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Abstract

Background: Increasingly ensemble learning-based spatiotemporal models are being used to 

estimate residential air pollution exposures in epidemiological studies. While these machine 

learning models typically have improved performance, they suffer from exposure measurement 

error that is inherent in all models. Our objective is to develop a framework to formally assess 

shared, multiplicative measurement error (SMME) in our previously published three-stage, 

ensemble learning-based nitrogen oxides (NOx) model to identify its spatial and temporal patterns 

and predictors.

Methods: By treating the ensembles as an external dosimetry system, we quantified shared and 

unshared, multiplicative and additive (SUMA) measurement error components in our exposure 

model. We used generalized additive models (GAMs) with a smooth term for location to identify 

geographic locations with significantly elevated SMME and explain their spatial and temporal 

determinants.

Results: We found evidence of significant shared and unshared multiplicative error (p < 0.0001) 

in our ensemble-learning based spatiotemporal NOx model predictions. Unshared multiplicative 

error was 26 times larger than SMME. We observed significant geographic (p < 0.0001) and 

temporal variation in SMME with the majority (43%) of predictions with elevated SMME 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
*Corresponding author at: Division of Environmental Health, USC Keck School of Medicine, 2001 N. Soto Street, Suite 102, Los 
Angeles, CA 90089, USA. mgirguis@usc.edu (M.S. Girguis). 

Competing financial interests
The authors declare no competing financial interests.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2018.12.025.

HHS Public Access
Author manuscript
Environ Int. Author manuscript; available in PMC 2020 April 01.

Published in final edited form as:
Environ Int. 2019 April ; 125: 97–106. doi:10.1016/j.envint.2018.12.025.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/BY/4.0/
https://doi.org/10.1016/j.envint.2018.12.025


occurring in the earliest time-period (1992–2000). Densely populated urban prediction regions 

with complex air pollution sources generally exhibited highest odds of elevated SMME.

Conclusions: We developed a novel statistical framework to formally evaluate the magnitude 

and drivers of SMME in ensemble learning-based exposure models. Our framework can be used to 

inform building future improved exposure models.

1. Introduction

Exposure to traffic-related air pollution (TRAP) has repeatedly been associated with 

mortality and adverse health outcomes, including respiratory illnesses and cardiovascular 

disease, in large epidemiological cohort studies of children and adults (Zhang et al., 2002; 

Andersen et al., 2008; Gehring et al., 2010; Esposito et al., 2014; Ryan et al., 2005; Nordling 

et al., 2008; Chen et al., 2015; Rancière et al., 2017; Pollution HEIPotHEoT-RA, 2010). 

Nitrogen oxides (NOX), which are byproducts of fuel combustion, are one of the most 

commonly used measures of TRAP in epidemiological studies. NOX are also precursor 

gases involved in the secondary formation of ozone and particulate matter - air pollutants 

also implicated in adversely affecting health (Rancière et al., 2017; Goldsmith and Kobzik, 

1999; Khreis et al., 2017; Schwela, 2000). NOx's highly reactive nature results in dynamic 

variability in space and time (Apte et al., 2017), limiting the utility of traditional exposure 

assessment methods that rely solely on interpolation from sparse central site monitoring data 

or land use regression techniques, which typically suffer from poor spatial and temporal 

resolution, respectively (Sheppard et al., 2012). Similarly, crude spatially-derived surrogates 

of TRAP such as distance to roads or traffic density within buffers often covary in space 

with potential confounders such as socioeconomic status, access to health care, or other 

environmental and psychosocial exposures (Pollution HEIPotHEoT-RA, 2010). Therefore, 

sophisticated spatiotemporal exposure models that incorporate machine learning techniques 

are increasingly being developed to more accurately predict residential TRAP exposures 

(and other complex spatially and temporally varying exposures) (Li et al., 2017; Russo and 

Soares, 2014; Di et al., 2016), given that ‘gold standard’ personal monitoring to capture ‘true 

exposure’ is often not feasible in large cohort studies. However, spatial and temporal 

uncertainties inherent in these exposure models result in a complex correlation structure 

which leads to error in exposure predictions, referred to as exposure measurement error. 

These errors can be categorized as independent (unshared) or dependent (shared).

Depending on its structure, exposure measurement error can result in decreased precision 

and/or biased epidemiological inference (Zeger, 2001; Zeger et al., 2000; Carroll, 1998). 

Classical error, W = T + E, where W is the measured (surrogate) exposure, T is the true 

exposure, and E is random error, assumes that E has a mean equal to zero and is independent 

of T, while Berkson error, T = W + E, assumes that E has a mean equal to zero and is 

independent of W (as opposed to T in the classical error scenario). Further, exposure errors 

can take an additive (as demonstrated above) or multiplicative structure (additive error on the 

log scale) (Heid et al., 2004). A multiplicative error structure, common in air pollution 

exposure measurements, can alter exposure-response shapes (over and/or under estimation) 

and applies when the error is proportional to the true exposure (Lyles and Kupper, 1997).
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Shared error can occur because of shared uncertainties in exposure predictions due to spatial 

and/or temporal misalignment of exposure predictors. For example, temperature is often 

included in spatio-temporal NOx exposure models. But temperature may not be available at 

the same spatial resolution as predictions, resulting in NOx measurement error due to 

inaccuracies associated with readings of temperature from a single instrument applied to all 

prediction points in a defined spatiotemporal grid. Shared Berkson error occurs if all or 

groups of prediction points within the defined spatiotemporal grid are misrepresented in the 

same way. Shared classical measurement error can occur when the average temperature 

across space or time is not the true average of all prediction points included in the defined 

spatio-temporal grid. Both scenarios violate the independence assumption of exposure (true 

and measured, respectively) and error. Shared error can be both classical-like or Berkson-

like (Mallick et al., 2002) and results from spatial and/or temporal covariance between 

exposure predictions.

Recently, our group developed a sophisticated three-stage spatio-temporal modeling 

framework with ensemble learning and constrained optimization to model NOX 

concentrations in southern California for use in epidemiological studies of children's health 

(Li et al., 2017). In addition to a typical single stage model where a spatiotemporal mixed-

effects model is fit, a second stage with ensemble learning using bootstrap aggregation is 

employed. This machine learning technique combines the output from hundreds of 

individual learners in a weighted fashion and results in decreased variance in the predictions 

(higher precision). Constrained optimization is then applied in a third stage to adjust 

predictions to better reflect reality based on known physical and chemical constraints, 

improving overall accuracy and decreasing bias in the NOx exposure estimates. We have 

already demonstrated the improved performance of our modeling framework in predicting 

NOx exposures in southern California (R2: 0.86, RMSE: 13.4) (Li et al., 2017); however, we 

have not yet assessed the uncertainties inherent in these exposure predictions.

In the current work, we aim to formally evaluate the magnitude of shared and unshared, 

multiplicative and additive (SUMA) measurement error components in our Li et al. (2017) 

southern CA NOx model (1992–2013) predictions using a statistical dosimetry framework 

developed by Stram and Kopecky (2003). We expand by providing a framework to explain 

the geographic and temporal determinants of the shared multiplicative measurement error 

(SMME) component.

2. Methods

This investigation will use NOx exposure predictions for the most recent cohort (E) of the 

southern California Children's Health Study (CHS) (Chen et al., 2015; Peters et al., 1999) 

which started enrolling participants in 2002 with prenatal periods starting in 1992. 

Information from longitudinal address confirmation, residential history questionnaires and 

birth certificates was used to assemble lifetime residential histories for these participants and 

assign biweekly NOx exposure based on our model (Li et al., 2017). TRAP exposures were 

assigned to CHS participants across their lifetime using the novel machine learning 

spatiotemporal NOx model described in more detail in Li et al. (2017) to estimate residential 

NOx exposures at high spatio-temporal resolution (Li et al., 2017). Briefly, the model uses a 
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flexible hierarchical framework with spatiotemporally-referenced covariates and 

measurement data from both long-term routine monitoring stations with high temporal 

resolution and short-term, sporadic measurement campaigns with high spatial resolution. 

Temporal basis functions are fit on the long-term monitoring data using singular value 

decomposition to capture seasonality and longer term temporal variation (Szpiro et al., 

2010). Stage 1 of the model uses temporal parameters, long term mean concentrations, and 

local spatial predictors including line dispersion CALINE4 NOx estimates (Benson, 1984), 

traffic density, distance to major roads, population density, and meteorological parameters 

(wind speed and minimum temperature) to model NOx concentrations. Spatial effects were 

specified both as random effects based on 500 m aggregate distance Thiessen polygons and 

nonparametric additive terms. Stage 2 iteratively samples 90% of the predictors used in stage 

1 and a random subset of 63% of the observations to test against the remaining 37% of the 

data set in each ensemble, obtaining 120 individual mixed-effect models (referred to as 

ensembles) that produce biweekly predictions. The estimates from the 120 ensembles are 

subsequently averaged (weighted by model performance) to provide optimal NOx 

predictions across the distribution of the data that are robust against investigator bias through 

forced covariate inclusion and inflated variance of predictions (referred to as stage 2 NOx 

predictions). Stage 3 of the model uses the averaged stage 2 NOx estimates and constrains 

the parameter estimates of the temporal basis functions to re-predict exposure based on 

physical constraints meant to mimic known or observed real-life behavior of NOx (e.g. 

decreasing temporal trend of NOx over study years, NO2 output less than NOx output, higher 

cool season concentrations compared to warm season, etc.). This third stage is known as 

constrained optimization and its output is referred to as stage 3 NOx predictions (Li et al., 

2017; Russo and Soares, 2014) (Fig. 1).

2.1. Using stage 2 ensembles as a dosimetry system

The second stage output of the 120 ensembles allows for a unique opportunity to evaluate 

SUMA exposure measurement error. To quantify the various forms of measurement error, 

we treated the 120 ensemble predictions as 120 realizations generated from an external 

dosimetry system. An external dosimetry system is typically used in radiation exposure 

literature to reconstruct distributions of radiation dose through calculation and assessment of 

radiation exposure based on knowledge of the physical processes and sources of irradiation 

(Boyd, 2009). In a similar fashion to radiation dose, NOx residential exposure estimates 

were reconstructed. We assume the 120 NOx ensembles are sampled from the distribution of 

true exposure. Each ensemble includes biweekly NOx exposure predictions for all CHS 

participants across their life course. Using these 120 ensembles, each SUMA component of 

exposure measurement error is quantified. As the ensembles are presumed to be coming 

from a distribution of true exposure given the known exposure determinants, adjustment for 

measurement error is based on a Berskon model.

2.2. Statistical analysis

2.2.1. Quantifying SUMA error components—All references to a NOx exposure 

prediction from here onward are for a two-week estimate for a given subject and location 

(denoted by “i”), unless otherwise noted. The SUMA model for shared and unshared 

Berkson error is written as follows:
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Xi = ϵSMϵMiZi + ϵSA + ϵAi (1)

Here Xi is the true exposure for the estimate of interest, Zi is the estimated exposure (a 

weighted mean of the ensembles). ϵSM and ϵMi are the shared and unshared multiplicative 

errors with mean equal to 1 and variances σSM
2 and σM

2 respectively, and ϵSA and ϵAi are 

the shared and unshared additive errors, with mean equal to 0 and variances σSA
2 and σA

2 

respectively.

Our focus in the remainder of the manuscript is primarily on the variance of the shared 

multiplicative error component (σSM
2) because this variance term is what primarily affects 

the behavior of variance estimates and confidence intervals for the slope term in a standard 

regression analysis used in an epidemiological investigation of an exposure estimate W on 

outcome D.

Assuming that each of the ensembles are samples from the true distribution of exposure (Eq. 

(1)) then Stram and Kopecky (2003) propose estimating the four variance terms σSM
2, σM

2, 

σSA
2, and σA

2 as follows.

2.2.2. Shared measurement error—For each pair of NOx predictions, i and j, we 

calculated the covariance of the realized values of Xi and Xj over the 120 ensembles and 

called this covariance term Cij. At the same time, we calculated the Zi and Zj values as the 

mean of the realized values of Xi and Xj (stage 2 exposure predictions as explained earlier). 

Next, we performed simple ordinary least squares (OLS) regression of Cij on the product 

ZiZj to fit the model

Ci j = a0 + a1ZiZ j + εi j (2)

Stram and Kopecky note that the intercept term, a0 in this regression corresponds to σSA
2 , 

which is an estimate of σSA
2, while the slope term (a1) corresponds to σSM

2  or the estimate of 

<SM
2.

2.2.3. Unshared measurement error—Similarly, we calculated the variance of each 

Xi across ensembles, Vi, which is shown to equal the following (Stram and Kopecky, 2003):

Zi
2[(σSM

2 + 1)(σM
2 + 1) − 1] + σSA

2 + σA
2 (3)

We then used simple OLS regression of Vi on Zi
2, which allows for the estimation of σSA

2 + 

σA
2 (as the intercept term) and [(σSM

2 + 1) (σM
2 + 1) – 1] (as the slope term) to solve for σM

2

an estimate of σM
2 and σA

2 , an estimate of σA
2.
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Due to the intensity and duration of calculation, a random subset of 2500 NOx predictions 

were selected for SUMA error quantification. To confirm the sample of 2500 NOx 

predictions were representative of our model and there was no bias introduced by the 

random sampling, 10 additional random samples were selected (for a total of 11) and the 

above analysis was repeated to confirm robustness of results. We further compared the 

distributions of time and geographic characteristics of the sampled predictions to those of 

the full NOx exposure predictions.

2.3. Spatial and temporal determinants of ‘high’ shared multiplicative measurement error 
(SMME)

2.3.1. Defining ‘high’ SMME for each prediction—For each prediction i, we 

calculated the “mean covariance” as the mean Cij over all other predictions j of (Zi – E(Z))

(Zj – E(Z)). We expect that a prediction that consistently covaries with other predictions will 

yield an elevated average covariance, indicating increased shared uncertainties, while a 

prediction that covaries with few other predictions will yield a low average covariance, 

representing decreased shared uncertainties within the prediction. Based on observed 

bimodality in the distribution of the mean covariances, each prediction was assigned a 

dichotomized value of “high” (upper 20th percentile of average covariances for each 

prediction) or “low” (below the 80th percentile of average covariance for each prediction) 

SMME. Dichotomization at the 80th percentile was used as the cut off based on a visual 

inspection of the plotted covariance and product means (Fig. 2).

Descriptive summaries of the exposure model inputs and additional spatiotemporal 

parameters were summarized and compared for the low versus high SMME groups to 

describe factors significantly different between locations with low versus high SMME.

2.3.2. Temporal analysis—To assess temporal trends in SMME, similar analyses were 

performed only stratified by time, defined as tertiles of calendar year as follows: 1992–2000, 

2001–2004, and 2005–2012. For each time-period, a (new) random sample of 2500 NOx 

predictions was selected. SMME was calculated and compared for each time-period.

2.3.3. Spatial analysis—Generalized additive models (GAMs) with a smooth term for 

location were used to assess spatial variability of SMME (Girguis et al., 2016). The 

following GAM was fit to model the odds of high SMME (compared to low as the reference 

group):

logit[p(x1, y1)] = s(x1, y1) + γ′ (4)

where logit[p(x1, y1)] is the log-odds of high SMME at location (x1, y1), s (x1, y1) is a 

bivariate locally weighted scatterplot smoothing (loess) function at location (x1, y1) 

capturing the contribution of geographic location and γ‱ is a vector of spatial and/or 

temporal parameters explored in the model. Odds of high SMME were predicted across a 

grid of evenly spaced points constrained by the geographical extent of CHS lifetime 

residential locations in Southern California (as NOx predictions were only made in Southern 
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California). A confidence band with an alpha = 5 × 10−7 (determined by false discovery rate 

correction) for each grid point was calculated to identify areas of statistically increased or 

decreased SMME. An unadjusted GAM with only a term for location was used to determine 

the existence of spatial variability of high SMME. GAMs were then run iteratively, adding a 

single predictor at a time, to assess the importance of each predictor in explaining the spatial 

variability of high SMME. Predictors were selected to be included in the final model if a) 

they significantly altered the spatial patterns of SMME or b) they influenced the range 

(minimum and maximum odds ratio) of SMME unexplained after their inclusion.

To determine each potential predictor's influence on spatial patterns of SMME the following 

predictors considered for inclusion in the GAM: NOx measures (including spatiotemporal 

predictions and ambient monitoring station measures), traffic measures (including traffic 

density, distance to nearest road by class (FCC1 through FCC4 class roads defined as 

freeways, arterial roads, collector distributor roads, and local roads, respectively), 

meteorological measures (including minimum temperature and wind speed), time 

(categorized and continuous), and other geographic variables (including distance to shore 

and population density) to determine each potential predictor's influence on the initial spatial 

patterns of SMME. See Table A2 for a full list of variables and descriptions. To determine 

the predictors, influence on spatial patterns of SMME, we visually examined patterns to 

determine if (1) the geographic locations with statistically significant SMME shifted or 

changed and (2) if the pattern of SMME risk changed and (3) if the range (max odds ratio 

and minimum odds ratio across space) of SMME risk across the geographic location 

changed.

3. Results

Characteristics of predicted NOx exposures and key spatiotemporal model predictors for the 

complete CHS cohort E lifetime residential histories and a random sample of 2500 points 

are summarized for comparison in Table 1. The distribution of geographical and temporal 

characteristics between the random sample and the entire dataset was similar confirming the 

representativeness of the random sample. For all CHS prediction points and the random 

sample, approximately 85% were located further than 300 m away from major roadways 

(FCC1).

To quantify SUMA error, we calculated the covariance, product means, variance and square 

of means from the random sample of exposure predictions. The distributions are shown in 

Table 2. Quantified SUMA error components as determined by OLS regression are 

displayed in Table 3. The slope of the regressed covariance on the product mean is 

statistically significant (p < 0.00001) indicating a SMME value of 0.00029. The intercept, or 

shared additive error value, is less than zero (−0.2516) indicating no evidence of shared 

additive error. Similarly, for the unshared error analysis (OLS regression of the variance on 

the square of means), the intercept is < 0, indicating no evidence of unshared additive error. 

Although the additive error components (variances) are estimated to be negative, it is clear 

from Figs. 2 and 3 that the discrepancy between the nominal value of the additive variances 

and zero is very small. After setting the additive error values (σA
2  and σSA

2 ) to zero, and 
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solving Eq. (2), unshared multiplicative error is calculated as 0.00751. Comparatively, the 

unshared multiplicative component is approximately 26 times larger than the shared 

multiplicative component.

The plot of the covariances and the product means (Fig. 2) reveals the presence of two 

distinct SMME groups: predictions without shared additive and multiplicative error 

(intercept and slope around zero) and predictions with highly covarying exposure predictions 

across replications that display evidence of SMME.

To quantify SMME and examine how it changes over time, a time stratified analysis was 

conducted (Table 4). A decreasing trend was observed with the largest SMME found in the 

earliest time-period, 1992–2000 (σSM1992 − 2000
2 = 0.00036), and less SMME observed in the 

subsequent time periods 2001–2004 (σSM2001 − 2004
2 = 0.00015) and 2005–2012 

(σSM2005 − 2012
2 = 0.00014) (Table 4). Although the magnitude of error decreased across time 

periods, two distinct SMME groups were consistently observed across the time periods (Fig. 

4).

Spatial analyses using the unadjusted GAM (with only the smooth term for location) showed 

significant associations between geographic location and covariance distributions (p < 

0.0001). Maps indicate the odds of high average covariance which represents high SMME 

(compared to low, classified based on the 80th percentile of the distribution) ranged from 

0.34 up to 2.07 across the entire CHS study area. Areas with statistically significant elevated 

(hot) or reduced (cold) odds of high SMME are indicated with black contour lines in Fig. 5 

(color indicates predicted odds of high SMME specific to that location). The largest risk of 

high SMME is observed along the southern California coastline.

Geographical and temporal variables were iteratively added to the model to explain the 

spatial variability observed. The final model included predictors that altered spatial patterns 

or changed the range of the odds ratios by 10% or more. The final model that best explained 

the spatial variability in the odds of high SMME included population density, traffic density, 

CALINE4 Non-Freeway NOx, calendar year (categorized into tertiles) and distance to 

nearest major airport (defined as top 5 class 1 airports in the study region). The Odds Ratio 

(OR) range decreased (0.50–1.56) and a majority of the spatial variability in SMME risk was 

explained by the included predictors (Fig. 5b). Few locations remained significantly elevated 

and were not fully explained. Adjusted GAM results are shown in Table 5 for an 

interquartile range increase of each predictor. Distance to major airport was the strongest 

predictor of SMME with predictions located between 0 and 15 km away from a major 

airport displaying a 1.15 odds (95% Confidence Interval (CI): 1.10, 1.23) of SMME 

compared to predictions located further than 15 km from major airports. NOx predictions in 

years following 2000 had decreased odds of high SMME compared to predictions between 

1992 and 2000 (OR2001–2004: 0.97; 95% 0:0.93, 1.00 and OR2005–2012: 0.90; 95% CI:0.87, 

0.94) with the lowest odds in later years. Locations with increased traffic density within a 

300 m buffer (OR: 1.11; 95% CI:1.09, 1.14), higher population density (OR: 1.03; 95% CI:

1.01, 1.04), or higher Non-Freeway CALINE4 NOx (OR: 1.06; 95% CI:1.04, 1.08) also 

displayed a statistically significantly elevated odds of high SMME.
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Although predictions located in the city of Long Beach only make up 6% of the random 

CHS sample, the largest proportion (23%) of high covariance exposure predictions were 

found in the city of Long Beach, followed by Anaheim, Riverside, and San Bernardino (8% 

each) (Table A1). This pattern was consistent across all 10 repeated (for a total of 11) 

random sample evaluations. Therefore, to separately evaluate the patterns in and predictors 

of SMME in the city of Long Beach, a random sample of 2500 exposure predictions was re-

sampled for predictions within Long Beach. After calculating SUMA components using this 

Long Beach subsample, we found an SMME value of 0.0021 (seven times larger in 

magnitude than SMME value calculated for the entire CHS cohort). Exposure model inputs 

and other predictors related to NOx were compared across “high” (defined as predictions 

with an average covariance in the upper 20% of Long Beach covariance distributions) and 

“low” SMME predictions (predictions with an average covariance in the 0–80% of Long 

Beach covariance distributions) to identify potentially different characteristics (Table 6). 

High SMME predictions had elevated ambient NOx levels as determined from regional 

monitoring stations and stage 2 NOx prediction model output. Interestingly, high SMME 

predictions had higher CALINE4 non-freeway NOx but lower CALINE4 freeway NOx 

compared to low SMME predictions. Compared to low SMME predictions, high SMME 

predictions were characterized by the following: higher population density, closer to FCC2 

and FCC3 roads but further away from FCC1 and FCC4, closer to the shoreline, greater 

Heavy Duty Vehicle (HDV) fraction on nearby FCC1 and FCC2 roads, lower average 

temperatures and slightly higher average wind speeds. There was no difference in elevation 

across the high and low SMME predictions.

By examining temporal trends in SMME in Long Beach (Table 7), we found that the greatest 

proportion of NOx predictions with high SMME were observed in the cooler months of 

winter (39.5%) and fall (35.8%) and the majority of low SMME predictions were observed 

in the spring (27.5%) and summer (28.9%). Similarly to results using the entire CHS, the 

highest proportion (43.4%) of high SMME predictions in Long Beach were observed in the 

earliest time period of 1992–2000.

The spatial pattern analysis of Long Beach only using GAMs showed significant 

associations between geographic location and the odds of high SMME (p < 0.0001). Maps 

indicate that NOx predictions with elevated odds of high SMME were located in specific 

regions in southwestern and north Long Beach (Fig. 6). Spatial predictors that best explained 

the geographic variability in the odds of high SMME in Long Beach included CALINE4 

Non-Freeway NOx, population density, and traffic density on FCC2 roads (Table A3). After 

adjusting for these predictors, odds of high SMME in southwestern Long Beach locations 

were no longer elevated and fewer locations in north Long Beach remained significantly 

elevated. Geographic variations were only fully explained after including prediction year 

into the model, reducing the range of the ORs from 0.49–2.03 to 0.67–1.51. Locations with 

elevated odds of high SMME remained, but these were not statistically significant (Fig. 6).

4. Discussion

We recently developed a three-stage NOx spatiotemporal modeling framework to predict 

exposures at high spatial and temporal resolutions for use in CHS epidemiological analyses. 
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The use of ensemble learning to reduce the variance and minimize bias of exposure 

predictions in this model is expected to minimize overall exposure measurement error; 

however, as with all exposure models, it cannot be fully eliminated. Using the Stram and 

Kopecky (2003) framework, we quantified the SUMA error components in the Li et al. 

(2017) model predictions. Given that our random sample represents the entire data set, we 

found evidence of both shared and unshared multiplicative error but no evidence of shared or 

unshared additive error. The most influential predictors of the odds of high SMME were 

year of exposure prediction (earlier years had higher error), distance to nearest major airport, 

and non-freeway NOx concentrations. Overall, we found that unshared multiplicative error 

was greater in magnitude than SMME when evaluating the full geographical extent of CHS 

prediction points, but further analysis identified specific geographic regions with relatively 

high shared multiplicative error. The city of Long Beach, CA, consistently had the highest 

proportion of NOx predictions with high SMME over several repeated random draws of the 

data.

We found spatial and temporal patterns in the distribution of SMME in this work. We 

observed significantly greater SMME in the earliest years (1992–2000) compared to later 

years (> 2001). This decreasing temporal pattern in the uncertainties is common in 

retrospective exposure reconstructions (Hoffmann et al., 2018) and may be the result of 

measurement methods improving or changing over time (for example, a shift from using 

Palmes tubes to Ogawa badges for passive NOx monitoring). The underlying data in the 

model inputs or covariates may have also become more accurate or complete over time. For 

example, accurately capturing NOx emissions in the years earlier than 2000 is much more 

challenging (sparser traffic volume and road network data). Given the observed time trend, 

our findings indicate that higher NOx exposure predictions (which also occurred in earlier 

years) are prone to higher levels of uncertainty. Other work has found that when magnitude 

and uncertainty of exposure are correlated, there is a notable attenuation of the exposure 

response curve for high exposure values (Steenland et al., 2015), but this has not yet been 

formally tested in this analysis.

In addition to year of prediction increasing exposure uncertainties, we found that geographic 

location and other spatially dependent predictors also influenced uncertainties. The 

comparison of covariate distributions in areas of high and low SMME indicate that 

measurement error is likely associated with non-freeway sources, or sources/features found 

in areas further away from freeways. We saw higher uncertainty in predictions located near 

smaller roads (FCC2 and FCC3) and lower SMME in predictions located near freeways 

(FCC1). Interestingly, more uncertainty was found in locations with higher heavy-duty 

vehicle fractions on (FCC2) roads. FCC2 roads are very similar to FCC3 roads as they are 

state-numbered highways with stop and go traffic, with volumes greater than FCC3 roads 

but less than FCC1 roads (for example, Pacific Coast Highway, also known as Route 1 is 

considered an FCC2 road in southern California). Although further analysis is needed, 

findings indicate that the exposure model does not adequately capture NOx emissions from 

FCC2 roads, and more specifically from heavy duty vehicles on these roads. This conclusion 

is further supported by the large proportion of SMME observed among predictions located 

in Long Beach, CA, a community with the busiest port in the nation, and therefore high 

proportion of heavy duty vehicles. Although some of the CHS communities do not have any 
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FCC2 roads and the majority only have one, Long Beach includes three FCC2 roads. Our 

findings support the importance of accounting for local NOx sources and fine scale spatial 

variability in exposure prediction models, especially in regions with complex NOx sources 

and dense development.

Distance to major airport, defined as one of the top 5 busiest airports in the study region, was 

an important predictor of SMME for all CHS locations but was not influential in the Long 

Beach only analysis. Beyond light and heavy duty vehicular NOx emissions on roads, our 

exposure model did not account for airports although they are a major source of NOx 

emissions, not only due to increased vehicular traffic near airports, but also idling planes and 

jets, takeoff and landing activity, and vehicular operations within airport boundaries 

(Schlenker and Walker, 2015). In our spatial analysis we found elevated odds of high SMME 

in geographic locations near Los Angeles International Airport and San Diego International 

Airport. The influence of smaller airports within the region was formally tested in a 

sensitivity analysis in the GAM models, but smaller airports did not influence the spatial 

variability or magnitude of SMME risk. We suspect the smaller airports were not important 

predictors of SMME as our exposure prediction model spans from 1992 to 2012, and airport 

operations among smaller (Class 1) airports have only recently increased. Long Beach, a 

population dense urban area with complex NOx source mixtures, houses a single local 

airport and a large shipping port. Therefore, there is not much variability in the distance to 

the centrally-located Long Beach Airport in this city-specific analysis, and airport operations 

were not consistent throughout this time period.

Although we found that shared additive error was larger in magnitude than SMME, we 

focused our analysis on SMME as other work has indicated minimal influence of shared 

additive error on epidemiological results in a Berkson model (Zhang et al., 2017). Shared 

error differs from traditional measurement error as the errors are not independent, which is 

common in air pollution exposure models because (1) model covariates are usually 

aggregated in time and space and (2) air pollution exhibits finely resolved variability through 

time and space.

The SUMA method classifies “within” and “between” measurement error as unshared and 

shared error, retrospectively. One shortcoming of the SUMA error approach is that it does 

not account for “within shared error”, defined as shared uncertainties for predictions made in 

the same or a proximal geographic location over time. SUMA methods also do not account 

for “between shared error” attributable to time, for example, predictions made in the same 

year and month will share uncertainties. Previous simulation studies determined that shared 

error within predictions resulted in greater bias than shared error between predictions 

(Hoffmann et al., 2018). We hope to elaborate on SUMA models to enable classification of 

within and between shared errors in future work.

In this work, we treat the 120 ensemble estimates as 120 realizations of a dosimetry system. 

An assumption of the dosimetry system is that the realizations are generated from a random 

sample of true exposures that are normally distributed. In our application, parallel ensembles 

are generated using a subset of prediction points and covariates, which explain the variability 

of the 120 ensemble exposure prediction estimates. Parallel ensembles take full advantage of 
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independence between base learners (Kotsiantis et al., 2007). The ensembles represent a 

random sample of possible exposure predictions from the distribution of possible prediction 

models given a single set of covariates, but the weight given to each ensemble is dependent 

on model performance to output stage 2 output.

One limitation of our spatiotemporal error analysis is the reliance on average covariances for 

each prediction to identify high SMME. Covariance is a measure of deviation between two 

variables. We used the average of all covariance values with all other predictions to 

dichotomize SMME as high or low. As covariances are unstandardized, the spatiotemporal 

patterns observed can be an artifact of NOx absolute values since high NOx predictions are 

likely to have higher covariances. We assume that using the 80th percentile of average 

covariances will capture predictions with unusually and consistently high covariances with 

other predictions. Although this definition captured some predictions with high absolute 

NOx concentrations, it also classified some low NOx predictions were as having high 

SMME.

In this analysis, we selected a sample of 2500 (0.1%) exposure predictions out of 1,850,415 

possible predictions. Given the manipulation of large covariance matrices, this sample 

number was arbitrarily chosen to accommodate computational ability and time. Given the 

small proportion of represented points selected in this analysis, we compared the spatial and 

temporal distributions of the random sample to the entire prediction population and found 

the sample was spatially and temporally representative (Table 1). In attempt to determine the 

presence of selection bias resulting from our sampling method, we further selected 10 

additional random samples. Findings indicate that SUMA error magnitude was robust across 

samples (Table A4). We encourage future analysis of this type, to ensure samples are 

spatially and temporally representative of the universe of exposure predictions.

In this paper, we developed a statistical framework to quantify the different components of 

measurement error in NOx predictions from our previously published spatiotemporal 

exposure model (Li et al., 2017) demonstrating that the Stram and Kopecky (2003) radiation 

dosimetry framework can be applied to air pollution. We also explained the spatial 

(geographic) and temporal variability in the odds of observing high shared, multiplicative 

measurement error – the component most commonly seen in air pollution investigations. Our 

work highlights the ability to use ensembles the in the evaluation of SUMA error and sets up 

a framework to evaluate potential factors that might be responsible for exposure 

uncertainties. Our methods can help improve the development of future exposure models by 

either highlighting areas in space or periods in time where more refined data or methods are 

needed or shedding light on potentially important inputs or predictors that might be 

overlooked. Further, characterization of exposure errors can be used to improve confidence 

in epidemiological inference (Hoffmann et al., 2018) through adjustment of confidence 

intervals to account for SMME (Stram and Kopecky, 2003) or attenuation of the dose 

response curve (Stram et al., 2015). Given the importance of this work to exposure science 

and environmental epidemiology, our follow up work will focus on assessing the impact of 

SUMA exposure error on epidemiological health estimates and methods for adjusting them 

accordingly.
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Fig. 1. 
Average NOx (ppb) for southern California Children's Health Study (CHS) residential 

locations, 1992–2012. Average NOx using stage 3 of the Li et al. (2017) model which uses 

the averaged stage 2 NOx estimates and constrained optimization to re-predict exposure 

based on physical constraints meant to mimic known or observed real-life behavior of NOx. 

Average NOx for each unique CHS location displayed using quantiles (6).
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Fig. 2. 
Scatter plot of covariance by product means to visualize shared exposure measurement error. 

The covariance and product of means of each pair of predictions are used to demonstrate 

shared error. The intercept of the ordinary least squares regression line to fit the data is 

−0.2516 with a slope of 0.000029. The negative intercept indicates there is no evidence of 

additive shared error and the significant slope (p < 0.0001) indicates significant 

multiplicative shared error.
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Fig. 3. 
Scatter plot of prediction variance by square of mean to visualize unshared exposure 

measurement error. The variance and square of mean for each prediction across 120 

ensembles are used to demonstrate unshared error. The intercept of the ordinary least 

squares regression line to fit the data is −5.39 with a slope of 0.0078. The negative intercept 

indicates there is no evidence of additive unshared error and the significant slope (p < 

0.0001) indicates significant multiplicative unshared error.
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Fig. 4. 
Time stratified visualization of shared error: scatter plot of covariance by product means 

within random samples from a) 1992–2000, b) 2001–2004, and c) 2005–2012 NOx exposure 

predictions. Figures include a random subset of 2,500 predictions sampled for each time 

period stratum.
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Fig. 5. 
Spatial pattern of the odds of high Shared Multiplicative Exposure Measurement Error 

(SMME) in Spatiotemporal NOx Predictions for the full southern California Children's 

Health Study (CHS) Cohort E residential histories in the a) Unadjusted, crude and b) Fully 

adjusted model. High SMME risk is determined based on the cut-off of the top 80th 

percentile of average covariance distribution at each unique prediction location. Odds of 

SMME is adjusted for population density, traffic density, CALINE4 Non-freeway NOx, 

distance to airport, and prediction year in the fully adjusted model. Statistically significant 

geographic areas of increased or decreased risk of SMME are indicated using black contour 

lines.
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Fig. 6. 
Spatial pattern of the odds of high Shared Multiplicative Exposure Measurement Error 

(SMME) in spatiotemporal NOx predictions for a random sample of 2500 predictions from 

the city of Long Beach, CA (a) unadjusted, (b) after spatial (c) and temporal adjustments. 

High SMME is defined with a cut-off based on the top 80th percentile of average covariance 

distribution in Long Beach at each unique location. Confounders of shared multiplicative 

exposure measurement error risk adjusted for in the model included population density, 

CALINE4 Non-freeway NOx, and Traffic Density on FCC2 Roads. Statistically significant 

geographic areas of increased or decreased risk of SMME are indicated using black contour 

lines.
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Table 1

Comparison of the distribution of estimated NOx exposures
a
 and their main predictors in the full southern 

California Children’s Health Study Cohort E Residential (Biweekly) Timelines
b
 and in the subset of 2500 

randomly sampled
c
 predictions used in the assessment of Shared Unshared Multiplicative Additive (SUMA) 

exposure measurement error.

N Full CHS cohort E
timelines

Random sample of 2500
predictions

1,850,415 2500

n (%) n (%)

Prediction year

 1992–2000 615,454 (33.2) 826 (33.0)

 2001–2004 568,177 (30.7) 749 (30.0)

 2005–2012 666,784 (36.0) 925 (37.0)

Traffic density within a 300 m buffer
d

 0–13.54 462,287 (25.0) 651 (26.0)

 13.55–33.61 462,427 (25.0) 611 (24.5)

 33.62–75.64 462,518 (25.0) 579 (23.1)

 75.65–1235 462,591 (25.0) 659 (26.3)

Population density
e

 0–2700 462,606 (25.0) 657 (26.2)

 2701–5234 461,887 (25.0) 571 (22.8)

 5235–9049 463,340 (25.0) 642 (25.6)

 9050–78,668 462,582 (25.0) 630 (25.2)

Mean elevation within a 300 m buffer

 −36.6–56.5 462,790 (25.0) 648 (25.9)

 56.6–253.3 462,038 (25.0) 598 (23.9)

 253.4–365.4 462,892 (25.0) 633 (25.9)

 365.5–2231.8 462,695 (25.0) 621 (24.8)

Distance to major roadways
f
 (meters)

 0–150 113,133 (6.1) 163 (6.5)

 151–300 147,851 (7.9) 210 (8.4)

 > 300 1,589,431 (85.8) 2127 (85.0)

CALINE4
g
 freeway NOx (ppb)

 0–3.30 462,837 (25.0) 629 (25.1)

 3.31–8.87 462,175 (25.0) 590 (23.6)

 8.88–18.55 462,453 (25.0) 626 (25.0)

 18.56–455 462,950 (25.0) 655 (26.2)

CALINE4
g
 non-freeway NOx (ppb)

 0–2.43 461,744 (25.0) 656 (26.2)
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N Full CHS cohort E
timelines

Random sample of 2500
predictions

1,850,415 2500

n (%) n (%)

 2.44–4.75 462,269 (25.0) 587 (23.4)

 4.76–8.10 463,607 (25.0) 624 (25.0)

 8.11–92.39 462,795 (25.0) 633 (25.3)

Spatiotemporal NOx predictions
h
 (ppb)

 2.10–20.62 462,406 (25.0) 635 (25.4)

 20.63–31.60 462,523 (25.0) 632 (25.3)

 31.61–48.40 462,800 (25.0) 589 (23.6)

 48.41–277.00 462,689 (25.0) 644 (25.8)

a
Each prediction is for a biweekly period at a residential location from the reconstructed CHS lifetime residential history.

b
Exposure prediction characteristics for all 5106 southern California Children's Health Study (CHS) cohort E participants.

c
Geographic characteristics summarized for sample 1 of 10.

d
Traffic Density calculated using distance decayed annual average daily traffic (AADT) volume from major roads (freeways/highways and major 

surface streets) within a 300 m circular buffer.

e
Population density calculated within 300 m buffers based on US census block group populations from the 1990, 2000, 2010 linearly interpolated 

or extrapolated for 1992–2012.

f
Distance to freeways/highways (FCC1 road classification).

g
CALINE4 is line source dispersion model using quarterly average daily traffic volumes (Benson, 1984).

h
Spatiotemporal Stage 2 NOx predictions (Li et al., 2017).
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Table 2

Distribution of between and within prediction variance parameters used to determine Shared Unshared 

Multiplicative Additive (SUMA) measurement error components.

Parameters Min Max Mean (standard
deviation)

Median Reference

Covariance −69 513 0.20 (3) 0 Cij, Eq. (2)

Product of means 9 43,192 1453 (1560) 967 ZiZj Eq. (2)

Variance 0.02 649 11 (34) 4 Vi, Eq. (3)

Square of mean 3449 43,510 2133 (3450) 975 Zi
2, Eq. (3)
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Table 4

Time-stratified (calendar year tertiles) analysis of Shared Multiplicative Measurement Error (SMME) in the 

spatiotemporal NOx predictions for the southern California Children's Health Study Cohort lifetime residential 

histories.

Time period
a 1992–2000 2001–2004 2005–2012

Shared multiplicative error (σSM
2

) component
b

0.0003627
c

0.0001549
c

0.0001496
c

Min covariance −89 −31 −20

Max covariance 757 240 182

Median covariance 0.7 0.5 0.4

Min product mean 40 19 10

Max product mean 52,691 24,540 15,215

Median product mean 1563 1100 589

a
A random subset of 2500 predictions were sampled for each time period stratum.

b
Shared multiplicative error component determined by the slope of the regression of the covariance on product means between predictions using 

120 ensembles.

c
p-Value < 0.0001.
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Table 5

Spatial and temporal predictors of the odds of high Shared Multiplicative Exposure Measurement Error 

(SMME)
a
 in spatiotemporal NOx predictions using a random subset

b
 of the southern California Children's 

Health Study.

Odds ratio 95% confidence
interval

p-Value

CALINE4
c
 non-freeway NOx

1.06 (1.04, 1.08) < 0.0001

Population density
d 1.03 (1.01, 1.04) < 0.0001

Traffic density within a 300 m buffer
e 1.11 (1.09, 1.14) < 0.0001

Distance to major airport (km)
f

 0–15 1.16 (1.10, 1.23) 0.0001

 > 15 1.00 – –

Time period

 1992–2000 1.00 – –

 2001–2004 0.97 (0.93, 1.00) 0.1777

 2005–2012 0.90 (0.87, 0.94) < 0.0001

a
Shared multiplicative error determined as the top 80th percentile of average covariance distribution at each unique location.

b
Random subset of 2500 predictions sampled.

c
CALINE4 is line source dispersion model using quarterly average daily traffic volumes (Benson, 1984). Odds Ratios given for an interquartile 

range increase (5.89 ppb).

d
Population density calculated within a 300 m buffers based on US Census block group populations from the 1990, 2000, 2010 linearly 

interpolated or extrapolated for 1992–2012. Odds Ratios given for an interquartile range increase (664.4 people per 300 m buffer).

e
Traffic Density calculated using distance decayed annual average daily traffic (AADT) volume from major roads (freeways/highways and major 

surface streets) within a 300 m buffer. Odds Ratios given for an interquartile range increase 60.3 AADT per 300 m buffer.

f
Distance to major (largest 5 in study area) class 1 airports in meters.
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Table 7

Distribution of NOx predictions with low or high shared Multiplicative Exposure Measurement Error (SMME) 

across season or time period drawn from a random sample of 2500 predictions from the city of Long Beach, 

California.

Low SMME
(Covariance < 80th
percentile)

n
a
 (%)

High SMME
(Covariance ≥ 80th
percentile)

n
a
 (%)

p-Value
b

Season
c

 Spring 542 (27.5) 76 (15.0) –

 Winter 403 (20.4) 193 (39.2) < 0.001

 Summer 568 (28.9) 47 (9.5) < 0.001

 Fall 454 (23.1) 176 (35.8) < 0.001

Time period

 1992–2000 576 (29.3) 214 (43.4) –

 2001–2004 579 (29.5) 139 (28.2) < 0.001

 2005–2012 812 (41.3) 139 (28.2) < 0.001

a
Total sample n = 2459 after accounting for repeat predictions within sample.

b
Welch non-parametric two sided t-test.

c
Seasons defined as winter (December through February), spring (March through May), summer (June through August), fall (September through 

November).
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