolution under galvanostatic cycling

Figure A.2 shows the potential ψs(t) as a function of time t under galvanostatic

cycling for imposed current iGC of 1, 4, and 8 mA obtained experimentally for

MoS2 mesoporous electrodes in (a) 1 M NaClO4 in EC/DMC and (b) 1 M LiClO4

in EC/DMC. For both systems, the electrical potential experienced a rapid initial

change ∆ψGC (the so-called “IR drop”) at the beginning of discharging. The

internal resistance RGC [Figure 9(d)] can be calculated from the IR drop according

to

RGC =
∆ψGC
2iGC

(A.1)
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APPENDIX B

Supplementary Materials for Chapter 5

B.1 Charge densities

Figure B.1 shows the charge stored (a) per unit footprint surface area Qfp, (b)

per unit BET surface area QBET , and (c) per unit mass of the electrode Qg as

functions of electrode thickness Lc for sphere diameter d of 15, 30, and 40 nm

at t = 0.49τCV corresponding to ψs = 0.98 V, i.e., near the end of the charging

stage. For a given electrode thickness, all three charge densities increased with

decreasing sphere diameter due to the larger normal electric field En attracting

the ions to the electrode surface.

B.2 Charge stored on each sphere

Figure B.2 shows the charge Qi on each sphere (1 ≤ i ≤ N) for electrodes made

of multiple carbon spheres in SC packing with diameter d of (a) 15, (b) 30, and

(c) 40 nm at t = 0.49τCV corresponding to ψs = 0.98 V, i.e., near the end of

the charging stage. For a given number N of carbon spheres, the first sphere

facing the planar current collector stored less charge than other spheres due to

the systematically smaller value of normal electric field En.
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APPENDIX C

Supplementary Materials for Chapter 7

C.1 EDLC devices

C.1.1 CV curves

Figure C.1 shows (a), (b) the CV curves and (c), (d) the corresponding instant

(input) power P (t) = js(t)ψs(t) as functions of dimensionless time t/tcd for Case

1 obtained numerically under cyclic voltammetry with scan rate v of (a), (c) 50

V/s and (b), (d) 5000 V/s, respectively. Like experimental results, at high scan

rates, the current density remained positive even after switching from charging

to discharging. Consequently, the instant input power density P (t) = js(t)ψs(t)

was also positive at the beginning of discharging instead of being negative, as

observed at low scan rates. On the other hand, Figures C.1(e)-C.1(f) show the

instant (input) power P (t) = js(t)ψs(t) as functions of dimensionless time t/tcd

for Case 1 obtained numerically under galvanostatic cycling with imposed current

density jGC of (e) 20 mA/cm2 and (f) 200 mA/cm2, respectively. The figures

indicate that the instant input power P (t) was always negative throughout the

discharging process under galvanostatic cycling. Similar observations could be

made for Cases 2 and 3. This resulted in the systematic discrepancy between

cyclic voltammetry and galvanostatic cycling (Figure 2) in estimating the energy

density using Equation (1).
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Figure C.1: Numerically predicted (a)(b) CV curves and (c)-(f) instant power
P (t) as functions of dimensionless time t/tcd for Case 1 under (a)-(d) cyclic voltam-
metry at scan rates (a)(c) v = 50 V/s and (b)(d) v = 5000 V/s and (e)(f) galvanos-
tatic cycling at imposed current density (e) jGC = 20 mA/cm2 and (f) jGC = 2000
mA/cm2.
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Figure C.2: Experimentally measured (a)(b) CV curves and (c)-(f) instant power
P (t) as functions of dimensionless time t/tcd for hybrid pseudocapacitors under
(a)-(d) cyclic voltammetry at scan rates (a)(c) v = 1 mV/s and (b)(d) v = 80
mV/s and (e)(f) galvanostatic cycling at imposed current (e) iGC = 0.05 mA and
(f) iGC = 8 mA.
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Figure C.3: Numerically predicted (a)(b) CV curves and (c)-(f) instant power
P (t) as functions of dimensionless time t/tcd for Case 1 under (a)-(d) cyclic voltam-
metry at scan rates (a)(c) v = 50 V/s and (b)(d) v = 2000 V/s and (e)(f) galvanos-
tatic cycling at imposed current density (e) jGC = 50 mA/cm2 and (f) jGC = 1000
mA/cm2.
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C.2 Hybrid pseudocapacitors

C.2.1 CV curves

Figure C.2 shows (a), (b) the CV curves and (c), (d) the corresponding instant

(input) power P (t) = is(t)ψs(t) as functions of dimensionless time t/tcd for exper-

imental results of hybrid pseudocapacitors under cyclic voltammetry with scan

rate v of (a), (c) 1 mV/s and (b), (d) 80 mV/s, respectively. At high scan rates,

the current remained positive even after switching from charging to discharging.

Consequently, the instant input power density P (t) = is(t)ψs(t) was also positive

at the beginning of discharging instead of being negative, as observed at low scan

rates. On the other hand, Figures C.2(e)-C.2(f) show the instant (input) power

P (t) = is(t)ψs(t) as functions of dimensionless time t/tcd for experimental results

under galvanostatic cycling with imposed current iGC of (e) 0.5 mA and (f) 8 mA,

respectively. The figures indicate that the instant input power P (t) was always

negative throughout the discharging process under galvanostatic cycling. Similar

behavior was observed for numerical results in Cases 4 [Figure C.3] and 5 (not

shown). This resulted in the systematic discrepancy between cyclic voltamme-

try and galvanostatic cycling (Figure 6) in estimating the energy density using

Equation (1).

C.2.2 Potential evolution under galvanostatic cycling

Figure C.4(a) shows the cell potential ψs(t) as a function of dimensionless time

t/tcd numerically predicted for Cases 2 (EDLC) and 5 (hybrid pseudocapacitor)

with jGC = 50 mA/cm2. Note that all other parameters did not vary. Unlike

for EDLCs, the potential evolution in hybrid pseudocapacitors during charging

and discharging was asymmetric. A distinct “kink” in ψs(t) was observed during

charging and the potential evolution during discharging of hybrid pseudocapaci-

tors fell below that of EDLCs. In addition, Figure C.4(b) show the cell potential
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Figure C.4: (a)-(b) Electrical potential ψs(t) as a function of dimensionless time
t/tcd (a) for Cases 2 and 5 under galvanostatic cycling with current density jGC =
50 mA/cm2 and (b) for Case 5 under galvanostatic cycling with imposed current
density varying from 5 mA/cm2 to 100 mA/cm2. (c) Faradaic jF , capacitive jC ,
and imposed jGC = jF + jC current densities as functions of dimensionless time
t/tcd for Case 5 with imposed current density jGC = 50 mA/cm2.
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ψs(t) as a function of dimensionless time t/tcd for galvanostatic cycling numer-

ically predicted for Case 5 with jGC varying between 20 and 200 mA/cm2. It

indicates that the “kink” during charging and the convex potential evolution dur-

ing discharging were observed for all current densities. Furthermore, Figure C.4(c)

shows the corresponding faradaic jF , capacitive jC , and the total js = jF + jC

current densities as functions of dimensionless time t/tcd numerically predicted for

Case 5. Similarly, a peak of the capacitive current density occurred at the tran-

sition between charging and discharging resulting in a relatively small differential

capacitance Cdiff and thus a large slope |dψs/dt| = jGC/Cdiff of the potential

evolution [Figure C.4(a)].
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