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Fluctuating hydrodynamic methods for fluid-structure interactions

in confined channel geometries∗
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Abstract We develop computational methods for the study of fluid-structure in-
teractions subject to thermal fluctuations when confined within channels with slit-like
geometry. The methods take into account the hydrodynamic coupling and diffusivity of
microstructures when influenced by their proximity to no-slip walls. We develop stochas-
tic numerical methods subject to no-slip boundary conditions using a staggered finite
volume discretization. We introduce techniques for discretizing stochastic systems in a
manner that ensures results consistent with statistical mechanics. We show how an exact
fluctuation-dissipation condition can be used for this purpose to discretize the stochastic
driving fields and combined with an exact projection method to enforce incompressibil-
ity. We demonstrate our computational methods by investigating how the proximity of
ellipsoidal colloids to the channel wall affects their active hydrodynamic responses and
passive diffusivity. We also study for a large number of interacting particles collective
drift-diffusion dynamics and associated correlation functions. We expect the introduced
stochastic computational methods to be broadly applicable to applications in which con-
finement effects play an important role in the dynamics of microstructures subject to
hydrodynamic coupling and thermal fluctuations.

Key words fluctuating hydrodynamics, immersed boundary method, stochastic
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1 Introduction

Hydrodynamic coupling and collective diffusivity can be significantly augmented by the
proximity of microstructures to a surface. This is often relevant to transport phenomena in
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many applications, such as the electrophoresis of macromolecules and colloids in capillaries[1–6],
processing of emulsions and polymers in microfluidic devices[7–11], or the behaviors of active
suspensions such as swimming microorganisms near surfaces[12–13]. We develop stochastic com-
putational methods to capture confinement effects of microstructures within channel geome-
tries with no-slip walls. Our approach is based on the stochastic Eulerian-Lagrangian method
(SELM) which provides tractable ways to incorporate thermal fluctuations into approximate
descriptions of the hydrodynamic coupling between microstructures[14]. In the SELM, fluctuat-
ing hydrodynamic equations similar to those introduced by Landau and Lifshitz[15] are coupled
and exchange momentum with microstructure conservation equations. The SELM framework
provides criteria to ensure that the continuum stochastic description and related stochastic
discretizations yield results consistent with statistical mechanics[14]. Related computational
methods for fluctuating hydrodynamics have also been introduced in Refs. [16]–[20].

We present the SELM approach for the channel geometry in Section 2. We develop stochastic
numerical methods using a staggered finite volume discretization for the fluid velocity and pres-
sure in Subsection 3.1 and Appendix A. To obtain a consistent discretization of the stochastic
driving fields[14,16], we impose an exact fluctuation-dissipation balance on our stochastic numer-
ical methods taking into account the augmented dissipative properties of the discrete operators
relative to their continuum differential counterparts in Subsection 3.1. We show that our nu-
merical fluctuation-dissipation balance principle combined with an exact projection method for
the incompressibility is sufficient to ensure results consistent with statistical mechanics in Sub-
section 3.2. In practice, a significant challenge is to generate efficiently the stochastic driving
fields with the required covariance structure obtained from the fluctuation-dissipation balance
condition. We show how a method with the cost O(N log(N)) can be developed for our dis-
cretization based on fast Fourier transforms (FFTs) to generate efficiently the driving fields
in the presence of the no-slip walls in Section 3.3. We validate the computational methods in
Section 4 by performing studies for the stochastic field generation in Subsection 4.1 and for the
Brownian motion of a particle diffusing in a harmonic potential in Subsection 4.2. As a demon-
stration of our computational methods, we consider ellipsoidal particles within a channel and
investigate the effects of confinement on both active hydrodynamic responses and passive diffu-
sivity in Section 5. We first compare our computational model of ellipsoidal particles with those
of analytic results for the translational and rotational mobilities in Subsection 5.1. We then
investigate how the proximity of a particle to a wall within the channel affects the mobility of
the ellipsoidal colloids in response to active forces or torques in Subsection 5.2. We then demon-
strate through stochastic simulations that our fluctuating hydrodynamic methods capture the
role of proximity to the no-slip walls as manifested in the empirical diffusivity of particles. We
show that our stochastic methods yield diffusivities in close agreement in accordance with the
Stokes-Einstein relations with the predictions from the active mobility studies in Subsection 5.4.
We then make comparisons with conventional Langevin dynamics in Subsection 5.5. We study
the collective dynamics of a large number of colloidal particles within the channel and their
density relaxations. We find that our fluctuating hydrodynamics approach yields results having
significant differences with simulations performed with conventional Langevin dynamics that
neglects the hydrodynamic coupling. We conclude by investigating these differences by con-
sidering for a large number of interacting particles their collective drift-diffusion dynamics and
associated correlation functions. Overall, we expect our introduced stochastic computational
methods to be broadly applicable to problems involving confinement effects of microstructures
subject to hydrodynamic coupling and thermal fluctuations.

2 Fluid-structure interactions subject to thermal fluctuations

Our description of the fluid-structure interactions subject to thermal fluctuations is based
on the SELM[14]. In the SELM, the microstructures exchange momentum with a fluctuating
fluid to account simultaneously for hydrodynamic coupling and thermal fluctuations. The
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SELM provides a way to incorporate thermal fluctuations into the widely used approaches for
approximating the fluid-structure interactions[14]. We extend the SELM approach to account
for no-slip walls when the microstructures and fluid are confined within a channel geometry.
For the microstructure dynamics, we use

dX

dt
= v, (1)

m
dv

dt
= −Υ(v − Γu) −∇XΦ[X] + Fthm. (2)

These are coupled to the incompressible fluctuating hydrodynamic equations,

ρ
∂u

∂t
= µ∆u −∇p + Λ[Υ(v − Γu)] + fthm, (3)

∇ · u = 0. (4)

We consider these on the domain Ω = [0, Lx]× [0, Ly]× [0, Lz] subject to the no-slip boundary
condition on z = 0 and z = Lz,





u|x=0 = u|x=Lx
,

u|y=0 = u|y=Ly
,

u|z=0 = u|z=Lz
= 0.

(5)

X denotes the collective vector of all of the degrees of freedom of the microstructure, v is the
microstructure velocity, and m is the microstructure excess mass[14,21]. The fluid velocity is
denoted by u, the fluid density is denoted by ρ, and the dynamic viscosity is denoted by µ.
The pressure acts as a Lagrange multiplier to enforce the incompressibility constraint given in
Eq. (4).

The operators Γ and Λ serve to couple the microstructure and fluid dynamics. The Γ oper-
ator serves to provide a local reference velocity from the fluid against which the microstructure
velocity is compared. The term −Υ(v−Γu) acts as an effective drag force on the microstructure
when its velocity differs from that of the surrounding fluid. Υ is assumed to be a positive-definite
operator. The Λ operator is introduced to account for the drag of a moving particle’s force
equal-and-opposite effect on the fluid. The Λ operator converts a microstructure force into a
corresponding force density in the fluid equations in Eq. (3). A particularly important property
to obtain consistent results in the mechanics is that the coupling operators satisfy an adjoint
condition Λ = ΓT[14,21–22].

To account for thermal fluctuations, we let Fthm and fthm be Gaussian random fields that
are δ-correlated in time and have zero mean[23–24]. We determine the spatial covariance using
the fluctuation-dissipation principle of statistical mechanics[14,25],

〈fthm(s)fT
thm(t)〉 = −(2kBT )(∆ − ΛΥΓ)δ(t − s), (6)

〈Fthm(s)F T
thm(t)〉 = (2kBT )Υδ(t − s), (7)

〈fthm(s)F T
thm(t)〉 = −(2kBT )ΛΥδ(t− s). (8)

The adjoint condition Λ = ΓT has been shown to play an important role when introducing the
stochastic driving fields[14]. Throughout our discussion, our stochastic differential equations
should be given the Itô interpretation in stochastic calculus[23–24].

A widely used approximation to obtain a tractable description of the fluid-structure interac-
tions is the immersed boundary method[22]. This corresponds to the specific choice of coupling
operators,

Γu =

∫

Ω

η(y − X(t))u(y, t)dy, (9)

ΛF = η(x − X(t))F . (10)
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The kernel function η(z) is chosen to be the Peskin δ-function developed in Ref. [22]. The
Peskin δ-function has important numerical properties that ensure a good approximation that
there is the translational invariance of the coupling despite the breaking of this symmetry by the
discretization lattice of the fluid[16,22,26]. A smooth kernel that integrates to one and vanishes
outside a finite volume (finite support) is chosen instead of a Dirac δ-function to ensure a model
in which the mobility of even individual point particles has a finite effective hydrodynamic radius
within the fluid[16]. For the confined channel geometry and any particle near the boundary,
the kernel function should be normalized over the part of the spatial domain that is within the
channel. Since other choices for the fluid-structure coupling can also be useful, we only make
use of the generic properties of Γ, Λ throughout the mathematical discussions. For coupling
the fluid and microstructure, we use the Stokes drag,

Υ = 6πµRI, (11)

where R is a length-scale which we take to be comparable to the support of the kernel function
η(x). I is the identity operator. Provided that Υ is sufficiently large, the precise value does
not play a particularly central role in the dynamics[14,21].

3 Semidiscretization: staggered finite volume method

We discretize the system using a finite volume approximation on a staggered grid for the
velocity and pressure. The velocity components are represented at the cell faces and the pres-
sure at the cell centers (see Fig. 1). A particular advantage of the staggered grid discretization
is that the mass transport can be modeled naturally between the cells using fluxes based on the
velocity at the cell faces. This is also useful in approximating the divergence-free incompress-
ibility constraint since it arises in the continuum fluid mechanics from the continuity equations
and the requirement that a uniform mass density remains constant under the fluid flow. Using
this interpretation in the finite volume setting yields a constraint on the discrete velocity field
expressed in terms of a discrete divergence operator which can be imposed exactly using the
cell centered pressure and its discrete gradient. We approximate a finite volume formulation
of the system to derive a finite difference method with a set of discrete operators playing roles

-

−     

−

     

Fig. 1 Channel geometry and staggered finite volume discretization. The fluctuating hydrodynamic
equations are approximated using a staggered finite volume discretization. The velocity is
represented on the cell faces and the pressure is represented at the cell centers. An important
feature of the discretization is the ability to approximate the incompressibility constraint using
an exact projection method (color online)
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very similar to their continuum differential counterparts. We shall show that, in the stochastic
setting, these features have important implications for the statistical mechanics of our stochastic
numerical methods. Related finite volume schemes for fluctuating hydrodynamics have been
introduced[16–17,19].

We use for our discretization a computational domain decomposed into Nx × Ny × Nz cells
indexed by m = (i, j, k). We decompose the fluid velocity u = (u(1), u(2), u(3)) = (u, v, w) into
its Cartesian components at each cell face. We index the fluid velocity in the x-direction by
half indices ui±1/2,j,k and similarly for the other directions. The pressure p is defined at the cell
centers and indexed by (i, j, k) as pi,j,k. A notable feature of the staggered grid discretization
is that only one of the components of the velocity field is stored at each face center. This is
the minimal information required to compute a well-defined divergence operator on the fluid
velocity. This means that, for a mesh cell, the x-faces only store the x-component of the
fluid velocity, the y-faces only store the y-component of the fluid velocity, and the z-faces only
store the z-component of the fluid velocity. The no-slip boundary conditions are imposed by
requiring for mesh cells bordering the wall that the z-faces have the zero fluid velocity for
the component wi,j,−1/2 = wi,j,Nz−1/2 = 0. The no-slip boundary conditions are also enforced
through the definition of the discrete operators which are truncated to have zero weights for any
values involving points outside the domain. This has the same effect as setting all the velocity
components to be zero for any points outside the channel domain. The boundaries in the x-
direction and y-direction are treated as periodic with the condition on velocity components
ui,j,−1/2 = ui,j,Nz+1/2, vi,j,−1/2 = vi,j,Ny+1/2. To simplify the notation, we shall often use the
vector-index notation uI , pI with I = (i, j, k). We let Ωc denote the collection of cell indices
within the interior of the domain and let ∂Ωc denote the cell index on the boundary. Similarly,
we let Ωf denote the collection of face index within the interior of the domain and let ∂Ωf

denote the index on the boundary.
We use the finite volume interpretation to define the discrete divergence operator D by

(D · u)m =
1

∆x

3∑

d=1

(
u

(d)

m+ 1

2
ed

− u
(d)

m− 1

2
ed

)
, (12)

where ed is the standard basis vector in the d-direction. We define the discrete gradient operator
G using the negative adjoint of the discrete divergence operator G = −DT which yields

(Gp)
m± 1

2
ed

= ± 1

∆x

(
pm±ed

− pm

)
. (13)

We define the face centered Laplacian Lf as

(Lfu)
m± 1

2
ed

=
1

∆x2

3∑

a=1

(
u

m± 1

2
ed+ea

− 2u
m± 1

2
ed

+ u
m± 1

2
ed−ea

)
. (14)

We define a cell centered Laplacian Lc using the discrete divergence and gradient operators,

(Lcp)m = (D · Gp)m =
1

∆x2

3∑

d=1

(
p

m+ 1

2
ed

− 2pm + p
m− 1

2
ed

)
. (15)

We use our discrete operators to approximate Eqs. (1)–(4) to obtain the semidiscretization

ρ
∂u

∂t
= µLfu + Λ(Υ(v − Γu)) − Gp + fthm, (16)

D · u = 0, (17)
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m
dv

dt
= −Υ(v − Γu) −∇XΦ[X ] + Fthm, (18)

dX

dt
= v. (19)

These are subject to the boundary conditions

u|x=0 = u|x=Lx
, (20)

u|y=0 = u|y=Ly
, (21)

u|z=0 = u|z=Lz
= 0, (22)

(Gp)m · n = 0, m ∈ ∂Ωf . (23)

Using the finite volume interpretation of our discretized system, we associate the energy

E(u, v, X) =
∑

m

1

2
ρ|um|2∆x3

m
+

1

2
m|v|2 + Φ(X), (24)

where ∆x3
m

denotes the volume of the cell with the index m. We integrate Eqs. (16)–(19)
numerically in the time using the Euler-Maruyama method[27].

An important consideration for the semidiscretized system is that the discrete operators
have different dissipative properties from their continuum differential counterparts. It becomes
important in the discrete stochastic setting to take this into account in the choice of the stochas-
tic driving fields Fthm and fthm to ensure the appropriate thermal fluctuations consistent with
statistical mechanics[14,16].

3.1 Stochastic driving fields for the discretization

To account for the thermal fluctuations in the discrete setting, we must approximate the
stochastic driving fields in Eqs. (1)–(3). We must also take into account in the discrete setting
the role of the incompressibility constraint. Another important consideration is that the dissi-
pative properties of the discrete operators are often significantly different from their continuum
differential counterparts. The properties of the specific discretization and how constraints are
handled have important implications for how fluctuations propagate through the degrees of
freedom of the discretized system[14,16].

We treat the incompressibility constraint by imposing exactly the discrete divergence-free
condition (17) and using the projection method[28]. This approach allows for the semidiscretiza-
tion in Eqs. (16)–(19) to be expressed as

ρ
∂u

∂t
= ℘(µLfu + Λ[Υ(v − Γu)] + fthm), (25)

m
dv

dt
= −Υ(v − Γu) −∇XΦ[X ] + Fthm, (26)

dX

dt
= v. (27)

The projection operator ℘ is

℘ = I − GL−1
c D. (28)

We approximate the stochastic driving fields by imposing on the discretization the following
fluctuation-dissipation condition[14,16,25]:

〈FF T〉 = G = −LC − (LC)T, (29)
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where F = [fthm, Fthm] represents the stochastic terms in the system of Eqs. (16)–(19), and L

is the grand dissipative operator given by

L =

[
ρ−1µLf − ρ−1ΛΥΓ ρ−1ΛΥ
m−1ΥΓ −m−1Υ

]
. (30)

An important part of our discretization method for the stochastic fields is the choice of
covariance C we impose for the equilibrium fluctuations of the discrete system. We introduce
an energy based on our finite volume interpretation in Eq. (24). Using the Gibbs-Boltzmann
statistics associated with our discrete energy, we impose the covariance

C = kBT

[
ρ−1∆x−3

n
0

0 m−1

]
. (31)

Now that L and C are specified, our discrete fluctuation-dissipation condition given in Eq. (29)
provides our approximation of the stochastic driving fields F through the covariance,

G = −2kBT

[
ρ−2∆x−3

n µLf − ρ−2∆x−3
n ΛΥΓ m−1ρ−1ΛΥ

m−1ρ−1∆x−3
n

ΥΓ m−2Υ

]
. (32)

By using the fluctuation-dissipation condition (29) to discretize the stochastic driving fields,
we have taken into account the properties of the specific choice of discretization and how this
influences the propagation of fluctuations throughout the system[14,16]. This approach drawing
on insights from statistical mechanics also circumvents a number of potentially subtle issues in
how directly to interpret and approximate the stochastic fluid equations which have solutions
only in the generalized sense of distributions[14,16].

We remark for the sake of our subsequent presentation and calculations that the precise form
of the adjoint condition for Λ and Γ depends on the utilized representation of the operators
and the inner-product. When representing the operators as standard matrices and using the
standard matrix-vector inner product, the adjoint condition takes the form of ΛT = ∆x−3

n
Γ,

and hence the apparent asymmetric factor of ∆x−3
n appears in Eq. (32). Because of this inter-

pretation, this in fact does not pose an issue in practice.
3.2 Statistical mechanics of the discretization subject to the incompressibility

constraint

The stochastic driving fields are discretized without explicit consideration of the incom-
pressibility constraint. We perform the analysis to explore the implications of this constraint
on the statistical mechanics of the stochastic dynamics. In our approach, the incompressibility
is imposed each time step using the Lagrange multiplier Gp which is obtained from the discrete
pressure p by solving

Lcp = D · (Λ(Υ(vn − Γun)) + fn
thm), (33)

(Gp)m · n = 0, m ∈ ∂Ωf . (34)

In practice to solve efficiently these equations, we use FFTs adapted to the channel geometry.
We use standard FFTs in the periodic x- and y-directions[29–30]. To account for the Neumann
boundary conditions in the z-direction, we use a fast cosine transform (FCT)[30]. By substi-
tuting the solution Gpn into Eq. (16), we obtain the same result as applying the projection
operator given in Eq. (25). In this manner, the fluctuating hydrodynamics satisfies exactly in
the discrete setting the divergence-free incompressibility condition D · u = 0.

Under the projected stochastic dynamics, we show invariance of the Gibbs-Boltzmann dis-
tribution,

Ψ(u, v, X) =
1

Z
exp

(
− E(u, v, X)

kBT

)
, (35)
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where Z denotes the partition function. The Gibbs-Boltzmann distribution under the projected
stochastic dynamics satisfies

∂Ψ

∂t
= −∇ · J (36)

with the probability flux on the phase-space

J =




ρ−1µ℘Lf − ρ−1℘ΛΥΓ + ρ−1℘ΛΥ
−m−1Υ + m−1ΥΓ − m−1∇XΦ

v


 Ψ − 1

2
(∇ · G)Ψ − 1

2
G∇Ψ. (37)

The stochastic driving field when subjected to the projection operator yields the term F = ℘F .
Hence, the covariance for the stochastic driving field when subjected to the projection operator
is given by G = ℘G℘T. The divergence of the flux can be expressed as

∇ · J = A1 + A2 + ∇ · A3 + ∇ · A4 (38)

with





A1 = ((−m−1∇XΦ) · ∇vE + (v) · ∇XE)(−kBT )−1ΨGB,

A2 = (∇v · (−m−1∇XΦ) + ∇X · (v))ΨGB,

A3 = −1

2
(∇ · G)ΨGB,

A4 = A
(1)
4 + A

(2)
4 ,

A
(1)
4 =




ρ−1µ℘Lf − ρ−1℘ΛΥΓ + ρ−1℘ΛΥ

−m−1Υ − m−1ΥΓ
0



ΨGB,

A
(2)
4 = (2kBT )−1




Guu∇uE + Guv∇vE + GuX∇XE

Gvu∇uE + Gvv∇vE + GvX∇XE

GXu∇uE + GXv∇vE + GXX∇XE


ΨGB.

(39)

The energy of the discretized system we introduced in Eq. (24) has gradients

∇un
E = ρu(xn)∆x3

n
, (40)

∇vq
E = mvq, (41)

∇Xq
E = ∇Xq

Φ. (42)

In our notation to simplify the expressions, we have suppressed explicitly denoting the fields on
which the operators act with this information easily inferred from Eq. (25).

To show the invariance of ΨGB under the stochastic dynamics, we show that each of the terms
A1, A2, A3, A4 is zero. The expression A1 is closely related to the time derivative of the energy
under the non-dissipative dynamics of the microstructures. We find after direct substitution of
the energy gradients and cancellations that A1 = 0. The term A2 has important implications
for the transport of probability mass on the phase-space of (u, v, X). It can be interpreted
as the phase-space compressibility associated with transport by the vector field of the non-
dissipative dynamics of the system (0,−m−1∇XΦ, v). A2 is zero since each term depends on
distinct degrees of freedom from those appearing in the gradient being taken. This is closely
related to the Hamiltonian structure of our non-dissipative dynamics which have conjugate
configuration and momentum degrees of freedom[14]. The term A3 arises from fluxes driven by
multiplicative noise in the stochastic driving fields of the system[23]. In the present setting, the
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multiplicative noise has a rather special form in which only the particle configuration X plays
a role in modulating the noise covariance G. This enters through the terms Γ and Λ which
appear only in Gu,u and Gu,v (see Eq. (32)). Since each term depends on distinct degrees of
freedom from those appearing in the gradient being taken, we have the term A3 = 0.

This leaves A4, which accounts for the balance between the dissipation and stochastic fluc-
tuations of the system. An important issue is how the projection operator enforcing incompress-
ibility impacts this fluctuation-dissipation balance. The first covariance term in A4 in Eq. (39)
can be expanded using properties of our projection operator and discrete energy to obtain

(Guu∇uE)(2kBT )−1 = ρ−1µ℘Lf℘
Tu − ρ−1℘ΛΥΓ℘Tu

= ρ−1µ℘Lfu − ρ−1℘ΛΥΓu. (43)

We have used the property that our discrete ℘ defined in Eq. (28) is an exact projection operator
so that ℘T = ℘. We have also used that the incompressibility constraint is imposed exactly so
that the fluid velocity field at any given time satisfies u = ℘u. By a similar argument, we have

(Gvu∇uE)(2kBT )−1 = m−1℘ΥΓ℘Tu = m−1℘ΥΓu, (44)

(Guv∇vE)(2kBT )−1 = ρ−1℘ΛΥ℘Tv = ρ−1℘ΛΥv. (45)

We have used throughout that the projection operator ℘ when extended to all of the degrees
of freedom of the system does not affect directly the microstructure configuration or velocity
so in fact v = ℘v and X = ℘X. The components of G associated with X are all zero, i.e.,
GX,(·) = G(·),X = 0. Using these results in Eq. (39) and canceling common terms yield that
A4 = 0. This shows that ∇ · J = 0.

We have shown that the Gibbs-Boltzmann distribution is invariant under the projected
stochastic dynamics given in Eqs. (25)–(27). These results show that it is sufficient to ensure
thermal fluctuations consistent with statistical mechanics by using our combined approach of (i)
imposing exactly a fluctuation-dissipation condition to obtain a discretization of the stochastic
driving fields[14,16,31] and (ii) imposing the incompressibility constraint with an exact projec-
tion ℘[14,16,21]. The fact that the first condition ensures the discretization properly balances
the stochastic driving fields with the dissipative properties of the discrete operators. The sec-
ond condition using an exact projection ensures that the incompressibility constraint does not
introduce new discretization artifacts which adversely affect the propagation of thermal fluctua-
tions through the discretized system. The general principles we have presented here, and in the
prior works[14,16,31], can be used broadly to obtain discretizations for incompressible fluctuating
hydrodynamics and other spatially extended stochastic systems.

An interesting point to remark is that the no-slip boundary conditions did not require
any explicit consideration in our analysis above. However, they were tacitly included through
the precise definition of the discrete dissipative operators and the particular form taken by
the projection operator ℘. The effective action of these operators on the degrees of freedom
representing the state of the system in the interior of the domain is influenced by the boundary
conditions. For instance, the stencils of the discrete operators change at locations adjacent to
the no-slip boundary. An important feature of our discretization approach for the stochastic
driving fields is that our fluctuation-dissipation condition naturally handles the augmented
behaviors of the dissipative operators near the boundaries caused by the no-slip conditions.
These features highlight the utility of our approach of using statistical mechanics principles to
approximate the stochastic driving fields to obtain practical numerical methods for spatially
extended stochastic equations[14,16,31].
3.3 Efficient generation of the stochastic driving fields

We have shown that imposing an exact fluctuation-dissipation balance on the semidiscretized
stochastic dynamics provides a derivation of effective stochastic driving fields in the discrete
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setting that yields thermal fluctuations consistent with statistical mechanics. An important
challenge in practice is to generate efficiently these discrete stochastic driving fields with the
specific spatial covariance G given in Eq. (32). A natural approach for generating multivariate
Gaussians ξ with a specified covariance structure 〈ξξT〉 = G is to perform a factorization
G = HHT and use standard Gaussian variates η with 〈ηηT〉 = I to generate ξ = Hη. This
follows since 〈ξξT〉 = 〈HηηTHT〉 = HHT = G. For this to be effective, a key issue is to have
a factor H whose action on a vector can be computed efficiently and to determine efficiently
the factor H itself from G. Unfortunately, the most straightforward method of using Cholesky
factorization to obtain H from G has a computational cost of O(N3) and typically yields a
dense factor which would incur a cost of O(N2) each time we generate the stochastic driving
fields. Here, N is the total number of mesh degrees of freedom which for problems in three
spatial dimensions would be rather large.

We shall take another approach to generate the random variates with the computational cost
O(N log(N)) by using special properties of the stochastic dynamics and the discrete operators.
We first factor G into a form that decouples the microstructure and fluid degrees of freedom.
This is accomplished by expressing the stochastic driving fields fthm and Fthm in terms of gthm =
fthm + ΛFthm as in Ref. [14]. This has the convenient property that the spatial covariances
become

〈gthmgT
thm〉 = G = −2kBTµLf , (46)

〈FthmF T
thm〉 = 2kBTΥ, (47)

〈gthmF T
thm〉 = 0. (48)

A particularly important property is that Fthm and gthm are now decorrelated Gaussian variates
that can be generated independently. The original stochastic driving fields can be recovered by
using that fthm = gthm − ΛFthm. In the case that Υ is a scalar as it is assumed in our current
presentation, the variate Fthm can be generated trivially with the computational cost O(N).
This reduces the problem to that of generating efficiently the variate gthm.

To generate gthm, we shall use that its covariance structure G given in Eq. (46) can be
diagonalized into the form D = PGPT, where D is diagonal, and P provides a unitary change
of basis. We generate the random field using gthm = PT

√
Dη, where η is a complex-valued

Gaussian random variate with 〈ηηT〉 = I. This requires that we determine the diagonal factor
D and the necessary transforms to compute the action of PT. Since η is complex-valued, to
fully determine its statistics also requires that we determine the covariance between the real
and imaginary components and also impose conditions that ensure a real-valued stochastic field
gthm.

For the specific spatial discretization introduced for the channel geometry in Section 3, we
have that the discrete Laplacian Lf subject to the no-slip boundary conditions is diagonalized
by the transform P = SzFyFx, where Sz denotes for the z-direction the fast sine transform
(FST), and Fx and Fy denote for the x- and y-directions the standard FFTs[29–30]. The Fourier
symbols yielding D for our discrete Laplacian can be computed with the computational cost
O(N log(N)), which needs to be performed only once for the discretization mesh. We use in
our algorithms the complex exponential form of the FFTs. The generation of the stochastic
driving fields is accomplished by computing gthm = FT

x FT
y ST

z

√
Dη, where the complex-valued

η satisfies 〈ηηT〉 = I.
To make this generation procedure work in practice, there are some important additional

considerations. Since the complex values are used in the Fourier-space, there are multiple ways
to satisfy the condition 〈ηηT〉 = I. In fact, to determine fully the statistics of the Gaussian
variate η also requires specification of the other covariance components between the various
real and imaginary components of η. A related issue is that the generated stochastic field gthm

must be real-valued. This latter requirement provides additional important conditions on η. We
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now discuss in detail for the discretization our procedure for generating such a complex-valued
Gaussian.

Corresponding to the transforms Fx, Fy , and Sz, we index the Fourier modes using the wave-
vector notation k = (ℓ, m, n). We define the conjugate mode to k as the mode with the index
k = σk = (−ℓ,−m, n). We define the Hermitian transpose as ηH

k
= ηT

k which we also refer to as
the conjugate transpose. For the Fourier modes, under the inverse transform PT = FT

x FT
y ST

z , to
yield a real-valued field requires the conjugacy condition ηk = ησk. From these considerations,
we have for Fourier modes corresponding to a real-valued field that ηH

k
= ηT

k = ηT
σk

. The
condition 〈ηηT〉 = I takes the form for the individual modes 〈ηkηT

k
〉 = I, where I for the

modes denotes the three by three identity matrices. The real-valued conjugacy condition gives
that η

k
= ησk. By letting k′′ = σk′, we have the two conditions,

〈ηkηT
k′〉 = Iδk,k′ , (49)

〈ηkηT
k′′〉 = Iδk,σk′′ . (50)

δm,n denotes the Kronecker δ-function. We now show for η that these two conditions fully
determine the statistics of the real and imaginary components η = α+iβ. The conditions take
the form of

〈ηkηT
k′〉 =

(
〈αkαT

k′ 〉 + 〈βkβT
k′〉

)
+ i

(
〈βkαT

k′〉 − 〈αkβT
k′〉

)
= Iδk,k′ , (51)

〈ηkηT
k′′ 〉 =

(
〈αkαT

k′′〉 − 〈βkβT
k′′〉

)
+ i

(
〈αkβT

k′′〉 + 〈βkαT
k′′〉

)
= Iδk,σk′′ . (52)

Equating the real and imaginary parts in each expression gives the conditions

〈αkαT
k′〉 + 〈βkβT

k′〉 = Iδk,k′ , (53)

〈αkαT
k′′〉 − 〈βkβT

k′′〉 = Iδk,σk′′ , (54)

〈βkαT
k′〉 − 〈αkβT

k′〉 = 0, (55)

〈αkβT
k′′〉 + 〈βkαT

k′′〉 = 0. (56)

By linearly combining the equations, we yield the conditions,

〈αkαT
k′〉 =

1

2
I(δk,k′ + δk,σk′ ), (57)

〈βkβT
k′〉 =

1

2
I(δk,k′ − δk,σk′ ), (58)

〈αkβT
k′〉 = 0. (59)

The last condition shows that the real and imaginary components of the modes of the Gaussian η

should be generated to be statistically independent. The condition that the generated stochastic
field is real-valued has the important consequence that the random Gaussian variate for the real
part αk must always be exactly the same as the value ασk, and the random Gaussian variate
for the imaginary part βk must always be exactly negative of the value βσk. In the special case
of self-conjugate modes k = σk, the conditions require that the imaginary part is zero, βk = 0,
and the contributions to the random field are only made by the real part 〈αkαT

k
〉 = I. This

provides the details of how to generate the modes ηk in the Fourier space to obtain the required
complex-valued Gaussian random variate η. This can be accomplished in the Fourier space with
a computational cost of O(N). By performing the inverse transforms, this provides an efficient
method with the computational cost O(N log(N)) to generate the stochastic driving field gthm.
We remark that the effects of the no-slip boundary conditions are tacitly taken into account in
our stochastic field generation through the specific form taken by the Fourier symbols in the
diagonal operator D and the form of the inverse transforms used.
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4 Validation studies

4.1 Covariance obtained from the stochastic field generator

To validate our methods for generating the stochastic driving field gthm in Section 3, we
consider the discretization of the channel domain with 20× 20× 20 mesh cells in each direction
introduced in Section 3. We estimate empirically from generated samples of the stochastic
driving fields the spatial covariance structure in the real-space G̃m,m0

= 〈gm0
gT

m
〉. This is

predicted to have the entries of the covariance matrix Gm,m0
= [2kBTLf ]m,m0

. These entries
correspond proportionally to our face-centered approximation of the Laplacian by central dif-
ferences. The correlation structure is sparse and involves a positive entry when m = m0 and
a negative entry for each m corresponding to the nearest neighbors in each of the Cartesian
directions. We show the spatial correlation estimated empirically for a cross-section of the mesh
for each of the velocity components in Fig. 2. We find good agreement between the predicted co-
variance structure and those obtained from our stochastic field generation method introduced in
Subsection 3.3.

- - -

Fig. 2 Spatial covariance structure of gthm. We consider the covariance of the stochastic fields gener-
ation by the method introduced in Subsection 3.3 for the staggered mesh discretization of the
channel geometry with 20× 20× 20 mesh cells in each direction. We empirically estimate the
covariance using 〈gm0

gT
m 〉, where m0 denotes the index of a grid cell near the center of the

channel. The estimated covariance structure in each direction agrees well with the prediction
based on the face-centered discrete Laplacian operator Lf and Eq. (46) (color online)

4.2 Brownian motion of a particle diffusing in a harmonic potential

We validate our computational methods for the microstructure dynamics coupled using fluc-
tuating hydrodynamics by considering the Brownian motion of a particle diffusing in the har-
monic potential Φ(X) = 1

2KX2. We use the spring stiffness K = kBT , the particle mass
m = 19 200 u, and the temperature T = 298.15 K (kBT = 2.479 nm2 · u · ps−2). The
computational domain is taken to be 30 nm × 30 nm × 30 nm resolved with a grid having
cells with the mesh-width 1 nm. For this choice of parameters, the Gibbs-Boltzmann dis-
tribution ρ(X) = (1/Z) exp(−Φ(X)/(kBT )) predicts a standard deviation in the position of√

kBT/K = 1 nm. The Maxwellian for the velocity fluctuations predicts a standard devia-

tion
√

kBT/m = 11.36 nm/ns[25]. We perform simulations with ∆t = 0.15 ns for 50 000 time
steps and estimate the position and velocity distributions. We find that our stochastic numer-
ical methods yield an appropriate effective temperature for the microstructure and that the
fluctuations in configuration agree well with the Gibbs-Boltzmann distribution (see Fig. 3).

5 Simulations of ellipsoidal colloids and confinement effects

To simulate the diffusion and hydrodynamic responses of ellipsoidal colloids subject to con-
finement effects within a channel, we develop a model based on control nodes connected by
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harmonic bonds with a specified rest-length as shown in Fig. 4. The control node distribution
is obtained by starting with a scaled icosahedron and bisecting the edges recursively. We refine
the edges of the icosahedron so that the bond length is about half of the grid size. Similar
types of models have been developed[32–34]. We choose the strength of the bonds sufficiently
strong that there is a minimal deformation of the particle shape when subject to hydrodynamic
flow and applied forces ensuring a rigid-body-like response. We also choose a sufficiently strong
coupling parameter for the fluid and control particles to ensure a no-slip-like response (for de-
tails, see Table 1). We consider how our model behaves in practice for ellipsoidal particles of
different aspect ratios by making comparisons with the classical analytic results of Perrin and
others[1–2,35–36].

- - -

- - -

Fig. 3 Brownian motion of a particle diffusing in a harmonic potential. The probability distributions
for the particle location and velocity are estimated from a single trajectory simulated with
our stochastic numerical methods. The velocity distribution is found to be in good agreement
with the predicted Maxwellian. The position distribution is found to be in good agreement
with the Gibbs-Boltzmann distribution (color online)

Fig. 4 Particle model. We model the geometry and hydrodynamic responses of spherical and ellip-
soidal colloids by using a collection of control nodes distributed on the particle surface that
is coupled through harmonic springs with a specified rest-length. The control node distri-
bution is obtained by starting with a scaled icosahedron and bisecting the edges recursively.
The restoring forces of the harmonic bonds act to enforce an approximate rigid-body no-slip
response to the surrounding fluid (color online)
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5.1 Translational and rotational mobility

We consider prolate ellipsoidal colloids with the semi-major axis a and semi-minor axes b
and c (b = c). For such colloidal particles in a bulk Newtonian fluid, the translational mobility
has been analytically predicted by Perrin and others as[35–36]

Mtrans =
ln(p−1(1 + (1 − p2)1/2))

6πµa(1 − p2)1/2
, (60)

where p = c
a . In this expression, we take into account the correction to the typo that was found

in the original paper by Perrin in the statement of Eq. (41)[35–36]. For the rotational mobility of
prolate ellipsoids in response to an applied torque, Chwang and Wu[37] analytically predicted

Mrot =
1

8πµab2CM
, CM =

4q3

3(2q − (1 − q2) ln(1+q
1−q ))

, (61)

where q =
√

1 − (b/a)2.
We compare the hydrodynamic responses of our colloidal model with these results. To use

our computational methods but to minimize the effects of the wall in these studies, we consider
computational domains where the channel has a width of about 10 times the particle radius.
To probe the translational mobility of our model, we apply a unit force over the surface of our
particle and measure from our simulations the resulting steady-state velocity of the ellipsoidal
particle. To probe the rotational mobility of our model, we apply a unit torque as an averaged
force distribution over the surface of our particle and measure the angular velocities by averaging
moments over the particle surface. We find that the translational and rotational hydrodynamic
responses of our particle model agree quite well with the analytic predictions when using an
effective hydrodynamic radius for our particle of a = 5.45 nm (see Fig. 5). We remark that this
is consistent with how the SELM handles the control point coupling to the mesh through the
averaging operator Γ which blurs the fluid-structure interface on the scale of the mesh width
∆x ≈ 1 nm (see Eq. (9)). The translational mobilities show very good agreement for all of the
aspect ratios considered. The primary discrepancies occur for the rotational mobilities as the
aspect ratio becomes small. The parameters for these studies are given in Table 1.

Fig. 5 Comparison of the translational and rotational mobilities of our colloid model with theory.
We find that our colloidal model yields hydrodynamic responses in good agreement with the
analytic predictions for the translational and rotational mobilities of ellipsoidal particles given
in Eqs. (60) and (61). The primary discrepancy occurs for the rotational mobilities when the
ellipsoidal particles have a small aspect ratio
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Table 1 Parameters for the particle model

Parameter Value

Spherical particle radius r 5 nm
Icosahedron refinement level 4
Bond stiffness K 50 000 u/ns2

Momentum coupling Υ 5.676 × 107 u/ns
Node excess mass m 192 u
Fluid viscosity µ 602.2 u/(nm·ns)
Fluid density ρ 602.2 u/nm3

Channel width Lx = Ly 30 nm
Channel length Lz 120 nm
Mesh spacing ∆x 1 nm
Time step ∆t 3.5 × 10−2 ns

5.2 Effects of confinement on mobility and hydrodynamic interactions of particles

5.2.1 Mobility of spherical particle within a slit channel
To further validate the methods and our particle model, we perform simulations of the

motion of a spherical particle when confined between two stationary parallel walls. We compute
the particle in response to an applied force either in a direction parallel to the wall to obtain
the mobility M‖ or in a direction perpendicular to the wall to obtain the mobility M⊥. Our
simulation results are compared with the linear superposition approximation (LSA) for mobility
of a spherical particle in a slit channel[38–39]. The LSA predicts a mobility of

M‖ =

(
1

1 − 9
8a/ℓ

+
1

1 − 9
8a/(L − ℓ)

− 1

)−1

M0
‖ , (62)

M⊥ =

(
1

1 − 9
16a/ℓ

+
1

1 − 9
16a/(L − ℓ)

− 1

)−1

M0
⊥, (63)

where a is the particle radius, L is the channel width determined by the separation between the
walls, and ℓ is the distance of the center of mass of the particle to the nearest channel wall. We
set the reference mobilities M0

‖ and M0
⊥ based on the simulated mobility of the spherical particle

at the center of the channel. We compare our simulations of the channel confined spherical parti-
cle model with the LSA theory in Fig. 7 for setup as in Fig. 6. We find the SELM approach yields
results with close agreement with the predictions of the LSA. We find that M0

‖ agrees with the

free-space mobility M0 = 1/(6πµã) of a spherical particle of the effective hydrodynamic radius

Fig. 6 Confinement of spherical and ellipsoidal particles in a channel and effects on hydrodynamic
responses. Confinement is expected to affect significantly the mobility and hydrodynamic
interactions between particles when confined with a channel. The hydrodynamic responses
and coupling are expected to change depending on the distance of particles to the channel
walls
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Fig. 7 Comparison of the simulated sphere mobility with the LSA of Eqs. (62) and (63). We compare
the mobility for motions both in the directions parallel and perpendicular to the channel
wall. The LSA theory is compared for a sphere with the effective hydrodynamic radius ã =
5.45 nm, the same value as we use in the comparisons with the Rotne-Prager approximation
in Subsection 5.1

ã = 5.45 nm. We remark that this is the same value ã we used previously in our Rotne-Prager
comparisons in Subsection 5.1. These results provide a validation of our numerical methods,
indicating that they capture well the physics of particles confined within a slit channel. We
remark that the LSA theory is expected to be most accurate away from the channel walls where
lubrication effects are not dominant in the particle-wall interactions.
5.2.2 Mobility of ellipsoidal particles within a slit channel

We explore the role that confinement effects play a role in mobility and hydrodynamic
interactions between the particles. We investigate responses for a spherical particle with the
radius r = 5 nm and an ellipsoidal particle with a = 5 nm and b = c = 2.5 nm. We consider a
channel with walls separated by 30 nm in the z-direction and a span of 120 nm in the periodic x-
and y-directions. We resolve this channel geometry using a discretization with the mesh-width
1 nm in each direction.

We investigate how the translational and rotational mobilities change as the colloidal particle
occupies distances to one of the walls ranging from 10 nm to 2 nm. We consider for the ellipsoidal
particle the two cases when (i) the semi-major axis is parallel to the channel wall and (ii) the
semi-major axis is perpendicular to the channel wall. As a consequence of the symmetry of the
channel system under rotation around the z-axis, we only need to consider the responses in the
x- and z-directions.

We use our colloid model and computational methods to study the hydrodynamic responses
of particles as they approach one of the channel walls (see Fig. 8). We consider the translational
and rotational mobilities obtained from the active responses of particles to an applied force or
torque. We find that the translational mobility is impacted most significantly by the particles
proximity to a channel wall. In contrast, the rotational mobility is only affected by the channel
wall when the particle is rather close. The active responses as characterized by the mobility
M have important implications also for the passive rotational and translational diffusivities D
of particles within the channel through the Stokes-Einstein relation D = 2kBTM [25]. These
results indicate that the stochastic methods will also capture how the diffusivity of a particle
is augmented by its proximity to the wall.
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Fig. 8 Role of confinement on the translational and rotational mobilities of spherical and ellipsoidal
particles. We show the hydrodynamic responses of our model for ellipsoidal particles as they
approach one of the channel walls. We consider the translational and rotational mobilities
obtained from the active responses of particles to an applied force or torque. The active
responses as characterized by the mobility M also have important implications for the passive
rotational and translational diffusivities D of particles within the channel through the Stokes-
Einstein relation D = 2kBTM [25]

5.3 Reduced model of ellipsoidal particles as trimers

In our studies, we expect that many of the hydrodynamic responses of the colloidal particles
can be captured to a good approximation by a less detailed geometric description using only
a few control nodes as in Fig. 9[32–34]. To improve the computational efficiency in simulations,
we use a reduced description that replaces the full geometric approach introduced in Section 5
by instead a trimer of three control nodes linked by harmonic springs of non-zero rest-length.
While this reflects the approximate responses of an ellipsoid for one particular aspect ratio, this
can also be augmented by adding control nodes arranged either linearly or in a cluster to obtain
the approximate responses for other aspect ratios. When comparing the responses of our trimer
model with three control nodes that span about 2 mesh-widths of the discretization mesh with
the results of Perrin’s equation (60), we find the trimer approximates a prolate ellipsoid with
the aspect ratio of p = c/a = 0.6. We use this choice in our subsequent studies.



142 Y. WANG, H. LEI, and P. J. ATZBERGER

Fig. 9 Role of confinement on pair mobility and diffusivity. We use a reduced trimer model to approx-
imate the ellipsoidal particles. Confinement affects both the active pair interactions mediated
by hydrodynamics between the ellipsoidal particles and the passive diffusive responses through
correlations in the Brownian motions (color online)

Table 2 Parameters for the particle trimer model

Parameter Value

Channel width Lx = Ly 20 nm
Channel length Lz 60 nm
Node excess mass m 19 200 u
Bond stiffness Kshort 24 000 u/ns2

Bond stiffness Klong 6 000 u/ns2

Momentum coupling Υ 5.676 × 107 u/ns
Fluid viscosity µ 602.2 u/(nm·ns)
Fluid density ρ 602.2 u/nm3

Mesh spacing ∆x 1 nm
Time step ∆t 0.1 ns
Boltzmann constant kB 0.008 31 u·m2/ns2

Temperature T 298.15 K
Diffusion time scale δt 50∆t

5.4 Hydrodynamic interactions and pair diffusivity: translational and rotational

pair mobility

We probe the effects of confinement on both the active responses mediated by hydrodynamics
between a pair of particles and the passive diffusive correlations in the joint Brownian motions
of a pair of particles. We investigate the pair mobility M by studying for a force applied to one
particle the hydrodynamic response of the other particle. By the Stokes-Einstein relations, the
pair diffusivity of particle D is predicted to be

D = 2kBTM. (64)

In the deterministic case of two particles in response to an applied load, the grand-mobility
tensor M can be expressed in terms of the components of the particle configuration X =
(X1, X2) as

d

dt

[
X1

X2

]
=

[
M11 M12

M12 M22

] [
F1

F2

]
. (65)

X1 gives the configuration of the first particle, and X2 gives the configuration of the second
particle. In the current setting, we are most interested in the block diagonal entry M11 and
the block off-diagonal entry M12. M11 characterizes how a force acting on a particle affects the
motion of this same particle. M12 characterizes how a force acting on one of the particles affects
the motion of the other particle. We determine these responses in the deterministic setting (no
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thermal fluctuations) empirically by applying such a force and measuring the resulting velocity
in our computational simulations (see Appendix B).

To estimate empirically the pair diffusivity D of our particles, we use

D =
1

δt
〈∆X∆XT〉, (66)

where ∆X = X(δt)−X(0). The components in which we are most interested are the diagonal
terms of D11 and D12 which correspond to how the diffusive motion of one of the particles is
correlated with the other in the same direction.

To investigate the role of confinement in particle interactions, we consider both the active
force responses and the passive diffusivities and how they depend on both the proximity of
the particles to one of the channel walls and the distance of separation between the particles.
For the wall proximity, we consider the two specific cases when the particle is located at the
positions z = 2 nm and z = 10 nm.

We find that confinement plays a significant role both in the active hydrodynamic interac-
tions between particles and in the passive diffusivity of their correlated Brownian motion. We
find that our stochastic numerical methods yield results in close agreement with the Stokes-
Einstein relations given in Eq. (64), as shown in Fig. 10. We consider the role of proximity to
the channel wall both on the active hydrodynamic responses in the interactions between a pair
of ellipsoidal particles (the aspect ratio p = c/a = 0.6) and on the passive diffusivities in the
correlated Brownian motions of the two particles. We find confinement significantly impacts
both the active responses and passive diffusivity. We also find that the stochastic computational
methods agree to a good approximation with the predictions of the Stokes-Einstein relations
D = 2kBTM [25]. We remark that we think the slight discrepancy appearing in our results
comes from the inherent issues associated with how to attribute a mobility/diffusivity to the
discrete particle models. In the deterministic setting, we estimate a mobility by measuring
the translational and rotational velocities in response to an applied force/torque realized by a
symmetric force distribution over the surface control points of the particle (for details, see Ap-
pendix B). The diffusivity is measured by averaging the translational and rotational motions of
the collection of surface control points. As a consequence of these differences in the estimators,
we expect some small systematic discrepancies.

Fig. 10 Confinement effects on the pair mobility and diffusivity of particles. We consider how confine-
ment and the role of proximity to the channel wall impact both the active hydrodynamic re-
sponses in the interactions between a pair of ellipsoidal particles (aspect ratio p = c/a = 0.6)
and the passive diffusivities in the correlated Brownian motions of the two particles. We
find our stochastic computational methods agree with the predictions of the Stokes-Einstein
relations D = 2kBTM [25]
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5.5 Collective drift-diffusion of rods

As a further demonstration of the approaches, we consider the collective drift-diffusion
dynamics of the rods when subject to a driving field. This can be thought of as the dynamics
that would arise if the rods have a charge and are subject to an electric field. To model
steric repulsions between the rod particles, we introduce a Weeks-Chandler-Andersen (WCA)
interaction between the particles and between the particles and wall surface[40]. We study these
effects in a channel with a geometry of 60 nm×30 nm×20 nm resolved with a mesh-width 1 nm.
The driving field acts in the x-direction. This corresponds to an electric field with the particles
having screened net-positive charges.

We perform simulations in different density regimes to investigate the collective stochastic
dynamics of the rods and role of hydrodynamic coupling. In particular, we perform simulations
of (i) a dilute suspension of 100 particles and (ii) a dense suspension of 1 050 particles (see
Fig. 11). To investigate the role of the hydrodynamic coupling, we perform simulations (i)
with hydrodynamic coupling using our stochastic methods for the SELM and (ii) without
hydrodynamic coupling using a standard Langevin dynamics. For a collection of particles
within a channel, the hydrodynamic coupling is expected to drive a Poiseuille flow within the
channel. This has the consequence that rods near the boundary are transported down the
channel at a significantly slower rate. This also has as a consequence shearing of the rods when
they are aligned perpendicular to the channel walls. For non-hydrodynamic simulations, these
potentially important effects for some applications are neglected.

Fig. 11 Collective particle dynamics within the channel. We show typical configurations of the trimer
rod-like particles interacting within a channel in simulations both in a dilute regime with
100 particles and a dense regime with 1 050 particles (color online)

The profile of the velocity of the rods in the x-direction is shown when varying position along
the cross-section of the channel in the z-direction (see Fig. 12). We consider the case when the
particles are subject to a constant force field driving them down the channel in the x-direction.
We show the velocity Vx(z) of the particles versus their location within the channel relative
to the wall in the z-direction. We compare the case without hydrodynamic coupling obtained
from Langevin simulations (left) with the case with hydrodynamic coupling obtained from our
SELM approach (right). We find that the SELM approach produces velocity distributions in
agreement with a Poiseuille flow. The profiles are normalized by the maximum velocity Vx0

across the channel.
We find the characteristic profile of a Poiseuille flow with some slip near the walls. Since the

profile reflects the velocity of rods and not directly the fluid, this reflects slip that arises from
the motions of the rods near the boundary. In fact, for our SELM formulation, there is allowed
slip of the rods relative to the local fluid velocity which is set by the parameter Υ. In contrast,
for Langevin simulations, no such spatial dependence in the velocity of the rods is found given
the lack of hydrodynamic effects.

We next consider the role of thermal fluctuations and the collective diffusion of particles
within the channel. We consider the equilibrium distribution of the translational and rota-
tional configurations of rod. We show these results for the dense regime in Fig. 13. We consider
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Fig. 12 Velocity distribution of particles within the channel. We consider the case when the particles
are subject to a constant force field driving them down the channel in the x-direction. We
show the velocity Vx(z) of the particles versus their location within the channel relative to
the wall in the z-direction. We compare the case without hydrodynamic coupling obtained
from Langevin simulations (left) with the case with hydrodynamic coupling obtained from
our SELM approach (right). The profiles are normalized by the maximum velocity Vx0 across
the channel

Fig. 13 Distribution of particles within the channel. We consider the equilibrium distribution of
the particle configurations in the dense regime. The dashed curve shows the distribution
for pairs of particles distributed with random orientation corresponding to points on surface
of a sphere ρ(θ) = π

2
sin θ. These results are consistent with isotropic arrangements of the

particles
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the equilibrium distribution of the particle configurations in the dense regime. We find the
particle center-of-mass distributes nearly uniformly across the channel diameter with the density
decreasing in a layer near the boundary on a length-scale comparable to the particle size.
We find that the angular distribution for pairs of ellipsoidal particles is well-approximated by
ρθ = π

2 sin θ. We define the angle as θ = arccos(a1 · a2/(|a1||a2|)), where a1 is the axis of the
first trimer, and a2 is the axis of the second trimer. These results are consistent with isotropic
arrangements of the particles. The dashed curve for the predicted angle distribution in three
dimensions is obtained by associating the trimer directors to points uniformly distributed over
the surface of a sphere. We also find near the walls a small depletion in concentration of particles
on a scale comparable to the finite size of the particles. This likely arises from the rotational
entropy of the particle that would penalize configurations with the particle center-of-mass close
to the channel wall.

Concerning the role of thermal fluctuations and hydrodynamic coupling in the collective
diffusion of rods within the channel, we further explore the mean-squared-displacement (MSD)
of rods within the channel. We consider both the translational and rotational MSD. Given
the symmetries of the channel, we consider separately the translational MSD in the x-direction
along the axis of the channel and in the z-direction perpendicular to the channel walls. We also
consider the MSD when varying the concentration between our dense and dilute regimes (see
Fig. 14). We consider the translational MSD and the rotational mean-squared angular (MSA)
displacement. We find that the translational MSD is most affected by the increase in particle
density and exhibits a noticeable decrease for the denser regime. We find that the MSA is
rather insensitive to the density of particles.

Fig. 14 MSD and MSA displacement. We consider the translational MSD and the rotational MSA
displacement. Translational MSD is most affected by the increase in particle density and
exhibits a noticeable decrease for the more dense regime. We find that the MSA is rather
insensitive to the density of particles

We also find the translational MSD has a significant dependence on the direction of the dif-
fusive motion and rod concentration. We find the rotational MSD of the rods does not depend
significantly on the rod concentration in the regimes considered. The translational MSD is
greater in the diluter regime than the dense regime considered. Interestingly, the translational
MSD is significantly smaller when considering the z-direction with a greater difference depend-
ing on the rod concentration (see Fig. 14). This appears to arise from the stronger influence
of the walls on hydrodynamic flows and trimer motions in the z-direction toward the channel
walls which cause greater dissipation and steric restrictions relative to hydrodynamics flows and
trimer motions aligned with the channel. We further investigate in the dense regime how the
correlations of the fluid and trimers within the channel are influenced by hydrodynamic cou-
pling and wall effects. We investigate how the autocorrelation of the fluid relaxes in response
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to spontaneous fluctuations in Fig. 15. We show how the velocity autocorrelation varies across
the channel width. These results show that the computational methods capture the greater
dissipation arising from proximity to the channel wall in the spontaneous hydrodynamics fluc-
tuations. This is reflected in the significantly longer correlation time scale exhibited for velocity
fluctuations in the z-slab near the channel center z0 = 0 versus at distances closer to the wall.
The results are normalized from 〈v(z, 0)v(z, 0)〉 = 2.29 nm2/ns2 and shown for averages of 106

time steps.

-

Fig. 15 Velocity temporal autocorrelation within the channel. We show how the velocity autocor-
relation varies across the channel width. The results are normalized from 〈v(z, 0)v(z, 0)〉 =
2.29 nm2/ns2 and averaged from 106 time steps

These results establish further that, for the spontenous fluctuations of the fluid velocity,
the computational methods capture significant differences in the kinetics arising from local
dissipation in the fluid from proximity to the channel walls. The velocity autocorrelation clearly
exhibits decay over a significantly longer time scale in the near channel center z0 = 0, where
dissipation arising from shearing motions results in friction in reference to other fluid elements
as opposed to near to the wall z0 = −9.5, where shearing motions result in friction in reference
to the stationary no-slip walls.

We characterize the contributions to the kinetics of the trimer motions related these sponta-
neous fluid velocity fluctuations in the spatial covariance function in Fig. 16. We show how the
trimer autocorrelation varies across the channel width. We consider the motion of the center of
mass of the trimer X as the location z0 given by the displacement ∆z0

X = X(τ)−X(0). Here,
the τ is 5 time steps and X(0) is in the z-slab corresponding to z0. We compute the spatial
correlation function Φ(z) = 〈∆z0

X∆zX
T〉 and report the eT

1 Φ(z)e1 component corresponding
to the displacements in the direction of the channel[41]. The results in Fig. 16 show that the
computational methods capture the greater dissipation arising from proximity to the channel

Fig. 16 Trimer spatial autocorrelation across the channel. The results are normalized from
〈v(z, 0)v(z, 0)〉 = 2.29 nm2/ns2 and averaged from 106 time steps
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wall in the spontaneous hydrodynamic fluctuations. This is reflected for the trimers in a sig-
nificantly stronger spatial correlation in the motions near the channel center z0 = 0 relative to
configurations near the channel wall z0 = −9.5. This shows the spontaneous fluctuations with
the stochastic computational methods capture an effective hydrodynamic screening from the
prescence of the walls which augment collective diffusive motions of the trimers. The results
are normalized from 〈v(z, 0)v(z, 0)〉 = 2.29 nm2/ns2 and averaged from 106 time steps.

The results of these studies show how our stochastic computational methods can capture in
the collective dynamics of a large number of interacting particles the roles played by hydrody-
namic coupling, thermal fluctuations, and wall effects. We expect our approaches to be useful
in the further investigations of transport phenomena associated with particles confined within
channel geometries.

6 Conclusions

We have developed stochastic computational methods to take into account confinement
effects within channel geometries. Our approach is based on fluctuating hydrodynamics and
the SELM for incorporating thermal fluctuations into approximate descriptions of the fluid-
structure interactions. We have shown that our approach of imposing an exact fluctuation-
dissipation condition to obtain a discretization of the stochastic driving fields combined with
an exact projection method to enforce incompressibility is sufficient to ensure results consistent
with statistical mechanics. We have shown that our stochastic discretization approach also
handles naturally fluctuations in the context of the no-slip boundary conditions. We found
that the stochastic computational methods work well to capture both active hydrodynamic
responses and the passive diffusive responses when particles are affected by their proximity to
the channel walls. We expect our introduced stochastic computational methods to be broadly
applicable to applications in which confinement effects play an important role in the dynamics
of microstructures subject to hydrodynamic coupling and thermal fluctuations.
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Appendix A

Staggered grid and discrete transforms

We discuss the Fourier/cosine transform used to compute the inverse Laplacian of the pressure
and the discrete Fourier/sine transform used to diagonalize the covariance matrix in Section 3. Our
computational domain is decomposed into a collection of Nx × Ny × Nz cells with periodic boundary
conditions in the x- and y-directions and Dirichlet or Neumann boundary conditions in the z-direction
(see Fig. 1). The locations of data at the staggered lattice sites in the z-direction are illustrated in
Fig. A1.

-

Fig. A1 The staggered mesh in the z-direction on which Dirichlet boundary conditions are imposed.
We show the components of a scalar field p and vector field F on the staggered lattice.
By convention we take Fz,−1 = Fz,Nz−1 = 0 for Dirichlet boundary conditions. For the
components p, Fx, and Fy, the staggered grid has Nz sites. For the component Fz, the
staggered grid has only Nz − 1 sites

For scalar fields, such as the fluid pressure, the values are stored at the cell center, and periodic
boundary conditions are imposed in the x- and y-directions and the Neumann boundary condition in
the z-direction. To determine the pressure and handle the incompressibility condition, the discrete
Fourier transform (DFT) is used in the x- and y-directions, and the discrete cosine transform (DCT)
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is used in the z-direction. For the pressure pk at the lattice site k, the DFTs in the x- and y-directions
are computed by

pk =

Nx−1
X

j=0

p̂je
−2πjk

√

−1/Nx , (A1)

pk =

Ny−1
X

j=0

p̂je
−2πjk

√

−1/Ny . (A2)

For the pressure in the z-direction, the DCT is used with the pressure treated as even functions at the
nodes j = − 1

2
and j = Nz −

1
2
, where the pressure index is j = 0, 1, 2, · · · , Nz −1. This is computed by

pk = 2

Nz−1
X

j=0

p̂j cos(π(j + 1/2)k/Nz). (A3)

We get the full Fourier/cosine transform used for the pressure by combining the transforms above to
obtain

pi,j,k = 2

Nx−1
X

l=0

Ny−1
X

m=0

Nz−1
X

n=0

p̂l,m,ne−
2πil

√
−1

Nx e
−

2πjm
√

−1

Ny cos
“

π
(n + 1/2)k

Nz

”

. (A4)

In practice, we use the FFTW library to compute the transforms[42]. We use the standard DFT for x-
and y-directions and DCT-II in the z-direction.

For vector fields, such as the stochastic driving force, component values of F = (Fx, Fy , Fz) are
stored on the cell faces of the staggered grid. The numbers of cell faces within the simulation domain
and not on the boundary are different in each direction. This gives a slightly different sized lattice for
each of the vector components. For Fx, the lattice is Nx ×Ny ×Nz, for Fy , the lattice is Nx ×Ny ×Nz,
and for Fz, the lattice is Nx × Ny × (Nz − 1). For the Fx, Fy , Fz components in the x-, y-, and
z-directions, we do a standard DFT similar to the expressions in Eqs. (A1) and (A2). For the Fx and
Fy components in the z-direction, we treat the components as odd functions at the index j = − 1

2
and

j = Nz − 1
2
, where the indices are j = 0, 1, 2, · · · , (Nz − 1). We use the transform

Fx,k = 2

Nz−1
X

j=0

F̂x,j sin(π(j + 1/2)k/Nz), (A5)

Fy,k = 2

Nz−1
X

j=0

F̂y,j sin(π(j + 1/2)k/Nz). (A6)

We treat the Fz component in the z-direction as an odd function at j = −1 and j = Nz − 1. We use
the transform

Fz,k = 2

Nz−2
X

j=0

F̂z,j sin(π(j + 1)(k + 1)/Nz). (A7)

We get the full transform
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Fy,(i,j−1/2,k) = 2

Nx−1
X

l=0

Ny−1
X

m=0

Nz−1
X

n=0

F̂y,(l,m,n)e
−

2πil
√

−1

Nx e
−

2πjm
√

−1

Ny sin
“

π
(n + 1/2)k

Nz

”

,

Fz,(i,j,k+1/2) = 2

Nx−1
X

l=0

Ny−1
X

m=0

Nz−2
X

n=0

F̂z,(l,m,n)e
−

2πil
√

−1

Nx e
−

2πjm
√

−1

Ny sin
“

π
(n + 1)(k + 1)

Nz

”

.

(A8)

We summarize in each direction for the vector field components the index ranges a : b inclusive from a
to b (see Table A1).
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Table A1 Sum of the index ranges a : b inclusive from a to b

i j k

Fx 0 : (Nx − 1) 0 : (Ny − 1) 0 : (Nz − 1)
Fy 0 : (Nx − 1) 0 : (Ny − 1) 0 : (Nz − 1)
Fz 0 : (Nx − 1) 0 : (Ny − 1) 0 : (Nz − 1)

The staggered grid and indexing are illustrated in Figs. 1 and A1. In practice, we use the FFTW
library to compute the transforms with the standard DFT in the periodic directions and the discrete
sine transform (DST)-I and DST-II for the z-direction[42].

Appendix B

Protocol for estimating mobility from SELM particle model

We discuss the protocol used for estimating the particle mobility from the shell model and trimer
model introduced in Section 5. Our approach estimates mobility by considering the velocity response
of a particle to an applied force. This is done using the following steps:

(I) A force Fj is applied to each of the control points indexed by j. To probe the response to an
applied force or torque in the direction ek (standard basis vector), we apply forces over the shell model
such that either the total force F =

P

j

Fj = ek or the torque τ =
P

j

x × Fj = ek. This ensures the

force or torque sums to unity in the direction k.
(II) In the simulation, the control points are allowed to relax for a short duration of time until the

system reaches a steady state as indicated by observing the control point velocities. We use the specific
criteria on successive time steps that the velocity vj of each control point satisfies ‖vn+1

j −vn
j ‖/‖v

n
j ‖ <

10−6.
(III) The translational mobility in the direction k is estimated by Mek

= vavg/‖F ‖, where vavg =
1
N

P

j

vj with the total number N of control points. The rotational mobility in the direction k is

estimated by Mek
= vang/‖τ ‖, where vang = 1

N

P

j

x × vj with the total number N of control points.

We remark that, for the translational mobility estimates, we can achieve the total force sum easily
by applying the same uniform force Fj to each control point. However, for the rotational mobility
estimates from a discrete collection of control points, the situation is more complicated. We use the
convention of applying a symmetric force over the control points using Fj = −(αj/N)x̃j × τ , where
x̃j = xj/‖xj‖

2, and αj is a weight. The torque of the discrete collection of points can be expressed
using the triple vector product formula τ =

P

j

xj × Fj = − 1
N

P

j

αj x̃j(xj · τ ) + 1
N

P

j

αjτ (xj · x̃) =

− 1
N

P

j

αjx̃j(xj ·τ )+τ ( 1
N

P

j

αj). For a configuration of control points with symmetry under reflection

about the plane with normal τ , a weight of αj = 1 can be used. In this case, the first term vanishes,
and the second term has 1

N

P

j

αj = 1. In practice, a discrete collection of control points may not have

this symmetry. We setup the control points of our shell model so that the initial configuration has a
load force only on a subset of points respecting the planar reflection symmetry. This allows us to use
a uniform collection of non-zero weights. In practice, in our simulations, we have found that, to reach
the velocity steady-state condition, the total displacements of the control points are negligible. They
have typical displacement value less than 10−2∆x. We take this as an indication, and the particle
displacement does not play a significant role in our mobility estimates. As a further test of the rigidity
of the particle shell model and our choice of bond stiffness, we have also done further tests by applying
a symmetric load force only on a few control points of the surface of the shell model. We find that the
particle shell model retains its shape and that the same mobilities are obtained as in the case when we
apply load forces over all of the control points of the shell.




