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ABSTRACT
It is shown that the semiclassical limit of eigenvalues for

a multi-dimensional system can exist even when a complete set of

"good" action variables (i.e., quantum numbers) do not.



I. INTRODUCTION. *

There has recently been considerable interest and progress

in generalizing the one-dimensional Bohr-Sommerfeld quantum

conditidh_to dynamical systems with several degrees of freedom.l_13
The oné—dimenéiqnal semiclassical quantum condition
X
D | > 2,12 R ,
(n +-é-)‘rr’ = fdx {Zm[E—V(x)J/fl } s (1.1)

n=0,1, 2, ... , provides an accurate description of vibrational
eigenvaiues of diatomic molecules, and it is anﬁicipated that its
multi-dimensional extension would be of con;iderable utility in
describing vibrational spectra of simple pbiyétomic moleculés.

- Essentially all of the work to date (except that in ref. 6 and
10) on the multi-dimensional eigenvalue problem has dealt with the
case ofvregular8 spectra, i.e., the case that the eigenvalues of
the system are characterizable by f "good" quantum numbers, f being

3’1l_of

the number of degrees of freedom. In Born's formulation
the problem, for example, one considers the classical Hamiltonian

first in terms of some ''unperturbed" action-—angle»variables14

(m,9) = (n;,q,), 1 =v1, ceey £

H(,q) = Hy(n) + V(q,n) (1.2)

where HO(n) is a separable réference Hamiltonian that is introduced
for the purpose of defining the unperturbed action-angle variables,

and V is the non—separablé coupling which precludes the action



variables n from being constants of the motion, The t;sk is then
to carry out a canonical transformation15 from the unperturbed

action-angle variables (2’2) to the "good" éction—angle variables
(Q,g) such that the total Hamiltonian, when expressed in terms of

N and Q, is a function only of the action variébles'N,
H(N,Q) = E(N) . | | (1.3)

Thé "good" action variables {Ni}, i=1, ..., f are therefore
constants of the motion, and the semiclaésical eigenvalues are .
obtained simply by requiring that the {Ni}.be integers (or perhaps
_half—intégers). The recent paper by Chapman.gg_gl;}l has sho&n
how this canonical transformation can actually be carried out
non-perturbatively (i.e., numerically).

One does not expect, however, there always to exist a complete
set of f "good" action variables; i.e., it may not always be
possible to carry out Born's canonical transformation. In practice,
too, one would not expect to be able to characterize highly excited
vibrational.states with a complete set of f quantum numbers.

16,17 have also suggested that the spectrum

Numerical experiments
of eigenvalues becomes irregular8 at sufficiently high energy or
strong nonﬁéeparable coupling.

In such cases of an irregular spectrum noﬁe-of the recent
appréaches to semiclassical quantization appear fo be applicable;
since the f "good" action variables {Ni} do not exist, Born's

formulation3’11 is clearly meaningless, and other approaches

similarly fail because the requisite "invariant toroids" fail to
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exist, It has been conjectured that the semiclassical limit of
eigenvalues in this irregular region may even fail.to exist.

This paper presents an analysis whicﬁ sho&s that‘the semi-
classi#ai limit of eigenvalues in the irregular region of the
spectrum can indeed exist. The formulation completely by-passes
the intermediary of f "good" action variables {Ni} which must
be set to iﬁtegers in order to obtain fheveigeﬁvalues; rather it
produces semiélassical eigenvalues directly without any reference
to "good".action variables or "invariant toroids". This is the °
importaﬁt feature, of course; since “good“ action variables are
thus not required to exist in this formulation. Unfortun;tely,
’the computational procedure which results from this appro;ch does
not‘appear to be particularly useful in practice since it involvés
as,mucﬁ éomputational effort as a fully quantum mechanical calcula-
tion. The analysis is nevertheless interesting in showing that the

semiclassical limit of eigenvalues can exist for the case of an

irregular spectrum.



II. FORMULATION.

3,11 The

Recall first some specifics of Born's approach.
generating function15 for the (n,q) =+ (N,Q) transformation is

F(q,N), and the transformation is specified by the two differential

equations which give n and Q in terms of q and N:

oF(g,N)

n(g,N) = 82 (2.1)
2 2 |

Qg = Fad o | (2.2)
2 an

Using Eq. (2.1) to eliminate n from the Hamiltonian H(q,n); and

imposing Eq. (1.3), gives the Hamilton-Jacobi equation for F:

E(N) = H(q, M) . | " (2.3)
=7 d % |

For simplicity the reference Hamiltonian HO will be taken to be

harmonic (but this is not essential),

f .
HO(E_) = @en = igl wini . ' (2.4)

-~ -~

so that Eq; (2.3) becomes

E(N) = 02T LN ‘V(q, M) . (2.5)
-7 3q - 3q .

To solve Eq. (2.5) the generator is expanded as
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o ikeq '
F(G,N) = g + YB e, (2.6)
k ~ -

and the Fourier coefficients B, are determined by substituting

-~

k
" this expansion into Eq. (2.5) )
The first term in the expansion of fhe-geﬁerator in qu (2.6)
is determined by the'result desired for F in the limit that the
noﬁ-separable interaction V is "switched off". In tﬁis limit one
wants thé "new" variables (§,g) to be the same as the "old" ones
(E;g), and one can'readiiy verify that the generator FO;
1#0(3,15) = Lin F(g,N) = qN C@.7)
. V+0 :
accomplishes this. This is more clear intuitively if one recognizes
that the generator F(S,g) is related to the semiclassical wave

function in q-space by

iF(q,N) (2.8)

W@ ~ e

units being used so that h = 1. If V20, then one has the obvious

limit

Mm"wn(ﬂ) ‘l’N(O)(q) noelTN ; (2.9)
V0 =2 -~ - . -

#”

tH

‘Eqs. (2.8) and (2.9) thus also lead to Eq. (2.7).
By in?oking the identification in Eq. (2.8) it is also easy to
see physically why the 'good" action variables {Ni} are required to

be integers: The expansion of F(q,N) in Eq. (2.6) corresponds to the



following expansion for Y:
W@ v oemUgN DB e . ‘ (2.10)

Singlevaluedness of ¥ in the space of physical (i.e., cartesian)

coordinates requires that Y be a periodic function of q, and this

then requires that the {Ni} be integers; i.e., quantization results

because the generator F is required to be the logarithm of a

periodic function.

One éther feature which is crucial in ﬁofivéting the approach
taken beléw, and that has to do with degeneracy. Suppose the
frequencies w = {wi}, i=1, ..., f of H, are such that the
unperturbed energies of two different sets of quantum numbers, §1

and N2 say, are equal,

weN, = weN . . ‘ (2.11)

Born's fofmulation, and the other equivalentiapproaches, has great
difficulty in dealing with this because the zéraEh order term in
F(g,§) is no longer obvious; it is nottg°§ r q N2 but should in
some seﬁse be a combination of the two.

The situation is much siﬁpler quantum mechanically, for ih this
case one knows that the zerotl order wave function is a simple

th

linear superposition of the two degenerate zero—* order functions:

¢(0)(q) voey JUNM fc2 e12°N2 . (2.12)

Eq. (2.8) then shows that



. | Ciq°N,  4q°N
Fo(@) ~ ~itnfc e M4, e” ~23 . (2.13)

1f c1 §r ¢2,+'0; then the simpleAform.for F, in Eq. (2.7) is
recovered, but the iogarithmic‘sﬁruéture in general is considerably
more difficult to represent by the Fourier series expansion in
Eq. (2.6).

In.the case of degeneracy, therefore, the generating function
F(g) is not at all well-represented by the Fourier series in Eq.
(2.6), bﬁt the exponential fuﬁction of the génerator is wéll—represented
by a Fourier series in the degenerate as well as the non—degenerate
case. This suggests, fherefore, that one would do better to write
the generétor‘F(é) (dropping the label N since it is "passive") in

terms of a function w(g),
F() = -ifn ¥(@) S (2.14)

and expand Y(q) in a Fourier series
. ike e |
W@ =XYc i . D (2.15)
k ~ : _ .

Since F(g) is ﬁow manifestly the logarithm of a éeriodic function of
q, it must"happen that semiclassical eigenvalues appear "éutomatically"
since therevis now no additional condition to impoée in order to
produce.qda;tization. |

Although the form of the generating function F(S)'given by

Egs. (2.14) and (2.15) is certainly motivated by quantum mechanics,

it is simply a special form of the generator of a canonical transformation



in classical mechanics. Once this form is chosen for the generator,>

the rest is purely classical mechanics. With Eq. (2.14) one has

9F(q) ) 3w‘3’//'iw<q> , _ ~ (2.16)
BS 33 N ’ .

so that Eq. (2.5) gives the followingvequation for Y(q):

EV(g) = —ig)-ai"‘” + (g, (@) ¥(@) (2.17a)
q
with
P (q)
n(g) = /1@ . ’ (2.17b)

(The resemﬁlance of Eq. (2.17) to a Schrodinger equation in
action—aﬁgie variables is striking, but this is all strictly
classical mechanics.) If the Fourier expansioniof w(g), Eq.
(2.15), is substituted into Eq. (2.17), aﬁd one multiplies by
a specific.plané wave e_ik.g and integrateslbver q, then one
oﬁﬁains:the following set of equations for thé'fourier

coefficients C

k
EC = 9}5 C, + z; v ,k'.ck' . : (2.18a)
-~ Lad k -~ A -~
for all k, where
- £ F i)
Vit = @m Jndq e '~ 71 v(g,n(q)) (2.18b)

0

with
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(}:k C, e~ ~>/<§CE eﬂf'S) . - (2.18c)

Eq. (2.18) is a set of non-linear (becausé Ck occurs in n(q))’
equations for the Fourier coefficients C,.
1f for the moment one ignores the fact that n(q) depends on

{c, }, then Eq. (2.18a) is recognized as a set of linear homogenous

equations which has a non-trivial solution for {q(} only if

detlw-.ké o V‘f’k' - Ed.k’,ksl =0 . (2.19)

-~

Eq; (2;19) is a secular equation for the_énérgybﬁ, and'iés
solutioﬂs.are the eigenQalucs of the matrix

L T AT | (2.20)
(One will note the strong resemblance between Eq. (2.20) and the
quantum,ﬁechanical matrix of the Hamiltonian operator in the basis
set of eigénstates of Ho.)‘ As expected, theréfore, discrete values
for E have emerged "automatically", completely within the realm of
clasgiéal mechanics, once the generator is téken tq be the logafithm
of a periodic function of 95 Eq. (2;14) and (2.15).

Eﬂg); however, does depend on thé coefficients {Ck},as given

by Fq. (2;18c), so that Eq. (2.18) must be.solved iterazively, like
the Hartree—Fock self-consistent field proble_m18 in quantum‘chemistry.

(0)

Thus one first assumes an ‘initial eigenvector C * for the particular

~

eigenvalue being sought, and uses it to calculate n(q) via Eq. (2.18c)

~ o~

and then the matrix Vk k' via Eq. (2 18b). The matrix in Eq. (2.20)

is then diagonallzed (or the eigenvalue extracted by some other
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procedure), and one identifies one of its eigenvalues as an
approximation to the particular semiclassical eigenvalue being

¢y

sought.. The correspondlng elgenvector, call it Ck , 1s now

-~

used to re—compute n(q) via Eq. (2. 18c) and then Vk k' via Eq.

| (2.18b). The matrix is then dlagonallzed agaln,.o;e~of its

eigenvalues identified as the desired one, and its corresponding

eigehvector as Ck(z), eﬁc., until ehe desifed eigenvalue converges.
In the simpIe case of a non-degenerate,fegular spectrum one

can easily see what tﬁe initial guess for the eigenvector shouldb

be. If the desired_eigenvalue is characterized by the complete

set bf.quantum numbers N, then the zero=" th order approximation for

¥(q) is

v = evY

and fromvK. (2.15) this is seen to correspond to the coefficients

Ck being

-~

o . : |
Cy co= 6k,N : : (2.21a)

With this initial choice for C, the "0ld quantum number function"

~

n(q) of Eq. (2.18c¢c) is seen to be
n(q) = N 3 . (2.21b)

i.e., for the first iteration n(q) is constant and equal to the
"good" quantum numbers N. This will not be true, of course, for

later iterations.
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" In the case of degeneracy, the zerot® order approximation

to Y(q) is that in Eq. (2.12), and this cor;éspohds to an
0)

initial choice for Ck as

= ¢, 8 +c, 6 . . ’ (2.22)
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IITI. CONCLUDING REMARKS.

The interesting and important features of the formulation
Carried‘out above is that semiclassical eigenvélues emerge
"automatically" from Eq. (2.18)4(2.195 without any auxiliary
criteria such as requiring "good" action variables to be
integeré. "Good" action variables do not eQén appear in Eqs.
_(2.18)f(2.l9), énd this is tﬁe imporﬁant fact, for it means
that the semiclassical eigenvalues determined by Egs. (2;18)—
(2.19) may exist even when a complete set of '"good" action
variables do not, ‘i.e., in the irregular portion of the Spectrumf

Although Eqs. (2.18)-(2.20) look remarkably like quantum’
mechanics--with secular équations, Hamiltoniah:matrices, eigen—
values, etc.--it should be remembered that they are strictly
classical.mechanics with the requirement thét the generator be
the logérithm of a function periodic in the old angle variables
q. In Born's fo?mulation, too, it is the condition that eiF(g)

" be periodic that produces quantization, only in the present
formulétion-this requirement is injected at.the §ery beginning
rather thaﬁ at the end. To the extent that both approaches are'
applicable it is clear that they must yield bfecisely the same
semiclaséical eigenvalues.

‘A disappointing practical aspect of the present approach is
that the éomputational procedure suggested by Egs. (2.18)-(2.19)
is probably as difficult to carry out as a pﬁrely quantum mechanical

one (or even more so). The calculation of the matrix elements

Vk K' is perhaps easier via Eq. (2.18b) than quantum mechanically,
9 .
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but the eigenvalué problem must be solved iterativelz réther than
just once as in quantum mechanics. Also, éhe'matrix diagonalization
producesigil_the eigenvalues quantum mechanically,jbut Egs. (2.18)-
(2.19)'ﬁust be solved for each semiclassicai eigenvalue one at a
time. |

There is one trivial modification of Egqs. (2.18)-(2.19) that
should be made whicﬁ for simplicity of presentétion has not been

mentioned above, and this is the replacement k -+ k + %u The

o~ ~

.modified equations which replace Eqs. (2.18)-(2.19) are

dét"lé-(lj +%) 65’5. + Vl.f’l.f' - E 6 1~< o= Q‘ o (3.1a)
where

v‘f’.‘.f»'. = omnf fzndg e"i“f"f')_'ﬂ V(q.n(q)) ((3.15)
with

n(g) = 3+ ( k c X" q)/( c, el-lf.~) . (3.1c)

This modification results when one takes intb account that w(sj
shouldﬁactually change sign when any of the angles {qi} is_
increased by 2ﬂ; this comes from the phase contribution to ¥ -
from the two classical'turning points fér each of the (oscillatory)
degrees of”freedom. | |

Finally, one should ﬁote‘that mathematiCallrigor is totaliy

absent from the presentation in Section II. It has not been
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proved, for example, that the "self consisﬁent’field" pfocedure
described at thevend of Section II éonvergeé or.éven that
solutions to Egs. (2.18)-(2.19) exist. Theée are very thorny
questions that must be left té those more matheﬁaticéliy coﬁpetent

than the author.
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