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ON THE EXISTENCE OF 

* SEMICLASSICAL EIGENVALUES FOR IRREGULAR SPECTRA 

William H. Millert 

University Chemical Laboratory 
Lensfield Road 

Cambridge CB2 lEW 
England 

ABSTRACT 

It is shown that the semiclassical limit of eigenvalues for 

a multi-dimensional system can exist even when a complete set of 

"good" action variables (i.e., quantum numbers) do not. 
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I. INTRODUCTION. 

There has recently been considerable interest and progress 

in generalizing the one-dimensional Bohr-Sommerfeld quantum 

1-13 
condition to dynamical systems with several degrees of freedom. 

The one-dimensional semiclassical quantum condition 

X> 

f 
2 1/2 

dx {2m[E-V(x)] /h } (1.1) = 

n = 0, 1, 2, ••• , provides an accurate description of vibrational 

eigenvalues of diatomic molecules, and it is anticipated that its 

multi-dimensional extension would be of considerable utility in 

describing vibrational spectra of simple polyatomic molecules. 

Essentially all of the work to date (except that in ref.. 6 and 

10) on the multi-dimensional eigenvalue problem has dealt with the 

case of regular8 spect~a, i.e., the case that the eigenvalues of 

the system are characterizable by .f "good" quantum numbers, f being 

the number of degrees of freedom. In Born's formulationJ,ll of 

the problem, for example, one considers the classical Hamiltonian 

first in terms of some "unperturbed" acti~n-angle variables
14 

. (1. 2) 

where H0 (~) is a separable reference Hamiltonian that is introduced 

for the purpose of defining the unperturbed action-angle variables, 

and V is the non-separable coupling which precludes the action 
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variables n from being constants of the motion. The task is then 

to carry out a canonical transformation15 from the unperturbed 

action-angle variables (n,q) to the "good" action-angle variables - -
(~,g) such that the total Hamiltonian, when expressed in terms of 

~ and g, is a function only of the action variables N, 

H(N,Q) = E(N) 

The "good" action variables {N.}, i = 1, ••• , fare therefore 
1 

(1.3) 

constants of the motion, and the semiclassical eigenvalues are 

obtained simply by requiring that the {N.l be integers (or perhaps 
1 

half-integers). 
11 

The recent paper by Chapman et al. has shown 

how this canonical transformation can actually be carried out 

non-perturbatively (i.e., numerically). 

One does not expect, however, there always to exist a complete 

set of f "good" action variables; i.e., it may not always be 
0 

possible to carry out Born's canonical transformation. In practice, 

too, one would not expect to be able to characterize highly excited 

vibrational states with a complete set of f quantum numbers. 

16 17 
Numerical experiments ' have also suggested that the spectrum 

of eigenvalues becomes irregular8 at sufficiently high energy or 

strong non~separable coupling. 

In such cases of an irregular spectrum none of the recent 

approaches to semiclassical quantization appear to be applicable; 

since the f "good" action variables {N.} do not exist, Born's 
1 

f 1 . 3 • 11 . 1 1 i 1 d h h . ormu at1on 1s c ear y mean ng ess, an ot er approac es 

similarly fail because the requisite "invariant toroids" fail to 
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exist. it has been conjectured that the semiclassical limit of 

eigenvalues in this irregular region may even fail to exist. 

This paper presents an analysis which shows that the semi-

classical limit of eigenvalues in the irregular region of the 

spectrum can'indeed exist. The formulation completely by-passes 

the intermediary of f "good" action vari~bles {Ni} which must 

be set to integers in order to obtain the eigenvalues; rather it 

produces semiclassical eigenvalues directly without any reference 

to "good" action variables or "invariant toroids". This is the 

important feature, of course, since "good" action variables are 

thus no~ required to exist in this formulation. Unfortunately, 

the computational procedure which results from this approach does 

not appear to be particularly useful in practice since it involves 

as.~uch computational effort as a fully quantum mechanical calcula-

tion. The analysis is nevertheless interesting in showing that the 

semiclassical limit of eigenvalues can exist for the case of an 

irregular spectrum. 
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II. FORMULATION. 

311 Recall first some specifics of Born's approach. ' The 

generating function
15 

for the (~,~) -+ (~,g) transformation is 

F(~,~), and the transformation is specified by the two differential 

equations which give n and g in terms of q and N: 

n(q,N) = 
aF(g,N) (2.1) - - ·- aq 

Q(q,N) = 
ClF(g,N) (2.2) - - - aN 

Using Eq. (2.1) to eliminate rr from the Hamiltonian H(q,n), and -
~mposing Eq. (1.3), gives the Hamilton-Jacobi equation for F: 

(2. 3) 

• 

For simplicity the reference Hamiltonian H0 will be taken to be 

harmonic (but this is not essential), 

= = 
f 

2: 
i=l 

w.n. 
1 1 

so that Eq. (2.3) becomes 

E(N) = • ()F(q,N) + ·v~ w --"'----""-- q ' 
- aq -

()F(q,N)) 

Clq -
To solve Eq. (2.5) the generator is expanded as 

(2 .4) 

(2.5) 

-. 
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8 

(2 .6) 

and the Fourier coefficients Bk are determined by substituting 

this expansion into Eq. (2.5) 

The first term in the expansion of the generator in Eq. (2.6) 

is determined by the result desired for F in the limit that the 

non-separable interaction Vis "switched off". In this limit one 

wants the "new" variables (N,Q) to be the same as the "old" ones 

(n~q), and one can readily verify that the generator F
0

, 

R.im F(q,N) 
v-..o - -

= ' 
(2. 7) 

accomplishes this. This is more clear intuitively if one recognizes 

that the generator F(q,N) is related to the semiclassical wave 

function in q-space by - . 

units being used so that h = 1. If v-..o, then one has the obvious 

limit 

lJI (0) (q) 
N -

(2.9) 

Eqs. (2.8) and (2.9) thus also lead to Eq. (2.7). 

By invoking the identification in Eq. (2.8) it is also easy to 

see physically why the "good" action variables {N.} are required to 
l. 

be integers: The expansion of F(q,N) in Eq. (2.6) corresponds to the 
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following expansion for ·$:. 

exp(iq•N - -
ik•q 

+ L Bk e - -) 
k 

(2.10) 

Singlevaluedness of Win the space of physical (i.e., cartesian) 

coordinates requires that W be a periodic function of q, and this 

then requires that the {N.} be integers; i.e., quantization results 
~ 

because the generator F is required to be the logarithm of ~ 

periodic function. 

One other feature which is crucial in motivating the approach 

taken below, and that has to do with degeneracy. Suppose the 

frequencies w = {w.}, i = 1, .•• , f of H
0 

are such that the -· ~ 

unperturbed energies of two different sets of quantum numbers, ~l 

and ~2 say, are equal, 

(2.11) 

Born's formulation, and the other equivalent approaches, has great 

difficulty in dealing with this because the zeroth order term in 

F(~,~) is no longer obvious; it is not .~·~1 or ~-~2 but should in 

some sense be a combination of the two. 

The situation is much simpler quantum mechanically, for in this 

case one knows that the zero!h order wave function is a simple 

linear superposition of the two degenerate zeroih order functions: 

w<o><q) + 

Eq. (2.8) then shows that 

iq•N2 c 2 e - - (2.12) 
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(2.13) 

If c
1 

or c2 -+- 0, then the simple form for F 0 in Eq. (2. 7) is 

recovered, but the logarit~mic structure in general is considerably 

more difficult to represent by the Fourier series expansion in 

Eq. (2. 6). 

In the case of degeneracy, therefore, the generating function 

F(~) is not at all well-represented by the Fourier series in Eq. 

(2.6), but the exponential function of the generator is well-represented 

by a Fourier series in the degenerate as well as the non-degenerate 

case. This suggests, therefore, that one would do better to write 

the generator F(q) (dropping the label N since it is "passive") in ... 
terms of a function~(~), 

F(q) - -iR.n ~(q) (2 .14) -
and expand ~(q) in a Fourier series 

~(~) = :E ck 
ik•q 

e - ... 
k -

(2.15) 

Since F(q) is now manifestly the logarithm of a periodic function of 

q, it must happen that semiclassical eigenvalues appear "automatically" 

since there is now no additional condition to impose in order to 

produce quantization. 

Although the form of the generating function F(q) given by 

Eqs. (2.14) and (2.15) is certainly motivated by quantum mechanics, 

it is simply a special form of the generator of a canonical transformation 
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in classical mechanics. Once this form is chosen for the generator, 

the rest is purely classical mechanics. With Eq. (2.14) one has 

= 
a~P<g> / ilJJ(q) 

aq -

so that Eq. (2.5) gives the following equation for lJJ(q): 

ElJJ(q) 

with 

n(q) -

= -iw• alJJ(q) + V(q, n(q)) lJJ(q) 
ag 

(The resemblance of Eq. (2.17) to a Schrodinger equation in 

action-angle variables is striking, but this is all strictly 

classical mechanics.) If the Fourier expansion of lJJ(q), Eq." -
(2.15), is substituted into Eq. (2.17), and one multiplies by 

-ik•q a specific plane wave e - - and integrates over q, then one 

obtains the following set of equations for the Fourier 

coefficients Ck: 

for all k, where -

(2.16) 

(2.17a) 

(2.17b) 

(2 .18a) 

= 
-i(k-k')•q 

e - - - V(q,n(q)) '(2.18b) 

with 
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n(q) - - ik•q) e - - (2.18c) 

Eq. (2.18) is a set of non-linear (because ~ occurs in n(q)) 

equations for the Fourier coefficients Ck. 

If for the moment one ignores the fact that n(q) depends on 

{'1c}, then Eq. (2.18a) is recognized as a set of linear homogenous 
·-

equations which has a non-trivial solution for {St} only if 

det lw•'k o ' 
- - k, k 

+ E 0 .. ·I = 0 k,k 

Eq. (2.19) is a secular equation for the energy E, and its 

solutions are the eigenvalues of the matrix 

(2.19) 

(One will note the strong resemblance between Eq. (2.20) and the 

quantum mechanical matrix of the Hamiltonian operator in the basis 

set of eigenstates of Ho.) As expected, therefore, discrete values 

forE have emerged "automatically", completely within the realm of 

classical mechanics, once the generator is taken to be the logarithm 

of a periodic function df q, Eq. (2.14) and (2.15). -
~q), however, does depend on the coefficients {Ck},as given 

by F.q. (2.18c), so that Eq. (2.18) must be solved iteratively, like 

the Hartree-Fock self-consistent field problem18 in quantum chemistry. 

Thus one first assumes an initial eigenvector Ck (O) for the particular 

eigenvalue being sought, and uses it to calculate n(q) via Eq. (2.18c) 

and then the matrix Vk k' via Eq. (2.18b). The matrix in Eq. (2.20) 
~'-

is then diagonalized {or the eigenvalue extracted by some other 
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procedure), and one identifies one of"its eigehvalues as an 

approximation to the particular semiclassical eigenvalue being 

sought •. The corresponding eigenvector, call it Ck (l), is now 

used to re-compute ~(g) via Eq. (2.18c) and then Vk k' via Eq • 
. , 

(2.18b). The matrix is then diagonalized again, one of its 

eigenvalues identified as the desired one, and its corresponding 

i C ( 2 ) .1 h d . d . 1 e genvector as .k , etc., unt1 t e es1re e1genva ue converges. 

In the simple case of a non-degenerate regular spectrum one 

can easily see what the initial guess for the eigenvector should 

be. If the desired eigenvalue is characterized by the complete 

set of quantum numbers N, then the zeroth order approximation for 

l/J(q) is -
l/J(q} = 

and from Eq. (2.15) this is seen to correspond to the coefficients 

ck being 

ck<o> = 0k N ' 
(2.2la) 

- -
With this initial choice for Ck the "old quantum number function" 

n(q) of Eq. (2.18c) is seen to be 

n(q) = N (2.2lb) 

i.e., for the first iteration n(q) is constant and equal to the 

"good" quantum numbers N. This will not be true, of course, for 

later iterations. 
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In the case of degeneracy, the zero!h order approximation 

to ~(q) is that in 

initial choice for 

= 

Eq. (2.12), 

C (O) as 
l< 

and this corresponds to an 

(2.22) 
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III. CONCLUDING REMARKS. 

The interesting and important features of the formulation 

carried out above is that semiclassical eigenvalues ~merge 

"automatically" from Eq. (2.18)-(2.19) without any auxiliary 

criteria such as requiring "good" action variables to be 

integers. "Good" action variables do not even appear in Eqs. 

(2.18)-:-(2.19), and this is the important fact, for it means 

that the semiclassical eigenvalues determined by Eqs. (2.18)­

(2.19) may exist even when a complete set of "good" action 

variables do not, i.e., in the irregular portion of the spectrum. 

Although Eqs. (2.18)-(2.20) look remarkably like quantum 

mechanics--with secular equations, Hamiltonian matrices, eigen-

values, etc.--it should be remembered that they are strictly 

classical mechanics with the requirement that the generator be 

the logarithm of a function periodic in the old angle variables 

q. In Born's formulation, too, it is the condition that eiF(<i) 

be periodic that produces quantization, only in the present 

formulation this requirement is injected at the very beginning 

rather than at the end. To the extent that both approaches are 

applicable it is clear that they must yield precisely the same 

semiclassical eigenvalues. 

A disappointing practical.aspect of the present approach is 

that the computational procedure suggested by Eqs. (2.18)-(2.19) 

is probably as difficult to carry out as a purely quantum mechanical 

one (or even more so). The calculation of the matrix elements 

vk,k' is perhaps easier via Eq. (2.18b) than quantum mechanically, 
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but the eigenvalue problem must be solved iteratively rather than 

just once as in quantum mechanics. Also, one matrix diagonalization 

produces all the eigenvalues quantum mechanically, 
1
but Eqs. (2.18)-

(2.19) must be solved for each semiclassical eigenvalue one at a 

time. 

There is one trivial modification of Eqs. (2.18)-(2.19) that 

1 should be made which for simplicity of presentation has not been 

1 
mentioned above, and this is the replacement k + k + 2· The 

modified equations which replace Eqs. (2.18)-(2.19) are 

detl~·(~ + ;) <\,k' + vk,k'- E <\,k'l = O· (3.la) 
- ... 

where 

= (27r) -f -i(k-k')·q 
e ... ... ... V(q,n(q)) (3.lb) 

with 

(3.lc) 

This modification results when one takes into account that 1/J(~j 

should actually change sign when any of the angles {q,} is 
~ 

increased by 27r; this comes from the phase contribution to 1/J 

from the two classical turning points for each of the (oscillatory) 

degrees of freedom. 

Finally, one should note that mathematical rigor is totally 

absent from the presentation in Section II. It has not been 
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proved, for example, that the "self consistent field" procedure 

described at the end of Section II converges or even that 

solutions to Eqs. (2.18)-(2.19) exist. These are very thorny 

questions that must be left to those more mathematically competent 

than the author. 
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