eScholarship

Combinatorial Theory

Title

Large hypergraphs without tight cycles

Permalink

https://escholarship.org/uc/item/7hk9r04f

Journal

Combinatorial Theory, 1(0)

ISSN

2766-1334

Author

Janzer, Barnabás

Publication Date

2021

DOI

10.5070/C61055374

Copyright Information

Copyright 2021 by the author(s). This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Large hypergraphs without tight cycles

Barnabás Janzer*1

¹Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom bkj21@cam.ac.uk

Submitted: Dec 15, 2020; Accepted: Jul 27, 2021; Published: Dec 15, 2021 © The author. Released under the CC BY license (International 4.0).

Abstract. An r-uniform tight cycle of length $\ell > r$ is a hypergraph with vertices v_1, \ldots, v_ℓ and edges $\{v_i, v_{i+1}, \ldots, v_{i+r-1}\}$ (for all i), with the indices taken modulo ℓ . It was shown by Sudakov and Tomon that for each fixed $r \geqslant 3$, an r-uniform hypergraph on n vertices which does not contain a tight cycle of any length has at most $n^{r-1+o(1)}$ hyperedges, but the best known construction (with the largest number of edges) only gives $\Omega(n^{r-1})$ edges. In this note we prove that, for each fixed $r \geqslant 3$, there are r-uniform hypergraphs with $\Omega(n^{r-1}\log n/\log\log n)$ edges which contain no tight cycles, showing that the o(1) term in the exponent of the upper bound is necessary.

Mathematics Subject Classifications. 05C65, 05C38

1. Introduction

A well-known basic fact about graphs states that a graph on n vertices containing no cycle of any length has at most n-1 edges, with this upper bound being tight. To find generalisations of this result (and other results concerning cycles) for r-uniform hypergraphs with $r\geqslant 3$, we need a corresponding notion of cycles in hypergraphs. There are several types of hypergraph cycles for which Turán-type problems have been widely studied, including Berge cycles and loose cycles [1,2,3,4,6,7]. In this note we will consider tight cycles, for which it appears to be rather difficult to obtain extremal results.

Given positive integers $r\geqslant 2$ and $\ell>r$, an r-uniform tight cycle of length ℓ is a hypergraph with vertices v_1,\ldots,v_ℓ and edges $\{v_i,v_{i+1},\ldots,v_{i+r-1}\}$ for $i=1,\ldots,\ell$, with the indices taken modulo ℓ . Observe that for r=2 a tight cycle of length ℓ is just a cycle of length ℓ in the usual sense. Let $f_r(n)$ denote the maximal number of edges that an r-uniform hypergraph on n vertices can have if it has no subgraph isomorphic to a tight cycle of any length. So $f_2(n)=n-1$. It is easy to see that the hypergraph obtained by taking all edges containing a certain point is tight-cycle-free, giving a lower bound $f_r(n)\geqslant \binom{n-1}{r-1}$. Sós and independently Verstraëte (see [10])

^{*}Supported by EPSRC DTG.

2 Barnabás Janzer

raised the problem of estimating $f_r(n)$, and asked whether the lower bound $\binom{n-1}{r-1}$ is tight. This question was answered in the negative by Huang and Ma [5], who showed that for $r \geq 3$ there exists $c_r > 0$ such that if n is sufficiently large then $f_r(n) \geq (1+c_r)\binom{n-1}{r-1}$. Very recently, Sudakov and Tomon [9] showed that $f_r(n) \leq n^{r-1+o(1)}$ for each fixed r, and commented that it is widely believed that the correct order of magnitude is $\Theta(n^{r-1})$. The main result of this paper is the following theorem, which disproves this conjecture.

Theorem 1.1. For each fixed $r \ge 3$ we have $f_r(n) = \Omega(n^{r-1} \log n / \log \log n)$. In particular, $f_r(n)/n^{r-1} \to \infty$ as $n \to \infty$.

The upper bound of Sudakov and Tomon [9] is $n^{r-1}e^{c_r\sqrt{\log n}}$, although they remark that it might be possible to use their approach to get an upper bound of $n^{r-1}(\log n)^{O(1)}$.

Concerning tight cycles of a given length, we mention the following interesting problem of Conlon (see [8]), which remains open.

Question 1.2 (Conlon). Given $r \geqslant 3$, does there exist some c = c(r) constant such that whenever $\ell > r$ and ℓ is divisible by r then any r-uniform hypergraph on n vertices which does not contain a tight cycle of length ℓ has at most $O(n^{r-1+c/\ell})$ edges?

Note that we need the assumption that ℓ is divisible by r, otherwise a complete r-uniform r-partite hypergraph has no tight cycle of length ℓ and has $\Theta(n^r)$ edges.

2. Proof of our result

The key observation for our construction is the following lemma.

Lemma 2.1. Assume that n, k, t are positive integers and G_1, \ldots, G_t are edge-disjoint subgraphs of $K_{n,n}$ such that no G_i contains a cycle of length at most 2k. Assume furthermore that $kt \leq n$. Then there is a tight-cycle-free 3-partite 3-uniform hypergraph on at most 3n vertices having $k \sum_{i=1}^{t} |E(G_i)|$ hyperedges.

Proof. Let the two vertex classes of $K_{n,n}$ be X and Y, and let $Z = [t] \times [k]$. (As usual, [m] denotes $\{1, \ldots, m\}$.) Our 3-uniform hypergraph has vertex classes X, Y, Z and hyperedges

$$\{\{x, y, z\} : x \in X, y \in Y, z \in Z, z = (i, s) \text{ for some } i \in [t] \text{ and } s \in [k], \text{ and } \{x, y\} \in E(G_i)\}.$$

In other words, for each G_i we add k new vertices (denoted (i, s) for s = 1, ..., k), and we replace each edge of G_i by the k hyperedges obtained by adding one of the new vertices corresponding to G_i to the edge.

We need to show that our hypergraph contains no tight cycles. Since our hypergraph is 3-partite, it is easy to see that any tight cycle is of the form $x_1y_1z_1x_2y_2z_2\dots x_\ell y_\ell z_\ell$ (for some $\ell\geqslant 2$ positive integer) with $x_j\in X,y_j\in Y,z_j\in Z$ for all j. Assume that $z_1=(i,s_1)$. Then $\{x_1,y_1\},\{y_1,x_2\},\{x_2,y_2\}\in E(G_i)$. But $\{x_2,y_2\}\in E(G_i)$ implies that z_2 must be of the form (i,s_2) for some s_2 . Repeating this argument, we deduce that there are $s_j\in [k]$ such that $z_j=(i,s_j)$ for all j, and $x_jy_j,y_jx_{j+1}\in E(G_i)$ for all j (with the indices taken mod ℓ). Hence $x_1y_1x_2y_2\dots x_\ell y_\ell$ is a cycle in G_i , giving $\ell>k$. But the vertices $z_j=(i,s_j)$ $(j=1,\dots,\ell)$ must all be distinct, and there are k possible values for the second coordinate, giving $\ell\leqslant k$. We get a contradiction, giving the result.

We mention that Lemma 2.1 can be generalised to give (r+r')-uniform tight-cycle-free hypergraphs if we have edge-disjoint r-uniform hypergraphs G_1, \ldots, G_t not containing tight cycles of length at most rk and edge-disjoint r'-uniform hypergraphs H_1, \ldots, H_t not containing tight cycles of length more than r'k. Indeed, we can take all edges $e \cup f$ with $e \in E(G_i), f \in E(H_i)$ for some i. (Then Lemma 2.1 may be viewed as the special case r = 2, r' = 1.)

Lemma 2.2. There exists $\alpha > 0$ such that whenever $k \leq \alpha \log n / \log \log n$ then we can find edge-disjoint subgraphs G_1, \ldots, G_t of $K_{n,n}$ with $t = \lfloor n/k \rfloor$ such that no G_i contains a cycle of length at most 2k, and $\sum_{i=1}^t |E(G_i)| = (1-o(1))n^2$.

Proof. It is well-known (and can be proved by a standard probabilistic argument) that there are constants $\beta, c > 0$ such that if n is sufficiently large and $k \leqslant \beta \log n$ then there exists a subgraph H of $K_{n,n}$ which has no cycle of length at most 2k and has $|E(H)| \geqslant n^{1+c/k}$. We randomly and independently pick copies H_1, \ldots, H_t of H in $K_{n,n}$. Let $G_1 = H_1$ and $E(G_i) = E(H_i) \setminus \bigcup_{j=1}^{i-1} E(H_j)$ for $i \geqslant 2$. Then certainly the G_i are edge-disjoint and no G_i contains a cycle of length at most 2k. Furthermore, the probability that a given edge is not contained in any H_i is

$$(1 - |E(H)|/n^2)^t \le \exp\left(-|E(H)|t/n^2\right) \le \exp\left(-n^{1+c/k} \lfloor n/k \rfloor/n^2\right) = \exp\left(-n^{c/k}/k(1+o(1))\right).$$

This is o(1) as long as $k \le \alpha \log n / \log \log n$ for some constant $\alpha > 0$. Therefore the expected value of $\left| \bigcup_{i=1}^t E(H_i) \right|$ is $(1-o(1))n^2$. Since $\sum_{i=1}^t |E(G_i)| = \left| \bigcup_{i=1}^t E(H_i) \right|$, the result follows.

Proof of Theorem 1.1. First consider the case r=3. Lemma 2.2 and Lemma 2.1 together show that if $k \le \alpha \log n / \log \log n$ then there is a tight-cycle-free 3-partite 3-uniform hypergraph on 3n vertices with $(1-o(1))kn^2$ edges. This shows $f_3(n) = \Omega(n^2 \log n / \log \log n)$, as claimed.

For $r\geqslant 4$, observe that $f_r(2n)\geqslant f_{r-1}(n)n$. Indeed, if H is an (r-1)-uniform tight-cycle-free hypergraph on n vertices, then we can construct a tight-cycle-free r-uniform hypergraph H' on 2n vertices with n|E(H)| edges as follows. The vertex set of H' is the disjoint union of [n] and the vertex set V(H) of H, and the edges are $e\cup\{i\}$ with $e\in E(H)$ and $i\in [n]$. Then any tight cycle in H' must be of the form $v_1v_2\dots v_{\ell r}$ with $v_i\in V(H)$ if i is not a multiple of r and $v_i\in [n]$ if i is a multiple of r. But then we get a tight cycle $v_1v_2\dots v_{r-1}v_{r+1}v_{r+2}\dots v_{2r-1}v_{2r+1}\dots v_{\ell r-1}$ in H by removing each vertex from [n] from this cycle. This is a contradiction, so H' contains no tight cycles. The result follows.

References

- [1] Béla Bollobás and Ervin Győri, *Pentagons vs. triangles*, Discrete Mathematics **308** (2008), no. 19, 4332–4336.
- [2] Zoltán Füredi and Tao Jiang, *Hypergraph Turán numbers of linear cycles*, Journal of Combinatorial Theory, Series A **123** (2014), no. 1, 252–270.

4 Barnabás Janzer

[3] Ervin Győri, *Triangle-free hypergraphs*, Combinatorics, Probability and Computing **15** (2006), no. 1-2, 185–191.

- [4] Ervin Győri and Nathan Lemons, *Hypergraphs with no cycle of a given length*, Combinatorics, Probability and Computing **21** (2012), no. 1-2, 193.
- [5] Hao Huang and Jie Ma, *On tight cycles in hypergraphs*, SIAM Journal on Discrete Mathematics **33** (2019), no. 1, 230–237.
- [6] Tao Jiang and Jie Ma, *Cycles of given lengths in hypergraphs*, Journal of Combinatorial Theory, Series B **133** (2018), 54–77.
- [7] Alexandr Kostochka, Dhruv Mubayi, and Jacques Verstraëte, *Turán problems and shadows I: Paths and cycles*, Journal of Combinatorial Theory, Series A **129** (2015), 57–79.
- [8] Dhruv Mubayi, Oleg Pikhurko, and Benny Sudakov, *Hypergraph Turán problem: Some open questions*, 2011.
- [9] Benny Sudakov and István Tomon, *The Extremal Number of Tight Cycles*, International Mathematics Research Notices (2021), rnaa396.
- [10] Jacques Verstraëte, *Extremal problems for cycles in graphs*, Recent trends in combinatorics, Springer, 2016, pp. 83–116.