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REPORT

PySOFI: an open source Python package for SOFI
Yuting Miao,1 Shimon Weiss,1,2,3 and Xiyu Yi4,*
1Department of Chemistry and Biochemistry, University of California, Los Angeles California; 2Department of Physiology, University of
California, Los Angeles California; 3Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-
Gan, Israel; and 4Lawrence Livermore National Laboratory, Livermore, California
ABSTRACT Super-resolution optical fluctuation imaging (SOFI) is a highly democratizable technique that provides optical su-
per-resolution without requirement of sophisticated imaging instruments. Easy-to-use open-source packages for SOFI are
important to support the utilization and community adoption of the SOFI method, they also encourage the participation and
further development of SOFI by new investigators. In this work, we developed PySOFI, an open-source Python package for
SOFI analysis that offers the flexibility to inspect, test, modify, improve, and extend the algorithm. We provide complete docu-
mentation for the package and a collection of Jupyter Notebooks to demonstrate the usage of the package. We discuss the
architecture of PySOFI and illustrate how to use each functional module. A demonstration on how to extend the PySOFI package
with additional modules is also included in the PySOFI package. We expect PySOFI to facilitate efficient adoption, testing, modi-
fication, dissemination, and prototyping of new SOFI-relevant algorithms.
WHY IT MATTERS Super-resolution optical fluctuation imaging (SOFI) is a highly democratizible technique for optical
super-resolution without requirement for sophisticated imaging instruments. In this work, we developed PySOFI, an open-
source Python package for SOFI analysis. We also provide complete documentation for the package and a collection of
Jupyter Notebooks to demonstrate the usage of the package. We expect PySOFI to facilitate efficient adoption, testing,
modification, dissemination, and prototyping of new SOFI-relevant algorithms.
INTRODUCTION

Super-resolution optical fluctuation imaging (SOFI) (1)
is a widely used optical super-resolution method appli-
cable for a broad range of conditions, where sophisti-
cated controls on the instrument and sample
preparations are not required. It has attracted an active
community of practitioners over a decade. The ad-
vancements utilizing this technology include innova-
tions in blinking dyes and fluorescent proteins,
sample preparation (2–6), illumination schemes, exper-
iment designs, data processing methods (7–15), and
integration with other methods (16–23).

SOFI is compatible with simple wide-field imaging
systems to process image stacks of samples that
exhibit fluctuation of optical signals. It is assumed
that the position of the signal sources are static over
the time course of acquisition, and the optical fluctua-
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tions can be induced by either the stochastic blinking of
the fluorophores, the diffusion and stochastic binding
of fluorophores to static binding sites, or the fluctuation
of optical scatters (24,25).

Various prior studies have provided detailed explana-
tions on the SOFI principles (1,8,7,24,26), and the current
status of SOFI investigations is well summarized in a
recent reviewarticle byPawlowskaet al. (27). Interested
readers are directed to reference (28) for insights about
moments, cumulants, and their interplay. Here, we pro-
vide a brief review on the theory of SOFI processing.
Given a sample withN emitters that blink independently
with binary fluorescence intensity profiles constituting a
fluorescence “on” state and a fluorescence “off” state,
the fluorescence signal captured at a camera pixel
located at r! and time t is

Fð r!; tÞ ¼
XN

k¼ 1

εkbkðtÞUð r!� rk
!Þ; (1)

where k is the emitter index, rk! is the location of the kth

emitter, U is the point spread function (PSF) of the im-
aging system, εk is the constant on-state brightness,
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and bkðtÞ is the time-dependent stochastic blinking
profile. bkðtÞ equals 1 when the emitter is in the on
state and 0 when the emitter is in the off state.

The first step of SOFI is to calculate the fluctuation of
fluorescence signal around the temporal average for
each pixel:

dFð r!; tÞ ¼ Fð r!Þ� CFð r!ÞDt ¼
XN

k¼ 1

εkdbkðtÞUð r!� rk
!Þ:

(2)

Here, both εk and U are constant, and only the fluc-
tuation in the blinking profile dbk would affect dF.
Then, the correlation functions can be calculated as
follows:

Gnð r1!; r2
!
;/; rn

!
; t1; t2;/; tn�1Þ

¼ CdFð r1!; tÞdFð r2!; tþ t1Þ/dFð rn!; tþ tn�1ÞDt:
(3)

Eq. 3 represents the auto-correlation function when
r!¼ r1

!¼ r2
!¼ / ¼ rn

! and the cross-correlation func-
tion otherwise. Replacing dFð ri!; ti�1Þwith dFi, Eq. 3 can
be simplified as shown below:

GnðdF1; dF2;/; dFnÞ ¼ CdF1dF2/dFnD: (4)

Here GnðdF1; dF2;/; dFnÞ indicates the joint moment
of the set fdFiji˛½1; 2; :::; n� g. Next, the nth order joint
cumulant of the set, CnðdF1;dF2;/;dFnÞ, can be derived
from joint moments and joint cumulants of lower or-
ders based on a recursive relation (see the Moment
and cumulant reconstructions (E1) section). Note
here that the joint moment and joint cumulant are
generalized terms of correlation functions and cumu-
lants, which are calculated from either auto-correla-
tions or cross correlations with different choices of ti
values and pixel combinations (11).

The nth-order cumulant functions can also be ad-
dressed based on fluorescence fluctuation of a multi-
emitter system:

Cn

�
r!; t1; t2;/; tn�1

�

¼
XN

k¼ 1

ε
n
kun;k

�
t1; t2;/; tn�1

�
Un

�
r!� r!k

�
;

(5)

where un;kðt1; t2;/; tn�1ÞÞ equals the nth-order cumu-

lant of dbkðtÞ. Detailed derivation can be found in
(1,8,11,26). With nth-order cumulant analysis, the theo-
retical resolution improvement of SOFI is

ffiffiffi
n

p
fold. Such

improvement increases to n when combined with de-
convolution, presenting a great potential for further ad-
vancements for SOFI (1).
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However, there are imperfections in high-order SOFI
cumulants (e.g., cusp artifacts (26)), which can be ex-
plained under the framework of virtual emitter interpre-
tation (26)); specifically, by comparing the similarity
between Eqs. 1 and 5. The high-order SOFI cumulant
image can be perceived as an image captured from a
microscope with a PSF that is equivalent to the nth po-
wer of the original PSF (compare the terms that contain
U between Eqs. 1 and 5), with emitters located at the
same location as in the original sample but with emitter
brightnesses replaced into ε

n
kun;k. Because un;k is the

nth-order cumulant of the blinking profile of the kth

emitter, its value can be either positive or negative,
which would introduce the cusp artifacts in the SOFI
cumulant images when we display the absolute value
of an image with adjacent positive and negative virtual
emitters(26). We also demonstrated how the validity of
one of the most widely used SOFI processing methods,
bSOFI (7), is negatively impacted, but such findings
have not received common awareness as of yet.

We believe an insightful and thorough understanding
of themethod is crucial to ensure solid advancements in
both SOFI and SOFI-relevant innovations. However, for
new investigators without prior experience with SOFI
analysis, there is often a steep learning curve to fully un-
derstand, modify, and extend the existing open-source
packages (7,29). The existing publicly available SOFI
analysis routines are implemented in ImageJ (30),
MATLAB (29,31), or Igor Pro (29). ImageJ requires pro-
fessional programming skills if customization andmod-
ifications are required, while MATLAB and Igor Pro
require paid licenses. Such limitations present a greater
challenge for new investigators who are interested in
joining the SOFI community but prefer not to use the ex-
isting packages blindly.

Here, we present PySOFI, an open-source package
for SOFI analysis implemented in Python. Benefitting
from the active open-source community and the abun-
dance of free learning materials for Python, PySOFI
offers an easy option for investigators interested in
adopting the SOFI algorithm. PySOFI focuses on
engaging the community and is designed to be simple,
modular, and highly customizable. PySOFI is hosted on
GitHub(32) to facilitate utilization, improvements, and
continuous maintenance by interested users and devel-
opers. A collection of examples are provided in the
form of Jupyter Notebooks. One can use PySOFI to
explore and characterize SOFI analysis, validate the re-
sults from prior studies, and gain insights through
exploration. PySOFI is also useful for the prototyping
of newmethods that extend the SOFI algorithm. Similar
Jupyter Notebooks can be adapted to promote the new
methods and improve the reproducibility of the results.
We expect PySOFI to appeal to both beginners and ex-
perts, to facilitate innovations where modifications and



TABLE 1 PySOFI modules

Data class pysofi.py Defines the main data class called ”PysofiData”

Function reconstruction.py contains tools for cumulant and moment reconstruction
finterp.py contains tools for Fourier interpolation on *.tiff stacks for fSOFI processing
filtering.py contains tools for noise filtration along the time axis
deconvsk.py contains tools for shrinking kernel deconvolution

Modules ldrc.py contains tools for local dynamic range compression of images
visualization.py contains tools for visualization of the results

moca.py contains tools for multi-order cumulant analysis
masks.py contains tools for generating Gaussian kernels

PySOFI contains one data class and eight function modules. Detailed descriptions are available in the online documentation(33). Note that the
moca.py and deconvsk.py modules involve non-peer-reviewed works and are beyond the scope of this work. This work focuses on the introduc-
tion of the software package PySOFI, therefore, moca.py and deconvsk.py are not discussed in this work.
extensions are required, and to further promote scienti-
fic advancements among scientists interested in SOFI.

The rest of the manuscript is organized as follows.
We first provide an overview of the PySOFI package.
Whe then provide discussions on the PySOFI software
architecture design and analysis pipeline, together
with analysis examples for various modules. In the
end we summarize the work and discuss future
directions.
PySOFI overview

We designed a straightforward architecture for the Py-
SOFI package. As shown in Table 1, PySOFI contains
eight independent function modules (in the functions
folder) and one data class (PysofiData). A detailed
description of PySOFI is available in our online docu-
mentation(33). To get started with the installation, the
user can follow the "Getting Started" page.

Fig. 1 provides the data-flow diagram that demon-
strate the connections (arrows) between different pro-
cessing steps (green squares) and different types of
data (purple ovals). Three collections of SOFI analysis
routines are implemented in the PysofiData class,
including the “Shared Processes” that contain the tradi-
tional SOFI analysis steps (1) and the “SOFI 2.0” collec-
tion that contains the routines for SOFI 2.0 processing
(11). In the Shared Processes block, the processing
steps include bleaching correction (BC), Fourier inter-
polation (FI), and moment and cumulant calculations.
The processing steps can be performed in various se-
quences (green arrows). In the SOFI 2.0 block, one
can perform noise filtering and local dynamic range
compression (ldrc) on the image. In the data-process-
ing workflow, one can save and load the intermediate
results (IR) for each processing step (purple arrows).
For example, in the Shared Processes collection, the in-
termediate results (purple ovals) can be saved as sepa-
rate new tiff files or stored as attributes in the
PysofiData class object and then passed to another
processing step (purple arrow).
The following modules are implemented to facilitate
the PySOFI analysis pipeline. The reconstruction.py
module provides capabilities for SOFI moments and
cumulants calculations (1), as well as BC for a tiff
movie. The finterp.py module provides FI on a tiff stack,
which is used for FI stochastic optical fluctuation imag-
ing (fSOFI) analysis (9). filtering.py and ldrc.py consti-
tute a collection of modules relevant to SOFI 2.0 (11)
analysis. Specifically, the filtering.py module is for
pixel-wise noise filtering along the time axis, and the
ldrc.py is for ldrc of images with a large dynamic range
of pixel values (10). The masks.py module is used to
generate Gaussian kernels, and the visualization.py
module provides visualization options using an interac-
tive visualization package Bokeh. The data-class (Py-
sofiData) module is encapsulated in the pysofi.py file.
The input parameters from the users, the raw data,
and the intermediate results are bundled in the Pysofi-
Data object as attributes, and the processing steps as
methods. The processing steps are implemented as
function modules and imported and used in the data-
class module. In summary, the specific functions are
implemented in the function modules, while PysofiData
serves the purpose of organizing the data-processing
workflow.

In general, we adopted a simple architecture for Py-
SOFIwith a collection of independent function modules
and only one class module (the data class). The func-
tions are imported and used inside the data class
across different methods as needed, and therefore
the implementation is flexible with minimum repetition
of codes. The function modules can be implemented,
modified, and tested independently, ensuring flexibility
and convenience for maintenance. Extending the pack-
age can be done by implementing additional function
modules. It can be used as a standalone process or
be integrated into the data-processing workflow
through the PysofiData class. The investigators also
have the flexibility to disseminate the PySOFI package
and construct their own data-processing workflow
(similar to the PysofiData class).
Biophysical Reports 2, 100052, June 8, 2022 3



FIGURE 1 Data-flow diagram for PySOFI. Three collections of SOFI-analysis routines are implemented in PySOFI, as depicted in the diagram:
Shared Processes, SOFI 2.0 analysis, and MOCA analysis. Green squares represent data-processing steps with functionalities labeled for each
step. The purple ovals represent the data types as labeled in the diagram. IR represents intermediate results. The green arrow represents the
direction of the data flow between different steps, and the purple oval represents input and output data types at different processing steps. Note
that the multi-order cumulant analysis (MOCA) process and DeconvSK processing step involve non-peer-reviewed works, which are beyond the
scope of this work and will not be discussed.
Implementation of SOFI analysis using PySOFI

WeprovideacollectionofJupyterNotebooks (outlined in
Table 2) as examples for PySOFI implementations and
applications. The prefix (E#) of each filename is used
as a reference to each notebook in the following text
for simplicity.Wepresent examplePySOFIanalysis steps
(E1, E2, and E4–E6), a visualization of the result with a
combined color map and a transparency map (E8), and
the effect of data-acquisition length on SOFI reconstruc-
tion performance (E9 and E10). We also demonstrate
SOFI 2.0 analysis (E11) and characterization of cusp ar-
tifacts (E12 and E13). Two processing steps (E3 and
E7) address non-peer-reviewedmethods that are beyond
thescopeof thisworkand thereforewill not bediscussed
in this work. The analysis processes are integrated
through thePysofiDataclass for all thenotebooksexcept
for the demonstration of noise filtration (E2).

In the text below, we provide brief descriptions of E1,
E2, E4, E5, and E6. The complete detailed description
and examples are provided in the Jupyter Notebooks
in the online GitHub repository (32).
Moment and cumulant reconstructions (E1)

Traditionally, SOFI achieves resolution enhancement
by computing different orders of cumulants of opti-
cal-signal fluctuations in time. The theoretical
resolution enhancement for SOFI is

ffiffiffi
n

p
fold for the

nth-order SOFI cumulant. Once combined with decon-
volution, the theoretical resolution enhancement can
increase to n fold.
4 Biophysical Reports 2, 100052, June 8, 2022
To obtain the nth order SOFI cumulant, one way is to
construct the nth-order cumulant as a polynomial con-
sists of moments from the first order to the nth order,
as shown in the previous work (1). Another way, which
is used by PySOFI, is to construct the following recur-
sive relation: Cumn ¼ Gn �

Pn�1
i¼1 C

i
n�1,Cumn�i,Gi,

where Cumn represents the nth-order cumulant, Gn rep-
resents the nth-order-moment, and CM

N means the num-
ber of combinations of “N choose M.” Regarding the
moment calculations, PySOFI support calculations of
moments directly from the time series of each pixel.
The moments can also be calculated as a reconstruc-
tion from a series of cumulants, as used in our previous
study (11).

The calculation of cumulants and moments are the
fundamental processing elements in the SOFI analysis.
The PysofiData class organizes the analysis workflow
and can be used to calculate both moments and cumu-
lants. Essentially, the relevant function modules are im-
ported and integrated in PysofiData to support such
analysis. For example, the following scripts would calcu-
late the fourth-order moment and cumulant of the spec-
ified tiff stack named Block1.tif through the PysofiData
class:

# Load data into pysofidata object:
filepath ¼ '../sampledata'
filename ¼ 'block1.tif'
d ¼ pysofi.pysofidata(filepath, filename)
# Calculate the fourth-order moment image:
m_im ¼ d.moment_image(order¼4)



TABLE 2 Jupyter notebook examples for PySOFI

Group Notebook Name Data Section

Processing E1_MomentCumulantReconstructions Block1.tif (live-cell imaging) Moment and cumulant
reconstructions (E1)

E2_NoiseFiltration Block1.tif – Block20.tif (live-cell imaging) Temporal Noise
Filtering (E2)

E3_ShrinkingKernelDeconvolution Block10.tif (live-cell imaging) N.A.
Steps E4_LDRCMethod Block1.tif (live-cell imaging) ldrc (E4)
Demonstration E5_FourierInterpolation Block10.tif (live-cell imaging) FI (E5)

E6_BleachingCorrection Bleach_SlowVaryingRho_frame2000_Emi51.tif
(simulation)

BC (E6)

3Emitters_frame5000_Emi3_close.tif
(simulation)

N.A.

E7_MOCA SlowVaryingRho_frame2000_Emi51.tif
(simulation)

N.A.

RndomCurves_frame15000_rho04.tif
(simulation)

E8_ResultVisualization RndomCurves_frame15000_rho04.tif
(simulation)

Result visualization (E8)

Analysis frame1000_10000.npy N.A.
Exploration E9_ReconstructionConvergence frame11000_15000.npy N.A.

frame16000_20000.npy (generated in E8)
E10_ReconstructionConvergence_

SampleAnalysis
nobleach_frame20000_3.tif (simulation) N.A.

SOFI 2.0 demonstration E11_PysofiExample_LiveCellActinFilaments Block1.tif - Block20.tif (live-cell imaging) N.A.
Cusp artifacts E12_CuspArtifactsDemo1_3Emitters 3Emitters_frame5000_Emi3_close.tif

(simulation)
N.A.

Demonstrations E13_CuspArtifactsDemo2_SlowVaryingRho SlowVaryingRho_frame2000_Emi51.tif
(simulation)

N.A.

We provide thirteen PySOFI demonstrations as Jupyter Notebooks, which can be categorized into to four groups (first column). The file name
(second column) indicates the focus of each Jupyter Notebook. The relevant data sets (third column) are shared on figshare (34). Brief descrip-
tions of most processing steps (E1, E2, E4, E5, and E6) and their notebooks are provided in the relevant section (fourth column). The theories
behind E9 to E13 are not included in this work, but the relevant concepts are discussed in (26) and (11). The notebooks are the PySOFI imple-
mentations of the relevant methods to support the utilization of them. In particular, in E11, we show the general guidelines for performing SOFI
2.0 analysis on live-cell fluorescence-imaging results using PySOFI. Note that the multi-order cumulant analysis and shrinking kernel deconvo-
lution processing steps involve non-peer-reviewed work, which is beyond the scope of this work; therefore, notebooks E3 and E7 are not dis-
cussed in this manuscript. N.A., not applicable.
# Calculate the fourth-order cumulant image:
k_set ¼ d.cumulants_images(highest_order¼4)

We can also directly import the function module, re-
construction.py to perform the relevant calculations.
This option is designed to support the dissemination
of the PySOFI package to facilitate independent anal-
ysis design, which is often useful when developing
new methods built upon the SOFI analysis. The
following scripts demonstrate how to perform such
analysis with moment and cumulant calculations up
to the fourth order:

# Import the relevant function modules and define
the path and name for the data:

from pysofi import reconstruction as rec
filepath ¼ '../sampledata'
filename ¼ 'Block1.tif'
# Calculate the fourth-order moment image:
m_set ¼ rec.calc_moments(filepath, filename, high-

est_order¼4)
# Calculate the fourth-order cumulant image:
k_set ¼ rec.calc_cumulants_from_moments(m_set)

More detailed demonstrations are available in the
corresponding Jupyter Notebook (E1).
Temporal noise filtering (E2)

Noise filtering is fundamental in the image processing
for fluorescence microscopy, especially in scenarios
where continuous and prolonged live-cell imaging is
desired where the excitation power is maintained at
a low level to minimize photo toxicity and photobleach-
ing. The lower excitation power often results in a
reduced signal-to-noise ratio. Traditional noise filtering
is performed with a spatial filter, where each image for
every given time instance is spatially filtered indepen-
dently. However, because noise filtering in the spatial
spectrum domain is equivalent to a convolution opera-
tion of the image with the kernel corresponds to the in-
verse Fourier transform of the low-pass filter, it is
conceivable that the spatial-noise filtering would
Biophysical Reports 2, 100052, June 8, 2022 5



reduce the spatial resolution. On the other hand, to
achieve a super-resolution movie, we are focusing on
the sample conditions where the semi-static assump-
tion is valid, which requires slow dynamics in the sam-
ple, and temporal-noise filtering has been proven useful
(11). This is because slow dynamics ensures that the
signal of interest exists in the low-frequency domain
of the time axis while the noise is populated in the
high-frequency domain in the time axis, therefore tem-
poral-spectrum filtering can be effective. Additionally,
because this filtering is performed along the time
axis, the spatial resolution is not directly influenced.

We have implemented such temporal-noise filtering
in PySOFI as a function module filtering.py. It is useful
when analyzing multiple tiff stacks corresponding to
consecutive time blocks. In such a scenario, the feature
is assumed to be semi-static within each individual
time block, and the corresponding tiff stack is analyzed
independently. We can perform the temporal-noise
filtering on the results across all time blocks to further
enhance the image quality.

For example, we can perform the temporal noise
filtering on the sixth-order-moment images calculated
from 20 blocks of tiff stacks (each contains 200
frames) using the following scripts:

# First, we define the list of tiff stacks that corre-
sponds to 20 different time blocks of a movie:

filenum ¼ 20
filepath ¼ '../sampledata'
filenames ¼ ['Block' þ str(iþ1) þ '.tif' for i in range(fi-

lenum)]
# Second, we perform the sixth-order moment calcu-

lations for all the blocks:
dset ¼ { }; m_set ¼ { }
for filename in filenames:
dset[filename] ¼ pysofi.PysofiData(filepath, file-

name)
m_set[filename] ¼ dset[filename].moment_image

(order¼6, finterp¼False)
# Third, we generate a noise filter as a 1-dimensional

Guasisan profile:
nf¼masks.gauss1d_mask(shape¼(1,21), sigma¼2)
# Last, we perform time-axis noise filtering:
m_filtered_set ¼ filtering.noise_filter1d(dset, m_set,

nf,return_option¼True, return_type¼'dict')

The results from the temporal-noise filtering
are stored as a dictionary in the m_filtered_set, where
keys for elements are file names for each block
of tiff images and values are the corresponding filtered
images. The filtered images are also updated to each
PysofiData objects as a PysofiData.filtered attribute.
More detailed demonstrations are available in the cor-
responding Jupyter Notebook (E2).
6 Biophysical Reports 2, 100052, June 8, 2022
ldrc (E4)

One of the key challenges for high-order SOFI-cumu-
lant calculations is the high dynamic range (HDR) of
pixel intensities (1). The HDR issue also exists in
the high-order-moment images (11). The ldrc (11)
method was developed to mitigate such an issue
(and is implemented in PySOFI) by re-scaling the pixel
intensities of a given image based on a reference im-
age. First, a reference image with the same feature
but a more confined pixel intensity dynamic range is
defined (e.g., the time average of the image series,
or the second-order-moment or cumulant SOFI im-
age). The compression is performed locally in a small
window that scans across the image with a stride of 1
pixel. In each window, the pixel intensities of the orig-
inal image are linearly re-scaled to share the same dy-
namic range as the reference window (11). The final
value of each pixel is the average of the correspond-
ing re-scaled values of them across all windows
covering it.

In PySOFI, ldrc is implemented in the function mod-
ule ldrc.py and integrated in the PysofiData.ldrc()
method. The following scripts will calculate the
sixth-order moment (m6) and the average image
(mean) and perform ldrc on m6 using mean as the
reference:

# First, import the two relevant function modules,
reconstruction and ldrc:

from pysofi import reconstruction as r
from pysofi import ldrc
# Define the path and file name of the data file:
filepath ¼ '../sampledata'
filename ¼ 'Block1.tif'
# Calculate the sixth-order moment (m6) and

the average image (mean) using the reconstruction
module:

m6 ¼ r.calc_moment_im(filepath, filename, order¼6,
frames¼[0, 50])

mean ¼ r.average_image(filepath, filename)
# Compress the dynamic range of m6 with reference

to mean using ldrc:
ldrc_im ¼ ldrc.ldrc(mask_im¼mean, input_im¼m6,

order¼6, window_size¼[20, 20])

We can also perform the ldrc processing directly
through the PysofiData.ldrc() method using the
following script:

# Load data into PysofiData object
filepath ¼ '../sampledata'
filename ¼ 'Block1.tif'
# Load the data into a PysofiData class object:
d ¼ pysofi.PysofiData(filepath, filename)



FIGURE 2 SOFI analysis demonstrations using PySOFI. (A) The experimental demonstration of ldrc algorithm on HeLa cells transfected
with Dronpa-C12 fused to b-actin. Both images were processed using sixth-order moment, noise filtering, and deconvolution and were
obtained during the SOFI 2.0 analysis pipeline, before (a-i) and after (a-ii) the ldrc step. Scale bars: 8 mm. (B) Experimental demonstration
of FI algorithm on HeLa cells transfected with Dronpa-C12 fused to b-actin. (b-i) The sixth-order-moment-reconstructed image of the
original wide-field acquisition. (b-ii) The sixth-order-moment image after the FI. ldrc is performed on both (b-i) and (b-ii) to compress
the dynamic range of the reconstruction. (b-iii) A zoom-in box of (b-i). (b-iv) A zoom-in box of (b-ii). Scale bars, 8 mm. (C) The bleaching
correction demonstration on a simulation data. The fourth-order cumulant image (c-i to c-iii) and multi-order cumulant analysis (c-iv to
c-vi) is performed on a simulated video. A semicircle is populated with emitters with on-time ratios ranging from 0.01 (left) to 0.99 (right)
with around 0.02 intervals. For emitters with photobleaching but without a BC step, the reconstructed pixel intensities (c-i) and emitters
on-time ratio estimation (c-iv) are far off from the true values (c-ii and c-v), while the BC restores the information (c-iii and c-vi).
Scale bars, 1.4 mm.
# Calculate moments:
d.moment_image(order¼6, finterp¼False)
# Perfrom ldrc:
d.ldrc(mask_im¼d.ave, input_im¼d.moments_set[6],

order¼6, window_size¼[20, 20])

Note that the direct ldrc processing on m6 often
yields noisy results (we have demonstrated the results
in the relevant Jupyter Notebook [E4]). However, ldrc
plays an important role in the SOFI 2.0 pipeline, where
the noise filtering and deconvolution are performed.
In Fig. 2, we compare the partially processed SOFI 2.0
image (excluding ldrc) and the fully processed SOFI
2.0 image (including ldrc). We can see that the feature
in the image is preserved without ldrc but is impercep-
tible due to the HDR issue. On the other hand, ldrc
mitigates the HDR issue and provides an image where
the dim features are shown more clearly. More detailed
demonstrations are available in the corresponding Ju-
pyter Notebook (E4).
FI (E5)

fSOFI solves the finite pixilation problem of SOFI by add-
ing virtual pixels using Fourier transforms (9). We have
implemented the FI method in PySOFI to integrate the
fSOFI analysis as an optional processing step. In our im-
plementation, for the forward Fourier transform, the
Fourier-transformation matrix was created with a size
the same as the input image. We created the inverse
Fourier-transformation matrix to include the extra inter-
polation position coordinates and omitted the “zero-
padding” step in the Fourier space to avoid burdening
the computation. With the FI, the input image/video is
“projected” onto a more refined grid with finer pixel size.

In PySOFI, FI is implemented in the function module
finterp.py and integrated in the PysofiData.finterp_tiff-
stack() method. We can perform the FI and save the
output as a series of .tiff stacks. For example, the
following scripts will calculate the two- and four-fold
FI of the initial 100 frames from the example data set
block10.tiff and save the interpolated images into
two .tiff stacks: block10_InterpNum2.tiff and block10_
InterpNum4.tiff, respectively.

# Import the relevant tools:
from pysofi import pysofi
# Load data into PysofiData object:
filepath ¼ '../sampledata'
filename ¼ 'Block10.tif'
d ¼ pysofi.PysofiData(filepath, filename)
# Calculate the FI:
d.finterp_tiffstack(interp_num_lst¼[2,4], frames¼

[0,100], save_option¼True, return_option¼False)
Biophysical Reports 2, 100052, June 8, 2022 7



We can also perform the FI by using the finterp.py
module as shown below:

# Import the relevant tools:
import tifffile as tiff
from functions import finterp
# Load a single image from the relevant data file:
filepath ¼ '../sampledata'
filename ¼ 'Block10.tif'
im ¼ tiff.imread(filepath þ '/' þ filename, key¼15) #

read a frame
# Perform FI:
finterp_im2 ¼ finterp.fourier_interp_array(im, [10]) #

perform a 10-fold interpolation in the image.

Fig. 2 demonstrates the performance of the FI. Based
on the Nyquist-Shannon sampling theorem (35,36), we
recommend setting the interpolation factor at least two
times the highest order for moment/cumulant recon-
structions. For instance, if we plan to start the SOFI 2.0
pipeline with the sixth-order-moment image, we should
pass interp_num_lst¼ [12], to d.finterp_tiffstack. Howev-
er, in practice, depending on the dimension and length of
the input file, FI might consume large processing mem-
ory and time. If computation resources are limited, we
recommend saving the interpolated image stack as tiff
files first instead of returning them and then processing
the new file. Besides d.finterp_tiffstack, another option
to include FI in the SOFI processing pipeline is to pass
(finterp ¼ True) and a interpolation factor (inter-
p_num¼6) when calculating the moment/cumulant re-
constructions (see the ldrc (E4) section).

More detailed demonstrations are available in the
corresponding Jupyter Notebook (E5).
BC (E6)

Photobleaching of fluorescent probes is a general
concern for super-resolution imaging-analysis methods.
As for SOFI, photobleaching can cause errors in virtual
brightness displayed in moment or cumulant images
(26). Photobleaching leads to the loss of the fluores-
cence signal, which is mathematically equivalent as if
the fluorophore is switched to a prolonged off state,
degrading the quality of SOFI results. Therefore, BC is
critical.

PySOFI employs a BC technique (11) that divides the
whole video into shorter blocks based on the total signal
intensity, IðtÞ, where t is the time indexand IðtÞ is thesum-
mation of all the pixel values of the image at time index t.
The individual blocks are processed independently and
combined subsequently to form a SOFI movie. First,
the timeseriesof the total signal intensity is smoothened
to obtain a monotonically decreasing curve as an esti-
mation of the bleaching profile of themovie. Then, based
8 Biophysical Reports 2, 100052, June 8, 2022
on the signal evolution over time, the sizes of the shorter
blocks are determined so that the fractional signal de-
creases within each block (characterized by the BC fac-
tor, fbc) is identical (11). The final SOFI moment/
cumulant imageswithBCare theaverageof thosecalcu-
lated from individual blocks. Fig. 2C shows that with the
helpofBC, the virtual brightnessdistributionand thepho-
tophysical properties (c-iii, c-vi) are successfully
restored, yielding similar values as compared to the
simulated case without bleaching (c-ii).

PySOFI offers two ways for BC. One way is through
the PysofiData class as shown below:

# Import the relevant tools:
from pysofi import pysofi
# Load data into PysofiData object:
filepath ¼ '../sampledata'
filename_bleach ¼ 'Bleach_SlowVaryingRho_fra-

me2000_Emi51.tif'
# Load the data set with bleaching into a PysofiData

class object d_bleach:
d_bleach ¼ pysofi.PysofiData(filepath, filename_

bleach)
# Calculate the SOFI cumulants with bleach correc-

tion:
k_set_bleach_corrected ¼ d_bleach.cumulants_

images(highest_order¼7, bleach_correction¼True,
smooth_kernel¼251, fbc¼0.04)

We can also directly import the relevant function
module reconstruction.py and perform BC as shown
below:

# Import the function module and define the path
and file name of the data set:

from pysofi import reconstruction as r
filepath ¼ '../sampledata/simulations'
filename_bleach ¼ 'Bleach_SlowVaryingRho_fra-

me2000_Emi51.tif'
# Perform BC on the designated data set:
r.correct_bleaching(filepath,filename_bleach, fbc¼0.04,

smooth_kernel¼251,
save_option¼True, return_option¼False)

In this example, we applied BC to a tiff stack,
and the BC movie was saved as a separate tiff stack
with the string “_bc” appended to the original file
name.

More detailed demonstrations are available in the
corresponding Jupyter Notebook (E6).
Result visualization (E8)

We provide some simple visualization options in
PySOFI to display either single or multiple images,



with the option to adjust image contrast, and to display
the image with a transparency map defined as an input
parameter. Bokeh is used to offer an interactive
display. More detailed demonstrations are available
in the corresponding Jupyter Notebook (E8).
DATA AVAILABILITY

The data for this project is partially available on the
project repository and are all organized on figshare(34).
The usages of the example data sets are described
below. Block1.tif to Block20.tif are live-cell imaging
data (11) using HeLa cells labeled with Dronpa-C12
fused with b-actin. All the rest of the data sets are simu-
lation data sets used and described in the example Ju-
pyter Notebooks.
DISCUSSION

In this work, we developed PySOFI, an open source Py-
thon package for SOFI analyses. PySOFI contains the
essential functionalities for conventional SOFI analysis
as well as several derivative methods (9–11,26,10).

PySOFI adopts a simple architecture where all data-
processing steps are implemented as independent
function modules, and only one class module (the
data class PysofiData) is used to manage the data-pro-
cessing workflow.

The functions can be tested independently and used
in different processing pipelines. A fast prototype on
new analysis can be achieved by disseminating and re-
organizing the processing step. One can implement
additional processing steps as independent Python
functions with the help of existing PySOFI functions.
New functions can be used as standalone modules
or can be integrated into the PysofiData class to sup-
port the new analysis pipeline. New classes can be con-
structed for different analysis pipelines as well.

We adopted Sphinx to manage the PySOFI documen-
tation, which is available as an online documenta-
tion(33) to facilitate community usage. Additionally,
each processing element of the analyzing pipeline is
demonstrated in individual Jupyter Notebooks. In
each notebook, we also provide instructions on how
to tune processing variables and explore input data.

PySOFI is housed on GitHub(32) as an open-source
repository, and any interested individuals can learn,
inspect, validate, and contribute to the package. The
user interactions on GitHub (e.g., fork, create pull re-
quests, and report issues) engage community commu-
nications. We expect PySOFI to benefit general SOFI
users for existing SOFI analysis as well as developers
and new investigators interested in developing new
SOFI-relevant analysis methods.
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