
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Parameter and state estimation in nonlinear dynamical systems

Permalink
https://escholarship.org/uc/item/7hj6g324

Author
Creveling, Daniel R.

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hj6g324
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Parameter And State Estimation In Nonlinear Dynamical Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Physics

by

Daniel R. Creveling

Committee in charge:

Professor Henry D. I. Abarbanel, Chair
Professor Daniel Arovas
Professor Philip Gill
Professor Thomas O’Neil
Professor Rick Salmon

2008

Copyright

Daniel R. Creveling, 2008

All rights reserved.

The dissertation of Daniel R. Creveling is ap-

proved, and it is acceptable in quality and form

for publication on microfilm:

Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract . xi

Chapter 1 Introduction . 1
1.1 Parameter Estimation in Physical Science 1

Chapter 2 Background Material . 3
2.1 Overview of Example Systems 3

2.1.1 Lorenz System . 3
2.1.2 Colpitts Oscillator 5
2.1.3 Hodgkin–Huxley Spiking Neuron Model 7

2.2 Dynamical Systems Overview 10
2.2.1 Lyapunov Exponents 11
2.2.2 Synchronization 13
2.2.3 Phase Space Reconstruction 15

Chapter 3 Parameter Estimation . 19
3.1 Background and Description 19
3.2 Controlling the Largest CLE 22
3.3 Dynamical Coupling . 26

3.3.1 Description . 26
3.3.2 Lorenz Example 28
3.3.3 Cost Function Analysis 30
3.3.4 Parameter Scans 32

3.4 Electrical Circuit Examples 34

Chapter 4 Application of Dynamical Coupling 40
4.1 Introduction . 40
4.2 System Identification . 41
4.3 Parameter Space Contours 44
4.4 Summary . 48

iv

Chapter 5 Optimal Tracking Formulation 51
5.1 Optimal Tracking of Data 51
5.2 System Discretization . 54
5.3 SNOPT Solver . 56
5.4 Simulations . 59

5.4.1 Colpitts system 59
5.4.2 Lorenz system . 59
5.4.3 Hodgkin–Huxley model 61

5.5 Electrical Circuit Experiments 64
5.5.1 Lorenz circuit . 64
5.5.2 Hodgkin–Huxley circuit 66

5.6 Model Verification . 67
5.7 Time-Dependent Parameters 69
5.8 Adaptive Grid . 71

Chapter 6 Conclusion . 83

Appendix A Further Work . 86
A.1 Space-Time Adaptive Grid 86
A.2 Time–delay Space Control 88

Appendix B Hardware Dynamical Coupling of Two Lorenz Systems 91

Appendix C Source Code . 98
C.1 PIC Microcontroller Code 99
C.2 Python Code . 103
C.3 SPICE Code . 116

C.3.1 Code for αm(Vm), βm(Vm) 116
C.3.2 Code for αn(Vm), βn(Vm) 117
C.3.3 Code for αh(Vm), βh(Vm) 119

Bibliography . 122

v

LIST OF FIGURES

Figure 2.1: Lorenz system time–series and attractor 5
Figure 2.2: Lorenz system circuit . 5
Figure 2.3: Colpitts oscillator circuit . 6
Figure 2.4: Colpitts oscillator time–series and attractor 8
Figure 2.5: Hodgkin–Huxley model . 8
Figure 2.6: Hodgkin–Huxley time series 9
Figure 2.7: Illustration of Lyapunov Exponents 12
Figure 2.8: Distortion of initial sphere (green) to ellipsoid (red) 13
Figure 2.9: Largest Lyapunov Exponent calculation 14
Figure 2.10: Largest Lyapunov exponent for Lorenz system with feedback . 15
Figure 2.11: Lorenz system synchronization 16
Figure 2.12: Average Mutual Information vs. Time Delay 17
Figure 2.13: Lorenz attractors : Phase Space and Time Delay Space 18

Figure 3.1: Lorenz : Cost vs. R . 25
Figure 3.2: Lorenz : Cost(R,K11) . 26
Figure 3.3: Colpitts : Cost(γ,K11) . 27
Figure 3.4: Generalized synchronization in the Dynamical Coupling method 29
Figure 3.5: Dynamically Coupled Lorenz Time–Series 30
Figure 3.6: Description of cost function for Dynamically Coupled method . 31
Figure 3.7: Cost function convergence . 31
Figure 3.8: Selection of coupling dynamics damping 33
Figure 3.9: Lorenz parameter scans : R . 34
Figure 3.10: Lorenz 2D parameter scans : (R,b) 35
Figure 3.11: Lorenz parameter scans with noise: R 36
Figure 3.12: Cost function convergence #1 : Lorenz circuit data 37
Figure 3.13: Cost function convergence #2 : Lorenz circuit data 37
Figure 3.14: Lorenz circuit parameter scan : R 38
Figure 3.15: Lorenz circuit 2D parameter scan : (R,b) 38
Figure 3.16: Colpitts circuit parameter scan : RE 39

Figure 4.1: System Identification Problem 40
Figure 4.2: Probability cost function . 43
Figure 4.3: Time-series for model #2 (simulated data) 44
Figure 4.4: Probability time-series for all three models (simulated data) . . 45
Figure 4.5: Lorenz circuit with micro–controller based parameter adjustment 46
Figure 4.6: Time-series for model #1 (circuit data) 47
Figure 4.7: Probability time-series for all three models (circuit data) . . . 48
Figure 4.8: 2D Parameter scan with contours 49
Figure 4.9: Polar plots of original and distorted parameter contours 49
Figure 4.10: Parameter space contour system identification : Simulated results 50

vi

Figure 5.1: Optimal control system . 52
Figure 5.2: Control diagram for model system 52
Figure 5.3: Constraint Jacobian for Lorenz system (Hermite-Simpson) . . 57
Figure 5.4: Structure of jacobian entry ‘A’ 58
Figure 5.5: Structure of jacobian entry ‘C’ 59
Figure 5.6: Python system definition header 60
Figure 5.7: SNOPT solution : Colpitts oscillator 61
Figure 5.8: SNOPT solution : Lorenz system simulation 62
Figure 5.9: SNOPT solution : Hodgkin–Huxley system simulation 64
Figure 5.10: SNOPT solution : Hodgkin–Huxley system simulation with

Lorenz injection current . 65
Figure 5.11: SNOPT solution : Lorenz system circuit 73
Figure 5.12: Hodgkin–Huxley circuit board 74
Figure 5.13: Circuit αm,n,h(Vm) and βn,m,h(Vm) 75
Figure 5.14: Hodgkin–Huxley circuit SNOPT output #1 76
Figure 5.15: Hodgkin–Huxley circuit SNOPT output #2 76
Figure 5.16: Lorenz : Correct model . 77
Figure 5.17: Lorenz : Incorrect model . 77
Figure 5.18: Colpitts : α(t) solution #1 . 78
Figure 5.19: Colpitts : α(t) solution #2 . 78
Figure 5.20: Colpitts : α(t) solution #3 . 79
Figure 5.21: Test of arbitrary co–location assignment 79
Figure 5.22: Adaptive co–location rule . 80
Figure 5.23: Hodgkin–Huxley adaptive mesh solution (Part I) 81
Figure 5.24: Hodgkin–Huxley adaptive mesh solution (Part II) 82

Figure A.1: PLC : Stress time–series . 87
Figure A.2: PLC : Mobile dislocation density 88

Figure B.1: Diagram of experimental setup. 92
Figure B.2: Schematic of Lorenz “Data” circuit 93
Figure B.3: Schematic of Lorenz “Receiver” circuit 93
Figure B.4: Schematic of coupling K(t) circuit 94
Figure B.5: Sample time series . 95
Figure B.6: Cost function convergence . 96
Figure B.7: Parameter scans . 96
Figure B.8: Simulation with gaussian noise added to the state equations . . 97

vii

LIST OF TABLES

Table 4.1: Lorenz system parameters : Simulated data 41
Table 4.2: Receiver model parameters for simulated data 42
Table 4.3: Receiver model parameters for circuit data 45
Table 4.4: Receiver model parameters for contour method 47

Table 5.1: Parameters for Lorenz simulation 61
Table 5.2: Parameters for Hodgkin–Huxley simulation : constant Iinj 63
Table 5.3: Parameters for Hodgkin–Huxley simulation : Lorenz Iinj 63
Table 5.4: Parameters for Lorenz circuit . 66
Table 5.5: Parameters for Hodgkin–Huxley circuit 67

viii

ACKNOWLEDGEMENTS

I would like to thank my adviser Henry Abarbanel for his insights, patience,

approachability and support; without him this work would not have been possible.

Also a big thank you goes to the research scientists, graduate students and staff

of the Institute for Nonlinear Science for all of their support and intellectual stim-

ulation over the years. I would like to especially thank Dr. Thomas Nowotny for

introducing me to the Comedi open source data acquisition libraries and to rock

climbing in Joshua Tree National Park. My graduate work at UCSD began with

the non–neutral plasma group and I would like to thank Prof. Thomas O’Neil and

Prof. Fred Driscoll for their support and scientific interaction during my first few

years as a graduate student and also for their understanding and encouragement

of my desire to study nonlinear science. I thought I was good in a laboratory

coming from an engineering background and industry experience, but Prof. Fred

Driscoll and Dr. Francois Anderegg showed me what first class experimentalists

are really like! The time I spent working with them and learning from them will

be cherished forever. I would also like to thank my good friend Dr. Eric Bass for

many thoughtful scientific discussions and exciting mountaineering experiences!

Many people outside of UCSD offered support in many ways and I would like

to thank some of them here. Stuart Downs for encouraging me to leave Northrop

Grumman to follow my dreams, no matter how crazy they may be, and for many

wonderful and stimulating conversations that somehow always included a bottle of

wine. Don Auten, martial arts master instructor, extraordinary guitar player, and

a wonderful friend who I could count on at all times. Kicking and punching the

heavy bag or wrestling on the mat during weekends was an excellent way to prepare

for another week of physics! Dr. Bruce McFarland who has known me since my

EE days at Georgia Tech and has been a very supportive friend throughout my

graduate school career. Pamela Rief whom I do not know how to thank enough for

her patience, compassion and decreased entropy in my life. Lastly, I would like to

thank my family, especially my father John and mother Peggy, for their continued

love and support throughout all of the crazy adventures my life has conjured up.

ix

VITA

1997 Bachelor of Electrical Engineering
Georgia Institute of Technology, Atlanta, Georgia

2000 Master of Science in Electrical Engineering
Georgia Institute of Technology, Atlanta, Georgia

2000–2003 Systems Engineer, Northrop Grumman
San Diego, California

2004–2008 Senior Electrical Engineer, SensorMetrix
San Diego, California

2008 Doctor of Philosophy in Physics
University of California, San Diego

PUBLICATIONS

Creveling, D. R., J. M. Jeanne, and H. D. I. Abarbanel, “Parameter Estimation
using Balanced Synchronization” Physics Letters A 372, 2043-2047 (2008).

Creveling, D. R., P. E. Gill, and H. D. I. Abarbanel, “State and Parameter Esti-
mation in Nonlinear Systems as an Optimal Tracking Problem” Physics Letters A
372, 2640-2644 (2008).

H. D. I. Abarbanel, Creveling, D. R., J. M. Jeanne, “Estimation of Parameters
in Nonlinear Systems using Balanced Synchronization” Physical Review E, 77,
016208 (2008).

Kamen E, Goldstein A, Creveling D, Sahinci E, Xiong Z, “Analysis of factors
affecting component placement accuracy in SMT electronics assembly” [Confer-
ence Paper] 23rd IEEE/CPMT International Electronics Manufacturing Technol-
ogy Symposium, pp. 50-7, 1998.

x

ABSTRACT OF THE DISSERTATION

Parameter And State Estimation In Nonlinear Dynamical Systems

by

Daniel R. Creveling

Doctor of Philosophy in Physics

University of California San Diego, 2008

Professor Henry D. I. Abarbanel, Chair

This thesis is concerned with the problem of state and parameter estimation in non-

linear systems. The need to evaluate unknown parameters in models of nonlinear

physical, biophysical and engineering systems occurs throughout the development

of phenomenological or reduced models of dynamics. When verifying and vali-

dating these models, it is important to incorporate information from observations

in an efficient manner. Using the idea of synchronization of nonlinear dynamical

systems, this thesis develops a framework for presenting data to a candidate model

of a physical process in a way that makes efficient use of the measured data while

allowing for estimation of the unknown parameters in the model.

The approach presented here builds on existing work that uses synchronization

as a tool for parameter estimation. Some critical issues of stability in that work are

addressed and a practical framework is developed for overcoming these difficulties.

The central issue is the choice of coupling strength between the model and data. If

the coupling is too strong, the model will reproduce the measured data regardless

of the adequacy of the model or correctness of the parameters. If the coupling is too

weak, nonlinearities in the dynamics could lead to complex dynamics rendering any

cost function comparing the model to the data inadequate for the determination of

model parameters. Two methods are introduced which seek to balance the need for

coupling with the desire to allow the model to evolve in its natural manner without

coupling. One method, ‘balanced’ synchronization, adds to the synchronization

xi

cost function a requirement that the conditional Lyapunov exponents of the model

system, conditioned on being driven by the data, remain negative but small in

magnitude. Another method allows the coupling between the data and the model

to vary in time according to a specific form of differential equation. The coupling

dynamics is damped to allow for a tendency toward zero coupling and driven by

the synchronization error to increase coupling when needed. This method, along

with a suitable cost function, allows for the determination of model parameters

without the complexity of calculating Lyapunov exponents. Lastly, a method is

developed allowing the coupling to vary in time without the constraint of following

a differential equation. This approach shows the equivalence of the parameter and

state estimation problem to that of tracking within an optimal control framework.

This equivalence allows the application of powerful numerical methods that provide

robust practical tools for model development and validation. Examples of each of

these methods are presented with both simulated data and data measured from

electrical circuit implementations of several dynamical systems.

xii

Chapter 1

Introduction

1.1 Parameter Estimation in Physical Science

Estimating parameters in a nonlinear dynamical model, given observed data,

is an important aspect of developing predictive models of physical and biological

systems [27, 26, 8, 24, 28, 30, 39, 40, 18, 13]. Setting aside the issues of noise and

experimental errors in acquiring the data and errors in the models themselves, one

still has a significant challenge in estimating these parameters, especially when the

dynamical behavior may be chaotic. As will be shown, the presence of positive

Lyapunov exponents in this setting means that the numerical evaluation of a cost

function representing parameter estimation quality, often a least squares metric,

may suffer from sensitive dependence on initial conditions [1, 15].

Many methods have been explored for parameter estimation in nonlinear sys-

tems; two interesting ones are discussed in detail in [40]. The multiple shooting

and extended Kalman filter approaches considered there show good results when

applied to simple systems. The methods described in this thesis are meant to

augment the toolbox of state and parameter estimation techniques and provide

distinct advantages in some cases. For example, the method of optimal tracking

discussed in Chapter 5 is preferred when it is desired to compare several candidate

models against each other to determine which one describes the dynamics of a

physical system more precisely. This method reformulates the problem of state

and parameter estimation as an optimal tracking problem. The data is fed back to

1

2

the model through a time dependent proportional error gain. Tools from optimal

control theory are then used to solve for the optimal time dependent gain function.

This function quantifies how much forcing is required for a model to track data

from the system under study and may be used to compare the ability of a model

to track measured data, allowing for a quantitative means of comparison between

models. As another example, the method of dynamical coupling of data to a model

presented in Chapters 3 is preferred when a quick, real–time comparison between

data and a candidate model is desired. In this method the cost function is designed

to force a trade–off between synchronization error and too much forcing though

feedback coupling. A method of allowing the coupling gain to be self–adjusting is

introduced and an interesting application of this case is presented in Chapter 4.

As stated above, the methods presented in this thesis are meant to augment

the current methods used for parameter and state estimation. The methods herein

are developed from the beginning with the complexities of nonlinear systems in

mind. This ground up approach has resulted in powerful new methods of state and

parameter estimation with advantages over those developed initially from linear

system theory. Further, as these methods are applied to more complex and larger

problems, their simplicity and efficiency provides an attractive alternative to the

methods investigated in [40].

Chapter 2

Background Material

2.1 Overview of Example Systems

Several physical systems need to be defined for the purpose of facilitating dis-

cussion and for demonstrating the techniques of parameter and state estimation

developed in this work. The systems of equations used here are the Lorenz sys-

tem, the Colpitts system, and the Hodgkin-Huxley spiking neuron system. These

systems are described in detail below.

2.1.1 Lorenz System

Edward Lorenz derived what have become known as the Lorenz equations [21]

while studying atmospheric convection as a meteorologist at MIT. The phenomenon

is driven by sunlight warming the ground causing heating to the lower layers of

the atmosphere. This heating produces an upward flow of warm air and a corre-

sponding downward flow of the more dense, cold air above. Lorenz began with the

convection equations of Saltzman [31].

∂

∂t
∇2ψ = −∂(ψ,∇2ψ)

∂(x, z)
+ ν∇4ψ + gα

∂θ

∂x

∂

∂t
θ = −∂(ψ, θ)

∂(x, z)
+

∆T

H

∂ψ

∂x
+ κ∇2θ

(2.1)

Where ψ is the stream function for the motion and θ is the temperature de-

3

4

viation from steady state. The constants g, α, ν, κ,H,∆T are respectively the

gravitational acceleration, thermal expansion coefficient, kinematic viscosity, ther-

mal conductivity, depth of the fluid, and the temperature difference between the

upper and lower boundaries. Both ψ and ∇2ψ are taken to vanish at the upper and

lower boundaries. The notation ∂(a,b)
∂(x,z)

stands for the operator
(
∂a
∂x

∂b
∂z
− ∂b

∂x
∂a
∂z

)
. The

functions ψ and θ may be expanded in a Fourier series in x and z with time depen-

dent coefficients to obtain a set of ordinary differential equations. Lorenz showed

that interesting irregular and apparently non–periodic phenomena may be cap-

tured my truncating the Fourier series discarding all but three of the coefficients,

thus obtaining the Lorenz equations (2.2).

Ẋ = σ(Y − X)

Ẏ = RX− Y − XZ

Ż = XY − bZ

(2.2)

In (2.2), X is proportional to the intensity of the convection, Y is proportional

to the temperature difference between ascending and descending currents, and Z

is proportional to the distortion of the vertical temperature profile from linear.

The parameters of this model are the Prandtl number, σ, a normalized Rayleigh

number, R, and the parameter, b, related to the size of the region. Because

of the extreme truncation involved, the solutions of equations (2.2) will not in

general resemble the solutions of (2.1). Still, the Lorenz system exhibits rich

dynamical behavior and has been extensively studied in its own right, independent

of it meteorological roots. The Lorenz system is used here as a source of time–

series data with complex temporal dynamics. A sample time–series of the Lorenz

system and the corresponding attractor is shown in Figure 2.1.

In some cases, data will be taken from measurements on an electrical circuit

(Figure 2.2) designed to integrate the Lorenz equations of motion [7]. This circuit

provides a source of measured data from a real system subject to measurement

noise as well as systematic errors due to variability in the actual component values.

Differences in the actual resistance of the resistors and the actual capacitance of

the capacitors from their labeled values cause the exact values of the parameters

5

0 5 10 15 20 25
−40

−20

0

20

40

x 1(t
)

Lorenz system σ=16.0 , R=45.92 , b=4.0

0 5 10 15 20 25
−40

−20

0

20

40

x 2(t
)

0 5 10 15 20 25
0

20

40

60

80

x 3(t
)

Time −30 −20 −10 0 10 20 30−50

0

50

10

20

30

40

50

60

70

80
Lorenz Attractor : σ=16 , R=45.92 , b=4

X
Y

Z

Figure 2.1: Lorenz system time–series and attractor

(σ,R,b) to be unknown.

x

−

+

−

+
−

+

−

+
−

+

−

+
−

+
−

+

x

100kΩ

100kΩ

100kΩ

10
0k

Ω

470pF

133kΩ

470pF

470pF

100kΩ

100kΩ

100kΩ

100kΩ

10
0k

Ω

200kΩ

10kΩ

49.7kΩ 107kΩ

213kΩ

10kΩ

X1

Y1

Z1

Rpot 1

11
.2

kΩ

100kΩ

100kΩ

DATA SOURCE SYSTEM

Figure 2.2: Lorenz system circuit

2.1.2 Colpitts Oscillator

The Colpitts oscillator is one member of a family of electronic oscillator cir-

cuits (Hartley, Clapp, Armstrong, etc.) and is shown in Figure 2.3. This simple

electrical circuit consists of a single NPN bipolar junction transistor biased in its

active region by ±Vo and RE. The inductor L with series resistance RL, and a

capacitive divider composed of C1 and C2 provide the feedback network needed

6

C1

C2RE

L

RL

2N2222

Vo

-Vo

Figure 2.3: Colpitts oscillator circuit

for oscillation. It has a sinusoidal mode of operation with a wide frequency range

from several hertz up to gigahertz without significant alteration to the design. The

simplicity and robustness of the Colpitts oscillator has allowed for its widespread

used in electronic devices and communication systems. Apart from the very use-

ful sinusoidal mode of operation, this oscillator also exhibits complex dynamical

behavior for a range of component values [16, 23]. The complexity of the dynam-

ics is robust in the sense that it does not depend on the particular type of NPN

transistor used. Many transistors of similar design (2N2222, 2N3904, BC108, etc.)

will produce similar dynamical behavior. Therefore, the model of the circuit need

not contain parameters specific to a particular model of NPN transistor (junction

capacitance, Early voltage, etc.), the current gain β and reverse–saturation cur-

rent IS are sufficient and we can use the Ebers-Moll [33] model for the transistor

where IC = IS(e(VBE/Vth)−1) and the current gain is defined by IC = βIB. Vth is the

thermal voltage, kBT/e, and has a value at room temperature of Vth ≈ 0.026 Volts.

7

V̇C1 =
1

C1

[
IL − IS(e−VC2/Vth − 1)

]
V̇C2 =

1

C2

[IL − (VC2 + Vo)/RE]

İL =
1

L
[Vo − RLIL − VC2 − VC1]

(2.3)

The analysis of the circuit in Figure 2.3, with some valid approximations, results

in the above system of first order differential equations (2.3). VC1 is the voltage

across capacitor C1 (the collector minus emitter voltage), VC2 is the voltage across

capacitor C2 (the emitter voltage) and IL is the current through the inductor

L. There are several variations of this circuit each exhibiting complex dynamical

behavior (replacing the emitter resistor with a current source for example). It is

useful to cast the Colpitts system into a dimensionless form not connected with any

particular circuit implementation but still maintaining the interesting dynamics.

The common form of this generic Colpitts system is shown in equations (2.4) and

contains the four parameters α, γ, q, and η.

ẋ1 = αx2

ẋ2 = −γ(x1 + x3)− qx2

ẋ3 = η(x2 + 1− e−x1)

(2.4)

A sample time–series of the Colpitts system and the corresponding attractor is

shown in Figure 2.4.

2.1.3 Hodgkin–Huxley Spiking Neuron Model

The Hodgkin–Huxley neuron model [12] is based on modeling the electrical

properties of a patch of cell membrane by an equivalent circuit of the form shown

in Figure 2.5. In the equivalent circuit, current flow across the membrane is divided

into three distinct components, a sodium current INa, a potassium current IK and

a small leakage current IL containing all other ion species not explicitly modeled

(mainly Cl−). The net current which flows into the cell through these channels

has the effect of charging the membrane capacitance, giving the interior of the cell

8

0 20 40 60 80 100 120 140 160 180 200
−20

0

20

40

x 1(t
)

Colpitts system α=5.0 , γ=0.08 , q=0.7 , η=6.3

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4
x 2(t

)

0 20 40 60 80 100 120 140 160 180 200
−100

−50

0

50

x 3(t
)

Time
−5 0 5 10 15 20 25 30 35−2

0

2

4

−10

0

10

20

30

40

50

60

70

Colpitts system α=5.0 , γ=0.08 , q=0.7 , η=6.3

x
1

x
2

−
x 3

Figure 2.4: Colpitts oscillator time–series and attractor

a membrane potential Vm relative to the exterior. The two variable conductances

gK and gNa shown in the diagram represent the gating of potassium and sodium

channels, and the constant leakage conductance gL represents the effect of other

channels which are always open. Each of these channels is associated with an

equilibrium potential represented by a battery in series with the conductance.

+
− +

−
+
−

gNa gKgL

VKVNaVL

IL INa IK

Cm

outside

inside

Figure 2.5: Hodgkin–Huxley model

Setting the net flow of current into the cell equal to the current charging the

membrane capacitance gives the differential equation for Vm. This equation also

includes an injected current Iinj which allows for external excitation or inhibition

of the cell. The variable conductances are themselves functions of n, m, and h.

These are identified as the potassium activation variable, the sodium activation

9

variable, and the sodium in–activation variable respectively [14]. The full system

of differential equations is shown in equations (2.5) and a sample time–series for

typical parameter values is shown in Figure 2.6.

V̇m =
1

Cm

[
g̃Nam

3h(VNa − Vm) + g̃Kn4(VK − Vm) + g̃l(Vl − Vm) + Iinj
]

ṅ = αn(Vm)(1− n)− βn(Vm)n

ṁ = αm(Vm)(1−m)− βm(Vm)m

ḣ = αh(Vm)(1− h)− βh(Vm)h

(2.5)

0 10 20 30 40 50 60 70 80 90 100
−100

−50
0

50

V
m

(t
)

[m
V

] Hodgkin−Huxley Neuron Model

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

h(
t)

Time [msec]

Figure 2.6: Hodgkin–Huxley time series

In this model, the rate coefficients for the gating variables n, m, and h are com-

plex functions of the membrane potential Vm as shown in equations (2.6). Hodgkin

and Huxley determined the form and estimated the parameters of these equations

through many sets of electrophysiology experiments and numerical curve fitting.

They were awarded the 1963 Nobel Prize in Physiology and Medicine (shared

with john Eccles) for this work. In equations (2.6), the symbols a1, a2, . . . , a8 and

b1, b2, . . . , b7 represent unknown parameters that need to be estimated before the

model can make useful predictions. The techniques presented in this thesis will

allow for the determination of these parameters from a time–series measurement

10

of the membrane potential Vm.

αn(Vm) =
a1(Vm + a2)

ea3(Vm+a2) − 1

αm(Vm) =
a4(Vm + a5)

ea6(Vm+a5) − 1
αh(Vm) = a7e

a8Vm

βn(Vm) = b1e
b2Vm

βm(Vm) = b3e
b4Vm

βh(Vm) =
b5

eb6(Vm+b7) + 1

(2.6)

2.2 Dynamical Systems Overview

The example systems discussed above are all N–dimensional deterministic math-

ematical models of the form

dx1

dt
= F1(x1, x2, . . . , xN , t,p)

dx2

dt
= F2(x1, x2, . . . , xN , t,p)

...
dxN
dt

= FN(x1, x2, . . . , xN , t,p)

where p denotes all parameters associated with the system. This system of equa-

tions will often be written in vector form as ẋ = F(x(t), t,p). The space denoted

by (x1, x2, . . . , xN) is referred to as phase space, and the path followed by an ini-

tial condition evolving through time is the phase space orbit or trajectory. It is

typical of dissipative systems (systems with volume contracting regions in phase

space) that the dynamics is characterized by an attractive set of points known

as attractors. Typical attractors for the Lorenz and Colpitts systems are shown

in Figure 2.1 and Figure 2.4 above. Any initial condition in the attractors basin

of attraction will eventually be brought to the associated attractor and remain

there. Although these attractors exist in a finite region of phase space, very com-

plex dynamics may still occur. One measure of this complexity is contained in the

Lyapunov exponents associated with the attractor. These exponents are associ-

ated with the stability of the attractive set and the ability to control their value

is central to the parameter and state estimation scheme presented in this thesis.

11

2.2.1 Lyapunov Exponents

Lyapunov exponents characterize the evolution of small perturbations to an

orbit. Consider a system following a fiducial trajectory denoted by x∗ and a per-

turbed trajectory x∗ + η. The linearized dynamics provides an equation for the

time evolution of small perturbations.

ẋ∗ + η̇ = F(x∗ + η)

ẋ∗ + η̇ = F(x∗) + DF(x∗) · η + · · ·

η̇ ≈ DF(x∗) · η

The linearized system characterizing the perturbation has exponential time de-

pendence associated with the eigenvalues of the Jacobian matrix DF. The eigen-

values of DF along a small orbit segment are known as local Lyapunov exponents

and, when averaged over the entire attractor, converge to the associated Lyapunov

exponents of the attractor. If the largest Lyapunov exponent is positive, a small

perturbation will grow exponentially in time until it loses all association with its

past neighboring points. This aspect is illustrated in Figure 2.7. The figure de-

picts the Lorenz attractor for σ = 16, R = 45.92 and b = 4.0 which has a largest

Lyapunov exponent of λ ≈ 1.5. The green circles represent a sphere of initial

points centered on a point on the attractor. This sphere along with its center is

iterated forward in time to produce the set of points represented by the red circles.

As can be seen in Figure 2.8, the sphere is now distorted along two directions.

One direction has grown, corresponding to the positive local Lyapunov exponent,

and another direction has contracted corresponding to a negative local Lyapunov

exponent. The sphere has kept its original radius in a third direction where the

Lyapunov exponent is zero. This is characteristic of differential equations and rep-

resents a shift forward in time along the orbit. The yellow circles are the result of

further integration forward in time where all memory of the initial sphere of points

is lost. It is this property of nonlinear systems, positive lyapunov exponents, that

gives rise to chaos and non–predictability. Small errors in initial conditions quickly

give rise to large observable differences in the state. Any scheme for estimating

states and parameters in chaotic systems must provide a means to overcome this

12

inherent difficulty.

−40 −30 −20 −10 0 10 20 30
−50

0

50

0

10

20

30

40

50

60

70

80

Y

X

Z

Figure 2.7: Illustration of Lyapunov Exponents

If only the largest Lyapunov exponent is desired, a simple method of calcu-

lation proceeds as follows [41, 34]. Choose two initial conditions separated by a

small amount |δro| ∼ 10−8 in any direction. Integrate these points forward in time

N steps to get the new difference vector δrN . The choice of N should be such

that the difference vector grows measurably while still remaining small enough for

a linear approximation of the dynamics to hold. Store the quantity ln(δro/δrN),

re–normalize the difference vector to the original length and repeat the process iter-

ating another N steps. The average of ln(δro/δrN) from each iteration, divided by

the time interval associated with N iteration steps, results in the largest Lyapunov

exponent. Figure 2.9 demonstrates the convergence of this method for the Lorenz

system with σ = 16.0, R = 45.92 and b = 4.0. A more sophisticated method [1] is

required if all of the Lyapunov exponents of the system are required. In this case

all of the eigenvalues of DF need to be calculated as the system evolves along the

attractor.

13

−1 −0.5 0 0.5 1−1

0

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X

Y

Z

Figure 2.8: Distortion of initial sphere (green) to ellipsoid (red)

2.2.2 Synchronization

Central to the methods presented in this thesis is the ability of chaotic systems

to synchronize with each other, either identically or in a more general fashion.

Much published work exists on this subject [42, 3, 27, 29] and only the main

point will be highlighted here. Consider two separate Lorenz systems evolving

in time denoted by X(t) and Y(t). Owing to the chaos in the Lorenz system,

even if these systems started with nearly identical initial conditions the corre-

sponding time–series will have no correlation with each other at an arbitrary time

in the future. If we require both chaotic systems to forever behave identically

then we need a way to make the manifold X(t) = Y(t) stable to small perturba-

tions. One such strategy for accomplishing this goal is shown in equations (2.7).

14

0 50 100 150 200 250 300 350 400
1.2

1.3

1.4

1.5

1.6

1.7

Time

E
st

im
at

ed
 L

ar
ge

st
 L

ya
pu

no
v

E
xp

on
en

t
λ ≈ 1.496

Figure 2.9: Largest Lyapunov Exponent calculation

ẋ1 = σ(x2 − x1)

ẋ2 = Rx1 − x2 − x1x3

ẋ3 = x1x2 − bx3

ẏ1 = σ(y2 − y1) + k11(x1 − y1)

ẏ2 = Ry1 − y2 − y1y3

ẏ3 = y1y2 − by3

(2.7)

Data from the X(t) system is fed into the Y(t) system through a term propor-

tional to the synchronization error (x1(t)−y1(t)). The Jacobian of the Y(t) system

now becomes [DF(Y(t))−K] where K is a matrix of coupling gains with kij the

coefficient for the (xi(t) − yj(t)) error term. In equations (2.7) only the k11 term

is non–zero. The associated Lyapunov exponents of this modified Y(t) system

are called conditional Lyapunov exponents. The condition is that the exponents

depend on the time–series x1(t). For the synchronization manifold to be stable we

need the largest conditional Lyapunov exponent to be negative. Figure 2.10 is a

plot of the largest conditional Lyapunov exponent for error fed back into one, two

and all three states. Note that as more states are fed back, the smaller the respec-

tive coupling gains are required to be for synchronization to occur. For single state

feedback, a value of k11 ≈ 14 is required for the synchronized state to be stable.

15

Figure 2.11 shows the time–series of both systems as the coupling strength takes

on the three values k11 = 0, k11 = 10 and k11 = 20. After a small transient time,

the synchronized stated Y(t) = X(t) is reached for the value of coupling strength

above the critical value of 14.

0 2 4 6 8 10 12 14 16 18 20
−20

−15

−10

−5

0

5

Coupling K

La
rg

es
t C

LE
Largest CLE vs. K

[K 0 0]
[0 0 0]
[0 0 0]
[K 0 0]
[0 K 0]
[0 0 0]
[K 0 0]
[0 K 0]
[0 0 K]

1.496

−0.482

−9.181

−18.496

Lorenz System
σ = 16.0
R = 45.92
b = 4.0

Figure 2.10: Largest Lyapunov exponent for Lorenz system with feedback

2.2.3 Phase Space Reconstruction

Here we use the idea of time delayed coordinates to reproduce the phase space

of a dynamical system. Again taking the Lorenz system as the didactic example,

we have a dynamical system consisting of the states [x1(t), x2(t), x3(t)] but we

will assume we are limited to measuring only x1(t). One technique for studying

the dynamics of a system given limited time–series measurement is to use time

lagged variables for reconstruction of the phase space [1, 25, 32, 37]. We begin by

constructing a d-dimensional vector of time lagged variables separated in time by

T.

y(n) = [x1(n), x1(n+ T), x1(n+ 2T), . . . , x1(n+ (d− 1)T)]

A sufficient condition on the dimension, d, is that it be an integer larger than

twice the dimension of the attractor. This would guarantee the attractor in phase

space and the reconstructed attractor in time–delayed space are related to each

16

0 10 20 30 40 50 60
−50

0

50

x 1 ,
y 1

Coupled Lorenz with K
11

=0,10,20

0 10 20 30 40 50 60
−50

0

50
x 2 ,

y 2

0 10 20 30 40 50 60
0

50

100

x 3 ,
y 3

time

Figure 2.11: Lorenz system synchronization

other by a smooth nonlinear transformation. Physical properties of the attractor

calculated in phase space may instead be calculated in the time–delayed space. As

for determining the best value for the time delay T, in theory any value will work.

In practice it is worth considering how much additional information is obtained

by making a measurement at x1(n+ T) after a measurement at x1(n). If the time

delay is too small, the system will only have changed slightly and the vector of

time delays will contain numbers too close in value to be of any practical use.

One useful metric for determining the optimal time delay is a quantity borrowed

from information theory: the average mutual information [10, 1]. The amount one

learns about the measurement of â from a measurement of b̂ is quantified as

IAB(â, b̂) = log

[
PAB(â, b̂)

PA(â)PB(b̂)

]
where PA(â) is the probability of observing â out of the set of all possible obser-

vations A, and PB(b̂) is the probability of observing b̂ out of the set of all possible

observations B. PAB(â, b̂) is the probability of observing both â and b̂. The quan-

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
lag

A
ve

ra
ge

 M
ut

ua
l I

nf
or

m
at

io
n

σ=16 : R=45.92 : b=4.0

Figure 2.12: Average Mutual Information vs. Time Delay

tity IAB(â, b̂) is the mutual information between the two measurements â and b̂.

Averaging over all possible measurements provides the average mutual informa-

tion between measurement â and b̂. We use this concept to calculate the average

mutual information between a measurement of the physical system at x1(n) and a

measurement at x1(n+ T).

I(T) =
N∑
n=1

P(x1(n), x1(n+ T)) log

[
P(x1(n), x1(n+ T))

P(x1(n))P(x1(n+ T))

]
Figure 2.12 shows a plot of the average mutual information as a function of the

time delay T for the Lorenz system and shows several clear minima. Given a mea-

surement of x1(n) we know the least amount of information about a measurement

of x1(n+0.1). We should therefore wait until x1(n+0.1) for the next measurement

to be placed in the time delayed vector. A plot of the original [x1(t), x2(t), x3(t)]

and reconstructed [x1(n), x1(n+ 0.1), x1(n+ 0.2)] phase space attractors is shown

in Figure 2.13.

18

−40 −20 0 20 40−50

0

50
10

20

30

40

50

60

70

80
Lorenz Attractor

x
1
(t)

x
2
(t)

x 3(t
)

−50

0

50 −40 −20 0 20 40

−30

−20

−10

0

10

20

30

x
1
(t − 0.1)

Reconstructed Phase Space

x
1
(t)

x 1(t
 −

 0
.2

)

Figure 2.13: Lorenz attractors : Phase Space and Time Delay Space

Chapter 3

Parameter Estimation

3.1 Background and Description

The problem of state and parameter estimation may be cast into the following

form. We imagine there is a physical or biological system whose state is determined

by the N dimensional vector x(t) = [x1(t), x2(t), . . . , xN(t)] = [x1(t),x⊥(t)] where

measurements are made on the system at time intervals τ . Starting with some

initial time t0, measurements are made at times t0 + mτ ; m = 0, 1, 2, . . . ,M ,

resulting in observations X(m) = X(t0 + mτ). It is assumed this sampling is

adequate to capture the frequencies of importance in the operation of the system

of interest: τ is small enough, and Mτ is large enough. One component of the state

is now measured and stored for use in determining parameters in a model describing

the physical system of interest. This could be an arbitrary scalar function of the

system’s state h(x(t)) but here we will take it as one of the state variables itself,

namely, x1(t). The other N-1 state variables u(t) = [x2(t), x3(t), ..., xN(t)] are

unobserved. If more than one state is observed the analysis would proceed in a

parallel fashion to what is presented below.

The observed (or ‘driver’) system satisfies differential equations in x(t) that

depend on a fixed set of parameters p, i.e.,

dx1(t)

dt
= F1(x1(t),x⊥(t),p)

dx⊥(t)

dt
= F⊥(x1(t),x⊥(t),p).

19

20

where the vector fields F1(•) and F⊥(•) are presumed known, and the trajectories

X(t) = [x1(t),x⊥(t)] are determined by the initial conditions and the P parameters

p = [p1, p2, ..., pP].

The time series information x1(t) (the ‘data’) is now passed to the receiver

system which is the model for the process describing the observations. To illustrate

the methods we take this model to be precisely that used in generating the data.

The dynamics are known but we assume we do not know the parameters q =

[q1, q2, ..., qP] of the receiver (the model). The state of the receiver is given by

y(t) = [y1(t), y2(t), . . . , yN(t)] = [y1(t),y⊥(t)]. Without coupling to the data the

model satisfies

dy1(t)

dt
= F1(y1(t),y⊥(t),q)

dy⊥(t)

dt
= F⊥(y1(t),y⊥(t),q), (3.1)

and we seek to determine the q given a time–series x1(t) [28]. For this purpose,

we couple the receiver system to the input signal x1(t) using

dy1(t)

dt
= F1(y1(t),y⊥(t),q) +K(x1(t)− y1(t))

dy⊥(t)

dt
= F⊥(y1(t),y⊥(t),q). (3.2)

Had the signal h(x(t)) been measured, the coupling term would have beenK(h(x(t))−
h(y(t))) [28]. For some range of values of the scalar K, the model will synchronize

to the data y(t) ≈ x(t), and the model will be “most accurate” when the model

parameters realize q = p. The conditional Lyapunov exponent (CLE) [27] of the

model system must be negative for synchronization to occur.

As a principle to assist in estimating q, a natural choice is to minimize the

cost function C(q) = 1
2M

∑M
m=1 g((X1(m) − Y1(m))2), where g(z2) ≈ z2 for small

z; Y(m) = y(t0 +mτ). This minimization involves seeking a zero of

∂C(q)

∂qα
=

∫
dt(y1(t; q)− x1(t))

∂y1(t; q)

∂qα
, (3.3)

for α = 1, 2, . . . , P . The q giving these zeros will be the estimate of the model

parameters q needed to match the settings p of the data source. Formally it is

21

also desired that the P × P matrix

∂2C(q)

∂qα∂qβ
(3.4)

is positive definite so that a minimum has indeed been found.

The quantity
∂y1(t; q)

∂qα
(3.5)

is determined, along with
∂y⊥(t; q)

∂qα
(3.6)

by

d

dt

(
∂y1(t;q)
∂q

∂y⊥(t;q)
∂q

)
=

[
DF(y1(t; q),y⊥(t; q))−

(
K 0

0 0

)](
∂y1(t;q)
∂q

∂y⊥(t;q)
∂q

)
+
∂F(y,q)

∂q
,

(3.7)

where DF is the N ×N Jacobian matrix

DFij(y) =
∂Fi(y)

∂yj
; i, j = 1, 2, ..., N (3.8)

of the model dynamics, and the matrix involving K is also N × N with only the

upper left diagonal element nonzero. F(y) is the total N-dimensional vector field

F(y) = (F1(y1,y⊥),F⊥(y1,y⊥)).

The issue of stability needs to be addressed as the eigenvalues of the Jaco-

bian DF(y) iterated along the orbit y(t) may have positive conditional Lyapunov

exponents; conditioned on the driving signal x1(t). These may be found by concate-

nating products of the matrices DF(y(t))−K and relying on the Oseledec theorem

for the existence of the eigenvalues of the iterated product. If there are positive

conditional Lyapunov exponents, then the synchronization manifold y1(t) = x1(t)

is not stable to small perturbations, and the evaluation of the derivatives of the

cost function, Equation (3.3), is numerically uncertain [40, 1, 15]. The conditional

Lyapunov exponents, however, can be made negative by increasing the magnitude

of K. When the largest conditional Lyapunov exponent has become negative, then

the synchronization manifold is stable to small perturbations, and evaluating the

derivatives of the cost function is straightforward.

22

As K becomes large, the term K(x1(t)− y1(t)) dominates the right hand side

of the evolution equation for y1(t) unless x1(t) − y1(t) ≈ 1
K

or smaller. As this

happens, all the derivatives in Equation (3.3) approach zero, and there is little

numerical variation of the derivatives as functions of the parameters q. The min-

imum of the cost function becomes so flat in q space it is numerically extremely

difficult to locate. As we cure the numerical instability associated with chaos in

the model dynamical system, we may be sent into a regime where the evaluation

of the parameters q by minimizing the cost function becomes harder and harder.

In addition, when K is large, the dynamics of the model are entrained by the

driving K(x1(t) − y1(t)) and any model is forced to follow x1(t). The ability to

distinguish among models is therefore lost. A balance is required between these

two unacceptable limits, and to accomplish that, a way is needed to choose a value

of K that leads to the largest conditional Lyapunov exponent being just negative,

yet is not such a large value of K that we lose the ability to see variations in the

q. This approach is called “balanced synchronization,” and two ways to achieve

this is explored below.

3.2 Controlling the Largest CLE

For synchronization of the experimental data x1(t) and the model system to

be effective in estimating the parameters q, the largest conditional Lyapunov ex-

ponent must be negative [27]. Since this method is dependent on synchronization

to drive the model dynamical variables [y1(t),y⊥(t)] to those taken on by the ob-

served signal [x1(t),x⊥(t)], if synchronization fails, the foundation of the method

would fail [28]. The conditional Lyapunov exponents are evaluated by perturbing

the receiving (or model) system from the synchronization manifold x(t) = y(t).

Linearizing the perturbed dynamics we have for ∆(t) = y(t)− x(t)

d∆(t)

dt
= [DF(x(t))−K] ·∆(t), (3.9)

where

K =

(
K 0

0 0

)
. (3.10)

23

Recalling that the data and the model are sampled at time intervals τ , this dif-

ferential equation may be interpreted as a map between values of the perturbation

at ‘time’ n and time n+ 1:

∆(n+ 1) = DH(x(n)) ·∆(n), (3.11)

where

DH(x(n)) = I + τ [DF(x(n))−K], (3.12)

and I is the unit N ×N matrix.

To calculate all of the conditional Lyapunov exponents, this map needs to

be iterated and the eigenvalues of the resulting product of matrices evaluated.

However, all of the conditional Lyapunov exponents are not required, only the

largest, and this entails a much easier calculation. Take an arbitrary unit vector

w in the N-dimensional space and multiply it by the iterated ‘effective’ Jacobian

DH(x)L = DH(x(L)) ·DH(x(L− 1)) · · ·DH(x(1)), (3.13)

which carries the linearized perturbation at ‘time’ 1 to its value at ‘time’ L+1.

Multiply the vector DH(x)Lw by its transpose(
DH(x)Lw

)T · (DH(x)Lw
)
. (3.14)

This grows as e2Lλ(q,K) for large L. The quantity

1

2L
log
(
DH(x)Lw

)T · (DH(x)Lw
)
, (3.15)

is just λ(q, K), the largest conditional Lyapunov exponent. This λ(q, K) is desired

to be slightly negative [1].

This suggests replacing the least squares cost function with the balanced cost

function

C(K,q) =
1

2

∫
dtf((x1(t)− y1(t; q))2) +

1

2
(λ(q, K) + ξ)2, (3.16)

where ξ is a small negative number and f(x2) a function which vanishes as x2 near

x = 0. This enforces synchronization by asking that the first term be small, but

does not allow K to be so large that λ(q, K) is too negative. As an approximation

24

to this cost function for K large, the first term is estimated as being of order 1
K2 ,

as x1(t)− y1(t,q) ≈ 1
K

while the second grows as K2. If the total cost function is

approximated as
A

K2
+BK2, (3.17)

with A and B constants, this has a minimum at approximately K ≈ (A
B

)1/4. So

K remains bounded, and there is a balance between the smallness of the synchro-

nization error and the magnitude of the synchronization coupling strength K.

As an example consider the Lorenz system. There are three dynamical equa-

tions for the driving oscillator

dx1(t)

dt
= σ(x2(t)− x1(t))

dx2(t)

dt
= −x2(t) +RDx1(t)− x1(t)x3(t)

dx3(t)

dt
= = −bx3(t) + x1(t)x2(t),

and three equations for the driven receiver

dy1(t)

dt
= σ(y2(t)− y1(t)) +K11(x1(t)− y1(t))

dy2(t)

dt
= −y2(t) +Ry1(t)− y1(t)y3(t)

dy3(t)

dt
= = −by3(t) + y1(t)y2(t).

where conventional values for the parameters σ = 16.0 and b = 4.0 were chosen,

and the driver oscillator had RD = 45.92. As described above, a cost function is

chosen which balances the least squares deviation of the driver input x1(t) and the

model output y1(t) against the deviation of the largest CLE λ(K11, R) from a small

negative number, Cost(K11, R), Equation(3.16) with ξ = 0.05, and varied K11 and

R. With T = 5000 samples of the driving Lorenz model trajectory and the driven

trajectory we see in Figure (3.1) that there is a clear minimum in Cmin(R), the

cost function minimum for a given R as K11 is varied, at R ≈ RD. In Figure (3.2)

the entire cost function C(K11, R) is plotted. In the latter there is again a clear

minimum for K11 ≈ 14 and at R ≈ RD. This minimum results from the balance in

the cost function between the two terms – synchronization error and small negative

25

CLE. Were the second term absent, the cost function would simply flatten out as

K11 is increased, causing numerical difficulty in finding the minimum value.

40 41 42 43 44 45 46 47 48 49 50
0

0.5

1

1.5

2

2.5

R

C
(R

)

Figure 3.1: Lorenz : Cost vs. R

Figure 3.3 illustrates results from the three dimensional Colpitts oscillator. Se-

lecting the parameter values γD = 0.0797, qD = 0.6898 and ηD = 6.2723, data x1(t)

is collected for αD = 5.0, a regime where the Colpitts oscillator exhibits chaotic

behavior. This data is then used to drive a second Colpitts oscillator with the

‘unknown’ parameter γ and choose the cost function, Cost(K, γ), Equation(3.16),

balancing the deviation from synchronization against the magnitude of the largest

CLE with ξ = 0.05. Figure (3.3) shows Cost(K, γ). There is a clear minimum

establishing a value for K ≈ 0.5 and indicating that γ ≈ 0.08. If the CLE term

were absent, there would be a minimum in the γ variation for small K, and that

would flatten out and numerically vanish as K increased. The optimization prin-

ciple, Equation (3.16), determines both a value for the model parameter γ and a

value for the coupling strength guaranteeing synchronization.

26

67891011121314151617181920

35 37.5 40 42.5 45 47.5 50 52.5 55 57.5 60

0

10

20

30

40

50

60

70

80

90

100

Lorenz Model Cost(K
11

,R)

R

K
11

C
o

st
(K

11
,R

)

Figure 3.2: Lorenz : Cost(R,K11)

3.3 Dynamical Coupling

In contrast to using the coupling strength as an additional parameter to be

searched over, the coupling could itself be a dynamical variable designed such that

only the minimal amount of information necessary to sustain synchronization is

passed from the data generating system to the model system. When the model

system does not match the observed data, information needs to flow to the model

and the coupling should increase. When the data and model are in agreement the

coupling should decrease to allow the model system to run more independently.

The dynamical coupling method may be thought of as a means of controlling the

flow of information from the data generating system to the model. An alternate

interpretation is that of automatically adjusting the coupling to maintain a small

but negative CLE. The design of the coupling dynamics and a cost function for

estimating parameters is described below using the Lorenz system, as well as results

from a physical implementation of the method using electrical circuits.

3.3.1 Description

Consider the following differential equations for y1(t),y⊥(t) and K(t)

dy1(t)

dt
= F1(y1(t),y⊥(t),q) +K(t)(x1(t)− y1(t))

27

0
0.25

0.5
0.75

1
1.25

1.5 0.06

0.07

0.08

0.09

0.1

0.11

0

50

100

150

200

250

γ

Colpitts Oscillator Cost(K,γ) CLE Method

K

C
o

st
(K

,γ
)

Figure 3.3: Colpitts : Cost(γ,K11)

dy⊥(t)

dt
= F⊥(y1(t),y⊥(t),q)

dK(t)

dt
= −αK(t) + g((x(t)− y(t))2) (3.18)

where α > 0, g(0) = 0, and for small argument g(x2) ≈ x2. The solution to the

K(t) differential equation

K(t) = e−atK(t = 0) +

∫ t

0

dt′e−a(t−t
′)g((x(t′)− y(t′))2), (3.19)

shows that the initial value of K(t = 0) is unimportant when ta � 0. If g(x2) is

bounded by a constant C, K(t) < C
α

. This means that the coupling is again bal-

anced, but this time by the requirements of synchronization on the magnitude of

g(x2) and the tendency for K to vanish. As time goes by there are intervals when

the synchronization is lost and (x(t′)− y(t′))2 grows, this leads to a growth in the

magnitude of K(t) improving the synchronization. The balance between these two

effects, decay of K(t) to zero and growth of K(t) to strengthen synchronization,

is the embodiment of balanced synchronization in this method. For these inves-

tigations, two different functions of the synchronization error x1(t) − y1(t) were

explored

dK(t)

dt
= −aK(t) + tanh((x(t)− y(t))2),

28

dK(t)

dt
= −aK(t) + (x(t)− y(t))2. (3.20)

In the first K(t) < 1
α

, while for the second the perturbation to K(t) may become

quite large.

This approach to balanced synchronization, can never have identity synchro-

nization x(t) = y(t), as the driving system (the data) is N dimensional (x(t)) while

the model system is N+1 dimensional (y(t), K(t)). If the coupling parameter K(t)

were constant, identity synchronization would be possible. In the formulation of a

criterion as given below for determining the parameters q, the notion of identity

synchronization is still used, and this may be approximately correct as the vari-

ation of K(t) is bounded. Nonetheless, as will be show below, the determination

of parameters in the model using this method works very well. This is due to

the fact that generalized synchronization between these two dynamical systems is

possible [29, 2]. A test for this is to use the variant of the auxiliary system method

as discussed by D. Tang [38]. In this approach the signal from the driving system

x1(t) is repeatedly presented to the model system y(t), K(t), Equation(3.18). In

each presentation the model system is taken to be in a different state by adjusting

either the time at which x1(t) is presented or adjusting the initial conditions of the

model system. In effect, the state of the model system is different for each presen-

tation. If we call the model output from presentation n = 1, 2, ..., ; y(n)(t), then

after a transient, these outputs from the various realizations of the model should

agree: y(n)(t) = y(n′)(t) ;n 6= n′. Results of such a test are shown in Figure 3.4.

3.3.2 Lorenz Example

ẋ1 = σ1(x2 − x1)

ẋ2 = R1x1 − x2 − x1x3

ẋ3 = x1x2 − b1x3

ẏ1 = σ2(y2 − y1) +K(t)(x1 − y1)

ẏ2 = R2y1 − y2 − y1y3

ẏ3 = y1y2 − b2y3

K̇ = −αK(t) + 4 tanh

[
(
x1 − y1

γ
)2

] (3.21)

29

0 10 20 30 40 50 60 70 80 90 100
−40

−20

0

20

40

K(t) & y
1
(t) for different initial conditions of response system

Time [arb units]

y(
t)

IC1
IC2
IC3

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Time [arb units]

K
(t

)

IC1
IC2
IC3

Figure 3.4: Generalized synchronization in the Dynamical Coupling method

The Lorenz “data” system of equations is shown above with labels xi, the

yi and K(t) equations constitute the N+1 dimensional “model” system that will

be used for parameter searching. Note that the coupling is only in the i = 1

term. The dynamics of the coupling is designed such that K(t) tends toward

zero exponentially except when the data and model do not match, “match” being

defined by an error less than a sufficiently small quantity given by the symbol γ.

For the purposes here γ is set to be 0.05 (about 1
1000

the size of the attractor). A

bound on the driving term of K(t) is modeled using a hyperbolic tangent. Lastly,

a coefficient in front of the tanh is chosen to allow K(t) to span a given magnitude.

For this example, σ1=σ2=16, b1=b2=4, R1=45.92 and R2 is used as the scanning

parameter. The damping constant, α, is empirically set at 0.05 but will be shown

to have a range of acceptable values spanning about a decade. A segment of time

series data is shown in Figure 3.5 for the case of identical systems (R2=45.92). On

this scale there is no significant difference in the data, x1(t), and the model y1(t).

The plot of the squared error shows sporadic unsynchronized activity between

regions of synchronization. The K(t) plot shows how the coupling reacts to these

error spikes - growing until the system is synchronized and then decaying back

30

toward zero as designed.

200 210 220 230 240 250 260 270 280 290 300
0

20

40

K
(t

)

Sample time−series for dynamically coupled Lorenz system

200 210 220 230 240 250 260 270 280 290 300
0

0.2

0.4

(x
1(t

)
−

 y
1(t

))
2

200 210 220 230 240 250 260 270 280 290 300
−50

0

50

x 1(t
)

200 210 220 230 240 250 260 270 280 290 300
−50

0

50

y 1(t
)

Time

Figure 3.5: Dynamically Coupled Lorenz Time–Series

3.3.3 Cost Function Analysis

Given the idea of coupling the measured data into an augmented model–

coupling system, it is necessary to consider the cost function that will be most

effective for the evaluation of parameters. The error (x1 − y1) at any particular

point in time may be on the order of the entire size of the attractor, the magni-

tude of any particular spike dependent on the value of the largest CLE evaluated

at the point and time in the orbit where the divergence occurred. Since these

local CLE’s are not known, it is not necessarily reasonable to assume that a large

error spike indicates a large discrepancy in parameters. Therefore, it may not be

advantageous to use a cost function like
∫ T

0
(x1 − y1)

2dt which assumes a specific

relationship between phase space error and parameter correctness.

Figure 3.6 shows an expanded section of the squared error vs time over several

values of R2. In addition, a bar at the level of γ2 is drawn. The bar is green

when the error magnitude is below γ and red when above. One possible cost

31

200 210 220 230 240 250 260 270 280 290 300
0

0.005

0.01

Error2 vs. Time for several R
m

R

m
 = 45.92

200 210 220 230 240 250 260 270 280 290 300
0

0.005

0.01

er
ro

r2

R

m
 = 45.60

200 210 220 230 240 250 260 270 280 290 300
0

0.005

0.01

Time [arb]

R = 44.50

Figure 3.6: Description of cost function for Dynamically Coupled method

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time [arb]

C
os

t

Convergence of cost functions

45.92 : Tanh
45.60 : Tanh
44.50 : Tanh
45.92 : Step
45.60 : Step
44.50 : Step

Figure 3.7: Cost function convergence

measure is, over a given time interval, how frequently is the error above γ? Note

how for the correct parameter value of R2=45.92 the bar is mostly green. As

this parameter is changed the bar becomes more dominantly red. Using this idea,

the cost function could be the ratio of the red segments to the entire interval, or

1
T

∫ T
0
H(|error| − γ)dt (H(·) is the Heavyside step function). This cost function

is shown in Figure 3.7 in dotted lines. The graph verifies that this cost measure

converges quickly after some initial fluctuation. In some sense it is a measure of

the probability of looking at the system and observing it to be unsynchronized

(a likelihood that we would like to be a minimum). Another option is to use a

32

hyperbolic tangent instead of a discontinuous step function. In this case the cost

function could be 1
T

∫ T
0

tanh
[
((x1−y1

γ
)2
]
dt which “turns on” when the error is about

γ. The convergence of this cost measure to a steady value is shown in Figure 3.7 in

solid lines. Note that both of these cost functions disregard the absolute magnitude

of the error and only take into account the magnitude relative to γ. This new form

of cost function is essentially a low–pass filter and allows for a cost function to be

evaluated in real–time. One interesting application of this method is discussed in

Chapter 4.

With this type of probabilistic cost function defined we may now return to the

issue of choosing the damping parameter α of the coupling dynamics. Figure 3.8

shows plots of the average coupling and cost function minimum of identical data

and model systems as the damping constant α is varied. In the range 0.01 ≤ α ≤
0.1 the cost function takes on the anticipated average value of < K(t) >≈ 14 where

the largest CLE becomes just negative (see Figure 2.10). There is a general trend

for the cost function minimum to decrease with decreasing α during this interval.

For α > 0.1 the damping is too strong and K(t) is never able to grow to the

value needed for synchronization. Without this generalized synchronization the

cost function approaches its maximum value of one, indicating that it is extremely

likely that the model system and the data producing system are not synchronized.

For α < 0.01 the coupling dynamics is too weakly damped and K(t) is allowed to

grow very large. With the strong coupling and in the absence of noise, the model

and data will eventually become identical to within the precision of the numerical

floating point representation. This causes an erroneous result with the average cost

function very small and the average coupling large. Therefore, for this example, α

is required to be on the interval 0.01 ≤ α ≤ 0.1 away from both of these regions.

3.3.4 Parameter Scans

With the augmented model–coupling dynamics defined and the hyperbolic tan-

gent form of the cost function selected, we may now proceed to look at this cost

function in parameter space. Figure 3.9 shows this cost function as the parameter

R2 is varied over the range 30→ 50. The response to three different data sets with

33

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

A
ve

ra
ge

 C
ou

pl
in

g

α scan for Lorenz system : σ=16.0 , R=45.92 , b=4.0

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

α

C
os

t F
un

ct
io

n

Figure 3.8: Selection of coupling dynamics damping

R1 = 34, R1 = 40 and R1 = 45.92 is shown. In each case there is a very well defined

minimum at the location R2 = R1, increasing steeply toward one on both sides.

Figure 3.10 shows a 2D parameter scan of the Lorenz system using a hyperbolic

tangent form of the cost function. The data system has parameters R1 = 45.0

and b1 = 4.0 and the model system is scanned over all values 42 ≤ R ≤ 48 and

3 ≤ b ≤ 5. This plot demonstrates a very well defined minimum at the location

R2 = R1 and b2 = b1. Figure 3.11 shows parameter scans for Lorenz data with

added gaussian measurement noise. Both the hyperbolic tangent form of the cost

function and the usual squared error cost function are used. When noise is added,

the probabilistic cost function remains smooth with the minimum increasing as the

noise level increases. The noise is a source of model–system discrepancy allowing

the complex dynamics to cause additional spikes in the error magnitude. These

additional spikes result in an increase in the cost function, or an increase in the

probability that the model and system are not synchronized. There is a very well

defined minimum in the case of the probabilistic cost function throughout all noise

levels at the correct value R1 = R2 = 50, where the squared error cost exhibits

many local minima for all noise levels and only a poorly defined minimum around

R1 = R2 = 50.

34

30 32 34 36 38 40 42 44 46 48 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
m

C
os

t

Cost vs. R
m

R

d
=45.92 R

d
=40.00 R

d
=34.00

Figure 3.9: Lorenz parameter scans : R

3.4 Electrical Circuit Examples

ẋ1 = 103[σ1(x2 − x1)]

ẋ2 = 103[R1x1 − x2 − 20x1x3]

ẋ3 = 103[20x1x2 − b1x3]

ẏ1 = 103[σ2(y2 − y1) +K(t)(x1 − y1)]

ẏ2 = 103[R2y1 − y2 − 20y1y3]

ẏ3 = 103[20y1y2 − b2y3]

K̇ = −0.05K(t) + 4 tanh

[
(
x1 − y1

0.1
)2

]
An electrical circuit implementing the Lorenz system for the data signal (shown

above as ẋi) was built to explore dynamical coupling in a real, noisy setting. The

factors of 20 and 103 are voltage and time scalings respectively. Here, σD = 16,

RD = 50, and bD = 4 are the designed parameter values. An NI-DAQ board

collected x1(t) data at a rate of 250KHz for 0.04 seconds. This data is coupled

to a numerical model system (shown as ẏi and K̇) and integrated forward in time

with arbitrary initial conditions. Here the cost function

Cost =
1

T

∫ T

0

H(|error| − γ)dt

35

2D Parameter Scan : R
d
=45.00 , b

d
=4.00

b
m

R
m

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
42

43

44

45

46

47

48

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.10: Lorenz 2D parameter scans : (R,b)

was used. When |error| > γ the systems are considered out of synchronization and

the integrand is one, zero otherwise. In this way, the cost function is a measure of

the probability of the model being out of synchronization with the system at any

point in time. Here γ = 0.05. Plots showing convergence of this cost function both

near and far from its minimum value are shown in Figure 3.12 and Figure 3.13

respectively. The bottom graphs show this cost function rapidly converging to a

steady value. Figure 3.14 shows a scan across the parameter RM for several differ-

ent data generating Lorenz circuit systems. The values of the minima are shifted

to the right slightly from the correct values of 45, 50, and 55. This systematic

offset is likely due to the inaccuracies associated with the many components in

this circuit. The components used were “off-the-shelf” and taken at face value.

Figure 3.15 shows a two dimensional scan of the cost function in the parameter

space (R,b). This plot contains a well defined minimum near the correct values of

R = 50 and b = 4.0. It must be emphasized that the ‘correct values’ are actually

only predicted values. Inaccuracies in the designed parameters due to variability

in electrical component values lead to uncertainty in the actual ‘correct values’ of

parameters.

36

45 46 47 48 49 50 51 52 53 54 55
0.2

0.4

0.6

0.8

1

R
2

C
os

t

1D scan with Gaussian noise added to data

45 46 47 48 49 50 51 52 53 54 55
0

1

2

3

4

5

R
2

S
qu

ar
ed

 E
rr

or

0.1
0.5
0.7
1.0
1.5

Figure 3.11: Lorenz parameter scans with noise: R

Figure 3.16 demonstrates another example of the dynamical coupling method

using data from an electronic circuit. A Colpitts circuit (Figure 2.3) was con-

structed with component values C1 = 6.8µF , C2 = 6.8µF , L = 10mH, RL = 26Ω

and with RE as the unknown parameter. The parameter RE was set to two values

where the system was chaotic. The emitter voltage was sampled at 100,000 kHz

and the data was coupled to a numerical model system through the VC2 variable

using the dynamical coupling method. The graph on the left shows the cost while

varying the value of RE in the numerical system. The correct values of the emitter

resistance are 476Ω and 846Ω. The offsets are due to inaccuracies in the other

component values (especially the capacitors).

37

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

1

2

3

K
11

(t
)

Time Series Near Cost Function Minimum : σ=13.0 , b=4.2 , R=48.3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−2

0

2

X
1(t

)
, X

da
ta

(t
)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

|e
rr

or
|

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

C
os

t(
t)

Time [sec]

Figure 3.12: Cost function convergence #1 : Lorenz circuit data

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

1

2

3

K
11

(t
)

Time Series Away From Cost Function Minimum : σ=13.0 , b=5.0 , R=65.0

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−2

0

2

X
1(t

)
, X

da
ta

(t
)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.1

0.2

|e
rr

or
|

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

C
os

t(
t)

Time [sec]

Figure 3.13: Cost function convergence #2 : Lorenz circuit data

38

35 40 45 50 55 60 65 70 75
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
lorenz circuit 1D Parameter Scan

R
m

C
os

t

Figure 3.14: Lorenz circuit parameter scan : R

1 2 3 4 5 6 7 8 9 100

20

40

60

80

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b

Lorenz 2D Parameter Scan

R

C
os

t

Figure 3.15: Lorenz circuit 2D parameter scan : (R,b)

39

200 400 600 800 1000 1200 1400 1600 1800 2000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
e
 [Ω]

C
os

t

Colpitts 1D Parameter Scan

Figure 3.16: Colpitts circuit parameter scan : RE

Chapter 4

Application of Dynamical

Coupling

4.1 Introduction

This chapter focuses on a particular type of engineering application for which

the dynamical coupling method is well suited. In this application we wish to

quickly distinguish the source of a measured time–series from many candidate

sources of identical design. A particular example could be an aircraft radio forced

into a nonlinear regime of operation by an intense pulse of electromagnetic energy.

In this case, the goal is to distinguish aircraft from one another by the slight

differences in the dynamics of their radio systems.

Model 1

Model 2

Model 3

NO

NO

YES

Signal(t)

Figure 4.1: System Identification Problem

Here, standing in for the “radio”, the Lorenz system will be used as the source

of a complex time–series measurement. Figure 4.1 illustrates the problem. Given

40

41

a time–series of measured data, distinguish between several candidate models of

identical design but slightly different parameters for the model most likely to have

generated the measured time–series. A further requirement is that this should be

done in real–time. We would like to identify the aircraft in seconds or tens of

seconds rather than tens of minutes.

4.2 System Identification

A data file representing the transmitting system was generated from the Lorenz

system with 4th order Runge–Kutta integration and a time step of δ = 0.01. The

parameter σd was set to 16.0 while Rd and bd changed in time as shown in Table 4.1.

ẋ1 = 16(x2 − x1)

ẋ2 = Rdx1 − x2 − x1x3

ẋ3 = x1x2 − bdx3

Table 4.1: Lorenz system parameters : Simulated data

Time Rd bd

0→ 300 60 4.6
300→ 600 50 4.0
600→ 900 52 4.1

900→ 1200 54 4.2
1200→ 1500 60 4.6

The time series x1(t) was then simultaneously presented to three receiver mod-

els of the following form

ẏ1 = 16(y2 − y1) + K(x1 − y1)

ẏ2 = Rmy1 − y2 − y1y3

ẏ3 = y1y2 − bmy3

42

K̇ = −αK + (
x1 − y1

γ
)2

With α = 0.1, γ = 0.2 and each model having its own Rm and bm as shown in

Table 4.2.

Table 4.2: Receiver model parameters for simulated data

Rm bm

Model #1 50 4.0
Model #2 52 4.1
Model #3 54 4.2

The cost function for each model, which is interpreted as the probability that

the model is not likely to be the one which generated the data, is the frequency over

the past 100 points in time that the error has exceeded a specific value |error| ≥ γ.

Cost(t) =
1

100

∫ t

t−100

{
1 |x1 − y1| ≥ γ

0 |x1 − y1| < γ

}
dt

In other words, the cost function is the probability that a randomly chosen point on

the interval will have |error| ≥ γ. We desire for this probability to be a minimum

indicating that the model is easily driven into synchronization with the data. The

width of the averaging window, 100, was chosen to be as small as possible while still

allowing the probability calculation to converge to a steady value. For calculation

purposes, the cost function was initialized to 1 for t ≤ 0.

Figure 4.2 shows two example error time–series plots from model #1 where the

cost function is evaluated for t = 500 and t = 300. A horizontal line is drawn

at the value |error| = γ and is colored red when |error| > γ and green when

|error| ≤ γ. The cost function is seen as the ratio
length of red
total length

. Figure 4.3

shows the time-series responses for |error(t)|, coupling K(t), and Probability(t)

(or cost function) for model system #2. Note the minimum in the probability

when the data system has switched to parameters equivalent to the model. Also

note the spiking activity that takes place in K(t) when the model is introduced to a

favorable time–series. The best cost function, which may not be the particular one

43

400 410 420 430 440 450 460 470 480 490 500
0

0.5

1

1.5

2
|error(t)| for 400<t<500 , Prob=0.1174

|e
rr

or
|

Time [arb]

200 210 220 230 240 250 260 270 280 290 300
0

0.5

1

1.5

2
|error(t)| for 200<t<300 , Prob=0.7876

|e
rr

or
|

Time [arb]

Figure 4.2: Probability cost function

used here, should be able to detect the onset of this behavior in the least amount

of time. Figure 4.4 shows the response to each model as time progresses. Note the

ability of each model to respond to the portion of the time–series most likely to

have been generated by itself.

This system identification strategy uses the dynamical coupling method of in-

troducing measured data to a model as a real–time discriminator. The cost func-

tion, being a low–pass filter, may be integrated in parallel with the model systems

providing cost function readings on a continuous basis. The measured time–series

is continually introduced to the known system models and the models “respond”

with a minimum cost function when the measured data is likely to have been pro-

duced by that model. As another application, this threshold based discrimination

may also be used as part of a communication system to send symbols hidden in

a chaotic time–series. Presently the baud rate for such a communication system

would be intolerably low due to the time lag in the cost function low–pass filter.

Further research may provide an alternative, more responsive, cost function and

44

make the communication application a viable concept.

0 500 1000 1500
0

1

2

Dynamically coupled Lorenz system : R
m

=52.00 , b
m

=4.10

|e
rr

or
|

0 500 1000 1500
0

100

200

300

C
ou

pl
in

g
: K

(t
)

0 500 1000 1500
0

0.5

1

100

P
ro

ba
bi

lit
y

Time [arb]

[R
d
 , b

d
] =

[60 , 4.6] [50 , 4.0] [52 , 4.1] [54 , 4.2] [60 , 4.6]

window
averaging
width

Figure 4.3: Time-series for model #2 (simulated data)

This system identification method was tested with measured data from a Lorenz

electrical circuit. Here, the parameters of the data producing system were changed

in time by use of a PIC microcontroller programmed to power a series of electronic

relays in a predetermined sequence. These relays switched resistors responsible for

the magnitude of the parameters Rd and bd in and out of the circuit. A photograph

of the setup is shown in Figure 4.5. The portion of the circuit circled on the left

consists of the micro–controller and relays, the portion circled on the right is the

actual Lorenz system circuit. Again, Figure 4.6 shows the time-series responses

for |error(t)|, coupling K(t), and Probability(t). Figure 4.7 shows the response

of each numerical model (Table 4.3) to the time–series and agrees with the above

simulated results very well.

4.3 Parameter Space Contours

The above method of signal discrimination introduces the issue of determining

exactly where to “draw the line” at some cost function level to indicate whether

45

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [arb]

P
ro

ba
bi

lit
y

Cost function response for each model

R=50,b=4.0
R=52,b=4.1
R=54,b=4.2

[R , b]=[60 , 4.6] [50 , 4.0] [60 , 4.6][52 , 4.1] [54 , 4.2]

Figure 4.4: Probability time-series for all three models (simulated data)

Table 4.3: Receiver model parameters for circuit data

Rm bm

Model #1 45.7 4.3
Model #2 51.6 5.1
Model #3 57.7 5.5

a model is responding favorably to a data signal. This critical cost function value

would also need to be dependent on the level of background noise in the system

at any particular time (Figure 3.11). A better method is to use an entire contour

of points in parameter space rather than only a single point. Figure 4.8 depicts

the two–dimensional parameter scan in (R, b) for the Lorenz system. We wish

to concentrate on a specific contour in parameter space, say the values of (R, b)

for which the cost function equals 1/2. The idea is to adjust the parameters of

the model system such that it follows a contour of constant cost function when

introduced to a favorable time–series measurement. A time–series from a system

with slightly different parameters will cause the minimum shown in Figure 4.8 to

be shifted. This will result in the cost increasing on one side of the contour and

decreasing on the other. This modulation of the cost function value as a result of a

changed parameter space landscape is easily identified in the data due to it having

46

Figure 4.5: Lorenz circuit with micro–controller based parameter adjustment

a known period; the time it takes for the receiver system to progress through the

parameter space contour.

Applying a coordinate system with origin inside the contour [36], the points

along the contour may be written in terms of the vector ~r = ρ(θ) cos(θ)b̂ +

ρ(θ) sin(θ)R̂. Moving along the contour at constant speed requires that the ve-

locity vector satisfy the relationship∣∣∣∣d~rdt
∣∣∣∣2 = (ρ2 + ρ′

2
)θ̇2 = Vo

2

Solving this equation for θ̇ and integrating with respect to time gives

θ(t) =

∫ t

0

Vo√
ρ2 + ρ′2

dt

The functions ρ(θ) and ρ′(θ) are known from the data and we may now numerically

integrate to obtain points separated at equal intervals of time moving at constant

speed along the parameter contour. Figure 4.9 shows these points on a polar plot

where θ = [0, 2π] represents one orbit of the contour. On the right, this same

contour is used with data from a system with different parameters. The shifting

47

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

Dynamically coupled Lorenz system : R
m

=45.70 , b
m

=4.32

|e
rr

or
|

0 2 4 6 8 10 12 14 16 18 20
0

100

200

C
ou

pl
in

g
: K

(t
)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

P
ro

ba
bi

lit
y

Time [Sec]

Figure 4.6: Time-series for model #1 (circuit data)

of the cost function minimum is realized as an excursion of the cost function away

from the origin on one side of the contour and toward the origin on the other.

As a final example of the sensitivity of this approach, time–series data from

seven slightly different Lorenz systems were introduced to a model following a

parameter contour calculated from data of the first system. The parameters of

each system are presented in Table 4.4. As can be seen in Figure 4.10, the

Table 4.4: Receiver model parameters for contour method

Parameter #1 #2 #3 #4 #5 #6 #7
σ 16.00 16.00 15.72 15.84 15.84 15.96 15.98
R 45.00 45.33 45.62 45.40 45.02 45.43 44.52
b 4.00 4.08 3.90 4.10 4.02 3.97 3.96

correct model system is readily identifiable. Here the cost function is plotted

verses normalized length along the contour. The periodic features from incorrect

parameters are easily distinguished from the correct model parameters and there

is no need to set an arbitrary threshold on the cost function value.

48

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [Sec]

P
ro

ba
bi

lit
y

Cost function response from several models

R

m
=57.7,b

m
=5.5

R
m

=51.6,b
m

=5.1

R
m

=45.7,b
m

=4.3

67.4
6.7

45.7
4.3

51.6
5.1

57.7
5.5

51.6
5.1

45.7
4.3

67.4
6.7

Figure 4.7: Probability time-series for all three models (circuit data)

4.4 Summary

This chapter introduced an application of the technique of dynamically cou-

pling measured data into a model system. This method allows for a cost function

that may be calculated in parallel with the integration of the dynamics allowing

for an immediate prediction (the low–pass filter in the cost function introduces

some time lag) of the likelihood that a measured signal could be generated by

a candidate model. This is an important result with engineering applications in

system identification problems where systems with complex dynamics need to be

classified quickly.

49

4.2

4.3

4.4

4.5

4.6

4.7
49 49.5 50 50.5 51 51.5 52 52.5 53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.6

0.7

0.
6

0.6

0.5

0.5

0.
7

R

0.4

2D Parameter scan of Lorenz system

0.3

0.6

0.4
0.4

0.5

0.
6

0.7

0.1
0.2

0.
5

0.3

0.6
0.7

0.7

0.8

0.8

b

P
ro

ba
bi

lit
y

0.2

0.4

0.4

0.4

0.
6

0.6
0.6

0.6

0.
6

0.6

0.6

0.8

0.8

b

R

2D Lorenz Parameter Scan (sim)

4.3 4.35 4.4 4.45 4.5 4.55 4.6 4.65 4.7
49

49.5

50

50.5

51

51.5

52

52.5

53

Figure 4.8: 2D Parameter scan with contours

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Contour Cost = 0.5

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

R
d
=50.0 , b

d
=4.4

Figure 4.9: Polar plots of original and distorted parameter contours

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Contour Length

P
ro

ba
bi

lit
y

Parameter Space Contour Response

#1 #2 #3 #4 #5 #6 #7

Figure 4.10: Parameter space contour system identification : Simulated results

Chapter 5

Optimal Tracking Formulation

This chapter introduces a technique for solving the state and parameter esti-

mation problem via an analogy with classical optimal control theory [17, 20, 6].

The model system is thought of as being controlled in such a way as to force it

to track measured data. Once the model system is discretized in the appropriate

way and the correct cost function chosen, powerful existing numerical optimiza-

tion code may be used to solve for the optimal control that allows for the model to

reproduce the measured data time–series. This control function may then be used

as a means of comparing several candidate system models. Examples are provided

for the Colpitts, Lorenz, and Hodgkin–Huxley systems.

5.1 Optimal Tracking of Data

Chapter 3 introduced a constant term K to couple measured data to a model

system. This idea was then extended to a time–dependent coupling gain K(t) but

with constrained time evolution through an ad–hoc differential equation for K̇(t).

Here the coupling gain is allowed to be an arbitrary positive valued function of

time u(t). Note that the symbol u has replaced K as representing the proportional

error coupling gain to emphasize that it is now an unconstrained function of time.

Classical optimal control problems are typically cast in the following form.

There is some input/output system we wish to control, called the “plant”. There is

the “controller” which provides input to the plant based on current measurements

51

52

Controller Plant
u(t)

Measurements

ym y

Figure 5.1: Optimal control system

of the output and possibly the time. A typical diagram is shown in Figure 5.1.

The problem is to design a controller to bring the plant from some initial state to

a particular final state while minimizing some performance measure (5.1).

J = h(x(tf), tf) +

∫ tf

to

g(x(t),u(t), t) dt (5.1)

The performance measure takes into consideration the specific optimization re-

quired of the motion. For example, using the least amount of fuel or traveling the

least distance. These problems tend to be numerical in nature and optimization

tools have been developed for use in solving optimal control problems. Casting

the state and parameter estimation problem in an optimal control setting allows

the use these powerful numerical tools. If we allow the “plant” to be the system

model and the “control” to be the proportional error coupling gain we can then

ask for the control which drives the model to track the data in some optimal way.

Gain u(t) Model

Measurements

data y

−

ym

Figure 5.2: Control diagram for model system

Figure 5.2 depicts the control diagram for introducing data to the model. Ide-

ally, we would like the model to track the data on its own without the need for

coupling (u(t) = 0). This ideal case is very unlikely considering measurement

53

errors and allowing for the possibility of chaotic dynamics in the system under

study. For the case of state and parameter estimation, the optimal control will

be the u(t) which allows the model system to track the measured data while also

being as small as possible. We only require the control to facilitate tracking noisy

data and chaotic dynamics, we do not want the control to dominate the dynamics

due to the inability of the model to reproduce the data. Indeed, the resulting u(t)

required to force the model to track measured data will be an indication of how

“good” the model is, and may serve as a metric for comparing several candidate

models with each other.

The observed system is assumed to satisfy differential equations in x(t) that

depend on a fixed set of parameters p, i.e.,

dx1(t)

dt
= F1(x1(t),x⊥(t),p)

dx⊥(t)

dt
= F⊥(x1(t),x⊥(t),p).

The measured quantity x1(t) is passed to the model by augmenting the model

dynamics with a proportional error term as shown in equations (5.2).

dy1(t)

dt
= F1(y1(t),y⊥(t),q) + u(t)(x1(t)− y1(t))

dy⊥(t)

dt
= F⊥(y1(t),y⊥(t),q)

(5.2)

We wish to determine the coupling control, u(t), and model parameters, denoted

by q, such that the model system tracks the data in an optimal fashion. As stated

above, “optimal” is defined as the smallest u(t) which allows the model to track

the measured data. We require a cost function which, in addition to a penalty for

large error, also contains a penalty for large control values. One such cost function

is shown in equation (5.3).

C(q, u) =
1

2T

∫ T

0

[(x1(t)− y1(t))
2 + u(t)2] (5.3)

For large u(t) the first term in this function behaves as 1/u2, and this, combined

with the growth of the second term, leads to a balanced magnitude for u(t). By

minimizing the cost function subject to the constraint of satisfying the differential

54

equations (5.2), we obtain a classical tracking problem with optimal control [17].

The trajectory of the dynamical system for y(t) is controlled by u(t) to track

x1(t), or, in contemporary language, to synchronize with the observed orbit x1(t).

Because of the properties of nonlinear systems, when the largest CLE of (5.2) is

negative, the unobserved components of the state, i.e., y⊥(t), will also track the

unobserved x⊥(t).

5.2 System Discretization

To define the optimal control problem we assume measurements are made of

the system at times tm = t0 + mτ , resulting in X(m) = x(t0 + mτ); m = 1,

. . . , M . These measurements could be an arbitrary scalar function of the system

state, but to simplify the discussion we assume here that x1(t) is observed as the

data. The state of the model is described by y(t) = [y1(t), y2(t), . . . , yN(t)] =

[y1(t),y⊥(t)]. Where U(m) = u(t0 + mτ) are the control values defined at the

discrete measurement times.

To solve the optimization problem, we use a “direct transcription” method [11],

which defines a finite-dimensional problem with variables given by the states

Y(m), the controls U(m), and the fixed parameters q. The cost function (5.3)

is minimized subject to equality constraints that connect the Y(m) and the U(m)

across each time interval [tm, tm+1]. These constraints are imposed in the finite-

dimensional space of the variables {Y(m), U(m),q} and are characterized by an

integration rule for the states Y(m), and an interpolation rule for the control

u(t). Although the resulting finite-dimensional optimization problem has many

variables, it is also smooth and has derivatives that may be calculated efficiently.

Indeed, it is this transcription into a smooth large-scale constrained optimization

problem that is the key to the robust and efficient estimation of the parameters.

This work uses Simpson’s rule for the integration and Hermite interpolation

for the states and controls. Given the values of the states and controls at the

mid-point m2 = m+ 1
2
, Simpson’s rule for integration defines a constraint on each

55

interval of the form:

Y(m) +
τ

6
[G(Y(m), U(m),q)

+ G(Y(m+ 1), U(m+ 1),q)

+ 4G(Y(m2), U(m2),q)]−Y(m+ 1) = 0,

where

G1(y, u,q) = F1(y,q) + u(x− y)

G⊥(y, u,q) = F⊥(y,q). (5.4)

In order to determine U(m) and the mid–point values, Y(m2), Y(m), U(m2), we

require a formula for interpolating the model states and control on the interval

t ∈ [nτ, (n + 1)τ]. Using cubic polynomial interpolation we may approximate

functions as y(t) = At3 + Bt2 + Ct + D, with the coefficients determined from

the conditions y(mτ) = Y (m), y((m + 1)τ) = Y (m + 1), ẏ(mτ) = G(m) and

ẏ((m + 1)τ) = G(m + 1). A general point along the interval t = [mτ, (m + 1)τ]

denoted by s ∈ [0, 1] is approximated by

y(s) ≈ [τ(G(m) + G(m+ 1)) + 2(Y(m)−Y(m+ 1))] s3

+ [−τ(2G(m) + G(m+ 1))− 3(Y(m)−Y(m+ 1))] s2 (5.5)

+ [τG(m)] s+ Y(m)

For approximation of the mid–point value, s = 1/2 and the above equation reduces

to

y(s =
1

2
) ≈ 1

2
[Y(n) + Y(n+ 1)] +

τ

8
[G(n)−G(n+ 1)] (5.6)

Y(m2), Y(m), U(m2) and U(m) are required to satisfy this Hermite interpolation

condition [35], giving

Y(m2) =
1

2
(Y(m) + Y(m+ 1)) +

τ

8
(G(Y(m), U(m),q)

−G(Y(m+ 1), U(m+ 1),q)),

and

U(m2) =
1

2
(U(m) + U(m+ 1)) +

1

8
(dU(m)− dU(m+ 1)),

where du(m) is the slope parameter in the Hermite interpolation and is treated as

another vector of unknown values.

56

5.3 SNOPT Solver

To illustrate the procedure of setting up and solving the optimization problem

let us consider the example of the Lorenz system. The above discretization method

produces the following equality constraints that need to be satisfied. From the

Simpson integration rule

0 = Y1(m)−Y1(m+ 1) +
τ

6
[σ(Y2(m)−Y1(m)) + U(m)(X1(m)−Y1(m))]

+
2τ

3
[σ(Y2(m2)−Y1(m2)) + U(m2)(X1(m2)−Y1(m2))]

+
τ

6
[σ(Y2(m+ 1)−Y1(m+ 1)) + U(m+ 1)(X1(m+ 1)−Y1(m+ 1))]

0 = Y2(m)−Y2(m+ 1) +
τ

6
[RY1(m)−Y2(m)−Y1(m)Y2(m)]

+
2τ

3
[RY1(m2)−Y2(m2)−Y1(m2)Y2(m2)]

+
τ

6
[RY1(m+ 1)−Y2(m+ 1)−Y1(m+ 1)Y2(m+ 1)]

0 = Y3(m)−Y3(m+ 1) +
τ

6
[Y1(m)Y2(m)− bY3(m)]

+
2τ

3
[Y1(m2)Y2(m2)− bY3(m2)]

+
τ

6
[Y1(m+ 1)Y2(m+ 1)− bY3(m+ 1)]

and from the Hermite interpolation rule

0 =
1

2
(Y1(m) + Y1(m+ 1))−Y1(m2)

+
τ

8
[σ(Y2(m)−Y1(m)) + U(m)(X1(m)−Y1(m))]

−τ
8

[σ(Y2(m1)−Y1(m+ 1)) + U(m+ 1)(X1(m+ 1)−Y1(m+ 1))]

0 =
1

2
(Y2(m) + Y2(m+ 1))−Y2(m2) +

τ

8
[RY1(m)−Y2(m)−Y1(m)Y2(m)]

= −τ
8

[RY1(m+ 1)−Y2(m+ 1)−Y1(m+ 1)Y2(m+ 1)]

0 =
1

2
(Y3(m) + Y3(m+ 1))−Y3(m2) +

τ

8
[Y1(m)Y2(m)− bY3(m)]

= −τ
8

[Y1(m+ 1)Y2(m+ 1)− bY3(m+ 1)]

0 =
1

2
(U(m) + U(m+ 1))−U(m2) +

τ

8
[dU(m)− dU(m+ 1)]

where dU(m) is the slope parameter in the Hermite interpolation. To insure

smoothness of the control function U(m) satisfying the Hermite interpolation it

57

is helpful to add terms to the cost function involving du(m)2, which we do in the

cost function below.

C =
1

2

M∑
m=1

[(X1(m)− Y1(m))2 + U(m)2 + du(m)2

+ (X1(m2)− Y1(m2))2 + U(m2)2],

If we have a total of M + 1 co–location points then there are 5M + 5 unknown

values in [X1(m),X2(m),X3(m),U(m),dU(m)] and an additional 4M unknowns

in [X1(m2),X2(m2),X3(m2),U(m2)]. With the P unknown parameters from the

model itself we have a total of 9M + 5 + P unknown quantities. There are 3M

Simpson integration constraints and 4M Hermite interpolation constraints giving

a total of 7M constraint equations. The number of co–location points is typically

of order hundreds, so that the total number of unknown quantities in this example

is on the order of thousands. At first this may not seem like gaining any advantage,

going from three unknown values to thousands. The key is in the efficiency of the

SNOPT solver which takes advantage of the sparseness of the jacobian matrix of

the constraints as shown below. All solutions presented below took on the order

of minutes to tens of minutes to solve on a standard Linux PC.

Jac x1 x2 x3 u du x1,2 x2,2 x3,2 u2 p
CS1 A 0 0 0
CS2 0 0 0
CS3 0 0 0 C
CH1 0 −I 0 0
CH2 B 0 0 0 −I 0 0
CH3 0 0 0 0 −I 0
CHu 0 0 0 0 0 0 0
Cobj 0 0 0 0 0

Figure 5.3: Constraint Jacobian for Lorenz system (Hermite-Simpson)

Figure 5.3 shows the jacobian of the constraint equations for Hermite-Simpson

discretization of the Lorenz systems of equations. Each entry represents an mrM×
M matrix, some of which were filled in with their respective zero or identity values.

Let us examine a few of the entries that are dependent on the constraints. In

58

x1(0) x1(1) x1(2) · · · x1(M − 1) x1(M)
CS1(0) • • 0 · · · 0 0
CS1(1) 0 • • · · · 0 0

...
. . .

CS1(M − 1) 0 0 0 · · · • •

Figure 5.4: Structure of jacobian entry ‘A’

region ‘A’ of the constraint jacobian we take the derivative of the first Simpson

constraint equation with respect to the first state variable, ∂CS1(i)/∂X1(j). Since

this constraint is integrating the state from m to m+1, this portion of the jacobian

is only nonzero on a band near the diagonal as shown in Figure 5.4. Similarly for

region ‘B’ where we take the derivative of the second Hermite constraint with

respect to the third state variable, ∂CH2(i)/∂X3(j). The only nonzero entries are

near the diagonal and the matrix has the same form as that shown in Figure 5.4

for region ‘A’. Figure 5.5 shows an entry from the parameter column where we

take ∂CS3(i)/q(j). For this Lorenz system example, the only non–zero entries are

in the column for the parameter b.

By defining the optimization problem in the space of the discretized system

model and using a numerical integration rule along with an interpolation rule

as constraints, we have gained the advantage of having a problem with a very

sparse constraint jacobian where powerful numerical optimization tools exist such

as SNOPT [Philip Gill, UCSD] which exploit this sparse structure. As a practical

matter of actually coding these derivatives in computer code, a Python [19, 22]

front–end to the SNOPT FORTRAN libraries was created. Python is a freely

available scripting language commonly used in the field of numerical computation.

The front–end that was developed takes advantage of the object–oriented nature

of the programming language for setting up the problem efficiently as well as a

symbolic mathematics module for evaluating the derivatives. To define and solve

an optimization problem, only a small header section of code need change. An

example of this section of the code describing the problem is shown in Figure 5.6

with the entire code listing in Appendix C.

59

R σ b
CS3(0) 0 0 •
CS3(1) 0 0 •

...
...

...
...

CS3(M − 1) 0 0 •

Figure 5.5: Structure of jacobian entry ‘C’

5.4 Simulations

This section presents a gallery of results from using the optimal control method

of parameter and state estimation presented above on the Colpitts, Lorenz, and

Hodgkin–Huxley systems.

5.4.1 Colpitts system

As an example of solving for the states of the Colpitts system, Figure 5.7 gives

the state variables Y(m), the transmitted data X1(m), and the unknown state

variable data X2(m) and X3(m). Also shown is the control U(m). It is important

that the use of SNOPT allows us to deduce good estimates for the unobserved

dynamical variables x2(t) and x3(t). Here the model equations were purposely inte-

grated with fixed initial conditions in order to demonstrate the ability of SNOPT

to track data with a transient coming from an unknown initial condition. The

rate at which the trajectory for y(t) approaches the attractor for the data is seen

in Figure 5.7, and this is a result of the control which is operating to enforce

synchronization.

5.4.2 Lorenz system

Here a model Lorenz system was controlled to track data from a simulated

Lorenz system with presumed unknown parameters. In Figure 5.8 the plots of the

data system and the SNOPT output are exactly on top of one another and the

model parameters were all determined correctly to within a few percent (Table 5.1).

Note the very small magnitude of control needed for tracking, order 10−3.

60

##########LORENZ#HERMITE#SIMPSON############

#

Vector Field

Feqnstr = []

Feqnstr.append("sigma*(x2 - x1)")

Feqnstr.append("R*x1 - x2 - x1*x3")

Feqnstr.append("x1*x2 - b*x3")

#

String Symbols

Lvars = ["x1","x2","x3"]

Lparams = ["sigma","R","b"]

#

Parameter values [lower, init, upper]

Lparamvals = [[1.00 , 2.0 , 100.0],\

[1.00 , 2.0 , 100.0],\

[1.00 , 2.0 , 100.00]]

#

Time step

hstep = 0.004

#

Data File

fName = "data_file.dat"

#

##

Figure 5.6: Python system definition header

61

0 5 10 15 20 25 30

-60

-50

-40

-30

-20

-10

0

10

20

30

Time (arb. units)

 y1(t)
 y2(t)
 y3(t)
 u(t)
 x1(t)
 x2

Figure 5.7: SNOPT solution : Colpitts oscillator

Table 5.1: Parameters for Lorenz simulation

Data SNOPT
σ 15.0 15.44
R 50.0 49.95
b 4.50 4.44

5.4.3 Hodgkin–Huxley model

Here the Hodgkin–Huxley system was controlled to track data from a simulated

Hodgkin–Huxley system with unknown parameters and a constant known injection

current. The coupling was through the simulated membrane potential Vm(t). In

Figure 5.9 the plots of the data system and the SNOPT output are exactly on top of

one another. Table 5.2 presents the model parameters involved in this simulation.

Several parameters are determined well by SNOPT while others are off by more

that 30%.

In this case, one should be concerned with how much information about the

system is actually being presented to the model when the neuron is firing period-

62

0 0.2 0.4 0.6 0.8 1
−50

0

50

x 1(t
)

SNOPT Output − Lorenz simulated data

SNOPT Data

0 0.2 0.4 0.6 0.8 1
0

2

4
x 10

−3

u(
t)

0 0.2 0.4 0.6 0.8 1
−50

0

50

x 2(t
)

0 0.2 0.4 0.6 0.8 1
0

50

100

x 3(t
)

Time

Figure 5.8: SNOPT solution : Lorenz system simulation

63

Table 5.2: Parameters for Hodgkin–Huxley simulation : constant Iinj

Data SNOPT Data SNOPT
gK 6.0 6.8782 VK -100 -101.3056
gNa 20 20.3455 VNa 50 49.9943
gl 0.03 0.03381 Vl -50 -52.7179
a1 0.01 0.009406 a2 50 51.1449
a5 35 34.8983 a4 0.1 0.09886
a7 0.07 0.05003 a8 0.05 0.0485
b1 0.125 0.1456 b2 0.0125 0.009871
b4 0.0555 0.0553 b6 0.1 0.09895

ically. Repeated data actually adds no new information. It would be better to

get the system under study to fire in a non–periodic fashion in order to explore a

larger region of the system’s phase space. This is exactly what is shown in Fig-

ure 5.10. Here, the injected current was taken as a known portion of the Lorenz

x1(t) time–series. This results in non–periodic neuron activity and a dataset that

contains more information about the dynamics of the system under study. As can

be seen in Table 5.3, the parameter error has been greatly reduced.

Table 5.3: Parameters for Hodgkin–Huxley simulation : Lorenz Iinj

Data SNOPT Data SNOPT
Cm 1.0 0.99975 gK 36 35.64223
VK -12 -12.00226 gNa 120 120.914
VNa 115 115.011 gl 0.3 0.33066
Vl -10.316 -10.62079 a1 0.01 0.01006
a2 10 9.94615 a3 0.1 0.10048
a4 0.1 0.09952 a5 25 24.87718
a6 0.1 0.10015 a7 0.07 0.06974
a8 0.05 0.04964 b1 0.125 0.12488
b2 0.0125 0.01244 b3 4.0 4.00130
b4 0.0555 0.05542 b5 1 1.00298
b6 0.1 0.09933 b7 30 30.14122

64

0 10 20 30 40 50
−100

0

100

V
m

(t
)

SNOPT Output − Hodgkin−Huxley simulated data

SNOPT Data

0 10 20 30 40 50
0

1

2
x 10

−3

u(
t)

0 10 20 30 40 50
0

0.5

1

m
(t

)

0 10 20 30 40 50
0

0.5

1

h(
t)

0 10 20 30 40 50
0

0.5

1

n(
t)

Time

Figure 5.9: SNOPT solution : Hodgkin–Huxley system simulation

5.5 Electrical Circuit Experiments

5.5.1 Lorenz circuit

Here a model Lorenz system was controlled to track data from a Lorenz elec-

trical circuit with presumed unknown parameters through coupling with the x1(t)

state. In Figure 5.11 the plots of the data system and the SNOPT output are

identical for the observed state x1(t) but the unobserved states are not synchro-

nized. This is typical of model error and is most likely due errors in the electrical

circuit model itself. The circuit parameters are truly unknown in this case, depend-

ing on the exact value of many individual circuit components. Still, the SNOPT

output gave parameters within a reasonable range of the designed (guess) values

65

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20
SNOPT Output : Hodgkin−Huxley simulated data

I in
j(t

)

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

V
m

(t
)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.05

0.1
u(

t)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

h(
t)

Time

Figure 5.10: SNOPT solution : Hodgkin–Huxley system simulation with Lorenz
injection current

(Table 5.4). In this case, due to the speed at which the circuit is running, the

control u(t) should be divided by a factor of 1000 for comparison with the Lorenz

simulation above. This would give a control magnitude on the order 10−1 com-

pared to 10−3 from simulated data. The larger control requirement may be used

as an indicator of possible errors in the guessed form of the model. This is an

advantageous result since in a real experiment the quantities x2(t) and x3(t) will

not be measured and therefore it will not be known if those states are actually

synchronized with the model.

66

Table 5.4: Parameters for Lorenz circuit

Guess SNOPT
σ 16 19.67
R 50 56.46
b 4 3.04

5.5.2 Hodgkin–Huxley circuit

An electrical circuit shown in Figure 5.12 developed at the Institute for Non–

Linear Science was designed to emulate a Hodgkin–Huxley neuron. This electrical

system was used as the data source and the node corresponding to the cell mem-

brane potential Vm(t) was coupled into a model Hodgkin–Huxley system. This

circuit approximates the rate functions αm,n,h(Vm) and βm,n,h(Vm) as piecewise

linear functions over the range of interest. Every potentiometer, blue rectangular

circuit elements in Figure 5.12, needed to be calibrated in order to have known

expected values for the model parameters. This calibration was done by using

electrical circuit simulation software (SPICE) to determine the potentiometer set-

tings required for specific parameter values (code in Appendix C). These values

were then fine tuned in the lab to get the best possible fit for the desired functions

αm,n,h(Vm) and βm,n,h(Vm) as shown in Figure 5.13.

Figure 5.14 shows the SNOPT output from tracking a Hodgkin–Huxley model

neuron to the electrical circuit data. Table 5.5 is a listing of the parameters

as calibrated in the circuit and as obtained from SNOPT. Parameters are ref-

erenced to equations (5.7). Due to the piecewise linear approximations men-

tioned above, the circuit is known to not exactly reproduce a Hodgkin–Huxley

type signal. This is a very encouraging result producing parameters of reasonable

value considering the periodic nature of the spiking activity as discussed above.

67

αn(Vm) =
n1(n2 − Vm)

en6(n2−Vm) − 1

αm(Vm) =
m2(m1 − Vm)

em2(m1−Vm) − 1

αh(Vm) = h1e
−(h2+Vm)/h3

βn(Vm) = n3e
−(n4+Vm)/n5

βm(Vm) = m5e
−(m3+Vm)/m4

βh(Vm) =
1

eh5(h4−Vm) + 1

(5.7)

Table 5.5: Parameters for Hodgkin–Huxley circuit

Circuit SNOPT Circuit SNOPT
m1 25 23.0 m2 0.1 0.0785
m3 0 -0.300 m4 18 16.2
m5 4 6.54 hl 0.07 0.120
h2 0 0.00 h3 20 20.8
h4 30 23.1 h5 0.1 0.0355
n1 0.01 0.00492 n2 10 8.30
n3 0.125 0.0528 n4 0 0.00173
n5 80 74.6 n6 0.1 0.115

5.6 Model Verification

The optimal tracking formulation has a very desirable benefit over the other

techniques described above. In addition to the parameters and states being es-

timated, the optimal control required to track the model system to the data is

available. Knowledge of this control allows for the comparison of candidate mod-

els to one another, ranking which are more or less likely to correctly describe the

dynamics of a physical system. One method of using this information is to simply

compare the magnitude of control u(t) required for the model to synchronize with

data. Associating a need for large coupling strength to model inadequacy.

One interesting example is from the Hodgkin–Huxley electrical circuit exper-

iment discussed above. During one particular exercise there was an error in the

Python code that describes the neuron model. In particular, βn(Vm) was given the

incorrect form. As can be seen in Figure 5.15, observing the model synchronization

to the dataset, Vm, alone may lead to the conclusion that the parameter and state

68

estimation result was successful. By looking at the value of the control required

for the model to track the data we are able to immediately notice that there may

be an error in the model. The optimal control is two orders of magnitude greater

than the example above with the correct model form (Figure 5.14).

Another method of using the information contained in the optimal control func-

tion u(t) is to require that the magnitude of the feedback term be small compared

to the dynamics of the model. Consider equation (5.2) above. The dynamics of

the measured state is dy1(t)
dt

= F1(y1(t),y⊥(t),q) + u(t)(x1(t) − y1(t)). We require

that the feedback term, u(t)(x1(t) − y1(t)), be much smaller than the governing

model dynamics, F1(y1(t),y⊥(t),q). This would ensure that the model is evolving

primarily based on its own dynamics with only weak influences from the control to

overcome tracking problems associated with noise or complex dynamics. Consider

the ratio of the square of the two quantities, model and model plus feedback.

R(t) =
[F1(y1(t),y⊥(t),q)]2

[F1(y1(t),y⊥(t),q)]2 + [u(t)(x1(t)− y1(t))]
2

This ratio is equal to one when the dynamics is governed by the model term,

F1(y1(t),y⊥(t),q), and tends to zero as the coupling term, u(t)(x1(t)−y1(t)) begins

to dominate the time evolution of the system. We may now compute R(t) of several

candidate models driven to track the same data set and look at this ratio as an

indicator of how well each model is able to track the data on its own, considering the

‘best’ model to be that with an R(t) staying nearest to one. An example is shown

in Figure 5.16 and Figure 5.17. Here the model was assumed to be the Lorenz

system (Eq. 2.2) and the data sets were from a Lorenz system and the modified

Lorenz system shown below with an additional term, 5X, in the Ż equation.

Ẋ = σ(Y − X)

Ẏ = RX− Y − XZ

Ż = XY − bZ + 5X

Figure 5.16 shows the magnitude of the control and the ratio R(t) defined

above for the case of matched model and data systems. The model synchronizes

with the data, the control is on the order 10−1 and the ratio R(t) remains near

69

one. Figure 5.17 shows results when a Lorenz model is introduced to data from

the modified Lorenz system above. The Lorenz model is still tracking the data,

although not as well as in Figure 5.16, but the control is order one and the ratio

R(t) takes several diversions from near one.

The optimal control function u(t) allows a model to track data sets in the

presence of complex dynamics, measurement noise, and incorrect terms in the

model dynamics. Provided that candidate models are introduced to identical data

sets, so that system and measurement noise are identical, any additional inability

of the model to track the data is captured in variations among the optimal control

functions u(t) for each model. This ability to develop metrics to compare candidate

models to one another based on this control function u(t) is a very powerful and

important aspect of the optimal control method of parameter and state estimation.

5.7 Time-Dependent Parameters

There are times when one has parameters in a system whose time dependence

is dictated by external forces and is not governed by a differential equation in the

model. If there were a differential equation for the parameters, such parameters

would become equivalent to and included in the state variables y(t). The ability of

the optimal control approach to handle such a situations in the Colpitts oscillator

system is briefly explored. We will allow for the parameter α to be a function

of time, α(t), while keeping the remaining parameters as the known fixed values

γ = 0.08, q = 0.7 and η = 6.3.

It is a simple task to allow a parameter to vary at each co–location point. We

may allow the parameter α in the Colpitts system to take on any positive value at

each point, effectively trading a single parameter α for M parameters α(m) where

M is the number of co–location points that define the optimization problem to

be solved. First, the model is asked to track data from a system with constant

parameter α = 5.0. The resulting values for α(m) are shown in Figure 5.18. In

general the SNOPT solution is tending to keep the parameter near its correct value,

but the addition of M−1 unknown variables without any additional constraints has

70

compromised the ability of this method to find the particular optimized solution

that we are looking for. Figure 5.19 is a repeat of the same calculation above

but allowing the parameter in the data system to be a more complicated function,

α(t) = 5+4 · tanh((t−50)/25). In this case the SNOPT estimate of the parameter

values α(m) seem to track the actual value better than in the case of α(t) = 5.0

above. This is likely due to the data system never being allowed to rest on an

attractor, it is instead constantly in a transient state with a data time–series more

rich in information than the case of constant α. This is similar to the above

case of exciting the Hodgkin–Huxley model with a Lorenz signal to force a larger

exploration of phase space. This, too, resulted in improved performance of the

optimal tracking method.

Instead of allowing the parameter to vary at each co–location point without

constraint, we could introduce the constraint of requiring the parameter to fit a

specific function of time. Since we have no knowledge of the actual time variation

from the observations of x1(t) we may impose a smoothness criterion on αD(t)

in the form of a polynomial representation. In particular we asked that a cubic

polynomial describe the time variation of αD(t) over an interval Kτ where K is

selected by us. In the case presented here, the result did not depend on K over a

range 25 ≤ K ≤ 200. Figure 5.20 shows results for K = 25. The time dependence

selected was chosen to have αM(t) vary from near one to as large as 8 or 9 thus

crossing the boundaries of the bifurcation sequence where the Colpitts oscillator

goes from a fixed point attractor through limit cycles to chaotic oscillations. In

particular, the following function was selected.

αD(t) = 5 + 4e(t−100)2/2000) sin(2πt/50)

The initial conditions were determined by the optimization, and all state variables

tracked the data. The ability of the optimal control method combined with the

SNOPT optimization package to allow for time dependent parameters is very pow-

erful and encouraging, especially if one is interested in modeling a network that is

known to change its connectivity strengths over time.

71

5.8 Adaptive Grid

This discussion has concentrated on discretizing a system using co–location

points equally spaced in time. This evenly spaced grid of points allows for sim-

plified constraint equations and therefore simplified computer code. One of the

advantages of the Python front–end is that it allows a user to easily generate an

optimization problem with arbitrarily spaced co–location points. In some cases,

the physical system under study may exhibit dynamics on widely separated time

scales. The slow dynamics require a long sample time and the fast dynamics re-

quire a fast sample rate. The combination of these two requirements makes the

total number of co–location points necessary to capture all of the dynamics ex-

tremely large. In these cases, the ability to adaptively determine the co–location

points is desirable.

Here we will take the approach of starting with a sparsely populated grid and

add points when too large of an error is detected in the integration rule from one

co–location point to the next. A Python application was written with the ability

to define the optimization problem using an arbitrary number of data points. A

data file is read in along with a corresponding boolean array of the same size. If the

boolean associated with a data point is TRUE, that data point will be used in the

optimization problem, otherwise it will not be used. A sample SNOPT run using

the Hodgkin–Huxley neuron model is shown in Figure 5.21. In this case, points

were predetermined based on the derivative of the measured data. Only 143 of the

total 800 points were needed to reproduce similar results as shown above. This

drastically reduces the problem size and increases the speed of computation.

Data file → [2.34 1.09 -0.34 -2.54 · · · 7.24]
Boolean array → [True False False True · · · True]

Since we will have control over accuracy by the ability to place co–location

points, the trapezoid integration method yn+1 = yn + h
2

[F(yn) + F(yn+1)] will be

used to generate constraints for the optimization problem. A smoothness require-

ment still exists on the control in the form of satisfying a cubic polynomial. In

other words, control U(n+ 1) is constrained to fit a cubic polynomial determined

from U(n), dU(n),U(n + 2) and dU(n + 2). Since the interior point on this cubic

72

will not in general be the center point, the general form of the cubic constraint

(5.6) was used with s = h(n)/(h(n) + h(n + 1)) where h(n) = t(n + 1) − t(n) is

the amount of time between points n and n+ 1.

A rule is needed to determine if a new co–location point must be added between

n and n+1. Here we will estimate the integration error of the trapezoid rule (a 2nd

order method) using a higher order method, in this case the 4th order Runge–Kutta

method. Figure 5.22 depicts the strategy of adding co–location points.

We begin by starting with an evenly spaced, sparse grid of co–location points.

The SNOPT solver is then run for several tens of major iterations. Each state

from the output Y(n) is then integrated forward in time using Runge–Kuta and

the resulting state Yrk4(n + 1) is compared to the SNOPT value Ytrap(n + 1).

If the resulting error magnitude |yrk4(n + 1) − ytrap(n + 1)| is larger than some

predetermined tolerance then a co–location point is added near the midpoint of

the interval. The Python code then generates a new optimization problem based

on the new grid points and initial conditions from the previous solution. This

process is repeated until no new points are required to be added. The Figures 5.23

and 5.24 demonstrate this process applied to the Hodgkin–Huxley neuron model.

The process begins with the upper left plot of Figure 5.23 with a grid of 42 evenly

spaced grid points. Red coloring indicates that the next iteration will divide the

interval to the right in half. Blue coloring indicates that the error is within bounds

and the interval to the right does not need to be shortened. The solution ends at

the bottom left plot of Figure 5.24 with a total of 203 co–location points out of

a dataset of 800 points. The bottom right plot of Figure 5.24 includes the final

estimate of the integration error for each of the state variables.

73

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

0

2
SNOPT Time Series Output : Lorenz Circuit

x 1(t
)

Data
SNOPT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

0

2

x 2(t
)

Data
SNOPT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

x 3(t
)

Data
SNOPT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

200

400

600

u(
t)

Time [ms]

Figure 5.11: SNOPT solution : Lorenz system circuit

74

Figure 5.12: Hodgkin–Huxley circuit board

75

−20 −10 0 10 20 30 40 50 60 70
−1

0

1

2

3

4

5

6

α m
(V

)

α
m

(V) and β
m

(V)

SPICE Simulation
0.1(25−V)/(exp(0.1(25−V)) − 1)
Measured

−20 −10 0 10 20 30 40 50 60 70
−5

0

5

10

15

20

V
m

 [mV]

β m
(V

)

SPICE Simulation
4exp(−V/18)
Measured

−20 −10 0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

α n(V
)

α
n
(V) and β

n
(V)

SPICE Simulation
0.01(10−V)/(exp(0.1(10−V)) − 1)
Measured

−20 −10 0 10 20 30 40 50 60 70
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

V
m

 [mV]

β n(V
)

SPICE Simulation
0.125exp(−V/80)
Measured

−20 −10 0 10 20 30 40 50 60 70
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

α h(V
)

α
h
(V) and β

h
(V)

SPICE Simulation
0.07exp(−V/20)
Measured

−20 −10 0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

V
m

 [mV]

β h(V
)

SPICE Simulation
1/(exp((−V+30)/10) + 1)
Measured

Figure 5.13: Circuit αm,n,h(Vm) and βn,m,h(Vm)

76

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0

50

100

V
m

(t
)

SNOPT data

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

m
(t

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

h(
t)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

n(
t)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.02

0.04

u(
t)

Time

Figure 5.14: Hodgkin–Huxley circuit SNOPT output #1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0

50

100

V
m

(t
)

SNOPT data

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

m
(t

)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

h(
t)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

n(
t)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

5

10

u(
t)

Time

Figure 5.15: Hodgkin–Huxley circuit SNOPT output #2

77

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−50

0

50

Lo
re

nz
1(t

)

Lorenz Model with Lorenz data

Model Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

u(
t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

R
(t

)

Time

Figure 5.16: Lorenz : Correct model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−50

0

50

Lo
re

nz
1(t

)

Lorenz Model with modified Lorenz data

Model Data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

u(
t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

R
(t

)

Time

Figure 5.17: Lorenz : Incorrect model

78

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

Time

α(
t)

α
Data

(t) = 5.00

α

Model

α
Data

Figure 5.18: Colpitts : α(t) solution #1

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

Time

α(
t)

α
Data

(t) = 5.00 + 4×tanh((t−50)/25)

α

Model

α
Data

Figure 5.19: Colpitts : α(t) solution #2

79

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

10

Time [arb]

α(
t)

Colpitts : SNOPT output for parameter α(t)

α

model
(t)

α
data

(t)

Figure 5.20: Colpitts : α(t) solution #3

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley Neuron − 143 of 800 points

SNOPT data IC

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

u(
t)

Time

Figure 5.21: Test of arbitrary co–location assignment

80

11 12 13 14 15 16 17 18 19
−80

−60

−40

−20

0

20

40

60

V
m

(t
)

Hodgkin−Huxley

rk4

Error Estimate is
∆ = | rk4 − trap |

trap ∆

Figure 5.22: Adaptive co–location rule

81

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh : N=42

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

5

10

u(
t)

Time

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh : N=77

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

5

10

u(
t)

Time

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh : N=107

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

2

4

u(
t)

Time

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh : N=141

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

0.05

0.1

u(
t)

Time

Figure 5.23: Hodgkin–Huxley adaptive mesh solution (Part I)

82

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh : N=177

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

0.05

0.1

u(
t)

Time

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh : N=200

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

0.05

0.1

u(
t)

Time

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh : N=203

0 10 20 30 40 50 60 70 80
0

0.5

1

m
(t

)

0 10 20 30 40 50 60 70 80
0

0.5

1

h(
t)

0 10 20 30 40 50 60 70 80
0

0.5

1

n(
t)

0 10 20 30 40 50 60 70 80
0

0.05

0.1

u(
t)

Time

0 10 20 30 40 50 60 70 80
−100

0

100

V
m

(t
)

Hodgkin−Huxley : Adaptive mesh

0 10 20 30 40 50 60 70 80
0

0.05

0.1

V
m

 E
rr

or

0 10 20 30 40 50 60 70 80
0

2

4
x 10

−3

m
,n

,h
 E

rr
or

m n h

0 10 20 30 40 50 60 70 80
0

50

100

G
rid

 S
pa

ci
ng

Time

Figure 5.24: Hodgkin–Huxley adaptive mesh solution (Part II)

Chapter 6

Conclusion

Determining unknown model parameters from observed data is one of the crit-

ical and traditional steps in developing predictive models [39]. The idea of using

synchronization of the data source and the model to establish unknown parameters

is not at all a new idea, and in one manner or another has always been used in

this context [30]. The ‘synchronization’ in an automated fashion as explored in

this paper has not always been the established procedure where ‘fits good to the

eye’ or other qualitative methods have been used. In trying to implement formal

synchronization of the experimental system producing the data and a proposed

model for use in predicting the future behavior of the system, a problem is en-

countered where if the coupling of the data into the dynamical equations of the

model is too large, the variation of a traditional, least squares cost function suffers

from very weak variations in the desired parameters, thus reducing the value of the

method for determining those parameters. Also, if the coupling is too weak and

the system is chaotic, the very instabilities that lead to the chaos interfere with

parameter determination through a numerically unstable cost function[30]. This

dilemma has led to the three forms of ‘balanced synchronization’ which have been

discussed and explored in this thesis.

First, in addition to the least square cost or other comparison of the data

input and equivalent model output, an additional cost is added associated with the

largest conditional Lyapunov exponent (CLE) of the model, conditioned on being

driven by the data. If one requires this CLE to be slightly negative, this bounds the

83

84

value of the coupling while assuring the data and the model remain synchronized.

When this synchronization occurs, information about the parameters contained in

the data is efficiently passed to the model. Any less information and the model will

no longer synchronize to the data causing the cost function to develop many local

minima. Any more information and the cost function becomes too flat causing

the location of the minimum to be numerically uncertain. One drawback of this

method is that the largest CLE may be very costly to calculate, especially in the

presence of noisy measurements.

The second method solves the problem of calculating the largest CLE by aug-

menting the dynamics of the model system adding a temporal variation of the

coupling between the data and the model. The dynamics for the coupling is moti-

vated by the desire for the coupling to be as small as possible but allowing for the

coupling to increase when the synchronization error grows. The proposed coupling

dynamics balances the driving of the coupling to zero against the mismatch of

the data and model signals. This method allows for the augmented model system

and the data source to exhibit generalized synchronization. The augmented model

system exhibits spiking behavior in the synchronization error and motivates a new

form of cost function. The ‘cost’ becomes the probability of observing the model

and system to be unsynchronized at any particular point in time. This cost func-

tion has a well defined minimum associated with the model parameters equivalent

to the data system parameters. This cost function, being essentially a low pass

filter, also remains smooth in the presence of measurement noise.

The last method expanded on the first and reformulated the problem of param-

eter and state estimation as an optimal tracking problem. This idea used a direct

transcription method for posing the model dynamics as an optimization problem

and allowing the data coupling parameter to take on values at each co–location

point. Where in the second method above, the coupling was constrained to follow

a differential equation in time, here the coupling may be an arbitrary smooth func-

tion of time imposed through a Hermite interpolation requirement. We seek the

model parameters that allow for the minimal amount of control needed to track

the data. This control function, called u(t), may then be used as a measure to

85

compare candidate models against one another.

These three methods developed in this thesis are meant to be new tools for

the parameter and state estimation toolbox, augmenting existing techniques. It

was also intended to bring some techniques into play that are developed on a

foundation of nonlinear system dynamics from the beginning instead of patches

applied to ideas originating from linear system theory. It is my hope that the

methods developed here will provide a useful tool for the study and validation of

complex mathematical models of physical systems. Of course, the method does not

replace the need to develop these models based on keen insights into the physics

of the processes involved.

Appendix A

Further Work

The more one studies the problem of parameter and state estimation the more

options for further extensions come to mind. This appendix briefly introduces two

topics aimed at extending the capabilities of the methods introduced in this thesis.

They are, in my opinion, deserving of further examination.

A.1 Space-Time Adaptive Grid

Section 5.7 introduced a method of adapting the position of co–location points

in order to couple more information to the model when required, while allowing for

more sparse co–location points in regions where the dynamics is less demanding.

For the same reasons, in cases where the phenomenon is described by a partial

differential equation it would be desirable to have spatial grid control as well.

An example of current interest is the model my Ananthakrishna [5, 4] describing

spatio–temporal behavior of dislocations in dilute metallic alloys under a range of

strain rates and temperatures know as the Portevin–Le Chatelier (PLC) effect [9].

The model equations are shown below with φeff = (φ− hρ1/2
im).

∂ρm(x, t)

∂t
= −boρ2

m − ρmρim − aρm + φmeffρm +
D

ρim

∂2(φmeffρm)

∂x2

∂ρim(x, t)

∂t
= bo(boρ

2
m − ρmρim − ρim + aρc)

86

87

∂ρc(x, t)

∂t
= c(ρm − ρc)

∂φ(t)

∂t
= d

[
ε̇− 1

l

∫ l

0

ρm(x, t)φmeff (x, t) dx

]
ρm, ρim, ρc are the densities of mobile, immobile, and Cottrell’s type dislocations

respectively. Numerical integration of this system with typical parameter values of

a = 0.8, bo = 0.0005, c = 0.08, d = 0.00006, m = 3.0, h = 0.0 and D = 0.5 results

in the complex time–series for the measurable stress φ(t) shown in Figure A.1. This

time–series is comparable, both in magnitude and information content, to stress

measurements in laboratory experiments. The resulting mobile dislocation density

is shown in Figure A.2. The plot of ρm(x, t) shows regions of activity surrounded

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1.22

1.24

1.26

1.28

1.3

1.32

1.34

φ(x,t)

Time

S
tr

es
s

Figure A.1: PLC : Stress time–series

by large regions of inactivity in space–time. It is desirable to modify the methods

presented in this thesis to allow for both spatial and temporal control of grid

points in order to keep the optimization problem size as small as possible. This is

a problem with complex spatio–temporal dynamics with only a single measurable,

φ(t), dependent on the other states ρm(x, t), ρim(x, t) and ρc(x, t) in a very complex

fashion. The ability of these methods to deduce the parameters of this model

from experimental data is important to address. It would test the limits of the

88

0

20

40

60

80

100 0

500

1000

1500

2000
0

1000
2000

Time

ρ
m

(x,t)

Space

Figure A.2: PLC : Mobile dislocation density

synchronization method described in this thesis while possibly providing some

important insight into the PLC phenomenon itself.

A.2 Time–delay Space Control

This text dealt with example nonlinear systems with three or four state vari-

ables. When the problem increases in size (a network of neurons for example)

there may be more than one positive Lyapunov exponent requiring control. This

requires either coupling more measured states (which may or may not be physically

available) to the model or using the available measurements more effectively. The

control scheme presented in this thesis addresses coupling data to a model using

feedback dependent on an instantaneous measurement. A more effective method

of coupling would be to use some history of the measurements. The idea of time–

delayed coordinates presented in Chapter 2 provides some guidance on how to

89

proceed.

Given a discretized D–dimensional system of the form X(n+ 1) = F(X(n)) we

know that there exists some nonlinear transformation [32] from the phase–space

coordinates X(n) = [x1(n), x2(n), x3(n), . . . , xD(n)] to a time–delayed set of co-

ordinates of one of the state variables, say x1(n). The new time–delayed vector

is denoted by S(n) = [x1(n), x1(n− τ), x1(n− 2τ), . . . , x1(n− rτ)], where r is at

most 2D+1 and τ is the unit of time delay. The associated coordinate transforma-

tion is denoted by S(n) = Φ(X(n)). The states S(n) evolve in time according to

S(n+ 1) = G(S(n)) where the dynamics in the time–delayed coordinate space, G,

is related to the dynamics in phase–space, F, by G = Φ◦F◦Φ−1. The idea is that

all of the states in S(n) are measurable as opposed to only a limited number of the

states in X(n), allowing for full proportional feedback control of the model. It is

instructive to see an example worked out with a linear system; take the damped

harmonic oscillator.

ẋ1 = x2

ẋ2 = −bx2 − ω2x1

We wish to discretize this system of equations into the form X(n+1) = F̂X(n)

and find the transformation to the delayed coordinates [x1(n), x1(n−1)]. Choosing

Euler’s method integration for this example, the discretized system becomes[
x1(n+ 1)

x2(n+ 1)

]
=

[
1 h

−hω2 (1− hb)

] [
x1(n)

x2(n)

]

Which may be used to solve for the transformation Φ̂ such that S(n) = Φ̂X(n).

In this case the transformation is[
x1(n)

x1(n− 1)

]
=

[
1 0

1−hb
1−hb+(hω)2

−h
1−hb+(hω)2

] [
x1(n)

x2(n)

]

Now we may write the dynamics in the time–delayed coordinates by applying

this transformation to the equation of motion.

X(n+ 1) = F̂X(n)

90

Φ̂X(n+ 1) = Φ̂F̂Φ̂−1Φ̂X(n)

S(n+ 1) = Φ̂F̂Φ̂−1S(n)

Observing the fact that all states in this space are observable, we can couple

the measured data to the time–delayed system model using a diagonal matrix of

coupling gains, Û, multiplied by the time–delayed error vector e(n). The final step

is a transformation back to the phase–space coordinates [x1(n), x2(n)].

S(n+ 1) = Φ̂F̂Φ̂−1S(n) + Ûe(n)

X(n+ 1) = F̂X(n) + Φ̂−1Ue(n)

In this example, the feedback terms become

Φ̂−1Ue(n) =

[
1 0

1−hb
h

−(1−hb+(hω)2)
h

][
U11 0

0 U22

][
e(n)

e(n− 1)

]

=

[
U11 0

1−hb
h
U11

−(1−hb+(hω)2)
h

U22

][
e(n)

e(n− 1)

]

=

[
U11e(n)

U11
1−hb
h

e(n)− U22
(1−hb+(hω)2)

h
e(n− 1))

]

Where e(n) = xdata(n) − x1(n) and e(n − 1) = xdata(n − 1) − x1(n − 1). The

coupling to x1(n) is the usual proportional error coupling U11(xdata(n) − x1(n)),

while the coupling to x2(n) includes information from both the current measure-

ment and the previous measurement to estimate the feedback term. In this linear

system example the coordinate transformation from phase–space to time–delayed

space was know. In the general nonlinear case the transformation Φ(X(n)) will be

known to exist but its explicit form will be unknown.

Appendix B

Hardware Dynamical Coupling of

Two Lorenz Systems

An electrical circuit implementation of the dynamical coupling (K(t)) method

of parameter estimation was built to explore this method in a more realistic set-

ting. The experimental setup is as shown in Figure(B.1). The data signal x1(t) is

generated from a Lorenz system with fixed parameters (σ1,b1,R1). The model is a

Lorenz system with two parameters (σ2 and b2) identical to the Data system and

an adjustable third parameter, R2. A Data Acquisition (NI-DAQ) card connected

to a PC running LabVIEW software acquires x1(t), x2(t) and K(t) at a rate of

50kHz. The PC is able to control the value of R2 by turning a stepper motor

that is connected to a 10-turn potentiometer. A typical parameter scan consists

setting R2, taking 2 seconds of data, computing the value of the cost function and

repeating over the available range of R2 (in particular, 23.5 ≤ R2 ≤ 50.6).

The basic design of the Lorenz portion of the electrical circuit is adapted from

Cuomo [7]. In order to keep voltages in the range of the available power supplies,

all state variables are scaled by a factor of 20. Time is scaled by a factor of 1000.

With these scalings, the Lorenz system that needs to be realized in the electrical

circuit is the following:

ẋ = 1000[σ(y − x)]

91

92

Figure B.1: Diagram of experimental setup.

ẏ = 1000[Rx− y − 20xz]

ż = 1000[20xy − bz]

Figures(B.2,B.3,B.4) show the schematics of the Lorenz systems and the cou-

pling dynamics. The components are standard 5% tolerance resistors and 20%

tolerance tantalum capacitors. No care was taken to match each component be-

tween the two systems, so there inevitably are differences between the two Lorenz

systems at the component level. The Op-Amps are general purpose TL084’s and

the multipliers are Analog Devices AD633’s. Since the output of the AD633 is in-

ternally divided by 10, the multiplication symbol shown in the schematic is actually

an AD633 with a TL071 Op-Amp used for a gain of 10.

When taking data, the potentiometer in the data system is set manually to a

fixed desired value, the potentiometer in the receiver system is set by the PC with

the use of a stepper motor. The values of the parameter R may be calculated from

93

x

−

+

−

+
−

+

−

+
−

+

−

+
−

+
−

+

x

100kΩ

100kΩ

100kΩ

10
0k

Ω

470pF

133kΩ

470pF

470pF

100kΩ

100kΩ

100kΩ

100kΩ

10
0k

Ω

200kΩ

10kΩ

49.7kΩ 107kΩ

213kΩ

10kΩ

X1

Y1

Z1

Rpot 1

11
.2

kΩ

100kΩ

100kΩ

DATA SOURCE SYSTEM

Figure B.2: Schematic of Lorenz “Data” circuit

x

−

+

−

+
−

+

−

+
−

+

−

+
−

+
−

+

x

10
0k

Ω

470pF

133kΩ

470pF

470pF

100kΩ

10
0k

Ω

200kΩ

10kΩ

49.7kΩ 107kΩ

213kΩ

10kΩ

X2

Y2

Z2

Rpot 2

200kΩ

100kΩ

100kΩ

100kΩ

100kΩ

100kΩ

100kΩ

100kΩ
11

.2
kΩ

10
0k

Ω

(5/8)K(X1-X2)

MODEL SYSTEM

Figure B.3: Schematic of Lorenz “Receiver” circuit

the potentiometer values using the following equation.

R =
82 · Rpot

Rpot + 49.7kΩ

The potentiometers are both 10-turn 100kΩ. Parameter scans use the range

20kΩ ≤ Rpot ≤ 80kΩ which translates to the parameter range 23.5 ≤ R2 ≤ 50.6

mentioned above. The equations describing the dynamics of the above electrical

circuit are the following:

ẋ1 = 1000[16(y1 − x1)]

ẏ1 = 1000[R1x1 − y1 − 20x1z1]

94

−

+
−

+
−

+

x
0.1µF

100kΩ

510kΩ

51
0Ω

100kΩ

100kΩ

10
0k

Ω

100kΩ

(X1-X2)

K
−

+x

(X1-X2)

52.5kΩ

10
.0

kΩ

(5/8)K(X1-X2)
No TL071
(see text)

COUPLING DYNAMICS

Figure B.4: Schematic of coupling K(t) circuit

ż1 = 1000[20x1y1 − 4z1]

ẋ2 = 1000[16(y2 − x2) + 10K(x1 − x2)]

ẏ2 = 1000[R2x2 − y2 − 20x2z2]

ż2 = 1000[20x2y2 − 4z2]

K̇ = 1000[−0.10K + 110(x1 − x2)
2]

Note that in this Appendix the receiver system has dynamical variables with

subscript 2, so the coupling in the ‘model’ is 10K(x1 − x2).

Figure (B.5) shows a section of the time series of x1(t), x2(t) and K(t) as

measured by the PC. The Lorenz systems are creating the expected time series

waveforms for x1(t) and x2(t) and these waveforms are for the most part synchro-

nized. The K(t) waveform is tending to decay toward zero with growth dependent

on the spiking in the error signal (x1(t)−x2(t))
2. After acquiring 2 seconds of data

sampled at 50kHz, N=100000 samples, the computer calculates the associated cost

function based on the following formula:

C =
1

N

N∑
j=1

tanh(200 · (x1(j)− x2(j))
2)

The convergence of this cost function is verified in Figure(B.6) at four positions

in the parameter scan (Rpot,2 = 30,40,50,60 kΩ) with Rpot,1 = 50kΩ. In each case

95

0.21 0.212 0.214 0.216 0.218 0.22 0.222 0.224 0.226 0.228 0.23
0

2

4

6

K
(t

)
(v

ol
t)

0.21 0.212 0.214 0.216 0.218 0.22 0.222 0.224 0.226 0.228 0.23
0

0.05

0.1

[X
1(t

)
−

 X
2(t

)]
2

0.21 0.212 0.214 0.216 0.218 0.22 0.222 0.224 0.226 0.228 0.23
−2

0

2

Time (s)

S
ig

na
l (

vo
lt)

X

1
(t)

X
2
(t)

Figure B.5: Sample time series

the cost function converges to a steady value within the fist second of the 2 second

sample window. The steady value of this cost function is automatically recorded

over the range of R2 producing the parameter scan plots shown in Figure(B.7).

In the case shown in Figure(B.7), three different values of the data system pa-

rameter R1 were used. In each case there is clearly a minimum in the cost function

in the neighborhood of R2 = R1. There are many sources of noise in this lab setup

and it is not surprising that the minimum in the cost function is broader and

shallower than the theoretical (noiseless) result - see Figure(B.8). Also, since the

components used are of low tolerance, it is very likely that the system parameters

that are assumed to be identical between the data system and the model (σ,b) are

in fact not the same. Also, the value of R depends on several other components in

addition to the potentiometer, so that equal settings on the potentiometers does

not necessarily imply R2 = R1. Still, even with these imperfections, this experi-

ment demonstrates that the dynamical coupling method (K(t)) does a good job

of identifying a small neighborhood in which the presumably unknown parameter

lies.

96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time (s)

C
os

t

R

pot2
=30kΩ

R
pot2

=40kΩ

R
pot2

=50kΩ

R
pot2

=60kΩ

Figure B.6: Cost function convergence

20 25 30 35 40 45 50 55
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
2

C
os

t

R

1
 = 36.7

R
1
 = 41.2

R
1
 = 45.0

Figure B.7: Parameter scans

97

20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

R
2

C
os

t

Experimental Data and Numerical Data with Gaussian System Noise

Data
No Noise
σ=1000
σ=3000
σ=4000
σ=6000

Figure B.8: Simulation with gaussian noise added to the state equations

Appendix C

Source Code

This section provides listings of relevant computer code.

98

99

C.1 PIC Microcontroller Code

Assembly code used to program the parameter switching of the Lorenz circuits

in chapter 4.

INCLUDE <p18f1320.inc>

__CONFIG _CONFIG1H, 0xC8
__CONFIG _CONFIG2H, 0x1E

;;;;;;;;;;;;;;;;;;;;;;;
; VARIABLES
;
; State: 0x000 [1 byte]
;
; Counter: 0x001 [1 byte]
;
;;;;;;;;;;;;;;;;;;;;;;;

cblock 0x000
State, Counter
endc

#DEFINE pHEAD 0xA0
#DEFINE Ncount 0x07
; 300ms Timer
;#DEFINE TMRPREH 0xF6
;#DEFINE TMRPREL 0xD7
; 3 second Timer
#DEFINE TMRPREH 0xA4
#DEFINE TMRPREL 0x71

; Reset vector
org 0x00
bra Main

; High Priority Interrupt vector
org 0x08
bra ISR_Timer0

; Main code section
org 0x2A
Main

;;;;;;;;;;;;;;;;;;
; Setup PORT I/O ;
;;;;;;;;;;;;;;;;;;

; Configure Oscillator (8MHz Internal)
movlw 0x70
movwf OSCCON

100

clrf WDTCON

setf ADCON1

; PORTA [IIII OOOO]
movlw 0xF0
movwf TRISA
movlw 0x0F
movwf PORTA

; PORTB [OOIO OIII]
movlw 0x27
movwf TRISB
movlw 0xD0
movwf PORTB

;;;;;;;;;;;;;;;;;;
; Setup Timer0 ;
;;;;;;;;;;;;;;;;;;

; Off, 16-bit mode, prescale 1:256
movlw 0x07

movwf T0CON
bcf INTCON, TMR0IF

;;;;;;;;;;;;;;;;;;;;;;;;;
; Configure Interrupts ;
; & set initial state ;
;;;;;;;;;;;;;;;;;;;;;;;;;

movlw 0xA0
movwf INTCON

clrf State
movlw Ncount
movwf Counter
bcf PORTB, RB4 ; Power LED ON
bsf PORTB, RB6 ; Running LED OFF
bcf PORTB, RB7 ; Ready LED ON

;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Load parameter pattern ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;

lfsr FSR0, pHEAD
movlw b’00000010’
movwf POSTINC0
movlw b’00000100’
movwf POSTINC0
movlw b’00001000’
movwf POSTINC0

101

movlw b’00000100’
movwf POSTINC0
movlw b’00000010’
movwf POSTINC0
movlw b’00000001’
movwf POSTINC0
movlw b’00000001’
lfsr FSR0, pHEAD

Main_Loop

movlw 0x01
movwf PORTA
clrf State
movlw Ncount
movwf Counter
movlw TMRPREH
movwf TMR0H
movlw TMRPREL
movwf TMR0L
bcf INTCON, TMR0IF

WaitGO
btfss PORTB, RB1
bra WaitGO

bsf PORTB, RB7 ; Ready LED OFF
bcf PORTB, RB6 ; Running LED ON

; Send trigger pulse
bsf PORTB, RB3
nop
nop
bcf PORTB, RB3

bsf T0CON, TMR0ON

Running
btfss State, 0
bra Running

bsf PORTB, RB6 ; Running LED OFF
bcf PORTB, RB7 ; Ready LED ON

lfsr FSR0, pHEAD

bra Main_Loop

;;;;;;;;;;;;;;;;;;;;;;
; High ISR Routine ;
;;;;;;;;;;;;;;;;;;;;;;
;

102

; Executes every 300 ms
;
ISR_Timer0
movff POSTINC0, PORTA

bcf T0CON, TMR0ON
movlw TMRPREH
movwf TMR0H
movlw TMRPREL
movwf TMR0L
bsf T0CON, TMR0ON

decf Counter, F
btfss STATUS, Z
bra ISR_1

incf State, F
bcf T0CON, TMR0ON

ISR_1
bcf INTCON, TMR0IF
retfie 1

END

103

C.2 Python Code

Python code used to implement the SNOPT optimal control method of pa-

rameter and state estimation of chapter 5. This code discretizes a given system

using the Hermite-Simpson method with error feedback coupled to the first state

equation. The optimization problem is defined and initialized for use by SNOPT

and the optimization routine is called from the SNOPT FORTRAN library. In

this example, the output is both saved to a file and plotted in a graphics window.

from numpy import *
from test7 import *
import sympy
import math
import pylab

print "-----------Hermite-Simpson ---------"
Feqnstr = []
UsrFcns = []
##################Hodgkin-Huxley###############
#
Vector Field
Feqnstr.append\
("gna*(x2**3)*x3*(vna-x1) - gk*(x4**4)*(vk+x1) - gl*(vl+x1) + 2.0")
Feqnstr.append\
("am*(1-x2) - bm*x2")
Feqnstr.append\
("ah*(1-x3) - bh*x3")
Feqnstr.append\
("an*(1-x4) - bn*x4")
#
User Functions
UsrFcns.append\
("am = -pm2*(pm1+x1) / (sympy.exp(-pm2*(pm1+x1)) - 1.0)")
UsrFcns.append\
("bm = sympy.exp(-(x1+pm3)/pm4)")
UsrFcns.append\
("ah = ph1*sympy.exp(-(ph2+x1)/ph3)")
UsrFcns.append\
("bh = 1.0 / (sympy.exp(-ph5*(x1+ph4)) + 1.0)")
UsrFcns.append\
("an = -pn1*(pn2+x1) / (sympy.exp(-(pn2+x1)) - 1.0)")
UsrFcns.append\
("bn = pn3*sympy.exp(-(x1+pn4)/pn5)")
#
#----------------STATE VARIABLES----------------------
names
Lvars = ["x1","x2","x3","x4"]
#

104

range [lower , upper]
#
Lvarlims = [[-200.0 , 200.0],\

[0.0 , 1.0],\
[0.0 , 1.0],\
[0.0 , 1.0]]

#
#----------------PARAMETERS---------------------------
names
Lparams = ["gna","vna","gk","vk","gl","vl",\

"pm1","pm2","pm3","pm4",\
"ph1","ph2","ph3","ph4","ph5",\
"pn1","pn2","pn3","pn4","pn5"]

#
range [lower , init , upper]
#
Lparamvals = [[10.0 , 20.0 , 40.0],\

[25.0 , 50.0 , 100.0],\
[3.00 , 6.00 , 12.0],\
[50.0 , 100.0, 200.0],\
[0.01 , 0.03 , 0.10],\
[25.0 , 50.0 , 100.0],\

Pm (1-4)
[15.0 , 35.0 , 100.0],\
[0.00 , 0.10 , 0.20],\
[30.0 , 60.0 , 100.0],\
[10.0 , 18.0 , 50.0],\

Ph (1-5)
[0.02 , 0.07 , 0.20],\
[30.0 , 60.0 , 100.0],\
[10.0 , 20.0 , 40.0],\
[15.0 , 30.0 , 50.0],\
[0.00 , 0.10 , 0.20],\

Pn (1-5)
[0.00 , 0.01 , 0.02],\
[25.0 , 50.0 , 100.0],\
[0.05 , 0.125, 0.25],\
[30.0 , 60.0 , 100.0],\
[50.0 , 80.0 , 150.0]]

#
#-----------------DATA FILE--------------------------
#
fName = "HH_data.dat"
hstep = 0.2
Nstop = 200
#
###

Lcouple = ["k11","dk11"]
Fdim = len(Feqnstr)
Pdim = len(Lparams)

105

Make symbols
Sv = [] # list of variable symbols
Sp = [] # list of parameter symbols
for i in range(len(Lvars)):

Sv.append(sympy.Symbol(Lvars[i]))
for i in range(len(Lparams)):

Sp.append(sympy.Symbol(Lparams[i]))
Sd = sympy.Symbol("myData") # symbol for data(t)
Sk = [sympy.Symbol(Lcouple[0]), sympy.Symbol(Lcouple[1])]
Sall = Sv + Sk + Sp
print Sall
print "-------Symbols-----------"
print Sv,",",Sp,",",Sd,",",Sk

Declare symbolic user functions
if len(UsrFcns) != 0:

print "User Functions:"
for k in range(len(UsrFcns)):

sTemp1 = UsrFcns[k]
for i in range(len(Lvars)): # replace variables

sTemp2 = "Sv[%d]" % i
sTemp1 = sTemp1.replace(Lvars[i],sTemp2)

for i in range(len(Lparams)):# replace parameters
sTemp2 = "Sp[%d]" % i
sTemp1 = sTemp1.replace(Lparams[i],sTemp2)

exec sTemp1
print sTemp1

else:
print "No User Functions"

print "--------------------------------"

Define symbolic vector field
Feqns = []
for k in range(Fdim):

sTemp1 = Feqnstr[k]
for i in range(len(Lvars)): # replace variables

sTemp2 = "Sv[%d]" % i
sTemp1 = sTemp1.replace(Lvars[i],sTemp2)

for i in range(len(Lparams)):# replace parameters
sTemp2 = "Sp[%d]" % i
sTemp1 = sTemp1.replace(Lparams[i],sTemp2)

if k == 0:
exec "F1=" + sTemp1
sTemp1 += " + Sk[0]*(Sd-Sv[0])"

sTemp2 = "Feqns.append("
sTemp2 = sTemp2 + sTemp1 + ")"
exec sTemp2

print "-------Vector Field-----------"
print "F1 = ",F1
for k in range(Fdim):

print Feqns[k]

106

Call the snInit routine
snopy.tset = Nstop
snopy.initpy()
T = int(snopy.t)

print "T = ",T
Xvec = zeros(((2*Fdim+3)*T - Fdim - 1 + Pdim),float)
print "x vector length = ",len(Xvec)

Tdata = []
X1data = []
X2data = []
X3data = []
X4data = []

fIn = open(fName, ’r’)
sIn = fIn.readlines()
fIn.close()
for i in range(len(sIn)):

Tdata.append(eval(sIn[i][1:12]))
X1data.append(eval(sIn[i][13:25]))
X2data.append(eval(sIn[i][26:38]))
X3data.append(eval(sIn[i][39:51]))
X4data.append(eval(sIn[i][52:64]))

print sIn[0]
print X1data[0],X2data[0],X3data[0],X4data[0]

Xinit = [X1data[0] , X2data[0] , X3data[0] , X4data[0]]

print "x vector length = ",len(Xvec)

Tlist = range(T-1) # Runs from 0->T-2

AllCon = []
Simpson Constraints
for k in range(len(Sv)):

tCon = []
tCon.append(Sv[k] + (hstep/6.0)*Feqns[k])
tCon.append(-Sv[k] + (hstep/6.0)*Feqns[k])
tCon.append((2.0*hstep/3.0)*Feqns[k])
AllCon.append(tCon)

Hermite Constraints
for k in range(len(Sv)):

tCon = []
tCon.append(0.5*Sv[k] + (hstep/8.0)*Feqns[k])
tCon.append(0.5*Sv[k] - (hstep/8.0)*Feqns[k])
tCon.append(-Sv[k])
AllCon.append(tCon)

Hermite Control Constraint
tCon = []

107

tCon.append(0.5*Sk[0] + (hstep/8.0)*Sk[1])
tCon.append(0.5*Sk[0] - (hstep/8.0)*Sk[1])
tCon.append(-Sk[0])
AllCon.append(tCon)

find linear and nonlinear variables
def linorno(mySym):

dF = sympy.diff(F,mySym)
if dF == 0:

return 0
else:

myTemp = 1
for j in range(len(Sv)): # variables

d2F = sympy.diff(dF,Sv[j])
if d2F != 0:

myTemp = 2
for j in range(len(Sp)): # parameters

d2F = sympy.diff(dF,Sp[j])
if d2F != 0:

myTemp = 2
d2F = sympy.diff(dF,Sk[0]) # control
if d2F != 0:

myTemp = 2
return myTemp

Mv = []
for k in range(len(AllCon)): # over all constraints

tList = []
F = AllCon[k][0]
for i in range(len(Sall)): # over all symbols

tList.append(linorno(Sall[i]))
Mv.append(tList)

print "----- 0:N/A --- 1:Linear --- 2:Nonlinear -----"
for k in range(len(Mv)):

print Mv[k]

dict1 = {0:"Xval",1:"Xvalp1",2:"Xval2"}
Xval = zeros(len(Lvars),float)
Xvalp1 = zeros(len(Lvars),float)
Xval2 = zeros(len(Lvars),float)
Pval = zeros(len(Lparams),float)
dict2 = {0:"K11val",1:"K11valp1",2:"K11val2"}
K11val = 0.0
K11valp1 = 0.0
K11val2 = 0.0
dict3 = {0:"dK11val",1:"dK11valp1",2:""}
dK11val = 0.0
dK11valp1 = 0.0
dict4 = {0:"Xdval",1:"Xdvalp1",2:"Xdval2"}
Xdval = 0.0
Xdvalp1 = 0.0

108

Xdval2 = 0.0
ftemp = 0.0
CFobj = 0.0

def subvars(mystr,myi):
mytemp = mystr
for j in range(len(Sv)):

Srep = dict1[myi] + "[%d]" % j
Sfind = Lvars[j]
mytemp = mytemp.replace(Sfind,Srep)

Srep = dict2[myi]
Sfind = Lcouple[0]
mytemp = mytemp.replace(Sfind,Srep)

Srep = dict3[myi]
Sfind = Lcouple[1]
mytemp = mytemp.replace(Sfind,Srep)

for j in range(len(Sp)):
Srep = "Pval[%d]" % j
Sfind = Lparams[j]
mytemp = mytemp.replace(Sfind,Srep)

Srep = dict4[myi]
Sfind = "myData"
mytemp = mytemp.replace(Sfind,Srep)
return mytemp

Build constraint equation strings
strAllCon = []
for icon in range(len(AllCon)):

temp1 = []
for n in [0,1,2]:

Stemp = repr(AllCon[icon][n])
Stemp = subvars(Stemp,n)
temp1.append(Stemp)

strAllCon.append(temp1)

Stemp = repr(F1)
Stemp = subvars(Stemp,0)
strF1=Stemp
#print strF1

Build Jacobian strings
sJac = []
for icon in range(len(AllCon)):

temp1 = []
for jvar in range(len(Sall)):

temp2 = []
for n in [0,1,2]:

Stemp = repr(sympy.diff(AllCon[icon][n],Sall[jvar]))

109

Stemp = subvars(Stemp,n)
temp2.append(Stemp)

temp1.append(temp2)
sJac.append(temp1)

Tlist = range(T-1) # Runs from 0->T-2
Avec = []
iAf = []
jAv = []
Gvec = []
iGf = []
jGv = []
K11idx = Fdim*T
dK11idx = (Fdim+1)*T
Xn2idx = (Fdim+2)*T
K112idx = (2*Fdim + 2)*T - Fdim
Paramidx = (2*Fdim + 3)*T - Fdim - 1

for nt in Tlist: # Over Time 0 -> T-2
for k in range(len(AllCon)): # Over Constraints

for i in range(len(Sall)): # Over Symbols
State Variables

if i < Fdim:
if Mv[k][i] == 1:

n
iAf.append(k*T + nt + 1)
jAv.append(i*T + nt + 1)
Avec.append(sympy.diff(AllCon[k][0],Sall[i]).evalf())
n+1
iAf.append(k*T + nt + 1)
jAv.append(i*T + nt + 2)
Avec.append(sympy.diff(AllCon[k][1],Sall[i]).evalf())
n2
iAf.append(k*T + nt + 1)
jAv.append(i*(T-1) + nt + 1 + Xn2idx)
Avec.append(sympy.diff(AllCon[k][2],Sall[i]).evalf())

elif Mv[k][i] == 2:
n
iGf.append(k*T + nt + 1)
jGv.append(i*T + nt + 1)
Gvec.append([0,k,i,nt])
n+1
iGf.append(k*T + nt + 1)
jGv.append(i*T + nt + 2)
Gvec.append([1,k,i,nt])
n2
if k in range(len(Sv)):

iGf.append(k*T + nt + 1)
jGv.append(i*(T-1) + nt + 1 + Xn2idx)
Gvec.append([2,k,i,nt])

else:
iAf.append(k*T + nt + 1)

110

jAv.append(i*(T-1) + nt + 1 + Xn2idx)
Avec.append\
(sympy.diff(AllCon[k][2],Sall[i]).evalf())

K11,K11p1,K112
elif i == Fdim:

if Mv[k][i] == 1:
n
iAf.append(k*T + nt + 1)
jAv.append(nt + K11idx + 1)
Avec.append(sympy.diff(AllCon[k][0],Sall[i]).evalf())
n+1
iAf.append(k*T + nt + 1)
jAv.append(nt + K11idx + 2)
Avec.append(sympy.diff(AllCon[k][1],Sall[i]).evalf())
n2
iAf.append(k*T + nt + 1)
jAv.append(nt + K112idx + 1)
Avec.append(sympy.diff(AllCon[k][2],Sall[i]).evalf())

elif Mv[k][i] == 2:
n
iGf.append(k*T + nt + 1)
jGv.append(nt + K11idx + 1)
Gvec.append([0,k,i,nt])
n+1
iGf.append(k*T + nt + 1)
jGv.append(nt + K11idx + 2)
Gvec.append([1,k,i,nt])
n2
if k in range(len(Sv)):

iGf.append(k*T + nt + 1)
jGv.append(nt + K112idx + 1)
Gvec.append([2,k,i,nt])

dK11
elif i == Fdim+1:

if Mv[k][i] == 1:
n
iAf.append(k*T + nt + 1)
jAv.append(nt + dK11idx + 1)
Avec.append(sympy.diff(AllCon[k][0],Sall[i]).evalf())
n+1
iAf.append(k*T + nt + 1)
jAv.append(nt + dK11idx + 2)
Avec.append(sympy.diff(AllCon[k][1],Sall[i]).evalf())

elif Mv[k][i] == 2:
n
iGf.append(k*T + nt + 1)
jGv.append(nt + dK11idx + 1)
Gvec.append([0,k,i,nt])
n+1
iGf.append(k*T + nt + 1)
jGv.append(nt + dK11idx + 2)
Gvec.append([1,k,i,nt])

111

Parameters
else:

if Mv[k][i] == 1:
iAf.append(k*T + nt + 1)
jAv.append(Paramidx + (i-Fdim-2) + 1)
Avec.append(hstep) # dCk/dP

elif Mv[k][i] == 2:
iGf.append(k*T + nt + 1)
jGv.append(Paramidx + (i-Fdim-2) + 1)
Gvec.append([-1,k,i,nt])

print "Length of iAf = ",len(iAf)

print "Length of G w/o objective = ",len(iGf)
lenGsave = len(iGf)
print "Length of AllCon",len(AllCon)
Add on Objective components of G
for i in range(T):

iGf.append(len(AllCon)*T + 1)
jGv.append(i + 1)
iGf.append(len(AllCon)*T + 1)
jGv.append(i + K11idx + 1)
iGf.append(len(AllCon)*T + 1)
jGv.append(i + dK11idx + 1)

lenGsave2 = len(iGf)
for i in range(T-1):

iGf.append(len(AllCon)*T + 1)
jGv.append(i + Xn2idx + 1)
iGf.append(len(AllCon)*T + 1)
jGv.append(i + K112idx + 1)

print "Length of iGf = ",len(iGf)

Load the spDat data into snopy module
snopy.n = len(Xvec)
snopy.nf = T*len(AllCon) + 1
snopy.objrow = T*len(AllCon) + 1
snopy.objadd = 0.0
snopy.nea = len(iAf)
snopy.neg = len(iGf)
for i in range(len(iAf)):

snopy.iafun[i] = iAf[i]
snopy.javar[i] = jAv[i]
snopy.a[i] = Avec[i]

for i in range(len(iGf)):
snopy.igfun[i] = iGf[i]
snopy.jgvar[i] = jGv[i]

Initialize Xn,Xn2
for i in range(T):

for j in range(len(Sv)):
snopy.x[j*T + i] = 0.0

112

snopy.xlow[j*T + i] = Lvarlims[j][0]
snopy.xupp[j*T + i] = Lvarlims[j][1]
snopy.xstate[j*T + i] = 0
if i < (T-1):

snopy.x[j*(T-1) + i + Xn2idx] = 0.0
snopy.xlow[j*(T-1) + i + Xn2idx] = Lvarlims[j][0]
snopy.xupp[j*(T-1) + i + Xn2idx] = Lvarlims[j][1]
snopy.xstate[j*(T-1) + i + Xn2idx] = 0

Initialize Kn,dKn,Kn2
for i in range(T):

for j in [0,1]:
snopy.x[j*T + i + K11idx] = 0.01
snopy.xlow[j*T + i + K11idx] = 0.0
snopy.xupp[j*T + i + K11idx] = 100.0
snopy.xstate[j*T + i + K11idx] = 0

if i < (T-1):
snopy.x[i + K112idx] = 0.01
snopy.xlow[i + K112idx] = 0.0
snopy.xupp[i + K112idx] = 100.0
snopy.xstate[i + K112idx] = 0

Initialize Params
for i in range(len(Lparamvals)):

snopy.xlow[Paramidx+i] = Lparamvals[i][0]
snopy.x[Paramidx+i] = Lparamvals[i][1]
snopy.xupp[Paramidx+i] = Lparamvals[i][2]
snopy.xstate[Paramidx+i] = 3

for i in range(T*len(AllCon)):
snopy.fmul[i]=0.0
snopy.flow[i]=0.0
snopy.fupp[i]=0.0

snopy.fupp[T*len(AllCon)] = 1e20

for i in range(T):
snopy.x[i] = X1data[2*i]
snopy.x[i + Xn2idx] = X1data[2*i+1]

Define callback function pyfillfg
def pyfg2(a1,a2,myx,needf,a5,myf,needg,a8,

myg,a10,a11,a12,a13,a14,a15):
for j in range(len(Sp)):

Pval[j] = myx[Paramidx+j]
if needg > 0:

for i in range(lenGsave):
nidx = Gvec[i][0]
kidx = Gvec[i][1]
iidx = Gvec[i][2]
tidx = Gvec[i][3]
for j in range(len(Sv)):

Xval[j] = myx[(j*T) + tidx]
Xvalp1[j] = myx[(j*T) + tidx + 1]
Xval2[j] = myx[(j*(T-1)) + Xn2idx + tidx]

113

K11val = myx[K11idx + tidx]
K11valp1 = myx[K11idx + tidx + 1]
K11val2 = myx[K112idx + tidx]
dK11val = myx[dK11idx + tidx]
dK11valp1 = myx[dK11idx + tidx + 1]
Xdval = X1data[2*tidx]
Xdvalp1 = X1data[2*tidx+2]
Xdval2 = X1data[2*tidx+1]
ftemp = 0.0
if nidx == -1:

ftemp += eval(sJac[kidx][iidx][0])
ftemp += eval(sJac[kidx][iidx][1])
ftemp += eval(sJac[kidx][iidx][2])

else:
ftemp += eval(sJac[kidx][iidx][nidx])

myg[i] = ftemp
for i in range(T):

myg[lenGsave + 3*i] = myx[i] - X1data[2*i]
myg[lenGsave + 3*i+1] = myx[i + K11idx]
myg[lenGsave + 3*i+2] = myx[i + dK11idx]

for i in range(T-1):
myg[lenGsave2 + 2*i] = myx[i+Xn2idx] - X1data[2*i+1]
myg[lenGsave2 + 2*i+1] = myx[i + K112idx]

if needf > 0:
CFobj = 0.0
for tidx in Tlist: # Over Time

K11val = myx[K11idx + tidx]
K11valp1 = myx[K11idx + tidx + 1]
K11val2 = myx[K112idx + tidx]
dK11val = myx[dK11idx + tidx]
Xdval = X1data[2*tidx]
Xdvalp1 = X1data[2*tidx+2]
Xdval2 = X1data[2*tidx+1]
for k in range(2*len(Sv)): # Over Constraints

for i in range(len(Sv)): # Over Variables
if Mv[k][i] == 2:

Xval[i] = myx[(i*T) + tidx]
Xvalp1[i] = myx[(i*T) + tidx + 1]
Xval2[i] = myx[(i*(T-1)) + Xn2idx + tidx]
if k in [4,5,6,7]: Xval2[i] = 0.0

else:
Xval[i] = 0.0
Xvalp1[i] = 0.0
Xval2[i] = 0.0

ftemp = 0.0
for i in [0,1,2]:

ftemp += eval(strAllCon[k][i])
myf[k*T+tidx] = ftemp

CFobj += (myx[tidx] - Xdval)**2 + K11val**2 + dK11val**2
if tidx < T-1:

CFobj += (myx[Xn2idx+tidx] - Xdval2)**2 + K11val2**2

114

myf[len(AllCon)*T] = CFobj / 2.0

if needf == 0 and needg == 0:
print "PYTHON: This was the first call"

return

Call snOptA
snopy.snoptapy(pyfg2)

Get the final result from x
for i in range(len(Xvec)):

Xvec[i] = snopy.x[i]

Close files
snopy.closepy()

Print out parameter values
for i in range(len(Lparams)):

Pval[i] = Xvec[Paramidx+i]
print Lparams[i] + " = " + str(Pval[i])

Plot the output : Requires matplotlib and tk
x1val = []
x1dat = []

x2val = []
x2dat = []

x3val = []
x3dat = []

x4val = []
x4dat = []

kval = []
tval = []

R1 = []
R2 = []
ftemp1 = 0.0
ftemp2 = 0.0

for i in Tlist:
x1val.append(Xvec[i])
Xval[0]=Xvec[i]
x2val.append(Xvec[T+i])
Xval[1]=Xvec[T+i]
x3val.append(Xvec[2*T+i])
Xval[2]=Xvec[2*T+i]
x4val.append(Xvec[3*T+i])
Xval[3]=Xvec[3*T+i]

115

kval.append(Xvec[K11idx+i])
Kval=Xvec[K11idx+i]
ftemp1 = eval(strF1)
ftemp2 = Kval*(X1data[2*i] - Xval[0])
R1.append(ftemp1**2 / (ftemp1**2 + ftemp2**2))
R2.append(ftemp1**2 / (ftemp1**2 + Kval**2))

x1val.append(Xvec[i + Xn2idx])
Xval[0]=Xvec[i + Xn2idx]
x2val.append(Xvec[i + Xn2idx + (T-1)])
Xval[1]=Xvec[i + Xn2idx + (T-1)]
x3val.append(Xvec[i + Xn2idx + 2*(T-1)])
Xval[2]=Xvec[i + Xn2idx + 2*(T-1)]
x4val.append(Xvec[i + Xn2idx + 3*(T-1)])
Xval[3]=Xvec[i + Xn2idx + 3*(T-1)]
kval.append(Xvec[K112idx+i])
Kval=Xvec[K112idx+i]
ftemp1 = eval(strF1)
ftemp2 = Kval*(X1data[2*i+1] - Xval[0])
R1.append(ftemp1**2 / (ftemp1**2 + ftemp2**2))
R2.append(ftemp1**2 / (ftemp1**2 + Kval**2))

x1dat = X1data[:2*T-2]
x2dat = X2data[:2*T-2]
x3dat = X3data[:2*T-2]
x4dat = X4data[:2*T-2]
tval = Tdata[:2*T-2]

print "X1val length = ",len(x1val)
print "X1dat length = ",len(x1dat)
print "tval length = ",len(tval)

print "Writing File : neuron_out.dat"
myfile = open(’neuron_out.dat’,’w’)
for i in range(len(tval)):

myStr = "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n" %
(tval[i],kval[i],x1val[i],x2val[i],x3val[i],
x4val[i],x1dat[i],x2dat[i],x3dat[i],x4dat[i])

myfile.write(myStr)
myfile.close()

exit()

116

C.3 SPICE Code

The circuit simulation software SPICE (cite) was used to initialize and verify

the parameters of the gating variable dynamics in the Hodgkin-Huxley electrical

circuit. The code describing the circuits for αm,n,h and βm,n,h are shown below.

C.3.1 Code for αm(Vm), βm(Vm)

Hodgkin-Huxley Circuit m(V)

.include UA741.301

* Power Supplies
Vcc 100 0 DC 15
Vee 101 0 DC -15

* Membrane Voltage
Vin 1 0 DC 1.0

* Alpha_m Stage *

*Sources
Vath 2 0 DC -0.15
Va1 7 0 DC 0.3
Va2 8 0 DC -1.0
Vatr 12 0 DC 0.7

* Resistors
R1 1 3 470K
R2 2 3 470K
R5 3 4 560K
R31 4 5 1K
R32 4 6 1K
R33 5 7 1K
R34 6 8 1K
R35 4 11 470K
R36 9 11 47.5K
R37 10 11 22K
R40 11 12 470K
R42 11 13 43.2K

*Diodes
D1 5 9 D1N914
D2 6 10 D1N914

* Op-Amps
X1 0 3 100 101 4 UA741

117

X2 0 11 100 101 13 UA741

* Beta_m Stage *

*Sources
Vbth 14 0 DC -0.5
Vb1 19 0 DC -1.5
Vb2 20 0 DC -2.5
Vbtr 24 0 DC -4.5

* Resistors
R6 1 15 470K
R7 14 15 470K
R10 15 16 470K
R44 16 17 1K
R45 16 18 1K
R46 17 19 1K
R47 18 20 1K
R48 16 23 470K
R49 21 23 10K
R50 22 23 22K
R53 24 23 470K
R55 23 25 12K

*Diodes
D3 21 17 D1N914
D4 22 18 D1N914

* Op-Amps
X3 0 15 100 101 16 UA741
X4 0 23 100 101 25 UA741

.MODEL D1N914 D(IS=100E-15 RS=16 CJO=2PF
TT=12NS BV=100 IBV=100E-15)

.dc Vin -3.75 1.25 0.01

.print dc V(13) V(25)

.save dc V(13) V(25)

.end

C.3.2 Code for αn(Vm), βn(Vm)

Hodgkin-Huxley Circuit n(V)

.include UA741.301

* Power Supplies
Vcc 100 0 DC 15
Vee 101 0 DC -15

118

* Membrane Voltage
Vin 1 0 DC 1.0

* Alpha_n Stage *

*Sources
Vath 2 0 DC -0.611
Va1 7 0 DC 0.0
Va2 8 0 DC -1.0
Vatr 12 0 DC -1.54

* Resistors
R21 1 3 470K
R22 2 3 470K
R25 3 4 470K
R85 4 5 1K
R86 4 6 1K
R87 5 7 1K
R88 6 8 1K
R89 4 11 178K
R90 9 11 33K
R91 10 11 27K
R94 11 12 470K
R96 11 13 5.1K

*Diodes
D1 5 9 D1N914
D2 6 10 D1N914

* Op-Amps
X1 0 3 100 101 4 UA741
X2 0 11 100 101 13 UA741

* Beta_n Stage *

*Sources
Vbth 14 0 DC -0.48
Vb1 19 0 DC -1.5
Vb2 20 0 DC -2.5
Vbtr 24 0 DC -9.15

* Resistors
R26 1 15 470K
R27 14 15 470K
R30 15 16 470K
R98 16 17 1K
R99 16 18 1K
R100 17 19 1K
R101 18 20 1K

119

R102 16 23 470K
R103 21 23 178K
R104 22 23 178K
R107 24 23 470K
R109 23 25 56K

*Diodes
D3 21 17 D1N914
D4 22 18 D1N914

* Op-Amps
X3 0 15 100 101 16 UA741
X4 0 23 100 101 25 UA741

.MODEL D1N914 D(IS=100E-15 RS=16 CJO=2PF
TT=12NS BV=100 IBV=100E-15)

.dc Vin -3.75 1.25 0.01

.print dc V(13) V(25)

.save dc V(13) V(25)

.end

C.3.3 Code for αh(Vm), βh(Vm)

Hodgkin-Huxley Circuit h(V)

.include UA741.301

* Power Supplies
Vcc 100 0 DC 15
Vee 101 0 DC -15

* Membrane Voltage
Vin 1 0 DC 1.0

* Alpha_h Stage *

*Sources
Vath 2 0 DC -0.686
Va1 7 0 DC -1.5
Va2 8 0 DC -2.5
Vatr 12 0 DC -5.0

* Resistors
R11 1 3 470K
R12 2 3 470K
R15 3 4 470K
R57 4 5 1K
R58 4 6 1K

120

R59 5 7 1K
R60 6 8 1K
R61 4 11 470K
R62 9 11 10K
R63 10 11 27K
R66 11 12 470K
R68 11 13 22K

*Diodes
D1 9 5 D1N914
D2 10 6 D1N914

* Op-Amps
X1 0 3 100 101 4 UA741
X2 0 11 100 101 13 UA741

* Beta_h Stage *

*Sources
Vbth 14 0 DC -0.557
Vb1 19 0 DC 0.3
Vb2 20 0 DC -1.0
Vbtr 24 0 DC -0.362

* Resistors
R16 1 15 470K
R17 14 15 470K
R20 15 16 510K
R70 16 17 1K
R71 16 18 1K
R72 17 19 1K
R73 18 20 1K
R74 16 23 825K
R75 21 23 82K
R76 22 23 27K
R79 24 23 470K
R81 23 25 20K
R82 26 25 1K
R84 26 0 0.75K

*Diodes
D3 17 21 D1N914
D4 18 22 D1N914
D5 23 26 D1N914

* Op-Amps
X3 0 15 100 101 16 UA741
X4 0 23 100 101 25 UA741

.MODEL D1N914 D(IS=100E-15 RS=16 CJO=2PF
TT=12NS BV=100 IBV=100E-15)

121

.dc Vin -3.75 1.25 0.01

.print dc V(13) V(25)

.save dc V(13) V(25)

.end

Bibliography

[1] H. D. I. Abarbanel. Analysis of Observed Chaotic Data. Springer-Verlag, NY,
1996.

[2] H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik. Generalized syn-
chronization of chaos: The auxiliary system approach. Physical Review E,
53:4528–4535, 1996.

[3] V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich. Stochastic synchro-
nization of oscillators in dissipative systems. Inv. VUZ Radiofiz., 29, 1986.

[4] G. Ananthakrishna. Current theoretical approaches to collective behavior of
dislocations. Physics Reports, 440:113–259, 2007.

[5] G. Ananthakrishna and M. S. Bharathi. Dynamical approach to the spa-
tiotemporal aspects of the portevin - le chatelier effect: Chaos, turbulence,
and band propagation. Physical Review E, 70:026111, 2004.

[6] A. E. Bryson and Y-C Ho. Applied Optimal Control: Optimization, Estima-
tion, and Control. Hemisphere, 1975.

[7] K. M. Cuomo, A. V. Oppenheim, and S. H. Strogatz. Synchronization of
lorenz-based chaotic circuits with applications to communications. IEEE
Transactions, Circuits and Systems II, 40:626–633, 1993.

[8] H. Dedieu and M. J. Ogorzalek. Identifiability and identification of chaotic
systems based on adaptive synchronization. IEEE Transactions, Circuits and
Systems I, 44:948–962, 1997.

[9] S. V. Franklin, F. Mertens, and M. Marder. Portevin–le chatelier effect. Phys-
ical Review E, 62, 2000.

[10] R. G. Gallager. Information Theory and Reliable Communication. Wiley, New
York, 1968.

[11] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Review, 47:99–131, 2005.

122

123

[12] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. Journal of
Physiology, 117:500–544, 1952.

[13] D. Huang. Synchronization-based estimation of all parameters of chaotic sys-
tems from time series. Physical Review E, 69:067201, 2004.

[14] D. Johnston and S. Wu. Foundations of Cellular Neurophysiology. MIT Press,
1995.

[15] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge
University Press, second edition, 2003.

[16] M. P. Kennedy. Chaos in the colpitts oscillator. IEEE Transactions, Circuits
and Systems I, 41:771–774, 1994.

[17] D. E. Kirk. Optimal Control Theory: An Introduction. Prentice-Hall, NJ,
1970.

[18] R. Konnur. Synchronization-based approach for estimating all model param-
eters of chaotic systems. Physical Review E, 67:027204, 2003.

[19] H. P. Langtangen. Python Scripting for Computational Science. Springer,
second edition, 2004.

[20] F. L. Lewis and V. L. Syrmos. Optimal Control. Wiley, second edition, 1995.

[21] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric
Sciences, 20:130–141, 1963.

[22] M. Lutz and D. Ascher. Learning Python. O’Reilly, second edition, 2003.

[23] G. M. Maggio, O. D. Feo, and M. P. Kennedy. Nonlinear analysis of the
colpitts oscillator and applications to design. IEEE Transactions, Circuits
and Systems I, 46:1118–1130, 1999.

[24] A. Maybhate and R. E. Amriktar. Use of synchronization and adaptive control
in parameter estimation from a time series. Physical Review E, 59:284–293,
1999.

[25] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry
from a time series. Physical Review Letters, 45, 1980.

[26] U. Parlitz, L. Junge, and L. Kocarev. Synchronization-based parameter esti-
mation from time series. Physical Review E, 54:6253–6259, 1996.

[27] L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Physical
Review Letters, 64:821–824, 1990.

124

[28] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization : A universal
concept in nonlinear sciences. Cambridge University Press, 2001.

[29] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel. Gen-
eralized synchronization of chaos in directionally coupled chaotic systems.
Physical Review E, 51:980–994, 1995.

[30] H. Sakaguchi. Parameter evaluation from time sequences using chaos synchro-
nization. Physical Review E, 65:027201, 2002.

[31] B. Saltzman. Finite amplitude free convection as an initial value problem.
Journal of the Atmospheric Sciences, 19:329–341, 1962.

[32] T. Sauer, J. A. Yorke, and M. Casdagli. Embedology. Journal of Statistical
Physics, 65, 1991.

[33] A. S. Sedra and K. C. Smith. Microelectronic Circuits. Oxford University
Press, third edition, 1991.

[34] J. C. Sprott. Chaos and Time–Series Analysis. Oxford, 2003.

[35] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
1986.

[36] D. J. Struik. Lectures on Classical Differential Geometry. Dover, second
edition, 1988.

[37] F. Takens. Detecting strange attractors in turbulence. In D. Rand and L. S.
Young, editors, Dynamical Systems and Turbulence, volume 898, page 366.
Springer, 1981.

[38] D. Y. Tang and N. R. Heckenberg. Synchronization of mutually coupled
chaotic systems. Physical Review E, 55:6618–6623, 1997.

[39] I. Tokuda, U. Parlitz, L. Illing, M. B. Kennel, and H. D. I. Abarbanel. Pa-
rameter estimation for neuron models. In Proceedings of the 7th Experimental
Chaos Conference, San Diego, CA, USA, 2002.

[40] H. U. Voss, J. Timmer, and J. Kurths. Nonlinear dynamical system identifica-
tion from uncertain and indirect measurements. Int. J. Bif. Chaos, 14:1905–
1933, 2004.

[41] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining lyapunov
exponents from a time series. Physica D, 16:285–317, 1985.

[42] T. Yamada and H. Fujisaka. Stability theory of synchronized motion in cou-
pled oscillator systems. Pregress Theor. Phys., 70, 1983.

