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Takahashi, Craig D., Dan Nemet, Christie M. Rose-Gottron, Jen-
nifer K. Larson, Dan M. Cooper, and David J. Reinkensmeyer.
Neuromotor noise limits motor performance, but not motor adaptation,
in children. J Neurophysiol 90: 703–711, 2003; 10.1152/jn.01173.2002.
Children do not typically appear to move with the same skill and dexterity
as adults, although they can still improve their motor performance in
specific tasks with practice. One possible explanation is that their
motor performance is limited by an inherently higher level of move-
ment variability, but that their motor adaptive ability is robust to this
variability. To test this hypothesis, we examined motor adaptation of
43 children (ages 6–17) and 12 adults as they reached while holding
the tip of a lightweight robot. The robot applied either a predictable,
velocity-dependent field (the “mean field”) or a similar field that
incorporated stochastic variation (the “noise field”), thereby further
enhancing the variability of the subjects’ movements. We found that
children exhibited greater initial trial-to-trial variability in their un-
perturbed movements but were still able to adapt comparably to adults
in both the mean and noise fields. Furthermore, the youngest children
(ages 6–8) were able to reduce their variability with practice to levels
comparable to the remaining children groups although not as low as
adults. These results indicate that children as young as age 6 possess
adult-like neural systems for motor adaptation and internal model
formation that allow them to adapt to novel dynamic environments as
well as adults on average despite increased neuromotor or environ-
mental noise. Performance after adaptation is still more variable than
adults, however, indicating that movement inconsistency, not motor
adaptation inability, ultimately limits motor performance by children
and may thus account for their appearance of incoordination and more
frequent motor accidents (e.g., spilling, tripping). The results of this
study also suggest that movement variability in young children may
arise from two sources—a relatively constant, intrinsic source related
to fundamental physiological constraints of the developing motor
system and a more rapidly modifiable source that is modulated de-
pending on the current motor context.

I N T R O D U C T I O N

Children are generally less proficient at movement tasks
compared with adults. For example, children show greater
movement variability during a variety of motor tasks such as
prehension (Kuhtz-Buschbeck et al. 1998), elbow flexion
(Jansen-Osmann et al. 2002), and rapid goal-directed planar

arm movements (Yan et al. 2000). During bi-manual unloading
tasks, children exhibit less refined timing and more often
utilize muscle co-contraction strategies compared with adults
(Schmitz et al. 2002).

Skillful movement requires the ability of the motor control
system to adapt to a variety of external dynamic environments.
Numerous studies have indicated that the adult human nervous
system uses “internal models”—feedforward neural mappings
between limb state and muscle force—to adapt to altered
dynamic environments (e.g., Brashers-Krug et al. 1996;
Scheidt et al. 2001; Shadmehr and Holcomb 1997; Shadmehr
and Mussa-Ivaldi 1994; Thoroughman and Shadmehr 2000).
Similarly, children as young as six were recently shown to
implement internal models of motor-applied viscous force
fields during 1 df elbow flexion movements (Jansen-Osmann et
al. 2002). This finding suggests that children use feedforward,
adaptive control strategies like adults and that these strategies
are robust to the increased internal neuromotor noise that is
present in the developing nervous system. It was also recently
shown that adults are able to adapt and compensate for the
approximate mean of a noisy robot-applied force field by using
a dual strategy of internal model formation and impedance
control (Takahashi et al. 2001), indicating that mature adaptive
control systems are robust to environmental noise that more
than doubles their movement variability. If the developing
motor controller utilizes the same adaptive mechanisms as the
adult controller, it would be expected that motor adaptation in
children should also be robust to environmental noise as well
as internal neuromotor noise, although performance may still
ultimately be limited by neuromotor noise. The purpose of this
study was to test this hypothesis by comparing the motor
performance of children and adults before and after they
adapted to variable force fields applied by a robot that more
than doubled their movement variability.

M E T H O D S

Forty-three children (ages 6–17) and 12 adults participated in the
study, which was approved by the University of California Irvine
Institutional Review Board. The age and gender distribution of the
subjects is shown in Table 1. Subjects and their parents or legal
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guardians provided written informed consent. Subjects included in the
study had no known neuromuscular impairments.

Protocol

The seated subject held the end effector of a 3 df lightweight robot
arm (PHANToM 3.0, SensAble Technologies) with the dominant
hand (Fig. 1A). Each subject started with the reaching hand resting on
the lap. A computer-controlled light-emitting diode (LED) prompted
the subject to raise the hand to a physical “start” target—the tip of a
small compliant plastic pointer—positioned two hand widths out from
the center of the sternum. After attaining the start target, the computer
sounded a tone, prompting the subject to reach out to a similar “finish”
target, positioned just inside the boundary of the reaching workspace
and aligned with the start target in the anterior direction (i.e., in front
of the subject). After the subject attained the finish target, the com-
puter sounded another tone, prompting the subject to return the hand
to the lap, where the subject was allowed to rest for 1 s. After each
movement the computer provided visual feedback on the reach speed
(just right � desired reach time �5%; too fast; or too slow). The
desired reach time was determined from a test conducted at the
beginning of the experiment in which the subject performed the same
reaching exercise, only reaching as fast as possible to the finish target

(20 trials or reaches). To scale the experimental conditions to each
subject’s “maximum” movement speed, the desired reach time was set
to be 118% of the mean of the reach times of the fastest three trials in
this test.

Subjects were exposed to five sequential dynamic environments,
called “stages” (Fig. 1B). In the first stage (null field 1), the robot did
not actively apply forces to the subject for 20 trials. Two distinct
viscous curl force fields, a mean field and a noise field, were applied
in separate trial blocks (stages 2 and 4) according to the equation

F � k � b � v (1)

where k is a scalar gain, b � [0 3.65 0]T Ns/m is a three-element
vector that points straight up vertically per reference frame (Fig. 1A)
for right-handed subjects, v is a three-element vector representing the
velocity of subject’s hand in space, and F (the force applied by the
robot) is a three-element vector formed from the cross-product of b
and v (and multiplied by k). The resulting force, applied only during
the outward reach, was leftward (orthogonal to the plane spanned by
b and v) for right-handed subjects, and rightward for left-handed
subjects.

In the mean field (50 trials), the force was applied according to Eq.
1, where the gain was constant (k � 1) for each reach. The force in the

TABLE 1. Key variables by subject age group

Variable

Ages

6–8 9–12 13–17 �17

Subject quantities 17 (10 M, 7 F) 13 (5 M, 8 F) 13 (7 M, 6 F) 12 (6 M, 6 F)
Noise field gain values 0.98 � 0.47 0.98 � 0.49 0.95 � 0.45 0.97 � 0.48
Subject strength, N 56.7 � 17.2 107.0 � 30.0 209.0 � 66.6 257.3 � 135.3
Peak speed, cm/s 56.9 � 12.4 80.3 � 16.8 93.2 � 20.4 82.7 � 15.5
Peak field force/subject strength, % 3.6 � 1.2 2.8 � 0.9 1.6 � 0.4 1.5 � 0.7
Direct effect magnitude, cm 2.94 � 1.6 3.14 � 0.7 2.67 � 0.5 2.44 � 0.4
Maximum lateral deviation, cm 3.93 � 2.78 5.38 � 1.5 3.67 � 2.6 3.87 � 1.3

Values are means � SD. M, male; F, female.

FIG. 1. Experimental design. A: subjects reached while at-
tached to a lightweight robot arm. B: subjects were exposed to
5 sequential dynamic environments. Noise-then-mean (NM)
subjects were exposed to the noise field in stage 2 and the mean
field in stage 4, and vice versa for the mean-then-noise (MN)
subjects. C: summary of experimental measures.
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noise field (50 trials) was also applied according to Eq. 1, but the force
gain varied across different trials randomly and unpredictably accord-
ing to a normal distribution with a mean of 1.0 and a SD of 0.5. The
gain values were truncated to �1.0 about the mean. In addition, the
gain of the first trial of the noise field was always set at 1.0 to facilitate
comparisons with the reaching error in the first trial of the mean field.
The effect of the noise field was to apply a different magnitude of
force for each reach, but the average magnitude over many reaches
differed by no more than 5% across all subject groups (Table 1).

The order of presentation of the noise and mean fields was ran-
domized across subjects. Noise-then-mean (NM) subjects (n � 27)
were exposed to the noise field in stage 2 and then to the mean field
in stage 4. The order was reversed for mean-then-noise (MN) subjects
(n � 28). The subject quantities were balanced between the NM and
MN subject groups to control for possible ordering effects (e.g.,
exposure to the noise field first might alter performance in the mean
field or vice versa). Statistical comparison (paired 2-sided t-test) of the
MN and NM subject performances found no significant ordering
effects for a variety of key measures including variability in the force
fields, final error in the field, modeled gain, direct effect magnitude,
and aftereffect magnitude.

The third and fifth stages were null fields (50 trials each), for which
the robot did not actively apply forces to the subject, allowing mea-
surement of the aftereffect and providing a “washout” of the previous
force field. Subjects were given 1-min rests after trials 45 and 145 to
avoid fatigue. Note that because the applied force field was velocity
dependent and because the desired reach time was scaled to each
subject’s maximum movement speed, the forces applied by the robot
were also scaled to each subject’s maximum movement speed. Thus
smaller children, who moved more slowly, experienced smaller ap-
plied forces.

An estimate of strength for each subject was obtained by measuring
the maximum isometric force generated in the vertical direction by
each arm. The subject lifted the arm upward with as much force as
possible with the forearm strapped to a six-axis force-torque trans-
ducer (Assurance Technologies, Theta Model) that was positioned so
that the hand was �10 cm out from the torso at the midline and 10 cm
above the lap. The maximum voluntary strength was taken to be the
maximum of two attempts (Table 1). Strength was evaluated in the
vertical, rather than horizontal, direction because the hardware setup
was simpler. Shoulder strength in the vertical and horizontal direc-
tions differs by �20% in adult populations (Hughes et al. 1999).
Strength was correlated with maximum movement speed (R2 � 0.54,
P � 0.001).

Data analysis

A computer sampled the three-dimensional position of the robot tip
(and thus the subject’s hand position) at 1,000 Hz as inferred from
rotational sensors at the robot joints. Because the force field pushed
the hand to the left or right, disturbances to the reaching trajectory
were mainly in the horizontal plane. Statistical analysis indicated that
trajectories were not significantly disturbed in the vertical direction on
initial exposure to or removal of the field. Thus reaching errors were
quantified as the area between the trial path and a reference path
projected onto the horizontal plane (X-Z plane, Fig. 1A), divided by
the distance between the start and finish targets (Fig. 1C). The result-
ing geometric measure of error is the spatial average lateral deviation
away from the reference path and thus does not depend on reach
length. For right-handed subjects, reach paths that were to the right of
the reference path were given positive values, whereas those to the left
were given negative values. The reference path was selected to be the
average path of the trials in the last half of null field 1 (trials 11–20).
The average was computed by aligning the path data to an initial
velocity threshold (75 mm/s) and computing the mean across the
corresponding sampling points. For these trials, the subjects had
presumably acclimated to using the robot but still had no perturbing

force field applied to them. The averaged hand paths across subject
groups during the different exposure stages (Fig. 2) were computed in
the same fashion over the applicable range of trials and subjects.

Several kinematic measures of reaching were used to quantify the
subject response to the force fields. The “direct effect” of a field was
quantified as the reaching error in the first trial of that force field (trials
21 and 121). The “performance improvement” was quantified as the
percent difference in the reaching error between the first reach in the
field and the mean of the last 20 reaches in the field. The “aftereffect”
was quantified as the reaching error in the first trial after a force field
was removed (trials 71 and 171), normalized by the direct effect size
of the same field to correct for inter-subject variation in arm imped-
ance. A subject with greater arm impedance would be expected to
exhibit a smaller direct effect as well as aftereffect (Takahashi et al.
2001). Normalizing by direct effect would therefore correct for inter-
subject differences in arm endpoint impedance. Statistical analyses
described throughout this paper were repeated using nonnormalized
aftereffects and similar results were obtained. For all analyses, data
points exceeding 1.5 SD away from the group mean were defined as
outliers and were removed in a single iteration prior to statistical
testing. The data analysis for the left-handed subjects was mirror-
symmetric about the sagittal plane so that application of the field
always produced a negative reaching error.

As subjects adapted to the force fields and de-adapted after removal
of the force fields, they exhibited a gradual reduction in error with
practice. The rate of adaptation and de-adaptation was determined by
fitting a single exponential curve with a constant offset to the trial
series error using a least squares fit by the Gauss-Jordan method

E�t� � ae��t/�� � b (2)

where E is error, t is trial, and � is the time constant of the fit
exponential. Because the trial series errors of individual subjects were
highly variable and typically not amenable to curve fitting, the curves
were fit to the averaged trial series data within each age group,
obtained by ensemble averaging the trial series data across subjects in
the respective age group. The rate of adaptation was quantified as the
“time constant” (�) of the fit exponential.

Subjects adapted to the noise field with repetitive reaching practice.

FIG. 2. Average hand paths before (prefield; i.e., trials 11–20), during
(direct effect, trials 21 and 121; and postadaptation, last 20 trials in force
fields), and after (aftereffect, trials 71 and 171) exposure to the noise (top) and
mean (bottom) fields. The paths are ensemble averages across subjects within
each age group (ages 6–8, ages 9–12, ages 13–17, and ages �17; each
represented in 1 column). Ellipses show SD across subjects. Paths are shown
from top view (see Fig. 1C for perspective).
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One measure of adaptive ability in the noise field was the modeled
gain. The modeled gains were quantified by linearly regressing reach-
ing error and field gain (k) over the last 20 data points in the noise
field. The modeled gain was quantified as the “zero crossing” of the
regression line—that is, the field gain at which subjects minimized
their reaching error (Scheidt et al. 2001; Takahashi et al. 2001).

The application of slightly different field strengths on each trial in
the noise field allowed an estimate of limb impedance to be made
(Takahashi et al. 2001). Specifically, impedance was quantified as the
slope of the regression line of the spatial average lateral force mag-
nitude and the spatial average lateral deviation from baseline (i.e., the
reaching error) over the last 20 trials in the noise field. This slope
indicated the relationship between the average displacement of the
hand and the average displacing force and is equivalent to the stiffness
of the limb if the limb behaves like a linear spring in the perturbation
direction. We also calculated limb impedance by regressing time
averaged force against time averaged lateral deviation and peak force
against peak deviation. The calculated impedance values were similar
for each technique.

For analysis purposes, children were grouped into three age cate-
gories: ages 6–8, ages 9–12, and ages 13–17 (Table 1). Adults were
grouped as ages �17. Because the onset of puberty can vary between
subjects, we also performed the data analysis with slightly redefined
age groups (ages 6–8, ages 9–11, ages 12–17, and ages �17) and
obtained similar results.

R E S U L T S

Both children and adults adapted to the mean and noise
fields

The hand paths before, during, and after application of the
noise and mean force fields were similar across groups (Fig. 2).
The pattern of reaching errors, quantified as the spatial average
of the lateral deviation, was also similar across age groups (Fig.
3). All age groups exhibited an increased reaching error (i.e., a

“direct effect”) when the forces were initially applied (trials 21
and 121), reduced their trajectory error with practice in the
field, and exhibited a mirror-image trajectory error (i.e., an
aftereffect) when the forces were unexpectedly removed (trials
71 and 171).

Statistical analysis of performance confirmed the use of
internal models and motor adaptation with repetitive reaching
practice in all age groups (Fig. 4). The initial, unexpected
application of the first force field significantly perturbed all age
groups away from baseline (P � 0.001, t-test, both the noise
and mean fields, 1st direct effect). The direct effect magnitudes
did not depend on the age grouping although there was a nearly
significant trend for the direct effect to be smaller for adults
(Fig. 4A, ANOVA linear contrast, P � 0.09). With repeated
reaching practice, all age groups showed significant perfor-
mance improvement (paired 1-sided t-test across subjects; P �
0.001, both fields) that did not depend on age grouping (Fig.
4B, ANOVA linear contrast; P � 0.25 noise field; P � 0.26
mean field). In addition, a linear regression of time constants of
the ensemble averaged trial series error across age groups
revealed that adaptive rates in the force fields (i.e., the rate of
error reduction) also did not depend on age grouping (Fig. 4C;
R2 � 0.44, P � 0.33 noise field; R2 � 0.28, P � 0.47 mean
field). The performance improvements ultimately resulted in
final error values (the average over the last 20 trials of each
field) that did not depend on age grouping (Fig. 4D, ANOVA
linear contrast, P � 0.22 noise field, P � 0.30 mean field).
Finally, all age groups showed significant aftereffects away
from baseline (t-test; P � 0.001, both fields) on removal of the
force fields. However, the aftereffect magnitude did not depend
on age grouping (Fig. 4E, ANOVA linear contrast, P � 0.33
noise field, P � 0.63 mean field).

Both children and adults formed a model of the approximate

FIG. 3. Trial series reaching error. Each line
is an ensemble average of data from each age
group (ages 6–8, ages 9–12, ages 13–17, and
ages �17). All age groups displayed large initial
errors (direct effects) on unexpected exposure to
the applied force fields on trials 21 and 121,
followed by a re-acquisition of approximate pre-
exposure performance. Unexpected removal of
the field at trials 71 and 171 resulted in after-
effects, which also decayed over time. A: NM
subjects. B: MN subjects.
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mean of the noise field, with the mean modeled gain between
0.71 and 0.84 (Fig. 5A, t-test compared with 0, P � 0.001, for
each age group). The modeled gain (i.e., the 0-crossing of the
linear regression of error vs. field gain at the end of the noise
field) did not depend on age grouping although there was a
nearly significant trend for the modeled gain to be smaller for
adults (ANOVA linear contrast, P � 0.06). Power (at the 0.05
level of significance for a type I error) was �0.80 for values of
modeled gain �0.70 and �0.92 (all children groups).

Adults exhibited higher levels of estimated limb impedance
(quantified as the slope of the linear regression of the average
spatial force strength against reaching error) compared with
children both at the beginning (i.e., the 1st trial) and end (i.e.,
over the last 20 trials) of the noise field (Fig. 5B; ANOVA
linear contrast, P � 0.001). Only the ages 9–12 group showed
significant increases in limb impedance at the end of the noise
field compared with that at the beginning of the field (paired
1-sided t-test, P � 0.001). Impedance increases for the ages
13–17 group approached significance (P � 0.08). Aftereffect

size was not significantly smaller after noise field exposure
compared with following mean field exposure (paired 1-sided
t-test; P � 0.34, ages 6–8; P � 0.14, ages 9–12; P � 0.33,
ages 13–17; P � 0.13, ages �17).

Children moved more slowly and exhibited greater
movement variability than adults, although the youngest
children reduced their variability with practice

Despite the ability of the children to adapt to the mean and
noise fields like adults, several key differences in the children’s
motor performance were apparent. Children moved more
slowly than adults as evidenced by a significant increase of
reach time with decreasing age grouping (Fig. 6A, ANOVA
linear contrast, P � 0.001). There was also a trend for children
to de-adapt more slowly in the null fields than adults. A linear
regression of the time constants of the ensemble averaged trial
series error (“de-adaptation rates”) across all age groups

FIG. 4. Comparison of motor adaptation pat-
terns. First direct effect magnitude (A) and perfor-
mance improvement (B) in fields did not depend on
age grouping. C: linear regression of adaptation
rates in the force fields were not significant, but
de-adaptation rates for combined data from fields 2
and 3 were significant (R2 � 0.90, P � 0.05, —).
D: error at end of field did not depend on age
grouping. E: aftereffect magnitude also did not
depend on age grouping. Error bars show SD
across subjects.

FIG. 5. Measures of adaptation to the noise field. A: mod-
eled noise field gain did not depend on age grouping. B: limb
impedance levels depended on age grouping both at the
beginning and end of the field (ANOVA linear contrast, P �
0.001). Impedance levels did not generally show a signifi-
cant increase except for the ages 9–12 group (paired 1-sided
t-test, P � 0.001). The impedance increases for the ages
13–17 group approached significance (P � 0.08). Error bars
show SD across subjects.
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showed a significant linear trend (Fig. 4C, R2 � 0.90, P �
0.05, null fields 2 and 3 combined).

Children also showed more initial trial-to-trial spatial and
temporal variability (SD of reaching error and reach time,
respectively, across trials) in their arm movements in the null
field. There was a significant linear trend in spatial (Fig. 6B,
ANOVA linear contrast across children groups and across all
age groups, P � 0.001) and temporal (Fig. 6C, P � 0.001)
movement variability with age grouping near the beginning of
the experiment (i.e., the last half of null field 1, trials 11–20).
The youngest children (ages 6–8) had significantly higher
initial movement variability compared with the ages 9–12
group (P � 0.001 spatial, P � 0.02 temporal, Bonferroni-
adjusted), the ages 13–17 group (P � 0.001 spatial, P � 0.001
temporal), and to adults (P � 0.001 spatial; P � 0.001 tem-
poral). Consistent with this increased variability, children
scored the desired movement time (total number of “just
rights”) less often than adults (Fig. 6D, ANOVA linear con-
trast, P � 0.001).

Despite their more highly variable start, the youngest chil-
dren (ages 6–8) were able to significantly reduce their trial-
to-trial spatial (Fig. 6B, paired 1-sided t-test for ages 6–8, P �
0.006) and temporal (Fig. 6C, paired 1-sided t-test for ages
6–8, P � 0.05) variability by the end of the experiment (i.e.,
over the last 10 trials of null field 3). This reduction resulted in
spatial variability levels that were not significantly different
from the remaining children groups, although the adult group
maintained significantly lower spatial variability compared
with the children groups (ANOVA with a planned comparison,
P � 0.002 spatial; P � 0.14 temporal). Furthermore, by the
end of the experiment, there was no longer a significant linear
trend in spatial (ANOVA linear contrast across all children
groups, P � 0.99) and temporal (ANOVA linear contrast
across all children groups, P � 0.38) variability with age
grouping. Consistent with this decrease in variability, the

youngest children scored the desired movement time more
frequently by the end of the experiment (Fig. 6D, paired
one-sided t-test, P � 0.03).

D I S C U S S I O N

Children showed similar patterns of adaptive behavior com-
pared with adults in both the mean and noise fields. They
exhibited direct effects when unexpectedly perturbed by the
robot forces, reduced their trajectory error at comparable rates
with practice in the force fields, and exhibited comparable
aftereffects on unexpected removal of the forces. The children
also formed a model of the approximate mean of the noise field
that was comparable to that of the adults. They achieved this
adaptive performance even though they moved with greater
trial-to-trial variability both before and after motor adaptation.
This greater motor variability apparently caused them to
achieve the desired movement time less frequently than adults.
These findings suggest that children as young as age 6 possess
adult-like neural systems for forming internal models and that
these neuro-adaptive systems are robust to variability associ-
ated with internal physiological constraints as well as addi-
tional variability imposed by the external dynamic environ-
ment. Performance after motor adaptation by children, how-
ever, ultimately remains limited by increased movement
variability.

One caveat in interpreting these results is that the children
were operating proportionally closer to their maximum
strength during the force field perturbation because the mag-
nitude of the field was scaled to movement speed rather than
arm strength, and adults were only 1.5 times faster but 4.5
stronger than the youngest children (Table 1). However, it
seems unlikely that this difference would affect adaptation
ability since the peak forces applied to the youngest children
were still �4% of their maximum shoulder strength (Table 1).

FIG. 6. Motor performance measures. A: reach time de-
pended on age grouping (ANOVA linear contrast, P �
0.001). B: spatial variability depended on age grouping
early in the experiment (mean over trials 11–20, ANOVA
linear contrast over children groups, P � 0.001) but be-
came independent of age grouping (P � 0.99) by the end
of the experiment (i.e., last 10 trials). Children ages 6–8
significantly reduced their spatial variability (paired
1-sided t-test; ** P � 0.01) by the end of the experiment,
but adults still maintained significantly lower levels com-
pared with all other children groups (ANOVA planned
comparison, P � 0.002). Spatial variability was signifi-
cantly increased by the end of the noise field (“noise	”
indicates last 10 trials of noise field) for all age groups
(paired 1-sided t-test, P � 0.001 all age groups) to levels
that did not depend on age grouping (ANOVA linear
contrast, P � 0.39). C: temporal variability also depended
on age grouping over trials 11–20 (ANOVA linear contrast
over children groups, P � 0.001) but became independent
of age grouping by the last 10 trials of experiment (P �
0.38). Children ages 6–8 significantly reduced their tem-
poral variability (paired 1-sided t-test, * P � 0.05) by the
end of the experiment. D: children ages 6–8 improved
their timing score rate (percent “just right,” t-test, *P �
0.05) by the end of the experiment. Error bars show SD
across subjects.
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In addition, the given field strengths resulted in an initial
kinematic perturbation to movement that was comparable be-
tween groups as measured by the area reaching error and the
maximum lateral deviation of the direct effect (Fig. 2, Table 1).
If kinematic error is the signal that drives adaptation (Good-
body and Wolpert 1998; Scheidt 1998; Scheidt et al. 2000),
then the driving signal for adaptation was about the same
magnitude across ages.

Another caveat is that the younger children may have ex-
hibited greater relative movement variability in the force field
due to the relatively greater force demand. Variability in-
creases with applied force in isometric force generation in
adults (Jones et al. 2002). However, this effect would be
expected to be small since, as noted in the preceding text, the
external forces applied to the youngest subjects were �4% of
their maximum strength. Moreover, the children still exhibited
greater variability even in the absence of the field, consistent
with previous reports (Jansen-Osmann et al. 2002; Kuhtz-
Buschbeck et al. 1998; Yan et al. 2000).

Adaptive control by children: formation of internal models
and impedance control

The results of the present study are consistent with recent
findings indicating that children ages 6–10 can form internal
models during a bimanual load-lifting task (Schmitz et al.
2002) and during single degree-of-freedom elbow movements
(Jansen-Osmann et al. 2002). During bi-manual unloading
tasks, the adult neuromotor system forms anticipatory models
of the effects of unloading while attempting to maintain fore-
arm posture (Massion and Dufosse 1988; Massion et al. 1999)
and exhibits aftereffects when the external forces are unexpect-
edly removed (Lum et al. 1992). Schmitz et al. (2002) found
that children can also form such internal models, but they
exhibit less refined timing and more often utilize muscle co-
contraction strategies compared with adults. Studying viscous
loading of single degree-of-freedom elbow movements,
Jansen-Osmann et al. (2002) found age-related differences in
aftereffect magnitude and longer de-adaptation rates in young
children and concluded that children formed models, albeit less
precisely—perhaps due to less precise tuning of dynamics
parameters. In the present study, younger children had longer
de-adaptation rates, consistent with results by Jansen-Osmann
et al. (2002), but the aftereffect magnitude was comparable
across all age groups. The apparent adult-like performance of
the children’s adaptive control systems in the present study
may be due to differences in the type of movement practiced
(i.e., free reaching in three space versus constrained, 1 df elbow
flexion movements), or the type of perturbation applied (vis-
cous curl field in gravity vs. viscous load in a gravity-elimi-
nated environment or vs. self-imposed postural perturbation).

A simple computational process that is robust to noise may
underlie both adult and child motor learning. Adults are able to
learn to compensate for the approximate mean of substantially
variable force fields (Scheidt et al. 2001; Takahashi et al.
2001). A linear adaptive parametric model, using information
from only a limited number of previous practice trials, can
account for the ability to achieve a sort of moving average
(Scheidt et al. 2001). Preliminary analysis of the data from the
present experiment indicates a similar computational process

can adequately model the performance of children (Takahashi
et al. 2002).

Limb impedance, estimated from the differential trajectory
errors produced by the noise field, increased with age. This
age-dependent increase is likely accounted for by the relatively
smaller forces experienced by the younger children compared
with adults because muscle stiffness increases with muscle
force (Hunter and Kearney 1982; Mirbagheri et al. 2000; Weiss
et al. 1988; Zhang et al. 1998).

Limb impedance did not increase consistently across age
groups in response to the environmental variability of the noise
field. Consistent with this finding, aftereffects were not signif-
icantly smaller after exposure to the noise field compared with
after exposure to the mean field (Fig. 4E). This is in contrast to
previous studies that suggest that the nervous system manages
variable or destabilizing dynamic environments not just by
internal model formation but also by impedance control (Bur-
det et al. 2001; Milner 2002; Milner and Cloutier 1993; Taka-
hashi et al. 2001; Wang et al. 2001). One possible explanation
for the lack of a clear impedance control effect in the present
study is related to the specific design of the reaching task. For
instance, in a previous study conducted in this laboratory
(Takahashi et al. 2001), adult subjects reached alternately to
two targets from a resting position on a cantilever beam that
extended across the lap and exhibited increased impedance and
diminished aftereffects after exposure to a noise field. In the
current study, subjects were required to locate a starting posi-
tion before reaching out. The increased muscle activation nec-
essary to raise the arm against gravity and stabilize the hand to
accurately attain a relatively small point in space may have
increased the limb impedance to levels high enough at the start
of movement to mask or render unnecessary further impedance
increases during the movement.

Sources and mutability of movement variability in children

The increased spatial and temporal variability in the move-
ments of young children are consistent with the results of
numerous studies on arm movement in children (e.g., Jansen-
Osmann et al. 2002; Kuhtz-Buschbeck et al. 1998; Yan et al.
2000). There are two general ways that this increased move-
ment variability might arise. First, it may reflect a fundamental
physiological constraint in the capability of the developing
nervous system. For instance, movement variability has been
considered to be a manifestation of inherent noise in the
neuromotor system (Fitts 1954; Schmidt et al. 1979), which
may fundamentally constrain motor planning (Harris and Wol-
pert 1998). Such inherent noise may arise for example, from
variability in single-neuron firing patterns, which may in turn
be attributable to noise in membrane biophysical properties
(Azouz and Gray 1999; Shadlen and Newsome 1998). Motor
neuron recruitment mechanisms may also affect motor output
variability (Jones et al. 2002).

The developmental constraints on such noise mechanisms
are unclear. Structural maturation of motor tracts, including
myelination and axon diameter changes, is an ongoing process
through adolescence (Fietzek et al. 2000; Muller and Homberg
1992; Paus et al. 1999). Immaturity in neural transmission
might increase motor variability by affecting the integrity of
neural signals. Alternately, we recently performed simulations
of a population-coding model of movement control that incor-
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porates neural firing rate variability and summation of re-
sponses from broadly tuned neurons (Reinkensmeyer et al.
2003). These simulations indicate that trial-to-trial movement
variability increases as the population size decreases because
the magnitude of the population vector decreases more quickly
than its SD for decreasing cell populations, provided physio-
logical levels of firing rate noise (Lee et al. 1998) are present.
Thus in a population-coding framework that incorporates fir-
ing-rate noise, a less-experienced nervous system with fewer
directionally tuned cells would be expected to exhibit greater
variability. A third possibility is that movement variability is
greater because children have more difficulty attending to their
movements. For instance, (Yan and Thomas 2002) demon-
strated that children with attention deficit hyperactivity disor-
der exhibit more variable and slower movements compared
with control subjects. However, the youngest children de-
creased their variability later in the experiment when presum-
ably they would have more difficulty attending to the repetitive
task. The work of Todorov and Jordan (2002) suggests that
variability may increase if children have not learned how to
optimally distribute variability in redundant dimensions. Iden-
tifying actual physiological constraint mechanisms in the de-
veloping nervous system is an important future direction.

Second, increased movement variability may reflect a sys-
tems-level process implemented by the developing nervous
system for functional benefit (cf. Manoel Ede and Connolly
1995). For example, because the motor control system of a
child must perform in the context of continuously changing
system parameters (body mass, dimension, neural properties,
etc.), it may have to constantly perform system-identification
procedures to optimize its performance. System-identification
techniques often involve obtaining a rich experience through a
thorough investigation of the configuration space. Thus move-
ment variability in children may be an intentional feature of
such a functional optimization process. If so, the pediatric
neuromotor controller may opt to reduce intentional noise
when presented repeatedly with the same task, trading off
system-identification processes for better performance.

The results of the present study are consistent with the
combined presence of these two mechanisms. Young children
(ages 6–8) quickly reduced their spatial and temporal variabil-
ity with practice. This rapid reduction of variability with prac-
tice is consistent with a systems-level mode switching rather
than alteration in a fundamental physiological constraint,
which would not be expected to change appreciably over the
short time period measured here. The physiological constraint
mechanism would more likely express itself as age-related
baseline variability that changes slowly through a developmen-
tal process. Consistent with this idea was the inability of
children in the present study to reduce their variability to adult
levels, even with practice.

Reduction of movement variability with practice has been
observed before in adults during rapid aiming movements
(Abrams and Pratt 1993; Darling and Cooke 1987; Gottlieb et
al. 1988) and in rhesus monkeys during planar reaching (Geor-
gopoulos et al. 1981). The adult subjects in the present study
did not exhibit a reduction of movement variability during the
adaptation portion of the experiment, possibly because the time
frame considered was insufficiently long to observe this effect.
The relatively greater reduction in movement variability in the
youngest children in this study is consistent with the results of

Thomas et al. (2000), who observed a relatively greater in-
crease in the duration of the primary submovement and corre-
sponding decrease in jerk for children practicing a rapid aiming
movement.

Implications and directions for future research

This study suggests or reinforces several key ideas for the
understanding of motor control in the developing nervous
system. First, regardless of the mechanisms, this study con-
firms that children’s movement is inherently more variable
than adults even after motor adaptation. Thus increased move-
ment variability likely plays a key role in children’s appearance
of incoordination and more frequent motor accidents even at
well-learned dynamic tasks (e.g., spilling, tripping). Increased
movement variability likely also constrained the younger chil-
dren to plan slower movements to consistently attain the target
with a fixed accuracy requirement (Harris and Wolpert 1998).
Second, the study confirms that the computational processes
that support internal model formation are implemented by the
nervous system early in development and thus likely support
not only motor learning of new tasks at a young age but the
continual control adjustments needed to compensate for the
morphological growth associated with development. From this
perspective, the effects of increasing limb size can be viewed
as ongoing changes in the force field induced by limb mechan-
ics; children as young as age 6 can compute the internal models
needed to predictively compensate for this force field. Third,
young children’s ability to reduce movement variability more
rapidly than other age groups provides a possible mechanism
for the casual observation that they appear to improve more
rapidly than other age groups in specific motor tasks. In par-
ticular, we hypothesize that they may appear to improve more
rapidly not because they form internal models more accurately
or quickly than adults, but because they more quickly reduce
their movement variability after starting from a higher level of
variability. Finally, the paradigm and measures developed in
this study might ultimately prove useful in the clinical setting
as a minimally invasive, relatively simple tool to aid in the
diagnosis and treatment of children who have difficulty mas-
tering motor tasks, for example, due to neurological disorders,
or as a predictor of activity-related, orthopedic injuries that
may be linked to increased motor variability.
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