
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Recursive Biorthogonal Decomposition of Multivariate Functions and Nonlinear Partial
Differential Equations

Permalink
https://escholarship.org/uc/item/7hj2w5tm

Author
Dektor, Alec

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hj2w5tm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY of CALIFORNIA
SANTA CRUZ

RECURSIVE BIORTHOGONAL DECOMPOSITION OF MULTIVARIATE
FUNCTIONS AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

SCIENTIFIC COMPUTING & APPLIED MATHEMATICS

by

Alec Dektor

June 2019

The thesis of Alec Dektor is approved:

Professor Daniele Venturi, Chair

Professor Qi Gong

Professor Dongwook Lee

Professor Nicholas Brummell

Lori Kletzer
Vice Provost, Dean of Graduate Studies

Copyright c© by

Alec Dektor

2019

Contents

List of Figures iv

Acknowledgements vi

1 Introduction 1
1.1 Classical Numerical Methods: ‘Curse of Dimensionality’ 1
1.2 A Scalable Approach to Time Dependent Problems 2

2 Multivariate Function Decomposition 5
2.1 Time Independent Function Decomposition . 5

2.1.1 Biorthogonal Decomposition . 6
2.1.2 Tensor Formats . 8
2.1.3 Error Analysis . 11
2.1.4 Computing Recursive Biorthogonal Decompositions 14

2.2 Time Dependent Function Decomposition . 18
2.2.1 DO Tensor Train Propagator . 19
2.2.2 BO Tensor Train Propagator . 24
2.2.3 Equivalence of DO and BO Tensor Train Components 25

3 Numerical Solutions of Nonlinear PDEs 29
3.1 Addition and Removal of Modes . 29
3.2 Numerical Examples . 31

3.2.1 2D Problem . 32
3.2.2 4D Problem . 36
3.2.3 50D Problem . 39

3.3 Summary . 41

A 47

B 49

iii

List of Figures

2.1 Binary trees corresponding to tensor formats. Left: Tensor Train for a 6 dimensional
function. Right: Hierarchical Tucker for a 4 dimensional function. 10

2.2 Left: Level 2 thresholds in the biorthogonal decomposition of (2.32) with level 1
threshold σ = 10−10, Middle: Level 1 spectrum, Right: Level 2 spectrum. 17

2.3 A few modes from the recursive biorthogonal decompostion of (2.32). Left: x1

modes, middle: x2 modes, right: x3 modes. 18
2.4 All 6 modes in the DO decomposition of (2.53) at a few snapshots in the time interval

[0, 5]. 23
2.5 L2 error of the DO approximation to (2.53) . 24

3.1 Trajectories of the characteristic system (3.5) corresponding to the PDE (3.4) . . . 32
3.2 First four modes in the DO decomposition and the spectrum of the constant rank

solution to (3.4) at times t = 0.0, t = 0.5, t = 1.0. 33
3.3 First four modes in the DO decomposition and the spectrum of the adaptive rank

DO/BO numerical tensor hybrid solution to (3.4) at times t = 0.0, t = 0.5, t = 1.0. 34
3.4 Discontinuities in the time evolution of modes obtained by using the DO Tensor

Train / Numerical Tensor hybrid adaptive method for the solution of (3.4). 35
3.5 Time snapshots of the solution to (3.4) obtained using Method of Characteristics

(top), Dynamically Orthogonal Tensor Train (middle), and the pointwise error (bot-
tom). 36

3.6 Error of Dynamically Orthogonal Tensor Train solution computed in the L2 norm.
One solution with constant modes for all time, one solution adding 6 modes at times
t = 0.5, t = 0.55, t = 0.6, t = 0.65, t = 0.7, t = 0.75, and one solution adding 8
modes at times t = 0.5, t = 0.55, t = 0.6, t = 0.65, t = 0.7, t = 0.75, t = 0.8,
t = 0.825, t = 0.85, t = 0.9. 37

3.7 Time evolution of a few DO Tensor Train modes from the numerical solution of (3.8). 38
3.8 Time snapshots of slices of the solution to (3.4) obtained using Method of Char-

acteristics (top), Dynamically Orthogonal Tensor Train (middle), and the pointwise
error (bottom). 39

3.9 L2 error of the DO Tensor Train approximation of the solution to (3.8) 40
3.10 Time evolution of x1 mode (left), time evolution of x2 mode (middle), error of DO

Tensor Train solution to (3.9) computed in the L2 norm (right). 41

iv

Abstract

Recursive Biorthogonal Decomposition of Multivariate Functions and Nonlinear

Partial Differential Equations

by

Alec Dektor

We develop a numerical method for the decomposition of multivariate functions based on recur-

sively applying biorthogonal decompositions in function spaces. The result is an approximation of

the multivariate function by sums of products of univariate functions. Decompositions of this type

can conveniently be visualized by binary trees and in some sense are a functional analog of the de-

compositions in tensor numerical methods that are obtained through sequences of matrix reshaping

and singular value decomposition. The underlying theory of recursive biorthogonal decomposition

in function spaces is developed and computational aspects are discussed. This decomposition is

generalized to handle time dependence in such a way which allows for the decomposition and prop-

agation of solutions to nonlinear time dependent partial differential equations. In this way we obtain

a numerical solution for time dependent problems which remains on a low parametric manifold of

constant rank for all time. We also discuss the addition and removal of time dependent modes dur-

ing propagation to allow for robust adaptive solvers. Applications to prototype linear hyperbolic

problems are presented and discussed.

v

Acknowledgements

I need to acknowledge the exceptional efforts of my thesis advisor, Professor Daniele Venturi, for

all of the useful discussions regarding topics related to this thesis and his commitment to my de-

velopment as a researcher of applied mathematics. Working on this project with him has been an

invaluable experience which has sparked my curiousity in various problems tangential to the topics

explored in this thesis. I very much look forward to continue working with him in the future. I would

also like to acknowledge support from the U.S. Army research grant W911NF1810309 during my

work on this thesis.

vi

1 Introduction

1.1 Classical Numerical Methods: ‘Curse of Dimensionality’

Time dependent partial differential equations (PDEs) arise in many areas of engineering, physical

sciences and mathematics, most of which do not have obtainable analytical solutions. For this rea-

son, numerical methods for PDEs are used often in many fields. There are a range of standard

techniques available for low dimensional PDEs which have been studied extensively over the years,

but there is a lack of techniques for high dimensional problems. Two prominent techniques for the

numerical solution of low dimensional PDEs are classical finite difference methods and spectral

methods. There is extensive amounts of literature on these two methods which study stability and

convergene for a wide range of problems. However these methods are not viable for high dimen-

sional problems since they suffer from what is called the ‘curse of dimensionality’. This phrase is

used to describe the exponential increase in computational complexity and storage cost of an al-

gorithm with the number of dimensions d of the solution. Consequently these standard numerical

techniques are not suitable for even moderate dimensional problems (d ≥ 4). High dimensional

PDEs are ubiquitous in science and engineering and therefore it is extremely desirable to have tools

for solving such problems. With the increase in computing power over the years, reliable methods

for time dependent problems which have improved scaling properties with respect to dimension-

ality have the potential of being widely applicable to many areas of scientific research. The goal

of this thesis is to present a new method for the numerical solution of high dimensional time de-

pendent PDEs which scales more favorably than classical methods with the number of dimensions

1

d. In doing so, we will also present a new decomposition for multivariate functions related to the

decompositions in numerical tensor methods.

1.2 A Scalable Approach to Time Dependent Problems

In recent years, tensor numerical methods have been used as a tool to mitigate dimensionality

problems rendering high dimensional problems tractable. The idea is to approximate multivari-

ate functions and operators by projecting them onto a low parametric rank-structered manifold, see

for example Khoromskij (2015a); Boelens et al. (2018). Tensor formats have proven to be capa-

ble of approximating a function related to d-dimensional data arrays of size Nd with complexity

O(d logN) De Lathauwer et al. (2000); Grasedyck (2009/10). However, there are inherent issues

which arise when attempting to use tensor formats together with traditional numerical schemes for

time dependent PDEs. For example, basic operations such as the addition of two tensors of ranks r1

and r2 in general results in a tensor of rank r1 + r2. Due to this fact, explicit numerical integration

schemes with tensors must be injected with numerous truncation steps. The truncation of tensors is

computationally expensive and perhaps more importantly, it is unknown how truncation effects the

stability of numerical integration schemes. Tensor numerical methods provide a technique for data

compression and have been used in many fields other than numerical solutions for PDEs. In all of its

applications, analysis of methods using numerical tensors is notoriously difficult due to the complex

sequence of operations1 involved in truncating a tensor.

In this thesis we take a slightly different approach and develop a recursive decomposition

for multivariate functions based on biorthogonal decompositions in function spaces. Each biorthog-

onal decomposition is determined by splitting variables into two disjoint subsets which, in a similar

spirit to tensor numerical methods, can conveniently be visualized by binary trees. We consider two

binary trees in particular which are analogous to the Tensor Train and Hierarchical Tucker formats of

tensor numerical methods. We use recursive biorthogonal decompositions for the numerical solution
1Truncating tensors involves sequences of reshaping tensors into matrices and performing singular value decompositions

on these matrices.

2

of high dimensional nonlinear time dependent PDEs of the form
u(0,x) = u0(x) , x ∈ D ,

B(u(x)) = h(t,x) , x ∈ ∂D ,

(1.1)

whereN is a separable differential operator of rank rN ,B is a linear differential operator, andD is a

bounded domain in Rd. By enforcing dynamic orthogonal (DO) or biorthogonal (BO) constraints on

the hierarchy of biorthogonal modes obtained with the recursive decomposition, evolution equations

for the modes are obtained. Thus we are able to propagate a solution to (1.1) on a tensor manifold

of constant rank by solving time dependent PDEs of one spatial variable. The advantage of this

approach over the numerical tensor approach is that there is a vast literature of stability and error

analysis for the 1 dimensional PDEs we obtain. Also, our decomposition leverages on truncating

infinite biorthogonal expansions for which error analysis is relatively straightforward. A consid-

eration of propagating on a constant rank manifold is that the solution of (1.1) may not have an

accurate representation on a constant rank manifold for all time. We will address issues that arise

when attempting to increase the solution rank during propagation.

First we take a rigorous approach to the recursive subspace decomposition of time in-

dependent functions. In this way we obtain an approximation of a high dimensional functions by

sums of products of univariate functions. We will also provide some error analysis of such decom-

positions. Next computational aspects of choosing a tensor format for the recursive biorthogonal

decomposition is discussed. This is equivalent to choosing a binary tree which determines how

spatial variables are split in each biorthogonal decomposition. We also describe a thresholding tech-

nique for determining how many biorthogonal modes to keep in each biorthogonal decomposition

and provide a numerical example. Once the spatial decomposition has been established, the de-

composition is extended to time dependent functions in a way which allows for the use of such an

expansion for the numerical solution of PDEs of the form (1.1). This is accomplished by enforcing

either a DO condition or a BO condition. We prove that the approximations resulting from these

two conditions are equivalent in the sense that the components lie in the same finite dimensional

function spaces. Finally we show how to use time dependent recursive subspace decompositions

3

for the solution of PDEs of the form (1.1). Increasing and decreasing ranks is also discussed, and

examples of solving prototype linear hyperbolic PDEs in 2, 4, and 50 spatial dimensions with these

methods are presented and discussed.

4

2 Multivariate Function Decomposition

2.1 Time Independent Function Decomposition

Let us introduce a suitable mathematical setting for the decomposition of a multivariate function

into a series expansion of univariate functions. Let D be a subset of Rd for some natural number d

and

u : D → R (2.1)

an element of a separable Hilbert space H. We will consider the Sobolov space1 H = H2(D) in

this thesis. We requireH to be separable (i.e. admit a countable basis) so that it may be represented

as a tensor product of two Hilbert spaces (Reed and Simon, 1980, p.51)

H ' H1 ⊗H2. (2.2)

The spaces H1 and H2 may be specified by partitioning the spatial variables {x1, . . . , xd} into two

disjoint subsets. Consider the partition {x1, x2, . . . , xd} = {x1, . . . , xp}∪̇{xp+1, . . . , xd} which

leads us to define the setsD(1,...,p) = D∩(Rp×∅d−p) ⊂ Rp andD(p+1,...,d) = D∩(∅p×Rd−p) ⊂

Rd−p. In this particular setting, the Hilbert space H2(D) admits the following decomposition

H2(D) = H2(D(1,...,p) ×D(p+1,...,d)) ' H2(D
(1,...,p)
1)⊗H2(D

(p+1,...,d)
1). (2.3)

A representation of (2.1) in the tensor product space (2.3) has the general form

u(1,...,d)(x1, . . . , xd) =

∞∑
i,j=1

aijϕ
(1,...,p)
i (x1, . . . , xp)ϕ

(p+1,...,d)
j (xp+1, . . . , xd) (2.4)

1We choose this Sobolov space because of the applications to PDEs in Section 3. Another possible choice isH = L2(D).

5

where ϕ(1,...,p)
i and ϕ(p+1,...,d)

j are orthonormal2 basis functions of H1 and H2 respectively. Notice

that the superscripts in (2.4) denote which spatial components the function depends on. This will be

the case throughout this thesis and for notational simplicity, the spatial arguments will be omitted

when there is no ambiguity.

2.1.1 Biorthogonal Decomposition

With the isomorphism (2.3) established, we follow the approach of Aubry et al. (1991); Aubry

and Lima (1995); Aubry (1991) to develop an operator theoretic framework which gaurantees the

existence of a biorthogonal representation of u in the tensor product space (2.3). This framework is

constructive in that it gives a method for the computation of biorthogonal decompositions. Define

the operator

Uu : H2(D(1,...,p))→ H2(D(p+1,...,d)) ,

ψ(1,...,p) 7→
∫
· · ·
∫
D(1,...,p)

u(1,...,d)ψ(1,...,p)dx1 · · · dxp
(2.5)

with adjoint operator given by

U∗u : H2(D(p+1,...,d))→ H2(D(1,...,p)) ,

ψ(p+1,...,d) 7→
∫
· · ·
∫
D(p+1,...,d)

ū(1,...,d)ψ(p+1,...,d)dxp+1 · · · dxd ,
(2.6)

where bar denotes complex conjugation. This is an integral operator with kernel specified by its sub-

script. We will shortly define a hierarchy of integral operators and it will be important to distinguish

them by their kernels. Since u is square integrable, the operators Uu and U∗u are compact. We can

now introduce the two operators

Ru : H2(D(p+1,...,d))→ H2(D(p+1,...,d))

such that

Ru = UuU
∗
u

and

Lu : H2(D(1,...,p))→ H2(D(1,...,p))

2Orthonormality is relative to specific choices of inner products inH1 andH2.

6

such that

Lu = U∗uUu.

Remark 2.1.1. The operators Lu and Ru are compact since the composition of compact operators

on a Hilbert space is compact. It follows that Lu and Ru both have discrete spectra (see e.g. (Kato,

1995, p.185)).

It is straightforward to show that

Ru(ψ(p+1,...,d))

=

∫
· · ·
∫
D(p+1,...,d)

ru(xp+1, . . . , xd, x
′
p+1, . . . , x

′
d)ψ

(p+1,...,d)(x′p+1, . . . , x
′
d)dx

′
p+1 · · · dx′d ,

where ru is the correlation function given by

ru(xp+1, . . . , xd, x
′
p+1, . . . , x

′
d)

=

∫
· · ·
∫
D(1,...,p)

u(x1, . . . , xp, xp+1, . . . , xd)ū(x1, . . . , xp, x
′
p+1, . . . , x

′
d)dx1 · · ·xp.

Similarly

Lu(ψ(1,...,p))

=

∫
· · ·
∫
D(1,...,p)

lu(x1, . . . , xp, x
′
1, . . . , x

′
p)ψ

(1,...,p)(x′1, . . . , x
′
p)dx

′
1 · · · dx′p ,

(2.7)

where lu is the correlation function given by

lu(x1, . . . , xp, x
′
1, . . . , x

′
p)

=

∫
· · ·
∫
D(p+1,...,d)

u(x1, . . . , xp, xp+1, . . . xd)ū(x′1, . . . , x
′
p, xp+1, . . . , xd)dxp+1 · · · dxd.

It is a classical demonstration in the theory of functional analysis of operators that there exists a

canonical decomposition of u such that

u(1,...,d) =

∞∑
k=1

λkψ
(1,...,p)
k ψ

(p+1,...,d)
k , (2.8)

where

λ1 ≥ λ2 ≥ · · · > 0 ,

lim
k→∞

λk = 0 ,

〈ψ(1,...,p)
i ψ

(1,...,p)
j 〉 = 〈ψ(p+1,...,d)

i ψ
(p+1,...,d)
j 〉 = δij ,

(2.9)

7

and the series (2.8) converges in norm. This decomposition is called a biorthogonal decomposition

of the function u. It is easy to see that the functions ψ(1,...,p)
k are eigenfunctions of the operator Lu

with corresponding eigenvalue λ2
k and the functions ψ(p+1,...,d)

k are eigenfunctions of the operator

Ru with corresponding eigenvalues λ2
k

Lu(ψ
(1,...,p)
k) = λ2

kψ
(1,...,p)
k ,

Ru(ψ
(p+1,...,d)
k) = λ2

kψ
(p+1,...,d)
k .

(2.10)

In practice, we can solve the eigenvalue problem of smaller dimension3 to obtain half of the modes

and the eigenvalues. The other half of the modes can then be obtained by projecting u onto the

eigenfunctions we have already computed

ψ
(p+1,...,d)
k =

1

λk

∫
· · ·
∫
D(1,...,p)

u(1,...,d)ψ
(1,...,p)
k dx1 · · · dxp

ψ
(1,...,p)
k =

1

λk

∫
· · ·
∫
D(p+1,...,d)

u(1,...,d)ψ
(p+1,...,d)
k dxp+1 · · · dxd.

(2.11)

2.1.2 Tensor Formats

In order to obtain a series expansion of u in terms of univariate functions, we apply the biorthogonal

decomposition recursively. The way in which the variables are split in each step of the recursive

decomposition (i.e. the choice of p) can conveniently be visualized by binary trees and is called a

tensor format. We consider two tensor formats, Tensor Train and Hierarchical Tucker, with corre-

sponding binary trees given in Figure 2.1.

Tensor Train

The Tensor Train format singles out one variable at a time. In order to obtain a Tensor Train de-

composition of a d-variate function (2.1), begin by partitioning the variables in the following way

{x1, . . . , d} = {x1}∪̇{x2, . . . , xd} and perform a recursive biorthogonal decomposition (2.8). Then

for each of the modes ψ(2,...,d)
i1

, partition the variables as {x2, . . . , d} = {x2}∪̇{x3, . . . , xd} and

perform a biorthogonal decomposition for each of the ψ(2,...,d)
i1

. In this way we obtain functions

3Provided that p is chosen such that p 6= d− p.

8

ψ
(3,...,d)
i1i2

. Proceeding recursively we obtain the following hierarchy of functions

u(1,...,d) =

∞∑
i1=1

λi1ψ
(1)
i1
ψ

(2,...,d)
i1

(2.12)

ψ
(2,...,d)
i1

=

∞∑
i2=1

λi1i2ψ
(2)
i1i2

ψ
(3,...,d)
i1i2

(2.13)

...

ψ
(j,...,d)
i1···ij−1

=

∞∑
ij=1

λi1···ijψ
(j)
i1···ijψ

(j+1,...,d)
i1···ij (2.14)

...

ψ
(d−1,d)
i1···id−2

=

∞∑
id−1=1

λi1···id−1
ψ

(d−1)
i1···id−1

ψ
(d)
i1···id−1

. (2.15)

Each of the biorthogonal modes can be obtained by solving a sequence of 1 dimensional eigenfunc-

tion problems followed by projections. The eigenvalue problems using the notation developed above

are

Lu(ψ
(1)
i1

) = λ2
i1ψ

(1)
i1

,

L
ψ

(k−1)
i1···ik−1

(ψ
(k)
i1···ik) = λ2

i1···ikψ
(k)
i1···ik , k = 2, . . . , d− 1

(2.16)

and the corresponding projections are given by

ψ
(2,...,d)
i1

=
1

λi1

∫
D(1)

u(x1, . . . , xd)ψ
(1)
i1
dx1

ψ
(j+1,...,d)
i1···ij =

1

λi1···ij

∫
D(j+1)

ψ
(j,...,d)
i1···ij−1

ψ
(j)
i1···ijdxj

(2.17)

In this format, we have the following series expansion

u(1,...,d) =

∞∑
i1=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
ψ

(2)
i1i2
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

. (2.18)

As can be seen from the hierarchy of biorthogonal decompositions (2.12)-(2.15), the Tensor Train

format requires d− 1 levels of biorthogonal decompositions to decompose a d-variate function, the

number d− 1 is referred to as the depth of the Tensor Train binary tree.

Hierarchical Tucker

In contrast with the Tensor Train format, the Hierarchical Tucker format splits sets of variables into

equal size disjoint subsets whenever possible. In the case of d = 2n for some natural number n,

9

Figure 2.1: Binary trees corresponding to tensor formats. Left: Tensor Train for a 6 dimensional

function. Right: Hierarchical Tucker for a 4 dimensional function.

the tree is balanced (i.e. every branch has the same depth). Other than the way in wich variables

are split, the methodology of decomposing a function in the Hierarchical Tucker format is the same

as in the Tensor Train format: a sequence of biorthogonal decompositions are applied recursively

until we obtain an expansion in terms of univariate functions. To illustrate this format, let us unfold

the hierarchy of biorthogonal modes of a d-variate function (2.1) when d = 2n in the Hierarchical

Tucker format

u(1,...,d) =

∞∑
i1=1

λ
(1,..., d2)
i1

ψ
(1,..., d2)
i1

ψ
(d
2 +1,...,d)
i1

(2.19)

ψ
(1,..., d2)
i1

=

∞∑
i2=1

λ
(1,..., d4)
i1i2

ψ
(1,..., d4)
i1i2

ψ
(d
4 +1,..., d2)
i1i2

(2.20)

ψ
(d
2 +1,...,d)
i1

=

∞∑
i2=1

λ
(d
2 +1,..., 3d4)
i1i2

ψ
(d
2 +1,..., 3d4)
i1i2

ψ
(3d

4 +1,...,d)
i1i2

(2.21)

...

ψ
(1,2)
i1···in−1

=

∞∑
in=1

λ
(1)
i1···inψ

(1)
i1···inψ

(2)
i1···in (2.22)

...

ψ
(d−1,d)
i1···in−1

=

∞∑
in=1

λ
(d−1)
i1···inψ

(d−1)
i1···inψ

(d)
i1···in . (2.23)

In general, a Hierarchical Tucker tree is more shallow than a Tensor Train tree when decomposing

functions of the same number of variables. The depth of a Hierarchical Tucker Tree for d = 2n is

n = log2(d). Similar to the Tensor Train format, a sequence of eigenfunction problems followed by

10

projections can be used to obtain each of the modes in the decomposition above. However in this

case the eigenfunction problems are higher dimensional and not compuationally tractable for large

d. In the Hierarchical Tucker format, the approximate solution is represented by the series expansion

u(1,...,d) =

∞∑
i1=1

· · ·
∞∑
in=1

λ
(1,..., d2)
i1

· · ·λ(d−1)
i1···inψ

(1)
i1···inψ

(2)
i1···in · · ·ψ

(d)
i1···in . (2.24)

Remark 2.1.2. One may decompose a multivariate function by splitting variables in various ways

at different levels of the decompositions. Any binary tree which has leaves containing one index

leads to a series expansion in terms of functions of one spatial variable.

2.1.3 Error Analysis

In this section we develop two results related to the truncated recursive biorthogonal decomposi-

tion. The first is a Proposition which will be useful in Section 2.1.4 for establishing a thresholding

criterion to truncate the infinite sums in expansions (2.18) and (2.24).

Proposition 2.1.1. If ψ ∈ L2(D) with biorthogonal decomposition given by

ψ(x) =

∞∑
i=1

λiψ
(l)
i (xl)ψ

(r)
i (xr),

where ψ(l)
i (xl) ∈ L2(D(l)) and ψ(r)

i (xr) ∈ L2(D(r)), then
∞∑
i=1

λ2
i = ‖ψ(x)‖L2 .

Proof. This result is easily obtained by using the orthonormality of the biorthogonal modes {ψ(l)(xl)}∞i=1

and {ψ(r)(xr)}∞i=1

‖ψ(x)‖L2 =

∫
D

ψ(x)2dx

=

∫
D

(

∞∑
i=1

λiψ
(l)
i (xl)ψ

(r)
i (xr))

2dx

=

∞∑
i,j=1

λiλj

∫
D(l)

ψ
(l)
i (xl)ψ

(l)
j (xl)dxl

∫
D(r)

ψ
(r)
i (xr)ψ

(r)
j (xr)dxr

=

∞∑
i=1

λ2
i .

11

Next we provide the exact L2 error between an analytic Tensor Train series expansion of

the form (2.18) and the truncated expansion

ũ(1,...,d) =

r1∑
i1=1

r2(i1)∑
i2=1

· · ·
rd−1(i1,...,id−2)∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
ψ

(2)
i1i2
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

. (2.25)

Similar error analysis can be done for other tensor formats as well. These error results in theL2 norm

are analogous to the results mentioned by Schneider and Uschmajew Schneider and Uschmajew

(2014), first proven by De Lathauwer et al. De Lathauwer et al. (2000), and later generalized by

Grasedyck Grasedyck (2009/10) which bound the overall squared approximation error of multilinear

singular value decompositions in the 2-norm by the sum (over the whole tree) of squares of deleted

singular values. In order to simplify indexing and array bounds for truncated expansions such as

(2.25), we will omit the array indices in the rank arrays. For example, we will write ψ(j1,...,jp)
i1···ik , k =

1, . . . , rk instead of k = 1, . . . , rk(i1, . . . , ik−1) since the rank array indices are clear from the

subscripts of the mode ψ(j1,...,jp)
i1···ik . In this notation, the truncated Tensor Train expansion (2.25)

becomes

ũ(1,...,d) =

r1∑
i1=1

r2∑
i2=1

· · ·
rd−1∑
id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
ψ

(2)
i1i2
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

. (2.26)

Theorem 2.1.1. The squared error incurred by truncating the infinite expanion (2.18) to the finite

expansion (2.26) is given by

‖u(1,...,d) − ũ(1,...,d)‖2L2

=

∞∑
i1=r1+1

λ2
i1 +

r1∑
i1=1

∞∑
i2=r2+1

λ2
i1λ

2
i1i2 + · · ·

+

r1∑
i1=1

r2∑
i2=1

· · ·
rd−2∑
id−2=1

∞∑
id−1=rd−1+1

λ2
i1λ

2
i1i2 · · ·λ

2
i1···id−1

.

(2.27)

Proof. Rewrite (2.18) as

u(1,...,d) =

∞∑
i1=1

λi1ψ
(1)
i1

∞∑
i2=1

λi1i2ψ
(2)
i1i2
· · ·

∞∑
id−1=1

λi1···id−1
ψ

(d−1)
i1···id−1

ψ
(d)
i1···id−1

(2.28)

then split each infinite sum into a finite sum and an infinite sum

u(1,...,d) =(

r1∑
i1=1

λi1ψ
(1)
i1

+

∞∑
i1=1

λi1ψ
(1)
i1

)(

r2∑
i2=1

λi1i2ψ
(2)
i1i2

+

∞∑
i2=1

λi1i2ψ
(2)
i1i2

) · · ·

· · · (
rd−1∑
id−1=1

λi1···id−1
ψ

(d−1)
i1···id−1

ψ
(d)
i1···id−1

+

∞∑
id−1=1

λi1···id−1
ψ

(d−1)
i1···id−1

ψ
(d)
i1···id−1

).

(2.29)

12

We prove in Appendix A that by expanding the products in (2.29) the following expression is ob-

tained

u(1,...,d) =

r1∑
i1=1

r2∑
i2=1

· · ·
rd−1∑
id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

+

∞∑
i1=r1+1

∞∑
i2=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

+

r1∑
i1=1

∞∑
i2=r2+1

∞∑
i3=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

+

r1∑
i1=1

r2∑
i2=1

∞∑
i3=r3+1

∞∑
i4=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

...

+

r1∑
i1=1

r2∑
i2=1

· · ·
rd−2∑
id−2=1

∞∑
id−1=rd−1+1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

(2.30)

where the first product of sums is precisely ũ(1,...,d). Now we have that

‖u(1,...,d) − ũ(1,...,d)‖2L2

= ‖
∞∑

i1=r1+1

∞∑
i2=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

+

r1∑
i1=1

∞∑
i2=r2+1

∞∑
i3=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

+

r1∑
i1=1

r2∑
i2=1

∞∑
i3=r3+1

∞∑
i4=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

...

+

r1∑
i1=1

r2∑
i2=1

· · ·
rd−2∑
id−2=1

∞∑
id−1=rd−1+1

λi1 · · ·λi1···id−1
ψ

(1)
i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

‖2L2

13

and using the orthogonality of each set of biorthogonal modes

‖u(1,...,d) − ũ(1,...,d)‖2L2

=

∞∑
i1=r1+1

∞∑
i2=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
‖ψ(1)

i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

‖L2

+

r1∑
i1=1

∞∑
i2=r2+1

∞∑
i3=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
‖ψ(1)

i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

‖L2

+

r1∑
i1=1

r2∑
i2=1

∞∑
i3=r3+1

∞∑
i4=1

· · ·
∞∑

id−1=1

λi1 · · ·λi1···id−1
‖ψ(1)

i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

‖L2

...

+

r1∑
i1=1

r2∑
i2=1

· · ·
rd−2∑
id−2=1

∞∑
id−1=rd−1+1

λi1 · · ·λi1···id−1
‖ψ(1)

i1
· · ·ψ(d−1)

i1···id−1
ψ

(d)
i1···id−1

‖2L2 .

Finally using the orthonormality of each mode and Proposition 2.1.1 we obtain

‖u(1,...,d) − ũ(1,...,d)‖2L2

=

∞∑
i1=r1+1

λ2
i1 +

r1∑
i1=1

∞∑
i2=r2+1

λ2
i1λ

2
i1i2 + · · ·

+

r1∑
i1=1

r2∑
i2=1

· · ·
rd−2∑
id−2=1

∞∑
id−1=rd−1+1

λ2
i1λ

2
i1i2 · · ·λ

2
i1···id−1

.

2.1.4 Computing Recursive Biorthogonal Decompositions

In this section we explain some computational aspects of the recursive biorthogonal decompositions

such as (2.18) and (2.24). In order to obtain such decompositions, one of two kernels must be

computed either ru or lu and then a corresponding eigenfunction problem must be solved. In the

Hierarchical Tucker format, computing ru or lu require evaluating integrals of the same dimension

(d2) which result in eigenfunction problems of the same dimension (also d
2). In this case there is no

advantage in choosing to compute lu over ru. In the Tensor Train format, there are two options

• Compute ru which requires evaluating a 1 dimensional integral, then solve the resulting d− 1

dimensional eigenfunction problem. Following this, d − 1 dimensional integrals must be

computed to obtain the second half of the modes through projection.

14

• Compute lu which requires evaluating a d − 1 dimensional integral, then solve the result-

ing 1 dimensional eigenfunction problem. Following this, 1 dimensional integrals must be

computed to obtain the second half of the modes through projection.

From a computational viewpoint, it is advantageous to choose the second option since high dimen-

sional integrals can effectively be computed using Quasi-Monte Carlo methods Dick et al. (2013)

and one dimensional eigenfunction problems reduce to matrix eigenvalue problems when collocated

on a tensor product grid. Solving the 1 dimensional eigenfunction problem (2.16) using a colloca-

tion method with a tensor product grid containingM points in x1 andM points in x′1, we can obtain

at most M eigenfunctions and their corresponding eigenvalues. This leads to the decision of how

many of these eigenfunctions should one keep. The thresholding technique which we now explain

gives a criterion for choosing how many eigenfunction and eigenvalue pairs to keep in each level of

the recursive biorthogonal decomposition for any tensor format.

Thresholding

Notice in the series expansions (2.18) and (2.24) we take products of eigenvalues from each level of

the corresponding binary tree. With this in mind, it is reasonable to have a criterion which ensures

that each of these eigenvalue products remains above a threshold value σ. To simplify notation we

explain how to threshold for the recursive biorthogonal Tensor Train decompsition (2.18) and note

that the same idea can be applied to any tensor format.

Begin by setting some threshold value σ for which we will enforce λi1λi1i2 · · ·λi1···id−1
≥

σ. In the first biorthogonal decomposition (2.12), we keep all biorthogonal modes ψ(1)
i1
, ψ

(2,...,d)
i1

with eigenvalues λi1 ≥ σ, of which there will be a finite number r1 because of property (2.9). For

the biorthogonal decomposition of each ψ(2,...,d)
i1

(1 ≤ i1 ≤ r1) we set a new threshold σ1 = σ
λi1

and keep all modes ψ(2)
i1i2

, ψ
(3,...,d)
i1i2

with eigenvalues λi1i2 ≥ σi1 . Proceeding in this way, on the

jth level of biorthogonal decompositions we set thresholds σi1···ij =
σi1···ij−1

λi1···ij
. It is acceptable to

disregard modes corresponding to eigenvalues less than σ in the first biorthogonal decomposition

15

since it is easy to show that

λi1 · · ·λi1···ij−1
≥ λi1 · · ·λi1···ij (2.31)

for all j = 2, . . . , d− 1. Indeed, Proposition 2.1.1 implies that λi1···ij ≤ 1 for all j = 2, . . . , d− 1

from which (2.31) immediately follows. Another desirable consequence of Proposition 2.1.1 is that

σi1···ij−1 ≤ σi1···ij for all j = 2, . . . , d− 1.

As a result of thresholding in this way, each individual biorthogonal decomposition is trun-

cated to a different number of modes. Continuing the example of the Tensor Train format, on the first

level of the tree there is only one biorthogonal decomposition, the decomposition of u(1,...,d), for

which we keep r1 modes. For each of the modes ψ(2,...,d)
i1

(i1 = 1, . . . , r1), the level 2 biorthogonal

decompositions are performed with corresponding thresholds σi1 . In the biorthogonal decompo-

sition of ψ(2,...,d)
i1

, we keep r2(i1) modes. Thus the biorthogonal ranks for the second level are

described by the vector r2. For each of the r1

r1∑
i1=1

r2(i1) modes ψ(3,...,d)
i1i2

, the level 3 biorthogonal

decompositions are performed with corresponding thresholds σi1i2 . In the biorthogonal decompo-

sition of ψ(3,...,d)
i1i2

we keep r3(i1, i2) modes. Thus the biorthogonal ranks for the third level of the

Tensor Train decomposition are described by a matrix. In general on the jth level, a j − 1 way array

of ranks is obtained.

A Numerical Example

As a demonstration of the methods we have mentioned so far, we compute numerically a recursive

biorthogonal decomposition4 of the function

u(x1, x2, x3) = esin(x1+2x2+3x3) + x2x3 , (x1, x2, x3) ∈ [−1, 1]3. (2.32)

First we collocate (2.32) on a 3 dimensional tensor product grid with 50 Gauss-Legendre points in

each direction. The kernel of the first integral operator we consider is given by

lu(x1, x
′
1) =

∫ 1

−1

∫ 1

−1

u(x1, x2, x3)u(x′1, x2, x3)dx2dx3

4For two and three dimensional functions Tensor Train and Hierarchical Tucker formats are equivalent.

16

0

0.2

0.4

0.6

0.8

Figure 2.2: Left: Level 2 thresholds in the biorthogonal decomposition of (2.32) with level 1 thresh-

old σ = 10−10, Middle: Level 1 spectrum, Right: Level 2 spectrum.

which we compute with a tensor product quadrature rule corresponding to the chosen grid points.

The x1 modes are solutions of the eigenfunction problem

∫ 1

−1

lu(x1, x
′
1)ψ(1)(x′1)dx′1 = λ2ψ(1)(x1). (2.33)

We have lu collocated on a 2 dimensional grid of Gauss-Legendre points, so the eigenfunctions ψ(1)

in (2.33) collocated at Gauss-Legendre points with eigenvalue λ2 are eigenvector and eigenvalue

pairs of the matrix luW , where W is a diagonal matrix of Gauss-Legendre quadrature weights.

Thus we obtain the 50 leading eigenvalues and collocated eigenfunctions of the operator Lu in (2.7).

Following the thresholding technique explained above, we set σ = 10−10 to determine how many

level 1 eigenvalues and eigenfunctions to keep. It turns out that 9 eigenvalues are larger than σ, thus

r1 = 9. These 9 eigenvalues λ1, . . . , λ9 constitute the level 1 spectrum which is shown in the left plot

of Figure 2.2, the corresponding eigenfunctions are ψ(1)
1 , . . . , ψ

(1)
9 . The modes ψ(2,3)

1 , . . . , ψ
(2,3)
9

can now be obtained through projections as in (2.17)

ψ
(2,3)
j =

1

λj

∫ 1

−1

u(x1, x2, x3)ψ
(1)
j dx1. (2.34)

We compute these integrals with Gauss-Legendre quadrature.

For each of the 9 modes ψ(2,3)
j we follow the same procedure used to obtain ψ(1)

j from u.

That is, we compute the kernels

l
ψ

(2,3)
j

(x2, x
′
2) =

∫ 1

−1

ψ(2,3)(x2, x3)ψ(2,3)(x′2, x3)dx3

17

Figure 2.3: A few modes from the recursive biorthogonal decompostion of (2.32). Left: x1 modes,

middle: x2 modes, right: x3 modes.

with Gauss-Legendre quadrature. Then solve the eigenvalue problems

∫ 1

−1

l
ψ

(2,3)
j

(x2, x
′
2)ψ

(2)
j (x′2)dx′2 = λ2

jψ
(2)
j

to obtain the first 50 collocated eigenfunctions and eigenvalues for each operator L
ψ

(2,3)
j

, j =

1, . . . , 9. To decide how many eigenvalues and eigenfunctions to keep for the operator L
ψ

(2,3)
j

we

use the threshold σj = σ
λj

. These threshold values are shown in the middle plot of Figure 2.2. This

yields the vector of level 2 ranks r2 = [10, 11, 11, 13, 13, 13, 14, 13, 13]. The level 2 spectra for all

9 modes can be seen in the right plot of Figure 2.2.

2.2 Time Dependent Function Decomposition

Now we consider the time dependent field

u : D × [0, T]→ R (2.35)

for which at any fixed t ∈ [0, T] we have that that u(x, t) is an element of the Sobolov spaceH2(D).

Two possible methods for the decomposition of (2.35) are

• Provided that u is square integrable in t, we may treat t the same as a spatial variable and

include it in the recursive biorthogonal decomposition.

• Perform a recursive biorthogonal decomposition in space at a fixed time t0 ∈ [0, T] to obtain

one of the two decompositions (2.12)-(2.15) or (2.19)-(2.23). Then assume that each of the

18

modes in the recursive decomposition depends on time and develop evolution equations for

each mode.

With the goal of using the recursive biorthogonal decomposition as an expansion of the solution

to PDEs of the form (1.1), we develop the necessary theory for the second method in the Tensor

Train format. The time redundancy that is introduced is overcome by enforcing either a dynamic

orthogonality (DO) condition or a biorthogonal (BO) condition as done in Cheng et al. (2013a,b);

Sapsis and Lermusiaux (2009); Choi et al. (2014); Babaee et al. (2017).

For the remainder of this thesis, we consider a decomposition of (2.35) of the form

u(1,...,d)(t)

=

∞∑
i1=1

· · ·
∞∑

id−1=1

λi1(t) · · ·λi1···id−1
(t)ψ

(1)
i1

(t)ψ
(2)
i1i2

(t) · · ·ψ(d−1)
i1···id−1

(t)ψ
(d)
i1···id−1

(t).
(2.36)

The rest of this chapter is devoted to deriving DO and BO evolution equations for the modes in (2.36)

and showing that these two methods of propagating u on a low parametric manifold of constant rank

are equivalent in the sense that the finite dimensional function spaces containing DO and BO com-

ponents are the same. We also provide a numerical example of the DO propagator. In the following

derivations every function is time dependent, so t is omitted from the function arguments. Super-

scripts indicate spatial dependencies so spatial arguments of functions are also omitted when there

is no ambiguity. Angled brackets 〈•, •〉 denote an L2 inner product over all spatial components for

which the two inputs are defined. When the input arguments of 〈•, •〉 are vectors f = (f1 · · · fm)T ,

g = (g1 · · · gn), the result is an m× n matrix with entries (〈f , g〉)ij = 〈fi, gj〉.

2.2.1 DO Tensor Train Propagator

First we derive the DO evolution equations in the Tensor Train format. Using the notation in the

recursive decomposition (2.12)-(2.15), we define the DO components as

DO

ψ
(j)

i1···ij = ψ
(j)
i1···ij

DO

ψ
(j+1,...,d)

i1···ij = λi1···ijψ
(j+1,...,d)
i1···ij .

(2.37)

Notice that the right hand modes carry the eigenvalues in the DO components, this will be differ-

ent for the BO components which will be defined in the following section. Enforce the dynamic

19

constraints

〈
∂

DO

ψ
(j)

i1···ij−1k

∂t
,
DO

ψ
(j)

i1···ij−1p〉 = 0 (2.38)

for all k, p = 1, . . . , rj . This condition implies that the {
DO

ψ
(j)

i1···ij−11, . . . ,
DO

ψ
(j)

i1···ij−1rj} remain

orthonormal with respect to the spatial inner product for all time. We do not enforce any conditions

on the right hand modes, they will most often not remain orthogonal as they evolve. For ease of

notation in the following derivation, we let ψ(j)
i1···ij =

DO

ψ
(j)

i1···ij and ψ(j+1,...,d)
i1···ij =

DO

ψ
(j+1,...,d)

i1···ij .

To begin the derivation of the DO Tensor Train evolution equations, we differentiate the

level 1 expansion
r1∑
i1=1

ψ
(1)
i1
ψ

(2,...,d)
i1

= u(1,...,d) (2.39)

with respect to t to obtain

r1∑
i1=1

∂ψ
(1)
i1

∂t
ψ

(2,...,d)
i1

+ ψ
(1)
i1

∂ψ
(2,...,d)
i1

∂t
=
∂u(1,...,d)

∂t
. (2.40)

Applying 〈•, ψ(1)
k1
〉 to (2.40) and utlizing the DO condition (2.38), we obtain evolution equations for

half of the modes in (2.12)

∂ψ
(2,...,d)
k1

∂t
= 〈∂u

(1,...,d)

∂t
, ψ

(1)
k1
〉 := NDO

k1 . (2.41)

To obtain evolution eqautions for the other half ψ(1)
k1

, apply 〈•, ψ(2,...d)
k1

〉 to (2.40) to obtain

r1∑
i1=1

∂ψ
(1)
i1

∂t
〈ψ(2,...,d)
i1

, ψ
(2,...,d)
k1

〉+ ψ
(1)
i1
〈
∂ψ

(2,...,d)
i1

∂t
, ψ

(2,...,d)
k1

〉 = 〈∂u
(1,...,d)

∂t
, ψ

(2,...,d)
k1

〉. (2.42)

Then by applying 〈•, ψ(1)
k1
〉 to either (2.41) or (2.42) with we find that

〈
∂ψ

(2,...,d)
k1

∂t
, ψk1〉 = 〈〈∂u

(1,...,d)

∂t
, ψ

(2,...d)
k1

〉, ψ(1)
k1
〉. (2.43)

Plugging (2.43) into (2.42) we obtain the evolution equations for the second half of the modes in

(2.12)

r1∑
i1=1

∂ψ
(1)
i1

∂t
〈ψ(2,...,d)
i1

, ψ
(2,...,d)
k1

〉

= 〈∂u
(1,...,d)

∂t
, ψ

(2,...,d)
k1

〉 −
r1∑
i1=1

ψ
(1)
i1
〈〈∂u

(1,...,d)

∂t
, ψ

2,...,d)
k1

〉, ψ(1)
i1
〉 := MDO

k1 .

(2.44)

20

These evolution equations can be expressed more succinctly by introducing the vector notation

Ψ(1) = [ψ
(1)
1 · · ·ψ(1)

r1]

Ψ(2,...,d) = [ψ
(2,...,d)
1 · · ·ψ(2,...,d)

r1].

(2.45)

Now we may write
∂

∂t
Ψ(1)C = [MDO

1 · · ·MDO
r1]

∂

∂t
Ψ(2,...,d) = [NDO

1 · · ·NDO
r1]

(2.46)

where (C)ij = 〈ψ(2,...,d)
i , ψ

(2,...,d)
j 〉.

We move to the next level of the Tensor Train tree and derive DO evolution equations for

the level 2 modes. By following the same sequence of projections as done for the level 1 modes, we

obtain

∂ψ
(3,...,d)
k1k2

∂t
= 〈Nk1 , ψ

(2)
k1k2
〉 := NDO

k1k2
(2.47)

and
r2∑
i2=1

∂ψ
(2)
k1i2

∂t
〈ψ(3,...,d)
k1i2

, ψ
(3,...,d)
k1k2

〉

= 〈Nk1 , ψ
(3,...,d)
k1k2

〉 −
r2∑
i2=1

ψ
(2)
k1i2
〈〈Nk1 , ψ

(3,...,d)
k1k2

〉, ψ(2)
k1i2
〉 := MDO

k1k2 .

(2.48)

Proceeding recursively in this manner, evolution equations for the entire Tensor Train tree are un-

folded

∂ψ
(j+1,...,d)
k1···kj
∂t

= 〈Nk1···kj−1
, ψ

(j+1,...,d)
k1···kj 〉 := NDO

k1···kj
rj∑
ij=1

∂ψk1···kj−1ij

∂t
〈ψ(j+1,...,d)
k1···kj−1ij

, ψ
(j+1,...,d)
k1···kj 〉

= 〈Nk1···kj−1
, ψ

(j+1,...,d)
k1···kj 〉 −

rj∑
ij=1

ψk1···kj−1ij 〈〈Nk1···kj−1
, ψ

(j+1,...,d)
k1···kj 〉, ψ(j)

k1···kj−1ij
〉 := MDO

k1···kj .

(2.49)

If we use the vector notation

Ψ
(j)
i1···ij−1

= [ψ
(j)
i1···ij−11 · · ·ψ

(j)
i1···ij−1rj

]

Ψ
(j+1,...,d)
i1···ij−1

= [ψ
(j+1,...,d)
i1···ij−11 · · ·ψ

(j+1,...,d)
i1···ij−1rj

]

(2.50)

then the evolution equations become

∂

∂t
Ψ

(j)
i1···ij−1

Ci1···ij−1 = [MDO
i1···ij−11 · · ·MDO

i1···ij−1rj]

∂

∂t
Ψ

(j+1,...,d)
i1···ij−1

= [NDO
i1···ij−11 · · ·NDO

i1···ij−1rj]

(2.51)

21

Remark 2.2.1. The ‘non-leaf’ modes ψ(j+1,...,d)
k1···kj can be constructed at any time as an expansion

of ‘leaf’ modes

ψ
(j+1,...,d)
k1···kj =

rj+1∑
ij+1=1

· · ·
rd−1∑
id−1=1

ψ
(j+1)
k1···kjij+1

· · ·ψ(d−1)
k1···kjij+1···id−1

ψ
(d)
k1···kjij+1···id−1

(2.52)

as can the solution ũ as in equation (2.18). Therefore it is sufficient to only propagate the evolution

equations corresponding to the ‘leaf’ modes, these are the univariate functions in the biorthogonal

hierarchy (2.12)-(2.15).

A Numerical Example

We demonstrate the DO propagator using the function

u(t, x1, x2, x3) = (t+ 1)x2x3 + (t2 − 10)x1x3 − (4 sin(t) + 3)x1x2x3 (2.53)

with x ∈ [−1, 1]3. We perform a recursive biorthogonal decomposition of u(0, x1, x2, x3) in exactly

the same way as it is done in Section 2.1.4. We use 50 Gauss-Legendre quadrature points and set

the threshold to σ = 10−10. This allows us to obtain the DO components at t = 0 in the expansion

u(0, x1, x2, x3) = ψ
(1)
1 ψ

(2)
11 ψ

(3)
11 + ψ

(1)
2 ψ

(2)
21 ψ

(3)
21 . (2.54)

The rank of this recursive biorthogonal decomposition is r1 = 2, r2 = (1, 1). The time derivative

of u is

∂u

∂t
= x2x3 + 2tx1x3 − 4 cos(t)x1x2x3

and the DO evolution equations in this case are

∂ψ
(1)
j

∂t
= 〈x2x3ψ

(2,3)
j 〉+ 2tx1〈x3ψ

(2,3)
j 〉 − 4 cos(t)x1〈x2x3ψ

(2,3)
j 〉

−
r1∑
p=1

ψ(1)
p [〈ψ(1)

p 〉〈x2x3ψ
(2,3)〉+ 2t〈x1ψ

(1)
p 〉〈x3ψ

(2,3)〉 − 4 cos(t)〈x1ψ
(1)
p 〉〈x2x3ψ

(2,3)〉]

∂ψ
(2)
j1

∂t
〈ψ(3)
j1 ψ

(3)
j1 〉 = x2〈x3ψ

(3)
j1 〉〈ψ

(1)
j 〉+ 2t〈x3ψ

(3)
j1 〉〈x1ψ

(1)
j 〉 − 4 cos(t)x2〈x3ψ

(3)
j1 〉〈x1ψ

(1)j 〉

− ψ(2)
j1 [〈x2ψ

(2)
j1 〉〈x3ψ

(3)
j1 〉〈ψ

(1)
j 〉+ 2t〈ψ(2)

j1 〉〈x3ψ
(3)
j1 〉〈x1ψ

(1)
j 〉 − 4 cos(t)〈x2ψ

(2)
j1 〉〈x3ψ

(3)
j1 〉〈x1ψ

(1)
j 〉]

∂ψ
(3)
j1

∂t
= x3〈x2ψ

(2)
jk 〉〈ψ

(1)
j 〉+ 2tx3〈ψ(2)

j1 〉〈x1ψ
(1)
j 〉 − 4 cos(t)x3〈x2ψ

(2)
j1 〉〈x1ψ

(1)
j 〉

(2.55)

22

t = 0.0 t = 2.5 t = 5

Figure 2.4: All 6 modes in the DO decomposition of (2.53) at a few snapshots in the time interval

[0, 5].

for j = 1, 2. Using a collocation method, the DO evolution equations become a system of ODEs.

We solve the the ODE system numerically using an explicit RK4 method with adaptive time stepping

and all integrals in (2.55) are computed with Gauss-Legendre quadrature. All 6 modes at various

time snapshots in are plotted in Figure 2.4. The L2 error of the approximation is shown in Figure

2.5.

Notice that the u(t, x1, x2, x3) is separable with rank r1 = 2, r2 = (1, 1) for all time. This

means that the solution can be accurately represented on a low paremtric manifold of constant rank

for all time. We will see examples in Section 3.2 where one set of ranks (r1, . . . , rd−1) may provide

a sufficient representation of a function at initial time, but at a later time a different set of ranks are

more suitable to represent the function. Techniques for adjusting rank are discussed in Section 3.1.

23

Figure 2.5: L2 error of the DO approximation to (2.53)

.

2.2.2 BO Tensor Train Propagator

Using the decomposition (2.12) we define the BO components to be

ϕ
(j)
i1···ij = λi1···ijψ

(j)
i1···ij

ϕ
(j+1,...,d)
i1···ij = ψ

(j+1,...,d)
i1···ij .

(2.56)

In contrast with DO components, it is the left hand modes of the BO components which carry the

eigenvalue. We introduce the following vector notation to simplify the BO evolution equations

Φ
(j)
i1···ij−1

= (ϕ
(j)
i1···ij−11 · · ·ϕ

(j)
i1···ij−1rj

)

Φ
(j+1,...,d)
i1···ij−1

= (ϕ
(j+1,...,d)
i1···ij−11 · · ·ϕ

(j+1,...,d)
i1···ij−1rj

).

(2.57)

In the BO setting, we enforce two static constraints

〈ϕ(j)
i1...ij−1k

, ϕ
(j)
i1...ij−1p

〉 = λi1···ij−1kδkp (2.58)

〈ϕ(j+1,...,d)
i1...ij−1k

, ϕ
(j+1,...,d)
i1...ij−1p

〉 = δkp (2.59)

for all time. By projecting, BO Tensor Train evolution equations can be obtained. We omit the

derivation of these evolution equations here but refer the reader to the derivations given in Cheng

et al. (2013a,b)5. Define the following matrices and vectors to simplify the notation in the BO
5The derivation given in these papers takes place in probability spaces rather than L2 or H2 spaces, but the sequence of

projections which lead to the BO evolution equations are the same.

24

evolution equations

hi1···ij = 〈NBO
i1···ij−1

,Φ
(j)
i1···ij−1

〉

pi1···ij = 〈NBO
i1···ij−1

,Φ
(j+1,...,d)
i1···ij−1

〉

Λi1···ij = 〈Φ(j),T
i1···ij−1

,Φ
(j)
i1···ij−1

〉

Gi1···ij = 〈Φ(j),T
i1···ij−1

〈NBO
i1···ij−1

,Φ
(j+1,...,d)
i1···ij−1

〉〉

Mi1···ij = 〈Φ(j+1,...,d),T
i1···ij−1

,
∂Φ

(j+1,...,d)
i1···ij−1

∂t
〉

Si1···ij = 〈Φ(j),T
i1···ij−1

,
∂Φ

(j)
i1···ij−1

∂t
〉

(Σi1···ij)kp =


(Si1···ij)kp , k 6= p ,

0 , k = p

(2.60)

for j = 1, . . . , d− 2.

Remark 2.2.2. The matrices Σi1···ij are skew-symmetric since differentiating (2.58) with respect

to time we find that 〈∂φ
(j)
k

∂t , φ
(j)
p 〉+ 〈φ(j)

k ,
∂φ(j)

p

∂t 〉 = 0 for k 6= p.

The tricky part of developing the BO evolution equations is determining the matrices

Mi1···ij and Si1···ij . These matrices are not defined in the case of an eigenvalue crossing, that is

if λi1···ij−1k = λi1···ij−1p for k 6= p. Provided no eigenvalue crossings occur, the BO evolution

equations are

∂Φ
(j)
i1···ij−1

∂t
= Φ

(j)
i1···ij−1

Mi1···ij + pi1···ij =

[
MBO
i1···ij−11 · · ·MBO

i1···ij−1irj

]
∂Φ

(j+1,...,d)
i1···ij−1

∂t
Λi1···ij = −Φ

(j+1,...,d)
i1···ij−1

STi1···ij + hi1···ij =

[
NBO
i1···ij−11 · · ·NBO

i1···ij−1irj

]
.

(2.61)

2.2.3 Equivalence of DO and BO Tensor Train Components

We now show that the DO Tensor Train decomposition and the BO Tensor Train decomposition are

equivalent in the sense that they approximate a function using components from the same finite di-

mensional function spaces. We prove the equivalence for one biorthogonal decomposition following

the method of Choi et al. (2014).

Suppose that Φ(j) = (φ
(j)
1 · · ·φ

(j)
r),Φ(j+1,...,d) = (φ

(j+1,...,d)
1 · · ·φ(j+1,...,d)

r) are biorthog-

25

onal components and consider the transformation

Ψ(j) = Φ(j)Λ−
1
2P

Ψ(j+1,...,d) = Φ(j+1,...,d)Λ
1
2P

(2.62)

where Λ = 〈Φ(j)T Φ(j)〉 and P satisfies the matrix differential equation
dP
dt = −Λ−

1
2 ΣΛ−

1
2P

P (0) = Ir×r

(2.63)

with

Σij =


Sij , i 6= j ,

0 , i = j ,

S = 〈Φ(j)T ,
∂Φ(j)

∂t
〉

(2.64)

as in (2.60).

Theorem 2.2.1. Provided there are no eigenvalue crossings, the linear transformation in (2.62) is

invertible and defines a new set of components for which

(i) Ψ(j) is orthonormal,

(ii) Ψ(j)Ψ(j+1,...,d)T = Φ(j)Φ(j+1,...,d)T

(iii) Ψ(j) satisfies the DO condition 〈∂Ψ(j)T

∂t Ψ(j)〉 = 0r×r.

Hence Ψ(j),Ψ(j+1,...,d) are DO components.

Before proving the theorem we prove the following lemma.

Lemma 2.2.1. The matrix P (t) in (2.63) remains orthogonal for all t ≥ 0 provided the initial

condition P (0) is orthogonal.

Proof. Note that F (t) = −Λ−
1
2 ΣΛ−

1
2 is skew-symmetric since Σ is skew-symmetric as seen in

26

Remark 2.2.2. Thus

d

dt
(PTP) =

dPT

dt
P + PT

dP

dt

= (FP)TP + PTFP

= PT (FT + F)P

= 0r×r

for all t ≥ 0.

Now we prove the equivalence Theorem 2.2.1.

Proof. First, note that the transformations in (2.62) are in fact invertible by Lemma 2.2.1. To prove

(i),

Λ = 〈Φ(j)T Φ(j)〉

= 〈(Ψ(j)PTΛ
1
2)TΨ(j)PTΛ

1
2 〉

= 〈Λ 1
2PΨ(j)T Ψ(j)PTΛ

1
2 〉

= Λ
1
2P 〈Ψ(j)T Ψ(j)〉PTΛ

1
2 .

Multiply PTΛ−
1
2 ,Λ−

1
2P to the left and right hand sides respectively to obtain that

〈Ψ(j)T Ψ(j)〉 = PTΛ−
1
2 ΛΛ−

1
2P

= Ir×r

which proves (i). We can prove (ii) by using (2.62)

Φ(j)Φ(j+1,...,d)T = Ψ(j)PTΛ
1
2 (Ψ(j+1,...,d)PTΛ−

1
2)T

= Ψ(j)PTΛ
1
2 Λ−

1
2PΨ(j+1,...,d)

= Ψ(j)Ψ(j+1,...,d)T .

To prove (iii) we differentiate the equality Φ(j) = Ψ(j)PTΛ
1
2 with respect to time

∂Φ(j)

∂t
=
∂Ψ(j)

∂t
PTΛ

1
2 + Ψ(j) ∂P

T

∂t
Λ

1
2 +

1

2
Ψ(j)PTΛ−

1
2
∂Λ

∂t

=
∂Ψ(j)

∂t
PTΛ

1
2 + Ψ(j)PTΛ−

1
2 (S − 2Σ)T

27

where the second equality follows from (2.63) and that S = Σ + 1
2
∂Λ
∂t . We have by definition (2.60)

that

S = 〈Φ(j)T ∂Φ(j)

∂t
〉

and using the expressions above for Φ(j) and ∂Φ(j)

∂t yields

S = 〈Λ 1
2PΨ(j)T (

∂Ψ(j)

∂t
PTΛ

1
2 + Ψ(j)PTΛ−

1
2 (S − 2Σ)T)〉

= 〈Λ 1
2PΨ(j)T ∂Ψ(j)

∂t
PTΛ

1
2 〉+ 〈Λ 1

2PΨ(j)T Ψ(j)PTΛ−
1
2 (S − 2Σ)T 〉

= Λ
1
2P 〈Ψ(j)T ∂Ψ(j)

∂t
〉PTΛ

1
2 + (S − 2Σ)T .

This implies that

1

2
Λ

1
2P 〈Ψ(j)T ∂Ψ(j)

∂t
〉PTΛ

1
2 =

S − ST

2
− Σ

= 0r×r

because Σ is the skew-symmetric part of S. We know that P and Λ are nonzero, thus it must be the

case that

〈∂Ψ(j)T

∂t
Ψ(j)〉 = 0r×r.

With the equivalence between one set of BO and DO components established, we can

discuss the effect of this transformation on a hierarchy of DO or BO components. An immediate

consequence is that if this transformation is performed on the jth level of a Tensor Train tree, each

mode on levels above j remain unchanged. However such a transformation will require every mode

below the jth level to be recomputed. Moreover in the case of a BO hierarchy of modes, one has to

be sure that there are no eigenvalue crossings in any of the biorthogonal decompositions.

28

3 Numerical Solutions of Nonlinear PDEs

Let us explain how to solve a PDE of the form (1.1) using an expansion of the solution of the form

(2.36). The solution of (1.1) is given at time t = 0. Perform a recursive biorthogonal decomposition

of the given initial condition to obtain initial conditions for the time dependent modes of u. The

evolution equations for the modes are given in Section 2.2 with ∂u
∂t replaced with N(u). If the

operator N is not separable then the computation of inner products in the DO and BO Tensor Train

evolution equations require computation of integrals in as many as d − 1 variables. If we assume

that N is a separable operator of rank rN

N =

rN∑
i=1

A
(i)
1 ⊗ · · · ⊗A

(i)
d , (3.1)

where A(i)
j operates only xj , then the evolution equations can be evaluated with one dimensional

integrals. Equations for NDO
k1···kj and MDO

k1···kj in (2.51) for operators of the form (3.1) are given in

Appendix (B).

3.1 Addition and Removal of Modes

The solution to PDEs of the form (1.1) may not be accurately approximated by elements from a

tensor manifold of constant rank for all time. It may be desirable to reduce the solution rank or

increase the solution rank during mode propagation. Removing modes is straightforward since one

can simply truncate the BO or DO decomposition on any level to a decomposition of smaller rank.

Adding modes is a more subtle task. To illustrate the difficulties that arise we recall the DO and BO

29

evolution equations from Section 2.2. In the DO case the evolution equations are

∂

∂t
Ψ

(j)
i1···ij−1

Ci1···ij−1
= [MDO

i1···ij−11 · · ·MDO
i1···ij−1rj]

∂

∂t
Ψ

(j+1,...,d)
i1···ij−1

= [NDO
i1···ij−11 · · ·NDO

i1···ij−1rj]

(3.2)

and in the BO case the evolution equations are

∂Φ
(j)
i1···ij−1

∂t
= Φ

(j)
i1···ij−1

Mi1···ij + pi1···ij =

[
MBO
i1···ij−11 · · ·MBO

i1···ij−1irj

]
∂Φ

(j+1,...,d)
i1···ij−1

∂t
Λi1···ij = −Φ

(j+1,...,d)
i1···ij−1

STi1···ij + hi1···ij =

[
NBO
i1···ij−11 · · ·NBO

i1···ij−1irj

]
.

(3.3)

If the solution is approximated with a hierarchical rank which is too large at any level of the tree, the

matrices in the evolution equations (3.2) and (3.3) corresponding to these modes become singular.

If the solution is approximated with a rank that is too small, the approximation is not accurate. The

amount of energy each mode contributes to the solution can be tracked by the eigenvalues of Λi1···ij

in the BO setting and by the eigenvalues of the matrix Ci1···ij in the DO setting. Once a new mode is

added with zero energy, one or more of the matrices Λi1···ij in the BO evolution equations or Ci1···ij

in the DO evolution equations become singular. We consider three options to continue propagation

in the presence of a new mode.

• Add a pair of modes (left and right) satisfying the orthogonality conditions of DO or BO

(whichever condition is currently being enforced) with zero energy. Evolve the modes which

do not require inverting the now singular matrix (right hand modes in the DO setting and left

hand modes in the BO setting) for a short amount of time while keeping the other modes

constant. At this point, the energy of the new mode comes up to some value λε which is

significantly smaller than the energy of the more developed modes. Now when the matrix is

inverted to continue mode propagation of the modes which were fixed, we obtain a slow-fast

system Bertram and Rubin (2017). The evolution of these modes remains slow-fast until the

energy amongst all modes become more balanced.

• The technique presented in Babaee et al. (2017) is to add modes with small threshold energy

ε. In this way a pseudo-inverse (PI) of the matrices in the DO and BO evolution equations is

used to write the evolution equations in a form which can be solved with standard numerical

30

methods. The system governing the evolution equations half of the modes at the time of mode

addition again behave as a slow-fast system. This method is effective, however it does slightly

pollute the solution at the time of adding the mode.

• Another technique which we propose is to switch from DO/BO evolution equations to an

explicit time stepping scheme with numerical tensors Khoromskij (2015b); Grasedyck et al.

(2013) for a number of timesteps, then restart the DO/BO evolution from a new initial condi-

tion. One time step using addition from numerical tensor methods results in a rank increase,

a few timesteps with numerical tensor methods may be desirable depending on the problem,

timestep size, and integration scheme. The larger rank tensor resulting from these timesteps

can be truncated to a desirable rank using either truncation of numerical tensors or the thresh-

olding technique explained in Section 2.1.4. In either case, a new set of biorthogonal modes

must be obtained from the numerical tensor.

The first two approaches rely on enlarging the finite dimensional function space which the approx-

imate solution lives in. The third approach is different from these two in that the new biorthogonal

modes obtained from the numerical tensor need not lie in the same finite dimensional function space

as the previous set of modes. In other words we are rerepresenting the solution in a more suitable

finite dimensional function space. Moreover, we are not explicitly adding modes with low energy

so this technique may or may not result in a slow-fast system. In Section 3.2 we demonstrate the

second and third techniques for mode addition.

3.2 Numerical Examples

In this section we use the recursive biorthogonal decomposition in the Tensor Train format with DO

constraints to solve prototype hyperbolic PDEs.

31

Figure 3.1: Trajectories of the characteristic system (3.5) corresponding to the PDE (3.4)

.

3.2.1 2D Problem

Consider the time dependent PDE with two spatial dimensions
∂u(t,x)

∂t
= (sin(x1) + 3 cos(x2))

∂u

∂x1
+ cos(x2)

∂u

∂x2
, x ∈ [0, 2π]2 , t ≥ 0

u0(x) = esin(x1+x2) , x ∈ [0, 2π]2

(3.4)

subject to periodic boundary conditions in [0, 2π]2. The analytical solution can be com-

puted by using the method of characteristics. The solution to (3.4) remains constant along character-

istic curves, so the dynamics of the characteristic system provide a view of the dynamics occuring

in the time evolution of the solution of the PDE (3.4). The characteristic system of (3.4) is given by

dx1

dt
= sin(x1) + 3 cos(x2)

dx2

dt
= cos(x2)

(3.5)

and some trajectories are provided in Figure 3.1. We compute the characteristic curves numeri-

cally and use the resulting solution as the benchmark. Time snapshots of the anlytical solution are

provided in the top row of Figure 3.5.

The numerical solution ũ of (3.4) is computed using the Dynamically Orthogonal Tensor

Train method. A biorthogonal decomposition is performed on the initial condition u0 with threshold

set to σ = 10−13. We obtain 17 modes (ψ
(1)
i1
, ψ

(2)
i1

)17
i1=1, each of which are collocated on an evenly

32

t = 0 t = 0.5 t = 1.0

λ
i 1

Figure 3.2: First four modes in the DO decomposition and the spectrum of the constant rank solution

to (3.4) at times t = 0.0, t = 0.5, t = 1.0.

spaced grid with M = 257 points in [0, 2π]. The semi-discrete form of the DO evolution equations

for (3.4) are given by

∂ψ
(2)
j

∂t
=

r1∑
i1=1

{〈sin(x1)
∂ψ

(1)
i1

∂x1
ψ

(1)
j 〉ψ

(2)
i1

+ 3〈
∂ψ

(1)
i1

∂x1
ψ

(1)
j 〉ψ

(2)
i1

cos(x2)}+ cos(x2)
∂ψ

(2)
j

∂x2

Mj =

r1∑
i1=1

{sin(x1)
∂ψ

(1)
i1

∂x1
〈ψ(2)
i1
ψ

(2)
j 〉+ 3

∂ψ
(1)
i1

∂x1
〈cos(x2)ψ

(2)
i1
ψ

(2)
j 〉+ ψ

(1)
i1
〈cos(x2)

∂ψ
(2)
i1

∂x2
ψ

(2)
j 〉

−
r1∑
p=1

ψ(1)
p [〈sin(x1)

∂ψ
(1)
i1

∂x1
ψ(1)
p 〉〈ψ

(2)
i1
ψ

(2)
j 〉+ 3〈

∂ψ
(1)
i1

∂x1
ψ(1)
p 〉〈cos(x2)ψ

(2)
i1
ψ

(2)
j 〉

+ 〈ψ(1)
i1
ψ(1)
p 〉〈cos(x2)

∂ψ
(2)
i1

∂x2
ψ

(2)
j 〉]}

∂

∂t
[ψ

(1)
1 · · ·ψ(1)

r1]C = [M1 · · ·Mr1]

(3.6)

where Cij = 〈ψ(2)
i ψ

(2)
j 〉, xi are vectors of collocation points, ∂

∂xi
represent differentiation matri-

33

t = 0 t = 0.5 t = 1.0

λ
i 1

Figure 3.3: First four modes in the DO decomposition and the spectrum of the adaptive rank DO/BO

numerical tensor hybrid solution to (3.4) at times t = 0.0, t = 0.5, t = 1.0.

ces, and inner products can be computed with a spectral quadrature rule. Put more succinctly, the

evolution equations have been discretized in space with pseudospectral methods. The ODE system

(3.6) is solved by first inverting the matrix C and then using an explicit RK4 scheme with time step

∆t = 10−3. We run one simulation with constant rank for all time, two simulations using the PI

technique for addition of modes, and one simulation using the DO Tensor Train / numerical tensor

hybrid scheme to add modes mentioned in Section 3.1. Time snapshots of the constant rank DO so-

lution are provided in the middle row of Figure 3.5. Time snapshots of the pointwise error between

the analytical solution and the constant rank DO solution are provided in the bottom row of Figure

3.5.

In the constant rank simulation, the slope of the error increases around t = 0.5 which

34

ψ
(2)
2 ψ

(2)
3

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

Figure 3.4: Discontinuities in the time evolution of modes obtained by using the DO Tensor Train /

Numerical Tensor hybrid adaptive method for the solution of (3.4).

indicates that the solution can not be accurately represented with 17 modes. It can also be seen in

the time evolution of the spectrum of the DO decomposition (Figure 3.2) that the solution requires

more than 17 modes for an accurate approximation. Time snapshots of the first four modes and the

full spectrum are plotted in Figure 3.2. In the first of the PI mode addition simulations, 6 modes are

added beginning at t = 0.5 and in the second, 8 modes are added beginning at time t = 0.5. It can

be seen from the error plot 3.6 that we are able to control the error by adding modes in this way.

In the DO Tensor Train / numerical tensor hybrid simulation we switch from the DO

Tensor Train scheme to a numerical tensor method scheme at various t ∈ [0.5, 1] and perform 10

time steps of explicit RK4 with the same time step ∆t = 10−3. The resulting 2-tensor is then

decomposed using the biorthogonal decomposition with threshold σ = 10−13 and a new set of

modes are obtained. These new modes are propagated with the semi-discrete DO Tensor Train

evolution equations (3.6). A few time snapshots of the first 4 modes and the full spectrum are

plotted in Figure 3.3. In Figure 3.4 the time evolution of ψ(2)
2 and ψ(2)

3 are plotted. The horizontal

bands correspond to time steps of numerical tensor methods for which there are no DO modes. After

some of these bands the mode changes drastically indicating a discontinuity in the time evolution of

the mode, a result of performing a new biorthogonal decomposition on the tensor. This DO Tensor

Train / numerical tensor hybrid technique for adding modes performs slightly better than the PI

35

t = 0 t = 0.5 t = 1.0

A
na

ly
tic

al

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

N
um

er
ic

al

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

E
rr

or

1

2

3

4

5

6

7

8

10
-8

2

4

6

8

10

12

14
10

-7

0.5

1

1.5

2

10
-3

Figure 3.5: Time snapshots of the solution to (3.4) obtained using Method of Characteristics (top),

Dynamically Orthogonal Tensor Train (middle), and the pointwise error (bottom).

technique.

3.2.2 4D Problem

Consider the 4 dimensional operator

N =

4∑
i,j=1

cijfj(xj)
∂

∂xi
(3.7)

where cij are real scalars and fj(xj) are real valued functions. The DO Tensor Train evolution

equations for this particular operator are given in Appendix B. For numerical demonstration, we set

36

Figure 3.6: Error of Dynamically Orthogonal Tensor Train solution computed in the L2 norm. One

solution with constant modes for all time, one solution adding 6 modes at times t = 0.5, t = 0.55,

t = 0.6, t = 0.65, t = 0.7, t = 0.75, and one solution adding 8 modes at times t = 0.5, t = 0.55,

t = 0.6, t = 0.65, t = 0.7, t = 0.75, t = 0.8, t = 0.825, t = 0.85, t = 0.9.

the constant coefficient matrix

(c)ij =



0 0.5 0 0

0 0 −0.3 0

0 0 0 −1

0.5 0 0 0


and variable coefficients

f1(x1) = sin(x1)

f2(x2) = cos(2x2)

f3(x3) = sin(3x3)

f4(x4) = cos(4x4).

The following PDE is solved using the method of characteristics to obtain an analytical solution
∂u(t,x)

∂t
= Nu , x ∈ [0, 2π]4 , t ≥ 0

u(0,x) = e−0.1 sin(x1+x2+x3+x4) , x ∈ [0, 2π]4

(3.8)

with periodic boundary conditions in the hypercube [0, 2π]4.

37

ψ
(2)
21 ψ

(4)
211 ψ

(4)
311

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

Figure 3.7: Time evolution of a few DO Tensor Train modes from the numerical solution of (3.8).

We also solve (3.8) using the DO Tensor Train method. A biorthogonal decomposition of

the initial condition u0 is performed with 20 collocation points and threshold set to σ = 10−10. The

following hierarchical rank arrays are obtained

r1 = 9

r2 =

[
1 2 2 2 2 2 2 2 2

]

r3 =

1 2 2 2 2 2 2 2 2

0 2 2 2 2 2 2 2 2


T

which we keep constant throughout mode propagation. The L2 error between the analytic initial

condition and the numerical approximation ũ(0,x) obtained with the recursive biorthogonal decom-

position in the Tensor Train format is on the order of 10−9. After obtaining the initial biorthogonal

modes at 20 collocation points, each mode is reinterpolated using trigonemetric interpolants. These

interpolants are sampled at 200 evenly spaced collocation points in [0, 2π]. Using these points we

obtain a semi-discrete form of the 4 dimensional DO evolution equations. This ODE system is

solved using an explicit RK4 method with fixed time step ∆t = 10−3.

The solution to the PDE (3.8) does not have constant hierarchical rank arrays for all t ∈

[0, 1] which is evident by the error plot in Figure 3.9. However with the relatively low hierarchical

ranks r2, r3 (in the sense that the maximum element of both rank arrays does not exceed 2) obtained

from the initial condition, we still obtain a reasonable approximation to the solution of (3.8) for all

t ∈ [0, 1].

Slices in the x3, x4 plane of the analytical solution, numerical solution, and pointwise

38

t = 0.0 t = 0.5 t = 1.0

A
na

ly
tic

al

0.95

1

1.05

1.1

0.95

1

1.05

1.1

0.95

1

1.05

1.1

N
um

er
ic

al

0.95

1

1.05

1.1

0.95

1

1.05

1.1

0.95

1

1.05

1.1

E
rr

or

5

10

15

10
-5

1

2

3

4

5

6

7

8
10

-3

0.01

0.02

0.03

0.04

Figure 3.8: Time snapshots of slices of the solution to (3.4) obtained using Method of Characteristics

(top), Dynamically Orthogonal Tensor Train (middle), and the pointwise error (bottom).

error are provided in Figure 3.8. In these slices we have fixed x1 = 0 and x2 = 0.

3.2.3 50D Problem

Consider the constant coefficient advection problem with rank 1 separable initial condition

∂u

∂t
=

50∑
j=1

fj(xj)
∂u

∂xj
, x ∈ [0, 2π]50 , t ≥ 0

u(0,x) =

50∏
j=1

ψ
(j)
0 (xj)

(3.9)

39

Figure 3.9: L2 error of the DO Tensor Train approximation of the solution to (3.8)

subject to periodic boundary conditions in [0, 2π]50. The DO evolution equations corresponding to

the PDE (3.9) are

∂ψ(j)

∂t
= fj(xj)

∂ψ(j)

∂xj
− fj(xj)ψ(j)〈∂ψ

(j)

∂xj
ψ(j)〉 , j = 1, 2, . . . , 49

∂ψ(50)

∂t
=

49∑
j=1

fj(xj)〈
∂ψ(j)

∂xj
ψ(j)〉ψ(50).

(3.10)

We set the coefficients to be constant fj(xj) = j and the components of the initial conditions to be

ψ
(j)
0 (xj) =

sin(xj)√
π

, j = 1, . . . , 49

ψ
(50)
0 (x50) = 107(3 + sin(x50)).

(3.11)

which satisfy the DO conditions. The numerical solution is easily obtained by the method of char-

acteristics. The characterstic system is given by The characterstic system given by

dxj
dt

= fj(xj) ,

thus the characterstic curves in this case are lines. The analytical solution is given by

u(t,x) =

50∏
j=1

ψ
(j)
0 (xj + jt). (3.12)

We compute DO Tensor Train solution ũ to (3.9)

ũ =

50∏
j=1

ψ(j)(t). (3.13)

Since the initial condition is already separated into biorthogonal components, there is no need to

compute a recursive biorthogonal decomposition. We can simply propagate the given components.

40

ψ(1) ψ(25)

-0.5

0

0.5

-0.5

0

0.5

Figure 3.10: Time evolution of x1 mode (left), time evolution of x2 mode (middle), error of DO

Tensor Train solution to (3.9) computed in the L2 norm (right).

Using pseudospectral methods with 60 collocation points we obtain a semidiscrete form

of the evolution equations (3.10). We solve the resulting ODE system with an explicit RK4 method

using a fixed time step ∆t = 10−3. We know by looking at the analytical solution that the solution

to (3.9) remains rank 1 for all time. Thus there is no need to add modes during mode propagation,

and the L2 error can be computed by computing one dimensional integrals as follows

EL2(t) = 〈(u− ũ)2〉 12

= 〈(
50∏
j=1

ψ
(j)
0 (xj + jt)−

50∏
j=1

ψ(j)(t))2〉 12

= 〈
50∏
j=1

ψ
(j)
0 (xj + jt)2 +

50∏
j=1

ψ(j)(t)2 − 2

50∏
j=1

ψ
(j)
0 (xj + jt)ψ(j)(t)〉 12

= [

50∏
j=1

∫ 2π

0

ψ
(j)
0 (xj + jt)2dxj +

50∏
j=1

∫ 2π

0

ψ(j)(t)2dxj − 2

50∏
j=1

∫ 2π

0

ψ
(j)
0 (xj + jt)ψ(j)(t)dxj]

1
2 .

3.3 Summary

We have presented a new method for the decomposition of high dimensional time independent multi-

variate functions based on recursively applying biorthogonal decompositions. These decompositions

can be seen as a continuous version of the decompositions from numerical tensor methods. Then

we generalized the recursive biorthogonal decomposition to handle time dependence in such a way

which makes the decomposition suitable for the numerical solution of high dimensional PDEs. Thus

developing a new method for solving PDEs numerically which scales more favorably than classical

finite difference and spectral methods.

41

The reason methods presented in this thesis may be preferable to tensor numerical methods

for high dimensional time dependent problems is the following:

• The truncated recursive biorthogonal decomposition is subject to existing approximation re-

sults allowing for effective error analysis of the function approximation.

• Our method reduces high dimensional time dependent problems to one dimensional problems

for which convergence and stability analysis is well understood. Convergence and stability of

numerical tensor methods for time dependent problems is not well understood.

The methods we have presented can also be used in tandem with numerical tensor methods as we

have explained in Section 3.1 and demonstrated in Section 3.2.

The purpose of this thesis was to develop the theory of a new multivariate function decom-

position and its applications to solutions of time dependent PDEs, then demonstrate its effectiveness

by using the methods to solve some prototype problems. In future work, we plan to develop the

function approximation theory further to obtain deeper convergence results for various classes of

multivariate functions. We plan to study the effect of applying the DO/BO equivalence transforma-

tion to the jth level of components on the subsequent levels of the recursive biorthogonal decompo-

sition. We also plan to use these methods to solve problems arising in physics and control theory

in moderate to high dimensions. To this end, we will explore the development of high performance

code which implements the methods explained in this thesis. Another application of these methods

which will be explored is its use in the approximation of functionals and functional equations.

42

Bibliography

Boris N. Khoromskij. Tensor numerical methods for multidimensional PDEs: theoretical

analysis and initial applications. In CEMRACS 2013—modelling and simulation of com-

plex systems: stochastic and deterministic approaches, volume 48 of ESAIM Proc. Sur-

veys, pages 1–28. EDP Sci., Les Ulis, 2015a. doi: 10.1051/proc/201448001. URL

https://doi.org/10.1051/proc/201448001.

Arnout M. P. Boelens, Daniele Venturi, and Daniel M. Tartakovsky. Parallel tensor methods for

high-dimensional linear PDEs. J. Comput. Phys., 375:519–539, 2018. ISSN 0021-9991. doi:

10.1016/j.jcp.2018.08.057. URL https://doi.org/10.1016/j.jcp.2018.08.057.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilin-

ear singular value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–

1278, 2000. ISSN 0895-4798. doi: 10.1137/S0895479896305696. URL

https://doi.org/10.1137/S0895479896305696.

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal.

Appl., 31(4):2029–2054, 2009/10. ISSN 0895-4798. doi: 10.1137/090764189. URL

https://doi.org/10.1137/090764189.

Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Academic Press, Inc.

[Harcourt Brace Jovanovich, Publishers], New York, second edition, 1980. ISBN 0-12-585050-6.

Functional analysis.

Nadine Aubry, Régis Guyonnet, and Ricardo Lima. Spatiotemporal analysis of complex signals:

43

theory and applications. J. Statist. Phys., 64(3-4):683–739, 1991. ISSN 0022-4715. doi:

10.1007/BF01048312. URL https://doi.org/10.1007/BF01048312.

Nadine Aubry and Ricardo Lima. Spatiotemporal and statistical symmetries. J. Statist.

Phys., 81(3-4):793–828, 1995. ISSN 0022-4715. doi: 10.1007/BF02179258. URL

https://doi.org/10.1007/BF02179258.

Nadine Aubry. On the hidden beauty of the proper orthogonal decomposition. Theoreti-

cal and Computational Fluid Dynamics, 2(5):339–352, Aug 1991. ISSN 1432-2250. doi:

10.1007/BF00271473. URL https://doi.org/10.1007/BF00271473.

Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag,

Berlin, 1995. ISBN 3-540-58661-X. Reprint of the 1980 edition.

Reinhold Schneider and André Uschmajew. Approximation rates for the hierarchical tensor for-

mat in periodic Sobolev spaces. J. Complexity, 30(2):56–71, 2014. ISSN 0885-064X. doi:

10.1016/j.jco.2013.10.001. URL https://doi.org/10.1016/j.jco.2013.10.001.

Josef Dick, Frances Y. Kuo, and Ian H. Sloan. High-dimensional integration: the quasi-Monte Carlo

way. Acta Numer., 22:133–288, 2013. ISSN 0962-4929. doi: 10.1017/S0962492913000044.

URL https://doi.org/10.1017/S0962492913000044.

Mulin Cheng, Thomas Y. Hou, and Zhiwen Zhang. A dynamically bi-orthogonal method for

time-dependent stochastic partial differential equations I: derivation and algorithms. J. Com-

put. Phys., 242:843–868, 2013a. ISSN 0021-9991. doi: 10.1016/j.jcp.2013.02.033. URL

https://doi.org/10.1016/j.jcp.2013.02.033.

Mulin Cheng, Thomas Y. Hou, and Zhiwen Zhang. A dynamically bi-orthogonal method for time-

dependent stochastic partial differential equations II: adaptivity and generalizations. J. Com-

put. Phys., 242:753–776, 2013b. ISSN 0021-9991. doi: 10.1016/j.jcp.2013.02.020. URL

https://doi.org/10.1016/j.jcp.2013.02.020.

44

Themistoklis P. Sapsis and Pierre F. J. Lermusiaux. Dynamically orthogonal field

equations for continuous stochastic dynamical systems. Phys. D, 238(23-24):

2347–2360, 2009. ISSN 0167-2789. doi: 10.1016/j.physd.2009.09.017. URL

https://doi.org/10.1016/j.physd.2009.09.017.

Minseok Choi, Themistoklis P. Sapsis, and George Em Karniadakis. On the equivalence of

dynamically orthogonal and bi-orthogonal methods: theory and numerical simulations. J.

Comput. Phys., 270:1–20, 2014. ISSN 0021-9991. doi: 10.1016/j.jcp.2014.03.050. URL

https://doi.org/10.1016/j.jcp.2014.03.050.

Hessam Babaee, Minseok Choi, Themistoklis P. Sapsis, and George Em Karniadakis. A robust bi-

orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application

to stochastic flow problems. J. Comput. Phys., 344:303–319, 2017. ISSN 0021-9991. doi:

10.1016/j.jcp.2017.04.057. URL https://doi.org/10.1016/j.jcp.2017.04.057.

Richard Bertram and Jonathan E. Rubin. Multi-timescale systems and fast-slow analysis. Math.

Biosci., 287:105–121, 2017. ISSN 0025-5564. doi: 10.1016/j.mbs.2016.07.003. URL

https://doi.org/10.1016/j.mbs.2016.07.003.

Boris N. Khoromskij. Tensor numerical methods for multidimensional PDEs: theoretical

analysis and initial applications. In CEMRACS 2013—modelling and simulation of com-

plex systems: stochastic and deterministic approaches, volume 48 of ESAIM Proc. Sur-

veys, pages 1–28. EDP Sci., Les Ulis, 2015b. doi: 10.1051/proc/201448001. URL

https://doi.org/10.1051/proc/201448001.

Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-rank ten-

sor approximation techniques. GAMM-Mitt., 36(1):53–78, 2013. ISSN 0936-7195. doi:

10.1002/gamm.201310004. URL https://doi.org/10.1002/gamm.201310004.

Jan S. Hesthaven, Sigal Gottlieb, and David Gottlieb. Spectral methods for time-

dependent problems, volume 21 of Cambridge Monographs on Applied and Com-

putational Mathematics. Cambridge University Press, Cambridge, 2007. ISBN

45

978-0-521-79211-0; 0-521-79211-8. doi: 10.1017/CBO9780511618352. URL

https://doi.org/10.1017/CBO9780511618352.

46

Appendix A

This Appendix is dedicated to completing the proof of Theorem 2.1.1. The result which

we prove is stated in the following Proposition.

Proposition A.0.1. We have the following expansion of products of sums

(

r1∑
i1=1

λi1ψ
(1)
i1

+

∞∑
i1=1

λi1ψ
(1)
i1

)(

r2∑
i2=1

λi1i2ψ
(2)
i1i2

+

∞∑
i2=1

λi1i2ψ
(2)
i1i2

) · · ·

· · · (
rj∑
ij=1

λi1···ijψ
(j)
i1···ij +

∞∑
ij=1

λi1···ijψ
(j)
i1···ij)

=

r1∑
i1=1

r2∑
i2=1

· · ·
rj∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

+

∞∑
i1=r1+1

∞∑
i2=1

· · ·
∞∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

+

r1∑
i1=1

∞∑
i2=r2+1

∞∑
i3=1

· · ·
∞∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

+

r1∑
i1=1

r2∑
i2=1

∞∑
i3=r3+1

∞∑
i4=1

· · ·
∞∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

...

+

r1∑
i1=1

r2∑
i2=1

· · ·
rj−1∑
ij−1=1

∞∑
ij=rj+1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

(A.1)

Proof. The proof is done by induction on j. For j = 1 the result is trivial. Assume the result holds

47

for k = j − 1. Then

(

r1∑
i1=1

λi1ψ
(1)
i1

+

∞∑
i1=1

λi1ψ
(1)
i1

)(

r2∑
i2=1

λi1i2ψ
(2)
i1i2

+

∞∑
i2=1

λi1i2ψ
(2)
i1i2

) · · ·

· · · (
rj−1∑
ij−1=1

λi1···ij−1ψ
(j−1)
i1···ij−1

+

∞∑
ij−1=1

λi1···ij−1ψ
(j−1)
i1···ij−1

)

=(

r1∑
i1=1

r2∑
i2=1

· · ·
rj−1∑
ij−1=1

λi1 · · ·λi1···ij−1
ψ

(1)
i1
· · ·ψ(j−1)

i1···ij−1

+

∞∑
i1=r1+1

∞∑
i2=1

· · ·
∞∑

ij−1=1

λi1 · · ·λi1···ij−1
ψ

(1)
i1
· · ·ψ(j−1)

i1···ij−1

+

r1∑
i1=1

∞∑
i2=r2+1

∞∑
i3=1

· · ·
∞∑

ij−1=1

λi1 · · ·λi1···ij−1ψ
(1)
i1
· · ·ψ(j−1)

i1···ij−1

+

r1∑
i1=1

r2∑
i2=1

∞∑
i3=r3+1

∞∑
i4=1

· · ·
∞∑

ij−1=1

λi1 · · ·λi1···ij−1ψ
(1)
i1
· · ·ψ(j−1)

i1···ij−1

...

+

r1∑
i1=1

r2∑
i2=1

· · ·
rj−2∑
ij−2=1

∞∑
ij−1=rj−1+1

λi1 · · ·λi1···ij−1
ψ

(1)
i1
· · ·ψ(j−1)

i1···ij−1
)

(

rj∑
ij=1

λi1···ijψ
(j)
i1···ij +

∞∑
ij=1

λi1···ijψ
(j)
i1···ij)

=

r1∑
i1=1

r2∑
i2=1

· · ·
rj∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

+

∞∑
i1=r1+1

∞∑
i2=1

· · ·
∞∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

+

r1∑
i1=1

∞∑
i2=r2+1

∞∑
i3=1

· · ·
∞∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

+

r1∑
i1=1

r2∑
i2=1

∞∑
i3=r3+1

∞∑
i4=1

· · ·
∞∑
ij=1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

...

+

r1∑
i1=1

r2∑
i2=1

· · ·
rj−1∑
ij−1=1

∞∑
ij=rj+1

λi1 · · ·λi1···ijψ
(1)
i1
· · ·ψ(j)

i1···ij

(A.2)

48

Appendix B

In this Appendix we provide DO Tensor Train evolution equation components for a gen-

eral separable differential operator of the form (3.1) and the specific 4 dimensional operator (3.7).

Expressions for the components of the DO Tensor Train evolution equations (2.51) are given by

Mk1···kp =

rL∑
i=1

r1···rp∑
i1···ip=1

{
p−1∏
j=1

〈A(i)
j (ψ

(j)
i1···ij), ψk1···kj 〉A(i)

p (ψ
(p)
i1···ip)

〈
d⊗

j=p+1

A
(i)
j (ψ

(p+1,...,d)
i1···ip), φk0···kp〉

−
rp∑
l=1

ψ
(p)
k1···kp−1l

p−1∏
j=1

〈A(i)
j (ψ

(j)
i1···ij), ψ

(j)
k1···kj 〉〈A

(i)
p (ψ

(p)
i1···ip), ψ

(p)
k1···kp−1l

〉

〈
d⊗

j=p+1

A
(i)
j (ψ

(p+1,...,d)
i1···ip), ψ

(p+1,...,d)
k1···kp 〉} ,

Nk1···kp =

rL∑
i=1

r1···rp∑
i1···ip=1

p∏
j=1

〈A(i)
j (ψ

(j)
i1···ij), ψ

(j)
k1···kj 〉

d⊗
j=p+1

A
(i)
j (ψ

(p+1,...,d)
i1···ip)

49

for p = 1, 2, . . . , d−1, kp = 1, . . . , rp. In the four dimensional case, if we let N take the form (3.7)

then

Nk1 =

r1∑
i1=1

{c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
k1
〉ψ(2,3,4))
i1

+

4∑
j=2

c1j〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉fjψ(2,3,4)

i1

+

4∑
i=2

ci1〈f1ψ
(1)
i1
, ψ

(1)
k1
〉
∂ψ

(2,3,4)
i1

∂xi
+

4∑
i,j=2

cijfj
∂ψ

(2,3,4)
k1

∂xi
}

Mk1 =

r1∑
i1=1

{c11f1

∂ψ
(1)
i1

∂x1
〈ψ(2,3,4)
i1

, ψ
(2,3,4)
k1

〉+

4∑
i=2

ci1f1ψ
(1)
i1
〈
∂ψ

(2,3,4)
i1

∂xi
, ψ

(2,3,4)
k1

〉

+

4∑
j=2

c1j
∂ψ

(1)
i1

∂x1
〈fjψ(2,3,4)

i1
, ψ

(2,3,4)
k1

〉+

4∑
i,j=2

cijψ
(1)
i1
〈fj

∂ψ
(2,3,4)
i1

∂xi
, ψ

(2,3,4)
k1

〉

−
r1∑
l=1

ψ
(1)
l [c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
l 〉〈ψ

(2,3,4)
i1

, ψ
(2,3,4)
k1

〉+

4∑
i=2

ci1〈f1ψ
(1)
i1
, ψ

(1)
l 〉〈

∂ψ
(2,3,4)
i1

∂xi
, ψ

(2,3,4)
k1

〉

+

4∑
j=2

c1j〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
l 〉〈fjψ

(2,3,4)
i1

, ψ
(2,3,4)
k1

〉+

4∑
i,j=2

cij〈ψ(1)
i1
, ψ

(1)
l 〉〈fj

∂ψ
(2,3,4)
i1

∂xi
, ψ

(2,3,4)
k1

〉]}

50

Nk1k2 =

r1∑
i1=1

r2∑
i2=1

{c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉ψ(3,4)
i1i2

+

c12〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈f2ψ

(2)
i1i2

, ψ
(2)
k1k2
〉ψ(3,4)
i1i2

+ c21〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈
∂ψ

(2)
i1i2

∂x2
, ψ

(2)
k1k2
〉ψ(3,4)
i1i2

+

4∑
i=3

ci1〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉
∂ψ

(3,4)
i1i2

∂xi

+

4∑
j=3

c1j〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉fjψ(3,4)

i1i2
}+

r2∑
i2=1

{c22〈f2

∂ψ
(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉ψ(3,4)
k1i2

+

4∑
i=3

ci2〈f2ψ
(2)
k1i2

, ψ
(2)
k1k2
〉
∂ψ

(3,4)
k1i2

∂xi
+

4∑
j=3

c2j〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉fjψ(3,4)

k1i2
}+

4∑
i,j=3

cijfj
∂ψ

(3,4)
k1k2

∂xi

Mk1k2 =

r1∑
i1=1

r2∑
i2=1

{c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
k1
〉ψ(2)
i1i2
〈ψ(3,4)
i1i2

, ψ
(3,4)
k1k2
〉+

c12〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉f2ψ

(2)
i1i2
〈ψ(3,4)
i1i2

, ψ
(3,4)
k1k2
〉

+ c21〈f1ψ
(1)
i1
, ψ

(1)
k1
〉
∂ψ

(2)
i1i2

∂x2
〈ψ(3,4)
i1i2

, ψ
(3,4)
k1k2
〉+

4∑
i=3

ci1〈f1ψ
(1)
i1
, ψ

(1)
k1
〉ψ(2)
i1i2
〈
∂ψ

(3,4)
i1i2

∂xi
, ψ

(3,4)
k1k2
〉

+

4∑
j=3

c1j〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉ψ(2)
i1i2
〈fjψ(3,4)

i1i2
, ψ

(3,4)
k1k2
〉}+

r2∑
i2=1

{c22f2

∂ψ
(2)
k1i2

∂x2
〈ψ(3,4)
k1i2

, ψ
(3,4)
k1k2
〉

+

4∑
i=3

ci2f2ψ
(2)
k1i2
〈
∂ψ

(3,4)
k1i2

∂xi
, ψ

(3,4)
k1k2
〉+

4∑
j=3

c2j
∂ψ

(2)
k1i2

∂x2
〈fjψ(3,4)

k1i2
, ψ

(3,4)
k1k2
〉

+

4∑
i,j=3

cijψ
(2)
i1k2
〈fj

∂ψ
(3,4)
k1i2

∂xi
, ψ

(3,4)
k1k2
〉}

−
r2∑
l=1

ψ
(2)
k1l

r1∑
i1=1

r2∑
i2=1

{c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1l
〉〈ψ(3,4)

i1i2
, ψ

(3,4)
k1k2
〉

+ c12〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈f2ψ

(2)
i1i2

, ψ
(2)
k1l
〉〈ψ(3,4)

i1i2
, ψ

(3,4)
k1k2
〉

+ c21〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈
∂ψ

(2)
i1i2

∂x2
, ψ

(2)
k1l
〉〈ψ(3,4)

i1i2
, ψ

(3,4)
k1k2
〉

+

4∑
i=3

ci1〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1l
〉〈
∂ψ

(3,4)
i1i2

∂xi
, ψ

(3,4)
k1k2
〉

+

4∑
j=3

c1j〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1l
〉〈fjψ(3,4)

i1i2
, ψ

(3,4)
k1k2
〉}

+

r2∑
i2=1

{c22〈f2

∂ψ
(2)
k1i2

∂x2
, ψ

(2)
k1l
〉〈ψ(3,4)

k1i2
, ψ

(3,4)
k1k2
〉

+

4∑
i=3

ci2〈f2ψ
(2)
k1i2

, ψ
(2)
k1l
〉〈
∂ψ

(3,4)
k1i2

∂xi
, ψ

(3,4)
k1k2
〉+

4∑
j=3

c2j〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1l
〉〈fjψ(3,4)

k1i2
, ψ

(3,4)
k1k2
〉

+

4∑
i,j=3

cij〈ψ(2)
i1k2

, ψ
(2)
k1l
〉〈fj

∂ψ
(3,4)
k1i2

∂xi
, ψ

(3,4)
k1k2
〉}

51

Nk1k2k3 =

r1∑
i1=1

r2∑
i2=1

r3∑
i3=1

{c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2k3

〉ψ(4)
i1i2i3

+ c12〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈f2ψ

(2)
i1i2

, ψ
(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2k3

〉ψ(4)
i1i2i3

+ c21〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈
∂ψ

(2)
i1i2

∂x2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2k3

〉ψ(4)
i1i2i3

+ c13〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈f3ψ

(3)
i1i2i3

, ψ
(3)
k1k2k3

〉ψ(4)
i1i2i3

+ c31〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈
∂ψ

(3)
i1i2i3

∂x3
, ψ

(3)
k1k2k3

〉ψ(4)
i1i2i3

+ c14〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2k3

〉f4ψ
(4)
i1i2i3

+ c41〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2k3

〉
∂ψ

(4)
i1i2i3

∂x4
}

+

r2∑
i2=1

r3∑
i3=1

{c22〈f2

∂ψ
(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉〈ψ(3)

k1i2i3
, ψ

(3)
k1k2k3

〉ψ(4)
k1i2i3

+ c32〈f2ψ
(2)
k1i2

, ψ
(2)
k1k2
〉〈
∂ψ

(3)
k1i2i3

∂x3
, ψ

(3)
k1k2k3

〉ψ(4)
k1i2i3

+ c23〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉〈f3ψ

(3)
k1i2i3

, ψ
(3)
k1k2k3

〉ψ(4)
k1i2i3

+ c24〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉〈ψ(3)

k1i2i3
, ψ

(3)
k1k2k3

〉f4ψ
(4)
k1i2i3

+ c42〈f2ψ
(2)
k1i2

, ψ
(2)
k1k2
〉〈ψ(3)

k1i2i3
, ψ

(3)
k1k2k3

〉
∂ψ

(4)
k1i2i3

∂x4
}

+

r3∑
i3=1

{c33〈f3

∂ψ
(3)
k1k2i3

∂x3
, ψ

(3)
k1k2k3

〉ψ(3)
k1k2i3

+ c34〈
∂ψ

(3)
k1k2i3

∂x3
, ψ

(3)
k1k2k3

〉f4ψ
(4)
k1k2i3

+ c43〈f3ψ
(3)
k1k2i3

, ψ
(3)
k1k2k3

〉
∂ψ

(4)
k1k2i3

∂x4
}+ c44f4

∂ψ
(4)
k1k2k3

∂x4

52

Mk1k2k3 =

r1∑
i1=1

r2∑
i2=1

r3∑
i3=1

{c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉ψ(3)
i1i2i3

〈ψ(4)
i1i2i3

, ψ
(4)
k1k2k3

〉

+ c12〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈f2ψ

(2)
i1i2

, ψ
(2)
k1k2
〉ψ(3)
i1i2i3

〈ψ(4)
i1i2i3

, ψ
(4)
k1k2k3

〉

+ c21〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈
∂ψ

(2)
i1i2

∂x2
, ψ

(2)
k1k2
〉ψ(3)
i1i2i3

〈ψ(4)
i1i2i3

, ψ
(4)
k1k2k3

〉

+ c13〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉f3ψ

(3)
i1i2i3

〈ψ(4)
i1i2i3

, ψ
(4)
k1k2k3

〉

+ c31〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉
∂ψ

(3)
i1i2i3

∂x3
〈ψ(4)
i1i2i3

, ψ
(4)
k1k2k3

〉

+ c14〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉ψ(3)
i1i2i3

〈f4ψ
(4)
i1i2i3

, ψ
(4)
k1k2k3

〉

+ c41〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉ψ(3)
i1i2i3

〈
∂ψ

(4)
i1i2i3

∂x4
, ψ

(4)
k1k2k3

〉}

+

r2∑
i2=1

r3∑
i3=1

{c22〈f2

∂ψ
(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉ψ(3)
k1i2i3

〈ψ(4)
k1i2i3

, ψ
(4)
k1k2k3

〉

+ c32〈f2ψ
(2)
k1i2

, ψ
(2)
k1k2
〉
∂ψ

(3)
k1i2i3

∂x3
〈ψ(4)
k1i2i3

, ψ
(4)
k1k2k3

〉

+ c23〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉f3ψ

(3)
k1i2i3

〈ψ(4)
k1i2i3

, ψ
(4)
k1k2k3

〉

+ c24〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉ψ(3)
k1i2i3

〈f4ψ
(4)
k1i2i3

, ψ
(4)
k1k2k3

〉

+ c42〈f2ψ
(2)
k1i2

, ψ
(2)
k1k2
〉ψ(3)
k1i2i3

〈
∂ψ

(4)
k1i2i3

∂x4
, ψ

(4)
k1k2k3

〉}

+

r3∑
i3=1

{c33f3

∂ψ
(3)
k1k2i3

∂x3
〈ψ(4)
k1k2i3

, ψ
(4)
k1k2k3

〉

+ c34

∂ψ
(3)
k1k2i3

∂x3
〈f4ψ

(4)
k1k2i3

, ψ
(4)
k1k2k3

〉

+ c43f3ψ
(3)
k1k2i3

〈
∂ψ

(4)
k1k2i3

∂x4
, ψ

(4)
k1k2k3

〉+ c44ψ
(3)
k1k2i3

〈f4

∂ψ
(4)
k1k2i3

∂x4
, ψ

(4)
k1k2k3

〉}

53

−
r3∑
l=1

ψ
(3)
k1k2l

r1∑
i1=1

r2∑
i2=1

r3∑
i3=1

{c11〈f1

∂ψ
(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2l
〉〈ψ(4)

i1i2i3
, ψ

(4)
k1k2k3

〉

+ c12〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉x1
〈f2ψ

(2)
i1i2

, ψ
(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2l
〉〈ψ(4)

i1i2i3
, ψ

(4)
k1k2k3

〉

+ c21〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈
∂ψ

(2)
i1i2

∂x2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2l
〉〈ψ(4)

i1i2i3
, ψ

(4)
k1k2k3

〉

+ c13〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈f3ψ

(3)
i1i2i3

, ψ
(3)
k1k2l
〉〈ψ(4)

i1i2i3
, ψ

(4)
k1k2k3

〉

+ c31〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈
∂ψ

(3)
i1i2i3

∂x3
, ψ

(3)
k1k2l
〉〈ψ(4)

i1i2i3
, ψ

(4)
k1k2k3

〉

+ c14〈
∂ψ

(1)
i1

∂x1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2l
〉〈f4ψ

(4)
i1i2i3

, ψ
(4)
k1k2k3

〉

+ c41〈f1ψ
(1)
i1
, ψ

(1)
k1
〉〈ψ(2)

i1i2
, ψ

(2)
k1k2
〉〈ψ(3)

i1i2i3
, ψ

(3)
k1k2l
〉〈
∂ψ

(4)
i1i2i3

∂x4
, ψ

(4)
k1k2k3

〉}

+

r2∑
i2=1

r3∑
i3=1

{c22〈f2

∂ψ
(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉〈ψ(3)

k1i2i3
, ψ

(3)
k1k2l
〉〈ψ(4)

k1i2i3
, ψ

(4)
k1k2k3

〉

+ c32〈f2ψ
(2)
k1i2

, ψ
(2)
k1k2
〉〈
∂ψ

(3)
k1i2i3

∂x3
, ψ

(3)
k1k2l
〉〈ψ(4)

k1i2i3
, ψ

(4)
k1k2k3

〉

+ c23〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉〈f3ψ

(3)
k1i2i3

, ψ
(3)
k1k2l
〉〈ψ(4)

k1i2i3
, ψ

(4)
k1k2k3

〉

+ c24〈
∂ψ

(2)
k1i2

∂x2
, ψ

(2)
k1k2
〉〈ψ(3)

k1i2i3
, ψ

(3)
k1k2l
〉〈f4ψ

(4)
k1i2i3

, ψ
(4)
k1k2k3

〉

+ c42〈f2ψ
(2)
k1i2

, ψ
(2)
k1k2
〉〈ψ(3)

k1i2i3
, ψ

(3)
k1k2l
〉〈
∂ψ

(4)
k1i2i3

∂x4
, ψ

(4)
k1k2k3

〉}

+

r3∑
i3=1

{c33〈f3

∂ψ
(3)
k1k2i3

∂x3
, ψ

(3)
k1k2l
〉〈ψ(4)

k1k2i3
, ψ

(4)
k1k2k3

〉

+ c34〈
∂ψ

(3)
k1k2i3

∂x3
, ψ

(3)
k1k2l
〉〈f4ψ

(4)
k1k2i3

, ψ
(4)
k1k2k3

〉

+ c43〈f3ψ
(3)
k1k2i3

, ψ
(3)
k1k2l
〉〈
∂ψ

(4)
k1k2i3

∂x4
, ψ

(4)
k1k2k3

〉+

c44〈ψ(3)
k1k2i3

, ψ
(3)
k1k2l
〉〈f4

∂ψ
(4)
k1k2i3

∂x4
, ψ

(4)
k1k2k3

〉}.

Note that the ψ(j,...,4)
i1···ij−1

are separable functions so that all the inner products can be computed with

one dimensional integrals.

54

