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A Dynamically Reconfigurable System for
Closed-Loop Measurements of Network Traffic

Faisal Khan, Soheil Ghiasi, and Chen-Nee Chuah

Abstract—Streaming network traffic measurement and analysis is critical for detecting and preventing any real-time anomalies in the

network. The high speeds and complexity of today’s networks, coupled with ever evolving threats, necessitate closing of the loop between

measurements and their analysis in real time. The ensuing system demands high levels of programmability and processing where

streaming measurements adapt to the changing network behavior in a goal-oriented manner. In this work, we exploit the features and

requirements of the problem and develop an application-specific FPGA-based closed-loop measurement (CLM) system. We make novel

use of fine-grained partial dynamic reconfiguration (PDR) as underlying reprogramming paradigm, performing low-latency just-in-time

compiled logic changes in FPGA fabric corresponding to the dynamic measurement requirements. Our innovative dynamically

reconfigurable socket offers 3� logic savings over conventional static solutions, while offering much reduced reconfiguration latencies

over conventional PDR mechanisms. We integrate multiple sockets in a highly parallel CLM framework and demonstrate its effectiveness

in identifying heavy flows in streaming network traffic. The results using an FPGA prototype offer 100 percent detection accuracy while

sustaining increasing link speeds.

Index Terms—Reconfigurable hardware, network monitoring, parallel circuits

Ç

1 INTRODUCTION

ACCURATE traffic measurement and monitoring is key-

stone in a wide range of network applications such as

detection of anomalies and security attacks, and traffic

engineering. A number of critical network management

decisions such as blocking traffic to a victim destination,

rerouting traffic, or detection of anomalies, require extrac-
tion of real-time statistics from network traffic. A high-

quality network measurement tool is crucial for extracting

such patterns of interest and making informed decisions to

ensure proper network operation [1], [2], [3].
Today’s high-speed networks see huge amounts of

streaming traffic, posing enormous computational and

storage requirements for accurate traffic measurements.

Traditionally, the measurements are performed by main-

taining limited information of the streaming data. This is

done by programming conservative sampling factors over to

the routers that maintain some very limited local storage.

The collected sample is next periodically expired to high-end

servers where it is postprocessed in answering some higher

level user-queries comprising of spatiotemporal patterns of

interest, such as amount of traffic passing through a subnet

or detecting a network anomaly. A high-level depiction of

the traditional paradigm is shown in Fig. 1a.

Though conceptually simple to realize, the traditional
approach not only incurs significant measurement inac-
curacies due to sampling, but the measurements are also
orthogonal, or blind, to the requirements [10]. Due to the
separation between measurements and user requirements,
the traditional paradigm is referred to as open-loop measure-
ments. Furthermore, the offloading of the measurements for
processing over to higher software layers at the servers (the
slow-path) is also latency intensive and infeasible for
detecting and preventing anomalies in real time.

We previously addressed the problem with open-loop
paradigm using smart, goal-oriented closed-loop measurement
solution, as shown in Fig. 1b [4]. Central to our proposed
scheme is a tight integration between the measurement
requirements and the actual measurements. This is
achieved by bringing in the requirements on a fast-path
that directly observes the streaming traffic, such as routers.
To cope with the limited computation capabilities of the
fast-path, the CLM works by breaking a higher level user-
query into multiple rules (a rule-set) of finer granularities.
The rule-set is processed in the fast-path and iteratively
refined over time until the user-query gets answered. The
contention is that the interesting traffic patterns could be
detected or learned on-the-fly, via iterative rule-based
traffic measurements, online analysis of collected informa-
tion, and closed-loop evolution of subsequent rules for
further and finer traffic inspection. Each round in the
iterative process guides the subsequent measurements
toward the goal, thereby reducing redundant measure-
ments and leading to answering the user-query over time.
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The increasing speeds and scale, the sizes, and complex-

ities of today’s networks, however, bring about a number of 
challenges in closing the loop between measurements and 
the user requirements in a streaming setup. At the heart of 
the streaming CLM framework is the measurement plat-

form that is faced with two core challenges 1) link-speed 



processing of incoming packets with the rule-set, and 2), a
high degree of programmability to quickly and dynamically
adapt to changing rule-sets. The latter implies an additional
critical dimension to our problem of CLM over plain rule-
matching problems, such as traffic classification, where the
rules generally remain static or have very infrequent
updates over the lifetime of operation.

We previously addressed the CLM challenges by devel-
oping a customized rule-processing solution mapped on to a
field programmable gate array (FPGA) [4]. In doing so, the
solution targeted the computation opportunities that con-
ventional routers present with their incorporation of FPGAs.
However, to speed up the programmability of the solution
with changing rule-sets, the scheme made heavy use of
FPGA registers that can quickly be rewritten. The registers
are usually a prime commodity on the FPGAs and provide
for far less storage capability than other device resources,
such as lookup tables (LUTs). As such, the high register
usage quickly depleted the critical resource, and leading to
an overall underutilization of the device. In practical terms,
the solution implies trading off the ability to process higher
number of rules for an ease in rule programmability.

To increase rule-processing parallelism, one could map
the rules on to the FPGA LUTs that offer much higher
density than the device registers. However, the repro-
grammability of LUTs is typically done through hardware
compilation (or compilation) of the updated design using
proprietary tools; a process involving large amounts of
memory and latencies, and clearly being impractical for
streaming CLM setup. One way to reduce the compilation
cost is to selectively compile and dynamically replace the
device logic that is exclusively associated with the modified
design, while the rest of the device remains operational.
The approach, referred to as partial dynamic reconfigura-
tion (PDR), has been a major focus in the research
community [5], and is traditionally done utilizing module-
based PDR flow [6]. However, the compilation latencies
with the approach though much reduced, still run in
seconds to even minutes and as such are prohibitively
expensive for CLM.

A relatively less known PDR flexibility that Xilinx FPGAs
provision is in dynamically performing minute logic
changes for a limited set of device resources [7]. Such a
fine-grained PDR scheme constrains device routing to
remain static while certain programmable points, such as
LUTs, could be dynamically reconfigured. We earlier
proposed a novel use of such fine-grained PDR in develop-
ing a statically routed and dynamically reprogrammable,
basic rule-processing unit, dubbed as Dynamically Reconfi-
gurable Socket (or Socket) [8]. Our initial results were
promising, offering significant increase in rule-processing
capacity.

In this paper, we utilize the Sockets to offer a highly
parallel, programmable, and scalable realization of the
CLM system. The proposed hardware software codesigned
system performs goal-based, resource-aware, and Just-in-
Time (JiT) compiled minute logic changes on a Virtex-II
FPGA using PC-based control unit connected over Ether-
net. The salient contributions of this paper are summarized
as follows:

. We provide tools and methodologies and demon-
strate their effectiveness in integrating multiple
Sockets in a system, utilizing fine-grained PDR as
underlying reconfiguration technology. To the best
of our knowledge, our work presents the first
utilization of fine-grained PDR in a practical system.

. We evaluate our PDR-based CLM measurement
system with traditional statically mapped logic-
based solutions. Our evaluations demonstrate 3.3�
logic savings by using fine-grained PDR over
conventional solutions, while having much reduced
reconfiguration latencies over traditional module-
based PDR schemes.

. We demonstrate a practical application of the CLM
system in isolating heavy volume flows in passing
traffic, sustaining link speeds with 100 percent
detection accuracy.

. We provide a rigorous analysis of the latencies
associated with fine-grained PDR mechanism. Our
study, therefore, compliments the earlier studies that
discussed reconfiguration latencies for module-
based PDR flows [9].

We stress that many of our presented techniques and
algorithms are quite generic and transcend the needs of the
current application. The CLM problem falls in a class of
problems that are faced with competing requirements of
high performance and dynamic programmability. As such,
the presented hardware and software solutions can be
adapted to support many similar applications, where
programmed patterns are not known a priori, such as
cryptography (too many keys, plaintexts, or ciphertexts),
neural networks (too many topologies and/or coefficients),
pattern matching (when patterns are known at runtime
only), and generic code accelerators, among others.

The rest of the paper is organized as follows: We discuss
related concepts and works on traffic measurements and
PDR in Section 2. This is followed by techniques to
accelerate rule processing in Section 3. We next discuss
our rule-processing unit based on fine-grained PDR, the
Socket, in Section 4. We then discuss the system level issues
and our solutions while integrating multiple Sockets in

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. X, XXXX 2014

Fig. 1. Network measurement paradigms.



a CLM system in Section 5 followed by a discussion of

our CLM system in Section 6. An evaluation of the

proposed CLM framework and fine-grained PDR is pre-

sented in Section 7. We conclude the paper in Section 8.

2 BACKGROUND

2.1 Network Traffic Measurements

Network traffic measurement fundamentally involves
quantification of traffic that satisfies some criteria. The
traffic is generally quantified in terms of flows, where a flow
refers to a set of packets that have the same n-tuple value
in their header fields. Typical definitions of the flow include
6-tuple: fsip; dip; prt; tos; spt; dptg, where sip and dip are the
source and destination IP addresses, prt is the protocol
field, tos is type of service, and spt and dpt are the source
and destination ports, respectively. We define a rule to be an
aggregation of flows. For instance, the classless interdomain
routing (CIDR) prefix is a particular type of a rule that
aggregates over all the flows that have matching significant
bits corresponding to the size of the prefix. Table 1 defines
three rules in the 6-tuple definition.

Traditionally, the measurements have been open loop
based by maintaining unique per-flow-based statistics.
However, such approach is not scalable due to huge
number of flows. As an alternative, packet sampling is
typically deployed to cope with increasing line rate, but it is
known to introduce bias and affects the effectiveness of
various anomaly detection schemes [10]. Moreover, mea-
surements performed under open-loop solutions are ob-
livious to application requirements, leading to potential
redundancy or inaccuracy.

Recently, there has been an interest in developing
streaming/online closed-loop schemes to address the
challenges in network measurement and analysis [4],
[11]. The key observations of the schemes are top-down,
goal-oriented measurements as desired by the user-query
rather than the blind, bottom-up offline measurements as
is done conventionally.

The smart measurements are based on subdividing the
user-query in multiple rules, or a rule-set. A rule can, thus,
be also viewed as an intermediate question in pursuit of the
user-query that if answered can help lead the search in a
more intelligent manner. For instance, searching for an
anomalous heavy flow in an n-tuple space could be broken
down into multiple rules of smaller dimensions (tuples).
Table 1 shows a simple query composition using rules.

2.2 Rule-Processing

We hereby define rule-processing as a two-step process
involving checking, or matching, of incoming packet with
the rule, referred to as rule-checking or rule-matching, and
finally incrementing a rule-counter upon a successful match.
The rule-counter, thus, represents the number of packets
matching a given rule.

The count of matched-rules represents state of the
network in the CLM problem. This state leads to future
refinement of the rules, before an eventual network level
decision can be made. As such, the CLM entails a temporal
dimension to other pattern-matching problems such as
packet classification and intrusion detection [12] that
instantly base their decisions on the evaluation of their
rule-sets, without keeping a state or history of the network.
Furthermore, the need to quickly update the rules with
refined rule-sets brings about a critical challenge of fast rule
reprogrammability to the CLM that is generally missing in
other rule-matching problems.

Rule-matching has been the focus of numerous studies
[13], [14]. The rule-matching algorithms can basically be
classified into two categories: decomposition based and
decision-tree based. The decomposition-based algorithms
(e.g., parallel bit vector [15]) work independently on
individual tuples before partial results could be merged.
Due to their parallel nature, the decomposition algorithms
are suitable for hardware implementations. The downside of
decomposition-based approach is their difficulty in scal-
ability with respect to number of rules. In contrast, decision-
tree based algorithms (e.g., HyperCuts [16]) map the rule-set
into a tree structure. The algorithms work by iteratively
reducing the n-dimensional search space into smaller
subspaces, until the reduced subspace matches a unique
rule or the reduced subspace can easily be searched. The
decision tree algorithm is superior in terms of accommodat-
ing higher rule-set sizes. However, the tree structure is
difficult to maintain in hardware requiring specialized
circuits [17]. The difficulty is compounded in the face of
rule updates, where a rule change may trigger multiple
changes in the decision tree, potentially leading to replace-
ment of the entire tree in the worst case.

2.3 Partial Dynamic Reconfiguration

FPGAs provide an interesting blend of programmability
and performance. Their low-cost, off-the-shelf availability
and particularly their ability to meet the link speeds have
led to their deployment in a number of networking
applications [12], [18], [19], [20]. At their core, the FPGAs
utilize a configuration memory to store the configuration of its
various programming points, such as lookup tables, multi-
plexers, routing logic. The (re)programming, commonly
referred to as (re)configuration, of the FPGAs involves
updating the configuration memory with an updated
bitstream. The mapping of the bitstream to programming
points inside the FPGA is, however, proprietary informa-
tion. The recommended way to generate the bitstreams is to
perform compilation of the updated design using proprie-
tary CAD tools that deal with synthesis and mapping of the
design onto the FPGA resources; a process involving large
amounts of memory and latencies. In the case of CLM,
where rules are generated on-the-fly during operation, the
approach implies prohibitive latencies for closing the loop
in a streaming manner.
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A high-level depiction of Xilinx’s [21] Vitex-II FPGA
architecture is shown in Fig. 2. The device consists of an
array of basic computational units, the configurable logic
blocks (CLBs), that communicate with each other using a
programmable interconnect architecture (not shown). The
CLBs are broken down in Slices that embed certain number
of LUTs and storage elements for mapping user logic. The
compositions and complexity of CLBs and slices vary across
device families. A high-level layout of Xilinx Virtex-II Slice
comprising of two 4-input LUTs and two storage elements,
the flip-flops (FFs) is also shown in the figure.

The basic unit of reconfiguration in Xilinx devices is a
configuration frame, spanning over multiple FPGA resources
in a vertical column, as shown in Fig. 2. The unit implies
that to (re)configure any programming point, one needs to
rewrite the entire frame containing that programming point
in the configuration memory. Furthermore, Xilinx requires
an extra pad-frame at the end of configuration frames for
flushing purposes.

PDR of FPGAs tries to reduce the compilation costs by
updating portions of the bitstream that correspond to the
modified (dynamic) design, while the remaining logic
(static) remains active. Xilinx has a matured PDR metho-
dology, whereas the other FPGA giant, Altera, has only
recently introduced PDR in their Stratix-V devices. The
recommended design flow for Xilinx PDR, that is almost
universally followed in the research community, is to
exclusively perform compilation for the dynamic portions
(referred to as modules) of the design using Xilinx
proprietary tools [6]. However, the compilation latencies
with such a conventional module-based PDR still run in
minutes. To ensure speedier reconfigurations, the module-
based flow is typically done by having the dynamic
components compiled at design-time (statically) and readily
available for quick reconfiguration during operation.

The module-based conventional PDR schemes have seen
their fair share in networking community. Some interesting
applications include a programmable network switch [22],
accelerators for pattern matching [23], as well as a
reprogrammable IP forwarding engine [24]. Such applica-
tions make use of relative latency insensitiveness of the
application or a priori availability of programmability
requirements to offset the high latency costs of the
compilation. However, in the streaming CLM setup, such
flexibility is not available because the rules defining the
reprogrammability needs are generated on-the-fly based on
the network conditions.

To avoid compilation, much attention has been given in
deciphering and directly manipulating the proprietary
bitstream. JBits [25], a long discontinued tool, aimed to
provide such a flexibility to be able to design and update
circuits in a true software development environment. More
recently, there have been a number of efforts to reverse
engineer the bitstream structure [26]. In contrast to above,
Xilinx also provisions for PDR at a very fine granularity
targeting limited set of programming points, such as LUTs
[7]. The fine-grained PDR is achieved by self-reconfiguring
(SR) the device through the embedded internal configurable
access port (ICAP) using proprietary APIs running at
FPGA-based generic processors. This can be best visualized
as a stack of horizontal layers on the FPGA fabric as shown
in Fig. 3. To reconfigure a specific resource such as a LUT,
the API performs three operations: 1) reading-in of the
frame involving the target LUT, 2) modifying the required
LUT bits in the frame, and 3) writing-back of the frame to
the device followed by the pad-frame.

The idea behind the fine-grained PDR has been to offer a
faster on-chip alternate to JBits running on slow off-chip
Java virtual machine. In addition, the scheme stripped off
the JBits cumbersome manipulation of the device layout,
leaving it to be modifiable only through conventional CAD
tools assisted module-based PDR flows. However, the
necessity to hide proprietary composition of the bitstream
imposed several design challenges that limited the fine-
grained PDR’s feasibility in practical applications. In this
paper, we discuss and address these challenges and present
a novel hardware-software codesigned CLM solution that
employs fine-grained PDR as underlying reconfiguration
paradigm.

3 ACCELERATING RULE PROCESSING

The CLM entails breaking down a user-query into a rule-set
comprising multiple rules that are answered over time. For
accurate streaming measurements, every incoming packet
needs to be processed against the rule-set until a match is
found. Unlike other pattern matching problems, such as
packet classification that only involve rule-matching, the
CLM additionally requires maintaining running statistics of
successful matches along with frequent updates to the rule-
set. The frequent rule update nature of the CLM implies
that a decision-tree-based structure is quite infeasible for
maintaining the rule-set.

Proposition 1. Let � denotes the total worst-case rule-processing
time on a sequential processor involving matching incoming
packets against a rule-set of size R rules. Each matching
operation involves time to fetch a rule (r) and processing it
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against the incoming packet (p). Finally, a memory location is
updated on a successful match, further involving latencies of
memory fetch (r), count update (u), and memory write (w)
operations. If � denote the packet arrival rate, then for streaming
closed loop measurements, Rðrþ pÞ þ ðrþ uþ wÞ � 1

� .

The above translate to a latency budget of 32 ns to
process the rule-set for the case of minimum sized IP
packets of 40-bytes streaming over 10-Gbps wire-speed. On
a 2-GHz CPU, this implies 64 clock cycles to match incoming
packet with the entire rule-set in the worst case. The small
latency budget along with high processing overheads makes
rule-processing very difficult to be performed in real time
using conventional sequential processors.

The multicore architectures conceptually offer reduced
processing times by parallelizing rule-processing. However
in practice, the multicores are faced with bottlenecks due to
their shared memory architecture. As the CLMs require
frequent memory updates, the bottleneck implies serial-
ization of memory requests, or loss of enhanced processing
abilities of the multicores.

3.1 Rule Evaluation Using Discrete Logic

One solution to speed up rule-processing is by employing
discrete logic gates. Such a solution for Rule-R1 is shown in
Fig. 4a. The solution uses a combination of discrete-logic
gates in evaluating a CIDR prefix-type rule, where the
information corresponding to the rule and the significant
bits are stored in registers. The logic yields a Match answer
on a successful match which can be subsequently logged by
incrementing a rule-counter, completing the two stages in
rule-processing. The solution can also be mapped on an
FPGA that employs lookup tables and registers as main
computational and storage elements. One such FPGA
mapping using nine three-input LUTs and 12 single-bit
registers is also highlighted in the figure. Such a mapping
remains intact during operation, while the rules are updated
by overwriting the register values. Due to the static mapping
during the course of operation, we call such a solution as
static.

The use of registers for rule storage is beneficial as they
can easily be overwritten to update the rule-set. However,
the scheme demands rather large amount of logic resources
to implement bit manipulation functions over the wide
word defined by packet header bits. FPGAs usually deploy
almost similar number of LUTs and registers on the device.
The high usage of registers creates a disparity in FPGA
resource usage, quickly depleting the device registers, and

thereby reducing the overall device utilization. Indeed, such
was the case with the discrete logic FPGA mapped solution
in [4], where the high usage of registers became the
bottleneck for a highly parallelized solution.

3.2 Rule Mapping on LUTs

Lookup tables are the primary logic block of SRAM-based
commodity FPGAs. To map a given combinational logic
function onto an FPGA, it has to be decomposed into a
network of input-constrained single-output auxiliary func-
tions. Such an auxiliary function can be directly mapped
to a LUT. Fig. 4b illustrates the idea using an example of
three 3-input LUTs that collectively implement the Rule-
R1 of Table 1 using column-P1. In this scheme, the LUTs
are programmed with entries that yield a Match answer, if
the incoming packet header bits match with the pro-
grammed rule. As with the static, this “Match” answer can
be subsequently logged by incrementing a rule-counter,
completing the two stages in rule-processing.

The fusion of rules within LUTs clearly offer sizable area
savings over static-logic-based implementations. These
savings are due to an application specific fusion where
rules, their wild-card patterns, as well as the rule-matching
circuitry is all fused together in the LUTs, thereby saving
dedicated logic and resources for rule-matching and
storage. However, a practical realization of rule-processing
using LUTs needs not only be generic enough to admit
practical rules, but also be quick enough for updating the
rules in a streaming setup. Unfortunately, rule updates
become quite challenging while employing LUTs, requiring
reconfiguration of FPGA fabric. We address these chal-
lenges in the design of the rule-processing unit in the
next section.

4 DYNAMICALLY RECONFIGURABLE RULE-SOCKET

The LUT-mapping of the rules employ a network of rule-
matching LUTs. In designing the rule-matching network of
LUTs, one has to strike a balance between area efficiency
(i.e., the number of required LUTs) and the generality of
admissible rules. Overly restricted networks cannot admit
all possible rules, while disregarding practical rule features
(i.e., treatment of a rule as an arbitrary Boolean function on
header bits) would result in enormous logic waste. For
example, the two-level LUT network of Fig. 4b is designed
to admit s1:s2 þ s01:s02, but cannot implement s1:s6 þ s01:s06
Boolean checks. We note that the CLM rules also exhibit
specific structure as they are composed from individual
CIDR prefixes. This can be seen in Table 1 where the rules
are composed of a significant portion of source address bits,
si, followed by don’t care bits. A rule can, therefore, be
viewed as a special Boolean function in that it characterizes
only a subset of all possible functions on the packet header
bits. Furthermore, we contend that a conjunction of several
prefixes in a rule can always be decomposed in multiple
single prefixes. Such decomposition can be processed by
simpler single-prefix-based rule-processing units.

The potential downside of the LUT design, however, is
that it makes dynamic rule updates considerably more
complicated than static. By fusing the rules into matching
logic as done in LUT-network implies that the FPGA fabric
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implementing the logic function has to be reconfigured at
runtime to admit a new rule. To address the problem, we
make novel use of fine-grained PDR for dynamically
reconfiguring the LUTs. The basic idea of our design is a
generic-enough network of LUTs that are carefully placed
and interconnected, such that mapping a new rule only
requires updating the content of the LUTs while keeping
their placement and routing intact. As an instance, if the
rule-matching unit of Fig. 4b that is initially programmed
with rule-R1 is to be reprogrammed with rule-R2, it would
only require updating the two first level LUTs with contents
given in the third column, while keeping the placement and
routing consistent.

We now discuss details of our rule-processing unit,
dubbed as dynamically reconfigurable rule socket (Dynamic
or just Socket). A high-level design of the Socket is shown in
Fig. 5 targeting 64 bits of rule-matching. The Socket is
composed of two high-level components corresponding
to rule-processing requirements: a generic rule-matching
module combined with rule-counting and control logic. Both
components have static layouts throughout the lifetime
of the system.

The rule-checking module combines a first-level layer of
reprogrammable LUTs in a customized reduction-tree to
check for patterns in adjacent header bits. While the tree is
effective for practical rules based on CIDR prefixes, it
cannot admit a hypothetical rule that refers to a compli-
cated global pattern. The design is intentionally constrained
to improve the logic footprint of the module for practical
application scenarios by trading off rule-generality. The
illustrated rule-checking module is an example that in-
volves 16 4-input LUTs, and admits a rule on 64-bit source
and destination addresses. To support more tuples in the
rule, one would have to add more LUTs corresponding to
the size of the new tuples, and expand the reduction tree.

New rules are dynamically updated or plugged into the
Socket during runtime. Plugging of a new rule is achieved
using fine-grained PDR of the rule-matching LUTs. The
result of rule-matching is forwarded to the rule-counting
and control logic that maintains a streaming count repre-
senting the aggregate size of the flows that have matched
the programmed rule. The aggregation continues until a
programmed duration has expired. This duration is pro-
grammed into three reprogrammable LUTs, and is tracked
by counting external interrupts arriving at the Socket. Upon

the expiration of the programmed number of interrupt
epochs, the Socket sends out the collected statistics, and is
ready for being reprogrammed for a new measurement
phase.

The Socket can be optionally reprogrammed with a new
rule and collection duration, before being reseted. We
exploit flexibility of fine-grained PDR in not only rule
reconfiguration on the LUTS, but also for reprogramming
duration as well as resetting of the Socket, implying
20 reprogrammable LUTs per Socket (shown in blue in
Fig. 5). These innovations help in not only simplifying the
logic-footprint within the Socket, but also reduce the logic-
overhead of its system-wide integration. We next detail the
specifics of these innovations at a system level, but stress that
their effectiveness transcends the needs of our application.

5 SYSTEM DESIGN CHALLENGES

The Sockets are independent rule-processing units. In
practice, one would like to have as many Sockets in the
system as possible to concurrently process maximum
number of rules permitted by the device resources. A highly
parallel and asynchronous design with a centralized control
raises possibilities of significant communication overheads.
These overheads in terms of FPGA-fabric translate into
increased logic area utilization and clogging of limited
routing resources on the device, yielding loss in available
parallelism. For instance, provisioning independent resets or
collecting asynchronously generated results from the Sockets
may naively be done using dedicated channels between the
centralized control and individual Sockets, incurring sig-
nificant logic and routing overheads. In this section, we
discuss our strategies in dealing with these issues.

The fine-grained PDR also presents several interesting
challenges. As stated earlier, dynamic reconfiguration
requires maintaining a consistent interface between recon-
figurable (dynamic) and nonreconfigurable (static) regions.
Moreover, for fine-grained PDR, an exact location of the
reprogrammed resource on the FPGA is necessary. In our
case, where the reconfigurable resources are the LUTs, we
further need to be aware of the mapping of the incoming
inputs to LUT input-pins as they can get internally altered
by the CAD tools during compilation. One would assume
that such information might be readily available during the
course of synthesis and placement using the CAD tools.
However, the tools do not detail such fine place and route
information for an automated retrieval, requiring visual
lookups in the complicated routed design. Such a latency
intensive step is clearly beyond a network-manager’s job
description and must need to be addressed. We address
the two issues using our Socket Placement Tool (SPT) and
LUT pin-mapping algorithm that will also be the subject of
this section.

5.1 Asynchronous Reset

An incoming reset intimate the Sockets to start-off with a new
measurement phase. As Sockets operate asynchronously and
independently to one another, a common reset line for every
Socket in a multiple-Socket system is clearly infeasible. To
provision a unique reset for individual Sockets, one can
either 1) have a dedicated reset line between each Socket and
the centralized control, or 2) afford additional target Socket
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information using extra identification bits along with a
common reset-signal. Whereas the former solution requires
multiple reset lines, the latter involves additional identifica-

tion bits that are to be decoded at the target Socket. Thus, both
solutions incur overheads in terms of FPGA interconnect
and logic.

To address the problem, we propose an innovative
remote-synchronization mechanism that completely does
away with explicit signals. The proposed scheme, used in
the context of reset here, works over a dedicated LUT as
shown in Fig. 6. The idea is to produce a logic-inversion at
the LUT output that is decoded to produce a signal. This is
achieved by reconfiguring the LUT through fine-grained
PDR using codes that cause logic inversion at the LUT
output. Two such LUT configurations, V 1 and V 2, are
shown in Fig. 6. Since the remote-synchronization is done
asynchronous to the clock, the LUT output is double-
flopped to remove any metastability before being used as
reset signal.

The innovative PDR-based synchronization and repro-
gramming protocols employed in our work not only

simplify Socket external interface by reducing the number
of IO-pins, but also reduce its logic footprint. We will further
discuss the savings when we compare the Socket with the
conventional logic-based static solution in Section 7.

5.2 LUT Pin Mapping Inference Algorithm

The functionality of the LUT is defined by a bit-vector, the
LUT code, whose individual bits describe the LUT’s output.
The bit-vector is indexed by the Boolean combination at the
LUT’s input pins. To assist in better routing, the Xilinx CAD
tools that we employ in our work can internally alter how
the external-inputs map to the LUT’s input pins, thereby

altering the bit-arrangement in the LUT code. One such
altered pin-mapping, whose alteration information is also
not readily available to the end user, is shown in Fig. 7. The
knowledge of LUT input pin-mappings is, therefore, critical
for fine-grained PDR as it defines how the LUT codes need

to be assembled.
A quick way to avoid the tools from altering the pin-

mappings could be to lock them down at known positions.
However, such constrained mapping reduces the routing
flexibility and results in poor routing yield and static-
timings [8]. Our solution to the problem is by employing a

novel algorithm using which the LUT pin-mapping can be
inferred after the Sockets have been configured into the
FPGA, thus making the pin-locking constraints redundant
and letting the CAD tools have full routing flexibility.
Our technique involves programming the LUTs with
beacon-codes that can help decipher the pin-mappings. The

key observations behind our algorithm are:

. That the number of minterms, or logic-high bits in the
LUT code, remain identical; though they may vary in
their position as the pin-mappings get altered.

. That the minterms correspond to the specific input
combinations for which the LUT is programmed for.
An alteration in position of these inputs on the LUT
pins results in a similar repositioning of minterms in
the LUT codes.

We use the above observations in developing a LUT
pin-mapping inference algorithm tabulated in Algorithm 1.
For the algorithm to operate, the LUTs whose pin-
mappings are desired are initially compiled with a specific
beacon-code at runtime. The code has a unique pattern in
that its minterms follow Gray-code such as S1:S20:S30 þ
S1:S2:S30 þ S1:S2:S3. During compilation, the code may
get internally rearranged by the CAD tools, similar to
code-C in Fig. 7.

The main steps involved in the algorithm are depicted in
Fig. 7. The algorithm works by reading-in the internally
altered beacon-code using similar fine-grained PDR APIs
that we used for LUT writing. Since any alteration in the
pin-mapping is preserved in a similarly altered LUT code,
the algorithm proceeds to check the code for the pro-
grammed Gray-code by first searching for a minterm that
involves only a single logic-high input-pin. This minterm
corresponds to input-pin combination I 02I1I

0
0. As input-pins

have a one-to-one mapping with external inputs, the
algorithm deduces that this minterm must be S1:S20:S30

involving a single high input. In other words, we can
deduce that input-pin I1 is connected to input S1. The
algorithm next proceeds to the minterm involving two
logic-high input-pin combination: I2I1I

0
0. Following the

same argument as above, this minterm should correspond
to S1:S2:S30 in the programmed Boolean function. As the
mapping of pin I1 to S1 has already been evaluated,
the algorithm deduces that the other high input-pin in the
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minterm, i.e., I2, must be mapped to input S2. The pin-
mapping of the final input S3 then becomes implicit to the
remaining input-pin I0.

5.3 Socket Results Synchronization

There could be a number of ways to realize a multiple-
Socket system. Depending on the design, the propagation
and collection of Sockets’ results in the system may involve
different challenges. As an instance, a naive system
realization could be to directly collect the results using
dedicated channels with a collection unit. Such a scheme
may not only be expensive in routing resources, but also it
may further require logic-expensive serialization mechan-
isms to be able to collect multiple asynchronously generated
results in a multi-Socket system.

A solution to the above issues could be to automate the
results serialization by chaining the Sockets such that their
results hop through multiple Sockets sharing the same bus/
channel before their results are received at the target.
However, such a scheme needs to address two challenges
for its feasibility: 1) the results need to be identified with the
issuing Socket for them to be properly associated with a
rule at higher control layers, and 2) bus-conflicts, due to
multiple Sockets in a chain simultaneously producing
results, must be resolved.

A naive solution to the first problem could be to tie every
system Socket with a unique tag in the form of identifica-
tion-bits. In a system having a large number of Sockets, the
solution raises possibility of a high number of the identifica-
tion bits, resulting in excessive logic and routing overheads.
We address the issue by breaking the multiple-Socket
system into a number of shorter chains, as shown in the
Data-Engine section of Fig. 8. We then uniquely address
each Socket in the Data-Engine using the combination of the
chain number and identification tag within that chain,
thereby saving excessive logic and routing resources.

The issue of bus-conflicts is addressed using our novel
Hole-Propagation-based Synchronization scheme. The basic
principle of the technique is to withhold passing on the
results to the next Socket in a chain unless it has the
capacity to store, or a hole, available there. The presence of

the hole lets the preceding Socket in a chain to forward its
results, thereby propagating the hole one Socket backwards.
These holes are created when the result from the last Socket
in a chain is collected by the results-collection unit. Thus, as
results move forward within a chain, the holes proceed
backward, ensuring correct reception of all the results.

5.4 Socket Placement Tool

We address the issue of LUT identification for reconfigura-

tion by locking the LUTs that are dynamically reconfigured

to resources with known locations. A SPT was developed

that automates generation of a multi-Socket system and the

locking of reprogrammable components within the Socket.
The SPT performs three main functions prior to hands-

off to synthesis and placement tools:

1. A quick feasibility check of the desired multi-Socket
system in terms of FPGA area.

2. Evaluation of placement possibilities for Sockets
and locking down their reprogrammable LUTs to
known FPGA locations, i.e., generation of place-
ment constraints.

3. Generation of the RTL Verilog files that correspond
to the user required multi-Socket system.

Note that only reprogrammable LUTs within a Socket

are constrained. The rest of the Socket is left for uncon-

strained layout by the CAD tools. Furthermore, the SPT also

makes use of the frame-based reconfiguration paradigm to

come up with placement constraints that minimize the total

number of reconfiguration frames for the system. This is

done in the hope of reducing the total number of API calls

for system reconfiguration. As frames correspond to

resources in vertical columns on the device, the SPT tries

to pack maximum number of reprogrammable LUTs in

vertical resources. However, in doing so, the SPT makes

sure that enough FPGA resources are left nonutilized near

reprogrammable LUTs. This is done so that a Socket’s

components do not get significantly displaced on the FPGA

die or else the system will yield poor static-timings.
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6 REAL-TIME CLM SYSTEM

We now present our application specific CLM system. The
proposed solution partitions the closed-loop rule-processing
and rule programmability in a hardware-software code-
signed scheme as shown in Fig. 8. The division is broken on
the domain lines that are more suitable for respective types
of processing: with rule-programmability and analysis
implemented using software on general purpose processors
(front-end) while a customized FPGA-based hardware unit
(back-end) being responsible for link speed rule-processing.

6.1 Front-End Software Architecture

The front-end comprises of a three-layer software archi-
tecture, interacting through a number of algorithms as
shown in Fig. 8. At the top is the application layer where
the user programs a high-level formulation of the measure-
ment requirements. The layer incorporates a dynamic rule
synthesizer that translates the user-query into intermediate
rules. The rules are passed on to resource layer that
manages the hardware resources and allocates (or binds)
the rules with the back-end rule-processing resources, the
Sockets. Finally, the binded rules are mapped into Boolean
bit vectors at the physical layer for programming specific
LUTs corresponding to the Sockets before passing them on
to the back-end.

The physical layer also receives the responses from the
back-end where it validates their reception before reasso-
ciating them back with the active rules at the resource
layer. The rules’ responses are next evaluated at the
application layer where user policies are enforced and
search space exploration algorithms, such as MRT (dis-
cussed later), are deployed.

6.2 Back-End FPGA Design

The rule-processing FPGA unit is subdivided into a
customized Data-Engine and two embedded processors.
The Data-Engine itself is composed of number of Sockets
employing a high degree of parallelism that can be scaled
according to the needs and resources of the deployment.
Each Socket can be independently configured for concur-
rent rule-processing. The task level parallelism of the
Sockets is combined with architectural pipelining that
streams back the results using synchronization mechanisms
discussed in the previous section. It is assisted by the Results
Collection Unit that acts as a glue logic between hardware
and embedded processors.

The embedded processors on the FPGA fabric assist
in communication with the front-end (Data Proc) and
programming of the LUT codes (Control Proc). The Control
Processor is where the actual fine-grained PDR APIs are
invoked for dynamically reprogramming the system Sock-
ets with the updated rules, in accordance with the self-
reconfiguring nature of the fine-grained PDR as discussed
in Section 2.3.

7 EMPIRICAL EVALUATION

7.1 Experimental Setup

A prototype of the presented design is developed using
Xilinx Virtex-II Pro XC2VP301 FPGA on Xilinx XUP Board

and a PC-based workstation running Microsoft Windows-7
on Intel Core i7 Q740 Quad-core processor running at
1.73 GHz and having 4-GB memory. We used Xilinx 10.1.03
ISE and EDK tools in deploying the proposed rule processor.
Xilinx Microblaze soft-core processors were instantiated on
the FPGA fabric connected with FIFO-based Fast Simplex
Links (FSLs). The data path, or the FPGA back-end, of the
prototypes using the either the dynamic or static rule-
processing unit maintained an operational clock frequency
of 100 MHz.

The availability of the Ethernet channel on the XUP
board and the relative ease of deploying an Ethernet
connection using available IP-cores in Xilinx EDK led us
to choose Ethernet as our means of communication interface
between the host-controller and the back-end. The Xilinx
Ethernet IP-cores interface with the XUP board’s Ethernet
port using a soft-IP that is accessible via the data processor.
As the processors are slow, the ease of deployment of
Ethernet is traded off with lower Ethernet throughput. We,
however, stress that this setup is only for prototype
purposes and the data/control interface can easily be
substituted with any suitable interface depending on the
deployment requirements, budget, and available resources.
The complete system setup is shown in Fig. 8.

7.2 Area Results

We first compare the area resources taken of the proposed
Socket (also referred to here as dynamic) with an equivalent
static solution mapped on the same FPGA. The discrete
logic-based static follows the discussion in Section 3. The
comparison is presented in Fig. 9.

It can be noticed that the static employs higher number of
FFs and LUTs than the dynamic. These two elements form
the core of device-slices and as such reflect in a higher slice
consumption budget of static compared to the dynamic, a
2:15� increase. However, as highlighted in Section 3.2, the
main bottleneck for the static remains the significant FFs
usage that it employs for rule and wild-card pattern storage.
The issue is addressed in the dynamic through the rule
fusion in LUTs. The results show the efficiency of our LUT
fusion of rules in reducing the FF usage by 3.3 times.
Interestingly, even though dynamic relies on LUTs for rule-
matching, it still slightly outperforms the static in LUT
usage, thereby leading to significant savings in FPGA slices.

Another novelty of our dynamic design has been the
innovative mechanisms of remote reconfiguration and
synchronization, instead of explicit input signals as is the
case with static. The dividends of the scheme are partially
reflected in the results, where dynamic employs nearly half
the IO pins to its static counterpart.
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1. The choice was made because API bugs were discovered in newer
Virtex-V devices while performing fine-grained PDR.



We next evaluate the back-end with different Data-
Engine sizes, by varying the number of dynamic Sockets.
The logic consumption distribution for the designs is
shown in Fig. 10a. The base-design, that consists of all the
logic except the Data-Engine, is seen to be taking approxi-
mately 20 percent of the logic budget. This can be noticed
from the statistics of the design using a single socket.
Despite the base-design cost, we were able to fit 182 sockets
using the dynamic.

We also synthesize static-based CLM’s Data-Engine for
evaluating actual increase in rule-processing opportunities
obtained using dynamic. To obtain a quick estimate, we
make use of some simplifications on the part of the static
that reduces its system level logic footprint. In particular,
we disregard additional logic that may be required in
uniquely identifying a static in a system employing multi-
ple static rule-processing units. The results so obtained are
presented in Fig. 10b.

The largest Data-Engine that we were able to synthesize
using static consisted of 81 static units. The higher static
Data-Engines, though within the device logic budget, failed
to get mapped to the device. This is due to the increase in
interface complexity of the static, that puts immense
burden on the limited routing resources on the device,
leading to reduced parallelism. It is also interesting to note
that the difference between system sizes involving static
and dynamic is less than what we have expected consider-
ing the logic differences between the two. This is due to the
logic costs of the base-design that had significant LUT
usage. The higher LUT usage leaves less logic resources for
LUT-dominant dynamic than for FF intensive static.
Nevertheless, the results still demonstrate a significant
2:2� more rule-processing opportunity using dynamic over
the static DEs.

7.3 Reconfiguration Latencies

We next discuss the reconfiguration latencies involved in
reprogramming the socket using fine-grained PDR and
compare it with those involved in static. The prototype,
mapped to the XC2VP30 FPGA device, employs an 8-bit
ICAP port having a frame size of 824 bytes and operating at
100 MHz. The basic unit of our reconfiguration, the LUT, is
a 4-input LUT on the device that translates into 16 bits of
reconfiguration data.

We not only discuss details of the latencies involved in
our target prototype, but have a more generic discussion on
possible future enhancements that we feel are likely in future
fine-grained PDR FPGAs. Thus, besides empirical measure-
ments using available API-based reconfiguration schemes

(Measured), we also provide ideal theoretical bounds
(Theoretical) that are based on the device parameters above
and do not carry APIs implementation overheads.

The different reconfiguration scenarios (Sc) are detailed
in Table 2. In the table, Sc-A represents an ideal reconfigura-
tion scheme where addressing resolution zooms down to
individual LUTs. Sc-B to G deal with frame-level addressing
using ideal and available API-based reconfiguration
schemes. These cases differ whether the API provisions for
a single or multiple frame changes per API call, if the
reconfiguration involves reading-in of the frame from the
device (1R), and finally if writing of the frame in configura-
tion memory is followed by a pad-frame (2W) or not
(1W). The parameter Remote represents front-end (host)
initiated reconfiguration over the Ethernet. Combining the
above, Sc-G represents our front-end initiated Xilinx API-
based LUT reconfiguration. For the sake of completeness, we
also discuss reconfiguration delays using static schemes in
the last two scenarios. The last column in Table 2 represents
if the respective configuration is empirically measured (M)
or theoretically calculated (T), or a combination of both.

The latencies associated with the above-mentioned
scenarios are shown in Fig. 11. Every scenario is broken
down in three cases: 1) a base value for a single LUT
reconfiguration, 2) the 20-LUT dynamic reconfiguration,
and 3) reconfiguration of a Data-Engine using 144 dynamic
sockets (2,880 LUTs).

Ideally, reconfiguring a single LUT should take only
0:02 �s. This can be observed as Virtex-II LUT reconfigura-
tion involves 16 bits to be rewritten using 8-bit ICAP port
operating at 100 MHz. The reconfiguration of a socket or
the data path in the ideal case involves simple scaling of the
base value. However, things get more interesting in the
frame-addressing modes as latencies directly depend on
number of frames accessed for reconfiguration. The number
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of frame accesses in turn is tied with the placement of
reconfigurable resources. In an optimally placed design,
maximum number of reconfigurable resources should get
targeted in minimum number of API calls. In our experi-
ments, we consider such an optimally placed reconfigurable
LUT network, spanning over entire frames. Indeed, the SPT
places the CLM system’s Data-Engine such that the
reconfigurable LUTs span over entire frame lengths, and
hence minimizing number of reconfigurable frames.

The Scenarios-B to Sc-E, provision for multiple frame
changes. As such they can reconfigure the 20 LUTs placed
in the same frame in a single call. The scenarios differ in
number of frame reads and writes and are seen to have little
effects on their latencies. The latencies, however, show
significant increase when the API is constrained to provi-
sion for single frame change, as seen in Sc-F from Sc-D. The
two cases should have identical latencies for reconfiguring
single LUT. Furthermore, Sc-F also incorporates implemen-
tation overheads of the APIs running over slow on-chip
processors. Similarly, Sc-E and Sc-G are comparable cases.
The added latency in Sc-G is again due to on-chip
processors API provisioning single-change per call.

In contrast to dynamic, static can be reconfigured in
a single clock cycle. Sc-H presents latencies associated
with such an ideal static Data-Engine. Sc-I accounts for
remote static reconfiguration over Ethernet and is compar-
able with Sc-E and Sc-G.

7.4 Discussion

The logic-area results demonstrate the area efficiency of our
proposed rule-matching fusion. By avoiding dedicated
comparators, we were able to do the rule-processing using
almost half the device resources (FFs and LUTs combined)
than the static. The key enabler for such a fusion has been our
proposed application specific fine-grained PDR using which
we reconfigure the rules by only updating specific LUTs on
the device. Furthermore, in a highly parallelized solution
such as the proposed CLM solution, the dynamic has further
area benefits that are external to the unit. This is due to
its simplified external interface that no longer requires
additional logic and routing resources to route reconfigura-
tion and control information, as is the case with the static.

The latency results show that theoretically fine-grained
PDR can be quite fast, as is evident in Sc-A. However, there
exists a gap between theoretical and practical latencies using
state-of-the-art reconfiguration mechanisms. The major con-
tributor to the 0.25-second full Data-Engine reconfiguration

in Sc-F is due to restrictions in available reconfiguration
mechanisms. Our proposed scheme requires updating
specific LUT bits within the FPGA configuration data.
Detailed composition of the configuration data, however, is
a Xilinx proprietary information. Xilinx API, which enables
constrained manipulation of the LUT bits, was our only
mechanism for updating the configuration bits of a specific
LUT within the configuration data. Nevertheless, with
conventional PDR latencies running in minutes, the available
fine-grained PDR mechanisms still offer much lower recon-
figuration overheads.

We believe that the current frame-based Xilinx reconfi-
guration paradigm is geared toward conventional PDR
schemes and is quite easy to be improved for fine-grained
PDR. One possible improvement could be to have higher
addressing resolution of individual programmable points,
such as LUTs, rather than the current frame. Yet, another
desirable change that could significantly lower the latency
bounds is by provisioning changes to the frame in a single
API call. Furthermore, it would be quite reasonable to have
fine-grained PDR being triggered remotely through the host
processor using existing JTAG programming standards
instead of happening over slow on-chip processors.

Fine-grained PDR enabled our CLM solution to pack
higher number of Sockets and offer higher rule-processing
parallelism than the static. The higher parallelism in
answering of the rules imply higher accuracy in reported
results. However, the available reconfiguration mechanisms
come with increased reprogramming latencies as compared
to static. The increase in latency implies lower accuracy in
reported results as more data can now go unobserved while
the rules are being programmed. As Sockets can process
incoming data at much higher throughput (100 million
packets per second) than the current network speeds, the
problem can be quickly fixed by buffering the data that
could potentially be missed being observed. We next
discuss the interplay of higher rule-processing parallelism
and reconfiguration latencies toward accuracy in the
context of a real-time application.

7.5 Case Study: Heavy-Hitter Identification

As discussed earlier, traditional network measurements
rely on conservative sampling and/or open-loop measure-
ments and offline processing to cope with high link speeds.
As such, the schemes not only incur inaccuracies in
reported results but they are also quite slow for real-time
network monitoring. One such network measurement
problem is that of heavy-hitter identification that has
generated quite an interest in the research community [3],
[11]. In this section, we demonstrate the effectiveness of our
fine-grained PDR-based CLM framework by mapping the
problem of heavy-hitter identification to our CLM frame-
work and addressing it in a goal based and streaming
manner. We, however, stress that the proposed CLM
framework is independent of any chosen problem and can
be easily adapted for other applications by making due
changes at its algorithmic-layer.

We hereby define the heavy-hitter or an elephant flow as a
flow in two-dimensional {source, destination} tuple space
that consumes �-fraction of the entire traffic. At the
algorithmic-layer of our CLM solution, we utilize a
recursive top-down rule generation heuristic in isolating
the heavy-hitter flows within a crowd of normal traffic. The
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scheme, called multiresolution tiling (MRT) algorithm [11],
relies on a simple but powerful observation that if a subnet
does not contain � fraction of the entire traffic, then no flow
in that subnet can be a heavy-hitter. Since subnets are
usually described using standard CIDR prefix notation, the
algorithm states that if a prefix is not a heavy-hitter, all the
constituent prefixes of higher sizes can be discarded from
further consideration.

An MRT iteration is illustrated in Fig. 12. Initially, the
two-dimensional sample space is equally partitioned into
four subregions. Corresponding rules to every subregion
collect statistics for a measurement interval. The subregions
that exceed the threshold, marked with a cross in the figure,
are next selected for further zooming-in in the next
iteration. MRT thereafter continues iterating between
partitioning, statistics-collection and zooming-in phases
until the heavy-hitter is isolated.

We evaluate our CLM solution by using CAIDA Back-
scatter data traces [27]. The CAIDA data trace is a low-volume
trace, and as such, a good candidate for inserting varying
amounts of traffic in it. We inserted 10 random flows
contributing from 0.5 to 1.4 percent of the total traffic in the
trace. We used heavy-hitter threshold value � to be 1 percent.
As such, the inserted flows split evenly between true and false
heavy-hitters around the threshold value, thereby producing
edge test cases for the system. We use the experimental setup
discussed above using a Data-Engine employing 169 sockets
and MRT measurement interval of 1 second.

We define a parameter True-Score (TS) to quantify
the progress of MRT in identifying the heavy-hitters.
Mathematically,

True-Score ¼
P
maxjPijP
jHij

; ð1Þ

where jPij represents the size of a prefix, Pi, in an MRT
iteration that matches the heavy-hitter, Hi. As there could
be a number of prefixes of various sizes that match a heavy-
hitter in any given MRT iteration, we only take into account
the maximally matching prefix or the prefix with the
highest number of matching bits with the heavy-hitter.
The parameter, thus, represents the degree by which the
algorithm has correctly identified all the inserted heavy-
hitters, with the maximum value 1 meaning all the heavy-
hitters being completely identified.

The progression of TS for increasing link speeds using
the proposed FPGA-based CLM solution is shown in
Fig. 13. It can be noticed that the solution is able to correctly
identify all the true heavy-hitters with increasing link
speeds, as shown in Figs. 13a and 13b. As the proposed
CLM solution is operational at 100 MHz and being
able to process a packet per clock, the prototype can
process 100-million packets/second; a figure high enough
to easily meet the current link speeds.

We also investigate the various latencies that contribute
in the latency budget of our FPGA-based CLM solution, as
shown in Fig. 13c. It is observed that communication over
Ethernet and rule-deployment latencies contribute to almost
63 percent of the total delay. We believe that these values
present opportunities for drastic latency improvements, not
just because Ethernet can be readily replaced with faster
solutions, but also because better and faster reconfiguration
paradigms are likely. Finally, but quite significantly, the
rule-synthesis latencies can be observed to be taking
minimal times. The negligible amounts of rule-synthesis
latencies showcase the ability of the solution to generate
new rules on-the-fly, a critical requirement in closing the
loop in a real-time setup.

8 CONCLUSION

The work presented a novel realization of a closed-loop
measurement system employing innovative usage of fine-
grained PDR as underlying reprogramming paradigm and
demonstrated its effectiveness in isolating heavy-hitter flows.
We discussed the challenges associated with fine-grained
PDR and offered solutions for its system wide integration,
with many of the presented techniques and algorithms being
quite generic and transcending the needs of CLM system. We
integrated our techniques in an innovative dynamic rule-
processing unit that offers 3:3� logic improvements as well
as 48 percent reduction in IO interface over conventional
solutions, leading to 2:2� increase in system-level rule
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processing resources. The savings are achieved with much

reduced latency overheads as compared to conventional PDR

schemes. Our analysis of the latencies suggests that they can

be further improved with simple updates to ICAP API,

leading to application of fine-grained PDR in a wide variety

of applications.
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