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An Interpretable Deep Hierarchical Semantic Convolutional 
Neural Network for Lung Nodule Malignancy Classification

Shiwen Shena,b, Simon X Hana,b, Denise R Aberlea,b, Alex A Buib, and William Hsub,*

aDepartment of Bioengineering, University of California, Los Angeles, CA, USA

bMedical & Imaging Informatics Group, Department of Radiological Sciences, University of 
California, Los Angeles, CA, USA

Abstract

While deep learning methods have demonstrated performance comparable to human readers in 

tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate 

prior domain knowledge, and are often considered as a “black-box.” The lack of model 

interpretability hinders them from being fully understood by end users such as radiologists. In this 

paper, we present a novel interpretable deep hierarchical semantic convolutional neural network 

(HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) 

scan is malignant. Our network provides two levels of output: 1) low-level semantic features; and 

2) a high-level prediction of nodule malignancy. The low-level outputs reflect diagnostic features 

often reported by radiologists and serve to explain how the model interprets the images in an 

expert-interpretable manner. The information from these low-level outputs, along with the 

representations learned by the convolutional layers, are then combined and used to infer the high-

level output. This unified architecture is trained by optimizing a global loss function including 
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both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our 

experimental results using the Lung Image Database Consortium (LIDC) show that the proposed 

method not only produces interpretable lung cancer predictions but also achieves significantly 

better results compared to using a 3D CNN alone.

Keywords

Lung nodule classification; lung cancer diagnosis; Computed tomography; deep learning; 
convolutional neural networks; model interpretability

1. Introduction and Background

Lung cancer is the leading cause of cancer mortality worldwide (Torre et al., 2016; Shen et 

al., 2017a). Computed tomography (CT) imaging is increasingly being used to detect and 

characterize pulmonary nodules with the purpose of diagnosing lung cancer earlier. The 

National Lung Screening Trial (NLST) (Team et al., 2011) in the United States demonstrated 

a 20% lung cancer mortality reduction in high-risk subjects who underwent screening using 

low-dose CT relative to plain chest radiography. Based on the findings of the NLST, the 

United States Preventative Services Task Force (USPSTF) recommends low-dose CT lung 

cancer screening for current and former smokers aged 55–80 with a smoking history of at 

least 30 pack-years, or former smokers having quit within the past 15 years (ten Haaf et al., 

2017). However, the potential consequences of implementing lung cancer screening is an 

increase in false positive screens that result in unnecessary medical, economic, and 

psychological costs. Indeed, some studies indicate that the false positive rate for low-dose 

CT is upwards of 20%. Moreover, detection rates vary among less experienced radiologists, 

particularly in subtle cases, as interpretation heavily relies on past experience (Zhao et al., 

2013). Figure 1 illustrates examples of malignant (top row, R1) and benign (bottom row, R2) 

nodules. The visual appearance of these nodules is highly varied with subtle differences in 

size, shape, and texture, underscoring the challenge faced by radiologists in differentiating 

between the two categories.

In response, computer-aided diagnosis (CADx) systems (Armato et al., 2003; Shen et al., 

2015a; Duggan et al., 2015; Firmino et al., 2016; Amir & Lehmann, 2016; Huang et al., 

2017) have been explored to help distinguish between malignant from benign nodules in 

small nodules (Huang et al., 2017). While architectures may vary, contemporary lung nodule 

CADx systems typically consist of modules that perform: 1) image reconstruction and 

enhancement (image pre-processing); 2) identification and segmentation of nodule 

candidates (candidate generation); 3) characterization and filtering of nodule candidates 

(false positive reduction); and 4) classification of each candidate as benign or malignant 

(diagnosis). For example, Armato et al. (Armato et al., 2003) segmented the lung nodule 

using multilevel thresholding techniques; extracted morphological and gray-level features; 

and classified nodules as benign or malignant using linear discriminant analysis. Zinovev et 

al. (Zinovev et al., 2011) employed both texture and intensity features using belief decision 

trees and a multi-label approach to perform lung nodule classification. Way et al. (Way et al., 

2009) segmented lung nodules using k-means clustering, combined nodule surface features 
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together with texture and morphological features, and used linear discriminant analysis to 

diagnose malignant lung cancers. However, these approaches achieve variable performance 

because: 1) nodules are inherently difficult to segment due to the range of nodule 

morphology and potential overlap with surrounding structures (e.g., chest wall, vessels) 

(Shen et al., 2015b); and 2) extracted features vary due to differences in segmentation results 

and acquisition parameters (Shen et al., 2017b; Piedra et al., 2016). Thus, using segmented 

regions may lead to inaccurate features that are subsequently used as inputs into downstream 

classifiers (Shen et al., 2017b). Another critical question raised by this type of CADx design 

is how to define the “optimal” subset of features that can best encode characteristics of the 

lung nodule (Ciompi et al., 2015). The optimal feature set is dependent on the characteristics 

of the dataset and methods used to train the model, which lead to models that perform well 

on their training dataset but not other datasets.

To overcome these issues, deep learning methods (Shen et al., 2015b, 2017b; Ciompi et al., 

2015; Kumar et al., 2015; Hua et al., 2015), particularly convolutional neural networks 

(CNNs), have recently been used for lung nodule classification, with promising results. 

These deep learning models adaptively learn the optimal representation in a fully data-driven 

way, taking raw image data as input without relying on a priori nodule segmentation masks 

or handcrafted features. For instance, Kumar et al. (Kumar et al., 2015) first trained an 

unsupervised deep autoencoder to extract latent features from 2D CT patches. These 

extracted deep features were then used together with decision trees to predict lung cancer. 

Similarly, Hua et al. (Hua et al., 2015) employed supervised techniques with a deep belief 

network and CNN, outperforming methods that use scale-invariant feature transform (SIFT) 

features and local binary patterns (LBP) (Farag et al., 2011); and using fractal analysis (Lin 

et al., 2013). Ciompi et al. (Ciompi et al., 2015) used pre-trained CNN models to classify 

candidates as peri-fissural nodules (PFNs) or non-PFNs. Deep features were extracted from 

the pre-trained model for three 2D image patches in axial, coronal, and sagittal views. An 

ensemble of the deep features and bag-of-frequency features were then used to train 

supervised binary classifiers for the PFN classification task. Shen et. al. (Shen et al., 2015b) 

designed a multi-scale CNN using 3D nodule patches at three different resolutions to 

perform the lung cancer diagnosis task. This work is further extended in (Shen et al., 2017b) 

by adding a multi-crop pooling strategy to improve model performance. Markedly, these 

cited works use deep learning as a “black-box” and do not attempt to explain what 

representations have been learned or why the model generates a given prediction. This low 

degree of interpretability arguably hinders target end users, such as radiologists, from 

understanding how the models work and ultimately impedes model adoption for clinical 

usage. As discussed in (Jorritsma et al., 2015), interpretability is critical in facilitating 

radiologist-CADx interactions by providing transparent and trustworthy predictions.

A number of radiologist-interpreted features derived from CT scans have been considered 

influential when assessing the malignancy of a lung nodule (Kim et al., 2015; Erasmus et al., 

2000). These features are referred to as semantic features in this study. Examples of such 

semantic features include nodule spiculation, lobulation, consistency (texture), and shape. 

Although qualitative in nature, studies have shown that these semantic features can be char 

acterized numerically using low-level image features (Kaya & Can, 2015). Hancock et al. 

(Hancock & Magnan, 2016) demonstrated that machine learning can achieve high prediction 
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accuracy for lung cancer malignancy using only semantic features as inputs. In addition, 

semantic features are intuitive to radiologists and are moderately robust against perturbations 

in image resolution and reconstruction kernel. An opportunity exists to incorporate these 

semantic features into the design of deep learning models, combining the advantages of 

both.

In this study, we propose a novel interpretable hierarchical semantic convolutional neural 

network (HSCNN) to predict whether a nodule is malignant in CT images. The HSCNN 

takes the raw CT image cubes centered at nodules as input and generates two levels of 

outputs. The first predictive level provides intermediate outputs in terms of diagnostic 

semantic features, while the second level represents the final lung nodule malignancy 

prediction score. Jump connections are employed to feed the information learned from the 

first level semantic features to the final malignancy prediction. As such, our first level 

outputs provide explanations about what the HSCNN model has learned from the raw image 

data and correlates semantic features with the specific malignancy prediction; it also 

provides additional information to improve the final malignancy prediction task through the 

jump connections. This entire model is trained by minimizing a global cost function, where 

both first- and second-level task losses are included.

The contributions of this paper are threefold:

1. We describe an approach to build a radiologist-interpretable deep convolution 

neural network. The intermediate outputs from the model give predictions of 

diagnostic semantic features associated with the final classification, helping to 

explain the prediction. To the best of our knowledge, this is the first example of a 

network architecture emphasizing the interpretability of the results.

2. We provide a hierarchical design that integrates both semantic features and deep 

features to predict malignancy. Shared convolution modules in the HSCNN are 

used to learn generalizable features across tasks. The information learned for 

each specific low-level semantic feature is then fed into the final high-level 

malignancy prediction task.

3. We present a new global cost function to train the whole model jointly, taking 

both first- and second-level outputs into consideration simultaneously. The new 

objective function concurrently handles data imbalance issues for both tasks.

The remainder of this paper is organized as follows. In Section 2, we describe the dataset 

used in this study and the proposed HSCNN model. In Section 3, we present results and 

compare the proposed method with a traditional 3D CNN. In Sections 4 & 5, we discuss the 

findings and limitations of the work.

2. Materials and Methods

2.1. Lung Image Database Consortium Dataset

The Lung Image Database Consortium image collection (LIDC-IDRI) (Armato et al.,2011) 

is a publicly available dataset, which we used to train and test our proposed methods. LIDC-

IDRI contains both screening and diagnostic CT scans collected from 7 academic centers 
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and 8 medical imaging companies. Inclusion criteria for CT scans were: 1) having a 

collimation and reconstruction interval no greater than 3 mm; and 2) each scan 

approximately containing no more than 6 lung nodules with the longest dimension ranging 

from 3–30 mm, as determined by a cursory review during case selection at the originating 

institution (Armato et al., 2011). For the whole dataset, the slice thicknesses varied from 0.6 

to 5 mm, and the in-plane pixel size varied from 0.461 to 0.977 mm. LIDC-IDRI contains 

1,018 cases (representing 1,010 different patients, 8 patients having 2 distinct scans); each 

case consists of at least one CT scan and associated eXtensible Markup Language (XML) 

file, containing nodule annotations made by up to four human readers following a two-phase 

image annotation process. Pixel-level 3D contour segmentations, assessment of nodule 

likelihood for malignancy, and interpretation of eight nodule characteristics were provided 

for nodules ≥ 3 mm. We considered the following eight nodule characteristics as semantic 

features: calcification, subtlety, lobulation, sphericity, internal structure, margin, texture, 

spiculation, and malignancy. Each feature was rated from 1 to 5 or 6 by each reader. Table 1 

lists the description and definitions for each of the labels from (McNitt-Gray et al., 2007).

2.2. Our Usage of the LIDC dataset

A nodule could be associated with up to 4 annotations, depending on how many of the 

readers demarcated the nodule.We used a list provided in (A. P. Reeves, A. M. Biancardi, 

2011) to determine which annotations referred to the same nodule. Only nodules identified 

by at least three radiologists were included in this study. CT scans with slice thickness larger 

than or equal to 3 mm were also excluded. Figure 2 summarizes the inclusion criteria for this 

study, resulting in the inclusion of 4,252 nodule annotations. Each annotation was 

considered independently (e.g., an object marked by all four radiologists as a nodule was 

considered as four independent nodules) to maximize the use of available annotations and to 

follow the convention used in prior studies (Clark et al., 2013; Hancock & Magnan, 2016; 

Froz et al., 2017). Uniform labels for each feature were assigned to all annotations that 

referred to the same nodule. As shown in Table 1, the LIDC annotation process employed 

one ordinal feature (likelihood of malignancy) and four semantic features (margin, 

sphericity, nodule subtlety, and texture (consistency)). Scores for these five nodule 

characteristics were binarized by averaging the scores for each nodule as in (Shen et al., 

2015b) and then binarizing each feature: average scores between 1–3 were assigned Label 0 

while 4–5 were assigned Label 1. Label 0 typically indicated a benign nodule, poorly 

defined margin, lesser roundness, poor conspicuity between nodule and surroundings, and a 

non-solid (ground-glass-like) consistency. Conversely, Label 1 more typically denoted a 

malignant nodule, sharp margins, higher sphericity, high conspicuity between nodule and 

surroundings, and solid consistency. Calcification was handled differently: annotations were 

made using a categorical scale from 1 to 6. Here, nodules with averaged ratings of 6 were 

labeled as absent of calcification pattern (Label 1); all other ratings represented the presence 

of calcification (Label 0).

The feature “internal structure” was overwhelmingly annotated as soft tissue, thus provided 

little discriminative information (Hancock & Magnan, 2016) and was excluded from our 

analysis. Moreover, the Cancer Imaging Archive (TCIA) reported that an indeterminate 

subset of cases in the dataset were inconsistently annotated with respect to spiculation and 
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lobulation (The Cancer Imaging Archive, 2017). As such, we did not consider these two 

features in our model. Finally, it should be noted that biopsy-confirmed diagnoses of the 

nodules are not known. For the purposes of this work, the likelihood of malignancy served 

as the proxy for truth. Table 2 summarizes the generation of the binary labels from LIDC 

rating scales as described above. Table 3 lists the data counts for each label of the nodule 

characteristics.

2.3. Data Preprocessing

The LIDC dataset contains a heterogeneous set of scans obtained using various acquisition 

and reconstruction parameters. To normalize pixel values, all CT scans were first 

transformed to Hounsfield (HU) scales using the information in the DICOM (Digital 

Imaging and Communication in Medicine) series header and converted to a range of (0, 1) 

from (−1000, 500 HU). A 3D patch sized 40 × 40 × 40 mm were extracted for each 

candidate. Each patch was centered around the candidate. 40 mm was chosen so that all 

candidates would be fully contained in the patch as the largest nodules in our subset were 30 

mm in diameter. We then rescaled each patch to a fixed size of pixels in all three dimensions, 

resulting in isotropic cubes for all cases. During preprocessing, we retained the original 

relative nodule size information within each patch with the belief that nodule size is 

informative in subsequent prediction tasks.

2.4. Hierarchical Semantic Convolutional Neural Network

The proposed HSCNN utilizes a 3D patch capturing the lung nodule as input and outputs 

two levels of predictions, as shown in Figure 3. This architecture comprises three parts: 1) a 

feature learning module; 2) a low-level task module; and 3) a high-level task module. The 

feature learning module adaptively learns the image features that are generalizable across 

different tasks. The low-level task predicts five semantic diagnostic features: margin, texture, 

sphericity, subtlety, and calcification. The high-level task incorporates information from both 

the generalizable image features and the low-level tasks to produce an overall prediction of 

lung nodule malignancy.

The feature learning module (Figure 3, feature learning) consists of two convolution module 

blocks where each block shares the same structure and contains two stacked 3D convolution 

layers followed by batch normalization and one 3D average pooling layer. Each convolution 

layer has a kernel size of 3×3×3. These layers perform the convolution operation on input 

feature maps along all three dimensions of the input cube to produce an output feature map 

defined by:

f j = ∑
i

c j * f i + b j (1)

where fj and fi are the jth output feature map and ith input feature map, respectively. And cj is 

the jth convolution kernel and * represents the 3D convolution operation between the 

convolution kernel and input feature map. bj is the jth bias corresponding to the jth 

convolution kernel. After convolution, batch normalization is applied to all output feature 
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maps to accelerate the training process and reduce the internal covariate shift by normalizing 

the feature maps (Ioffe & Szegedy, 2015). Rectified linear units (ReLUs) (Krizhevsky et al., 

2012) are used as the nonlinear activation functions to take the output from batch 

normalization. 16 feature maps are used for both convolution layers in the first convolution 

module, and 32 feature maps are adopted for both convolution layers in the second 

convolution module. A 3D max pooling layer is used in the end for each convolution module 

block to progressively reduce the spatial size of the feature maps to reduce the number of 

parameters and control for overfitting. This layer is defined as:

f x, y, z
i = max{ f x′, y′, z′

i ; x′ ∈ x ⋅ sx, x ⋅ sx + dx − 1 ,
y′ ∈ y ⋅ sy, y ⋅ sy + dy − 1 ,
z′ ∈ z ⋅ sz, z ⋅ sz + dz − 1

(2)

where x (the row index), y (the column index), and z (the depth index) start from zero. Here, 

s is the stride size (downscale factor) and d is the size of the max pooling window. We 

employ a pooling window size of d = (2, 2, 2) and stride size of s = (2, 2, 2). This design 

downsamples the input feature maps by a factor of 2 across all three cube dimensions. This 

pooling layer has no learnable parameters.

After the last convolutional module, output features are fed simultaneously into the lowand 

high-level task modules. The low-level task module (Figure 3, low-level task) consists of 

five branches, each with the same architecture, representing a distinct semantic feature (i.e., 

texture, margin, sphericity, subtlety, or calcification). A fully-connected layer (densely-

connected) is the major basic building block for each of these branches. One fully-connected 

layer connects each input unit to each output unit, designed to capture correlations from all 

input feature units to the output. Batch normalization and dropout techniques are both used 

to control model overfitting. The dropout method randomly removes connections between 

input and output units during network training to prevent units from co-adapting too much 

(Srivastava et al., 2014). Two fully-connected layers are employed before the final binary 

prediction with 256 neurons and 64 neurons for the first and second layer, respectively.

The high-level task module (Figure 3, high-level task) predicts whether the nodule is 

malignant. This module combines the output features from the feature learning module and 

each of the low-level task branches as its input. As shown in Figure 3, the output feature 

maps from the last convolution module are used, along with the output from the last second 

fully-connected layer of each subtask branch. This design makes the final prediction utilize 

the basic features learned from the shared convolution modules and forces the convolution 

blocks to extract representations that are generalizable across all tasks. It also makes use of 

the information learned from each related semantic subtask to ultimately infer nodule 

malignancy. The last fully-connected layer in each subtask branch is trained to extract 

representations more specific to the corresponding subtask compared to the second to last 

fully-connected layer. Thus, the second to last layer of the subtask branch is chosen to 

provide less specific but salient information for the final malignancy prediction task. The 
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concatenated features are inputted into a fully-connected layer with 256 neurons, followed 

by a batch normalization operation before the final malignancy prediction.

To jointly optimize the HSCNN during network training, a global loss function is proposed 

to maximize the probability of predicting the correct label for each task by:

Lglobal = 1
N ∑

i = 1

N
( ∑

j = 1

5
λ j ⋅ L j, i + LM, i) (3)

where N is the total number of training samples and i indicates the ith training sample. j is 

the jth subtask and j ∈ [1, 5]. λj is the weighting hyperparameter for the jth subtask. Lj,I 

represents the loss for sample i and task j. LM,i is the loss for the malignancy prediction task 

for the ith sample. Each loss component is defined as weighted cross entropy loss by:

L j, i = − log(e
f yi, j

/∑
n

e
f yn, j

) ⋅ ωyi, j (4)

where yi is true label for the ith sample (xi, yi). Here, yi equals 0 or 1. fyi,j is the prediction 

score of the true class yi for task j and fyn,j represents a prediction score for class yn. We use 

ωyi,j to represent the weight of class yi for task j. The use of !yi,j is important because the 

labels are imbalanced in all the tasks and ωyi,j is helpful in reducing the training bias 

introduced by such data imbalance. Specifically, ωyi,j weights each class loss proportional to 

the reciprocal of the class counts in the training data. For instance, ωyi=0,j = Nyi=1,j/(Nyi=0,j + 

Nyi=1,j) and ωyi=1,j = Nyi=0,j/(Nyi=0,j + Nyi=1,j). Nyi=1,j represents the total count of samples 

in the training data for task j, where the true class label equals 1. The global loss function is 

minimized during the training process by iteratively computing the gradient of Lglobal over 

the learnable parameters and updates the parameters through back-propagation. During 

training, model learnable parameters are initialized using the Xavier algorithm (Glorot & 

Bengio, 2010) and are updated using the Adam stochastic optimization algorithom (Kingma 

& Ba, 2014).

2.5. Training

We performed model training, validation, and testing using 897 LIDC cases, selected as 

described in Section 2.2. A 4-fold cross validation study design was employed to obtain the 

final assessment of the model performance. Within each fold, we split these cases into four 

subsets, where each subset had a similar number of nodules. 2 subsets are used for training, 

1 subset for validation, and 1 subset for holdout testing. The validation set is used to tune the 

hyperparameters and test set is employed as external holdout to report the final model 

performance. Each subset is used as the test set once during the cross validation. This design 

ensures that the test set is independent of model training and parameter optimization and 

should reflect the true model performance without information leakage. We note that earlier 

studies in (Shen et al., 2015b, 2017b; Kumar et al., 2015; Hua et al., 2015) only use training 

and validation splits during the cross validation process, without consideration for holdout 
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test sets. Such designs arguably have information leakage and may overestimate model 

performance.

To better control for model overfitting, 3D data augmentation was applied during the 

training process. Data augmentation artificially inflates the dataset by using label-preserving 

transforms to generate more data examples and is considered as a model regularization 

scheme (Krizhevsky et al., 2012). One or more random operations were applied on each 

training dataset to generate artificial samples. The spatial affine operations used in this study 

included translating the position of the nodule within 4 mm or flipping the 3D nodule cube 

along one of the three axes. The translation limit was set to 4 mm to ensure that the 

boundaries of the largest nodules were captured properly in the 3D cube (40 × 40 × 40 mm).

3. Experimental Results

This section first describes how we trained the models. We compare our model to a 

traditional 3D CNN model and other state-of-art methods. We also evaluate the accuracy of 

semantic feature predictions, providing illustrations of correct and incorrect predictions.

3.1. Model Training

Models were trained for 300 epochs during each fold of cross-validation. After 100 epochs 

of training, the model loss on the validation set became stable. The best model for each fold 

was chosen to be the one that achieved the lowest malignancy prediction loss on the 

validation dataset. Only the independent test dataset was used to calculate end model 

performance. An online augmentation scheme was employed during model training: during 

each training epoch, additional artificially created training samples were generated by 

randomly picking one or multiple augmentation operations, as described in Section 2.5. The 

same augmentation process was also applied to the validation dataset. To capture a majority 

of nodule morphology while reducing the input data dimensions, the input nodule cube size 

was set to be 52 × 52 × 52 voxels. The learning rate was set to be 0.001. The convolution 

kernel size, number of feature maps, pooling window size, downscale factor, and number of 

neurons for each fully-connected layer were reported in Section 2.4. The choices of these 

parameters have been commonly used, as shown in (Krizhevsky et al., 2012; Simonyan & 

Zisserman, 2014). The hyperparameters presented in Equation 3 were chosen by using a 

randomized coarse-to-fine grid search with the validation dataset in the first 20 epochs of 

each fold (Bergstra & Bengio, 2012).

The proposed HSCNN model was implemented in Python 2.7 with TensorFlow (Abadi et 

al., 2016) and the Keras toolkit (Chollet et al., 2015). All experiments were performed on a 

server with 6-core Intel Xeon E5–2630 processor, 32GB memory, and one NVIDIA TITAN 

Xp GPU (12GB on-board memory). The training of one HSCNN model took about 5 hours 

for 300 epochs.

3.2. Malignancy Prediction Results

To evaluate and compare the HSCNN performance on lung nodule malignancy prediction, a 

3D convolutional neural network (3D CNN) was implemented as a baseline model, shown in 

Figure 4b. This 3D CNN uses the same feature learning and high-level task modules as the 
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HSCNN but do not include the low-level subtask module. The baseline model was trained 

and evaluated using the same 4-fold cross validation process and with the same data splitting 

for each fold (using the same randomization seed).

Figure 5 shows the receiver operating characteristic (ROC) curve plots comparing HSCNN 

versus 3D CNN performance. These plots represent the intuitive trade-off between 

sensitivity and specificity. By visual inspection of the ROC curves, HSCNN performs better 

than the traditional 3D CNN model. The area under the ROC curve (AUC) quantitatively 

compares the overall performance of a classification model and is frequently used as a 

metric to access performance in nodule classification (Shen et al., 2017b; Ciompi et al., 

2015; Hancock & Magnan, 2016; Clark et al., 2013; Froz et al., 2017). Table 5 summarizes 

the mean AUC score, accuracy, sensitivity, and specificity for both models. The HSCNN 

model achieved a mean AUC 0.856, mean accuracy 0.842, mean sensitivity 0.705 and mean 

specificity 0.889; while the 3D CNN model achieved a mean AUC 0.847, mean accuracy 

0.834, mean sensitivity 0.668 and mean specificity 0.889. Both ROC plots and metric 

assessments show that the proposed HSCNN achieved better performance for malignancy 

prediction compared with the conventional 3D CNN approach.

To assess the statistical significance of model performance improvements, we conducted a 

paired sample t-test to evaluate the mean differences in AUC scores between the HSCNN 

and 3D CNN model. Group 1 consists of the AUC score of the HSCNN model for each 

holdout test fold during the cross validation. Group 2 consists of the corresponding AUC 

score for the 3D CNN for the same fold. The null hypothesis is that the mean difference of 

AUC score between these two models equals 0. Table 5 summarizes the AUC scores for 

these groups and results of a paired t-test. The test obtained a p-value of 0.005 and 

confidence interval of [0.0051, 0.0129], thus rejecting the null hypothesis and indicating that 

the HSCNN model achieved a statistically significantly better AUC relative to the 3D CNN. 

The mean improvement of the AUC score was 0.009. This finding demonstrates that adding 

a low-level task component on an existing CNN structure may improve the prediction of 

malignancy in a lung nodule.

We also compared our results with other deep learning models for lung nodule malignancy 

prediction that utilized the LIDC dataset reported in literature to date in Table 6. Kumar et 

al. (Kumar et al., 2015) developed a deep autoencoder-based model with 4,323 nodules of 

the LIDC dataset, achieving model accuracy of 0.7501. Hua et al. (Hua et al., 2015) 

presented a CNN model and deep belief network (DBN) model. Both models were trained 

and validated using 2,545 lung nodule samples from LIDC. The CNN model had specificity 

of 0.787 and sensitivity 0.737; and the DBN model obtained specificity of 0.822 and 

sensitivity 0.734. In (Shen et al., 2015b), Shen et al. used a model based on multi-scale 3D 

CNN. Developed with 1,375 LIDC nodule samples, the average accuracy is reported above 

0.84 with different configurations. In (Shen et al., 2017b), Shen et al. extended this multi-

scale model using a multi-crop approach and achieved accuracy of 0.839, 0.8636, and 

0.8714 with 340, 1030 and 1375 nodules of LIDC, respectively. All of these previously 

reported methods were evaluated with only training and validation data splits without an 

independent holdout test dataset as discussed in Section 2.5. Generally, our model achieved 

better or similar performances compared with these reported methods. However, direct 
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comparison of these models is difficult given that each model was trained and tested on 

different subsets of the LIDC dataset.

3.3. Semantic Feature Prediction Results and Model Interpretability

Table 7 presents the classification performance for each of the low-level tasks (i.e., semantic 

features). We achieved mean accuracy of 0.908, 0.725, 0.719, 0.834 and 0.552; mean AUC 

score of 0.930, 0.776, 0.803, 0.850 and 0.568; mean sensitivity of 0.930, 0.758, 0.673, 0.855 

and 0.552; and mean specificity of 0.763, 0.632, 0.796, 0.636 and 0.554 for calcification, 

margin, subtlety, texture, and sphericity, respectively. These results suggest that the HSCNN 

model is able to learn feature representations that are predictive of semantic features while 

simultaneously achieving high performance in predicting nodule malignancy.

Figure 6 demonstrates the interpretability of the HSCNN model by visualizing the central 

slices of the 3D nodule patches in axial, coronal, and sagittal projections while presenting 

the predicted interpretable semantic labels along with the malignancy classification results. 

Figure 6a–R1 shows that the HSCNN model classifies the lung nodule as benign (the true 

label is also benign). This decision correlated to predictions of this nodule as having no 

calcification, sharp margins, roundness, obvious contrast between nodule and surroundings, 

and solid consistency. The predictions of these five semantic characteristics are the same as 

the true label and corresponds to our knowledge about benign lung nodules. Compared to a 

3D CNN malignancy prediction model, the HSCNN provides more insight for interpreting 

its predictions. Similarly, in Figure 6b–R3, the proposed model predicts the lung nodule as 

malignant (true label is also malignant). Different from the benign case, the HSCNN model 

predicts this nodule having poorly defined margins, ground glass consistency, and non-round 

shape. This partly explains why the HSCNN makes a malignancy classification with such 

nodule characteristics corresponding to our expert knowledge about typical malignant 

nodules. We note that the sphericity predictions made by the model are different from the 

true label. This result is explained by the fact that while the nodule has a more regular round 

shape in axial view, the shape is actually more elongated in the two other projections, as 

shown in Figure 6b–R3.

Figure 7 shows two representative cases where the HSCNN fails to predict either one or 

more semantic features or cancer malignancy. Figure 7–R1 shows that the HSCNN model 

classifies the lung nodule correctly as benign but incorrectly for four semantic features of 

this nodule (margin, texture, sphericity and subtlety). In Figure 7–R2, the HSCNN model 

incorrectly classifies the lung nodule as malignant (the true label is benign). However, all 

semantic features of this nodule are predicted correctly. These two cases present the situation 

where the correctness are inconsistent between the malignancy and semantic predictions. 

Section 4 provides further discussion about how the HSCNN model can be augmented with 

more semantic features.

4. Discussion

We present a HSCNN model that incorporates domain knowledge into the model 

architecture design, predicting semantic nodule characteristics along with the primary task 

of nodule malignancy diagnosis. Five semantic features were considered: calcification, 
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margin, subtlety, texture, and sphericity. Our results in Section 3.3 suggest that the HSCNN 

model is capable of providing accurate predictions of semantic descriptors while 

simultaneously classifying nodule malignancy. The semantic labels are useful in interpreting 

the model’s predictions. Moreover, Section 3.2 shows that our HSCNN architecture 

improves model performance over a 3D CNN architecture.

There are some limitations to this study. Our semantic labels did not include those of known 

higher association with malignancy, such as nodule size, margin spiculation, lobulation, and 

anatomic location, which have previously been reported as informative (McWilliams et al., 

2013; Swensen et al., 1997). In the case of lobulation and spiculation, known labeling errors 

in the LIDC dataset made them unsuitable for our use. Additionally, semantic labels are 

subject to moderate inter-reader variability; performance might be enhanced by limiting 

semantic labels to those on which there is high reader agreement. Third, the malignancy 

labels provided in the LIDC dataset do not reflect pathological diagnosis but rather, 

suspicion levels of the interpreting radiologists. Finally, the original semantic features have 

scales of 5 or 6; binarizing the labels may lose some of the semantic information. Changing 

the threshold for binary classification would also affect results. Our rationale for binary 

labels in this case was to overcome data sparsity, where the number of cases labeled for 

certain scales might be very small compared with the other scales (e.g., only 11 cases are 

labeled as linear for sphericity out of total 4252 cases). Moreover, analysis shows that inter-

reader agreement is much lower for 5 or 6 scales compared with the proposed binary labels. 

Thus, binary labeling helps to reduce labeling noise caused by inter-reader variability. These 

limitations may be circumvented by training on large datasets that have been systematically 

annotated using a shared lexicon that includes discriminating features.

Several improvements can be investigated as part of future work. First, further optimization 

of the network architecture to achieve higher prediction performance can be performed. For 

instance, densely connected designs (Huang et al., 2016) and residual designs (He et al., 

2016) could be used to potentially improve model performance. Given limitations in 

computational power, not all designs were optimally searched; we will investigate these as 

part of future work. Second, as our HSCNN model facilitates interpretation of the utility of 

each semantic feature in predicting malignancy, the model can be fine-tuned by domain 

experts by weighting more discriminating features in difficult cases. Third, exploration of 

more granular or continuous labels for semantic features could be performed. Information of 

each semantic label’s distributions could be incorporated into the model’s design to boost 

performance. Fourth, our HSCNN architecture could be easily extended to incorporate 

additional semantic features. However, too many low-level subtasks (e.g., more than 20) 

would make model convergence more difficult. Thus, improving the model scalability 

should be studied in future works. Not all combinations of semantic labels may co-occur. 

Therefore, this observation could be employed to improve the model design. Finally, the 

inputs of current models were the 3D cubes centered at each nodule with all background 

pixel intensities. Background objects such as the lung walls of the juxtapleural nodules 

might prevent the model from learning useful information for the classification task. A 

possible future work is to explore feeding the deep learning model with nodular versus 

perinodular regions as two distinct separated inputs for each input data.
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5. Conclusion

In this paper, we have developed a novel radiologist-interpretable HSCNN model for 

predicting lung cancer in CT-detected indeterminate nodules. This model is able to 

simultaneously predict nodule malignancy while classifying five nodule semantic 

characteristics, including calcification, margin, subtlety, texture, and sphericity of nodules. 

These diagnostic semantic features predictions are intermediate outputs associated with the 

final malignancy prediction, and are useful to explain the diagnosis prediction. Information 

from each low-level semantic feature prediction is incorporated into the malignancy 

prediction task by employing jump connections. This framework is able to enforce the 

shared basic convolution modules in the HSCNN to learn features that are generalizable 

across tasks. This unified model is trained by minimizing a joint global loss function, where 

the losses of both malignancy and semantic feature prediction tasks are incorporated. 

Extensive experiments and statistical tests show that the proposed HSCNN model is able to 

significantly improve the classification performance for nodule malignancy prediction and 

the semantic characteristics predictions have improved the model interpretability. This 

trained model could also serve as a lung nodule semantic feature generator.

Acknowledgement

The authors acknowledge the National Cancer Institute and the Foundation for the National Institutes of Health, and 
their critical role in the creation of the free publicly available LIDC/IDRI Database used in this study. Research 
reported in this publication was partly supported by the National Cancer Institute of the National Institutes of 
Health under award number R01 CA210360, the Center for Domain-Specific Computing (CDSC) funded by the 
NSF Expedition in Computing Award CCF-0926127, and the National Science Foundation under Grant No. 
1722516. Computing resources were provided by the NIH Data Commons Pilot and a donation of a TITAN Xp 
graphics card by the NVIDIA Corporation. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of sponsor agencies.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, …, & Kudlur M (2016). Tensorflow: A system 
for large-scale machine learning. In OSDI (pp. 265–283). volume 16.

Amir GJ, & Lehmann HP (2016). After detection:: The improved accuracy of lung cancer assessment 
using radiologic computer-aided diagnosis. Academic radiology, 23, 186–191. [PubMed: 26616209] 

Armato SG, Altman MB, Wilkie J, Sone S, Li F, & Roy AS (2003). Automated lung nodule 
classification following automated nodule detection on ct: A serial approach. Medical Physics, 30, 
1188–1197. [PubMed: 12852543] 

Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, …, & Kazerooni E 
(2011). The lung image database consortium (lidc) and image database resource initiative (idri): a 
completed reference database of lung nodules on ct scans. Medical physics, 38, 915–931. [PubMed: 
21452728] 

Bergstra J, & Bengio Y (2012). Random search for hyper-parameter optimization. Journal of Machine 
Learning Research, 13, 281–305.

Chollet F et al. (2015). Keras.

Ciompi F, de Hoop B, van Riel SJ, Chung K, Scholten ET, Oudkerk M, de Jong PA, Prokop M, & van 
Ginneken B (2015). Automatic classification of pulmonary peri-fissural nodules in computed 
tomography using an ensemble of 2d views and a convolutional neural network out-of-the-box. 
Medical image analysis, 26, 195–202. [PubMed: 26458112] 

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, …, & Tarbox L (2013). The cancer 
imaging archive (tcia): maintaining and operating a public information repository. Journal of digital 
imaging, 26, 1045–1057. [PubMed: 23884657] 

Shen et al. Page 13

Expert Syst Appl. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Duggan N, Bae E, Shen S, Hsu W, Bui A, Jones E, Glavin M, & Vese L (2015). A technique for lung 
nodule candidate detection in ct using global minimization methods In International Workshop on 
Energy Minimization Methods in Computer Vision and Pattern Recognition (pp. 478–491). 
Springer.

Erasmus JJ, Connolly JE, McAdams HP, & Roggli VL (2000). Solitary pulmonary nodules: Part i. 
morphologic evaluation for differentiation of benign and malignant lesions. Radiographics, 20, 43–
58. [PubMed: 10682770] 

Farag A, Ali A, Graham J, Farag A, Elshazly S, & Falk R (2011). Evaluation of geometric feature 
descriptors for detection and classification of lung nodules in low dose ct scans of the chest In 
Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on (pp. 169–
172). IEEE.

Firmino M, Angelo G, Morais H, Dantas MR, & Valentim R (2016). Computer-aided detection (cade) 
and diagnosis (cadx) system for lung cancer with likelihood of malignancy. Biomedical 
engineering online, 15, 2. [PubMed: 26759159] 

Froz BR, de Carvalho Filho AO, Silva AC, de Paiva AC, Nunes RA, & Gattass M (2017). Lung nodule 
classification using artificial crawlers, directional texture and support vector machine. Expert 
Systems with Applications, 69, 176–188.

Glorot X, & Bengio Y (2010). Understanding the difficulty of training deep feedforward neural 
networks. In Proceedings of the thirteenth international conference on artificial intelligence and 
statistics (pp. 249–256).

ten Haaf K, Jeon J, Tammemägi MC, Han SS, Kong CY, Plevritis SK, Feuer EJ, de Koning HJ, 
Steyerberg EW, & Meza R (2017). Risk prediction models for selection of lung cancer screening 
candidates: A retrospective validation study. PLoS medicine, 14, e1002277. [PubMed: 28376113] 

Hancock MC, & Magnan JF (2016). Lung nodule malignancy classification using only radiologist-
quantified image features as inputs to statistical learning algorithms: probing the lung image 
database consortium dataset with two statistical learning methods. Journal of Medical Imaging, 3, 
044504. [PubMed: 27990453] 

He K, Zhang X, Ren S, & Sun J (2016). Deep residual learning for image recognition. In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).

Hua K-L, Hsu C-H, Hidayati SC, Cheng W-H, & Chen Y-J (2015). Computer-aided classification of 
lung nodules on computed tomography images via deep learning technique. OncoTargets and 
therapy, 8.

Huang G, Liu Z, Weinberger KQ, & van der Maaten L (2016). Densely connected convolutional 
networks. arXiv preprint arXiv:1608.06993, .

Huang P, Park S, Yan R, Lee J, Chu LC, Lin CT, Hussien A, …, & Hales R (2017). Added value of 
computer-aided ct image features for early lung cancer diagnosis with small pulmonary nodules: A 
matched case-control study. Radiology, 286, 286–295. [PubMed: 28872442] 

Ioffe S, & Szegedy C (2015). Batch normalization: Accelerating deep network training by reducing 
internal covariate shift. arXiv preprint arXiv:1502.03167, .

Jorritsma W, Cnossen F, & van Ooijen P (2015). Improving the radiologist–cad interaction: designing 
for appropriate trust. Clinical radiology, 70, 115–122. [PubMed: 25459198] 

Kaya A, & Can AB (2015). A weighted rule based method for predicting malignancy of pulmonary 
nodules by nodule characteristics. Journal of biomedical informatics, 56, 69–79. [PubMed: 
26008877] 

Kim H, Park CM, Goo JM, Wildberger JE, & Kauczor H-U (2015). Quantitative computed 
tomography imaging biomarkers in the diagnosis and management of lung cancer. Investigative 
radiology, 50, 571–583. [PubMed: 25811833] 

Kingma DP, & Ba J (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:
1412.6980, .

Krizhevsky A, Sutskever I, & Hinton GE (2012). Imagenet classification with deep convolutional 
neural networks. In Advances in neural information processing systems (pp. 1097–1105).

Kumar D, Wong A, & Clausi DA (2015). Lung nodule classification using deep features in ct images 
In Computer and Robot Vision (CRV), 2015 12th Conference on (pp. 133–138). IEEE.

Shen et al. Page 14

Expert Syst Appl. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lin P-L, Huang P-W, Lee C-H, & Wu M-T (2013). Automatic classification for solitary pulmonary 
nodule in ct image by fractal analysis based on fractional brownian motion model. Pattern 
Recognition, 46, 3279–3287.

McNitt-Gray MF, Armato SG, Meyer CR, Reeves AP, McLennan G, Pais RC, …, & Laderach G 
(2007). The lung image database consortium (lidc) data collection process for nodule detection and 
annotation. Academic radiology, 14, 1464–1474. [PubMed: 18035276] 

McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, …, & Atkar-Khattra S 
(2013). Probability of cancer in pulmonary nodules detected on first screening ct. New England 
Journal of Medicine, 369, 910–919. [PubMed: 24004118] 

Piedra EAR, Taira RK, El-Saden S, Ellingson BM, Bui AA, & Hsu W (2016). Assessing variability in 
brain tumor segmentation to improve volumetric accuracy and characterization of change In 
Biomedical and Health Informatics (BHI), 2016 IEEEEMBS International Conference on (pp. 
380–383). IEEE.

Shen S, Bui AA, Cong J, & Hsu W (2015a). An automated lung segmentation approach using 
bidirectional chain codes to improve nodule detection accuracy. Computers in biology and 
medicine, 57, 139–149. [PubMed: 25557199] 

Shen S, Han SX, Petousis P, Weiss RE, Meng F, Bui AA, & Hsu W (2017a). A bayesian model for 
estimating multi-state disease progression. Computers in biology and medicine, 81, 111–120. 
[PubMed: 28038345] 

Shen W, Zhou M, Yang F, Yang C, & Tian J (2015b). Multi-scale convolutional neural networks for 
lung nodule classification In International Conference on Information Processing in Medical 
Imaging (pp. 588–599). Springer.

Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, Zang Y, & Tian J (2017b). Multi-crop convolutional 
neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 61, 
663–673.

Simonyan K, & Zisserman A (2014). Very deep convolutional networks for large-scale image 
recognition. CoRR, abs/1409.1556.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, & Salakhutdinov R (2014). Dropout: A simple 
way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15, 
1929–1958.

Swensen SJ, Silverstein MD, Ilstrup DM, Schleck CD, & Edell ES (1997). The probability of 
malignancy in solitary pulmonary nodules: application to small radiologically indeterminate 
nodules. Archives of internal medicine, 157, 849–855. [PubMed: 9129544] 

Team NLSTR et al. (2011). Reduced lung-cancer mortality with low-dose computed tomographic 
screening. N Engl J Med, 2011, 395–409.

Reeves AP, Biancardi AM (2011). The lung image database consortium (lidc) nodule size report. 
http://www.via.cornell.edu/lidc/. Accessed 2018-06-01.

The Cancer Imaging Archive (2017). Lung image database consortium -reader annotation and markup 
- annotation and markup issues/comments. https://wiki.cancerimagingarchive.net/display/Public/
LIDC-IDRI. Accessed 2018-06-01.

Torre LA, Siegel RL, & Jemal A (2016). Lung cancer statistics In Lung Cancer andPersonalized 
Medicine (pp. 1–19). Springer.

Way TW, Sahiner B, Chan H-P, Hadjiiski L, Cascade PN, Chughtai A, Bogot N, & Kazerooni E 
(2009). Computer-aided diagnosis of pulmonary nodules on ct scans: Improvement of 
classification performance with nodule surface features. Medical physics, 36, 3086–3098. 
[PubMed: 19673208] 

Zhao B, Tan Y, Bell DJ, Marley SE, Guo P, Mann H, …, & Ghiorghiu DC (2013). Exploring intra-and 
inter-reader variability in uni-dimensional, bi-dimensional, and volumetric measurements of solid 
tumors on ct scans reconstructed at different slice intervals. European journal of radiology, 82, 
959–968. [PubMed: 23489982] 

Zinovev D, Feigenbaum J, Furst J, & Raicu D (2011). Probabilistic lung nodule classification with 
belief decision trees In Engineering in medicine and biology society, EMBC, 2011 annual 
international conference of the IEEE (pp. 4493–4498). IEEE.

Shen et al. Page 15

Expert Syst Appl. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.via.cornell.edu/lidc/
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI


Highlights

• A novel interpretable hierarchical deep learning model for lung cancer 

diagnosis

• Network design incorporates semantic features that are intuitive to 

radiologists

• A single joint network predicts interpretable features and malignancy

• Architecture maintains prediction accuracy while improving model 

interpretability
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Figure 1: 
Illustrations of malignant and benign nodules: R1 are malignant nodules; R2 are benign 

nodules.
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Figure 2: 
Lung nodule inclusion criteria.
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Figure 3: 
Model architecture of the hierarchical semantic convolutional neural network.
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Figure 4: 
Framework comparison between proposed HSCNN and baseline 3D CNN. (a) The proposed 

HSCNN architecture; (b) a baseline 3D CNN architecture. The baseline model has the same 

structure as the HSCNN but without the low-level semantic task component.
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Figure 5: 
Receiver operating characteristic curve comparison: HSCNN versus 3D CNN. The AUC of 

3D HSCNN is significantly higher than 3D CNN according to a paired T-test as shown in 

Table 5.
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Figure 6: 
Illustrating the HSCNN model interpretability: lung nodule central slices, interpretable 

semantic feature prediction and malignancy prediction. R1, R2, R3 and R4 are four different 

nodules. (a) Central slices of axial, coronal and sagittal view of two benign nodule samples; 

true and predicted labels for interpretable semantic features and malignancy. (b) Central 

slices of axial, coronal and sagittal view of two malignant nodule samples; true and 

predicted labels for interpretable semantic features and malignancy.
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Figure 7: 
Example cases where the HSCNN model incorrectly predicts semantic features or cancer 

malignancy. R1 and R2 are two different nodules. R1: This case has four incorrect semantic 

feature predictions yet a correct malignancy prediction. R2: This case has all correct 

semantic predictions yet an incorrect malignancy prediction.

Shen et al. Page 23

Expert Syst Appl. Author manuscript; available in PMC 2020 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shen et al. Page 24

Table 1:

Detailed nodule characteristics labels in LIDC dataset.

Semantic Feature Description Ratings

Malignancy Likelihood of malignancy

1. Highly unlikely
2. Moderately unlikely
3. Indeterminate
4. Moderately suspicious
5. Highly suspicious

Margin How well defined the margins are

1. Poorly defined
2.
3.
4.
5. Sharp

Sphericity Three dimensional shape in terms of roundness

1. Linear
2.
3. Ovoid
4.
5. Round

Subtlety Difficulty of detection relative to surround

1. Extremely subtle
2. Moderately subtle
3. Fairly subtle
4. Moderately obvious
5. Obvious

Spiculation Degree of exhibition of spicules

1. Marked
2.
3.
4.
5. None

Radiographic solidity (texture) Internal texture (consistency) of nodule

1. Non-solid
2.
3. Part Solid
4.
5. Solid

Calcification Presence and pattern of calcification

1. Popcorn
2. Laminated
3. Solid
4. Non-central
5. Central
6. Absent

Internal structure Expected internal composition of the nodule

1. Soft tissue
2. Fluid
3. Fat
4.
5. Air

Lobulation The presence and degree of lobulation of the nodule margin

1. Marked
2.
3.
4.
5. None
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Table 2:

Summary of generating binary labels from LIDC rating scales for nodule characteristics.

Nodule characteristics Label 0 Label 1

Malignancy Scale 1 – 3
Benign

Scale 4 – 5
Malignant

Sphericity Scale 1 – 3
Lesser roundness

Scale 4 – 5
High degree of roundness

Margin Scale 1 – 3
Poorly defined margin

Scale 4 – 5
Sharp margin

Subtlety
Scale 1 – 3

Poor contrast between nodule
and surroundings

Scale 4 – 5
High contrast between nodule

and surroundings

Texture Scale 1 – 3
Non-solid internal density

Scale 4 – 5
Solid internal density

Calcification Scale 1 – 5
Present of calcification

Scale 6
Absent of calcification
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Table 3:

Label counts for nodule characteristics.

Nodule characteristics Label 0 (#) Label 1 (#) Total (#)

Malignancy 3212 1040 4252

Sphericity 2304 1948 4252

Margin 1640 2612 4252

Subtlety 1570 2682 4252

Texture 518 3734 4252

Calcification 496 3756 4252
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Table 4:

Results comparison: HSCNN versus 3D CNN.

Model AUC (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD)

3D CNN 0.847 (0.024) 0.834 (0.022) 0.668 (0.040) 0.889 (0.022)

HSCNN 0.856 (0.026) 0.842 (0.025) 0.705 (0.045) 0.889 (0.022)
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Table 5:

Paired T-Test summarizes for AUC scores between HSCNN and 3D CNN model on test set of each fold. CI 

represents for confidence interval.

Test Fold HSCNN
AUC

3D CNN
AUC

AUC Difference
(HSCNN - 3D CNN) Paired T-Test

Fold 1 0.878 0.869 0.009

P-value=0.005,
Mean_difference=0.009,

CI = [0.0051, 0.0129]

Fold 2 0.813 0.807 0.006

Fold 3 0.874 0.862 0.012

Fold 4 0.860 0.851 0.009
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Table 6:

Comparison with other current deep learning models.

Method Nodules Hold-out Test Sensitivity Specificity Accuracy AUC

Deep Auto-encoder
(Kumar et al., 2015) 4,323 No - - 0.7501 -

CNN
(Hua et al., 2015) 2,545 No 0.737 0.787 - -

DBN
(Hua et al., 2015) 2,545 No 0.734 0.822 - -

Multi-scale CNN
(Shen et al., 2015b) 1,375 No - - 0.84 -

Multi-crop CNN
(Shen et al., 2017b) 1,375 No - - 0.8714 -

Proposed 4,252 Yes 0.705 0.889 0.842 0.856
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Table 7:

Classification performance for semantic feature predictions.

Semantic
Features Accuracy (SD) AUC (SD) Specificity (SD) Sensitivity (SD)

Calcification 0.908 (0.050) 0.930 (0.034) 0.763 (0.092) 0.930 (0.067)

Margin 0.725 (0.049) 0.776 (0.033) 0.632 (0.109) 0.758 (0.091)

Subtlety 0.719 (0.019) 0.803 (0.015) 0.796 (0.045) 0.673 (0.044)

Texture 0.834 (0.086) 0.850 (0.042) 0.636 (0.199) 0.855 (0.108)

Sphericity 0.552 (0.027) 0.568 (0.015) 0.554 (0.076) 0.552 (0.095)
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