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ABSTRACT OF THE THESIS 

 
Hardware Trojan Detection in FPGA through Side-Channel Power Analysis and Machine 

Learning 
By 

 
Salam R. Zantout 

 
Master of Science in Electrical and Computer Engineering  

 
University of California, Irvine, 2018 

 
Professor Mohammad Al Faruque, Chair 

 
The security of a cyber-physical system depends on the safety of the handled data, 

software, and underlying hardware. Securing the hardware is not a simple task because of 

the globalization of integrated circuits’ manufacturing flow. One hardware attack to be 

considered is the modification of the design to insert a “backdoor” which maliciously alters 

the behavior of the original system. Such a malicious and intentional insertion is called a 

Hardware Trojan Horse (HTH). In this thesis, an HTH detection technique was proposed 

and implemented. The detection technique made use of side-channel power analysis along 

with machine learning to detect the presence of an HTH. Power traces from a golden 

implementation (HTH-free) of the AES encryption algorithm on an FPGA were used to train 

a logistic regression model. The obtained model was then tested on new power traces 

collected from the golden implementation and was able to make correct predictions with 

95% accuracy. Next, an HTH, of a few gates, was implemented in the AES circuit to carry 

out a denial-of-service attack along with a breach of plaintext secrecy. The power data from 

the HTH-infected circuit were collected and tested on the trained logistic regression model. 

An amount of 81% of the HTH-infected data was detected as flawed by the logistic 
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regression model allowing the detection of the HTH even when it was not triggered. In fact, 

even when an HTH was dormant, the HTH would constantly be checking its triggering 

condition and hence consumed power. 



1 
 

INTRODUCTION 

A cyber-physical system integrates both physical and computation processes where 

embedded computers and networks regulate the physical mechanisms [1]. Cyber physical 

systems are used in most fields such as medicine, transportation, financial applications, and 

military. It is such an important task to make sure the systems are secure because they 

primarily affect human lives. The security of a cyber-physical system depends on the safety 

of the internal and external data handled, the system’s software, and the underlying 

hardware. A threat to the system’s hardware cannot be resolved by a patch or a remote 

system update. Instead, the compromised hardware would need to be replaced or accepted 

as a source of fault in the system. Securing the hardware is not a simple task because of the 

globalization of integrated circuits’ (IC) manufacturing flow. In fact, the semiconductor 

companies are not able to maintain the manufacturing flow locally because of the 

increasing complexity and cost of the design, fabrication and deployment of IC [2]. 

Consequently, any participant in the manufacturing flow can be considered as an untrusted 

entity which increases the probability of attacks. One attack to be considered is the 

modification of the design to insert a “backdoor” which maliciously alters the behavior of 

the original system. Such a malicious and intentional insertion is called a Hardware Trojan 

Horse (HTH). An HTH insertion in the IC is done secretly with the aim of never being 

noticed. An HTH can have multiple effects such as denial-of-service, leak of classified 

information, or degradation of performance. In this thesis. an HTH detection technique was 

proposed and implemented. This technique made use of side-channel power analysis along 

with machine learning to detect an HTH of a few gates. More precisely, a machine learning 

model was trained based on the power data collected from a circuit assumed to be HTH-
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free (golden circuit). The trained model was then fed new power data from a circuit under 

test and the model’s predictions helped determine whether the circuit at hand was HTH-

infected or not.  

The remainder of this thesis is organized as follows: Chapter 1 provides theoretical 

background on HTH and HTH detection methods, then introduces the currently 

implemented HTH detection techniques. Chapter 2 introduces the experimental work 

carried out to implement the proposed method of HTH detection using side-channel power 

analysis. Chapter 3 describes in detail the procedure followed to collect power data and 

then presents some interpretation of the collected data. Chapter 4 discusses the use of 

machine learning on the side-channel data and the different iterations performed to 

optimize the performance of the proposed model. Finally, chapter 5 concludes the work by 

providing a summary and future work.  

  



3 
 

1- CHAPTER 1: Theoretical Background and Related Work 

Hardware Trojan Horse 

Security of a cyber-physical system depends on the integrity of three main components: the 

software, the information processed, and the underlying hardware [3]. One of the attacks 

targeting hardware security is the insertion of a Hardware Trojan Horse (HTH). An HTH is 

a malicious modification of electronic hardware and can take place at different stages of the 

hardware’s life cycle [3]. Unlike software viruses, malicious modifications to the hardware 

are not removable after discovery by using patches or updates to the system. A defective 

hardware part in a system may require a system disassembly and part replacement. 

Moreover, securing hardware is exceptionally difficult [4] due to the large number of gates 

or complexity of the design, and the manufacturing variability which results in different 

physical characteristics of the IC, even among the ICs coming from the same design.  

The manufacturing flow of Integrated Circuits (IC) is long and globally distributed which 

increases the probability of malicious modifications and loss of integrity [5]. The 

manufacturing flow of an IC is composed of ( [6] and [7]): 

1- System Specifications: High-level technical requirements indicating the expected 

capabilities of the design.  

2- Design: In the design stage, the intellectual property (IP) providers are selected, and 

then the functional blocks are acquired from the chosen IP. The acquired functional 

blocks are then integrated into the register-transfer level (RTL) design to make the 

final design. RTL is a design abstraction which describes the behavioral functionality 

of a digital circuit through functional blocks. The description of the circuit is based 

on the flow of its signals and the logical operations performed on those signals. Next 
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a gate-level netlist is generated through logic synthesis, where the RTL design is 

translated into netlists of logic gates. The final step in the design stage is producing 

the physical layout. The physical layout is composed of geometric representations of 

the circuit which will guide the manufacturing process. 

3- Manufacturing: At this stage the design is converted into wafers of pure 

semiconducting material. Afterwards, the manufacturing of ICs takes place at one or 

multiple foundries not necessarily in the same geographic area. Foundries receive 

already designed ICs, build the ICs, and finally send the manufactured ICs back to 

the foundry’s customers.  

4- Assembly and Market: The manufacturing flow ends with the packaging and then 

distribution of ICs to the several markets including the transportation sector, 

military organizations, technology companies, financial organizations, etc.  

In general, any participant in the manufacturing flow described above, can be an adversary 

who has the accessibility to insert an HTH, as shown in Figure 1.1.  At the design stage, an 

HTH can be inserted in the IP by the designer or the IPs coming from 3rd-party providers. 

Hundreds of IP vendors around the world design IP blocks which are then distributed and 

used in the manufacturing flow [8]. As a result, IP blocks cannot be assumed secure and 

free of HTHs. At the design stage also, an HTH can be inserted into the design by a 

computer-aided design (CAD) designer. CAD tools perform synthesis through software and 

hence an HTH can be injected by this software in ICs. The HTH injection could happen by 

maliciously altered logic in the CAD tool or in the scripts running the tool [9]. An HTH can 

also be inserted at the manufacturing stage by reverse engineering since, at this stage, the 

designers send their layout to an off-shore foundry in Graphic Database System version II 
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(GDSII) format [10]. The third-party foundry responsible for fabrication, may introduce an 

HTH in the GDSII.  

 
 

Figure 1.1: Vulnerabilities in Manufacturing Flow 

A stealthy HTH is defined as being inserted in the IC secretly with the aim of never being 

noticed [3]. This property of an HTH makes it more difficult to detect any alteration to the 

hardware using conventional tests. Once inserted, an HTH remains asleep (or inactive) and 

is only usually activated after long hours of field operation. An active HTH can be used for 

denial-of-service, reduction of reliability, privacy breach, compromise or leak of sensitive 

information, espionage, or alteration of the IC’s expected functionality for any other 

malicious goal [5]. For example, the first real world detection of an HTH in a military grade 

field-programmable gate array (FPGA), the Actel/Microsemi ProASIC3 chips, was in 2012 

[11]. The inserted HTH allowed an adversary to extract configuration data from the chip or 

reprogram it, access encryption keys and unencrypted configuration bitstream, modify 

low-level silicon features, or even permanently damage the device. Once an HTH is 

discovered, the only two options are to either accept that the system can be easily 

compromised or perform a physical replacement after a redesign of the silicon itself. 
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Another example of real-life HTH insertion is the National Security Agency (NSA) 

intercepting shipments of computer network devices before their arrival to the specified 

destination. NSA inserted “beacon implants” directly into the network devices [12] which 

allowed NSA to exploit the devices and survey the network. One of the infected network 

devices was used in the Syrian Telecommunication Establishment (STE) cellular network. 

As a result, NSA was able to access the call detail records containing the billing information 

from STE which revealed the identity of the callers along with their geographic locations. 

The structure of an HTH consists of two main elements: a trigger and a payload. The trigger 

represents the activation mechanism which wakes the HTH, while the payload indicates the 

effect of the HTH on the IC. HTHs can be defined using one or multiple of the following six 

categories [13]: 

1- Insertion phase: The manufacturing flow is composed of different phases, mainly 

specification stage, design stage, fabrication stage, testing stage, and assembly and 

packaging stage. One characteristic defining an HTH is the manufacturing phase at 

which it was inserted. 

2- Abstraction Level: Different HTHs can be characterized by the abstraction level at 

which they were inserted. The different abstraction levels are system level, 

development environment level, register transfer level, gate level, layout level, and 

physical level. The level of abstraction at which an HTH was inserted indicate the 

amount of control and flexibility the attacker had while performing the insertion. 

3- Trigger: HTHs can be differentiated based on the type of trigger which activates the 

HTH. There are three different types of triggers. The first type is “always on”, in this 

case the HTH is not waiting for a certain condition to occur; the HTH is awake from 
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the very beginning of the field operation. The second type is “internal”, where the 

HTH is awakened by an internal physical condition or signal of the design. The third 

type is “external”, the HTH is activated based on an external user input or 

component output. 

4- Payload: HTHs differ in the type of alteration performed on the circuit because of 

the HTH’s implementation. The different effects an HTH can have on a design are 

change of the circuit’s functionality, degradation of the design’s performance, leak of 

sensitive information handled in the circuit, or denial-of-service by halting the 

original functionality of the system. 

5- Insertion Location: Different HTHs can be characterized by the location at which 

they were inserted. The possible locations are the processor, the memory, the inputs 

or outputs, the power supply, or the clock grid. Moreover, an HTH can be distributed 

over several locations mentioned above or focused in only one location. 

6- Physical Characteristic: HTHs can be differentiated based on their physical features 

such as their distribution (focused or dispersed) or HTH size (measured in number 

of gates or percentage of area occupied by HTH compared to the entire circuit size).   
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Hardware Trojan Detection 

HTH detection can be very challenging because of the various options of types, sizes, and 

location of insertion an adversary can choose from when injecting an HTH [14]. The 

countermeasures against HTH can be classified into three categories [3]: 

1- Run-time Monitoring: This area focuses on detecting HTH after the deployment of IC 

and hence can be used for the entire lifetime of the IC. HTH which were not detected 

using the other detection methods can be noticed using run-time monitoring when 

the HTH is activated [14]. 

2- Design for Security: There are two pre-design approaches that constitute this area; 

both are usually implemented throughout the manufacturing flow before the design 

process starts. Designers have two choices; the first choice is to prevent HTH 

insertion from happening by utilizing a specific design process for security. The 

second choice is to somehow facilitate detection of any HTH which may have been 

inserted while manufacturing the ICs. 

3- HTH Detection approaches: The techniques in this field happen at test-time, after 

the fabrication stage, and can follow the destructive or the non-destructive 

approaches. Destructive approaches use reverse-engineering to examine each layer 

of the IC and validate it. Non-destructive approaches can be in one of three 

categories. The first category detects an HTH at the IP level pre-silicon (IP trust 

verification). The second category relies on directed test patterns which are applied 

to the IC to activate the hidden HTH and propagate its effect to be detected (Logic 

testing). The third category measures a side-channel parameter such as path delay 

or supply current to expose an inserted HTH (Side-channel Analysis) [3]. 
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This work focuses on the side-channel analysis technique to detect an HTH. Side-channel 

analysis happens during the post-silicon testing stage. Side-channel parameters are 

physical parameters of the design which are considered a signature to the design from 

which they are generated. It was considered that an HTH-free design, called a golden 

circuit, was available and therefore golden side-channel parameters can be measured. New 

side-channel parameters coming from a design with unknown status (HTH-infected or 

free) are then compared to the parameters of the golden implementation. Using this 

technique allows the identification of whether the circuit at hand is secure or compromised 

by an HTH. Side-channel parameters characterizing the system can be the power 

consumption or the delay of certain paths of the circuit [3]. In fact, a modification to the 

original circuit in the design or manufacturing stages is likely to present itself in the power 

consumed by the system since the HTH, when active, will consume more power than if it 

does not exist. Another indication of an HTH is the change in certain path delays of the 

circuit. This is true since the HTH is added hardware and therefore some of the signals will 

pass through this added hardware and thus will get delayed more than if the hardware did 

not exist. 

One major parameter affecting the performance of an HTH detection technique using side-

channel analysis is the signal-to-noise ratio (SNR) [3]. SNR compares the levels of the signal 

being examined to the surrounding noise. The signal being examined in this case is the HTH 

effect on a side-channel parameter, while the surrounding noise is the combination of chip-

to-chip, within-die process variations and measurement noise. The combination of the 

noise components affects the signal being examined and masks any HTH indication. As a 

result, detecting an HTH needs more than just a simple comparison between the side-
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channel parameters of a golden circuit and an unknown circuit. In fact, one of the solutions 

to this issue is to use techniques which statistically isolate the HTH influence from the 

different types of noise. 
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Literature Survey 

In this section, different HTH detection techniques will be reviewed and classified based on 

the type of data used to identify the presence or absence of an HTH. 

In [15] a detection technique was used based on packets transfer from one core to another 

in a many-core system. An HTH was assumed to be inserted at the design-time only within 

the communication transfers. The implemented HTH was internally activated based on the 

number of core-to-core transfers and carried out a denial-of-service attack when active. 

There was no mention of the size of the HTH implemented. Machine learning was used with 

the following features: source core, destination core, packet transfer path, and distance 

traversed. More precisely, real-time online learning was used. The run-time anomaly 

detection algorithm is called Modified Balanced Winnow (MBW). The machine learning 

model was trained using data from an HTH-free many-core system and then passed the 

new unknown data to be classified as HTH-infected or not. The model got updated at each 

data transfer based on feedback from the many-core system. The feedback is composed of 

core information and core behavior to incoming data packets. The model was able to get up 

to 94% detection accuracy. Also, two supervised machine learning algorithms were tested 

with the data: Support Vector Machine and K-Nearest Neighbor. Next, the results of the 3 

machine learning algorithms were compared. The conclusion was that the online learning 

algorithm performs better with an 8% increase in detection accuracy. 

In [16] an experimental analysis of power and delay SNR requirements for HTH detection 

was conducted. The goal was to carry out several statistical outlier techniques to determine 

the sensitivity of current and delay analysis for detecting HTH. Ring oscillators were used 

to represent the core logic of a chip under test, which as mentioned does not emulate actual 
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HTH scenario. The ring oscillators provided a high degree of control over the switching 

activity in the FPGAs used. Moreover, subtle delay and transient power supply anomalies 

were introduced through simple modifications to the ring oscillator logic structure. Two 

HTH scenarios were investigated. The first HTH increased the delay and power 

consumption by adding capacitive load. The second HTH increased delay but had a small 

impact on power by adding series inserted gates. There was no mention of the size of the 

different HTH implemented. A 1-D statistical analysis using the currents from the ring 

oscillators was implemented first and achieved an HTH detection sensitivity of 83%. 

Second, a similar 1-D statistical analysis using the frequencies from the ring oscillators was 

performed and achieved an HTH detection sensitivity of 78%. Next, regression analysis was 

conducted where the frequency was plotted against the current. The regression analysis 

reached an HTH detection sensitivity of 100%. A calibration technique was also proposed 

and implemented hence improving the HTH detection sensitivity by 20%. The calibration 

technique used current and frequency measurements from a calibration ring oscillator to 

cancel the process variation effects from the data used in the 1-D and regression analysis. 

The calibration ring oscillator was chosen randomly from the multiple ring oscillators. It 

was concluded that by using calibration and regression analysis of the measured current 

and delay parameters, HTH detection sensitivity can be increased by an order of 

magnitude.  

In [17] a side-channel technique was applied using segmentation and gate level 

characterization. Gate level characterization resulted in defining each gate of the IC in 

terms of its physical properties such as the leakage and switching power of the gate. A set 

of input vectors was applied to the system and a system of linear equations was formulated 



13 
 

by summing up the leakage power of each gate and considering the measurement errors. 

The linear equations had a single HTH variable which would indicate the presence of an 

HTH. Solving the system of linear equations for the HTH variable would indicate the 

presence or absence of an HTH. The presence of an HTH, whether activated or not, caused a 

systematic bias in leakage Power and hence detection of HTHs was possible by tracing the 

gate level leakage power. The technique was characterized as scalable since it required 

large circuits to be divided into small sub-circuits, hence following the divide and conquer 

method. HTH’s with size as small as 6 gates were detected.  

In [18] and [19] an HTH detection technique was implemented using multiple side-channel 

parameters simultaneously. The relation of the dynamic current of the circuit along with 

the maximum operating frequency was used to isolate HTH effect from process noise. More 

precisely, the presence of an HTH caused a variation in the dynamic current when 

compared to a golden chip, while it did not have a similar effect on the maximum frequency 

which violated the correlation between the current and the frequency. Both side-channel 

analysis and logic testing methods were integrated to detect different types and sizes of 

HTH. The work was based on the fact that the switching of an HTH contributed to the 

dynamic power of the overall system. Also, multi-power port measurements were used 

instead of limiting the power collection to only one port. A golden design was assumed to 

exist in order to extract golden data and use it as a reference. The first advantage of the 

method was that there were no modifications needed to the design being tested. The 

second advantage was that the HTH did not have to be activated in order for it to be 

detected. The method was able to detect, with no error, a 4-bit sequential HTH which 

constituted 0.03% of the circuit under test. The number of gates used in the HTH was not 
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specified. It was mentioned that the existing side-channel approaches suffered from three 

shortcomings. The first shortcoming was that existing side-channel approaches were not 

able to scale well with increasing process variations. The second shortcoming was that 

existing side-channel approaches considered only die-to-die process variations while not 

supporting local within-die variations. The third shortcoming was that existing side-

channel approaches required design modifications which incurred considerable design 

overhead and could be compromised by an adversary.  

In [20], a security-aware design scheme was implemented for better HTH detection 

sensitivity. The proposed method used reverse engineering to obtain the design’s layout 

where each standard cell was then characterized based on its sensitivity to malicious 

modifications. Next, a subset of highly sensitive standard cells on which to synthesize the 

design was selected such that the HTHs are more easily detected. Finally, the design was re-

synthesized by using the highly sensitive standard cells as replacement cells for the original 

cells. The re-synthesized design was called the security-aware design while the original 

design was called the baseline design. The one class Support Vector Machine (SVM) 

algorithm was trained to differentiate between noise and HTH effect for both security-

aware and baseline designs. It was assumed that the designer had a golden layout from 

which to extract the features for the machine learning model. The features used were the 

difference between the golden and real layout areas as well as the difference between the 

two layouts’ centroids. The HTH, composed of four malicious modifications (two additions 

and two removals of structures), was inserted in 60 security-aware chips and 60 baseline 

chips. The SVM algorithm was able to detect 16.87% more HTHs in the security-aware 

designs with very small power and area overhead compared to the detection in the 
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baseline designs. The main challenge faced was the realization that to create the security-

aware design, some cells had very few replacement alternatives since replacement could 

cause timing violations. 

In [21], stealthy malicious logic is identified using Boolean functional analysis. The 

proposed tool, Functional Analysis for Nearly-unused Circuit Identification (FANCI), 

flagged sets of wires that appeared suspicious to be code reviewed. Suspicious wires were 

rarely used and hence had a high chance of being a backdoor incorporation. More precisely, 

the degree of control which is the influence that an input had on the operation and outputs 

of a digital circuit was measured. Based on the degree of control measured, heuristics are 

used to determine whether a wire is suspicious enough to be flagged for inspection. This 

permits the discovery of backdoors inserted in the designs prior to fabrication hence the 

design can be fixed or rejected before getting to the market. The method was developed to 

be used as a first line of defense for enhancing hardware security along with standard test 

practices and runtime detection techniques. FANCI implements HTH detection at the level 

of wires and gates (RTL). The results obtained had no false negatives and low false 

positives rates, more precisely less than 10 wires per design on average were incorrectly 

flagged for inspection. 

In [22] a guided test generation for isolation and detection of HTH was implemented. The 

proposed method aimed to highlight the differences between side-channel signal 

waveforms coming from HTH-infected compared to waveforms coming from HTH-free 

circuits. The method consisted of two phases. First, the design was subdivided into smaller 

subsets and randomly generated input vectors were ran to minimize the switching in all 

subsets except for the one subset under consideration. This was done so that if the subset 
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under consideration contained an HTH, the power consumed by the HTH would then be 

significantly higher compared to the subset not containing the HTH. Therefore, this stage 

resulted in a list of subset candidates which may or may not have contained an HTH. In the 

second phase, the subsets identified in the first phase were considered and targeted with 

specific vectors to conclude whether an HTH was indeed present or not. The HTH used 

were less than 1% of the gate count of the original circuit; the exact size of the HTH was not 

specified. The proposed method was able to provide 4 to 20 times magnification in the 

circuit activity for the HTH-infected circuit compared to the HTH-free circuit.  

In [23], a temporal self-referencing approach for HTH detection was proposed. The side-

channel method was used to compare the transient current signature of a chip at multiple 

time instances. The self-comparison provided this method with the advantage of not 

needing a golden chip since the chip’s transient current is compared to itself, but at 

different time windows. More precisely, the method made use of the fact that an HTH-free 

circuit going through the same set of state transitions multiple times should have a 

constant transient current over different time instances. On the other hand, an HTH-

infected circuit would have its current varying over multiple times instances for the same 

set of state transitions. The current variation in the HTH-infected circuit would be 

explained by the uncorrelated state transitions in the HTH. The HTH used was an 8-bit 

binary counter which was triggered when the counter reached the maximum value. The 

method failed to detect an HTH which had less than two flip-flops. However, it was 

specified that such a small HTH would activate its malicious payload in 4 cycles and hence 

can be detected using another HTH detection technique such as logic testing. 
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In [24], a technique was implemented to detect HTH inserted in the chip’s layout. The 

method used the side-channel analysis technique to measure the steady state leakage 

current (IDDQ) from multiple distributed power ports. A chip averaging method was 

proposed to eliminate within-die variations and perform calibration. In fact, averaging the 

IDDQ data measured across multiple chips eliminated the random within-die variations in 

leakage current. Moreover, a statistical ellipse-based detection method was utilized to 

detect IDDQ anomalies caused by an HTH. The detection method was based on principal 

component analysis and was able to distinguish between random defects and leakage 

current anomalies by HTH. A golden design was used to collect HTH-free data. The method 

was able to detect an HTH which caused a minimum of 10 µA current variation in a 2 mm x 

2 mm chip. The HTH injected current in the original circuit, however, there was no mention 

of the HTH size. 

In [25], an HTH detection technique was developed based on Path Delay Measurements. 

The proposed method was resilient to process variation since the golden circuit used to 

extract HTH-free data was constructed using 3 uninfected dies to properly smooth 

prospective measurement errors. Most ICs used a common clock signal for synchronization 

purposes. On the rising edge of the common clock, data left a register bank and moved to 

the combinational logic. Path delay measurements were obtained by reducing the internal 

clock period of the circuit which ended up with an early sampling of the signal values 

exchanged by register banks. The method was tested on an AES encryption circuit using 

three different FPGAs. The method was able to detect small sized sequential and 

combinational HTHs. The combinational HTH interrupted normal AES operation and was 

triggered when internal signals had simultaneous occurrences of the value ‘1’. The 
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combinational HTH size was 11 slices, 0.19% of slices used in the FPGA. The sequential 

HTH performed a denial-of-service attack and was triggered when its internal counter 

reached a certain value. The sequential HTH size was 21 slices, 0.36% of slices used in the 

FPGA. Both HTHs used were inserted after the place and route step in the original layout of 

the circuit to guarantee smallest visibility. 

In [26], an analysis method of power signal was implemented for IC HTH detection. The 

side-channel analysis was used along with power simulation data from a 128-bit AES 

encryption circuit. The distance technique called Mahalanobis was used to compare test 

data with a known sample set, obtained from a golden IC, and to take into account the 

correlation of the data. The use of the Mahalanobis distance method resulted in successful 

detection although there was noise masking of the HTH in the time domain. The technique 

was able to detect an HTH which consisted of 2.72% of the total circuit area. The HTH’s size 

was equivalent to 1129 2-input NAND gates and the HTH was activated when the internal 

clock of the circuit reached a particular count. 

In [27], IC fingerprinting was used to detect HTH. Side-channel information and power 

traces were extracted from circuit simulation to construct a set of fingerprints for an IC 

family. A new set of ICs were verified using statistical analysis tests against the previously 

extracted fingerprints. The signal processing technique called Karhunen-Loeve expansion 

was used to build statistical models for the noise masking of the power data. The statistical 

models classified individual noisy power signals. The method was able to detect an HTH of 

0.01% the size of the main circuit. The HTH used was a 3-bit comparator with an 

equivalent area of 3 2-input NAND gates. One of the challenges faced is that it was critical 

that the overall behavior of the IC in both the data and control paths was captured during 
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tests. It was assumed that the IC fingerprint generation and validation step was carried out 

by a trust-worthy IC testing facility. 

In [28], an at-speed delay characterization technique was proposed utilizing the side-

channel method. The side-channel parameter used was the register-to-register path delays. 

Extracting the delays was done on the functional paths of the core circuit without affecting 

timing and functionality. Hence it was difficult for an attacker to tamper with the signature 

extraction unit added to the circuit since it had no apparent effect on the original circuit. 

The technique created a fingerprint of the circuit based on the delays measured. Normally, 

a circuit stores data, after some manipulation, in a destination register. In this method, 

negatively skewed shadow registers were added to the original circuit at the end of 

multiple combinational paths. The shadow registers also stored the same data as the 

destination register. The only difference between the shadow register and the destination 

register was that the destination register was driven by clock 1, while the shadow register 

was driven by clock 2, a negative phase shifted (negatively skewed) version of clock 1. The 

negative phase shifting in clock 2 was equivalent to triggering the shadow register before 

the destination register by a precisely controlled amount of time. The data latched by the 

shadow register was compared to that by the destination register every clock period. If the 

data was the same, the technique added a “0” to the fingerprint. If the data was different, a 

“1” was added to the fingerprint. One of the challenges faced by this method was that if a 

well-hidden HTH acted fast when triggered at runtime, it would cause a brief alteration of 

the circuit path delays and hence the effect would not appear and as a result the HTH will 

go undetected.  
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In [29], game theory and its mathematical framework were used to determine the 

effectiveness of HTH detection. The method considered the adversary and the designer as 

opposing players in a 2-person strategic game. The first player, the adversary, used a 

certain HTH while the second player, the designer, followed a specific HTH detection 

method. To play the strategic game, utility functions were derived for both players defining 

the steps taken by the players in the game. In case of the adversary, the utility function was 

the initial gain achieved if the HTH inserted was successful in its attack, times the 

probability that the HTH would both go undetected and work, minus the cost of the 

insertion based on the labor, hardware, and software used, minus the loss in case the HTH 

was detected, times the probability of that detection. The initial gain, probabilities, costs, 

and loss values were assumed to be accurately estimated by a third party and provided to 

be used in the utility function. On the other hand, the designers’ utility function was the 

initial loss suffered if the HTH was successful, minus the cost of implementing the specific 

HTH detection technique based on labor, software, and hardware used, minus the cost of a 

false labeling as HTH-infected. Also, costs and initial loss values were assumed to be 

accurately estimated by a third party and provided to be used in the utility function. The 

game was then played where the designer was trying to minimize its utility function (loss) 

while the adversary maximized its utility function (gain). The iterated elimination of 

dominated strategies (IEDS) solution concept was used to solve the game and determine 

the winning player. The method hence determined the effectiveness of a specific HTH 

detection technique against a certain HTH implementation. In fact, if the adversary won the 

game, the HTH detection used by the designer in the game would be considered not 

effective against the type of HTH used by the adversary in the game.  
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In [30], the vulnerability of circuits to HTH insertion at the behavioral level was analyzed. 

HTH insertion during the development stage was only considered. Moreover, the analysis 

focused only on insertions which either changed a statement rarely executed or carried out 

an attack through a signal which was rarely observed. The method measured a circuit’s 

susceptibility to HTH insertion based on two criteria. First, the statement’s hardness which 

provided a quantitative measure of the difficulty to execute a statement. More precisely, a 

statement with high level of hardness is rarely executed and hence its correctness cannot 

be fully proven using a limited number of tests. Second, the observability of circuit signals 

which evaluated the degree of contribution input signals had on the final value of the 

output signals.  A new metric for HTH detectability was proposed based on the two criteria 

previously mentioned. In fact, to detect an HTH, statements should be frequently executed, 

and inputs should have a noticeable effect on the outputs of a circuit. As a result, any 

malicious modification to the circuit would be detected. After determining the vulnerability 

of a circuit, a few solutions were described to increase detectability using the proposed 

method. For instance, designers can pass low observable signals to primary outputs which 

facilitates the monitoring of previously low observable signals. Moreover, extra control 

statements accessible through primary inputs could be added which would increase the 

frequency of statement execution of once rarely executed statements.  

The previously mentioned publications were classified based on the technique and the 

information used in the detection of HTH. Some of the publications fit under two of the 

categories and hence have dotted line coming from both categories. Figure 1.2 shows the 

classification tree. Also, [4] and [17] have the same authors, and [18], [19], and [23] have 

the same authors, which is indicated by the color of the boxes the publications are in. 
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Figure 1.2: HTH Detection Methods Classifications 
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2- Chapter 2: Experimental Work 

The aim of this work was to develop a method to detect an HTH inserted on an IC using 

machine learning, as presented in Figure 2.1. A machine learning algorithm was used to 

facilitate the prediction of whether a circuit was HTH-infected or HTH-free. More precisely, 

based on the power data collected from an HTH-free circuit (golden implementation), the 

machine learning algorithm was trained. The trained model was then fed new power data 

from a circuit under test and the predictions indicated whether the circuit at hand was 

HTH-infected or not. 

After literature review examination, it was concluded that power was one of the important 

modalities to be used in Hardware Trojan Detection. In fact, as [3] highlighted, a malicious 

modification or addition to a circuit during design or fabrication would cause an effect on 

the circuit's power consumption. An FPGA was used to implement the HTH-infected and 

HTH-free circuits and collect the circuits’ power traces. Indeed, the authors in [31] 

specified that designers were more frequently choosing FPGAs as the IC of choice for 

commercial and military systems. The golden circuit was implemented on the FPGA and the 

power traces were collected. Next, features were extracted from the power traces and then 

labeled. The labeled features were then fed to a logistic regression machine learning 

Figure 2.1: Project Overview 
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algorithm. In fact, based on the literature review done, Logistic Regression (LR) is the 

machine learning algorithm used mostly as a starting point when dealing with a Hardware 

Trojan Detection problem. The details of the proposed method are described in the 

following sections. 
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Apparatus and Setup 

In this work, the SAKURA-G FPGA board was used to implement HTH-infected and HTH-

free circuits and collect power traces. This board was chosen because it is a cryptographic 

FPGA which was developed for evaluating the security of cryptographic circuits against 

physical attacks [32]. The board’s specifications are specified in [33]. As shown in Figure 

2.2, there are two Spartan-6 FPGAs on the board, the LX9 serves as the controller while the 

LX75 is the main security circuit. The SAKURA-G FPGA board is an ultra-low-noise board 

and is equipped with an on-board amplifier making power analysis easier. The amplifier 

has a bandwidth of 360MHz and a gain of +20dB. Two measurement points, SMA 

connectors J1 and J2 are available to monitor power waveforms on the core voltage VCCINT 

of the main FPGA. J3, the SMA connector next to the amplifier providing the amplified 

signal of J2, was used to collect power data. J3 was chosen instead of J2 because the on-

board amplifier removed the need for an external amplification process. Usually, an 

amplification process is needed because otherwise the measured data would be relatively 

small and would not be very useful. The SAKURA-G can be configured and operated using 

Verilog-HDL code and the Xilinx ISE WebPACK design software.  

The Xilinx ISE Design Suite [34] enabled simulating multiple designs for validating circuit 

functionality. Also, the tool provided the estimated simulation power of the design along 

with information on the number and type of gates used in the circuits. Finally, the SAKURA-

G FPGA board was configured using the built-in tool from Xilinx. 
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Figure 2.2: SAKURA-G Board Functions, Top View 

The design flow adapted by the Xilinx tool is specified in [35] and shown in Figure 2.3. First, 

a design is created by building a new ISE Design Suite project and then specifying the 

source files. The source files can be HDL, netlist, schematic, intellectual property (IP), 

embedded processor, or Digital Signal Processing (DSP) modules. For this project, the 

source files will be hardware description language (HDL) files, VHDL and Verilog. Second, 

the design is synthesized by transforming the HDL source files into an architecture-specific 

design netlist. The built-in synthesis tool in Xilinx ISE Design Suite is the Xilinx Synthesis 

Technology. Third, the design constraints are specified. Design constraints include I/O pin 

and layout design requirements. Fourth, the design is implemented by transforming the 
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logical design to a physical file which is downloaded onto the target device. Fifth, the design 

implementation is analyzed using any of the various built-in tools such as the XPower 

Analyzer tool. The XPower Analyzer provides detailed power information namely dynamic 

and quiescent power values. Sixth, a programming file is generated to configure the target 

device. From a host computer, the configuration file is uploaded to the Xilinx device using 

the iMPACT tool. Finally, the designer may choose to simulate the implemented design at 

various points of the flow for testing and validation purposes. The ISim simulation tool is 

delivered with the ISE Design Suite and provides power information and signal variations 

which help verify the functionality of the design by simulation.  

 

Figure 2.3: Design Flow Steps 

To view and save the power traces of the SAKURA-G, a Tektronix TDS2022C oscilloscope 

[36] was used. More information on the power collection process using the Tektronix 

TDS2022C oscilloscope can be found in Appendix C. 
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Preliminary Work 

First, the “BasicRSA-T200” benchmark found on “Trust-Hub” [13] [37] [6] was used. The 

benchmark, which implemented the RSA encryption algorithm [38] with an HTH inserted, 

was simulated. RSA is a public-key cryptosystem where the public encryption key is 

different than the private/secret decryption key [39]. The HTH infecting the “BasicRSA-

T200” circuit is externally triggered by the plain text input to the RSA encryption algorithm. 

The HTH’s payload is to deny service. In fact, when the input plain text to the RSA 

encryption algorithm is equal to the hexadecimal value of “01fa0301”, the HTH disabled 

encoding by setting the encryption key to the value of “1”. The VHDL code of the HTH is 

presented in Figure 2.4. Based on the documentation in [13], the HTH was inserted at the 

design stage of the circuit, in the processor.  

 

Figure 2.4: HTH Code-Trigger: External Input, Payload: Disable Encoding 

The signal values obtained by simulating the infected “BasicRSA-T200” circuit (left) are 

compared to the HTH-free circuit (right) in Figure 2.5. The plain text input to the RSA 

encryption algorithm is the signal “indata”, and the cypher text output of the RSA algorithm 

is the “cypher” signal. The value of the signals can be seen in the column “Value” in Figure 

2.5. Indeed, in the HTH-infected column, when “indata” was equal to the hexadecimal value 

of “01fa0301”, the output “cypher” was equal to that exact value indicating no encryption 

taking place. Compared to the normal operation of the HTH-free circuit, the value of 



29 
 

“cypher” is the hexadecimal value of “031f3988” which is the encryption using RSA when 

“indata” is equal to “01fa0301”. 

 

Figure 2.5: Comparison of HTH-infected and HTH-free Simulation Signal Values 

In fact, the detailed report provided by the XPower Analyzer tool showed some differences 

in power values when the circuit under test was HTH-free compared to HTH-infected. 

Table 2.1 shows those differences. The on-chip power of the clocks was 0.52 mW in the 

HTH-free circuit, and then decreased to 0.51 mW in the HTH-infected circuit. This decrease 

caused the total on-chip power to behave accordingly by going from 64.51 mW in the HTH-

free circuit to 64.50 mW in the HTH-infected circuit. Similarly, the power supply’s dynamic 

current was 0.43 mA in the HTH-free circuit and then decreased to 0.42 mA in the HTH-

infected circuit. As a result, the supply source’s total current went from 30.58 mA for HTH-

free to 30.57 mA for HTH-infected. This behavior in the power values was expected since 

the HTH caused denial-of-service. When the HTH stopped the circuit from performing 

normally, less power was consumed hence explaining the decrease seen after the 

comparison. Although the simulation power values in Table 2.1 showed 1% or less in 
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differences, the small differences were enough motivation to investigate the changes that 

would occur when measuring run-time power data 

Table 2.1: Comparing Power Data to Showcase HTH Effect 

 HTH-free Circuit HTH-infected Circuit 

On-Chip Clock Power 
(mW) 

0.52 0.51 

Total On-Chip Power 64.51 64.50 
Power Supply Dynamic 

Current (mA) 
0.43 0.42 

Supply Source Total 
Current (mA) 

30.58 30.57 

The benchmarks provided on trust-hub were suitable for simulation but required extensive 

work to be transformed to synthesizable circuits to be implemented on the SAKURA-G. For 

instance, the various inputs to the benchmark were specified by the test-bench used in 

simulation. Moving the same benchmark from simulation to actual implementation on the 

FPGA would necessitate multiple changes in the design to implement some external 

generation and supply of inputs.  

As a result, Verilog source files provided by the makers of the SAKURA-G FPGA board [40] 

were used instead. These source files implemented the AES encryption algorithm with no 

HTH, this was the golden circuit in the project. The AES encryption used was a block cipher 

algorithm with block length of 128 bits [41]. Block cipher is an encryption method which 

works on the entire block of text instead of handling one bit at a time. AES uses a 

symmetric key and implements 10 rounds of processing when using 128-bit keys. 

The source files, provided by the makers of the SAKURA-G FPGA board and used in this 

project, are composed of a set of files for the main FPGA, another set of files for the control 

FPGA, and an AES encryption application to provide the needed inputs and display the 
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outputs. The first set of files are designed for the main circuit, they are Verilog-HDL source 

files implementing the AES encryption algorithm along with the interfaces needed for 

input/output communication with the controller FPGA. Figure 2.6 shows the RTL 

schematic view Xilinx provides of the circuit implemented on the main FPGA. This big 

module called “sakura_g_aes128” contains several sub-modules as shown in Figure 2.7. The 

most important module is the actual block performing the encryption which is called 

“aes_unit” and is presented in Figure 2.8. 

 

Figure 2.6: Schematic of AES Circuit on Main FPGA 
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The second set of files are designed for the control circuit, they are Verilog-HDL source files 

implementing the interfaces needed for input/output communication with the main FPGA 

along with the exchange between the control FPGA and the AES encryption application. 

Finally, the AES encryption application [42] is shown in Figure 2.9. This is the program 

responsible for providing the inputs to the AES encryption circuit and displaying the 

outputs from the SAKURA-G. The “Plaintext” field in the application is a 128-bit input to be 

encrypted by the encryption algorithm of the SAKURA-G. The “Answer” field is a 128-bit 

encryption of the plaintext by the application itself and not the FPGA. The “Cipher Text” 

field is a 128-bit encryption of the plaintext by the FPGA. The “Traces” fields indicate how 

many encryptions the user wants to be performed on the SAKURA-G, along with the 

progress number of encryption operations done at a certain point in time. The “Key” field is 

a 128-bit secret key used for the AES encryption. The value can be changed by the user by 

pressing the “Change Key” button. Finally, there is a “Start” button to launch the encryption 

operation and a “Stop” button to halt the encryption.  

 Figure 2.8: View of Module Performing AES Encryption  Figure 2.7: Internal View of AES Circuit on Main FPGA 
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Figure 2.9: SAKURA Checker AES Application 
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3- CHAPTER 3: Power Side-Channel Analysis 

The experiments started with synthesizing the AES encryption circuit, described in the 

earlier section, onto the FPGA to finally generate the programming file. More information 

on the synthesis of circuits using the SAKURA-G can be found in Appendix A. Xilinx 

provides its own software command language, Tool Command Language (Tcl), which is 

designed to complement and extend the ISE GUI. Hence, Tcl was the choice of scripting 

language to automate the synthesis of the design and upload of the bit stream file to the 

SAKURA-G. More information on the automation using Tcl can be found in Appendix B. 

Next, the SAKURA-G was connected, as shown in Figure 3.1, to the oscilloscope. A passive 

probe (1) was attached from channel 1 (2) of the oscilloscope to the trigger signal on pin 1 

(3) of the main FPGA’s user I/O pins. The ground wire of the probe was connected to the 

ground pin on the upper left side of the board (4). An SMA Male to BNC Male Coaxial Cable 

(5) is connected from port J3 (6) on the FPGA to channel 2 (7) on the oscilloscope. Finally, a 

USB flash drive was inserted into the oscilloscope’s USB slot (8). This setup was used to 

collect the power traces of the AES encryption algorithm implemented on the SAKURA-G. 

The signal coming from channel 1 of the oscilloscope was the trigger signal generated from 

pin 1 (3) of the main FPGA’s header seen in Figure 3.1. The power collection step was 

divided into two steps. The first step was performed on the golden implementation, the 

HTH-free AES circuit. The other step was performed after implementing the HTH to the 

AES algorithm; the details of HTH insertion will be discussed later.  
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Figure 3.1: Experimental Setup for Power Collection 

To collect data from the golden circuit, the AES encryption application was used. Power 

data corresponding to multiple secret keys and various plaintexts were collected for each 

secret key. For every secret key, around 1700 csv files were collected and recorded by the 

oscilloscope to the USB. Every csv file was composed of 2,500 samples representing the 

power trace from one encryption operation. Figure 3.2 shows the trace appearing on the 

oscilloscope for an encryption operation. It is important to point out the trigger signal from 

channel 1 of the oscilloscope, which starts as a baseline, then goes high at the start of the 

encryption. This observation goes along with the step of setting the oscilloscope’s trigger to 

start data collection as the signal coming from channel 1. The explanation of the waveform 

in Figure 3.2 is given in the next section titled “Data Interpretation”. 



36 
 

 
Figure 3.2: Oscilloscope Display of Power from Encryption operation 

Next, an HTH was implemented in the AES encryption circuit as shown in Figure 3.3. The 

HTH was injected in the Verilog source file of the AES unit implemented on the main FPGA, 

lines 171 to 177. The HTH is triggered when the secret key used in the encryption was 

equal to the hexadecimal value of “3E 5A 86 2B 58 B1 65 27 F3 15 F9 7C A3 0B 1E 36” (1), 

also named K4. When the HTH is active, the AES circuit performs encryption with a pre-

defined key called “new_key” (2) in the code, different than the key received as input to the 

AES circuit, called “key_in” (3) in the code. The pre-defined key value is “3F 1C 77 C5 A8 6E 

5A F1 19 A4 07 3F 51 FD AE A7”, also named K1. 
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Figure 3.3: HTH Inserted in Verilog of AES Circuit 
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The effect caused by the HTH can be seen in more details in Figure 3.4. In the AES 

encryption application, K4 was entered as secret key to be used. As a result, the HTH was 

triggered and caused the AES encryption to happen using K1 instead of K4. In fact, an 

encryption of the plaintext “16 5D 8D 39 45 F6 49 D9 5F 13 8B 8C 77 DD C8 76”, also called 

P, with K4 using an online AES tool [43] gave the output of “23 A4 AD 25 E7 75 D2 86 03 A7 

A7 C8 A3 B7 BD 17” (PxK4). While the operation PxK1 resulted in the value “89 4B E3 4C 

C0 76 B9 2B 77 D0 15 3A F0 23 EA AE”. Looking at Figure 3.4, the “Cipher text” field, which 

is the result of the encryption by the infected circuit, is displaying the PxK1 value instead of 

the PxK4 value. Moreover, the “Answer” field, which is the result of the encryption by the 

external SAKURA Checker tool, is displaying the PxK4 value. Consequently, the encryption 

result generated by the circuit as output is not correct. These observations comply with the 

Verilog code inserted in the AES unit as the HTH. 

 

Figure 3.4: HTH Effect 

The HTH hence caused denial-of-service, along with compromising the plaintext to be 

encrypted by using a pre-defined key known by the attacker. Finally, the power traces of 

the faulty circuit were collected using the same experimental setup described earlier. This 
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step concluded the power collection stage for the project as seen in Figure 3.5, and 

provided the golden power data along with infected power data.  

 

Figure 3.5: Process Flow for Data Collection Stage 
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Data Interpretation 

The data recorded by the oscilloscope was closely observed, then the points in one of the 

csv files were plotted, to obtain Figure 3.6. The plot was found to have the exact shape 

when compared to the oscilloscope display in Figure 3.2. 

 

Figure 3.6: CSV file Recorded from Oscilloscope to USB 

A repetitive pattern in the encryption power trace can be observed. More precisely, the 

shape seen in Figure 3.7 is repeated 11 times for every encryption operation. 

 

Figure 3.7: Repetitive Pattern in Power Trace 
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Therefore, some additional research was done on the theory behind power traces of an AES 

encryption circuit. It was found that the power traces obtained from an AES encryption 

circuit can identify the different stages in the AES encryption [44]. In fact, the authors 

provide Figure 3.8, which shows a power trace of a smart card chip performing AES 

encryption. The AES power trace was then divided into 10 parts corresponding to the 10 

rounds performed in the AES algorithm. 

 

Figure 3.8: AES Power Trace [44] 

Similarly, the AES power trace obtained could be divided into 11 parts as seen in Figure 3.9. 

This division will be helpful when extracting features to build the machine learning model 

in the next sections. 

 

Figure 3.9: Divided AES Power Trace 
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4- CHAPTER 4: Machine Learning in HTH Detection 

Machine learning can be defined as the field where computers are provided with the 

needed data to make an educated decision without explicitly being programmed to do so 

[45]. The task of providing the needed information is also called training. A machine 

learning algorithm is trained on a set of data called training data, then the trained model is 

evaluated by testing a new set of data against the model. Machine learning algorithms can 

be divided into two main categories, supervised learning and unsupervised learning. In 

supervised learning, the data used to train the algorithm includes the desired output value 

for the specific input. The desired output value is also known as a label. In other words, 

training data is labeled with the desired output while testing data is not and the machine 

learning algorithm is expected to predict the output for that testing data set. A supervised 

machine learning algorithm can either perform regression by predicting a continuous 

valued output, or classification by predicting a discrete valued output. Unsupervised 

learning on the other hand does not use labels but tries to find some unknown structure in 

a given data set. Figure 4.1 shows the difference between supervised and unsupervised 

learning where the points plotted are the features of the machine learning algorithm. In 

supervised learning, the training features are labeled either as blue circles or red crosses 

and hence a pattern can be extracted. The algorithm’s task after training would be to 

predict if the new testing data belongs to the blue circle or the red cross class. In contrast, 

unsupervised learning examines unlabeled features as green by the green stars. The 

machine learning algorithm after training would predict whether the new testing data 

belonged to the upper or lower class. 
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Figure 4.1: Supervised vs. Unsupervised Learning [45] 

In this work, the educated decision taken by the machine learning algorithm helped with 

HTH detection. The input data to the machine learning algorithm was a set of features 

representing the characteristics of the power traces discussed in earlier sections. Power 

features in the training data set were labeled based on the key used in the specific AES 

encryption operation performed when the data was collected. Consequently, the algorithm 

used supervised learning. The model’s output was a prediction of the key used in the 

encryption operation based on the testing power data. As a result, the machine learning 

algorithm performed classification by predicting a discrete valued output, the value of the 

encryption key used. If the model’s prediction of the encryption key was in alignment with 

the actual key, it was concluded that the circuit was HTH-free. On the other hand, if the 

prediction by the machine learning algorithm was not the key used while encrypting, it was 

decided that the circuit was HTH-infected.  
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Model Creation and Evaluation Iterations 

The final machine learning model was created by performing multiple optimization 

iterations. The initial setup utilized the logistic regression algorithm along with 4 different 

types of features, 2 labels, and 20,000 samples, also called number of examples. As 

specified in [45], an intermediate number of examples to start with was around 10,000 

samples. Consequently, the examples were divided into 50% training data and 50% testing 

data to have 10,000 samples in each data set. Moreover, it was decided to follow the same 

approach as in [46] by starting with only 4 features: the minimum, maximum, mean and 

standard deviation values of the power traces’ data points. Since the results from the initial 

setup were not acceptable, the first step in “debugging a learning algorithm” approach [45] 

was followed and the training data size was increased to compensate 67% of the total data 

set. The second step in the approach was to increase the number of features from 4 to 44. 

After that, the data was tested on different types of classifiers. Finally, more data was 

collected then a second classifier comparison was performed. 

Iteration 1: Start with Preliminary Setup 

Logistic Regression was the machine learning algorithm to start with as an initial stage 

because of its simplicity and ease to use. Logistic regression takes as input a training set 

composed of 𝑚 tuples (𝑥(i), 𝑦(i)) where 𝑚 is the number of examples used, 𝑥(i) is the ith 

vector of features, and 𝑦(i) is the label corresponding to the ith vector of features. Every 

vector of features 𝑥(i) consists of 𝑛 components where 𝑛 is the number of features used. 

Finally, every label 𝑦 belongs to a set of discrete classes {𝑦1, 𝑦2, … , 𝑦𝑙} where 𝑙 is the number 

of labels used. The labels represent the different keys used in the encryption operations. 
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68 encryption operations were done using Key 1 and an additional 68 encryptions using 

Key 2. Hence, in this iteration the ML algorithm will be trained using 2 labels (𝑙 = 2). For 

every trace obtained from an encryption operation, there were 2,500 power samples. The 4 

features were extracted for every 17 samples in every power trace obtained from one 

encryption operation. The number of samples (17) was chosen randomly. The features 

obtained were then labelled with the key used in the encryption operation. Equation (1) 

describes the details mentioned above which leads to 20,000 number of examples (𝑚 =

20,000) used in the first iteration.  

                         𝑚 = (
2,500

17
)

𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑟𝑎𝑐𝑒
 ×  68

𝑡𝑟𝑎𝑐𝑒𝑠

𝑙𝑎𝑏𝑒𝑙
 ×  2 𝑙𝑎𝑏𝑒𝑙𝑠 = 20,000 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠   (1) 

The 20,000 number of examples were divided arbitrarily into 50% training data and 50% 

testing data. The machine learning algorithm was trained using 5,000 examples for each 

label and 4 features. In other words, the input file to train the machine learning algorithm 

consisted of 10,000 rows by 5 columns of data. Initially, the RapidMiner tool [47] was used 

to train the algorithm. RapidMiner is useful for visualizing data as well as implementing 

classification tasks since logistic regression is part of the software package. Building a 

process in RapidMiner requires selecting and connecting operators. Figure 4.2 shows a 3-D 

plot of the features in the input file. The x-axis represents the labels, the y-axis represents 

the “minimum” feature and the z-axis plots the rest of the features which are the 

“maximum, mean and standard deviation” differentiated by the colors of the points plotted.  

As seen, the data points for the first label (𝑦 = 0) are distributed very similarly to the way 

the points for the second label (𝑦 = 1) are spread. This observation hinted to the 

expectation that the data would not be separable, resulting in a low prediction accuracy for 

the machine learning algorithm.  
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Figure 4.2: Plot of Features Iteration 1 

A snapshot from the tool’s process can be seen in Figure 4.3. The process started with a 

training phase and ended with a testing phase. More information on the functionality of the 

used blocks can be found in Appendix D. 
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Figure 4.3: Different Stages of Creating Model 

The results obtained in the testing stage are summarized in Table 4.1. As expected from the 

plot in Figure 4.2, the machine learning algorithm was only able to correctly predict 53% of 

the unseen data. 

Table 4.1: Prediction Results Iteration 1 

 Number of Predictions Percentage (%) 

Correct 5033 53.4 

Incorrect 4386 46.6 

Total 9419 100 

Based on the unsatisfactory results obtained, the decision was made to increase the data 

set hoping the results would improve. This decision was based on the first step in 

“debugging a learning algorithm” approach [45]. 
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Iteration 2: Use More Training Data 

Since the RapidMiner tool only allowed training data sets of 10,000 training examples 

maximum, the work was moved to the scikit-learn tool [48] [49]. Scikit-learn was used with 

20,000 examples in total, where 67% was used for training and 33% for testing. Principal 

component analysis (PCA) was used in scikit-learn to perform linear dimensionality 

reduction to project the data to a lower dimensional space, from 4-dimentionality of 4 

features to 3- dimensionality to be plotted. PCA is a statistical procedure that reduces from 

n–dimension to k-dimension by finding k vectors called “Eigen Vectors” onto which to 

project the data, while minimizing the projection error [45]. The first three Eigen vectors 

are plotted in Figure 4.4. The data points for the two labels were intertwined and would 

not be separated; therefore, the machine learning algorithm would probably not be able to 

have accurate predictions. 

 

Figure 4.4: Plot of First Three PCA Directions Iteration 2 

The logistic regression algorithm was trained and then tested, the results obtained were 

summarized in Table 4.2 and Table 4.3. More precisely, Table 4.2 presents the confusion 



49 
 

matrix which evaluates the accuracy of the classification. It is important to introduce the 

notations used in the confusion matrix: true positive(𝑡𝑝), false positive(𝑓𝑝), true 

negative(𝑡𝑛), false negative(𝑓𝑛) specific for every label 𝑥. Firstly, (𝑡𝑝) indicates data coming 

from label 𝑥 correctly classified as coming from label 𝑥. Secondly, (𝑓𝑝) indicates data 

coming from label 𝑥 incorrectly classified as coming from another label. Thirdly, (𝑡𝑛) 

indicates data coming from a label different that label 𝑥 correctly classified as not coming 

from label 𝑥. Fourthly, (𝑓𝑝) indicates data coming from a label different that label 𝑥 

incorrectly classified as coming from label 𝑥.  

Table 4.2: Confusion Matrix Iteration 2 

Test Points = 5826 Predicted: Label 0 Predicted: Label 1 Total Actual 

Actual: Label 0 (𝒕𝒏) = 2263 (𝒇𝒑) = 662 2925 

Actual: Label 1 (𝒇𝒏) = 1919 (𝒕𝒑) = 982 2901 

Total Predicted 4182 1644 5826 

To understand the values presented in Table 4.2, the main classification metrics found in 

Table 4.3, precision, recall, f1-score, and support values, were computed. According to [48], 

the precision score is the ratio  
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
 representing the ability of the classifier not to label a 

sample that is negative as positive. Keeping in mind that the maximum value for the 

precision score is 1, low values of 0.54 for label 0 and 0.6 for label 1 were obtained. Next, 

the recall is the ratio 
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
  which measures the proportion of positives that are correctly 

identified as such. Keeping in mind that the maximum value for the recall score is also 1, 

low values of 0.77 for label 0 and 0.34 for label 1 were obtained. The f1-score is the 

weighted harmonic mean measuring the classification’s overall performance while 

considering both the precision and the recall, the maximum value is 1. The low score of 

0.64 for label 0 and 0.43 for label 1 were obtained.  
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Table 4.3: Classification Report Iteration 2 

Metrics Precision Recall F1-score 

Label 0 0.54 0.77 0.64 
Label 1 0.6 0.34 0.43 

Average  0.57 0.56 0.53 
 

These results indicate that, as expected by the shape of the PCA plot, adding more data to 

the model did not solve the problem. In fact, it was suspected that the low rates were 

obtained because of the lack of tailoring to the kind of data handled when extracting the 

features. As a result, the process of feature extraction used previously was changed. 

Iteration 3: Extract More Features 

In this iteration, new features were extracted based on the shape of the power trace 

obtained after an encryption operation. In fact, as previously mentioned, a pattern can be 

seen repeating 11 times throughout the power trace of one encryption operation. 

Consequently, every power trace was divided into 11 different parts, then the minimum, 

maximum, mean and standard deviation values were extracted for every part. This resulted 

in a number of features 𝑛 = 44 along with using the same number of examples 𝑚 = 3,597 

with 2 label K1 (label 0) and K2 (label 1). 67% of the number of examples was used for 

training and 33% was used for testing. To visualize the data, PCA was used; the first three 

PCA directions or Eigen vectors are plotted in Figure 4.5. 
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Figure 4.5: First Three PCA Directions Iteration 3 

The plot shows a clear separation between the data from label 0 and the data from label 1. 

The algorithm was then trained, and the model tested on unseen testing data. The results 

obtained are summarized in Table 4.4 and Table 4.5. The confusion matrix is presented in 

Table 4.4, 583 out of 588 were correct predictions for label 0 and 594 out of 600 were 

correct predictions for label 1. These results present a huge improvement compared to the 

scores of the previous iteration. 

Table 4.4: Confusion Matrix Iteration 3 

Test Points = 1188 Predicted: Label 0 Predicted: Label 1 Total Actual 

Actual: Label 0 (𝒕𝒏) = 583 (𝒇𝒑) = 5 588 

Actual: Label 1 (𝒇𝒏) = 6 (𝒕𝒑) = 594 600 

Total Predicted 589 599 1188 

The precision, recall, f1-score, and support values were also computed in Table 4.5. For 

both labels, all the scores are 0.99 out of 1 which is very satisfactory and as expected after 

looking at the PCA plot. 

Table 4.5: Classification Report Iteration 3 

Metrics Precision Recall F1-score Support 

Label 0 0.99 0.99 0.99 588 
Label 1 0.99 0.99 0.99 600 

Average  0.99 0.99 0.99 Total = 1188 
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Finally, a 10-fold cross-validation was performed for further validation of the scores 

obtained [50]. The entire sample of examples was randomly partitioned into 10 equal size 

subsamples. Of the 10 subsamples, 9 were used as training data and 1 was used for testing. 

The cross-validation process was then repeated 10 times, equal to the number of folds 

specified, with each of the 10 subsamples used exactly once as the validation data. The 10 

results from the folds were averaged. The average came out to be equal to 0.99 as shown in 

Table 4.6. The advantage of this method is that all the data points are used for both training 

and validation insuring that the scores obtained don’t depend on the set used in training 

and testing but instead, reflect the model’s functionality. This score proves that the model’s 

performance is good.  

Table 4.6: 10-Fold Cross-Validation Results 

Fold 1 2 3 4 5 6 7 8 9 10 Average 

Score 0.99 0.99 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.98 0.99 

The next step was to test different ML algorithms other than logistic regression on the 

same data. 

Iteration 4: Test Different Classifiers 

Scikit-learn was used to compare the performance of logistic regression against nine 

different classifiers namely "K-Nearest Neighbors (KNN)", "Linear Support Vector Machine 

(SVM)", "Radial Basis Function (RBF) SVM", "Decision Tree", "Random Forest", "Neural 

Network", "AdaBoost", "Gaussian Naive Bayes (GaussianNB)", and "Quadratic Discriminant 

Analysis (QDA)". The results obtained for every algorithm are summarized in Table 4.7. 

1- K-Nearest Neighbors (KNN): This algorithm predicts the label of a new data sample 

based on a predefined number (k) of training samples closest in distance to that 
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new sample. A 10-fold cross-validation average score of 0.985 and an f1-score of 

0.98 were obtained for the K-Nearest Neighbors algorithm. 

2- Support Vector Machine (SVM): This algorithm outputs, after training, an optimal 

divider which separates the different training data points based on their labels. This 

divider, also called decision boundary, is used when predicting the label of new 

examples. The distance between the decision boundary and the closest training 

example is called the margin within SVM’s theory [45]. Based on that, SVM’s goal is 

to produce the optimal separating decision boundary while maximizing the margin.  

a. The linear SVM produces a linear decision boundary. The results achieved 

were a 10-fold cross-validation average score of 0.995 and an f1-score of 

1.00, which is equal to the maximum score using the Linear SVM algorithm. 

b. The RBF SVM produces a non-linear decision boundary. RBF SVM had the 

lowest scores compared to the other nine classifiers: 0.510 for 10-fold cross-

validation average and 0.33 f1-score average. 

3- Decision Tree: This algorithm creates a model by learning simple decision rules 

inferred from the training data features [48]. A 10-fold cross-validation average 

score of 0.957 and an f1-score average of 0.97 were obtained. 

4- Random Forest: This algorithm fits multiple decision tree classifiers on sub-sets of 

the training data. Then, averaging is used to improve the predictive accuracy of the 

final model [48]. A cross-validation score of 0.943 and an f1-score of 0.94 were 

obtained. 

5- Neural Network: The multilayer perceptron (MLP) algorithm was used. It is an 

artificial neural network model that maps sets of input data onto a set of 
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appropriate outputs [51]. MLP is a feed-forward algorithm meaning the information 

flows only in the forward direction, from input neurons to output neurons. A cross-

validation value of 0.994 and an f1-score of 0.99 were obtained for the MLP Neural 

Network algorithm. 

6- AdaBoost: This classifier has two stages. First the algorithm fits a classifier on the 

original training dataset. The second phase is to fit additional copies of the classifier 

on the same training dataset after adjusting the weights of incorrectly classified 

instances. As a result, subsequent classifiers focus more on difficult instances 

because of the weight adjustments previously performed [48]. A cross-validation 

value of 0.993 and an f1-score of 1.00, which is equal to the maximum score, were 

obtained. 

7- Gaussian Naive Bayes (GaussianNB): This algorithm assumes that the likelihood of 

the features’ occurrence follows the Gaussian distribution. GaussionNB then applies 

the Bayes’ theorem with the “naive” assumption that every pair of features are 

independent [51]. A cross-validation value of 0.987 and an f1-score of 0.99 were 

obtained for the GaussianNB classifier.  

8- Quadratic Discriminant Analysis (QDA): This algorithm is a type of Bayesian 

classifier which tries to minimize the probability of misclassification [52]. It has a 

quadratic decision boundary which is generated by fitting a Gaussian density to 

each class of data [48]. A cross-validation value of 0.996, which is the highest 

compared to all other nine classifiers, and an f1-score of 0.99 were obtained. 

  



55 
 

Table 4.7: Classifier Comparison Results Iteration 4 

 10-Fold Cross-Validation 
Average Score 

F1-score Average 

Logistic Regression 0.993 0.99 
KNN 0.985 0.98 

Linear SVM 0.995 1.00 
RBF SVM 0.510 0.33 

Decision Tree 0.957 0.97 
Random Forest 0.943 0.94 
Neural Network 0.994 0.99 

AdaBoost 0.993 1.00 
GaussianNB 0.987 0.99 

QDA 0.996 0.99 

The classifier comparison inferred that, on one hand using “QDA” gives the best 10-fold 

cross-validation average score of 0.996. On the other hand, the “Linear SVM” or “AdaBoost” 

classifiers result in the highest average of f1-score equal to the maximum possible score of 

1.00. The decision was to continue work with the logistic regression algorithm because the 

scores obtained (0.993 cross-validation and 0.99 f1-score) are very close to the best values 

acquired from the other classifiers. Moreover, the logistic regression algorithm had a 

significantly low computation time compared to most of the other classifiers. The next step 

was to consider more than two labels, in other words, consider power data from 

encryption operations using four keys instead of just two keys.  

Iteration 5: Consider More Labels 

Power data from encryption operations using 4 different keys resulting in 4 different labels 

were considered for the machine learning algorithm. Consequently, the parameters were 

number of examples (𝑚 = 7,292), number of features ( 𝑛 = 44), and number of different 

labels (𝑙 = 4). Figure 4.6 shows the plot of the first PCA directions for the new dataset with 

four labels. Good prediction results were expected from this iteration since data separation 

is still observable in Figure 4.6 even after doubling the number of labels. 
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Figure 4.6: First Three PCA Directions Iteration 5 

The logistic regression algorithm was trained with the four-label data, the model was 

tested on new data, and finally cross-validation was performed. The results obtained can be 

found in Table 4.8. The confusion matrix compares the predictions on the test data to their 

actual labels. The diagonal of the confusion matrix represents the correct predictions. Next, 

the f1-score for every label was computed: it was 0.94 for label 0 and label 2, 0.91 for label 

1, and 0.97 for label 3. Moreover, the average f1-score was 0.94. Finally, a 10-fold cross-

validation was performed and 10 scores were obtained and then averaged to get a value of 

0.952. These results are high and approach the maximum possible value of 1.00, hence they 

are satisfactory for this proof of concept project. 
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Table 4.8: Classification Results Iteration 5 

  
Predicted 

 

  
Label 0 Label 1 Label 2 Label 3 

 

Actual 

Label 0 177 9 3 0 
 

Label 1 7 169 4 6 
 

Label 2 3 7 166 4 
 

Label 3 0 0 1 174 
 

 
F1-score 0.94 0.91 0.94 0.97 Average = 0.94 

 
10-Fold Cross-Validation Average Score 0.952 

 
The final iteration was performed to compare the performance of logistic regression to 

nine other classifiers while having multi-labels instead of just two. 

Iteration 6: Final Test of Classifiers 

The final step was to compare the performance of logistic regression, with the four-label 

data, when using nine different classifiers: "KNN", "Linear SVM", "RBF SVM", "Decision 

Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes", "QDA". The results of the 

comparison are summarized in Table 4.9. As observed, logistic regression is the classifier 

with the second highest 10-fold cross-validation average score of 0.952 and third highest 

f1-average score of 0.94. The highest results (validation of 0.963 and f1-score of 0.97) are 

obtained by using neural networks. Consequently, logistic regression was chosen as the 

final machine learning algorithm because it reached the wanted results. 
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Table 4.9: Classier Comparison Results Iteration 6 

 10-Fold Cross-Validation 
Average Score 

F1-score Average 

Logistic Regression 0.952 0.94 
KNN 0.925 0.92 

Linear SVM 0.951 0.95 
RBF SVM 0.671 0.64 

Decision Tree 0.900 0.90 
Random Forest 0.868 0.86 
Neural Network 0.963 0.97 

AdaBoost 0.646 0.54 
GaussianNB 0.712 0.60 

QDA 0.943 0.94 
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Analysis of Final Model 

To evaluate the final model, learning curves were plotted along with the Receiver 

Operating Characteristic (ROC) metrics. The learning curve in Figure 4.7 compares the 

model’s performance on training and testing data over a varying number of examples. 

Theoretically, the model is said to have learned as much as it could when the training error 

(bias) and testing error (variance) are at a low value [45]. The maximum learning 

happened since the error values are around 0.05 out of 1. Consequently, this model had a 

low training error while being able to generalize on new data (low testing error).  

 

Figure 4.7: Learning Curve 

Next, the train scores and test scores were plotted while varying the number of features in 

Figure 4.8. It can be concluded that the best scores (around 0.95) are obtained when using 

all 44 features. 
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Figure 4.8: Varying number of Features 

Finally, the Receiver Operating Characteristic (ROC) curve were plotted in Figure 4.9. The 

ROC curves display the true positive rate on the Y axis, and the false positive rate on the X 

axis while varying the discrimination threshold. A classifier usually outputs the probability 

that an input belongs to a specific class. If the probability for the input at a specific class 𝑥 is 

higher than a certain discrimination threshold, the classifier predicts that the input belongs 

to that class 𝑥. While plotting the ROC curve, the discrimination threshold’s value is 

changed, and true and false positive rates are computed for every threshold value. The top 

left corner of the plot is the “ideal” point, having a false positive rate of zero, and a true 

positive rate of one. In other words, a larger area under the curve (AUC) is usually better 

[48]. The “steepness” of ROC curves is also important since it is ideal to maximize the true 

positive rate while minimizing the false positive rate. The plot in Figure 4.9 has an AUC of 

0.99 for label 0, 0.98 for labels 1 and 2, and 1.00, which is the maximum value, for label 3. 

Hence the proposed model has an excellent performance. 
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Figure 4.9: ROC Curves 

The final test performed on this model was using HTH-infected power data; presented in 

the following section.  
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Model Prediction on HTH Data 

To conclude this work, the model trained on golden (HTH-free) power data was used to 

test power data coming from the HTH-infected circuit. The data from the HTH-infected 

circuit was composed of 21 examples in total collected from encryption operations using 

K1, K2, K3, K4, and labeled 0, 1, 2, 3 respectively. The prediction of keys obtained from the 

model were compared to the actual keys used in the AES circuit as shown in Table 4.10. 

The model was only able to correctly label 19% of the examples from the HTH-infected 

circuit. More precisely, 75% of the data coming from an encryption using K4 was 

incorrectly labeled as coming from K1. The incorrect prediction is consistent with the 

implementation of the HTH described previously, where the HTH was triggered when the 

encryption operation used K4 and the effect was to use K1 instead. The model was able to 

detect this change of keys, hence indicating the presence of the triggered HTH. In addition 

to that, even when the HTH was not triggered (when using K1, K2, and K3) the model 

incorrectly predicted 81% of the labels. The incorrect predictions by the model allowed to 

detect the presence of the HTH even when it was not triggered. The incorrect predictions 

can be explained by the differences in power the HTH produced when constantly checking 

if the trigger was satisfied or not. 
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Table 4.10: HTH Prediction Results 

Actual Label Predicted label Result Probability of prediction 

0 3 FALSE 0.605 

0 0 TRUE 0.626 

0 0 TRUE 0.815 

0 3 FALSE 0.647 

0 3 FALSE 0.969 

1 3 FALSE 0.505 

1 2 FALSE 0.361 

1 3 FALSE 0.506 

1 2 FALSE 0.855 

1 2 FALSE 0.682 

1 2 FALSE 0.999 

2 3 FALSE 0.676 

2 3 FALSE 0.545 

2 2 TRUE 0.903 

2 3 FALSE 0.532 

2 3 FALSE 0.481 

3 3 TRUE 0.901 

3 0 FALSE 0.926 

3 0 FALSE 0.785 

3 0 FALSE 0.629 

3 1 FALSE 0.564 
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5- CHAPTER 5: Summary and Future Work 

A side-channel power analysis technique using machine learning was presented for HTH 

detection. The approach used the power traces from a golden implementation of the AES 

encryption algorithm on an FPGA to train a logistic regression model. The obtained model 

was then tested on new power data and was able to make correct predictions with a 95% 

accuracy. Next, an HTH (of a few gates) was implemented in the AES circuit which was 

triggered when K4 was used in the encryption and its effect was denial-of-service along 

with breach of plaintext secrecy. The power data from the HTH-infected circuit were 

collected and tested on the trained logistic regression model. The predictions made by the 

model allowed the detection of the HTH even when it was not triggered. In fact, 81% of the 

HTH-infected data was detected as flawed by the logistic regression model. This work was 

a proof of concept that verified that machine learning along with side-channel power data 

provided enough information for HTH detection. The work can be developed further to 

include more features namely in the frequency domain. Also, more keys could be 

considered to emulate real life encryption situations. Moreover, different types and sizes of 

HTH could be implemented then tested to figure out the threshold at which the trained 

model stops being able to detect an HTH.  

Finally, an initial phase can be added to the mainstream manufacturing flow as shown in 

Figure 5.1. This “motivation” stage should be added before the specification stage and 

hence start the flow. This additional step would take into consideration the strategies and 

incentives of the different key players in the manufacturing flow and hence complete the 

picture. The “motivation” phase would act as a defensive stage where the IC designer takes 

into consideration malicious incentives of an adversary before starting the process. As a 



65 
 

result, the designer would have an advantage over the adversary instead of waiting for an 

attack to then start the recovery and detection process. 

 

Figure 5.1: Additional "Motivation" Stage to Mainstream Manufacturing Flow 

This idea was inspired by [29] where the author took into consideration the strategies and 

incentives of the adversary and the designer using game theory. 

This additional step would mean that the designer will take into consideration what 

information is critical and would interest an adversary. The mainstream chip production 

would then start while having these malicious incentives in mind. As a result, IC design 

happens in a defensive manner as opposed to waiting for an attack to start the recovery 

and detection process. As the authors in [4] specify, designers make the first and last move 

in the manufacturing process which gives them an advantage over adversaries.  
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Appendix A: Synthesizing Circuits on SAKURA-G 

To start with synthesizing a “counter” circuit on the SAKURA-G FPGA, the following are the 

steps to perform [53]. First a Xilinx project was created, then a VHDL source file was added. 

In the source file, VHDL code was written for a “counter” application. The code lit up the 

FPGA’s LEDs based on the internal counter values, and the counter would reset when a 

certain push button was pressed. Second, a constraints file was created to map the LED and 

pushbutton variables used in the VHDL code to the actual hardware components on the 

FPGA. The pin numbers were obtained from [40].Third, the counter circuit was synthesized 

into a bit stream configuration file in the Xilinx tool.  

To upload the bit-stream file to the FPGA using the iMPACT tool embedded within Xilinx, a 

USB cable is needed from the connecter CN6 on SAKURA-G to the PC, and a configuration 

cable to the JTAG connector CN2 for the main FPGA (if needed the controller’s connector 

was CN4) as shown in Figure 2.2. Finally, the iMPACT tool was used to assign the bit stream 

programming file as the FPGA’s configuration file, and finally program the FPGA. As a 

result, the LEDs started flashing giving the expected output of an incrementing counter. 

Also, the reset push button would reset the counter value, when pressed, and hence was 

functioning correctly.  
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Appendix B: Tcl Script for Automation of Synthesis and Implementation 

Xilinx ISE is an EDA tool which can be controlled using the Tool Command Language (Tcl) 

and comes with a customized Tcl distribution [54]. After researching the different scripting 

language options, it was concluded that Tcl was an easy to use scripting language and an 

industry standard popular in the electronic design automation (EDA) industry [55]. As a 

result, a Tcl script was written to automate the creation of a configuration file for the FPGA 

from source and constraint files and then the upload of the generated bit stream file to the 

SAKURA-G board [56]. The script created a Xilinx project, set its properties, then 

synthesized, translated, mapped, placed and routed, and implemented the design. As the 

last step, the code which uploaded the configuration file to the FPGA using iMPACT [57] 

was integrated with the Tcl file. Consequently, the synthesis and implementation of any 

circuit of the FPGA only required the use of the “xtclsh” command in the ISE Design Suite 

Command Prompt, while specifying the name of the Tcl file. The “xtclsh” command starts 

the Tcl shell in Xilinx ISE [54]. 
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Appendix C: Power Collection from Tektronix TDS2022C Oscilloscope 

The Tektronix TDS2022C oscilloscope is a digital real-time sampling architecture which 

can accurately see small signal details [58]. The oscilloscope is packed with USB 

connectivity, 16 automated measurements, limit testing, and a built-in help menu. To 

collect power data using a Tektronix TDS2022C oscilloscope, a USB memory device is 

needed. The oscilloscope’s USB host port on the front panel enabled the saving of power 

waveforms in the memory device. The built-in Data Logging feature was used to set up the 

oscilloscope and have it save user-specified triggered waveforms to the USB. The data 

recorded on the USB are saved in a CSV file which contains a maximum of 2,500 samples.  
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Appendix D: RapidMiner Blocks 

RapidMiner is a data science platform which provides automated machine learning to 

accelerate building predictive models [47]. To build training and testing stages using the 

logistic regression algorithm, different blocks need to be used in RapidMiner. Every block 

has a specific functionality. In the training stage, the “Retrieve” operator was used to access 

the stored input training file of features. The “Set Role” operator was to set the role of the 

fifth column in the input file of features to be the labels’ column. Finally, the “Logistic 

Regression” operator was the machine learning algorithm. After training, the testing stage 

included another “Retrieve” operator to access the testing file of features in the repository 

and load it into the process. The “Apply Model” operator was used to test the already 

trained model on another data set and get a prediction on unseen data.  




