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Materials that


 convert infrared light into the visible range 

are desirable as they can enable advanced schemes for 
photocatalysts1, solar energy harvesting2, deep tissue 

imaging3 and phototherapy4. Inorganic nanocrystals (NCs) func-
tionalized with energy-accepting dyes form a promising platform 
to meet this demand. These materials achieve light upconversion 
by using photons absorbed by the NC to excite spin-triplet excitons 
centred on organic molecules tethered to their surface5–7. Pairs of 
these excitons can merge through a process known as triplet fusion 
to produce high-energy spin-singlet states that emit visible light. 
Although upconversion efficiencies of >10% have been achieved by 
this approach8,9, these systems have exclusively employed NCs con-
taining toxic heavy elements such as cadmium or lead (refs. 5,6,10), 
limiting their range of utility. Replacement of these NCs with non-
toxic infrared absorbers is a key step in designing upconversion sys-
tems suitable for both biological and environmental applications.



















In this context, silicon is highly attractive for NC-based 
upconversion systems as it is earth-abundant and non-toxic. 
Methodologies exist for producing silicon nanocrystals (Si NCs) in 
large quantities11,12 and synthetic approaches are available for attach-
ing ligands to their surfaces through strong covalent silicon–carbon 
bonds13. Moreover, tethering spin-triplet


 exciton-accepting dyes to 

Si NCs is attractive not only for photon upconversion, but also for 
functional interfaces that extract spin-triplet excitons produced by 
singlet fission, the inverse of triplet fusion. Singlet fission is highly 
efficient in a number of polycyclic aromatic hydrocarbon solids 
and molecular dimers14–22, and pairing this process with inorganic 
semiconductors offers potential for photovoltaics that surpass the 
Shockley–Queisser limit2,23,24 and quantum information devices that 
employ spin-entangled exciton pairs25. Due to its dominance within 

Q1

Q2 Q3 Q4

Q5 Q6

Q7

the semiconductor industry, silicon represents a natural material 
partner and recent work reported by Baldo and co-workers on 
tetracene:silicon junctions


 has shown spin-triplet exciton transfer 

from tetracene to silicon (ref. 26). Although promising, Baldo was 
unable to identify a triplet exciton transfer mechanism and noted 
that the interfacial structure of the tetracene:silicon junction had 
to be carefully controlled to observe any energy transfer. In this 
respect, dye-functionalized Si NCs could greatly aid the optimiza-
tion of organic:silicon junctions by allowing triplet energy transfer 
to be studied in the absence of complicating effects such as exciton 
diffusion to and from the interface.

Here, we demonstrate that Si NCs produced by a non-thermal 
plasma synthesis can be readily functionalized with anthracene 
triplet acceptors to produce photon upconversion systems that 
convert 488–640 nm photons into 425 nm violet light with efficien-
cies as high as 7 ± 0.9% and saturation threshold intensities as low 
as 950 mW cm–2. These materials can be readily incorporated into 
aqueous micelles for biological imaging and upconvert light to a 
limited degree even in the presence of oxygen. Using femtosecond 
transient absorption (TA) spectroscopy, we find silicon-to-anthra-
cene triplet energy transfer occurs through the concerted transfer 
of an electron and hole (Dexter energy transfer) over 15 ns, a rate 
comparable to that achieved with direct bandgap NC systems7,27,28, 
which we achieve through the use of the short, covalent tether 
anchoring these materials. We also identify energetic matching 
between the triplet exciton energies of the anthracene acceptors and 
Si NCs to be critical for achieving efficient energy transfer between 
them. Our work clearly demonstrates that spin-triplet exciton 
transfer between silicon and organic molecules is indeed possible, 
which is a critical step for the realization of biocompatible photon 
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upconversion systems, singlet-fission-based solar cells and quan-
tum information devices.

Results
Figure  1a illustrates the nanocrystal-to-molecule triplet energy 
transfer scheme we employed for photon upconversion. In this 
scheme, low-energy photons absorbed by a Si NC produce elec-
tron–hole pairs (excitons) that pass their energy to 9,10-diphe-
nylanthracene (DPA) molecules in solution, exciting them to 
a spin-triplet exciton state. When two excited DPA molecules 
encounter one another, they can undergo triplet–triplet annihila-
tion (TTA), in which one is de-excited while the other is promoted 
to a high-energy emissive spin-singlet state that proceeds to fluo-
resce. Previous work by our group6,29,30 and others7,10,31,32 showed 
that attachment of molecular triplet-accepting molecules to ionic 
chalcogenide NC triplet photosensitizers can significantly enhance 
photon upconversion by acting as a transmitter layer that facilitates 
energy transfer to molecules in solution. However, as Si NCs bind 
ligands through strong covalent bonds13, the attachment of triplet 
transmitting molecules to these NCs requires chemistries that allow 
the covalent attachment of acceptors while limiting the propensity 
of the NCs to oxidize when exposed to trace amounts of water and 
oxygen. To this end, we chose to work with highly crystalline Si NCs 
synthesized by the non-thermal plasma reduction of silane with 
hydrogen in the presence of argon (ref. 11). Compared with silicon 
nanoparticles made by other methods, the resulting surface hydride 
(SiHx) makes these NCs amenable to thermal hydrosilylation. As 
detailed in the Supplementary Information, the Si NCs were ther-

mally hydrosilylated with either 1-octadecene or a combination of 
1-octadecene and 9-vinylanthracene (9VA), which converts into 
9-ethylanthracene (9EA) on attachment. This yields two function-
alized Si NC samples, one with a ligand shell containing only octa-
decane, which we label Si:C18, and a second containing a mixed 
ligand shell of octadecane and 9EA, which we denote Si:9EA for 
brevity (Fig. 1b


).

Unlike direct gap semiconductor NCs, Si NCs have a relatively 
featureless absorption spectrum, reflecting their indirect band-
gap (Fig. 1b, black). In line with previous reports, Si:C18 exhibits 
broad steady-state photoluminescence with an emission quantum 
yield (QY) of 16.1 ± 2.2% that peaks at 741 nm, indicating a particle 
diameter of 3.1 nm based on known sizing curves33. Upon hydro-
silylation with 


9VA, the NC emission is redshifted by 46 meV and 

decreases in quantum efficiency to 8.2 ± 1.2% (Fig.  1b). In paral-
lel, distinct features appear in the absorption spectrum of Si:9EA 
that are indicative of surface-bound anthracene, but are notably 
redshifted by 55 meV relative to those of free 9-methylanthracene 
(9MA) in toluene (Fig.  1b, inset). This shift is larger than that 
seen for comparable acene molecules bound to ionic chalcogenide 
NCs9,34–36, suggesting stronger electronic interaction between 9EA 
and the Si NC core. From the electronic absorption spectrum of 
Si:9EA, we estimate the average number of 9EA molecules bound to 
each Si NC, N9EA, to be 2 (Supplementary Information, Section 2). 
Nuclear magnetic resonance (Supplementary Fig. 3) and attenuated 
total reflectance infrared spectroscopy (Supplementary Fig. 4) also 
confirmed the presence of surface-bound 


9VA. We note that the 

infrared spectra signal some oxidation of the functionalized Si NCs 
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Fig. 1 | State energies and spectra of the upconverting system. a, Schematic illustration of photon upconversion based on Si NCs. Light absorbed by 
Si NCs produces an excited electron–hole pair that transfers to 9EA, forming a molecular spin-triplet exciton. Excited 9EA molecules then transfer 
these excitons to DPA molecules diffusing in solution. Higher-energy photons are emitted after TTA occurs between pairs of excited DPA 




molecules. b, 

Absorption spectra (solid lines) and emission spectra (dashed lines, λEx = 488 nm) of Si NCs functionalized with only octadecane (Si:C18, black) and a 
combination of octadecane and 9VA (Si:9EA, red) in toluene under argon at room temperature. Inset: 9EA bound to Si exhibits a noticeable redshift in its 
absorption features (blue solid line) in comparison with 9MA (blue dashed line), which is indicative of electronic interactions between Si and 




9EA. Note, 

anthracene features seen in Si:9EA samples belong only to surface-bound anthracene as any free 9VA in solution has been removed by repeated washing.
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even when stored in a nitrogen glovebox with water < 0.5 ppm and 
oxygen < 0.2 ppm. This has been observed in Si NCs prepared by 
thermal hydrosilylation37 and does not appear to be a severe barrier 
to triplet energy transfer.

Photon upconversion measurements were performed under 
nitrogen with Si NC light absorbers and DPA molecular emitters in 
toluene at room temperature. In this multi-step triplet-based pro-
cess, DPA emits violet light after combining the energy originating 
from two photons of lower energy. DPA was chosen because of its 
high (>97%) fluorescence QY and long-lived, low-lying first-excited 
triplet state (E = 


1.77 eV, ref. 38), which provides a small energetic 

driving force for triplet energy transfer from surface-bound 9EA 
(E = 1.8 eV, refs. 38,39). We find no evidence of photon upconversion 
with Si:C18 as triplet photosensitizer in 5.2 mM DPA (Fig. 2a). This 
was expected as the octadecane ligand shell presents a formidable 
barrier to triplet energy transfer, which depends exponentially on 
the spatial separation of the energy donor and acceptor40. In contrast, 
Si:9EA displays ready photon upconversion when illuminated with 
visible light in the presence of DPA, achieving upconversion QYs 
as high as 7.0 ± 0.9% when small 3.1−3.2 nm diameter Si NCs are 
employed (Fig. 2b and Supplementary Fig. 2). Here, we have defined 
the upconversion QY to have a maximum value of 100%, meaning 
that 7% of absorbed photons go on to produce upconverted photons.

An important parameter for upconversion systems is the excita-
tion rate threshold, the point at which the upconverted light inten-
sity switches from a quadratic to a linear dependence on incident 
power. Above this threshold, TTA ceases to be rate-limiting as the 
steady-state triplet population in the system is sufficiently high that 
any photoexcited molecule will find an excited partner within their 
lifetime to undergo TTA. We find that for Si:9EA, this threshold 
falls at 0.95 W cm–2 for a 488 nm exciting source (Fig. 2c) and dou-
bles to 2 W cm–2 for 532 nm light, reflecting the decreased absorp-
tion by the Si NCs at 532 nm compared with at 488 nm. This was 
confirmed by plotting the upconversion intensity as a function of 
the excitation rate of the NCs, which shows that the data obtained 
with the 488 and 532 nm excitation sources are overlaid (Fig. 2c). 
Under 640 nm excitation, a relatively low photon upconversion QY 
of 0.10 ± 0.07% was measured (Supplementary Fig. 2), showing that 
low-energy photons can drive upconversion despite the low optical 
density of Si NCs at this long wavelength.

Q14

Importantly, we find that the upconverted photon quantum effi-
ciency depends on Si NC size (Fig.  2b), increasing from about 0 
to 7% as the NC diameter decreases from 3.6 to 3.1 nm. Efforts to 
examine this trend further by producing smaller Si NCs yielded par-
ticles that were not colloidally stable after octadecane functionaliza-
tion. The bandgap of Si NCs with aliphatic carbon ligands decreases 
with increasing Si NC diameter due to quantum confinement of 
charge carriers37,41, as noted by the peak emission wavelengths of 
differently sized particles (Fig. 2b). This change in bandgap with NC 
size provides a clear hypothesis for the decrease in the upconversion 
QY that we observe, as reducing the silicon bandgap below the 9EA 
triplet energy (1.8 eV) will introduce a barrier for nanocrystal-to-
molecule energy transfer.

To evaluate this hypothesis, we examined Si:C18 and Si:9EA 
using TA spectroscopy. Figure 3a 


(left) shows the spectral dynam-

ics of Si:C18 after photoexcitation at 532 nm, which exhibit a set 
of broad induced absorption bands that relax over a series of time 
periods spanning a few nanoseconds to tens of microseconds. Such 
non-exponential decay has been noted previously for Si NCs (ref. 42) 
and can be well reproduced by a fit model that assumes a Poisson 
distribution of quenching sites spread throughout the NC ensemble 
(Supplementary Information, Section 7).

Following 9EA functionalization, the TA spectra show the 
growth of a new induced absorption band peak at 435 nm and a 
photobleach at 395 nm that develop over a 22 ns timescale super-
imposed on the Si NC signal (Fig.  3a, right). Isolating this new 
feature


 by subtracting the silicon background yields the spectrum 

shown in Fig. 3b, which we assign to the 9EA triplet state, based on a 
comparison with triplet sensitization experiments (Supplementary 
Information, Section 5). Figure 3c shows the variation of both the 
9EA triplet and the excited Si NC population with time, demon-
strating that the rise of the triplet signal and decay of the Si NCs 
occur on the same timescale, indicating that 9EA triplet forma-
tion directly results from energy transfer from the Si NCs. These 
first-order kinetics are in strong contrast to the dynamics shown 
by other triplet-sensitizing NCs, such as PbS:pentacene, in which 
the NC surface states play a key role in transfer35,43. Rather, we see 
the direct production of 9EA triplets as Si NCs decay, implying that 
the transfer occurs in a single Dexter energy transfer step from the 
lowest-energy exciton band of silicon.

Q22

Q24

λemission (nm)

3.1 3.2 3.3 3.4 3.5 3.6

742 755 767 779 790 801

0

2

4

6

8

M
ax

. u
pc

on
ve

rs
io

n 
Q

Y
 (

%
)

Diameter (nm)

λEx = 488 nm

λEx = 532 nm

λEx = 488 nm

λEx = 532 nm

2 × 101 2 × 102 2 × 103 2 × 104

107
Slope = 1.00

U
pc

on
ve

rs
io

n 
em

is
si

on
 (

ar
b.

 u
ni

ts
)

Slope = 2.00

<NEx> (excitations s–1)

400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

E
m

is
si

on
 (

no
rm

.)

Wavelength (nm)

a b c

106

105

104

103

102

Fig. 2 | Quantification of the upconverted photoluminescence spectra. a, Photoluminescence spectra of 3.1 nm diameter Si NCs bearing only octadecane 
(Si:C18, black), Si NCs bearing octadecane and 9EA functionalization (Si:9EA, red) and only DPA (blue, λEx = 350 nm








). Inset: excitation with green 532 nm 

light creates visible upconverted blue emission from 



DPA. b, Dependence of the photon upconversion QY on Si NC diameter showing that as the NC size 

decreases, the upconversion QY 



increases. Solid lines are drawn as a guide to the eye. Error bars denote a standard deviation of 




one. c, A log–log plot of the 

upconverted emission intensity of Si:9EA|DPA vs. NEx, the average number of times a NC is photoexcited per second under continuous-wave



 




illumination. 

The upconversion emission intensity shows a transition from quadratic (slope = 2) to linear (slope = 1) regimes. Inset: upconverted emission in a cuvette 
after 488 nm excitation.
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Discussion
Although it is tempting to assign the rate of 9EA signal growth to 
the Si-to-9EA Dexter energy transfer rate, this does not account 
for the fact that our Si:9EA ensemble consists of a distribution of 
variable-size NCs that bind differing numbers of 9EA molecules. 
The impact of this distribution is highlighted by the decay of the 
silicon signal (Fig. 3c), which persists after the 9EA triplet 


decays. 

This implies that not all photoexcited Si NCs transfer an exciton to 
9EA, which can be explained if a subset of NCs bind no 9EA mol-

Q25

ecules. Assuming 9EA is distributed among the Si NCs according 
to a Poisson distribution, our prior estimate of 2 for N9EA implies 
13.5% of the NCs in our ensemble do not bind any 9EA molecules. 
Although this explains a portion of the persistent silicon signal at 
long time delays, it does not account for the shift of the NC emis-
sion energy that we observe upon 9EA functionalization. Rather, 
the triplet energy of 9EA (1.8 eV) is expected to introduce an energy 
barrier for triplet energy transfer for some of the NCs in our ensem-
ble with narrower bandgaps. Any attempt to quantify the rate and 
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decay of the Si-NC-photoinduced absorption of Si:C18 following Si excitation. Right: TA contour plot of Si:9EA showing the growth of 9EA features, 
notably a photobleach at 395 nm (light-blue contour) and the induced absorption peak at 435 nm (red/orange contours), superimposed on the Si-induced 
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yield of triplet energy transfer from silicon to 9EA must account for 
these two effects.

A kinetic model that explains our transient results by account-
ing for two sources of heterogeneity that impact triplet energy 
transfer from silicon to 9EA is outlined in Fig.  4a. This model 
assumes our NC ensemble comprises a distribution of NCs with 
exciton energies described by the ensemble Si NC emission line-
width. Energy transfer from NCs with an exciton energy lower 
than the triplet energy of 9EA are taken to experience an Arrhenius 
activation barrier. Members of this ensemble are further taken to 
bind different numbers of 9EA molecules in accordance with a 
Poisson distribution with N9EA = 2. Solutions to kinetic equations 
given by this model and a description of our fitting procedure are 
given in Supplementary Information, Section 7. Decay parameters 
governing the intrinsic relaxation of Si:C18 NCs are assumed to 
be unchanged by 9EA functionalization, which leaves only two 
key free parameters to fit the growth and decay of the 9EA triplet  

population, the forward transfer rate constant, kTET, and the 9EA 
decay rate constant, k9EA




. Figure 4b shows the result of this fitting 

process overlaid on the triplet and Si NC populations extracted 
from the Si:9EA TA data. Overall, we find very good agreement 
with our data over five decades


 of time, despite the model’s limited 

number of free parameters. This model also reproduces the energy-
dependent quenching of Si NC emission upon 9EA functionaliza-
tion (Fig. 4c), first highlighted in Fig. 1b.

With these fits in hand, we can examine the overall yield for 
triplet energy transfer from Si NCs to 9EA. We find the intrinsic 
timescale of forward transfer is quite rapid, 15 ns, which implies 
that the slower rise of the 9EA triplet population in Fig. 4b in part 
arises from the thermal activation of the transfer. For these samples, 
we find that 48% of the excited NCs successfully transfer energy to 
9EA. Of the remaining non-transferred 


excitations, we estimate that 

they result from NCs with no 9EA attached, larger NCs with exciton 
energies too low to effectively transfer to the 9EA triplet state and 
intrinsic decay pathways within the Si NCs. Importantly, improve-
ments in synthetic methods that either stabilize smaller Si NCs, 
increase 9EA loading or replace 9EA with acceptors with lower 
triplet exciton energies can be straightforwardly used to address the 
first two of these three loss pathways, which, if eliminated, could 
be used to achieve transfer yields as high as 91% according to our 
model. Assuming a proportional gain in upconversion efficiency, 
this would suggest we can nearly double this value.

Although our data demonstrate that Si NCs can efficiently fuel 
triplet-fusion-based photon upconversion, biological applications 
require Si NCs to function in aqueous, oxygen-containing environ-
ments. Using methods adapted from the work of Sanders et al.44, we 
have prepared micelles based on Poloxamer 188 (P188), a triblock 
copolymer comprising a hydrophobic core [poly(propylene 


oxide)] 

flanked by two hydrophilic poly(ethylene glycol) chains. P188 is 
a surfactant approved by the US Food and Drug Administration


 

that is currently used in many over-the-counter products, includ-
ing toothpaste, cosmetics and pharmaceuticals. Within the core 
of these micelles, Si:9EA NCs are dispersed in a small volume of 
o-dichlorobenzene 


(ODCB) along with DPA triplet-fusion photon 

upconverters (Fig. 5a). Dynamic light scattering experiments indi-
cate that these micelles display an average diameter of 220 nm with 
a polydispersity index of 0.140 (Supplementary Fig. 6). This size is 
sufficiently small that these micelles are suitable for a range of bio-
logical applications.

Upon illumination under an inert argon atmosphere at either 488 
or 512 


nm, we observe upconverted emission from the DPA mol-

ecules (Fig. 5b), confirming that the Si NCs within the micelles are 
capable of transferring triplet excitons to surface-bound 9EA mol-
ecules followed by transfer to DPA. We find the upconverted emis-
sion varies linearly with the input excitation power, indicating that 
the diffusion of molecules within the micelles does not limit upcon-
version (Fig. 5c). Importantly, we find the micelles show exceptional 
stability when they are stored under an inert atmosphere. Fig. 5b 
displays the emission spectra of upconverting micelles recorded 4 
and 17 hours after preparation. These two spectra are nearly identi-
cal, highlighting their stability under anaerobic conditions.

Remarkably, when these micelles are exposed to oxygen, a noto-
rious triplet quencher, we find photon upconversion continues for 
25 minutes (Fig.  5d). In this time frame, we find the Si NC band 
edge emission drops in intensity by half and undergoes a blueshift, 
which is expected for NCs undergoing surface oxidation, suggesting 
the decay of upconversion under aerobic conditions partially stems 
from the oxidation of silicon in addition to direct triplet quench-
ing by oxygen. However, we note that in forming our micelles 
we have taken no explicit steps to block oxygen from reaching 
micelle interiors other than initially preparing them under argon. 
The replacement of P188 by other surfactants containing larger 
regions of saturated carbons that can pack more densely45,46 and the  
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to time-dependent populations of 9EA triplet excitons and excited Si NCs 
that faithfully reproduce the kinetics over five decades in 




time. We note 

that there is some discrepancy between the triplet population and the fit 
at short time delays, which is an artefact of the background normalization 
used to extract this population. c, The model in panel a reproduces the 
energy-dependent quenching of Si NC populations after functionalization 
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addition of oxygen scavengers to micelle interiors47 can each be 
used to improve the longevity of photon upconversion in aerobic, 
aqueous environments, increasing the potential of this system for  
biological applications.

In conclusion, we have demonstrated for the first time photon 
upconversion employing Si NCs paired with triplet-accepting mole-
cules. Upon excitation, triplet energy transfer occurs over a few tens 
of nanoseconds by a single Dexter energy transfer step, producing 
molecular triplet states that can be extracted to fuel upconversion 
between diffusing molecules in solution. This system upconverts 
green and red light with 7.0% ± 0.9% efficiency. Losses in this sys-
tem stem in part from the heterogeneity in the NC synthesis and 
molecular functionalization, which can be reduced with further 
improvements in synthetic methodology. When incorporated into 
aqueous micelles, our upconversion system functions indefinitely 
under anaerobic conditions and for tens of minutes upon exposure 
to oxygen. These results stand out among other molecular- and 
NC-based triplet-fusion upconversion systems, which are typically 
incompatible with aqueous conditions and exhibit triplet quenching 

within a few seconds upon exposure to oxygen. Given numerous 
potential handles for improving our system, we believe that upcon-
version based on Si NCs can meet the demands of a number of 
biological applications3,4,48. Of even greater importance, our results 
definitely show that silicon-to-molecule spin-triplet energy trans-
fer is indeed possible, which opens the door to many applications 
that extend beyond biocompatible upconversion systems. By virtue 
of its inherent sustainability and environmental compatibility, our 
silicon-centred approach is highly relevant for quantum informa-
tion science25, singlet-fission-driven solar cells24,49,50 and upconver-
sion photocatalytic systems1.

Data availability
Experimental data and fits to this data produced using the MATLAB 
software are available from the authors upon request.

Code availability
The MATLAB code used in the fitting analysis of transient absorp-
tion spectra is available from the authors upon request.
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