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Anomalous Electron Heating and Energy 
Balance in an Ion Beam Generated Plasma 

Gary Guethlein 

Lawrence Berk~ley Laboratory 
University of California 

Berkeley, CA 94720 

ABSTRACT 

The plasma we describe here is generated by a 15-34 kV ion beam, 

consisting primarily of protons, passing through an H2 gas cell 

neutralizer. Plasma ions (or ion-electron pairs) are produced by 

electron capture from (or ionization of) gas molecules by beam ions 

(or ions and atoms). We seek an explanation for the observed 

anomalous behavior of the electron temperature (T ): a step-like, e 
nearly two-fold jump in T as the beam current approaches that which e 

minimizes beam angular divergence (~e); insensitivity of Te to gas 

pressure; and the linear relation of Te to beam energy (Eb). This 

behavior is labeled as anomalous because it is not consist~nt with the 

collisional model, which considers only; energy transfer by binary 

collisions, energy required to expel electrons that are born trapped 

by the confining plasma potential, and kinetic energy transported to 

the wall as electrons escape. T data agree with the collisional 
e 

model only so long as the beam is operated in a low current regime 

where ~e exceeds -8-10 deg. For low(er) ~e, our theory predicts 

electron heating by beam-driven electron plasma oscillations at phase 

velocity (v~) - 2% below the beam speed (vb). Wave energy is 

coupled to the electrons via Landau damping. Strong correlation is 

observed between the fluctuation signal on a planar probe, violation 
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of the collisional model, and de. The observed fluctuation 

spectrum agrees with the range of plasma frequencies (as determined 

from Langmuir probe measurements of the electron density). The 

empirical dependence Te=0.00007Eb is - 30% below that predicted 

by equating the linear resonant growth rate with Landau damping. This 

dependence should hold unless the power balance requires an energy 

loss per beam ion in excess of (R/2)1/3 Eb, where R=(w
b

/we )2 

We show the possibility of significant gas heating and, hence, 

increased gas flow. When de exceeds 11 deg., the spread in parallel 

beam velocities exceeds vslip = vb-v~; all beam ions are no 

longer resonant; the growth rate is degraded; thus we are able to 

suppress the instability and observe T 's that satisfy the 
e 

collisional power balance. The jump behavior of Te is then 

interpreted as a transition between the two regimes of ~e. 
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Chapter 1 

Introduction 

The plasma described in this thesis is produced by passage 

through a gas-cell-neutralizer of a 15-34 kV, 1-10 Amp, positive ion 

2 beam of area 50 cm formed by the Berkeley 10 Amp source and 

accelerator, see Fig. 1-1. The primary goal of this study is to 

experimenta lly explore the processes that determ-i ne the el ectron 

temperature (T ) in this plasma. This thesis consists of a body of 
e 

experimental data (electron temperature and densit~, neutral gas 

pressure, beam divergence, and electrostatic fluctuation spectrum) and 

two theoretical models to describe the data. The first theoretical 

model is the collisional power balance, which the electron te~perature 

must satisfy when binary interactions dominate the energy exchange. 

This turns out to be the case when the beam divergence (46) is greater 

than 11 deg. The second theoretical model involves electron heating 

by beam-driven electron plasma waves, and is applicable whenever 

46 < 11 deg. The secondary goal of this thesis is to extend the 

predictions of this latter model to beam energies (E b > 34 kV) not 

accessible to us experimentally in this study. 

The neutral beam generated by electron capture (charge exchange) 

and the plasma created are of interest to the magnetic fusion 

community; the beam because its divergence determines the ultimate 

ability to deliver power through limited access to a fusion device, 

and the plasma because of its effects upon the beam, upon beam 

neutralization efficiency and upon gas transport (gas loading of a 
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fusion device). As neutral beams are used to heat and fuel plasma 

devices requiring greater power, it is likely that the beam power 

density will need to increase, since designers are not free to provide 

large access areas through the labyrinth of magnet windings and other 

hardware associated with magnetic confinement devices. A number of 

questions come to mind that have not yet been properly addressed. For 
. . ! 

example: What will be the effect of the. neutralizer plasma upon the 

beam and upon neutralization efficiency at high power densities? Can 

we predict this in the general case? What would the best neutralizer 

dimensions be? Is there any gain to be found in using a longer or 

shorter neutralizer? Should one employ a neutralizer of cross section 

significantly larger than the beam? 

In the face of these questions concerning the neutralizer is a 

deceivingly simple neutralizer plasm~. The plasma results from beam 

charge-exchange with, and ionization of, the gas in the neutralizer 

cell. Positi~e space charge accumulates as the electrons initially 

exit the cell more quickly than the ions, owing to their greater 

mobility. The steady-state solution to the particle balance was the 

subject of previous work at this facility.l However, a completely 

self-consistent solution was not possible, the electron temperature 

had to be measured and applied as an empirical variable, just as gas 

pressure or system dimensions. Not affecting that work, but 

unexplained, was the observation that the electron temperature would 

abruptly increase by approximately a factor of two whenever the beam 

current passed a certain value, independent of gas pressure. This 

beam current, not coincidentally, is the current (I t) at which the op 
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accelerator performance (beam d'ivergence) is opt·imized. This IIjumpll 

behavior is displayed in Fig. 1-2, a plot of electron temperature 

measured as a function of beam current. We also show in Ch. 5 that 

the final temperature (after the jump) is higher than one would expect 

given only classical collisions of the beam and electrons. Thus we 

label this behavior as anomalous. An almost self-consistent model has 

been offered by Gabovich,2 which guides us in the ·collisional power 

balance of Ch. 2, but that model assumes a particular plasma potential 

profile (not self-consistent) and neglects inelastic collisions and 

electron energy lost to the walls. A solution to the Fokker-Planck 

equation for the electrons has been proposed by Ho1mes 3 which we 

disagree with - the electron temperatures derived are considerably 

higher than those we feel supportable by physical means. 

In Ch. 2 we therefore describe the neutralizer plasma and analyze 

the collisional power balance in some detail. The resulting 

formidable terms are numerically evaluated in Appendix C, and 

discussed in Ch. 5, sec. A. We conclude that insufficient power is 

available collisionally to explain the observed temperature. Also in 

- ,Ch.-2 ,-we_derJ.ve_sca.1 il'lg~elationships for the electron temperature 

with beam current, beam energy, gas pressure and gas species. The 

data in Ch. 5, sec. A suggest that these sca1ings are only valid for a 

limited range of beam current, failing as the beam current approaches 

I opt ' 

We find evidence that the electrons are heated by the presence of 

a beam-plasma electrostatic instability. Therefore, Ch. 3 pursues 

theoretically the heating of electrons by a beam-driven instability at 

4 
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the electron plasma frequency. We find sufficient coupling of beam 

energy to the plasma electrons for our system to sustain the electron 

temperatures observed. A linear relationship between electron 

temperature and beam energy is a consequence of stabilization by 

thermal electrons. The power balance is then considered with this 

anomalous channel of energy extraction from the beam. An approximate 

self-consistent model is presented, with an attempt at a generalized 

(though restricted to optimum neutralizer thi~kness) prediction of the 

effect" of this anomalous power on the neutral gas. Ch. 3 concludes 

with an algorithm for determining plasma quantities in a general 

neutra 1 i zer. 

Ch. 4 is a presentation of the equipment used - the plasma 

source, accelerator, beam line, and diagnostics from which data are 

reported in this thesis. 

Data - beam properties, plasma density, temperature, and 

electrostatic fluctuation level and spectrum - are presented and 

discussed in Ch. 5. Overall, we find good agreement with the combined 

theories of Ch. 2 and Ch. 3, respectful of the limitations inherent to 

each. For beam current belows I t' we find that the measured op 

electron temperatures follow the behavior of the collisional power 

balance model described in Chapter 2. As the beam current approaches 

I t' the plasma fluctation level is. observed to increase rapidly. op 
simultaneous with a jump in the electron temperature. The value of 

the electron temperature after this jump (empirically, 

Te = 0.07 Eb V/kV) is 30% less than one would expect by assuming that 

electrons resonant with the wave remove wave energy at the same rate 

6 
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that the wave extracts energy from the beam. Thus we conclude that 

our experimental data for low divergence ion beams (~e < 10 deg.) is 

adequately described by the model based upon beam-driven electron 

plasma oscillations presented in Chapter 3. The jump behavior 

observed in the electron temperature as the beam current approaches 

I t is the transition between the low and the high beam divergence op· 
regimes. A fairly complete understanding exists for the electron 

temperatures observed in our positive-ion beam neutralizer. 

1 



Chapter 2 

Collisional Power Balance 

A. Particles in the Neutralizer Plasma 

The neutralizer for our ion beam is a gas filled pipe of radius 

10 cm and length 1 m. It is filled with room temperature hydrogen gas 

at a pressure of 1-3.mTorr. Dissociation by energeiic electrons in 

the neutralizer as well as those in the ion source produces atomic 

hydrogen. We presume the atomic hydrogen recombines on the room 

temperature walls and thus that the gas is predominantly molecular 

hydrogen (H2).' This is confirmed; experimentally by the ratio (1:6) of 

plasma protOns (H+) 1:0 plasma molecular ions (H;, H;) (see Appendix E). 

When the beam of cross section 7 x 7 cm enters the neutralizer it 

consists of three singly ionized components: H+, H;, and ~;, typically 

in the fractions 60-70%, 15-25%, and 10-15%, respectively. As the 

beam travels the length of the neutralizer, these components charge 

exchange with the background gas. The molecular beam ions (as well as 

neutrals) dissociate. The beam atoms and molecules resulting from 

charge exchange can also be stripped of an electron in a collision 

with a gas molecule, and the beam atoms may capture an electron as 

well, or beam protons may capture two electrons to become H. We 

shall attempt to be complete and include all 14 beam components (see 

Appendix B) whenever possible, but, for simplicity, shall at times 

consider the beam to consist solely of protons. In the spatial 

evolution of the beam, we shall ignore collisions of beam particles 
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with the neutralizer plasma, due to the low plasma density in 

gas-filled neutralizers (ne/ng < 0.1%; ne , ng are the electron and gas 

densities, respectively). We shall, however, consider beam ion 

Coulomb collisions with plasma electrons as an energy source for the 

electrons. 

In this gas-filled neutralizer there is also a plasma. The plasma 

ions and electrons are created by: 1) charge exchange of beam ions; 2) 

ionization of gas molecules by beam ions, atoms, and molecules; and 3) 

electron stripping from beam atoms and molecules by gas molecules. 

These process,es (possible events) are depicted in Fig. 2-1. Events 

1 and 5' (charge exchange) produce a plasma ion, Event 2 (ionization of 

an H2 gas molecule) produces a plasma ion and electron pair~ and Event 

3 (electron stripping from a ,beam atom) produces a plasma electron. 

Event 4 (ionization by a beam proton) produces an ion7electron pair. 

Events 5 and 6 (the latter is electron capture by a beam neutral) 

produce plasma ions, while Event 7 (electron str'ipping from a beam H-) 

gives an electron to the plasma. Of course the sequence of events can 

change, but stripping can only happen to a beam neutral. 

In general, ionization by electrons contributes to plasma 

production. We include this in the next chapter. For our system, 

though, elect~onic ionization is negligible, as we shall now 

demonstrate. The plasma that results is usually of 10-50 times higher 

density than that of the beam, and with an electron temperature (T ) 
e 

< 3 Volts (for our operating range of beam energy - Eb = 15-34 kV). 

Note that we shall be using a convention where energies are expressed 

as potentials, with the electronic charge implicit, unless the units 

9 
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are explicitly stated otherwise. Addit"ionally, Boltzmann's constant 

is implicit with"in T so that both thermal energy and temperature are e 

expressed in volts. The ratio of ionization by plasma electrons to 

that by beam particles is 

< 1 10-10cm3/sec 

10-50 2.10-l6cm2 106 Y2E
b 

cm/sec 

" -4 = (4-20)·10 

where ne(nb) is the electron (beam) density, vb is the beam speed, 

a. is the cross section for ionization of H2 by protons at 
10n 

cm/sec and <aV>. is taken as the average of v times the 
10n 

cross section for ionization of H2 by the electrons (average over 

electron speed). We find values for this reaction rate in C. F. 

4 Chan's paper. Throughout this thesis we shall use Eb=25 kV as a 

standard reference, and vb as the speed of a proton at that energy. 

The inequality reflects the generous evaluation of <aV>. at T =3V. 
10n e 

Therefore the production of plasma particles results only from beam 

interactions with gas molecules. We shall discuss ionization by 

electrons in the next chapter, when we explore systems where enough 

power is coupled to the electrons to support ionization. 

To maintain quasineutrality, there is a potential that confines 

the electrons in the absence of a magnetic field, thus slowing them to 

the same loss rate as the ions. The size of this potential (commonly 

{i. referred to as the ambipolar potential) is usually T 1n( __ '), where 
e m 

e 

m.(m ) ;s the plasma ion (electron) mass. In our case this will be 
1 e 

modified somewhat by a low density, high temperature tail in the 

elctron distribution function and the presence of a gas density 

11 



gradient in the axial direction. Ttris axial nonunHormity allows some 

axial electron flux and thus the local ion and electron radial fluxes 

need not be exactly equal. We commonly observe a confining plasma 

potential of 

~
. 

<P = (1-2) • T tn ( ...1.) • 
p e m 

e 

which usually lies in the range of 3-20 volts. 

In evaluating the last equation we have used T = 0.5 - 2.5 V and e 

m. = 2m • m being the proton mass. The latter is because most of the 
1 p P 

+ + + 5 ions produced are H2 (0 for H2/ a for H : 6). The molecular ion 

can collide with H2 molecules and gain an atom to become H;. This is 

discussed in Appendix E. but will not be considered further here. 

6 Rudd and co-workers have experimentally determined the energy 

distribution of electrons resulting from proton impact with H2 ·gas and 

fit their data to a semi-empirical model. The resulting distribution 

function of kinetic energy is 

f(c) = 
-elE 

e n 
E 

(2.1) 
n 

where E = 
n 1.28 

(2.1a) 

with <Pi being the ionization energy of H2 and mb/me being the beam 

particle to electron mass ratio (1836). We refer to E as the 
n 

characteristic nascent energy. For our standard Eb = 25 kV and <Pi = 

15.6 V. En = 11.4 V (remember the electron charge is implicit). These 

electrons begin their free life (no longer bound to a molecule) 

traveling largely in the beam direction. We refer to these electrons 

12 



that have just been freed by a beam-induced ionization event as 

"nascent electrons". Elastic encounters with H2 molecules tend to 

isotropize these nascent electrons with a mean free path of 

).,mfp 
1 cm3 

= 10 cm , = ::::: 
ngd e9. (11 .4 V) 1014 10-15cm2 

where we have taken d -e9. 
10-15 2 7 cm . As ).,mfp « L, the neutra 1 i zer 

length (100 cm), we conclude that the nascent electrons are scattered 

away from their initia'l forward direction before they escape. This of 

course allows them to be lost on a wall nearer their point of origin. 

The coolest of these electrons (those with energy < • ) will be 
p 

trapped to preserve quasineutrality. These cool down further by 

inelastic collisions with H2 molecules and therma1ize by 

electron-electron collisions to a temperature of 0.5-2.5 volts, 

depending on beam current, beam energy, and, to some extent, gas 

pressure. The mean free path for electron-electron Coulomb collisions 

. 8 
1S 

4.5 • 10 T3 T2 cm )., = e 
ee n 1n)" 

e 

where 1n )., is the Coulomb logarithm. For our plasma T - 2V, e 
n - 5.10 10/cm3, and 1n )., = 10, so)" = 360 cm. Though this is e ee 
longer than any of our neutralizer dimensions, these cool electrons 

are reflected by the potential near the walls, bouncing around until 

they acquire enough energy to escape the potential well. Noting that 

the frequency of Coulomb collisions varies as the inverse cube of the 

relative particle velocities, we conclude that the trapped electrons 
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make many more thermalizing collisions among themselves than 

collisions with faster moving particles (those that might give them 

enough energy to escape). Therefore, we believe the trapped electrons 

to be thermalized. 

Can the fast, nascent electrons give up their energy to the 

cooler, trapped electrons? For a test particle (electron) with energy 

Etest = 10 volts in.;a field of 2 volt electrons, the mean free path is9 

).,ee' = 
10aI'2T: (E )3/2 

e test 

4 = lO-
a 

(2.2a) 

1600 cm • (2.2b) 

where we have used ne = S_1010/cm3, Te = 2 volts, and in )., = 10. As 

this is very much longer than any neutralizer dimension ~nd these 

electrons are not reflected by the potential, we conclude that the 

faster nascent electrons (those with kinetic energy, c, greater than 

.p) escape after a few isotropizing elastic collisions with H2 

molecules, but not imparting any energy to the trapped electrons. 

Thus we see two components of electrons; cold, trapped thermalized 

electrons and the "hot" nascent electrons, just passing through the 

plasma on their way to the nearest wall. The latter typically have a 

density that is a few percent of the density of the former. 

B. Collisional Power Balance 

In this section we shall der-ive a formalism for the balance of 

power in the neutralizer. The collisional distinction is intended to 
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indicate a neglect of collective effects in the plasma - those will be 

considered in the next chapter. We shall make no attempt here to 

formulate a self-consistent model. Such a model would be difficult 

(not impossible), but, as we shall see in Discussion and Results I, 

not very useful. Instead, assuming measured quantities for n , T , 
e e 

and n , we shall evaluate (numerically evaluated in Chapter 5, g 

section A) the power consumed by the plasma and compare that to the 

power available through Coulomb collisions of beam ions with the 

plasma electrons. If our data does not show these two powers to be 

equal, then .the collisional power balance has been violated. We begin 

by evaluat4ng the three terms of power consumption - the power 

expended by moving particles through the potential well, inelastic 

electron collisions with H2 molecules, and kinetic ener~y that 

particles take with them to the wall (the latter bears no relation to 

the first term). 
~: .. 

1. Energy Exchange with the Potential Well 

The exchange of energy with the potential well was first properly 
. 2 

accounted for by Gabovich. In comparison with that work, we take 

advantage of a more recent experimental determination of f(c), 

Eq. 2.1, and ~lso add the effect of electrons stripped from neutral 

beam atoms (or molecules). In this collisional model, the plasma is 

presumed to be static. 

Consider Fig. 2-1. A beam ion entering the neutralizer plasma 

from the left "climbs" the static plasma sheath at the neutralizer 

entrance. By Event 1 (charge exchange), the beam ion has done an 

15 



amount of work ., (., is measured relative to the wall) on the 

potential well. Departing from Event 1 are two particles. The 

neutral beam particle does no work on the well, but the ion resulting 

from this charge exchange is pushed out of the well and returned to 

the wall (where. = 0). The well does an amount of work .1 on this 

ion, thereby returning the energy already expended by the initial beam 

ion. 

Two opposHely charged particles leave Event 2 (ionizat"ion) and 

eventually f"ind their way to .=0 at the wall. Since one of each sign 

charge originates at .2' no net work is done on/by the potential. 

However, not all electrons are born with equal kinetic energy. Some 

are born with too little kinetic energy (e) to overcome the confining 

potential. These trapped electrons require an energy acquisition of 

• - e before they can escape to the wall. We are describing a 
p 

steady state - so electrons must leave at their creation rate. Those 

electrons born with e>. escape freely. From Eq. 2.2b we concluded 
p 

that these free electrons were incapable of helping the trapped 

electrons escape. The power required to remove the trapped electrons 

from the well represents a power drain to the system, 

A • L 
I o 

b p(x,y,z) 
I I f (e)(. (x,y,z)-e)de n oe vsngdA dz , o 0 s "p s s 

(2.3) 

which must be provided by an outside source (the beam). Here f is 
s 

the distribution of nascent energies of electrons produced by 

collision of beam species s. of density ns withH2 gas of density ng; 

vs is the speed of these beam particles; and 0: is the cross section 

for electron production. Both ns and ng are functions of position. 
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The upper limit of integration for IdA (dA = dxdy) is a reminder that 

ns = 0 outside the beam (of area Ab). Particular attention should be 

paid to the evolution of n during the z integration. This issue is 
s 

addressed numerically in Appendix C. 

Two charged particles leave Event 3 (stripping of an electron from 

a beam atom). The same arguments r~garding work done for Event 2 

apply here, with the modification that the positive charge exits the 

well in one of two ways; as a beam ion or as the charge exchange ion 

produced at Event 5. In either case a positive charge returns to 

.=0, having originated at .3' The work of this (these) event(s) 

done on/by the potential well is already included in Eq. 2.3 when s 

represents a neutral beam species and a: includes the stripping cross 

section. 

Three charged particles leave Event 4 (ionization by a beam 

proton). The beam ion has already been accounted for. The plasma 

ion-electron pair created contributes to Eq. 2.3 in exactly the same 

manner as the pair resulting from Event 2. 

The pair of events 6 (electron capture) and 1 (stripping an 

electron from beam H ) contribute to Eq. 2.3 in exactly the same way. 

with the exception that the negative charge can be carried out of the 

well by either a beam H (no Event 1 before the end of the 

neutralizer) or by an electron (Event 1). 

2. Inelastic Collisions 

Hydrogen gas provides an effective cooling mechanism for electrons 

of temperature> 1 volt. This is an additional power drain to the 

system. We include vibrational excitation of the molecule (energy 
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level is 0.5 volt), molecular dissociation, electronic excitation, and 

ionization. We define an energy loss rate per molecule as 

reT ) e (2.4) 

where the summation over ~ includes the modes just discussed, and E~ 

is the energy the electron loses in the interaction that proceeds at a 

rate ng.<a~v> (the brackets indicate an average over the electron 

distribution). r(T), calculated from C. F. Chan's tab1es,4 is shown 
e " 

in F4g. 2-2 and tabulated in Table 2-1. The total power lost by 

electrons to inelastic collisions is 

P. 1 = reT ) lne e n (x,y,z) n (z) dxdydz, 
e g 

where the integral is taken over the plasma volume, Vol . We are 
p 

(2.5) 

assuming all the gas is H2, as discussed previous1y~ and so have not 

included any atomic excitation in Eq. 2.4. 

3. Kinetic Energy Carried Out of the Potential Well 

The kinetic energy each ion carries out of the well has already 

been accounted for in Eq. 2.3. Here we concern ourselves only with 

the electrons. It has been shown that an electron "boiled" out of a 

potential well has some small fraction of Te energy associated with 

its motion perpendicular to the edge of the well. 10 In addition, it 

will carry 1/2 T energy in either"of the two directions parallel to 
e 

the wall. For simplicity, we shall take T as the kinetic energy of e 
each electron as it exits the well. 

The power carried to the wall by the electrons is then 

PKE = Te • total electron production rate of trapped electrons 

• 
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Fig. 2-2 Electron Energy Loss Rate Per Molecule. Calculated from 
Eq. 2.4 using the rate coefficients tabulated in Ref. 4 and smoothed. 
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Table 2-1 

T e Electron Energy 

Loss Rate 
(V) (10-9 Vcm3/sec) 

o 0.01 
0.25 0.01 
0.5 0.18 
0.75 0.47 
1 0.75 
1.25 1.06 
1.5 1.37 
1.75 1.83 
2 2.46 
2.25 3.5 
2.5 4.7 
2.75 6.8 
3 8.5 
3.25 12.5 
3.5 15.8 
3.75 19.8 
4 24.5 
4.25 29.6 
4.5 34.9 
4.75 40.9 
5 47 
5.25 53.5 
5.5 60.4 
5.75 68.8 
6 78 
6.25 85.2 
6.5 93.7 
6.75 103 
7 111 
7.25 120 
7.5 128 
7.75 138 
8 148 
8.25 157 
8.5 167 
8.75 176 
9 185 
9.25 194 
9.5 205 
9.75 212 
10 223 



(2.6) 

e where again dxdy is to be taken over the beam area, and Os is the 

cross section for electron production by beam species s. 

4. Coulomb Heating 

The energy source of all the above-energy drains from the 

electrons is presumed to be beam-ion Coulomb collisions with the 

electrons. The spatial rate of energy transfor from beam species s to 

the electrons is related to the temporal rate by 

dEs = __ 1 dEs 
dz v dt 

s 

where v is the speed of beam 

dEs _ --dz 

s 

xs/ e = m ~ ~ 
m T s 

'feu) = _2_ 
oF 

2 4 
41fq se ne lnA 

m l e s 

e 
and 

species s. With 

(2.7) 

9 where qs is the charge state (± 1, or 0). For even the slowest of 
. + s/e our beam particles (those that begln as H3), x > 2 (for our 

standard parameters of Eb = 25 kV and Te = 1.8 V), so that the term in 

parentheses is very nearly unity. Then 

::: 41fneq~e4lnA 

me v~ 
(2.8) 
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Since the only species dependence is through v~ = 2Es/ms 

charged beam particles that originate from, say, H; have 

dEs/dz. This is because when H;(Or H~) dissociates, each 

2 
and qs' all 

the same 

of the two 

products receives half of the original energy; thus Es/ms is 

"conserved" for our example, when m = 2m becomes 2 masses of m = m . 
p p 

We define Coulomb power to be the volume integrated power 

transferred to the electrons by Coulomb collisions with beam ions. 

The Coulomb power heating the electrons is thus the flux of beam 

particles (n v ) times dE /dz, integrated over volume and summed over s s s 
s, 

411'e4tn).. 
m e 

2 L 
t qs I I 
s Ab 0 

ne"(x,y,z)ns(x,y,z)vs ....;;;.. ___ ....;;;.. ____ __=_ dxdyd z 
2 

Vs 

We leave Vs in the numerator, since the particle flux n v is a 
5 S 

I 

(2.9) 

convenient variable (n v = ~ : I is the particle current of beam 
s s Ab s 

species s, with units of number/sec). 

The balance of power then would be expressed as 

We shall find in Chapter 5, Section A that PCoul is too small to 

account for all the power drains. We define the anomalous power 

required as 

(2.10) 

Panom = PTr + Pinel + PKE - PCoul (2.11) 

We shall find that this is supplied by 11, the proton beam particle 

current. So each proton loses 
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(2.12) 

C. Parametric Dependence of the Collisional Power Balance 

Let us examine the dependence of the four power terms upon beam 

current, gas density, and accelerating potential (I b, ng, Eb). 

1. Energy Exchange with the Potential Well 

Consider Eq. 2.3. It is linear in ng and linear in Ib through 

Insvs' The variation of Ptr with Eb is somewhat obscure. Examine 

the integral over nascent energy, 

(2.13) 

If En ~ ~p' as is generally the case (for our standard parameters, 

we have E = 11.4 V [see discussion below Eq. 2.1a] and measure ~ = n p 

15V), 

I = ~ - E 
t p n 

Recall that En ~ iEb~1 and assume ~p ~ Te; then 

PTr = gl(Te - g2 iEb ~i) Ibn9oe(Eb), 

(2.13a) 

(2.14) 

h d t t f t · lit and·e 
l'S ttle were gl an g2 are cons an s 0 propOF 10na y v cross 

section for production of electrons by the beam. 

2. Inelastic Collisional Losses 

The only dependence of Eq. 2.5 upon Eb is indirectly through ne by 

way of T (affects ion loss rate) and 0 for ion production. We then e 

conclude Pinel varies linearly with Ib (through production 
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n albn I {f) and quadratically with n (one n is already in the e 9 egg 

integrand - a second n comes from n albn I {f). Then 
9 e 9 e 

Pinel (2.15) 

where g3 is a constant of proportionality, and aion(E b) is the cross 

section for production of ions by the beam. 

3. Kinetic Energy Transported Out of the-Potential Well 

Eq. 2.6 varies linearly with lb through nsvs' slightly with Eb by 
e way of as' and linearly with ng. Thus, if En < .p' 

e 
PKE = g4nglbTe a (Eb) , (2.16) 

where g4 is a constant of proportionality. 

4. Coulomb Heating 

2 Eq. 2.9 varies as n lb/v e s 

P . 
Coul = g5 

12 aion(Eb) bng 

where g5 is a constant of proportionality. 

5. Resultant Parametric Dependence of T 
e 

Combining eq.'s 2.14-2.17 into Eq. 2.10 gives 

T , and find 
e 

(2.17) 
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Dividing by (gl + g4)I bn
9
oe , rearranging, and defining new 

proportionality constants yields 

reT ) e (2.18) 

Consider first the variation with Ib while holding Eb and ng 

fixed. In the limit where the last term in Eg. 2.18 is small (val-id 

for T < 1 eV [see Fig. 2-2]), we have 
e 

3/2 . -
Te - g9 ~ = glOI b· 

We have set g9 = g7 fEb and glO = g&/Eb· Restricting ourselves to 

sma 11 changes in T , we treat the {T term as a constant, and find e e 

T = gll(lb + ) 213 (2. 19) e g12 

where 213 ( 2 . 19a) g" = (glO) 

Consider now the variation of Eq. 2.18 with Eb, while holding Ib 
. ion e + and ng fixed. In Flg. 2-3 we plot 0 (Eb)/o (Eb) for H on an H2 

target. While the beam is not entirely H+, we take Fig. 2-3 to be 

representative of the ratio of ion to electron production wthich, as 

Fig. 2-3 shows, decreases with energy. The first term on the RHS (the 

Coulomb term) is decreasing with Eb. Then an upper bound for the 

variation of Te with Eb would be that found by taking the Coulomb term 

as a constant, 

T + g13 err 
e 

oion(E
b

) 

e 
o (E

b
) 

where we have defined new proportionality constants g13 and g'4· 

(2.20) 
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Fig. 2-3 Beam Energy Dependence of the Ratio of Cross Sections 
for the Production of Ions to that for Electrons. The ratio is greater 
than unity due to ion production by beam charge exchange (elec­
tron capture). 
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o. 

Instead of holding Ib constant, we could require Ib to follow the 

Child-Langmuir law while keeping the accelerating gap fixed, or Ib ~ 

E~/2 Then the Coulomb term in Eq. 2.18 is 

g6a iEb/Te aion(Eb}/ae(Eb}· This would not provide a stronger 

variation of Te with Eb than that of Eq. 2.20. Note that reTe} is a 

rapidly increasing function of T. The fastest increasing of T with e e 

Eb will occur while Te < 1 V, where reTe} is small. Then 

Te =.g7 ~ + g14 (2.21) 

Bear in mind that this is a very liberal upper bound on the variation 

of Te with Eb. Realistically, the gas cooling term i~ non-negligible 

and one would expect Te to vary more slowly with Eb'than the upper 

bound given by Eq. 2.21. 

Consider finally Eq. 2.18 while varying only n : 
g 

T!/2 915 + 916 ~ - 917 r(Te}n
9 

(2.22) 

This is a rather complicated expression, but clear1yT is a e 

decreasing function of n. How quickly T responds to n depends on 
g e 9 

the relative size of the terms in Eq. 2.22. In our plasma, the terms 

in Eq. 2.18, and hence Eq. 2.22, are all of similar size. T should e 

respond most quickly to changes in n when T > 1 volt, since the 
g e 

fractional increase of reT } is greatest for T > volt. e e 
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Chapter 3 

Electron Heating by 8eam Driven Plasma Oscillations 

A. Introduction 

We shall see in Experimental Results and Discussion, Section A 

that the classical power balance just detailed is not always adequate 

to explain the electron temperature we observe. In fact we find under 

some conditions that each beam ion must lose 36 V in addition to that 

lost by Coulomb collisions with the plasma electrons. In this chapter 

we explore the coupling of beam energy to plasma electrons by 

collective effects. 

The velocity distribution of the plasma (shown in Fi~. 3-1, 

neglecting plasma ions) is unstable. The neutralizer plasma is 

essentially magnetic field free (8 < 109 or r./a > 2, where r. and a , w , w 

are the ion gyroradius and the neutralizer radius, respectively). The 

only collective oscillations with phase velocities (v~) slow enough to 

interact with the beam are the electrostatic modes - electron plasma 

and ion acoustic oscillations. 80th of these modes are unstable in 

the presence of the proton beam. The electron and beam velocity 

distributions are shown in Fig. 3-1. The phase velocity of the ion 

acoustic (I-A) mode (C = JT 1m.) is very much less than the beam s e, 

velocity (C s «vb)' Thus the only unstable I-A wavevectors are 

those at nearly right angles to the beam. This limits the spatial 

growth of these I-A waves to a few e-fo1dings as they cross the 

transverse dimension of the beam. The potential for increasing the 
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Fig.3-1 Velocity Distribution Functions. a) Both the electron and beam dist­
ribution functions are normalized to a peak of unity. b and c) The reduced 
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its contribution to the dielectric function. d) Same. The wave phase veloctiy 
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For all: beam energy = 25 kV; electron temperature = 1.8 V; R = 0.00001. 



transverse beam temperature is slight in our case. In systems of 

larger transverse dimension, this mode might bear consideration. We 

shall not discuss the I-A modes any further though, as (the electron 

thermal speed) v »C • leaving no mechanism for coupling I-A wave e s 

energy back into the electrons. 

The electron plasma mode (e-p), however, is a perfect vehicle for 

coupling beam energy into the plasma electrons. The largest amplitude 

waves will have wavevectors nearly parallel to the beam direction, due 

to the strong Landau damping experienced by waves propagating down the 

strong (relative to the axial gradient) radial density gradient. The 

phase velocity will be vb' which is a few times vee Thus these 

oscillations are slightly Landau damped - a mechanism that transfers 

the energy of oscillation to kinetic energy of the bulk electrons, 

even for linear oscillations. 

In the subsequent sections of this chapter we shall find the 

linear spatial g'rowth rate for e-p oscillations in the uniform cold 

beam approximation. We shall find that for our plasma sufficient 

coupling exists to support the observed electron temperature. We 

shall then address corrections for spatial gradients and beam 

"temperature" and show in Experimental Results and Discussion, Section 

B.l that the latter of these corrections give rise to a "threshold" 

for the instability. For the regime in which we have taken data, a 

dependence of Te « Eb appears. We shall also explore other regimes 

(E b > 50 kV) where there is reason to suspect that this dependence 

will break down. 
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B. Linear Spatial Growth Rate 

We consider the case of a cold uniform beam in a uniform plasma of 

warm electrons and cold ions. The dielectric function in this case is 

2 (0). 
E = 1 - 1 

2 

where (0)., (0) , and (o)b are the ion, 
1 e 

.~ 
respectively «(o)s = ~~); ve 

2 
«(0) - k - ~b) 

(3.1) 

electron, and beam plasma frequencies 

"~:: is the electron thermal speed 

(note we are implicity including Boltzmann's constant within T to 
e 

avoid confusion with the wavevector); and vb is the beam speed. As 

discussed in the introduction, the I-A mode is of little concern here, 

2 2 so we take (0) »(o)i. For our plasma (and typical of neutralizers 

for pos iti ve ion beams) 

R 
_ 2/ 2 = (o)b (o)e « 

Thus the last term in Eq. 3. 1 

unless 

2 «(o)-k-v ) _ _b 

(3.2) 

« 1 (3.3) 

(3.4) 

(the resonance condition). This is the case of beam particles moving 

along at the same speed as a point of constant phase travels in the 

beam direction; i.e., the beam is stationary in the wave frame. In 

view of Eq. 3.3, we expand the solution of E = a around 

E _ 
P 
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The solution to this unperturbed plasma dielectric equation is 

2 2 2 2 
W = we + 3k ve ' (3.5) 

the usual dispersion relation for warm electron plasma oscillations. 

We now apply the resonance condition, Eq. 3.4, to Eq. 3.5: 

to find the resonant wavevector, 

(3.6) 

where e is the angle between the wavevector k and the beam: k will be 
_0 0 

the resonant wavelength. We now solve E(w,k) = Ep + Eb = 0, 

expanding around k , o 

E(w=k ·V , k + ok) = 0 
_0 _b 0 

But Ep(wo,ko) = 0, so 

ok = _ Eb ( w 0 ' k +0 k ) 

Now Eb(w ,k ) = o 0 

and aEp 
ak 

= 

aE I af w ,k 
o 0 

Thus, we find, after arranging factors conveniently, 
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(3.7) 

h ~ - 0 2e/ 2 were, = vb cos ve For Eb = 25 kV, mb as the proton mass, and 

with T expressed in volts, we can numerically express 
e 

~ =_ 28 2e/T , cos e 

The three solutions to eq. 3.7 are 

c,,)e 
v 

e 

(3.8) 

The middle root is real and 6f no interest to us. The first root is 

evanescent. The third root is a spatially growing mode. 

3 (R J 4F.-63 )1/3 Im(ok) = - _ 
2 

c,,) 
~ 
v 

e 

.(~ (F.-~ y/3 c,,) 
R (ok) = .5 ~ e ve 

In the wave frame, the beam velocity is 

I 
c,,) 

vb == vbcose - v = vbcose - 0 
41 k + R (ok) o e 

vbcose 
:::: R (ok) 

k e 
0 

(3.9) 

(3.10) 

(3.11) 

Thus the beam is traveling slightly faster than the wave. Beam ions 

are then bunched and slowed down by the wave potential. 

We use Eq. 3.8 in Eq. 3.6 to find 

k A = J 1 o 0 ~-3 
(3.12) 

This helps us to calculate the resonant wavelength and spatial growth 

rate in Table 3-1. The plasma parameters of the second line are those 

requiring the largest anomalous power input; therefore that 1m (ok) 

will be used when calculating the anomalous power input. 
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TABLE 3-1 

Eb = 25 kV. ne = 1011fcm
3

• nb = 

T e 
1 eV 

1.8 eV 0.28 

9 3 
1.7-10 fcm • e = 0 

~o 

O.7mm 

0.7mm 2.0fcm 

These are the fastest growing roots. One can also solve the Quartic 

equation that results from Eq. 3.1 (neglecting the plasma ion term). 

One finds the same growing and evanescent modes as well as two stable 

modes. See Fig. 3-2 (these curves represent complex w rather than 

complex k). 

c. Field Energy Required 

We find in Experimental Results and Discussion. Section A.5. that 

each ~eam proton must anomalously lose ~E = 36 V during its anom 
lifetime. This energy is that required for the power balance in our 

11 3 standard case: Eb = 25 kV. ne = 10 fcm. Pgas = 2.8 mT - and thus 

represents an upper bound for beam energy loss. This energy must 

first be transferred to the fluctuating field. The field energy 

density required to support the power balance is then 

Wreq = nb ~Eanom (3.13) 

For our standard case. W = 6_1010Vfcm3. req 

To find an upper bound on the distance through which this 

osc1.11ation must grow. we assume the noise level at Z=O is thermal 
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= L 
Vol p 

where Vol is the volume of the plasma. Then the field energy density 
p 

T 
W(z) = ....L 

Vol 
p 

2Im(&k)z e . 

For Zreq such that W(zreq) = Wreq , we find 

= 1 
2Im(&k) 

= 8 cm for our standard case. 

(3.14) 

(3.15) 

Thus if no process limits wave growth to a distance less than z req 
(8 cm), enough power can be taken from the beam to support the Te's 

(1.8 eV @ Eb = 25 kV) we observe (or equivalently, the Te scaling law 

we derive later in Sec. E.l). 

There are two constraints regarding W . req' 
i. If waves are to behave linearly, 

W < n T req e e 

ii. To avoid beam trapping .by the oscillating potential," 

D. Axial Density Gradient 

(3.16) 

(3.17) 

As the wave propagates down the neutralizer, the local plasma 

density drops. This axial decrease in ne results from the neutral gas 

pressure gradient associated with the gas flow, and from the decrease 

in the effective cross section for ion production as the beam becomes 

neutralized through charge exchange (see Fig. C-la). The latter 

effect will certainly dominate for Z < 10 cm, but two effects will 
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mediate this. Close to the accelerator, where the gas feeds from and 

expands to fill the neutralizer, the gas density is flatter than l-f. 

Secondly. the proximity of a wall at z=O with ~ =0 causes axial ion w 

loss that supplements the radial ion loss (radial loss dominates for 

z>20 cm). For these reasons, and seeking a simple quantitative 

expression, we take n to have the same axial scaling as the gas e 

density. 

z 
ne(z} = ne(z=O} • (1 - L) . 

As a final argument in favor of Eq. 3.18, we note that 

(3.18) 

z = 8 cm. A wave beginning at thermal level at z = 30 would have req 
extracted enough energy by z = 40 to support the power balance. So 

even if there is a steeper n gradient for z < 10 cm, limiting wave e 
growth there, there is a flatter ne profile for z > 30 cm that can 

support the wave growth. 

We see that w is a decreasing function of z. As the wave . e 

propagates downstream, the local res6nant frequency decreases. The 

wave frequency is then higher than the local resonant frequency. 

Eventually wave growth stops. We show in Appendix F that growth stops 

after a 5% decrease in w , corresponding to a 10% decrease in n . e e 

Eq. 3.18 suggests that this change will take approximately 10 cm 

(L = 100 cm). This is slightly larger than z found in Section C, req 
so we conclude that the wave can grow to sufficient amplitude to 

support the electron temperature we observe. 

E. Steady-State Amplitude (Saturation) 

We have been discussing a spatially growing mode. As there is a 

("soft") boundary where the beam enters the plasma (z=O), it seems 
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appropriate to consider this as a boundary value problem. (The 

solutions to which are real w, complex k). However, there is no true 

constraint on the wave amplitude at z=O, only that the beam is 

unmodulated. The wave amplitude will be of thermal level or higher. 

Beam modulation may proceed at a larger spatial rate than that given 

by Eq. 3.9 if W(z=O) > T IVol. Then z becomes an upper bound for e req 
distance over which the beam modulation grows. 

The steady-state picture is then one in which W(z) begins at some 

value (of at least the thermal level), increases with z, and 

eventually damps back to the thermal level. This latter spatial 

damping is inevitable as the waves (resonant with the beam in one 

region) propagate into regions of lower ne - where the value of kAo 

eventually increases beyond 0.3 or so an~ Landau damping dominates. 

This puts the oscillating energy directly into the bulk electron 

distribution even if the wave remains linear. 

There are two very different mechanisms for achieving this steady 

state, and they have very different consequences. 

1. Quenching by thermal electrons 

In the absence, or insignificance, of inelastic electron energy 

losses the electrons have very little" inertia (or effective heat 

capacity) relative to the beam. Thus the beam is not significantly 

perturbed by the power removed by the wave and ultimately delivered to 

the electrons. In this steady-state scenario, the electrons have been 

heated enough by the unstable waves that the Landau damping by the 

bulk electrons balances the beam-plasma growth rate. W(z) remains 

constant in time, but the beam continues tO,lose energy as it passes 
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. . 

through the oscillating field. One can think of this as an initial 

value problem [W(z,t=O) is specified] and set YL (temporal Landau 

damping rate) equal to 1m(owb) (temporal beam-plasma growth rate), 

since steady-state potentials are the same as their initial value. 

The Landau damping rate is12 

-3/2 1 3 
e (k>.. ) 

o 
2 

exp - 1 (_1_) 
2 k>..O 

(3.19) 

For the initial value problem one can follow a derivation similar 

to that of section B, solving for real k, complex w. The result is 

= 1 (Ii 2 2 
(3.20) 

These are rates tabulated in Table 3-2 and plotted in Fig. 3-3. 

Take note that 1m (owb) in Table 3-2 assumes that the wave is 
we 

resonant, kovb = w J 1 e 
2 2 

+ 3 ko >"0' So, reading down Table 3-2, think 

of varying ko>"O by changing Te , as calculated from Eq. 3.12 in the 

second column. We see that 1m(owb) = YL when Te is such that 

ko>"d : 0.3. In Table 3-1 we calculated ko>"O = 0.28 for our standard 

case, in excellent agreement . 
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Table 3-2 

R = 3 - 10-5 

0(,) 
kOAO T YL/(,)e Im(_b) 

e (,)e 

0.1 0.28 V 2.7_10-20 2.1_10-2 

0.15 0.60 9.3-10-9 II 

0.2 1.02 6.5-10-5 II 

0.25 1. 50 3.0-10-3 II 

0.3 2.02 2.0-10-2 II 

0.35 2.56 5.5-1.0-2 II 

0.4 3.09 9.6-10-2 II 

The above arguments were made for fixed R. If we were to increase 

Ib and hence possibly R (assuming that ne was unchanged), Im(o(,)b) only 

var1·es as Rl/3. Itt h ·d· t· ·th k A n con r~s , YL sows rap1 var1a 10n W1 OAO. 

significant change in R (say 100%) makes a slight « 30%) change in 

O(,)b· Because of the exponential nature of YL, the 30% change in YL 
required to maintain the steady state is accommodated by a temperature 

change ~Te < .1 V. This suggests that for a wide variety of 

operating conditions, Te will adjust itself so that kOAO ~ 0.3. 

Since k o 
(,) 

~ ~ , a linear dependence of T upon Eb results from 
vb e 

41 



w v 
0.3 = ko~D :~ ~D = ~ or v = .3 v 

vb vb e b 

Then 

m 
T = .18 ~ Eb (3.21) 
e mb 

Note that this expression is independent of n and therefore also e 
independent of the neutral gas pressure, as well as independent of lb' 

In order to observe this scaling, the constraints laid out in 

Section C must be met - the anomalous power cannot exceed the power 

available from the wave; W is subject to the restraints of Eq. 3.16 

and Eq. 3.17. 

One can think of Eq. 3.21 as T clamping by negative feedback. If e 
T is too low, temporal wave growth is unrestrained and more power is e 

taken from the beam, raising T. Conversely, if T is too high, the e e 
wave is damped and less power is taken from the beam, lowering T . 

e 

2. Quenching 8y Beam Velocity Spreading 

If the electron collisional power loss is too great to allow T e 
build up to a level so that YL = Im(ow), wave growth may be limited 

by an increase in the beam temperature, Tb. In this scenario both 

to 

the 

electrOns and beam ions are heated by the beam-plasma instability, but 

the spread in ion energy stabalizes the system while the electrons are 

still too cold to have a stabilizing effect. 

For wave growth given by Eq. 3.20, the slip between the wave phase 

velocity and Vb is 
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V = R (
6w

b) vb ~ -21 (R
2
}1/3 , vb slip e ;;;- " (3.22) 

e 

If vs1ip exceeds the spread in beam ve10cties, ~vb' all of the beam 

ions contribute to wave growth. On the other hand, if ~vb exceeds 

v 1. , some beam ions are moving slower than the wave and can actually 
s lP 

damp it. The growth rate is then smaller than that given by Eq. 3.20. 

as all the beam ions no longer act in concert. For ~vb> vs1ip ' the 

cold-beam susceptibility in Eq. 3.1 is replaced by its warm-beam 

counterpart. The reso~aht instability is replaced by the kinetic 
13 instability. with greatly reduced growth rates. 

Although these kinetic growth rates do not vanish immediately for 

~vb > vs1ip ' for our purposes here. we shall assume the growth rate 

to be small enough so as to effectively stop further energy loss from, 

the beam. Power transfer from the beam to the plasma electrons via 

this electrostatic instability then stops when 

.. (R}1/3 
uV b > 2 vb (3.23) 

The maximum kinetic energy loss of a beam ion is then 

E = (R} 1 /3 
~ max 2 (3.24) 

which is typically a few % of Eb. Experimental data consistent with 

14 beam energy losses of a few percent have been observed by others. 

The beam temperature is increased to 
_ 1 2 1 R 2/3 

Tb = 2 mb(~vb) = 4 (2} Eb (3.25) 

The power available to heat the electrons is then 

P = I ~E max b max 

(3.26) 
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This corresponds to a wave energy density of 

Wmax = {"[} 1/3 
nb 2 Eb ' (3.27) 

which is observed at a distance 

z = 1 tn ( w~:x VOl p) max 2 1m (ok) 

= 1 tn ( nb~:VOlp <t)1I3) 
2 1m (ok) 

(3.28) 

~ 9 cm for our standard case. 

It should come as no surprise that W is the same as Eq. 3.17, max 

the energy density at which the wave saturates by trapping the beam 

ions. In that case, the trapping potential in the wave frame is just 

that which overcomes the beam kinetic energy in the wave frame 

1 2 
(2" mb v s 1 i p) . 

The discussion of saturation by beam thermal spreading is 

therefore simplified. It makes no difference whether the plasma is 

axially uniform, where the wave is monochromatic and saturates by 

trapping, or the plasma has an axial density gradient and a spectrum 

of wave frequencies is excited. In the latter case, stabilization 

occurs when the beam velocity distribution has been spread beyond 

vslip ' all parts of the excited spectrum contributing to the beam1s 

energy loss and spread. Both saturation mechanisms lead to Eq. 3.26 

for P max 

It should be noted that while Eq. 3.26 assumes there is no 

continued growth beyond the point where flV > v 1. , thi s is only an s , p 

approximation. An order of magnitude expression for the kinetic 
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(warm-beam) growth rate is 13 

Yk . := R ( vb )2 (a)e 
1n 6V

b 

where Pkin is some assumed power> Pmax ' the subscript indicating 

that this power is only available by wave growth proceeding at 

Ykin. Thus, while the kinetic and cold-beam growth rates are roughly 

equal when 6Vb := vslip ' at twice this spread in vb~ Ykin is reduced 

by a factor of four. So we see that increasing the power into the 

plasma beyond Pmax of Eq. 3.26 requires quadratically longer lengths 

through the plasma. To properly acc6unt for this, one would have to 

follow the wave growth and beam modulation numerically. Our goal here 

is to make some quick estimates as to what happens when the electron 

collisional drain negates the scaling derived in Section 1 above. 

Hence we take Eq. 3.26 as an upper bound. 

3. Unquenched Systems 

There is a third class of neutralizers that has yet to be 

mentioned. These would be neutralizers so short that the beam 

modulation is still undergoing rapid spatial growth as the beam exits 

the neutralizer. In this case the wave energy density near the exit 

of the neutralizer is 

W(L) 
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The power delivered to the plasma is 

P = A v Te e2 Im (&k)L 
L b g Vol 

(3.29) 

where v is the wave group velocity. 
g 

This power would be balanced against the electron collisional 

losses. We have assumed that there is some region of falling density 

near the exit where the phase velocity drops toward the electron 

thermal speed and that all of the energy flux is delivered to the 

electrons. Also implicit in Eq. 3.29 is the assumption that the 

volume of the plasma that is participating in the oscillation is 

limited to that occupied by the beam. This is reasonable in view of 

the typical drop in electron density at the edge of the beam (_e- l ). 

It seems unlikely that any such neutralizers exist, however. For 

example, in Eq. 3.28 we calculate that by z = 9cm t wave growth in max 
our system wi 11 be 1 imited by thermal spreadi ng of the beam. Si nce 

zmax < l/10, we certainly don't expect significant spatial growth 

near the exit of the neutralizer. Due to the insensitivity of Im(ok) 

and henc~ of z to R, we anticipate L »z for all positive ion max max 
beam neutralizers. Therefore we would expect to see the instability 

quenched: quenched by electrons, where we observe the dependence 

~ Eb; or quenched by beam thermal spreading, where one finds Te by 

T 
e 

completing the power balance using P = P given by Eq. 3.26. anom max' 
The latter topic will be the subject of the next section. 

F. Power Balance in the High Temperature Regime 

The electron temperature given by Eq. 3.21, Te = .18 me/mb Eb, is 

only valid if the power required of the beam does not exceed that 
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available from the beam-plasma instability (Eq. 3.26). This 

expression is therefore limited to low temperature (T < 4 V) or low 
e 

gas pressure (P < 1 mTorr) cases. Otherwise the power available gas 
to the plasma will be limited by Eq. 3.26. We refer to this as the 

high temperature regime. We make the distinction of temperature 

rather than beam energy because the crossover between regimes will 

depend on parameters other than beam energy, such as gas pressure, 

system size, etc. Our aim is to provide the reader with a useful tool 

for estimating plasma conditions in a neutralizer. To arrive at a 

workable algorithm, some simplifying assumptions are inevitable. 

We take an aside here to remind the reader that our system 

operates in the low temperature regime. We have shown in Section 0 

that sufficient wave-coupling of beam power to the electrons exists so 

that the instability is saturated by resonant electrons, rather than 

by beam velocity spreading. At the beam energies available on our 

system (Eb < 34 kV), and the correspondingly low T 's (T < 3 V), e e 
the low inertia (or alternately, low heat capacity) of the electrons 

allows them to be easily warmed until there are enough resonant 

electrons to saturate the instability. The steady-state description 

of the plasma in this case is simple - Te is determined by Eb, 

independent of the other system variables and the plasma density is 

found by requiring that the radial ion flow at the beam edge equal the 

ion production rate within the beam. The plasma density is therefore 

a function of Te , Eb, gas pressure, and system dimensions: but since 

Te is determined by Eq. 3.21, Te = .18 me/mb Eb, all of these 

variables are known and the plasma density can be calculated in a 
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straightforward manner. The self-consistent description of the beam 

is made trivial by the insensitivity of Te to all variables except Eb. 

In the high temperature regime, described in this and the 

following section, no such simplification occurs. Instead, T is e 
depressed by inelastic collisions with gas molecules - the electrons 

can no longer be warmed until there are enough resonant electrons to 

saturate the beam-plasma instability. One might envision the 

inelastic collisions as effectively increasing the heat capacity of 

the electrons beyond that of the beam - thus the instability 

saturates, instead, by spreading the beam velocity distribution, the 

distribution with the lower effective heat capacity. As a result, we 

must analyze self-tonsistently the steady-state condition of the 

plasma. 

As we have no experimental data in the high temperature regime, 

this section and the following section are untested descriptions of 

the steady-state plasma, in which we self-consistently solve both the 

particla balance and power balance. We begin by evaluating the 

particle balance to find the plasma density. 

1. Plasma Production and Electron Density 

We first seek an approximation for the electron density, allowing 

for ion production by plasma electrons, as well as by beam particles. 

The number of ions produced in a volume of Ab . dz inside the beam is 

sion Ab dz + Ab} dz, (3.30) = ng(Ib 0cx + Iboion + ne<ov>ion 

h Sion. th· d· ( ) d 1+· h f were 1S e 10n pro uctlon source rate an b lS t e part 0 

the beam current that has not yet charge- exchanged. The first of the 
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simplifying measures appears in Eq. 3.30 - we have dropped the 14 beam 

species in favor of a two species model. 

These ions accelerate towards the wall under the influence of the 

ambipolar potential. This problem has been solved in slab 

15 16 . 1 16 geometry , and ln cylindrical geometry.' From these solutions 

we see there is typically a potential drop of order Te across the 

production region. 

When the electron production term in Eq. 3.30 is small compared to 

the beam term, we can-assume there is a variation of potential across 

the beam of Te; 6tb = Te' In general, though, the electron 

contribution should be included, and may even dominate. As an 

estimate of the potential change across the beam in the general case, 

we take 

= # ions produced inside beam < 1 
# ions produced inside whole plasma 

1+ a + Ib a. + n <aV>. Ab = b cx lon e lon 
1+ 
b acx + lb a ion + n <aV>-e lon Ap 

Unfortunately, this expression is a function of n and T , and, e e 

through + also a function of and z. lb' n g 

The ion radial vel oc ity at the beam edge (a b) is 

v. = J 2l>4>b 
1 m_ 

1 

where m. is the mass of the plasma ions. Balancing the plasma 
1 

(3.31) 

production inside Abodz with the radial ion flux out of the bounding 

surface Sbodz, where Sb is the perimeter of the beam, gives the 
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electron density at the beam edge, 

(1+ I A } = __ ~b __ o~c~x~+ __ b~o~i~o~n~+_n~e~<_o_v_>~i~o~n~b~_n~g' (3.32) 

J 264>b 
mi 

where we assume quasineutrality and require the use Eq. 3.31 for 

64>b. In general, the first two terms in the numerator should be· 

replaced by the sum over all beam constituents, as has beeh done in 

Appendix C. Then Eq. 3.32 would hold·at any axial position, provided 

the production terms are evaluated at that position. For the sake of 

simplicity, we shall restrict ourselves to Eb > 50 kV where 

I~/I~ > 50%.17 Thus we shall simplify Eq. 3.32 to 

{ I b ( 0 + O. ) + n <ov>. Ab } n cx ,on e ,on g 

J 264>b S, 
m. b , 

(3.33) 

Note that plasma production by electrons increases ne(a b) in two 

ways: 1) by increasing the total production rate and 2) by decreasing 

64>b/Te (see Eq. 3.31), and hence the ion loss speed. 

For r > ab, we find nCr) in the steady-state by continuity, 

v·(nv) = Sion (3.34) 

dn. Sion or 1 nv • dS = 1 -' dV , 
S - Vol dt 

(3.35) 

where Vol is inside the bounding surface S. When sion is dominated by 

beam production, we take sion = 0 outside the beam. For cylindrical 
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geometry, the flux through any cylindrical surface of r > ab is 

constant. The outward flowing ions are already traveling at the ion 

acoustic speed (6~b = Te), so we assume vi is approximately 

constant. Then 

a 
n (r) = n (a

b
) -R 

e e r (3.36) 

When plasma production is beam-d6minated, the density profile is 

as sketched in Fig. 3-4a. The density falls to n (o)/e at r = ab, . e 
then falls as l/r to aw. 

When plasma production is mostly by e1ectrons',6~b « Te , an~ 

the T potential drop is acro~s the whole p1asma~ Fig. 3-4c is a 
e 

sketch of n (r) in this case. We approximate n as uniform. 
e e 

When plasma production by beam and plasma are roughly equal, 

6~b < Te , as suggested by Eq. 3.31. Then ne(ab»ne(o)/e. Also, 

because of the local plasma production for r > ab, the density no 

longer falls as l/r. One might imagine the density would be a 

superposition of the previous two cases, with n (0) of each scaled to e 

the respective fraction of total plasma production. Fig. 3-4b is a 

sketch of n (r) for this case. e 
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Fig. 3-4 Plasma (or electron) Density Sketched as a Function of Radius. 
a) Plasma production is beam-dominated. b) Plasma production is 
approximately shared by plasma electrons and beam particles. 
c) Plasma production is dominated by electrons. 
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2. Power Balance 

The power lost by electron-gas collisions is 

Pinel(Te,ng) = 6L i ng(z) ne(x,y,z) reTe) dx dx dz 
p 

(3.37) 

Recognizing this as the biggest power loss for Te > 3-4 eV, we 

ignore the T of kinetiC energy that each electron carries out of the e 
wall (in two velocity components parallel to the wall), the trapped 

energy (~ - EN)' and the power transfer of Coulomb collisions. 

Consider the integration over the plasma area in Eq. 3.37, 

11 _ I n (x,y,z) dxdy 
A e 

p 

For beam-dominated plasma produ~tion in cylindrical geometry, we can 

approximate ne(r < ab) = ne(o) qnd use Eq. 3.36 for ne(r > ab): 

Il,b = ne(O,z) Ab + 2~ "e(ab,z)(abaw - a~) 

subscript b on 1l,b is a reminder that this calculation is valid for 

beam production only. 

Now consider the axial integration of Eq. 3.37, 

Recalling our restriction to Eb > 50 kV, we have been and shall 

continue to neglect the axial evolution of the beam. With this in 

mind, using Eq. 3.33 and 3.38, we see that the remaining axial 
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dependence to be integrated in 12 is 

13 = bL n~(z) dz 

L n! (0) 

3 

Then with the above in Eq. 3.37, 

(3.39) 

where we have included the electronic plasma-production term with 

, - ne<ov>ion Ab 

1b(ocx + °ion) 
(3.40) 

We see that, is the ratio of electronic plasma-production to beam 

plasma-produttion. Taking' care to evaluate a.b from Eq. 3.31 for, 

> 0, E~~ 3.39 might come close to predicting P. 1 up to , = 1. For 1ne 
, > 1, Eq. 3.39 would certainly underestimate P. l' falling short 1ne 

in 11 for r > abo 

Finally, the power balance in this high temperature, beam-

dominated plasma production case is found by equating P. 1 of Eq. 1ne 
3.39 with P of Eq. 3.26. Te is then found to be that which anom 
satisfies 

~
. 

r(T) _1_ = 
e 2&. 2a 

+ _b_ A)(o + o. )(1 
a p ex 10n (3.41) 
w 
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Eq. 3.26 is an upper bound for the power available. If we find T e 
from Eq. 3.41 to be greater than that of Eq. 3.21, Te will be given by 

the lower of the two upper bounds, Eq. 3.21. 

There are some noteworthy points to Eq. 3.41: 1) As long as 

, « 1 (then R is independent of Ib) Te is independent of Ib, just as 

before. This is because both the beam power available and the plasma 

power consumption (<< density, and hence, « plasma production) are 

proportional to lb. 2) No longer is Te independent of ng. Strong 

dependence upon n as well as upon system dimensions is apparent. 3) 
g 

Unless, « 1, Eq. 3.41 is more complicated than it might seem, as 

, is a function of T and n. In this case an iterative solution is e e 

necessary. 

G. Power Balance When Production Is Dominated by Thermal Electrons 

This discussion is really an extension of the previous section, 

but it will point out sufficient differences to merit separation. We 

shall eventually show that for some neutralizers, plasma production 

dominated by electrons is feasible. For neutralizers consisting of 

metal vapor targets (Cs, Mg, ... ) this section may very well be 

appropriate. 

In the last section, we defined, as the ratio of electronic-to-

beam plasma production, and we are concerned here with' > 1. This 

also corresponds to the onset of neutralizer "burn-out". In a typical 

neutralizer the total flow of gas molecules is a few times Ib [in our 

neutralizer, for example, the gas flow is 

6 Torr Liter/sec = 2.2_1020 particles/sec and we have beam currents up 
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to 10 Amp or Ib (@ 10 Amp) = 6_1019 particles/sec], say Ig - 3Ib. 
Then if each beam proton charge exchanges once, one third of the gas 

flow is being pumped radially to the walls as charge exchange ions. 

There are also ions resulting from ionization carrying a gas flux to 

the wall. On the wall these ions recombine, but as neutrals they 

return from the wall with some small fraction of their - 10 V 

incident energy. This results in heating of the gas, which reduces 

the gas density and hence the neutralization efficiency of the 

neutralizer. If we compound this by having, > 1, a large fraction 

of Ig will be ionically pumped to the wall and thusly heated, thereby 

reducing ng. So we see that, > 1 is an indicator of impending 

neutralizer burn-out. 

The plasma electrons do not heat the gas directly, because of 

their low mass. By ionization, the electrons can heat the gas 

indirectly, as discussed above. Also, plasma ions can heat the gas 

directly, as they have mass· similar to that of the neutral gas. This 

collisional gas heating by the plasma ions ;s of a magnitude similar 

to the heating by ionic wall recombination discussed above, as we 

shall now show. The gas molecular cross sections are of order 

-15 2 10 cm· for plasma ions with energy of a few volts. Our gas density 

14 -3 is of order 10 cm . Ions tranverse approximately 10 cm of neutral 

gas before reaching the wall, and thus make on the order of one 

collision with a gas molecule. To the extent that the kinetic energy 

transferred in such collisions is similar to the kinetic energy of 

neutrals returning from a wall recombination event, gas heating by 

these two processes will be similar. 
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In a functional neutralizer, each beam ion makes approximately one 

charge exchanging collision, 

n a L = 1 g cx (3.42) 

For simplicity we assume an axially uniform system. Equating the 

integrated ion flux at the beam edge to the number of ions 

generated/sec, 

,we find 

ni 

.... ; 

= (acx + a i ) Ib ~g (1 + C) 
211'a b vi 

(3.43) 

" 

For beams of non-circular cross section, replace 211' ab with Sb' With 

2 
Ib = nbvb 1I'ab and Eq. 3.42, 

n. (a + a.) vb a 
-' = cx , l(l + C} 
nb a v. 2 L cx , 

Using this in Eq. 3.40, we find 

-'-= 
<aV>. ab , on 

1 + C a v. 2 L cx , 
Then C » 1 when Te is such that (using Vi = 10

6 
i2Te/mi' if Te 

units are V and m. units are A.U.) , 
<aV>ion 

(3.44) 

(3.45) 

(3.46) 

It may at first seem odd to find C » 1 from an expression where 

by appearance it seems to have been treated as a small parameter. In 

fact the only violation here is the assumption of o~b - Te , when 

that potential drop should appear across the whole plasma. This is 
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remedied in Eq. 3.47. Typical neutralizers have L/ab > 10. Let us 

evaluate Eq. 3.46 for our neutralizer at Eb = 25 kV. We have 

L = 100 em, acx 

<av>ion 

~Te(V) 

= 

= 

-16 2 5·10 em, ab = 3.5 em, and mi = 2 A.U.: 

2 • 10
8 

5 - 10-
16 = 3. 10-8cm3/sec 

3.5 

Note that the units of T disappeared in the numerical expression of 
e 

Eq. 3.46. This ionization rate is greater than that at T = 10 V. e 

The upper bound for T given by Eq. 3.21 in this case is 2.5 V. So at 
e 

Eb = 25 kV, it is not possible to have, » 1. 

Consider the criterion of Eq~ 3.46 for our system operating at 

100 kV. Now acx - 3 • 10-17 cm2, so plasma production is dominated 

by electronic ionization when 

<aV>. 
10n = 2_108 

3.5 = 

which is satisfied for T > 9 V. This T is below the upper bound of 
e e 

Eq. 3.21 for Eb = 100 kV, so we must assume electron-dominated plasma 

production is a possibility, although we need to determine if P is anom 
large enough to support this. 

Bear in mind that a number of assumptions have been made along the 

way to this concern over burn-out. We have assumed optimum line 

density of n (Eq. 3.42). We have taken Eq. 3.21 as an upper bound g 

for T ; now let us see if the power balance will allow T to be that e e 

high. We begin by assuming, » 1, then shall need to verify 

whether that is indeed the case. 

When, » 1, the particle balance no longer determines n. Let 
e 

us equate the flux of ions at the wall with the number of ions 
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generated inside (per unit length and per unit time): 

(3.47) 

where "e is the average of ne over the neutralizer area, and Sp and Ap 

are the perimeter and area of the plasma cross section, respectively. 

Both sides are proportional to ne. Using the usual Te potential drop 

across the production region, n. (a ) ~ n.(o)/e. Then , w , 

This equation actually determines T . e 

Sp 
2n A 

g P 

~ 1 
ngaw 

We rearrange to find, 

(3.48a) 

(3.48b) 

where the latter applies for cylindrical geometry. 
I 16 

Kino and Shaw 

have solved the particle balance in cylindrical geometry numerically 

using the fluid description. Their solution shows the same result, 

but with the numerator (1) from the RHS of Eq. 3.48b replaced by 0.8. 

It does at first appear odd that Te is determined by the gas density 

and system size. This is a consequence of particle producti~n as well 

as loss being proportional to the plasma density. The electron 

temperature is the sole variable responsible for maintaining equal 

production and loss rates. 

Eq. 3.48 therefore also defines an upper limit to T. When we e 

include the beam production term in the RHS of Eq. 3.47, the only way 
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to contain the production rate to a level that is not greater than the 

loss rate (LHS of Eq. 3.47) is for T to be less than that defined by 
e 

Eq. 3.47 (the = of Eq. 3.48 is replaced by <). Though this might 

appear to reduce the loss rate by limiting vi' thi sis not the case. 

The ion density increases to compensate. For our neutralizer, with 
14 3 ng = 10 /cm, aw = 10 cm, and mi = 2 mp' the ionization-limited 

temperature set by Eq. 3.48b is TIL = 7 V. e 

If we assume optimum gas density (Eq. 3.42) then Eq. 3.48 becomes 

(3.49a) 

(3.49b) 

which is a decreasing function of Eb. Because ° decreases beyond cx 
Eb - 30 kV, "T!L is a decreasing function of Eb. For example with 

-18 2 . TIL 3 25 V Eb = 150 kV (where 0cx = 7 • 10 cm) Eq. 3.49 requlres e = . 

for a = 10 cm. w 

With Eq. 3.48 or Eq. 3.49 determining Te' we are now in a position 

to complete the power balance. We balance the inelastic losses of 

Eq. 2.5 with Panom from Eq. 3.26: 

n n r(TIL) Vol = (R.} 1/3 IbEb e g e p 2 
(3.50) 

or 

n4/ 3 = ( nbme ) 1 /3 Ib Eb 
e 2 mb n r(T IL)Vol g e p 

(3.51) 
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. . 

Note that with plasma production dominated by thermal electrons, T is 
e 

determined by the particle balance and n is set by the power 
.e 

balance. In complete contrast, for beam-dominated production, n is 
e 

determined by the particle balance and Te satisfies the power 

balance. Of course in the beam-dominated case nand Tare self-e e 
consistent, but n plays only a weak role in the power balance. e 

We now ask if the power balance of Eq. 3.50 is consistent with the 

original assumption of ( » l. Solving Eq. 3.50 for nand" e 
inserting into Eq. 3.40, we find 

( = (R) 1/3 1 <av>ion Eb Ab (3.52a) 
2 n vol r( TIL) a + a. g p cx , 

e 

If we assume operation at optimum gas density, i.e. using Eq. 3.42, 

( = (R) 1/3 
2 

Ab 
A 

P 

<aV>. 4>,. ,on a cx 
a cx + a i 

We can calculate R by use of Eq. 3.44, thusly: 

m nb 
R == ~ 

mb ne 

acx 
a + a. cx , 

Using this in Eq. 3.52 and 

(1 + () 1/3 = ( me 2l 
mb ab 

Ab 
A p 

placing the 

acx 
a + ai cx 

<aV>. 4>. ,on , • 
r(T Il ) e 

_1_ 
1 + ( 

1 + ( factor 

~ T e ) 1/3 
2Eb 

Eb a 
• cx 

4>i 0 + o. ex , 

on the lHS, 

(3.52b) 

(3.53) 

(3.54) 
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........... 

To generalize Eq. 3.54 to beams of non-circular cross section, replace 

ab by 2Ab/Sb. 

We see from Fig. 3-5 that the third factor (fractional ionization 

power), 

n = <ov>ion ~i/r(Te) , 

lies in the range 0.1 to 0.4 for most of the electron te~peratures of 

interest, and for estimation purposes, we take it here as 1/4. At 

-16 2 -18 2 Eb = 150 kY, 0i - 10 . cm and 0cx ~ 7-10 cm, so , ~ 0.4. 

Recall tha! Eq. 3.54 was derived for optimum gas density and C » 

1. ·Finding , < 1 does not really invalidate our work. The real 

constraint to Eq. 3.54 is that some mechanism limits Te to below the 

value given by Eq. 3.21, so that P is correctly given by Eq. anom . 
3.26. We found that T!L in Eq. 3.49 was an upper bound. This is also 

an upper bound for C even when, < 1. Recall that following Eq. 

3.46 we found, »1. That was only a possibility, ignoring the 

powe.r requi rements; havi ng .now done the power balance, we fi nd that 

there is insufficient power available from the beam to support C » 

at Eb = 150 kY. What does C = 0.4 mean anyway? Since C is defined 

as the ratio of ions produced inside the beam by electrons to 

those produced by the beam,the impact on gas pumping by the beam is 

A 
~ - C. We have assumed n a L = 1 (i.e., the neutralizer still 
Ab g cx 

works), so , = 0.4 only means that the gas pumping by the beam is at 

A 
least ~ - 40% larger than might have been expected. To retain 

Ab 

A 
n a L = 1 could require ~ 

g cx Ab 
- Ip • 40% more gas flow than expected r; 

from the cold fill, but not a complete neutralizer burn-out. 
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Eq. 3.54 is plotted versus Eb in Fig. 3-6. Since the anomalous 

power available (see Eq. 3.26) increases linearly with Eb, it seems 

counter-intuitive that , could be a decreasing function of Eb· But 

let us look back again at Eq. 3.52 a and b. By using Eq. 3.50, the 

anomalous power balance, we have tied the electronic ionization rate 

in Eq. 3.52a to the fraction, n, of P available for ionization. anom 
The electronic ionization rate is therefore independent of ng, being 

fixed only by the power available. The beam ionization rate is, 

however, proportional to n. Because of our assumption of optimum gas 
g 

density, ng is an increasing function of energy. Quite simply, this 

latter energy dependence (seen as 0 1(0 + o. ) in Eq. 3.52b and cx cx 10n 
Eq. 3.54) dominates over the very weak Te (and hence, Eb) dependence 

of n. The ratio Ab/A appears because, is defined as the ratio of 
p . 

ions produced by electrons inside the beam to those produced by the 

beam itself. 

Note, however, that the volume-integrated rate of plasma 

production by electrons is an increasing function of beam energy; 

dxdydz 

Because of the rapid fall of 0 with energy, though, the neutralizer cx 
gas pressure increases with beam energy, so that beam production of 

plasma eventually outsteps electronic ionization. 

If one were to consider a metal vapor neutralizer (Cs or Mg), one 

might expect, » 1, since ~i is less than that for H2 and the ratio 

of rates taken as 1/4 when evaluating Eq. 3.54 will likely be more 
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near 1/2. 
18 Burn-out of Mg vapor targets has been observed, although 

the authors believed that the beam-to-electron Coulomb power transfer 

was sufficient to drive the ionization. 

H. Summary and Algorithm 

In Section B we calculated the linear growth rate, In Section C 

we determined the wave energy density required to support the T we e 

observe and found that this wave energy density is reached after the 

beam travels only 8 cm, a reasonable distance. We demonstrated in 

Section 0 that dn /dz will stop wave growth after 10 cm and thus e 
concluded that in our neutralizer Te could be supported at its 

anomalously high level by these beam-driven plasma oscillations. 

The first of three upper bounds upon T (Eq. 3.21) was found in e 
Section E.l when wave growth is stopped by electron heating. We shall 

call this T!at. The second and possibly more stringent upper bound is 

a result of beam velocity spreading, reached when P (Eq. 3.26) max 

< P , which in the high T limit we approximate as P,.nel (Eq. anom . e 
3.37). The formal expression of this is found in Section F, Eq. 

3.41. The unwelcome possibility of overwhelming ionization by thermal 

electrons was explored in Section G. We find Te fixed by Eq. 3.48 or 

3.49, but this also turns out to be a third upper bound on T even 
e 

when, < 1. With P as the driving power, we find a formal max 
expression for, in Eq. 3.54, which when evaluated suggests, < 4 

(see Fig. 3-6). We conclude then that some observable gas heating 

will occur, but that neutralizer burn-out is unlikely. 
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We now propose an algorithm for finding Te' ne , and, in any 

positive-ion neutralizer. 

1. 

2. 

3. 

4. 

5. 

6. 

1. 

8. 

9. 

10. 

Find T;at from Eq. 3.21; call this T 1. e, 

Evaluate Eq. 3.48 IL If TIL < TSat T = TIL. or 3.49 for T . e,l e e e' e 
Calculate n. from Eq. 3.43; assume , = 0 the first time through. , 
Calculate, from Eq. 3.40. 

Find the next guess for T from Eq. 3.41; call this T , .. e e,Next 
If T 2 > T l' P < P and the instability is quenched by e, e, anom max 
thermal electrons; Te = T;at, go to #9. 

If T has not converged, go to #3. e 
If T . > e,l 

TIL T = TIL. 
e' e e Go to #3; don't change T . e 

Calculate n. (=n ) 
1 e from Eq. 3.43. 

Calculate , from Eq. 3.40. 
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Chapter 4 

Experimental Apparatus 

Figure 4-1 is a sketch of the apparatus. Indicated schematically 

are the plasma source, accelerator, and neutralizer. All the 

diagnostics are inserted at the z=30 cm location, unless stated 

otherwise. 

A. Plasma Source 

The source of ions for the accelerator has been characterized in 

detail elsewhere. 19 We shall provide only a brief description. The 

plasma source is shown in Fig. 4-2. The 28 tungsten filaments forming 

the cathode are arranged around the perimeter of the 20-cm diameter by 

10-cm deep chamber. After the filaments are heated to emission 

temperature, the 12 ms duration arc voltage (50-120 V, repetition rate 

0.5 - 2 / min.) is applied between the ring anode and the cathode 

(filaments). The discharge produces a plasma of density a few times 

1012 /cm3 in the source gas (usually hydrogen) of pressure 

approximately 10 mTorr. The cylindrical source wall and extraction 

plate holding the beam-forming electrodes are floating. 

B. Accelerator 

The two gap accelerator (one accel and one decel, the latter to 

prevent backwards acceleration of electrons produced in the 

neutralizer) is of a type that has been described elsewhere20 and is 

sketched in Fig. 1-1 and Fig. 5-6. Th~e are 10 ribbon beamlets 
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forming a 1-cm x 1-cm beam. The source ions fall into the space 

between the 11 beam-forming electrodes and are accelerated by the 

electrostatic potential. The accelerating potential is switched on 

2 ms after the arc voltage, thus allowing the arc to stabilize first. 

This gives a beam of 10-ms duration. The accelerator and power 

supplies are capable of 40-kV operation. In the interest of 

reliability, data acquisition was restricted to 34 kV. 

c. Neutra 1 i zer 

The neutralizer for the beam is a 1-m long, 20-cm diameter, gas 

(usually hydrogen)-filled aluminum pipe. Vacuum (base pressure - few 

times 10-1 Torr) for the neutralizer, as well as the source, is 

provided by a diffusion pump. A 3000-liter vacuum vessel accommodates 

the 300 ms gas pulse that pre-fills the neutralizer (and source) 

before the beam is turned on. Diagnostic ports are available at z = 

7.5, 30, 45, and 60 cm. There are four ports separated azimuthally by 

gO deg. available at z = 30 cm, allowing simultaneous diagnostics at 

that axial position. 

D. Diagnostics 

1. Langmuir Probe 

The plasma density and electron temperature at z=30 cm are 

determined from the current-voltage characteristic, an example of 

which is shown in Fig. 4-3a, of a swept Langmuir probe. The short 

duration and low duty cycle of our beam, coupled with a low plasma 

density, require an external method for cleaning the probe collection 
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surface. The latter was found to be essential for the acquisition of 

reliable and reproducible data. In systems with longer pulse duration 

or higher plasma density, it is possible to clean the probe surface by 

drawing large currents to the probe. The probe was formed by a 

0.002-in. diameter (a = 0.0025 cm), 2.5-cm long loop of tungsten wire 
p . 

through which we could pass a current in order to clean by heating to 

incandescence. As long as the probe was cleaned this way within 1/2 

second before the beam was initiated, no ill effects associated with 

dirty probe surfaces were observed. Conversely, the probe could not 

be heated within 100 msec of the beam turn-on, since, in this still 

warm state, it could be driven emissive by the beam. The Oebye length 

in the plasma ranges from 30 to 10 ~m, so we are operating near the 
~ 

orbital motion limit of current collection (thick sheath), where 

Ao > ap ' 
21 

The probe bias is swept by the triggered circuit shown in 

Fig. 4-4. The voltage and current are recorded on a Nicolet Explorer 

Digital Oscilliscope and transferred to a Modcomp mainframe computer. 

The electron current (Ie) is found by subtracting the plasma ion and 

beam ion currents from the total probe current. The electron 

temperature is determined from the transition region slope of such an 

electron current characteristic (see Fig. 4-3c). The plasma 

potential, V , is determined from the inflection point of the electron 
p 

current characteristic. The second derivative (see Fig. 4-3b) is 

calculated by use of fast Fourier transforms, and the inflection point 

is then taken as the zero of this second derivative. 
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The electron density in the orbital-motion-limited (thick sheath) 

case can be inferred from a fit to the current in the electron 

saturation region, which satisfies, 

I = r2 
e ~m: e 

Aprobe ne e iv _ V + T 
~ P e 

21 
where Aprobe is the probe surface area. This has been done in 

previous work on this neutralizer,l but is not used here. We find 

that electron densities inferred from the electron current at V agree 
p 

within 10-20% of those inferred from the saturation region fits to the 

same current characteristic. We find the electron density with 

n.= t~T:. 
where I is the electron current when the probe is biased at V 21 

P p' 

2. Beam Dump Calorimeter 

The beam divergence was determined from Gaussian fits to the 

"response of a 4 by 8 array of thermistors buried in the beam dump 

calorimeter at z = 3 m. The beam dump calorimeter is shown in Fig. 

4-1. The size of the beam dump limits its useful range to beam 

divergence of less than 10 deg. Additionally, the neutralizer 

collimates parts of the beam to less than 6 deg, For divergence 

greater than this, the beam dump is only useful as a relative 

measure. Its advantage lies in its ability to determine beam 

divergence on a shot-by-shot basis. 
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3. Moveable Calorimeter for Beam Profiles 

To determine the radial profile of the beam at z = 30 cm, we 

employed a simple thermocouple to measure beam power deposition. A 

pair of copper and constantin wires (the thermocouple) was sandwiched 

together by folding over one end of the O.OlO-in. thick 0.25-cm2 

copper sheet (see Fig. 4-5). This calorimeter was then inserted at 

z = 30 cm to intercept the beam at the radial position of interest. 

The sensitivity is set by the sheet thickness, and time-integrated 

beam power deposition is recorded as the temperature rise of the 

thermocouple. The cooling time for the package depends upon the 

thermal mass of the sheet and the diameter and length of the copper 

wire that was mechanically attached to the 0.25-in. copper tube used 

to insert the thermocouple into the neutralizer . 
• 

This diagnostic is sensitive to the beam halo, which may miss the 

beam dump, and therefore gives more complete and accurate information 

about the beam divergence than the beam dump at large angles. 

However, data aquisition requires one beam pulse (shot) for each 

radial position. 

4. Fast Ion Gauge 

Neutral pressure is measured by use of an ionization gauge, driven 

with a fast feedback loop in the D.C. filament circuit that keeps 

electron emission constant. The time response of this gauge is slowed 

to -10 ms by the right-angle tube and fine wire mesh hiding it from 

the plasma electrons. This presents no difficulty for us, since the 

gas pulse has reached steady state by 20 ms and the beam is turned on 
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200 ms later. We are not in a position to report evolution of the gas 

pressure during the beam pulse itself, as, despite our efforts, the 

ion collector current responded to the presence of the beam and the 

neutralizer plasma. 

5. Electrostatic Fluctuation Probe 

In Fig. 4-6 and Fig. 4-7 we show the probe employed to detect 

electrostatic plasma oscillations. '. As our plasma frequency is quite 

high (2-3 6Hz), the 1 em2 area circular disk probe was mounted 

directly to the center conductor of a short piece (20 em) of 0.141-in. 

o.d. copper clad, semi-rigid, SO Q co-ax. This was connected to 

double-shielded 50-Q flexible co-ax. After passing through an 

impedance-matched D.C. block, the signal enters an H.P. 8441A 

Preselector (see Fig. 4-7). The preselector is a swept bandpass 

filter, driven by the spectrum analyzer, which only passes frequencies 

on the selected band of the spectrum analyzer. The signal is then 

terminated in the 50 Q input of the H.P. 85518 Spectrum Analyzer. 

The spectrum analyzer is composed of a sweep oscillator, mixer, and 

detector. The input signal is mixed with the sweep oscillator and 

observed at the detector. Many harmonics of the sweep oscillator are 

present at the mixer, allowing a number of frequency bands to be 

detected with one sweep oscillator. This poses a problem for a 

broadband signal - it is impossible to determine which harmonic of the 

sweep oscillator has mixed with the input signal to arrive at the 

detector. Use of the preselector to predetermine the band of the 

input signal avoids this pitfall. 
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E. Beam Manipulations 

1. Beam Interceptor 

To determine the effect of beam-induced secondary electron 

emission from the radial wall, we added a controllable extension of 

the wall (see Fig. 4-8). A rod inserted through the z = 60 cm port 

enabled a deflection of the 7.5 by 20 cm stainless steel beam 

interceptor into the beam path. 

2. Beam Collimator 

Also shown in Fig. 4-8 is a series of four round copper plates 
~ 

arranged in pairs, forming a beam collimator. Each of the plates has 

a 5 cm beam aperture in the center and an array of gas flow holes 

elsewhere. These latter were aligned azimuthally so that each pair of 

plates would allow gas transport outside the beam aperature, but would 

block the beam. The nominal axial positions of the two pair of plates 

were 11 and 24 cm. 
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Chapter 5 

Experimental Results and Discussion 

_ A. Collisional Balance 

1. Numerical Integration 

To evaluate the power terms, we numerically integrate eq.'s 2.3, 

2.5, 2.6, and 2.9. This procedure is detailed further in Appendix C. 

Here we simply report the numerical results for the case of Eb = 25 

+ + + kV, Ib = 5.1 A, species mix 60:25:15 of H : H2: H3, and for the 

following quantities measured at z=30 cm: p = 2.7 mTorr, - gas 
11 3 

ne = 1.1 • 10 Icm, ~p = 15 V, and Te = 1.8 V. We find 

PTr = 6.0 • 1020 Vlsec (5.1) 

Pinel = 2.6 • 10
20 

Vlsec (5.2) 

PK. E. = 1.3 • 10
20 

Vlsec (5.3) 
20 PCou1 = 3.0 • 10 Vlsec (5.4) 

Remember our convention is that of energy expressed in units of 

potential, suppressing the electronic charge. If the collisional 

model were adequate to describe the power balance, P of Eq. 2.11 anom 
would be zero. Instead we find 

Panom = (6.0 + 2.6 + 1.3 - 3.0)_1020 Vlsec 

= 6.9 • 1020 Vlsec 

Since P is of the same order as the terms that should be anom 
balancing, we conclude the collisional model is inadequate. 

2. Gas Dependence of T 
e 

(5.5) 

The inelastic loss term, Eq. 5.2, is comparable in size to the 

other terms. Thus we might expect to see-some variation of Te with ng 
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in accordance with Eq. 2.22; T;/2 = g15 + g16 4ife - g17 r(Te)ng, the 

last term representing the cooling by inelastic electron collisions 

with the neutral gas. In Fig. 5-1 we show Te data,taken at two gas 

pressures plotted against lb' Also shown is a third set of points 

taken while using He gas in the neutralizer. Helium is a particularly 

interesting neutralizer target because of the high energy (19.8 V) of 

its first excitation level. For our conditions (T < 2 V) with a He 
e 

target, the inelastic electron-energy loss rate, reT ), would be 
e 

vanishingly small. Therefore P. 1 would not contribute to the energy lne 
balance; the last term in Eq. 2.22 would vanish. The data in Fig. 5-1 

thus provide a test of the inelastic energy loss term in the energy 

balance. 

As can be seen from Fig. 5-1, there is no significant dependence 

of the peak Te (the low temperature data will be discussed in Sec. C.l 

of this Chapter) on pressure or target species. For a quantitative 

assessment, consider Te at Ib = 6.6 A for both H2 pressures. If the 

1.7 mT data were to satisfy the collisional balance of Eq. 2.10, then 

we could use the scaling (of T 
e 

at Ib ~ 6.6 A for Pg = 2.8 mT. 

and n ) relation (Eq. 2.22) to find T 
g e 

The third term on the RHS of Eq. 2.22 

is the term most rapidly varying with T (see Fig. 2-2) and also the e 
only term with n dependence. On Fig. 5-1 we see that T for the 1.1 

g e 

mT case is 1.75 V, and T for 2.8 mT is very close at 1.68 V. To 
e 

determine if this very slight change of T is consistent with 
e 

Eq. 2.22, we take as constants the first two terms on the RHS as well 

as the LHS of Eq. 2.22. There is no treachery here - each of the 

terms in Eq. 2.22 ;s of the same order (unity), as evidenced by 
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eq. I S 5. 1 - 5. 4 . The order of the relative change in T according to 
e 

Eq. 2.22 can therefore be taken as that of the LHS 

A = 3/2 AT IT = 6% e e 

Then if T (2.8 mT) is to follow the n dependence of Eq. 2.22, the e g 

third term on the RHS Eq. 2.22 must also be constant (to order 10%): 

reT (2.8 mT» • n (2.8 mT) = r(1.75 V) • ng(1.7 mT) e g 

or reT (2.8 mT» = ~ • 1.8 • 10-9 
V cm3/sec 

e 2.8 

= 1.1 • 10-9 V cm3/sec 

We see from Table 2-1 that this requires T (2.8 mT) = 1.25 V, not the 
e 

1.68 V observed. We have performed this evaluation for the data shown 

in Fig. 5-1. This behavior is very reproducible. For this 

accelerator configuration, with Pg = 1.1 amd 2.8 mT, we observed 

Te(Ib = 6.6 A) = 1.14 ± 0.06 V and 1.68 ± 0.06 V, respectively. The 

error reported is the standard deviation of the data body for p = 1.1 . g 

mTorr and is not intended to include any systematic error, which is 

certainly larger. There were only two data sets for p = 2.8 mTorr, . 
g 

so the error for that body of data is presumed to be the same as the 

1.1 mTorr body of data. The calculation above [that T (6.6 A, 2,8 mT) 
e 

= 1.25 V] is well beyond the range of our experimental data. We are 

forced to conclude that the pressure dependence predicted by the 

collisional model is not obeyed by these peak electron temperatures. 

There is one way in which the above arguments could be incorrect -

if the inelastic cooling term was much smaller than calculated and 

therefore not a significant term in the energy balance. This would be 

the case if the tail of the electron distribution was depressed to a 

level significantly below that of a Maxwellian, as one might expect of 
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electrons trapped in a potential well. 22 The depression (or 

truncation) of the tail occurs only for electron energies > ~ , 
P 

which for the calculations of eqs. 5.1-5.4 was = 15 V. For Te < 2 

V, only two terms contribute to reTe) - excitation of the first 

vibrational level of H2 and dissociation of H2, for which the cross 

sections peak at 4 and 15 V, respectively. With a 2-V distribution 

truncated (the extreme case) at 15 V, we would not expect r to 

deviate much from that calculated for a Maxwellian. 

In fact, looking at a typical electron current versus voltage 

characteristic (after subtraction of ion current) (Fig. 5-2) taken at 

z = 30 cm, one might think our calculation of P. 1 would be lne 

significantly underestimated, since the electron distribution is 

apparently bi-Maxwellian. Bi-Maxwellian least square fits to the data 

typically have a hot "tail temperature" of 10-15 V. Recall from Eq. 

2.2b that the nascent (newly created) electrons, with characteristic 

energy 11.4 V, do not thermalize with the trapped electrons. 

Certainly the electrons excite the neutralizer gas at a higher rate 

than that calculated for a Maxwellian electron distribution, but we 

are concerned here with the power balance - and the only inelastic 

energy loss that contributes to the power balance is that of the 

trapped electron distribution. The higher temperature electrons in 

the tail extract much less power from the beam by Coulomb collisions 

than do the trapped electrons - owing to their higher "thermal ll 

velocity (vhot-tail = Vb) and lower density (ntail/ne < 10%) - and 

the hot-tail electrons certainly do not cool the trapped electrons. 

The hot-tail electrons were born with any energy they lose to the 
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gas. Thus, in evaluation of r(T ), the use of the low temperature e 
Maxwellian distribution is appropriate for the power balance. 

3. Beam Energy Dependence of T 
e 

We found in Eq. 3/2 
2.21 that for optimum Ib (I oPt «Eb ) and ng 

fixed, Te varies no faster than wi th ~ . This is in striking 

contrast to the dependence we observe, Te « Eb, as seen in Fig. 5-3, 

where we have plotted Te observed at optimum Ib versus Eb. The near 

linear relationship between Te and Eb does not conform to the 

collisional power balance. 

4. Beam Current Dependence of T 
e 

One could characterize the behavior of Te with Ib in Fig. 5-1 as 

beginning with a linear relationship, followed by a rapid climb to a 

plateau (referred to as jump behavior). We shall consider these two 

regions separately. 

a. Linear Behavior 

For Ib < 4.5 A (25 kV, H2 data), we see from Fig. 5-1 that 

Te is approximately linear with lb' From Eq. 2.19, we expect a slower 

variation: 

Te = (g )2/3(1 + g )2/3 
10 b 12 

In fact the data for He and 1.1 mT H2 in Fig. 5-1 can be fit 

acceptably to either power (2/3 or 1). This is because the T 
e 

(2.19) 

intercept at Ib = 0 is relatively large (0.4-0.6 V), making Eq. 2.19 

fairly flat. In Appendix D, we evaluate poth glO and dTe/d1b for the 
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system parameters pertaining to the data in Fig. 5-4 (1.7 mT data of 

3/2 Fig. 5-1): glO = 0.08 V lAmp and -d-T/dIb = 0.06 V/Amp. A least 

squares fit of Eq. 2.19 to the data of Fig. 5-4a is 

3/2 3/2 3/2 
(Te) = (0.09 + 0.01) V Ib/Amp + (0.28 ± 0.03) V (5.6) 

This is in excellent agreement with glO' Similarly (but easier to 

visualize from Fig. 5-4a) the best linear fit to the data of Fig. 5-4a 

has a slope of 0.07 ± 0.01 V/Amp. This degree of agreement is 

fortuitous, as we assumed axial uniformity while performing the 

spatial integrals to derive the beam current dependence - and here we 

are comparing a measured beam current dependence of electron 

temperature to the dependence calculated from the data of a single z 

axis point (z"= 30 cm) in a system which is not axially uniform. The 

good fortune, comes about because the spatial average of the power 

balance terms is equal to that which would be given by local terms 

somewhere between z=20 and z=30 cm. 

Although this section is devoted to the dependence of Te upon Ib 

(not gas species), we note significant difference between the He and 

H2 data of Fig. 5-1; specifically the Te intercept is higher for He. 

This is consistent with the collisional model, as both g12 in Eq. 2.19 

and g7 in Eq. 2.18 include the ionization potential, ~i' of the 

target molecules or atoms. If we ignore the reT ) term in Eq. 2.18, 
e 

just as we did to derive Eq. 2.19, we readily find the T intercept to 
e 

(5.7) 
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The best fits of the He and 1.7 mT H2 data of Fig. 5-1 to Eq. 2.19 

have Te intercepts of 0.60 ± 0.03 V and 0.43 ± 0.03 V, respectively. 

These are just within a standard deviation of one another, when the 

latter is scaled by 
41. (He) 

1 = 1.25. 

Note that there is a slight difference in T between the two 
e 

pressures of H2, with the lower pressure having a higher Te intercept. 

This would suggest that the reTe) term neglected in Eq. 2.19 is not 

completely negligible, even at these low temperatures. In fact we can 

make a simple estimate of the reTe) term in Eq. 2.18 by comparing the 

T intercepts of the 2.8 mT and 1.7 mT data, as the 2.8 mT data has an e 
r(T) contribution to Eq. 2.18 that is 2.8/1.7 times larger than that 

e 

for the 1.7 mT data. From Fig. 5-1, we see a change in T of .08 V 
e 

between the two H2 pressures. This means that for the 1.7 mT data, 

the r term in Eq. 2.18 is 1.7 • .08 V = 0.12 V. This is comparable 
. 2.8-1.7 

to, but smaller than the effect of 4I i on Te discussed above. 

Clearly, since the He data would have no such loss term, we must 

expect an increase of order 0.1 V over the 1.7 mT H2 data. When we 

add 0.1 V to the T intercept of the 1.7 mT data and then scale that 
e 

number by 1.25 for the ionization potentials, we are still in 

agreement with the He. data by barely a standard deviation, although at 

the opposite extreme of the limits. 

We see that for Ib below the "threshold", the collisional model 

provides the correct Te dependence upon beam current and predicts the 

effect of gas pressure and type on T as well. A numerical evaluation 
e 

such as that of Eq. 5.5 is meaningless in this case - to make the 
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1 

power balance numerically integrable, we assumed axial uniformity of 

the radial beam profile. This is not the case for Ib below 

"threshold", which we shall show corresponds to the optimum beam 

current (Iopt ) for the accelerator. We shall discuss the optimum beam 

current in more detail later; for now we assert that for Ib below this 

optimum current, the beam is diverging. In other words, the radial 

beam profile is spreading as the beam travels down the neutralizer and 

our numerical integration is not valid for Ib below I Below opt 
optimum, the observed dependence of Te upon Ib, gas pressure, and gas 

species provide the best clue that the energy balance is described by 

the collisional model of Chapter 2. 

b. Jump Behavior 

i. Beam Divergence Below Iopt 
In positive ion accelerators such as we use, as Ib 1S varied while 

holding Eb fixed, the edge of the source plasma moves to accommodate 

the current density required, according to the Child-Langmuir Law
23 

J = 4 
b 9 (5.8) 

where d is the distance from the accelerating electrode to the source 

plasma sheath. 

In the Berkeley lO-Amp, 40-kV accelerator, sheath position has a 

strong effect on the beam divergence. 24 This is because sheath 

position affects sheath curvature. In Fig. 5-5 we sketch the sheath 

location at optimum jb and at jb below optimum (heavy line). In the 

first few millimeters of flight, ions in the case of jb bel~w optimum 

can achieve a substantial velocity perpendicular to the beam 
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Fig. 5-5 Ion Trajectories in the Accelerator. Solid objects are 
the accelerator electrodes viewed end - on. The heavy line 
sketches the plasma sheath position and one particular ion path 
for the case of beam current below optimum - the thin line is same, 
but for optimum beam current density. Notice that ion emission 
perpendicular to the plasma surface gives the ion a larger com­
ponent of perpendicular velocity for beam current density below 
optimum than for optimum beam curren.t density. The middle 
electrode repels electrons from the neutralizer plasma. The total 
potential drop across the sheath (of thickness d) is <Paccel + <Pdecel' 
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direction. This causes a significant beam divergence (> 10 deg) 

unless Ib is within an Amp of Iopt '. 

ii. Effect of Beam Divergence Upon the Collisional 

The divergent beam at Ib below optimum does provide two possible 

explanations within the framework of the collisional model for the 

jump-like behavior of Te with Tb. A diverging beam will strike the 

wall of the neutralizer, ·producing secondary electrons. Such an 

electron is born with just enough energy to make it back to the wall. 

If, however, it suffers any deflection, as a result of a collision or 

a collective fluctuation, it will be trapped in the potential well, 

and then requires an energy input (of at least T ) to escape. The e 

power loss of these secondary electrons would be a term similar to Eq. 

2.6, 

(5.9) 

where lsec is the secondary emission coefficient and Ib(wall) is the 

total beam current striking the neutralizer wall. Secondary electrons 

from the wall are a cooling mechanism. One could argue that by 

operating below optimum current for the accelerator, we depress the 

electron temperature by adding these wall electrons and that a jump in 

Te occurs when the source of wall electrons is eliminated, which 

happens when Ib reaches optimum. To determine if this effect was 

responsible for the jump in Te near optimum Ib, we installed in the 

neutralizer a large area (lOa cm2) plate that could be moved into or 

out of the path of the beam. When the plate intercepts the beam, 

there will always be a source of secondary electrons (comparable to 
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that from the wall below optimum Ib) for any beam current. The jump 

behavior was unchanged by this interception. We conclude that cool 

wall electrons do not cause the jump behavior. 

The second possible explanation is that when the beam is 

divergent, ions are produced nearer to the walls than when Ib is at 

optimum, reducing the ion lifetime and flattening the density profile 

in such a way as to reduce the power transfer from beam ions to 

electrons by Coulomb collisions. Again, this would be a tuning 

effect, depressing the electron temperature when operating below 

optimum lb' Two collimator plates were installed at z = 11 and z = 24 

cm to ensure that ion production would be restricted to a cylindrical 

area smaller (5 cm diameter) than the original beam size. Jump 

behavior of T was also observed when the beam was so collimated. e 

Apparently there are no spatial effects that act to produce this 

jump. The jump behavior of Te with lb cannot be explained within the . 

framework of the collisional model. 

This jump behavior is associated with the approach of Ib to 

optimum current for the accelerator, as opposed to a threshold in beam 

current density. The accelerator electrode spacing was changed twice, 

so that we were able to operate at three optimum currents for any 

given Eb, encompassing a variation of 50% lb' In every case, the jump 

begins when the beam angular divergence drops below e = 8-10 deg. 

(lIe width), as measured by the calorimeter 3 meters from the 

accelerator, and typically flattens out when the beam divergence 

reaches a minimum (see Fig. 5-6). Examples of Te dependence upon lb' 

for two different accelerator gaps are shown in Fig. 5-7. Note 
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that two sets of data are very similar for lb < l opt (the lower of 

the two values), differ as lb approaches l opt (the lower of the two 

values), and have similar maximum values of T Therefore we see that 
e 

the jump behavior of Te is associated with the approach of lb to l oPt ' 

as opposed to a threshold in beam current density. 

5. Anomalous Power 

Let us reflect momentarily on the performance of the collisional 

model for lb below l opt ; the collisional model produces remarkable 

agreement with our data. The significance of this agreement is that 

the terms included in the power balance are apparently correct. The 

input power is from Coulomb collisions, as evidenced by correctly 

predicting dTe/dlb' The power losses are from electrons born trapped 

by the potential well and from inelastic collisions, as evidenced by 

the behavior of the T intercept with ~. and n . 
e 1 g 

Given this agreement, there is no way to produce a jump in T e 

without an additional power input, an input that is available only for 

lb near Iopt ' Bol stered by the agreement of the data with the 

collisional model for lb below lopt (where we cannot perform the 

numerical integration), we have confidence that the numerically 

integrated terms correctly represent the collisional terms in the 

power balance at I Then P given by Eq. 2.11 and calculated opt " anom 
for our sample data in Eq. 5.5 is a"n anomalous power input we must 

find in order to account for the jump behavior of lb' 

As anticipated in Chapter 3, we shall show in Sec. B that the 

source of this anomalous power is a beam-plasma instability: Only the 
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full energy proton component of the beam will contribute, so each 

proton loses some energy by an "anomalous" process: 

~E = anom 

p 
anom 

11 

6.9 • 1020v/sec 1.6 • 10-19C = 
.6 0 5.1 C/sec 

36 V (5.10) 

where we have used Eq. 5.5 and converted the real current unit of 

proton current (60% of Ib), I1(Amp), to a particle current. 

This ~Eanom will be used in evaluating the beam-plasma 

interaction. It has been calculated for the highest gas pressure 

operated at and highest electron temperature observed at Eb = 25 kV. 

It thus is an upper bound. 

B. Beam-Driven Wave Heating of Electrons 

The single most glaring failure of the collisional model was its 

inability to predict the jump behavior of Te with lb' We begin by 

showing that this jump behavior is a result of increased beam 

divergence when operating below the optimum beam current (I t)' We op 
then show a striking correspondence between the jump in T and the 

e 
jump in observed fluctuation signal levels. The power spectrum agrees 

quantitatively with expectations for our beam-plasma system. Finally 

we show that the observed slope of Te versus Eb is less than that of 

Eq. 2.21, which one would expect in the face of nonlinear fluctuation 

levels and nonuniform densities. 
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1. Current Threshold 

Ion temperatures in the source for the accelerator are typically 

<10 V. 24 The sptead of beam energies, ~Eb' after acceleration is 

therefore ~Eb < 10 V. The initial spread in beam velocities is 

~vb = ~Eb/mbvb· Thus, at the entrance to the neutralizer, 
2 

Tb = 112 m(~vb} 

5. 1 (10 V)2 
4 Eb 

= .001 V @ Eb = 25 kV, 

whereas Eq. 2.25 indicates the cold-beam growth rate valid for 

Tb< 7.6 eV. Were our accelerator an ideal one, with source-limited 

divergence at all current densities, there would be no instability 

threshold with Ib for fixed Eb. 

However, the dislocation and distortion of the source sheath when 

Ib < Iopt (described in Section A.4.b.i.) causes substantial beam ion 

velocity (v ) perpendicular to the nominal beam direction. This v 
~ ~ 

will affect the instability by increasing ~vlI' the spread in parallel 

velocities. Ironically, the excessive divergence observed below 

Ib =1 once viewed as an obstacle to observing the true dependence opt' 

of Te upon Ib, provides a vital clue to the source of electron energy, 

by providing an independent means of turning off the insta~i1ity. 

When the spread of parallel (to the wave) velocities (~vlI) exceeds 

vs1ip = 0.02 vb (evaluation of Eq. 3.23 for our standard parameters), 

wave growth will diminish. Since ~Eb < 10 V, all beam ions have 

essentially the same energy (v: + VU). Think of the divergence then 
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as a spread in angles (~e), giving rise to a spread in parallel 

ve 10cHi es: 

Stability returns when ~vlI > 0.02 vb or, 

~e = cos-1(l - 0.02) 

= 11 deg. 

When ~e exceeds 11 deg., we expect stability. or at least diminished 

growth resulting from the spread in vII' 

By looking at the intercept of the beam edge at 30 cm downstream 

(see Fig. 5-8) we see that the spread in beam angle at Ib = 4.5 A (Ib 

at which the which jump begins) is approximately. 

~e sin -1 
(~x/30 cm) = 

-1 = sin (4/30) 

= 8 deg. , 

where ~x = 4 cm and is interpreted from Fig. 5-8 as the change in 

intercept between Ib = 4.5 and 5.5 A. We see from Fig. 5-1 (the H2 

data) that Ib = 4.5 A is the beginning of the Te jump. We further 

note that the temperature has reached a plateau by Ib = 5.5 A. Not 

only does considering the effect of beam divergence on the instability 

predict a "threshold" in Ib, but we see fair agreement with the 

current range at which the jump occurs. 

It should be pointed out that the data for He shown in Fig. 5-1 

exhibits its jump at a lower Ib than does the H2 data. This results 

from a significant fraction of He+ in the beam, increasing the 
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Fig. 5-8 Radial Beam Profiles at Z = 30 cm. Beam energy is 25 kV. The beam 
power is recorded and shown as the temperature rise of a small, moveable 
calorimeter. Notice that the intercepts of the Ib=5.5 A and the Ib=4.5 A edge 
slopes are located at approximately 5 cm and 9 cm, respectively. 

105 



effective beam mass in Eq. 5.8. This causes a reduction in the 

optimum beam current from that of the H2 data. This is confirmed by 

beam dump calorimetry; in Fig. 5-9 the observed beam divergence is 

plotted along with Te for the He data of Fig. 5-1. 

In fig.'s 5-6 and 5-9 notice a lack of any beam divergence data 

for Ib significantly below Ib at which the Te jump begins. There are 

three reasons: 1) the beam dump calorimeter loses sensitivity for 

larger divergences; 2) there is some beam collimation for de > 6 

deg.; and 3) the beam divergence increases rapidly as Ib is decreased 

in this region. This latter effect is apparent in fig. 's 5-6 and 5-9 

and confirmed by Fig. 5-8; the peak beam power density decreases much 

more rapidly than Ib for Ib < 5 A. For these reasons we; 1) use the 

relatively crude measurement of the "edge slope" to compare with the 

stability criterion (de> 11 deg); and 2) concede a greater 

unce~tainty in the actual beam divergence (at these large dels) than 

the reproducibility would suggest. Nonetheless, the correlation of 

the T jump to the drop in de cannot be denied. e 

2. Plasma Fluctuation Measurements 

a. Spectrum 

The fluctuation spectrum observed at z = 30 cm on our probe inside 

the beam is shown in Fig. 5-10 for Eb = 25 kV a~d Ib = 4.95 A. The 

large error bars reflect both the noise level of the spectrum analyzer 

and the difficulty of making spectral measurements upon a slowly time 

varying amplitude with a sweep oscillator and mixer. The slow time 

dependence (- 10 ms) results from unavoidable current drift in the ion 
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source, at Ib (4.95 A) where the beam optics and (as we showed in the 

last section) fluctuation level will vary the most. It is not certain 

how the plasma f1uctaations are coupled to the probe. Large coupling 

losses of the electrostatic wave across the sheath make it very likely 

that we are measuring modulated beam current. Also note from 

Table 3-1 that (the most unstable wavelength) ~ ~ 1 mm, which makes 

orientation of our 1.1 cm diameter probe very critical. The high 

voltage hazard posed by the accelerator made fine tuning of the probe 

orientation impractical, which increases any already existing 

uncertainties in the probe coupling. For these reasons, we make only 

relative amplitude comparisons, precluding also an amplitude 

comparison between the upper and lower bands. Our interpretation of 

the spectrum is as follows. 

Locally, ne is measured as ne = 6 • 1010/cm3, which corresponds 

to a local plasma frequency of f = 2.2 GHz. This explains the 
p 

"cutoff" of the upper band below 2.3 GHz. In Appendix F we show that 

the bandwidth of the instability is only 0.05 we (-lOa MHz). The 

bandwidth (- 1 GHz) of the upper band is much larger and could reflect 

either of two effects, though both have to do with f at the 
p 

origination point of the waves that are being detected at z = 30 cm. 

The first possibility is that the upper frequency roll off represents 

f at the highest density point upstream from z = 30 cm, namely that 
p 

at z = O. Based on the change (50%) of ion production between z = a 

and z = 30 (See Fig. C-la) we would expect the upper fp roll off to be 

at {2. fp (cutoff). This is essentially the case. The second 

possible explanation for the spectral width lies in the radial aensity 
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profile in the vicinity of the probe (or at a fixed z upstream from 

probe) .. This again would be a frequency ratio of nearly ~ 

The lower band is in a frequency range (f. < f < f ) that, save 
1 p 

for the presence of the beam, would be evanescent. However, this 

spectrum was observed inside the beam, where a propagating beam mode 

exists down to f = 0 (see Fig. 3-2). This beam mode is nearly stable 

and one would not expect to see what appea~s to be a strong signal. 

In Chapter 3, Section C we calculated from Eq. 3.13 that (the required 

d ·t) W 6 1010 v/cm3• C thO ·th th wave energy enS1 y req = • ompare 1S Wl e 

average thermal energy density, 

W ~ 0.6 n T ., req e. e. (5.11) 

we expect significant nonlinear effects. One of these will surely be 

wave-wave interactions, specifically resonant mode coupling of two 

unstable waves. If we consider two parent waves (described by w" kl 

and w
2

' k
2

) we find that the daughter wave (described by w
3

' k3), 

automatically satisfies the phase matching conditions, 

wl - w2 = w3 

kl - k2 = k3· 

and 

This is because all three waves satisfy w/k = vb [the parents because 

they were presumed resonant and the daughter because it is a beam 

mode; see Fig. 3-2, where it is graphically apparent (the dispersion 

relation is plotted for vb = 3.9 Ve) that any propagating mode below 

we has w/k = vb]. This wave-wave interaction also explains why the 

lower frequency band has the same spectral width as the upper band. 
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Since we do not know the wave-to-probe coupling, we cannot make 

any meaningful observations regarding the relative level of these two 

bands within the spectrum. Since the lower band results from the 

product of two waves in the upper band, we would expect, however, that 

the lower band should grow at twice the rate of the upper band, 

specifically when comparing spectra of two different lb' Let Wl , W2' 

and W3 be the wave energy density of the two parent waves and the 

daughter wave respectively. Th~ steady-state amplitude of the 

daughter wave is then described by the vanishing of its time 

derivative; pumping from the two parents and linear Landau damping act 

upon the daughter. Then 

where c12 is the coupling coefficient between the parent waves and YL 
is. the Landau damping rate for the daughter; implies that 

2 
W3 « W1W2, or P «P. h ' low h1g 

where Plow and Phigh are the fluctuation power levels for the lower 

and upper frequency bands, respectively. Thus we would expect to 

observe, for an incremental power increase of 10 dB in the upper band, 

an incremental increase of 20 dB in the lower band. 

Fig. 5-l0b shows, for lb = 5.45 A, a spectrum similar to that for 

lb = 4:95 A. We see that the incremental increase of power in the 

lower frequency band is indeed approximately twice the incremental 

increase of power in the upper band. This supports the argument that 

the low frequency band results from wave-wave interactions within the 

upper frequency band. 
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b. Correlation of Fluctuation Level with T e 

Fig. 5-11 illustrates the remarkable correlation of T e 

measurements with the fluctuation level at 400 MHz observed on the 

probe. Below Ib = 4.5 A, the signal is below the noise level of the 

spectrum analyzer, but rises 30dB in the span of 1 A. This rapid rise 

in fluctuation level begins at exactly the same Ib as does the jump in 

Te. This strongly suggests that the instability is providing the 

power that drives T upward. e 

3. Temperature Dependence upon Eb 

Recall that we already demonstrated in Chapter 3, Section D, that 

sufficient coupling of power from the beam to the plasma electrons 

exists to support the electron temperatures we observe. Hence we 

expect to observe the dependence Te « Eb. Our measurements of Tare e 
plotted versus Eb in Fig. 5-12. Since this data is presented to 

compare with the anomalous prediction of Eq. 3.21 (Te = O.lB meEb/mb), 

we have plotted peak T observed at each Eb· The first three data e 
points are from the neutralizer described in this thesis, and the 

error bars reflect the scatter in peak Te over a wide variety of 

operating conditions - different neutral pressures and all of the 

three acceleratdr gaps used. These three gaps provided a range of Ib 

(while maintaining optimum jb as per Eq. 5.B, the Child-Langmuir law) 

spanning almost a factor of 2. The line drawn is deliberately 

constrained to pass through the origin in order to be representive of 

Eq. 3.21 and has a slope of 0.07 V/kV, which is 30% lower than the 

slope of Eq. 3.21. Recall that Eq. 3.21 was derived by equating 
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Landau damping with the linear resonant-beam growth rate, which 

implied kO~D = ve/vb = 0.3. Due to the nonlinear character of the 

oscillations revealed by Eq. 5.11 (Wreq = 0.6 "e Te), we would 

certainly expect the resonant growth rate to be .below that of the 

linear solution; the corresponding reduction in Landau damping 

required then implies ko~D < 0.3. The slope from Fig. 5-12 is 

equivalent to ko~D = 0.26. This seems to be adequate agreement in 

view of the necessity for a vastly more complicated nonlinear analysis 

to determine the exact T at saturation. e 
25 

The lone data point at Eb = 100 kV was taken by Kurt Schoenberg 

on a different neutralizer (of larger cross section and length 3m 

length) and with Ib = 11 A. We assume error bars comparable to our 

data. 

4. Gas Pressure Independence of Te 

Note the indepence of Eq. 3.21 (Te = 0.18 meEb/mb) to gas pressure 

or gas species. Look back at Fig. 5-1 and observe that the peak value 

of T is essentially independent of gas pressure or species. This e 
observation certainly fits within the framework of our model for 

anomalous heating by beam-driven electron plasma oscillations. 

C. Summary 

For Ib below lour data is adequately described by the opt 
collisional model. The Ib dependence of Te agrees very well. The T 

e 

intercept at Ib = a exhibits the proper dependence upon gas pr~ssure 
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and species (H2 or He). The collisional model fails only to explain 

the jump in Te as lb approaches l opt ; the high value of Te after this 

jump; and the insensitivity of this value to gas pressure and species. 

We have seen that the linear wave model correctly predicts the 

jump behavior of Te with l b, correlating the jump with the reduction 

in beam divergence and presumed subsequent onset of instability. A 

strong correlation of T with electrostatic fluctuation level and with e 
beam divergence is observed. We also find the saturation (peak) T 's 

e 

(and hence dependence upon Eb) to be 30% below those of Eq. 3.21, 

consistent with the notion of reduced wave growth in the presence of 

nonlinear wave amplitudes. The linear wave model correctly predicts 

the insensitivity of the saturation T 's to gas pressure and gas e 
species. 

Thus we see that the two models, each in its own regime, agree 

with our observations of T in this plasma.25 e 
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. . 

Chapter 6 

Conclusions 

We have measured the electron temperature in a neutralizer 

plasma. To understand the behavior of Te , we have presented a 

collisional model for the power balance (described in Ch. 2), in which 

we compare the power drains on the system with the input power 

available from Coulomb collisions of beam ions with plasma electrons. 

The power drains considered are: (1) the power necessary to remove 

from the potential well electrons that are born with less kinetic 

energy than the potential well depth; (2) inelastic collisions of 

plasma electrons with H2 molecules; and (3) the kinetic energy (- Te) 

that each electron still has when it is collected on the wall. With 

the data presented in Ch. 5 we have shown that this model correctly 

predicts the dependence of the electron temperature upon beam current 

and gas pressure only for beam currents below I t (accelerated op 
current that minimizes the beamls angular divergence); i.e., when the 

beam-plasma instability is suppressed by the large angular divergence 

of the beam. At I t' the collisional model predicts an upper bound op 
for Te dependence of ~,inconsistent with the linear dependence we 

observe. In addition we found numerical values for the anomalous 

power required to support the observed peak T IS. With these values . e 

as inputs, we described theoretically in Ch. 3 an electrostatic 

ion-beam-driven electron plasma instability that provides this 

required beam power to the electrons, but at a possibly nonlinear 

fluctuating potential level. Sec. B of Ch. 5 presented our data 
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showing the strong correlation of beam angular divergence. 

electrostatic noise amplitude, and Te. Resonant wave growth is 

possible only when the beam parallel velocity spread is less than the 

slip velocity between the beam and the resonant phase velocity of the 

wave. This requirement nearly predicted the beam angular divergence 

and. hence, Ib at which the observed Tejump occurs. The observed 

oscillation spectrum agrees very well with that which one would expect 

from a nonlinear fluctuation level. Our observed scaling of (peak) 

Te = 0.07 Eb V/kV is - 30% below the linear relation between Te and 

Eb predicted by equating the linear growth rate with the Landau 

damping rate. This 30% decrease could be consistant with a reduction 

in the growth rate expected in light of the nonlinear wave amplitudes 

predicted. We feel that a fairly complete understanding of the 

electron energy balance is in hand. 

The latter part of Ch. 3 was devoted to genejaliz;ng our results 

to other systems. Eq. 3.24 gave the upper limit on resonant energy 

loss from the beam, typically a few percent. The parameter, (the 

ratio of plasma production by heated electrons to that by the beam) 

was employed as a measure of the plasma's effect on the neutralizer 

gas. This seems a reasonable indicator since the beam's effect on the 

gas can be simply calculated. We found that, after initially 

increasing, , decreased with Eb (for Eb > 90 kV). This apparent 

paradox was resolved by realizing that the power available for 

electronic ionization is independent of the target gas density, while 

beam production of plasma by ionization is proportional to n. The g . 

need for increasing target thickness (n L) to compensate for the 
g 
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. . 

decline of d
CX 

with Eb allows beam production of plasma to again 

exceed that of electronic ionization. This occurs at around Eb = 140 

kV in our example. This seemingly fortuitous turn of physics is 

rendered moot, however, by the very same decline of d • The cx 
neutralization efficiency is so poor (d Id(stripping of beam cx 
HO

) < 0.1) as to make positive ion based 140 kV HO beams unattractive. 

The power available from the instability does provide for, - 3 

at 80 kV. Can anything change this? Yes - by increasing the 

neutralizer cross section (Ap) and thereby decreasing Ab/Ap (see 

EQ.3.54), one can spread this power over a larger volume and effect a 

lower percent ionization of the gas. This lower percent ionization 

comes, however, at the expense of increasing the total gas flux. Or, 

by shortening the neutra1ize~ one might hope to employ stabilization 

of the instability by a steep electron density gradient. We have 

shown in EQ. 3.28 that the wave reaches saturation amplitude in 

traversing 9 cm axially. For gradient stabilization, one would need 

to restrict the spatial extent of wave growth to less than 9 cm. We 

have shown (Appendix F) that propagating through a 10% decline in 

plasma density shifts the wave frequency out of resonance, thus 

Quenching wave growth. The above conditions then imply 

1 
ne 

dn 
~ > 10%/9 cm - l%/cm 
dx 

(6.1) 

everywhere within the beam for stabilization by density gradient. The 

actual requirement is considerably stricter. By considering only a 

single mode contributing to the beam energy loss, Eq. 6.1 represents 
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an upper bound. Since waves growing in all axial regions of the beam 

contribute to the power coupling, each wave does not have to saturate 

by beam velocity spreading. One could reasonably expect a density 

gradient an order of magnitude larger than Eq. 6.1 to be necessary for 

stabilization of the resonant instability. This would imply a 

neutralizer of length 10 cm, significantly affecting the ability to 

maintain proper target thickness. 

Ultimately, the solution employed in the past will likely prevail; 

when confronted with a neutralizer target thickness lower than 

expected from the cold gas fill, most operators of neutral beamlines 

have simply increased the gas flow. We hope, however, that this 

thesis - spec~fically, the possibility of neutralizer burn-out 

discussed in Chapter 3, Section G - will enlighten those who have 

found that to be necessary and provide insight for those hoping to 

optimize the gas loading of such systems. The next step will be to 

determine the implications that this work holds for negative-ion-based 

neutral beams. 
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APPENDIX A 

Energy Loss of Beam Atoms Colliding with Electrons 

We seek the energy delivered to the plasma electrons by the fast 

beam atoms. Cross sections for energetic atoms impinging upon 

electrons are difficult to find in the literature. Hence we present 

two simple approximations that both represent upper bounds: 

1. We consider the electron and atom to be hard spheres. Taking 

advantage of the frame invariance of total cross sections, we assume 

an atomic "size" corresponding to observed elastic cross sections 

o 
(ael ) of electrons on H , taken at the speed of the approaching atom. 

The kinematics of hard sphere scattering are rather well described 

in other literature. 26 In the lab frame, the average energy change of 

the beam atoms 

= (A 1 ) 

where me' mb, and Eb are the electron mass, atomic mass of hydrogen, 

and the beam kinetic energy, respectively. Thus the atomic beam 

energy 'loss per unit 1 ength is 

dEb 
dz 

= 8 • 10-15 
n (V/cm) 

e 
with n in cm-3 

e 

(A2) 

where ne is the electron density, a el is the elastic cross section of 

electrons on HO at the speed of the 25 kV beam atom (an electron 
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energy of 13.6 V), which we take to be 3 • 10-16 cm2,27 and with 

Eb = 25 kV. This is approximately 25 times smaller than the spatial 

energy loss rate calculated for Coulomb collisions via Eq. 2.8. 

2. As a second estimate for the energy loss rate of atoms on 

electrons, we calculate the energy loss as if the atom were a proton 

incident upon the electron, but we reduce the upper bound on the 

impact parameter. While integrating over impact parameter, the usual 

choice for the upper limit of integration is the Oebye length (~O). 

For the upper limit of integration over impact parameter, we use Rel , 

2 an imagined radius such that ~ Rel = 0el' where we again use 
-16 2 0el ~ 3 • 10 _ cmThus most of this calculation can be found 

in existing literature. 

In the center-of-mass frame of reference, an incident particle 

with an impact parameter b is scattered by an angle e = ~ - 2 ~ 

(see Fig. A-1), where 28 

2 -2 tan ~ = b • (p v e ) ~ b I bo (A3) 

where e is the electronic charge, ~ = me mb/(me + mb), and v is the 

beam velocity. After the collision, the target electron has kinetic 
29 energy 

2 -1 
Ee = ~ Eb (1 + tan ~) where (A4) 

2 
~ = 4 me mb I (me + mb) ~ 4 me I mb 

The energy lost by the atomic beam per unit length is then 

b 
fom(l + tan2~)-1 2 ~ b db· (A6) 

where b is the maximum impact parameter considered (to be discussed m 
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Fig. A-I Scattering Angles in the Center of Mass Frame. 



shortly) . After integration, 

dEb 211'en 4 b2 e 
= ln (l + -.J!l) 

dz 2 b2 
mevb 0 

(A7) 

If we take bm = Rel , then b ::=: b and m 0 

dEb 211' 4 
ne e 

= ln (2) . 
dZ 2 

me vb 

(AB) 

We wish to compare this rate with that for ions colliding with 

electrons. In that case the common choice for b is the Oebye length 
m 

(~O)' Since ~O » boo we regain the familiar In(A = ~O/bo) dependence 

usually seen for the Coulomb reaction. The ratio of energy loss rates 

for ions versus atoms is then 2ln(A) ::=: 60 for our plasma. 
In(2) 

For simplicity we have shown this calculation for the case of the 

"field" particle (the electron) at rest. The well-known solution by 

Chandrasekhar30 for an ensemble of field particl€s not at rest differs 

by < 10 % from our calculation for ion impact. The smallness of the 

thermal field correction is a result of vb > 3 times the electron 

thermal speed. Therefore we feel this simplification does not affect 

our conclusion. 

The first approximation very likely overestimates the energy loss 

by beam atoms, by ·treating atoms scattered at large impact parameter 

as though they lost the average energy. The second approximation 

probably underestimates the energy loss by abruptly cutting off the 

integral at Rel . For the purpose of comparison, though, even the 

overestimate of the first approximation tells us that the energy loss 

rate for beam atoms is smaller than that for protons by a factor of 

25. Thus electron heating by beam atoms is negligible. 
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Appendix B 

Beam Species 

The beam begins its path through the neutralizer as three 

+ + + + 
components: H , H2 and H3. The fate of the H ions was described in 

Chaper 2, Section A. In this appendix we shall address the molecular 

+ interactions. For H3 striking an H2 molecule, the possible fast 

(b ) d t H+ HO H+ H+ HO H+ HO HO 2 H+ + HO, earn pro uc s are 2 + , 2 + , 2 + , 2 + • 

2Ho + H+, 3 HO, and 3 H+. The first is the most common reaction. 

Note in that case that the H; has 2/3 of the original energy, the HO 

has 1/3, so all have 1/3 original energy/nucleon. In subsequent 

inte~ctions, the 2/3 energy H;'o can dissociate, and the products 

become 1/3 energy. For initial H;, the products are similar to those 

from H;, but simpler by one nucleon. 

The resultant beam components are: 

Full Energy/nucleon: H+, HO, H 

1/2 Energy/nucleon: H+ HO, + HO , H , H2, 2 
H+, HO, - + ° H+ 1/3 Energy/nucleon: H H2, H2, 3 

These are plotted in Fig. B-1 as they evolve axially, assuming a 

neutral pressure of 2.8 mTorr measured at z = 30 cm. (We have 
31 employed a computer program written by Warren Stearns to follow the 

spatial evolution of the beam.) 
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Appendix C 

Numerical Integration of Collisional Terms 

In this appendix·we manipulate the general expressions of 

Chapter 2 into a form easily integrated by computer. All of the four 

power equations involve an integral with n dz. This can also be 
g 

represented by a differential of target thickness 

dIT = n dz, g 
(Cl) 

so we make the natural transformation from dz to dIT. 31 Warren Stearns 

has written a program to follow the evolution of the beam species as 

they traverse a target, incrementing each beam flux by 

(C2) 

where dIT is the incremental target thickness and d ,is the cross ss 
section for the interaction of species s' with H2 producing species 

s. Some of d ,will be zero, for example when v f v '. We have ss s s 
extended this program to perform the integrals required in the power 

balance. At each step, n is incremental by dn and the beam fluxes 

are incremented according to Eq. C2. The appropriate functions will 

be summed over these steps to represent the four power terms of 

Chapter 2. 

1. Power Required to Expel Electrons Trapped in the Well 

We begin by evaluating the integral over energy occurring in 

Eq. 2.3, 

~p(x,y,z) 

G(~ ) = b f(c)(~p(x,y,z)-c)dc 

With Eq. 2.1 for f(c), 
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For simplicity, we ignore the variation of ~ across the beam p 

(o~b=Te) compared with ~p at the center of the beam [~p(r=O) is often 

8e Te]. Then the only radial variation in Eq. 2.3 is that of ns. But 

A 
IobnsvsdA = Is (Is is a particle flux = current/e), so Eq. 2.3 becomes 

If we denote the total target thickness by ITL _ I~ ngdz, then 

= I 
s 

ITL 
as I G(~p(IT» Is dn 

Relating ~ to IT is the next step. We assume the electrons 
p 

(C3) 

-~/T follow the Boltzmann relation ne « e . We also assume ne = ni 
and relate n. to the local production rate; 

1 

(C4) 

ion where as is the cross section for ion production by beam species s, 

and Sb amd Ab are the beam circumference and cross sectional area, 

respectively. ion 
~ Is(z) as is plotted in Fig. C-la. To arrive at 

the proportionality we neglect beam divergence and assume the 

perpendicular (radial) beam profile to be axially uniform. Remember, 

the axial dependence is what we seek here. Since the electrons are 

thermal;zed, Te' and hence vi' is independent of z. 
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With quasineutrality and Eq. C4. 

Employing the Boltzmann relation for n • we find e 

A convenient choice ;s z = O. We actually make measurements at 
o 

z=30 cm. but we can use Eq. C6 to relate those to z=O. The I IS 
S 

Eq. C6 are automatically functions of IT. but n (z) needs to be 
g 

related to IT. We assume 

Then. where n = n (z=O) go 9 

2 
IT = {/ ngdz I 

Or (Z-L)2 = L2 - 2ITL/n
go

• 

= n (z - L ) 
go 2L 

Then. with Eq. C7. 

Thus Eq. C6 can be 

~(11) = ~(11=O) + T e 

~1 - 2n n L go 

expressed as 

tn { ~1 - ~~9O 
t 1s (11) 

o s 

t 1s(0) 
S 

ion 

} as 

ion 
as 

(C5) 

(C6) 

in 

(C7) 

(C8) 

(C9) 

(C10) 

We use this in Eq. C3. The integration begins after the input of 

~(O) = ~(zo)' Te and ngo The axial evolution of each of the 14 

integrals in the sum of Eq. C3 is shown in Fig. C-2. Eq. C8 has been 
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Fig. C-2 Integral For the Power Required to Expel Electrons Trapped in the 
Potential Well. The axial evolution of the fourteen integral terms is shown. 
These have been calculated for an initial beam species mix of 60% H+, 25% 
H2+, and 15% H3+ ; Eb = 25 kV; and a gas pressure of 2.8 mTorr at z=30cm. 

The fractions in the curve labels refer to the energy of that species relative to 
Eb· 



used to transform back to z. Note that the 3 terms that initially 

grow the fastest are the original beam components, while the terms of 

o -the resultant species (H , H , etc.) grow at a higher rate farther 

down the neutralizer, where their densities are higher. 

2. Inelastic Losses 

Again, we assume axial uniformity of the beam shape, and thus in 

the variation of ne in a plane perpendicular to the beam direction. 

In other words, the x-y (or radial, depending on geometry) profile of 

n is independent of z. Therefore, ne(x,y,Z) is factorable into e 
X(x,y) • n (z), where n (z) is understood to mean n (r=O,z). Note e e e 
that X is a quantity we have to measure and that it can be measured at 

any z. In our case, we have approximate cylindrical symmetry and use 

X(r) = 
ne(r,z,) 

. n (r=O z ) 
e '1 

(Cll ) 

Then the integra' over dx and dy in Eq. 2.S becomes a radial integral, 

which we define as SHAPE, 

SHAPE 
ne(r,zl) 
ne (r=O. Zl) 

(C12 ) 

where a is the wall radius. For our radial profiles SHAPE is usually 
w 

O.S. So Eq. 2.S becomes 

P,"nel = reT ) • SHAPE· A • IL n (r=O,z)n (z)dz . e poe 9 
With Eq. CS and Cl, the integral over z is transformed into an 

integral over It; 

'32 
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drr . 

Using Eq. Cg. 

r(T ) • SHAPE • A • n 
P. 1 = e Q go n lne ion e 

ng(zo) I Is(zo)os 
s 

ITL ~1 - 2n I Is (IT) ion drr . [, 
ngOL s 

Os 
(C13 ) 

P. 1 is shown in Fig. C-3. plotted as the integral accumulates lne . 

versus z. 

·3. Kinetic Energy That Electrons TransQort Out 

The integral over & in Eq. 2.6 is 

The x-y integration of Eq. 2.6. 

is just the particle currents 

I = sI Is x-y 

Then 

6
L e -~ IE 

P = Te I Is Os n (1 - e p n) dz K.E. s g 

rr -~(rr)/E 

= T [, L I Is (rr) e (1 - e n) drr e Os 
s 

(C14) 
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Fig. C-3 Axial Evolution of the Integral of Electron Power Loss to the 
Neutral Gas by Inelastic Collisions. Calculated for an initial beam 
species mix of 60% H+, 25% H2+, and 15% H3+ ; Eb'= 25 kV; and a 

gas pressure of 2.8 mTorr at z=30 cm. 
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PK.E. is shown as it accumulates versus z in Fig. C-4, and 

t Is(z) a~ is plotted in Fig. C-lb. 
s 

4. Coulomb Collisions 

Again, we factor n (x,y,z) = X(x,y)·n. We also factor n (x,y,z) e e s 

= B(x,y) n (z), where n (z) is understood to be n (r=O,z). Then the s s s 
x-y integral in Eq. 2.9 becomes 

= I X(x,y) B(c,y) dxdy 
Ab 

In our cylindrical geometry, 

a 
Ishape = 2~ b b B(r) X(r) rdr 

where B(r) = jb(r)/Jb, X(r) is defined in Eq. Cll, jb is the beam 

current density, and jb is its average. Remember, the latter are 

measured quantities. Let us define SHAPE b = Ishape/Ab. For our 

profiles SHAPEb is usually .8. Do not be alarmed that SHAPE b > 0.5; 

this is a result of normalizing the beam flux to the average in B(r), 

rather than to the peak. Then Eq. 2.9 can be expressed as 

4 2 L 
P = 4~e tn }., SHAPE t qs 

I n v Ab n (z) dz (C14) Coul m b s 2 0 s s e 
e Vs 

The first three factors in the integral over dz are recognizable as 

I. Using Eq. CS for n (z) and converting to dn, s e 
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Each of the 14 integrals in the s summation is shown ;n Fig. C-5, 

plotted as they accumulate versus z. Notice that the neutral terms do 

not contribute to the power balance, as we have shown in Appendix A. 
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Fig. C-5 Axial Evolution of the Integral of Power Transfer to Electrons 
From Beam Ions via Coulomb Collisions. These terms are calculated 
for an initial beam species mix of 60% H+, 25% H2+' and 15% H3+ ; 

Eb = 25 kV; and a gas pressure of 2.8 mTorr at z=30 cm. The fractions 

in the curve labels refer to the energy of that species relative to Eb. 



Appendix 0: 

The Slope of Te-11n1 

Differentiating Eq. 2.19 we find 

Using Eq. 2.19 this can be expressed as 

dTe = 2 j9113 
d1b 3" Te 

The constant gll is defined in Eq. 2.19a as 

( )
213 

g" = g10 

Also 

and 

(01) 

(2.19a) 

(02) 

g6 = g5 / (gl + g4) (03) 

Consider Eq. 2.13 and Eq. 2.13a. For the data we are describing 

now, ~ ~ E 14, so Eq. 2.13a is no longer valid. A crude 
p n 

approximation would be 

I = ~ 14 - E 
c p n 

(04) 

We take ~ ~ 4 T (Fig. 5-4 supports this), then 
p e 

I .:. T - E 
c e n 

(05) 

Treating the spatial variab1es;n Eq. 2.3 as uniform and using Eq. 's 

05 and 2.13, when we compare Eq. 's 2.14 and 2.3 we find 

gl = L 

A similar comparison of Eq. 2.16 and Eq.2.6 requires 

9 = L 4 

(06) 

( 07) 
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Now we seek g5. In Eq. 2.9 we treat all species as protons and use 

2 12 2 
Vs = 2 Eb(V) • 10 cm Isec (08) 

and convert from ergs to (e)V. Then upon comparing Eq. 2.9 with Eq. 

2.17, we find 

(09) 

The data in Fig. 5-4 (the same as 1.7 mT data in Fig. 5-1) is measured 

at r = 3 cm, Z = 30 cm. The density at r=O, which is what we want in 

Eq. 09, is typically 2-3 times n (r = 3 cm). For the data in Fig. 5-4 
e 

at Ib = 4 Amps. and using ng = 5.6 e 1013/cm3 
ion -16 2 . and 0 ~ 6·10 cm, we flnd 

g5 = 1.6 • 10-16(V)3/2 sec 0 L (010) 

Combining eq.'s 03, 06, 07, and 010 we find 

g6 = 8 • 10-17(V)312 sec 

From Fig. 2.3 we see that at Eb = 25 kV, ion/ e o 0 ~ 4. 

Then (at 25 kV) 

glO = 1.3 e 10-20 (V)312 sec 

Notice that Eb in Eq. 02 is actually unitless, assumed to be in V by 

the use of Eq. 08, so g6 and g10 have the same units. 

Using Eq. 2.19a in Eq. 01, we find 

(011 ) 

If we wish Eq. 011 to be of units V/Amp, we need to divide Eq. 011 by 

the electronic charge. With T = 0.7 V, we find e 
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" . 

dT 
~ = 0.06 V/Amp . 
d1b 

We can also express 910 in current units: 
3/2 910 = 0.08 (V) lAmp. 

These compare favorably with the data in Fig. 5-4. 
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Appendix E 

Plasma Ion Species 

The plasma ion species have been investigated at z=30 cm with a 

small moveable magnetic mass spectrometer, which has been described 

e1sewhere. 32 The electronic circuitry is shown in Fig. E-1. For a 

fixed beam current, we measure the plasma ion species mix at a 

specific radial position and three neutral pressures (.95, 1.7, 2.8 

mTorr). Such a pressure scan is shown in Fig. E-2. The mass analyzer 

is then moved to another radial position and the experiment repeated. 

The results of this radial scan are shown in Fig. E-3. 

We assume the neutral gas to be molecular. This is expected 

because dissociation by the beam is so slight. For example, we might 

expect this dissociation to proceed at a rate comparable to 

ionization. Atomic loss rates would be similar to ion loss rates as 

o the H are mildly energetic (few V). We would then expect 

n - n. « n :: n 
HO , 

HO g 
2 

With thi s in mind, the ions + 
produced are H2 and H+ in the ratio 

6: 1 given by the relative production rates from beam particles 

incident on H2. For r > ab, no ion production occurs + 
and H2 plasma 

ions collide with H2, resulting in 
+ 

H3· Note that the total number 

ions is constant. + 
These H3 can be dissociated by the thermal 

electrons. For our low plasma density, the mean free path is very 

long: 

v. 
--,=----- = 
ne<dv>dis 1.1_1011 5_10-8 

= 200 cm , 

of 
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only two beamlets are shown, accelerator elec­
trodes are not drawn to scale, spectrometer mag­
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last of the three accelerator electrode assemblies. 
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least square fits of the data to the model given in the text. 

146 



1", 

100 

80 

:::: 60 
H+ ~ x 2 

::J 
-..-l 
LL 

Z 

~40 
:-: 

20 
H+ 

EB EB tti ED 

0 ( 
-1 0 2 3 4 5 6 7 8 9 10 

RADIUS (em) 

Fig. E- 3 b) Pg ~ 1.7 mTorr. 

100 

80 

:::: 60 

x 
::J 
-..-l 
LL 

'-.... 
z 
~40 
:-: 

20 

ffi 

o 
-1 0 

o 

~, 
$"",,-, + 

"-,, H2 

'-', EB 
""'''.~--$..---.. -- ... -

'.".,~ 

-~~-

EB EB 
HT 

2 3 4 5 6 7 8 9 10 

RADIUS (em) 

X8L 873-1191 

Fig, E- 3 c) Pg ~ 2.8 mTorr. 

~ 
'-l 



where we have utilized our standard parameters and have used a rate 

4 + + from C.F. Chan. As ~mFp(H3) » aw' we find the conversion of H2 to 

H; to be unimpeded. For r > ab, then, the fraction of unconverted H; 

ions is, 

F 

-n a r g 3+ = F(ab) e (El) 

h . th t· f th t· H+ H H+ HO. were a
3
+ lS e cross sec 10n or e reac 10n 2 + 2 ~ 3 + 

+ + H2 and H3 ion fluxes inferred from least-square fits to the above 

are drawn for r ~ 4 cm in Fig. E-3. One of the fit parameters is 

33 34 
nga

3
+. For energies of 0.5 to 2 V. reported a3

1 s ' show a 
+ decreasing exponential dependence with H2 energy, 

-E/cch 
a3+ ( E) ::: .a3+ (0) • e Plasma ions outside the beam have fallen 

across a potential drop of order T , so we take T as the ion energy, e e 
which is different for each pressure, at Ib used for this experiment. 

Our data are best represented by the characteristic energy exhibited 

33 by the data of Barnett, c ch = 1.lBV, for which, 
-15 2 

a3+(0) = 3 • 10 cm. The exponential fit parameters (apparent 

- T 11. lB V 
target thickness) have been divided by e e and plotted in 

Fig. E-4a. If our data demonstrated this same energy dependence, this 

rescaling would place all the points on a line, the slope then being 

a
3
+(0). The slope of this line when mTorr are converted to 

particles/cm3 is found to be 5.5 ± .1.10-15cm2. This is almost twice 
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Fig. E-4 Inverse Mean Free Path for Molecular Rearrangement 
Collisions. Fit parameters from the data in Fig. E-3 are plot­
ted after being rescaled for the appropriate electron 
temperatures in order to be representative of the ion speed. 
a) Rescaled to the characteristic energy of the Barnett data. 
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33 the value of the cross sections reported by Barnett, though this 

rescaling choice gives the best linearity. We have also resc9led our 

data to the energy dependence of the cross sectional data of Giese and 

Maier,34 represented by £ch = ~ V and 03+(0) = 3.4 • 10-15 cm2. 

This rescaled data (plotted in Fig. E-4b) deviates more from 

linearity, but 03+(0) determined from the slope, 
-15 2 (03+(0) = slope = 3.9 ± 1·10 cm) agrees well with the value of 

03+(0) representative of the cross sections reported by Giese and 

Maier. Our data would then be consistent with the energy dependence 

(£ch = 1.18 V) representative of of Barnett's data 33 and the magnitude 

of the cross sections reported by Giese and Maier. 34 Within the 

uncertainties of the reported 03's, we feel Eq. El adequat~ly 

describes the evolution of H; as it travels to the wall. 

+ Notice from Fig. E-3, where IH+ represents the plasma. H flux, that 

I 
H+ 

~ 14 ± 3% 

which compares favorably with the ratio of production rates already 

quoted (14%). If there were any significant percentage of HO in the 

neutralizer, this rate would be higher by that amount. 

We conclude then that the neutralizer is predominately H
2

, with 

atomic density < 3% of molecular density, where this latter 

+ percentage is the difference between the upper limit of H percentage 

measured and that predicted by production rates for an H2 target. 

This confirms our original expectation, 

n 0 « n 
H HO 

2 
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Appendix F 

Spectral Width of the Beam-Plasma Resonance 

We derive here the spectral width of the temporal growth rate. 

The dielectric function is given by Eq. 3.1. The wave dispersion is 

given by Eq. 3.4, satisfying Ep = O. The temporal growth rate is 

then found from 

( Fl ) 
(.0)0 + fll.) 

where fll.) is the shift away from the resonant frequency 1.)0 = k ~ !b. 

For 

We find 

and Eq. 3.3 gives 

Then Eq. Fl becomes 
322 R 3 

&1.) + 2fl(.o) • &(.0) + fl(.o) • &(.0) + 2 (.o)e = O. 

The imaginary part of the growing root of this cubic equation is 

plotted versus fll.)/(.o) in Fig. F-l. We see that when the frequency has 
e 

shifted 5% above I.) «.0). = (.o)e)' growth stops. This would be the o . 0 

situation that occurs when a wave, resonant at one z position, 

propogates to a region of 10% lower density, where the resonant 

frequency is now 5% lower. 
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frequency ( very nearly the plasma frequency) , resonant wave 
growth stops. 
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