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Minimum Storage Regenerating Codes
For All Parameters

Sreechakra Goparaju Arman Fazeli Alexander Vardy
University of California San Diego, La Jolla, CA 92093, USA

Email: {sgoparaju, afazelic, avardy}@ucsd.edu

Abstract—Regenerating codes for distributed storage have
attracted much research interest in the past decade. Such cod-
es trade the bandwidth needed to repair a failed node with
the overall amount of data stored in the network. Minimum
storage regenerating (MSR) codes are an important class of
optimal regenerating codes that minimize (first) the amount
of data stored per node and (then) the repair bandwidth.
Specifically, an [n, k, d]-(α) MSR code C over Fq stores a file
F consisting of αk symbols over Fq among n nodes, each
storing α symbols, in such a way that:
• the file F can be recovered by downloading the content

of any k of the n nodes; and
• the content of any failed node can be reconstructed by

accessing any d of the remaining n− 1 nodes and down-
loading α/(d−k+1) symbols from each of these nodes.

In practice, the file F is typically available in uncoded
form on some k of the n nodes, known as systematic nodes,
and the defining node-repair condition above can be relaxed
to requiring the optimal repair bandwidth for systematic
nodes only. Such codes are called systematic–repair MSR
codes.

Unfortunately, finite–α constructions of [n, k, d] MSR codes
are known only for certain special cases: either low rate, na-
mely k/n 6 0.5, or high repair connectivity, namely d = n− 1.
Our main result in this paper is a finite–α construction of
systematic-repair [n, k, d] MSR codes for all possible values
of parameters n, k, d. We also introduce a generalized con-
struction for [n, k] MSR codes to achieve the optimal repair
bandwidth for all values of d simultaneously.

Index Terms—distributed storage systems, regenerating
codes, interference alignment

I. Introduction

Distributed storage systems form the backbone for
modern cloud computing, large–scale data servers, and
peer–to–peer systems. The data in these systems is stored
in a redundant fashion — typically via replication (for
instance, Hadoop [2] and Google file systems [3] adopt
a triple replication policy) — to safeguard data against
not–so–infrequently occurring disk failures. An alterna-
tive approach to storing data on these systems, which
highly reduces the redundancy involved in replication, is

The main result in this paper was first presented as an invited talk
at the 53rd Allerton Conference, and later appears in part in the pro-
ceedings of the IEEE International Symposium on Information Theory
(ISIT) 2016 [1]. This work was supported in part by the National Sci-
ence Foundation under Grant CCF-1405119.

Copyright (c) 2014 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other pur-
poses must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org.

to use maximum distance separable (MDS) codes such as
Reed–Solomon codes. Though MDS codes are the most
space–efficient for a targeted worst–case number of si-
multaneous node failures, they, unlike repetition codes,
incur a high repair bandwidth1 when the system un-
dergoes the repair of a single node failure. A new class
of erasure codes, called regenerating codes, was recently
defined by Dimakis et al. [5] over a set of n nodes, which
simultaneously optimizes storage efficiency, worst–case
resilience and repair bandwidth for single node failures.
These codes follow a trade–off curve which is intuitively
evidenced by the contrast between repetition codes and
MDS codes: the repair bandwidth decreases as the stor-
age redundancy per node increases.

Formally, a file F of size M, is said to be stored on a
DSS consisting of n nodes, each with a storage capacity
of α, using an [n, k, d]-(α) (or, in short, [n, k, d]) regener-
ating code, if it satisfies two properties:
(a) data recovery: the file F can be recovered using the

contents of any k of the n nodes (this property will
also be referred to as the MDS property); and

(b) repair property: the contents of any node can be re-
covered using the contents of a helper set of any
d other helper nodes, where each node transmits β
number of symbols to the replacement node.

An optimal [n, k, d] regenerating code achieves the opti-
mal value of total repair bandwidth γ = dβ (minimum
repair bandwidth) for a given storage capacity α and M.
This is given implicitly by the following trade–off:

M =
k−1

∑
i=0

min {α, (d− i)β} . (1)

Most of the regenerating codes research (e.g. [6]–[15])
is focussed on the extremal points of this trade–off: MBR
and MSR codes. Minimum bandwidth regenerating (MBR)
codes achieve the optimal α when the repair bandwidth
equals that of a repetition code. This paper concerns min-
imum storage regenerating (MSR) codes, often dubbed as
optimal bandwidth MDS codes, because they are optimal
regenerating codes that are also MDS codes2. For these
codes, α = M/k, and the optimal repair bandwidth is
given by:

β =
α

d− k + 1
. (2)

1A recent work [4] revisits this for the case of Reed–Solomon codes.
2To be precise, these are vector MDS codes, i.e., MDS codes over Fα

q .
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It is easy to see that the total repair bandwidth dβ is
optimized when the number of helper nodes d = n −
1. However, it is not always practical to connect to all
the remaining nodes to aid the repair of a failed node.
We therefore consider the following question: Are there
constructions of [n, k, d] MSR codes, for d < n− 1?

A. Previous Work
This question had not been wholly unanswered before

this paper. The first MSR code constructions appeared
in [7], [16], which roughly correspond to the family of
parameters {n, k, d} with rate k/n 6 1/2. The asymp-
totic existence of MSR codes for all triples {n, k, d} was
eventually shown in [11] using interference alignment
techniques developed for a wireless interference channel;
these codes achieve optimality as a regenerating code (as
well as approach the MSR point) only when α→ ∞, i.e.,
β/α→ 1/(d− k + 1), as M→ ∞.

MSR codes, being MDS vector codes, can be expressed
as a set of k systematic vectors and n − k parity vec-
tors (the corresponding nodes are referred to as sys-
tematic and parity nodes, respectively). For the high–
rate (k/n > 1/2) regime, code constructions were dis-
covered independently in [12]–[14], [17] for the specific
case of d = n − 1. Of these, the constructions in [12],
[13], [17] focus on the relaxation of restricting optimal
repair to systematic nodes in the system; we call the cor-
responding codes systematic–repair MSR codes. Practical
systems usually store information in a systematic for-
mat. Parity nodes may fail, but as in the above works,
we do not require optimal bandwidth repair for such
nodes (maybe they are less urgent or critical). Clearly,
any node can be repaired by reconstructing the whole
file, so this covers the node repairability (even if subop-
timally). Wang et al. construct an MSR code for d = n− 1
in [14] that achieves the optimal repair bandwidth also
for parity nodes, albeit at the cost of some other metrics
such as the number of symbols read from a node (access-
optimality) and the complexity of updating parities when
systematic data changes (update-optimality). Agarwal et
al. in [18], and Raviv et al. in [19] have also presented al-
ternative constructions of access-optimal MSR codes for
d = n − 1 while achieving the corresponding optimal
sub-packetization.

B. Contribution & Outline
We present the first3 high–rate finite–α constructions

for systematic–repair MSR codes for d < n− 1. We start
by describing in Section II the representative code con-
struction that contains the ideas behind those in [12],
[13], [17]. Leveraging on this, we present our construc-
tion in Section III, but restrict to the case when the helper
nodes contain the remaining k− 1 systematic nodes. This

3This work was first presented as an invited talk at the 53rd Annual
Allerton Conference on Communication, Control, and Computing. A
simultaneous result was presented at the same venue by Tamo and En
Gad [20].

restriction is removed in Section IV, thus rounding out
the code construction. In Section V, we further general-
ize the construction to systematic–repair [n, k] MSR codes
that universally achieve the optimal repair bandwidth
for any given d helper nodes (k 6 d 6 n− 1). We con-
clude with some remarks in Section VI.

C. Subsequent Work

Since this work was first presented, a flurry of re-
cent results have essentially completely solved the prob-
lem of constructing [n, k, d] MSR codes. Rawat et al. [21]
construct MSR codes which optimally repair all nodes.
However, the flavor of their construction, which is not
systematic in nature, differs from ours. Most recently,
Ye and Barg [22], [23] show that [n, k, d] MSR codes can
be explicitly constructed4 over a small finite field and
with a near optimal sub-packetization α. Birenjith et al.
[24] also construct explicit [n, k, d = n − 1] MSR codes
with these properties. An interesting and related direc-
tion has been covered in [25] and [26] where MDS codes
have been constructed that have a significantly reduced
sub-packetization α at the expense of achieving only a
near-optimal (and not the optimal) repair bandwidth.

II. Primer: Code Construction for d = n− 1

Let n = k + r denote the number of nodes in the dis-
tributed storage system, where each node has the capac-
ity to store a vector of size α over Fq. Throughout this
paper, we discuss systematic constructions and assume
that the first k nodes are systematic nodes and store raw
information, while the remaining r nodes correspond to
the parities. We use the notation xi, i ∈ [k], for the raw
systematic vectors stored in the systematic nodes. The
parity nodes are defined by

xk+i =
k

∑
j=1

Aijxj, i ∈ [r], (3)

where Aij’s are α× α encoding matrices. The generator
matrix of the code is then given by

G =



I 0
. . .

0 I
A1,1 · · · A1,k

...
. . .

...
Ar,1 · · · Ar,k


. (4)

In this section, we consider MSR codes where d =
n− 1. In other words, when a single node failure occurs,
all the remaining nodes aid in its repair. We also restrict
our attention to codes that consider failures only of the
systematic nodes, and discuss in this section, a construc-
tion that underlies the ideas in [13], [17] and [12]. Note

4Explicitness implies that the generator or the parity check matrix
of the code can be explicitly specified, not merely proved to exist.



that the construction is optimal neither in terms of sub-
packetization for access-optimal MSR codes nor in terms
of field size. However, its simplicity will inform our gen-
eralization for the general parameter triple {n, k, d} in
Section III.

A commonly adopted strategy in constructing an MSR
code is to first guarantee the optimal repair bandwidth
property for a single failure (in this case, for a single sys-
tematic node failure), and then transform the construc-
tion to ensure the MDS property. This is illustrated in
Example 1 below.

Example 1. Assume (n, k, d) = (4, 2, 3) and α = 4. Let
the first two nodes x1 and x2 be the systematic nodes,
and let the parity nodes x3 and x4 be defined as

x3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

I

x1 +


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

I

x2,

x4 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


︸ ︷︷ ︸

P1

x1 +


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

P2

x2.

Fig. 1 (a) depicts the component-wise storage in each
node. It can be observed that a single failure in either
x1 or x2 can be reconstructed by downloading α/2 = 2
elements from each of the remaining d = 3 nodes. How-
ever, the data is not recoverable if both x1 and x2 fail and
hence, the code is not MDS. To overcome this problem,

we associate a coefficient λ with P2 such that
(

I I
P1 λP2

)
,

which is the sub-matrix of the generator matrix G corre-
sponding to the nodes x3 and x4, is non-singular. Note
that,

∣∣∣∣ I I
P1 λP2

∣∣∣∣=det(λP2 − P1)=

∣∣∣∣∣∣∣∣
0 λ −1 0
λ 0 0 −1
−1 0 0 λ
0 −1 λ 0

∣∣∣∣∣∣∣∣=(λ2 − 1)2,

which is non-zero5 if the field size q = 5 and λ = 2. Fig. 1

(b) shows the component-wise storage for the resulting
MSR code.

Construction 1 generalizes the construction given in
Example 1 for an [n, k, n− 1] MSR code. Note that any
MSR code construction must specify both the generator

5In general for α× α matrices A, B, C, and D, if D is nonsingular, then

the calculation of its Schur complement yields in det
([A B

C λD

])
=

det(D)det(λA− BD−1C), which is a polynomial of degree at most α in
λ. Therefore, if the field size is large enough, i.e. q > α, one can always
find a value for λ so that the 2× 2 block matrix becomes non-singular
as well. The same approach can be used to prove Lemma 5.

Fig. 1. (a) Component wise storage in a [4, 2, 3] binary array code
with optimal repair bandwidth for a single systematic node failure,
described by (x1, x2, x1 + x2, P1x1 + P2x2); (b) A (4, 2, 3) MSR code in
F5 described by (x1, x2, x1 + x2, P1x1 + 2P2x2). In both cases, gray cells
are accessed to rebuild C1.

matrix of the code as well as the optimal bandwidth re-
pair strategy that is implemented on the code.

Construction 1. Let α = rk and label the α elements [0 :
rk − 1] by r-ary vectors in Zk

r . Define permutation f `j on
[0 : rk − 1] as follows:

f `j : Zk
r → Zk

r
v 7→ v + `ej,

for j ∈ [k] and ` ∈ [0 : r − 1] := {0, 1, . . . , r − 1}, where
{e1, e2, . . . , ek} is the standard vector basis for Zk

r . The
mapping f `j is bijective, and therefore, corresponds to a
permutation on [0 : rk − 1]. Let P`,j be the α× α matrix
corresponding to the permutation f `j , that is, P`,j x = y,
where x, y ∈ Fα

q , and x(v) = y( f `j (v)). Here, x(v) corre-
sponds to the vth coordinate of vector x, where v is the
k-ary representation of a number in [0 : α− 1]. In other
words, P`,j scrambles the elements of a vector according
to the permutation f `j . (Notice that P0,j = Iα.)

1) MSR Code: The generator matrix of the code is given
by (4), where Ai,j = λi,jPi−1,j, i ∈ [r] and j ∈ [k].
The non-zero coefficients λi,j ∈ Fq will be defined
in Section II-B to ensure the MDS property.

2) Repair Strategy: Let Yj = {v ∈ [0, rk − 1] : v · ej = 0}
denote a subset of [0 : rk − 1]. Yj can be interpreted
as those elements in [0 : α − 1] whose label rep-
resentation in Zk

r have a 0 in their jth coordinate.
If systematic node j fails, it is repaired by access-
ing the elements corresponding to Yj from each of
the remaining nodes, i.e., by accessing xi(v), where
v ∈ Yj and j 6= i ∈ [n].

Construction 1 is obtained by first constructing an
[n, k] array code6 (Section II-A) which guarantees the op-
timal bandwidth repair for a single systematic node fail-
ure. The array code is then transformed (Section II-B)
to an MDS array code (and thereby, a systematic–repair
MSR code) by transforming the encoding matrices of the
parity nodes, while retaining the repair property.

6By an [n, k] array code, we mean a set of k systematic vectors, and
n− k parity vectors defined according to (3), which may or may not
satisfy any properties.



A. Repair Property: Interference Alignment

The optimal repair bandwidth property of an [n, k, n−
1] MSR code can be viewed as a signal interference prob-
lem: the objective is to retrieve the desired signal — the
contents of the failed systematic node, say, xi — which, in
the repair data downloaded from the remaining nodes,
is interfered by partial contents of the remaining system-
atic nodes, xj, where i 6= j ∈ [n]. The solution, turns out
to be an interference alignment strategy, where the repair
data associated with the interfering systematic data is
aligned, so as to minimize the interference. This is crys-
tallized in the following lemma7.

Lemma 1. Let xi, i ∈ [k], be the failed systematic node. For
an [n, k, n− 1] MSR code, the set of d = n− 1 helper nodes
is given by D = {xj | j ∈ [n]\{i}}. To recover the contents of
the failed systematic node with the optimal repair bandwidth,
it is necessary and sufficient to find n− 1 (repair) matrices
denoted by {Si

j ∈ Fα/r×α
q | j ∈ [n]\{i}}, where r = n − k,

such that, for j ∈ [k], j 6= i, the following two conditions are
satisfied:
(a) signal recovery:

rank




Si
k+1 A1,i

Si
k+2 A2,i

...
Si

k+r Ar,i


 = α, (5)

(b) interference alignment:

rank




Si
j

Si
k+1 A1,j

...
Si

k+r Ar,j


 =

α

r
. (6)

Stated otherwise, to optimally repair xi, it is necessary and
sufficient to find n− 1 (repair) subspaces of dimension α/r,
denoted8 by {Si

j | j ∈ [n]\{i}}, where r = n− k, such that,
for j ∈ [k], j 6= i, the following two conditions are satisfied:
(a) signal recovery:

Si
k+1 A1,i ⊕ · · · ⊕ Si

k+r Ar,i w Fα
q , (7)

(b) interference alignment:

Si
j w Si

k+s As,j, ∀ s ∈ [r], (8)

where w denotes equality of subspaces, SA is the subspace
obtained by operating the subspace S by the matrix A, and ⊕
denotes the subspace sum.

For completeness, we provide a proof for Lemma 1 in
Appendix A. Lemma 2 generalizes Lemma 1 when the

7This result is known and has been used in several papers on MSR
codes, but we state and prove it for completeness.

8Whenever this lemma is referenced, we use the subspace and ma-
trix notation interchangeably as some proofs or expressions are clearer
in one of the formats. We accordingly overload the notation Si

j to re-
fer to both the matrix and the subspace spanned by the row vectors of
the matrix.

Fig. 2. Visualization of Lemma 1(a) (left), and Lemma 1(b) (right) to
justify repair optimality in Construction 1.

number of helper nodes d < n − 1. This will be used
later in Section III.

Lemma 2. (Corollary of Lemma 1.) In general, for an
[n, k, d] MSR code, if the set of d = (k− 1)+ t < n− 1 helper
nodes is given by D = {xj | j ∈ J = [k]\{i}∪ {b1, · · · , bt}}
(where bi ∈ {k + 1, . . . , n} denote the t parity nodes in the
helper set), it is necessary and sufficient to find d (repair) sub-
spaces of dimension α/t denoted by {Si

j | j ∈ J }, such that,
for j ∈ [k], j 6= i, the following two conditions are satisfied:

Si
b1

Ab1−k,i ⊕ · · · ⊕ Si
bt

Abt−k,i w Fα
q , (9)

Si
j w Si

bs
Abs−k,j, ∀ s ∈ [t]. (10)

The optimal repair property of Construction 1 can now
be justified.

Lemma 3. The repair strategy in Construction 1 is optimal
with respect to repair bandwidth.

Proof: Define Si
j , Si , Yi, j 6= i. Notice that the rank

of subspace Si is rk−1 = α/r. Per definition, the permuta-
tion P`,i maps Yi to Yi + `ei = {v ∈ [0, rk − 1] : v · ei = `}.
This implies that for any distinct `, `′ ∈ [0 : r − 1], the
intersection SiP`,i ∩ SiP`′ ,i contains only the all-zero vec-
tor. Thus the subspaces: Si, SiP1,i, . . . , SiPr−1,i, span the
space Fα

q (α = rk) and the signal recovery condition(s) in
Lemma 1 are satisfied; see Fig. 2. Furthermore, applying
a permutation P`,j corresponding to a different coordi-
nate j 6= i maps Yi to itself. This validates the interfer-
ence alignment condition(s) in Lemma 1. Finally, note
that the two conditions continue to be satisfied when re-
placing the permutations Pi−1,j with any scaled versions
Ai,j = λi,jPi−1,j, because the scaling of the basis vectors
does not change the relevant subspaces and thereby does
not affect the conditions in Lemma 1.

B. MDS Property
This second step relies on the following two lemmas,

the proofs of which are left to the reader.

Lemma 4. Let B denote the parity part of the generator ma-
trix for an [n, k] array code denoted by C, where

B =

 B1,1 · · · B1,k
...

. . .
...

Br,1 · · · Br,k

 .



Given that Bi,j is non-singular for all i, j, C is an MDS array
code if and only if any square sub-block-matrix B′ of B is also
non-singular, where

B′ =

 Bi1,j1 · · · Bi1,jt
...

. . .
...

Bit ,j1 · · · Bit ,jt

 ,

for some {i1, · · · , it} ⊂ [r], {j1, · · · , jt} ⊂ [k].

Lemma 5. Let B denote the rα× kα matrix associated with
the parity part of the generator matrix for an [n, k] array code,
as defined in Lemma 4. Given that Bi,j is non-singular for all
i ∈ [r], j ∈ [k], and the field size q is large enough, there exist
coefficients λi,j ∈ Fq, such that all square sub-block-matrices
of A are non-singular, where

A =

 λ1,1B1,1 · · · λ1,kB1,k
...

. . .
...

λr,1Br,1 · · · λr,kBr,k

 .

In other words, any parity generator matrix B for an [n, k]
array code with non-singular encoding matrices can be trans-
formed into a parity generator matrix A for an [n, k] MDS
array code by multiplying the encoding matrices with appro-
priate scalar coefficients.

Proof Sketch: To obtain a valid set of λi,j’s, one may
first sort the pairs (i, j) with respect to i + j increasingly,
and then recursively choose a value for each λi,j such
that all sub-block-matrices with λi,j Ai,j on their bottom
right corner become non-singular. It suffices to have the
field size q greater than the number of such sub-block-
matrices at any step multiplied by α;

|F| > qMDS = α max
t

{(
n− k− 1

t

)
×
(

k− 1
t

)∣∣∣∣t ∈ [k]
}

. (11)

Remark: Notice that this construction is slightly differ-
ent than that described in [17], where the authors choose
different permutation matrices with a potentially smaller
value of m in α = rm. This is achieved by choosing a dif-
ferent set of vectors than {ei, i ∈ [k]} when defining the
permutations in Construction 1. However, we forego the
analysis of reducing m for the sake of simplicity and
readability, and take the current construction as a start-
ing point for the generalized construction below.

III. Code Construction for Restricted Helper Set

We now move to the construction of [n, k, d]
systematic–repair MSR codes for any n, k, and d, where
k + 1 6 d 6 n − 1. In this section, we start with the
restricted case when the helper set D includes all re-
maining k − 1 systematic nodes. Let us begin with an
example.

Example 2. Let us look at the case when [n, k, d] =
[k+ 3, k, k+ 1] for k ∈N. Given a failure at the systematic
node i, we are interested in repairing it by downloading

α
d−k+1 = α

2 symbols from each node in the helper set
Di. Let us assume that Di includes all of the remaining
k− 1 systematic nodes. Hence, there are (3

2) = 3 differ-
ent ways to choose Di depending on which two parity
nodes are included in it. Let us use an indicator a ∈ [3]
to differentiate between these scenarios, and denote the
helper set for each scenario by Di,a.

Construction. Let α = 23k and label the α elements [0 :
23k − 1] by binary vectors in Z3k

2 . Define permutation f `j
on [0 : 23k − 1] as follows:

f `j : Z3k
2 → Z3k

2

v 7→ v + `ej,

for j ∈ [3k] and ` ∈ {0, 1}, where {e1, e2, · · · , e3k} is the
standard vector basis for Z3k

2 . The mapping f `j is again
bijective and therefore corresponds to a permutation on
[0 : 23k − 1]. As before, let P`,j be the α× α matrix corre-
sponding to the permutation f `j , that is, P`,jx = y, where
x, y ∈ Fα

q , and x(v) = y( f `j (v)). As before, x(v) is the vth

coordinate of x ∈ Fα
q , where v is the k-ary vector repre-

sentation of the coordinate, and P0,j = Iα.)
1) MSR Code: The generator matrix of the code is given

by

G =



I 0
. . .

0 I
A1,1 · · · A1,k
A2,1 · · · A2,k
A3,1 · · · A3,k


,

where

A1,j = λ1,j P0,3j−2 P0,3j−1,

A2,j = λ2,j P1,3j−2 P0,3j,

A3,j = λ3,j P1,3j−1 P1,3j, (12)

for j ∈ [k]. The non-zero coefficients λi,j ∈ Fq are
again selected according to the discussion in Section
II-B to establish the MDS property.

2) Repair Strategy via Di,1 = {xj|j ∈ [k + 3], j 6= i, k + 3}:
Let Yi,1 = {v ∈ [0 : 23k − 1] : v · e3i−2 = 0} denote a
subset of [0 : 23k− 1]. Yi,1 can be interpreted as those
elements in [0 : 23k − 1] whose label representation
in Z3k

2 has a 0 in its (3i − 2)th coordinate. If sys-
tematic node i fails, it can be repaired by accessing
the elements corresponding to Yi,1 from each of the
helper nodes, i.e., by accessing xj(v), where v ∈ Yi,1
and j ∈ {1, 2, · · · , i− 1, i + 1, · · · , k, k + 1, k + 2}.

3) Repair Strategy via Di,2 = {xj|j ∈ [k + 3], j 6= i, k + 2}:
Similarly, let Yi,2 = {v ∈ [0 : 23k − 1] : v · e3i−1 =
0}. If systematic node i fails, it can be repaired by
accessing xj(v), where v ∈ Yi,2 and j ∈ {1, 2, · · · , i−
1, i + 1, · · · , k, k + 1, k + 3}.

4) Repair Strategy via Di,3 = {xj|j ∈ [k + 3], j 6= i, k + 1}:
Finally, let Yi,3 = {v ∈ [0 : 23k − 1] : v · e3i = 0}
denote the location of the elements that are ac-
cessed if systematic node i fails, i.e., node i can



be repaired by accessing xj(v), where v ∈ Yi,3 and
j ∈ {1, 2, · · · , i− 1, i + 1, · · · , k, k + 2, k + 3}.

Justification of the repair strategy: Let xi, i ∈ [k],
be the failed systematic node. Define Qu,v = Au,vλ−1

u,v,
u ∈ [3], v ∈ [k]; this is a product of multiple permutation
matrices, and hence can be viewed as a permutation ma-
trix itself. In order to justify the repair strategy, it suffices
to define the proper subspaces Si

j that fulfill the two in-
terference alignment conditions in Lemma 2. Let Ui,a be
the complimentary subset of Yi,a in Z3k

2 , i.e.,

Ui,1 = {v ∈ [0 : 23k − 1] : v · e3i−2 = 1},
Ui,2 = {v ∈ [0 : 23k − 1] : v · e3i−1 = 1},
Ui,3 = {v ∈ [0 : 23k − 1] : v · e3i = 1}.

Given the code construction in (12), we can verify that

Yi,1Q1,i = Yi,1, Yi,2Q1,i = Yi,2, Yi,3Q1,i = Yi,3,
Ui,1Q1,i = Ui,1, Ui,2Q1,i = Ui,2, Ui,3Q1,i = Ui,3,
Yi,1Q2,i = Ui,1, Yi,2Q2,i = Yi,2, Yi,3Q2,i = Yi,3,
Ui,1Q2,i = Yi,1, Ui,2Q2,i = Ui,2, Ui,3Q2,i = Ui,3,
Yi,1Q3,i = Yi,1, Yi,2Q3,i = Ui,2, Yi,3Q3,i = Ui,3,
Ui,1Q3,i = Ui,1, Ui,2Q3,i = Yi,2, Ui,3Q3,i = Yi,3,

and,
Yi′ ,uQi,j = Yi′ ,u , Ui′ ,uQi,j = Ui′ ,u , for i′ 6= i. (13)

Now we define subspaces Si
j,a , Si

a , Yi,a, j 6= i, a ∈ [3].
Let us for simplicity assume a = 1. The other scenarios
can be justified similarly. Based on (13), we observe that
the permutation Q2,i maps the basis Yi,1 to its comple-
mentary subset Ui,1 and vice versa, while Q1,i preserves
both of them. Hence,

rank

((
Si

1Q1,i
Si

1Q2,i

))
= rank

((
Yi,1
Ui,1

))
= α.

Furthermore, Yi,1 remains unchanged under any other
permutation Qt,j, j 6= i, and hence

rank

 Si
1

Si
1Q1,i′

Si
1Q2,i′

 = rank

 Yi,1
Yi,1
Yi,1

 =
α

2
.

The key element in the construction is to satisfy the two
requirements in Lemma 2 for any systematic failure and
any such helper set D. Let ρ = d− k+ 1 denote the num-
ber of parity nodes in the helper set of size d. There are
(r

ρ) different ways to choose ρ parity nodes during the re-
pair. Let us label these cases with numbers a ∈ [(r

ρ)], and
set Ra to be the subset of parity nodes corresponding to
case a.

Assume that Ra = {x
k+d(a)

1
, x

k+d(a)
2

, · · · , x
k+d(a)

ρ
},

where {d(a)
1 , · · · , d(a)

ρ } ⊂ [r]. Finally, define r-ary vectors
ωa for a ∈ [(r

ρ)] as

ωa(i) =

{
t− 1 if ∃t : i = d(a)

t ,
0 otherwise.

Fig. 3. Relation between ωa and (12).

Construction 2. Let α = ρ
k(r

ρ) and label the α elements

[0 : α− 1] by ρ-ary vectors in Z
k(r

ρ)
ρ . Define permutation

f `j on [0 : α− 1] as follows:

f `j : Z
k(r

ρ)
ρ → Z

k(r
ρ)

ρ

v 7→ v + `ej,

for j ∈ [k(r
ρ)] and ` ∈ [0 : ρ− 1], where {e1, · · · , ek(r

ρ)
} is

the standard vector basis of Z
k(r

ρ)
ρ . Let P`,j be the α× α

matrix corresponding to the permutation f `j .

1) MSR Code: The generator matrix of the [n, k, d] code
is given by (4), where

Ai,j = λi,j ∏
a∈[(r

ρ)]

Pwa(i), a+(j−1)(r
ρ)

, for j ∈ [k], i ∈ [r].

The non-zero coefficients λi,j ∈ Fq are defined ac-
cording to Section II-B to ensure the MDS property;
and later will be modified again in Section IV.

2) Repair Strategy: Let Ra correspond to the parity sub-
set of the helper set D. Define Yj,a ⊂ [0 : α− 1] as
{x ∈ [0, α − 1] : x · ea+(j−1)(r

ρ)
= 0}. If systematic

node j fails, it is repaired by accessing the elements
corresponding to Yj,a from helper nodes, i.e., by ac-
cessing xi(v), where i ∈ D, and v ∈ Yj,a.

Lemma 6. The repair strategy in Construction 2 is optimal
with respect to repair bandwidth.

Proof: Let us first explain the role of ωa by revisiting
Example 2 via Fig. 3. Note that the matrix P0,x for any x
is also equal to the identity matrix Iα. Here we assumed
that

a = 1→ R1 = {xk+1, xk+2} → ω1 = (0, 1, 0)t,

a = 2→ R2 = {xk+1, xk+3} → ω2 = (0, 0, 1)t,

a = 3→ R3 = {xk+2, xk+3} → ω3 = (0, 0, 1)t.

In general, the matrix Ω = {ω1|ω2| · · · |ω(r
ρ)
} is designed

in a way that for any choice of a ∈ [(r
ρ)] we can always

find a column in Ω, denoted by ωa, such that its inter-
section with ρ rows associated with scenario a, forms
{0, 1, · · · , ρ− 1}.

Now assume that systematic node i fails and we are to
perform an optimal repair given that the parity nodes in
the helper set are in Ra = {x

k+d(a)
1

, x
k+d(a)

2
, · · · , x

k+d(a)
ρ
}.



Define Qu,v = λ−1
u,v Au,v; this is a product of multiple per-

mutation matrices, and hence can be viewed as a permu-
tation matrix itself. It again suffices to define the proper
subspaces Si

j that fulfill the two interference alignment
conditions in Lemma 2. Let us select our subspaces as
Si

j,a , Si
a , Yi,a = {x|x · ea+(i−1)(r

ρ)
= 0}. We have

Yi,aQ
d(a)

1 ,i
= {x|x · ea+(i−1)(r

ρ)
= 0},

Yi,aQ
d(a)

2 ,i
= {x|x · ea+(i−1)(r

ρ)
= 1},

...
Yi,aQ

d(a)
ρ ,i

= {x|x · ea+(i−1)(r
ρ)
= ρ− 1},

and hence,

rank




Si

aQ
d(a)

1 ,i

Si
aQ

d(a)
2 ,i

...
Si

aQ
d(a)

ρ ,i



 = ρ× rank (Yi,a) = ρ
α

ρ
= α.

The second condition in Lemma 2 is also automatically
satisfied since

Yi,a ' Yi,aQ1,i′ ' Yi,aQ2,i′ ' · · · ' Yi,aQ(r
ρ),i
′ for i′ 6= i.

Remark: Note that the sub-packetization α can be op-
timized further, but it is not the goal in this paper. Al-
though Construction 2 suggests a fairly large value, i.e.
α = ρ

k(r
ρ), it is clear that we do not need (r

ρ) columns
in Ω to cover all the (r

ρ) helper set selection scenarios.
Indeed, α in Example 2 can be reduced to 22k, where
Ωnew = {ω1|ω2}. We leave the optimization strategies
of this kind to future work. We also refer the reader
to [22]–[24], where MSR constructions with near-optimal
sub-packetization parameter, e.g. α = rbn/rc, are intro-
duced. A different approach to solve this problem is
presented in [27], which is a method to reduce the sub-
packetization of the existing constructions dramatically
in exchange for a slight increase in repair bandwidth.

IV. Code Construction for any Helper Set

In this section, we show that Construction 2 in fact
holds, even when an arbitrary set of d helper nodes is
allowed to be chosen from the (n− 1) surviving nodes.
This generality merely imposes some additional con-
straints on the selection of the scaling coefficients λi,j
of the encoding matrices Ai,j = λi,jQi,j, where Qi,j is the
(product) permutation matrix corresponding to Ai,j, as
defined in Construction 2. We now arrive at the main
theorem.

Theorem 7. Construction 2 gives an [n, k, d] systematic–
repair MSR code for any set of d helper nodes, for a large
enough field size for the scaling coefficients λi,j for the encod-
ing matrices Ai,j.

Proof: Part 1: First, we illustrate the proof by fixing
d = k + 1, and taking an example set of helper nodes for
an example failure of node x1 (or node 1). Let us denote
the (indices of the) helper set by D, and let D = {h, h +
1, . . . , k, k + 1, . . . , k + h}, that is, there are h parity nodes
and d − h = k + 1 − h systematic nodes in the helper
set. Let Sj

i(D)xi denote the repair information that node
i sends to help in the repair of node j when D is the set
of helper nodes. (Wherever clear, we ignore the D in the
notation and simply write Sj

i .) When node 1 fails, the
information we therefore have at its replacement node
can be written as:

x1 x2 · · · xh xh+1 · · · xk−1 xk



S1
h

S1
h+1

. . .
S1

k−1
S1

k
S1

k+1 A11 S1
k+1 A12 · · · · · · S1

k+1 A1k
...

...
...

...
...

S1
k+h Ah1 S1

k+h Ah2 · · · · · · S1
k+h Ahk



x1
x2
...

xh
xh+1

...
xk−1

xk


(14)

Suppose all S1
j ’s in (14) be replaced by a repair sub-

space S1 (corresponding to Lemma 1(b)) that we would
have used if D = {2, 3, . . . , k, k + 1, k + 2}. Specifically,
suppose S1 A1,1 and S1 complete the space Fα

q . Since S1

and S1 Ai,j denote the same subspace, for j 6= 1, the com-
ponents of xi, i ∈ {h, h+ 1, . . . , k} can be easily subtracted
from the information coming from the parity nodes , us-
ing that coming from the systematic nodes h to k. Thus,
in order to recover x1, we can concentrate on the follow-
ing information at the replacement node:

x1 x2 · · · xh−2 xh−1


S1 A11 S1 A12 · · · S1 A1,h−2 S1 A1,h−1
S1 A21 S1 A22 · · · S1 A2,h−2 S1 A2,h−1

...
...

...
...

...
S1 Ah1 S1 Ah2 · · · S1 Ah,h−2 S1 Ah,h−1


x1
x2
...

xh−2
xh−1

(15)

Let S1 Ai,j = λi,jS1Qi,j = λi,jQ̃i,jS1, where Q̃i,j is an
α/2× α/2 matrix, and (i, j) 6= (1, 1). It must be noted
that not only is S1 dependent on the choice of D, but so
in turn is Q̃i,j. Let us also denote S1xi by x̃i. Then, (15)
can be rewritten as:

λ1,1S1Q1,1 λ1,2Q̃1,2 · · · λ1,h−1Q̃1,h−1
λ2,1Q̃2,1S1 λ2,2Q̃2,2 · · · λ2,h−1Q̃2,h−1

...
...

. . .
...

λh,1Q̃h,1S1 λh,2Q̃h,2 · · · λh,h−1Q̃h,h−1




x1
x̃2
...

x̃h−1

 .(16)

The matrix in (16) — call it M — is a square matrix
of dimensions hα/2× hα/2. A sufficient condition to re-
cover x1 is that M is invertible. Notice that the determi-
nant of M, det(M), is a polynomial in the following vari-
ables: λi,j, i ∈ [h], j ∈ [h− 1]. Hence, det(M) is a nonzero



polynomial of degree hα/2 in the given variables. From
Schwartz–Zippel–DeMillo–Lipton lemma [28], if the fi-
nite field Fq over which the determinant is defined has
cardinality |Fq| = q > hα/2, there exist λi,j’s for which
the determinant det(M) above is nonzero.

Part 2: Notice that M above is defined for a par-
ticular example scenario. In general, let the number of
helper nodes be d, the failed systematic node be f ∈ [k],
the set of helper nodes by D ⊆ [n]\{ f }, the set of sys-
tematic helper nodes be Ds ⊆ [k]\{ f }, and the set of
parity helper nodes be Dp ⊆ [k + 1 : k + r]. Let the
number of parity helper nodes be denoted by h, where
h ranges from d − k + 1 to r. Let us represent by Hp
the set of parity helper nodes but indexed within [r],
where i corresponds to node k + i of the system, that is,
Hp = {i | k + i ∈ Dp} ⊆ [r].

The matrix M in (16), in general, can be seen to be a
square matrix of dimensions hα/(d − k + 1) × hα/(d −
k + 1). In particular, M is a function of f , Ds, and Hp,
and the determinant polynomial has degree which is a
function of |Dp| = h and d. For each f , Ds and Hp, we
obtain a sufficiency condition that the corresponding M
is invertible. Therefore, the product of the correspond-
ing determinant polynomials is a nonzero polynomial of
degree

qANY = k

(
r

∑
h=d−k+1

(
r
h

)(
k− 1
d− h

)
hα

d− k + 1

)

=

(
r

∑
h=d−k+1

h
(

r
h

)(
k− 1
d− h

))
kα

d− k + 1
; (17)

consequently, there exist λi,j’s in F such that any system-
atic node is repairable with optimal repair bandwidth
using any arbitrary set of d helper nodes, as long as the
field size |F| > qANY.

Part 3: Finally, using Lemma 4, Lemma 5, and Lemma
6, we obtain an [n, k, d] systematic–repair MSR code for
any set of d helper nodes, when the field size q >
qANY + qMDS.

Remark: As shown in [17], the sufficiency conditions on
the field size such as equation (11) are not always nec-
essary. Indeed, the authors in [17] show that for small
values of r there exist smart choices of coefficients λi,j
such that a field size of 3 or 4 would suffice. However
for arbitary values of r, their construction also follows a
combinatorial Nullstellensatz argument to prove the ex-
istence of such codes. Note that for the case of d = n− 1,
there is only one selection of helper sets, and hence con-
dition (17) becomes unnecessary.

Table I provides a comparison of these sufficiency con-
ditions for a select set of code parameters. The calcula-
tion of qMDS and qANY assumes a large value for n. The
field size is only given based on sufficiency conditions
in equations (11) and (17), which is based on an exis-
tence argument. However as shown in [17], the explicit
and optimized constructions of MSR codes may require
much smaller field sizes. The last row in the table corre-
sponds to the all-d construction in Example 3.

[n, k, d] α qMDS/α qANY/α |F|/α

[n, n− 2, n− 1] 2n−2 n− 1 n− 2 O(n)
[n, n− 3, n− 1] 3n−3 2(n−4

2 ) n− 3 O(n2)

[n, n− 3, n− 2] 23(n−3) 2(n−4
2 ) 3(n−2

2 ) O(n2)

[n, n− 4, n− 1] 4n−4 3(n−5
3 ) n− 4 O(n3)

[n, n− 4, n− 2] 36(n−4) 3(n−5
3 ) 4(n−2)(n−4)

3 O(n3)

[n, n− 4, n− 3] 24(n−4) 3(n−5
3 ) (n−4)(2n2−9n+52)

2 O(n3)

[n, n− 3] all-d 64(n−3) 2(n−4
2 ) (n−3)(3n−4)

2 O(n2)

TABLE I
Sub-packetization and field size of the proposed MSR codes for

a select set of parameters.

V. Construction of [n, k] MSR Codes

This section is devoted to generalizing the construc-
tion of [n, k, d] MSR codes from previous sections to [n, k]
MSR codes, where a fixed code construction achieves the
optimal repair bandwidth for any given d helper nodes
(k 6 d 6 n− 1).

Definition. Let Ω be an r × θ matrix, where its elements
are chosen from Zτ and τ is the least common multiple
lcm{1, 2, · · · , r}. We call Ω an (r, θ)-Product Matrix if and
only if for any subset of rows in Ω such as {i1, · · · , iρ} ⊂ [r]
(for ρ 6 r), there exists a column c ∈ [θ] which intersects
with these rows in the set of all the elements modulo Zρ.

We previously mentioned that the matrix Ω in Fig. 3

satisfies the property that for any selection of two rows,
there exists a column such that it intersects with those
rows in {0, 1}, the set of all elements modulo Z2. Before
proceeding with an example construction of a Product
Matrix, recall the definition of ωa(i), which was the key
element in Construction 2. Consider an r× (r

ρ) matrix Ω
where

Ωi,a = ωa(i) for i ∈ [r] and a ∈
[(

r
ρ

)]
.

It is easy to verify that for any selection of ρ rows from
Ω, one can find a column whose intersection with these
rows form all elements in {0, 1, · · · , ρ− 1}.

Example 3. A simple way to construct a Product Matrix
is to concatenate the Ω matrices from Construction 2 for
different values of ρ 6 r and arrive at an r × θ matrix
where θ = (r

r) + ( r
r−1) + · · ·+ (r

2). The (3, 4)-Product Ma-
trix defined as

Ω =

 0 0 0 1
1 0 1 0
2 1 0 0

 ,

where the elements are chosen from Z6, serves as such
an example.

Construction 3. Let Ω be an (r, θ)-Product Matrix. De-
fine α = τkθ , where τ = lcm{1, 2, · · · , r}, and label the



α elements [0 : α − 1] by τ-ary vectors in Zkθ
τ . Define

permutation f `j on [0 : α− 1] as follows:

f `j : Zkθ
τ → Zkθ

τ

v 7→ v + `ej,

for j ∈ [kθ] and ` ∈ [0 : τ− 1], where {e1, · · · , ekθ} is the
standard vector basis of Zkθ

ρ . Let P`
j be the α× α matrix

corresponding to the permutation f `j .

1) MSR Code: The generator matrix of the [n, k] code is
given by (4), where

Ai,j = λi,j ∏
a∈[θ]

PΩi,a
a+(j−1)θ , for j ∈ [k], i ∈ [r].

The non-zero coefficients λi,j ∈ Fq are defined ac-
cording to the discussion in Section II-B and Sec-
tion IV to ensure the MDS property and to allow
arbitrary selections of helper nodes.

2) Repair Strategy: Assume that the helper set D con-
sists of the remaining k− 1 systematic nodes (an as-
sumption that can be dropped by a clever selection
of λi,j ∈ Fq according to Section IV) and a subset of
parity nodes denoted by R. Furthermore, assume
a ∈ [θ] corresponds to a column in Ω whose inter-
section with the rows associated with these parities
forms all elements mod Zρ, where ρ = |R|. Define
Yj,a ⊂ [0 : α − 1] as {x ∈ [0, α − 1] : x · ea+(j−1)θ =
0 (mod ρ)}. If systematic node j fails, it is repaired
by downloading the elements corresponding to Yj,a
from helper nodes in D, i.e., by accessing xi(v),
where i ∈ D, and v ∈ Yj,a.

Lemma 8. The repair strategy in Construction 3 is optimal
with respect to repair bandwidth.

Proof: The proof in general follows steps similar to
those for that of Theorem 6 and is omitted to avoid rep-
etition. We refer the reader to the previous sections for
notation, definitions and the overall flow of the proof.
However, it is helpful to mention that the matrix Ω is
designed in a way that for any repair scenario a, we can
always find a column in Ω, denoted by Ωa, such that its
intersection with ρ rows associated with parity nodes in
scenario a is given by {0, 1, · · · , ρ− 1}.

Now assume that systematic node i fails and we
are to perform an optimal repair given parity nodes
in Ra = {x

k+d(a)
1

, x
k+d(a)

2
, · · · , x

k+d(a)
ρ
}. It is now clear

that if we select our subspaces as Si
j,a , Si

a , Yi,a =

{x|x · ea+(i−1)θ = 0 (mod ρ)}, then dim(Si
a) =

α
ρ , and

Yi,aQ
d(a)

1 ,i
= {x|x · ea+(i−1)θ = 0 (mod ρ)},

Yi,aQ
d(a)

2 ,i
= {x|x · ea+(i−1)θ = 1 (mod ρ)},

...
Yi,aQ

d(a)
ρ ,i

= {x|x · ea+(i−1)θ = ρ− 1 (mod ρ)},

and therefore,

rank




Si

aQ
d(a)

1 ,i

Si
aQ

d(a)
2 ,i

...
Si

aQ
d(a)

ρ ,i



 = ρ× rank (Yi,a) = ρ
α

ρ
= α.

Notice that arriving at a construction which guaran-
tees the optimal repair bandwidth for any selection of
helper nodes comes at the cost of a huge increase in the
sub-packetization parameter α.

Remark: This increase in sub-packetization can be
viewed also as a trade-off between α and the flexibil-
ity of choosing the helper set size. For instance, assume
that only a few choices of d such as {d1, d2, · · · , dδ} ⊂ [r]
are desired. A naive construction of the product matrix
as in Example 3 would result in an r× θ matrix, where

θ =

(
r

d1 − k + 1

)
+

(
r

d2 − k + 1

)
+ · · ·+

(
r

dδ − k + 1

)
,

and its elements are chosen from Zτ , with

τ = l.c.m.{d1 − k + 1, d2 − k + 1, · · · , dδ − k + 1}.

The sub-packetization of this MSR code — call it an
[n, k, {d1, d2, · · · , dδ}] MSR code — from Construction 3

is then given by α = τkθ , which establishes a trade-off
between α and the flexibility {d1, d2, · · · , dδ} ⊂ [r] of the
helper set size.

For practical purposes one may seek to reduce α. One
way to do so is to minimize the number of columns in a
Product Matrix for a fixed number of rows. For example,
it is easy to verify that the matrix Ω defined as

Ω =

 0 0
1 0
2 1

 ,

is also a Product Matrix with r = 3, and would be pre-
ferred over the (3, 4)-Product Matrix introduced in Ex-
ample 3. Although the trivial construction of Product
Matrices guarantees θ = O(2r), we believe that the op-
timal value for θ is much smaller. We finish this section
by stating this as an interesting combinatorial problem,
which will be addressed in future work.
Open Problem. Given a positive integer r ∈ Z, what is
the smallest value for θ such that there exists an (r, θ)-
Product Matrix, i.e., an r× θ matrix Ω with elements in
Zτ (τ = lcm{1, 2, · · · , r}), where for any selection of ρ
(1 6 ρ 6 r) rows from Ω, one can always find a col-
umn in Ω which intersects with these ρ rows in all the
elements in Zρ?

VI. Conclusion

In this paper we first presented a new construction
for systematic–repair [n, k, d] MSR codes for all possible
values of parameters n, k, and d. We discussed how a



proper selection of coefficients in Fq guarantees the MDS
property of the code, which can also be utilized to drop
the restriction of choosing all the remaining systematic
nodes when selecting the helper nodes.

Next, we introduced a more generalized construction,
where a single [n, k] code simultaneously satisfies the op-
timal repair for all d ∈ {k + 1, · · · , n− 1}. Both general-
izations come at the cost of increasing α. A lower bound
on α is proved in [29] when d = n− 1. Whether similar
bounds exist for general {n, k, d} or not is left for future
work.
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Appendix A
Interference Alignment

Proof of Lemma 1: We prove the result for the fail-
ure of systematic node i = 1. The argument general-
izes for the failure of other systematic nodes. Let us as-
sume that node x1 fails, and let each of the remaining
d = n− 1 nodes send β = α/r symbols to recover x1. In
other words, node xj (where j ∈ [n], j 6= i) sends S1

j xj for
some α/r× α matrix S1

j . We therefore need to recover x1
from the following functions of xi, i ∈ [k]:

x1 x2 x3 · · · xk



S1
2

S1
3

. . .
S1

k
S1

k+1 A1,1 S1
k+1 A1,2 · · · · · · S1

k+1 A1,k

S1
k+2 A2,1 S1

k+2 A2,2 · · · · · · S1
k+2 A2,k

...
...

...
...

...
S1

k+r Ar,1 S1
k+r Ar,2 · · · · · · S1

k+r Ar,k


x1
x2
x3
...

xk

 . (18)
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Necessity: Suppose the systematic vectors x2 through
xk be the zero vectors. Then, (18) simplifies to:

S1
k+1 A1,1

S1
k+2 A2,1

...
S1

k+r Ar,1

 x1,

where the matrix is an α× α square matrix. Since x1 is re-
coverable, it is necessary that the matrix be non-singular,
thus proving the signal recovery conditions (5) and (7).
Note that this also implies that all encoding matrices
Ai,j, i ∈ [r], j ∈ [k], are non-singular. s

Suppose now, without loss of generality, that the inter-
ference alignment condition (6) is not satisfied for j = 2.
Again, without loss of generality, let S1

2 6w S1
k+1 A1,2. This

implies that

rank

((
S1

2
S1

k+1 A1,2

))
=

α

r
+ ε, (19)

for some ε > 0. Since x1 is recoverable, from (18), we
have access to the following information at the replace-
ment node:

x1 x2 x3 · · · xk



Iα

S1
2

S1
3

. . .
S1

k
0 S1

k+1 A1,2 · · · · · · S1
k+1 A1,k


x1
x2
x3
...

xk

 . (20)

From (19), the rank of the matrix in (20) is at least

α +
α

r
+ ε + (k− 2)

α

r
> (n− 1)

α

r
,

the total number of symbols available at the replacement
node. In other words, we are able to recover more num-
ber of linearly independent symbols that are functions of
the systematic data vectors x1 through xk, than the num-
ber of repair symbols available at the replacement node
— a contradiction! Thus, conditions (6) and (8) must be
true.

Sufficiency: Suppose that we have the required repair
matrices S1

j that satisfy the signal recovery and inter-
ference alignment conditions (5) and (6). Using (6), we
can eliminate the contribution of systematic vectors x2
through xk in the information transmitted by the par-
ity nodes (that is, the last r rows in (18)). For instance,
S1

2 w S1
k+1 A1,2 implies that S1

k+1 A1,2 = BS1
2, for some

α/r × α/r matrix B, and therefore the contribution of
S1

k+1 A1,2x2 can be removed from the repair information
transmitted by the parity node k + 1 using the repair in-
formation S1

2x2 (or equivalently, BS1
2x2) transmitted by

systematic node 2. Using (5), it is then easy to recover
x1.
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