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Woody plant encroachment has a 
Larger impact than climate change 
on Dryland Water Budgets
Adam p. Schreiner-McGraw1,2 ✉, Enrique R. Vivoni1,3, Hoori Ajami2, Osvaldo E. Sala4,5,6, 
Heather L. throop1,4 & Debra p. c. peters7

Woody plant encroachment (Wpe) into grasslands is a global phenomenon that is associated with 
land degradation via xerification, which replaces grasses with shrubs and bare soil patches. It remains 
uncertain how the global processes of Wpe and climate change may combine to impact water 
availability for ecosystems. Using a process-based model constrained by watershed observations, our 
results suggest that both xerification and climate change augment groundwater recharge by increasing 
channel transmission losses at the expense of plant available water. conversion from grasslands 
to shrublands without creating additional bare soil, however, reduces transmission losses. Model 
simulations considering both WPE and climate change are used to assess their relative roles in a late 21st 
century condition. Results indicate that changes in focused channel recharge are determined primarily 
by the WPE pathway. As a result, WPE should be given consideration when assessing the vulnerability of 
groundwater aquifers to climate change.

Global drylands covering nearly 40% of the Earth’s land surface have been dramatically transformed by woody 
plant encroachment (WPE)1–4. Managed grazing is the predominant use of drylands, making it the single most 
extensive form of land use on the planet1. As such, WPE into grasslands is often considered a negative outcome 
since it may reduce forage production for livestock5 and decrease habitat for native species6. As shrubs become 
dominant in a dryland ecosystem, processes in the water and energy budgets are affected7–9, including ground-
water recharge10. Most prior observational11,12 and modeling13 efforts indicate that WPE reduces diffuse vertical 
recharge due to water uptake by deeply rooted woody plants12,14. However, these cases have focused on flat areas 
that lack topographic effects on water transport. Where terrain controls are important15, WPE could potentially 
have local and downstream consequences on both vertical and lateral water exchanges. Nevertheless, little evi-
dence is available on downstream consequences of WPE within interconnected hillslope and channel systems16, 
even though many arid landscapes consist of these topographic features.

In addition to WPE, directional changes in climate are expected to impact water budgets in drylands17. Prior 
studies in these regions predict drying caused by increased temperatures and higher evapotranspiration (ET)18–20, 
in some cases with decreases in precipitation21,22. In addition to directional changes in precipitation and temper-
ature, changes to precipitation frequency, intensity, and seasonal distributions are expected23. Recent work has 
shown that increases in precipitation variability are more important than changes to the mean annual precipita-
tion in impacting groundwater recharge in dryland playa lakes24. Prior observations and model simulations also 
suggest significant climate change impacts of extreme precipitation events25,26. These impacts are critical because 
extreme storm events with a high magnitude or intensity can generate streamflow and channel transmission 
losses. For instance, channel losses contribute up to 40% of recharge to arid and semiarid aquifers27, and these 
losses are commonly used as proxies for recharge28. While conceptual models of the hydrologic impact of WPE 
and climate change have been proposed7, studies on their combined effects on channel transmission losses are 
lacking. Indeed, it is unknown if WPE and climate change will interact in a linearly additive manner or in a non-
linear way to affect groundwater recharge in drylands.
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In the U.S., WPE occurs via two pathways (Fig. 1a): ‘xerification’ is where grass loss associated with WPE 
leads to an increase in bare soil cover, while ‘thicketization’ involves the replacement of grasses by shrubs without 
a simultaneous increase in bare soil29. In dry environments where water resources are limited, grassland plants 
tend to be smaller and more tightly spaced together than do shrublands. Gaps between shrubs allow resource 
removal by wind30 and water31 transport, which increases the bare soil coverage. Mean annual precipitation is 
a good predictor for the occurrence of each pathway, with drier areas (<400 mm per year) in the western U.S. 
undergoing xerification32,33, while wetter sites in the central and eastern U.S. have experienced primarily thicketi-
zation34,35. This distinction is important as these pathways directly affect the connectivity of surface flow over bare 
soil patches, and the lateral subsurface water movement on hillslopes36, which in turn impact focused recharge 
in downstream channels37,38. Since channel losses depend on hillslope processes affected by plants, a modeling 
approach that can account for both terrain and vegetation patch effects on hydrologic connectivity is needed. 
Similar pathways of WPE can be found globally39 and have been identified in Africa40, South America41, and 
China42, although the precipitation thresholds indicating which pathway is more likely are not clear.

We applied a distributed, process-based ecohydrological model to determine the hydrologic impacts of WPE 
and climate change. The investigation was performed using data from a small, densely instrumented watershed 
(4.6 ha) in the Chihuahuan Desert (Fig. 1b) where historical WPE has been well documented43–45. We conducted 
a series of simulation scenarios using observed meteorological data over a 6.25-year period (using all available 
data) to quantify impacts of xerification (Fig. 1c) and thicketization (Fig. 1d) pathways by varying the percent-
ages of shrub, grass, and bare soil cover. We then used a stochastic downscaling approach to construct synthetic 
time series of meteorological forcings based on historical (1990-2005) and late century (2085-2100) conditions 
projected from three general circulation models (GCMs) and one greenhouse gas emissions scenario (RCP 8.5). 
Our analysis focuses on the consequences of the combined effects of WPE and climate change on the evapotran-
spiration and channel transmission losses that form the major parts of the dryland water budget.

With this framework, we address the following questions about the conversion of grasslands to shrublands: (1) 
What are the impacts of woody plant encroachment on the dryland water budget? (2) Do varying WPE pathways 
lead to different water budget components?, and (3) What are the relative roles of WPE and projected climate 
conditions on channel transmission losses at the end of the 21st century?

Diverging effects of WPE on water budget components. Simulations using the 6.25-year observed 
forcings (Fig. S1) with a calibrated model (see Methods) show that WPE via the xerification pathway increased 
focused recharge in channel features during summer months with high precipitation (Fig. 2a). While WPE does 
not affect the precipitation threshold necessary for recharge (40 mm/month in this system) among various xerifi-
cation scenarios, the annual ratio of transmission losses to precipitation (TL/P) increases with lower grass cover, 
equivalent to +13 mm per year or +29% for the lowest grass cover scenario relative to an initial grassland. Due to 
the higher bare soil cover during xerification, larger amounts of infiltration-excess overland flow from hillslopes 
reach the channel network46, augmenting channel transmission losses that lead to focused recharge37. This result 
is consistent with prior studies showing a reduction of infiltration with increases in bare soil47 at both the plot 

Figure 1. Model scenarios in the context of continental scale WPE. (a) Study site location along with WPE 
pathways in the United States. Diamonds indicate states where woody plant encroachment, via xerification 
(yellow) or thicketization (purple), has been observed27. (b) Current spatial pattern of grasses, shrubs, and bare 
soils (2013) at the watershed study site. Stacked bar plots illustrate WPE model scenarios for the xerification 
pathway (c) and the thicketization pathway (d).
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and field scales48 as well as increases in the hydrologic connectivity of hillslopes and channel systems during 
xerification49,50.

While increases in focused recharge caused by xerification are linear, other water budget components exhibit 
nonlinearities with a reduction in grass cover (Table 1). Reductions in ET are due to the lower soil infiltration 
caused by higher bare soil, yielding large declines of annual ET/P from 81 to 74%. In dryland settings, ET is water 
limited, such that this trend reflects a decrease in plant available water with increasing TL. Indeed, the high arid-
ity in the study watershed results in all of the P that infiltrates into the soil being used for ET, irrespective of the 
type of plant. As a result, changes to watershed ET reflect changes to the physical structure of the watershed that 
impact infiltration of P into the soil. It is noteworthy that reductions in ET asymptote towards 200 mm per year 
in the xerification pathway for the lowest grass cover. This asymptote is caused by the increase in ET from shrub 
patches as the total vegetation cover decreases (Fig. S2). Since bare soil patches do not transpire soil water, their 
expansion with xerification provides more opportunity for overland flow generation in bare soil patches and lat-
eral soil water redistribution to shrub locations.

By increasing infiltration-excess runoff, WPE via the xerification pathway also results in a nonlinear increase 
in streamflow, Q (Table 1). Though annual Q/P are typically low (1 to 4%), a notable maximum in streamflow is 
observed for grass cover between 20 and 30% for the xerification pathway. Since the partitioning between Q and 
TL is controlled by the interaction between hillslope runoff and the initial channel infiltration capacity46,51, this 
nonlinearity is explained by the variation of hydrograph properties with changes in grass cover. Low grass cover 
increases the hillslope flow connectivity which results in more overland flow reaching the dry ephemeral channel 

Figure 2. Impacts of two woody plant encroachment pathways on transmission losses. Relation between 
monthly transmission losses (TL) and precipitation (P) for (a) xerification and (b) thicketization pathways. 
Insets display annual TL/P relation with percent grass cover (%).

Scenario Grass Cover P [mm/yr] ET [mm/yr] Q [mm/yr] TL [mm/yr] Mean ϴ [mm] TL/P [−]

Xerification Pathway

70% 271 220 3 47 19.1 0.173

60% 271 215 6 49 18.9 0.181

50% 271 211 8 51 18.8 0.188

40% 271 207 10 53 18.7 0.195

30% 271 205 11 55 18.5 0.202

20% 271 203 11 57 18.4 0.209

10% 271 201 10 59 18.2 0.216

0% 271 201 9 61 18.0 0.223

Thicketization Pathway

70% 271 220 3 47 19.1 0.173

60% 271 221 3 46 19.0 0.169

50% 271 223 3 44 19.0 0.164

40% 271 224 3 43 18.9 0.159

30% 271 225 3 42 18.9 0.154

20% 271 227 3 40 18.7 0.149

10% 271 228 3 40 18.7 0.146

0% 271 230 2 38 18.6 0.142

Table 1. Annual water budget components for xerification and thicketization pathways using observed 
meteorological forcing. Water budget variables: P is the precipitation, ET is evapotranspiration, Q is streamflow 
at the watershed outlet, and TL is transmission losses. The mean soil moisture (Mean ϴ) for the 6.25-year period 
is also presented as interannual changes in soil water storage are negligible.
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during a transient period when capillary forces increase infiltration rates (see Methods). This results in higher TL 
and lower streamflow for the lowest grass cover cases.

Since WPE does not result in an increase in bare soil along the thicketization pathway, an opposite response to 
the xerification case is noted. Indeed, TL/P shows a linear decrease as grass cover decreases (Fig. 2b, Table 1). This 
reduction is caused by two mechanisms that increase ET/P from 81 to 85%: increased shrub canopy interception 
of precipitation and increased soil infiltration underneath shrubs as compared to grasses52,53. Canopy interception 
capacity in shrub areas increases by 64% up to a threshold of 0.65 mm due to the higher leaf area index of shrubs54, 
while soil infiltration increases by 66% due to the higher surface hydraulic conductivity underneath shrubs as 
compared to grasses (Table S1). WPE along the thicketization pathway also reduces streamflow from Q/P of 1% 
to 0.8%, though the sensitivity is quite low. While these effects also occur for the xerification pathway, the impact 
of expanding bare soil cover on runoff production overwhelms other shrub-induced mechanisms, leading to the 
diverging impacts of the two different encroachment pathways on evapotranspiration and channel transmissions 
losses.

non-stationarity of hydrologic impact of Wpe with climate change. We simulated vegetation 
cover conditions for the final states of the WPE pathways (Fig. 1c,d) and an initial grassland state (70% grass, 
30% bare soil) for late 21st-century climate conditions (2085-2100) and compared these to a historical climate 
period parameterized with NLDAS-2 (Fig. S3, Methods). Overall, annual changes in channel transmission 
losses show that WPE has a stronger impact on dryland water budgets than the worst-case climate change 
conditions (late-century, RCP 8.5) explored here. As described previously, annual differences in TL between 
a historic grassland and final shrub states show diverging outcomes under the two pathways (Fig. 3a). These 
effects are larger than the climate change impact on a grassland for the three GCMs. Indeed, the WPE cases 
show a greater sensitivity than the possible future impacts of climate change alone. When the effects are com-
bined (Fig. 3b), the annual change in TL is not a linearly additive process and the directionality of the future 
changes are determined almost entirely by the WPE pathway, rather than the magnitude of the imposed climate 
change signal.

To further explore this outcome, Fig. 3c shows how the WPE pathways will affect TL for the projected cli-
mate conditions at late-century. While the general patterns discussed previously still hold, the sensitivity to WPE 
varies considerably as compared to the historical period (Fig. 3b). This demonstrates that there is an embedded 
non-stationarity imposed by climate change on the hydrologic response to WPE for both pathways. Specific 
changes to TL for each shrubland state depend on the climate-induced changes in precipitation amount and pat-
terns55. For instance, the CSIRO projected climate (reduced total precipitation, increased precipitation intensity) 
shows large impacts to the annual TL changes, with a reduced sensitivity for the xerification, and increased sen-
sitivity for the thicketization pathways, as compared to the historical climate. The non-stationarity in climate can 
be linked directly to precipitation properties (Table S2) that determine whether WPE will yield greater focused 
recharge. By comparing the projected changes to climate with Fig. 3, it is noted that in systems with high bare 
soil, the CSIRO model with a high average storm intensity and low annual precipitation results in the most TL. 
Along the thicketization pathway, the HadGEM2-ES model predicts the most TL due to its higher annual precip-
itation which overcomes the canopy interception from the higher amount of shrub cover. Interannual variability 
in the TL representing a range of potential climate and WPE impacts demonstrates that WPE largely determines 
the directionality of changes (Fig. S4). Changes to individual precipitation properties, such as an increase in the 
average daily storm size or the average annual precipitation, can have a larger impact than WPE on transmission 
losses (Fig. S5). GCMs do not predict such drastic changes to precipitation properties, however, so when the range 
of likely changes to precipitation properties is considered WPE is shown to be the primary driver of changes to 
TL (Fig. S6).

implications of Wpe for groundwater sustainability. Woody-plant encroachment into grasslands is 
often considered a negative outcome and associated with land degradation. Nevertheless, our modeling results 
illustrate that xerification in a landscape leading to high cover of bare soil can yield increased TL, leading to 
focused groundwater recharge. At the same time, plant available water is reduced, providing an advantage to 
shrubs in their competition with grasses56,57 and yielding a positive feedback loop that promotes further WPE and 
focused recharge. In contrast, the thicketization pathway decreases channel losses by increasing hillslope infil-
tration and evapotranspiration, suggesting that woody plant encroachment in humid regions will not enhance 
groundwater recharge. Some studies have hypothesized that increases to streamflow in upland systems may result 
in supplemental water deliveries to downstream ecosystems16. Our results suggest that although both WPE and 
climate change may increase runoff production on hillslopes, this runoff is absorbed in first order channels and 
does not subsidize downstream ecosystems.

Under a changing climate, the impact of WPE on the dryland water budget is more important than the 
climate change signal. However, a climate-induced non-stationarity in the hydrologic response emerges for 
each WPE pathway. For the xerification pathway, water budget components are highly sensitive to changes in 
extreme precipitation events, whereas the thicketization pathway is most sensitive to changes in total precipita-
tion. We illustrate how this global phenomenon can affect groundwater aquifers through positive (xerification) 
or negative (thicketization) feedbacks linked to ecohydrological processes. Given that groundwater is the major 
freshwater resource in many drylands, land managers should consider how woody plant encroachment could 
affect aquifer sustainability. Because groundwater recharge is potentially more strongly linked to the vegetation 
state than climate change, WPE should become part of the discourse about management of dryland aquifers 
in the future.
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Methods
ecohydrological process Modeling. Numerical simulations were performed using the TIN-based Real-
time Integrated Basin Simulator, tRIBS58,59, a fully-distributed, physically-based ecohydrological model. The 
tRIBS framework captures high-resolution topography, soil type, vegetation, and meteorological conditions 
affecting the land-phase of the hydrologic cycle. For each model element, a range of processes that track the 
watershed response are calculated, including: (1) canopy interception and evaporation; (2) infiltration, soil mois-
ture redistribution, and runoff generation; (3) evaporation from bare soil and transpiration from vegetation; (4) 
shallow subsurface flow; and (5) overland and channel flow. The model is also capable of ingesting time-variable 
vegetation parameters60 and the modeling domain can be partitioned into subdomains for parallel computing61.

Figure 3. Combined impacts of climate change and WPE on transmission losses. (a) The difference in the 
average annual TL between a historical grassland and end-member shrubland states forced with historical 
climate (left) and grassland forced with climate change forcings (right). The X-path is the xerification pathway 
and the T-path is the thicketization pathway. (b) The difference in the average annual TL between a historical 
grassland and two shrubland states forced with a historical climate based on NLDAS-2 data (‘Hist.’) or one of 3 
climate change projections, CNRM-CM5 (‘CNR’), CSIRO Mk.3.6.0 (‘CSI’), or HadGEM2-ES (‘HGE’). (c) The 
difference in the average annual TL between shrubland and grassland when both vegetation states use the same 
meteorological forcings for historical conditions (‘Hist.’) or one of the 3 climate change projections.

https://doi.org/10.1038/s41598-020-65094-x
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We briefly describe the infiltration, runoff generation, channel transmission losses, and vegetation representa-
tions for dryland systems with shallow soils. Each model element has a heterogeneous, sloped soil column above a 
semi-impermeable carbonate layer45. A modified version of the Green-Ampt equation that represents unsaturated 
flow in layered soils is used to calculate infiltration58,62. Precipitation pulses lead to single infiltration fronts that 
interact with antecedent soil water to impact runoff generation and subsequent infiltration. Soil water is redis-
tributed laterally based on topographic gradients. Following storm events, soil water is depleted through bare soil 
evaporation and plant transpiration to meet the atmospheric demand via closing the energy balance using the 
Penman-Monteith equation58. A vegetative fraction for each model element determines the fractions of bare soil 
evaporation and transpiration and is treated as a species-dependent parameter that varies with observed plant 
phenology46.

tRIBS simulates runoff generation as either Hortonian (infiltration excess) or Dunnian (saturation excess) 
processes depending on the wetness state in hillslope soils58. Groundwater exfiltration and perched return flow 
can also be simulated, but are not observed in this system46. Runoff is transported to the watershed outlet by first 
routing the runoff along each hillslope in the direction of steepest descent based on the hillslope path length and a 
velocity dependent on the downstream channel discharge58,62. In the channel network, river routing is simulated 
using a one-dimensional, finite element, kinematic wave approximation using the Manning’s equation for rectan-
gular cross sections. Recent modifications to the model allow for channel transmission losses of hillslope-derived 
runoff that account for the impact of capillary forces on infiltration in ephemeral channels during the initial 
period of infiltration46, termed the transient period. A key limitation of this approach is that this model is not a 
fully integrated surface water-groundwater model. Therefore, transmission losses that are lost from the model 
domain cannot be accessed by deep-rooted shrubs. Additionally, all shrubs in the modeling framework have their 
roots limited to the soil layer (top 50 cm) and the carbonate layer is treated as a fully impermeable unit. While 
these assumptions result in a simplified system, in situ observations suggest that they are reasonable approxima-
tions and will not significantly alter conclusions drawn from the model37,63.

Woody plant encroachment Scenarios. This study was performed in a mixed shrubland of the Jornada 
Experimental Range USDA-LTER site of southern New Mexico45. The study watershed has undergone woody 
plant encroachment since 185043 leading to the current state consisting of creosote bush (Larrea tridentata), 
honey mesquite (Prosopis glandulosa Torr.), several perennial bunchgrass species (Muhlenbergia porteri, 
Pleuraphis mutica, and Sporobolus cryptandrus), and other shrubs (Parthenium incanum, Flourensia cernua, and 
Gutierrezia sarothrae). The model was parameterized to ensure accurate representation of shrubs and grasses. 
When conducting WPE scenarios, however, a generic shrub class was used based upon the time-variable param-
eters and phenology of mesquite shrubs. No significant differences in the water budget were obtained when a set 
of mixed shrubs were represented.

To generate the WPE scenarios, we constructed random distributions of shrubs, grasses, and bare soil to meet 
plant cover specifications (Fig. 1c,d). These were generated within ArcGIS to create spatially distributed raster 
datasets. Several random realizations of shrub distribution for the same total shrub cover as the current observed 
state yielded no significant difference in the hydrologic response (Fig. S7). Plant cover specifications were devel-
oped to follow the two WPE pathways. Xerification better represents dry conditions at the study site where WPE 
results in high bare soil cover. To achieve these, we developed relations between aboveground net primary pro-
duction (ANPP) and plant cover for grasses and shrubs. Total ANPP does not change with WPE64,65 in arid envi-
ronments where xerification occurs, but the relation between biomass and percentage cover is steeper for shrubs 
than for grasses; thus, to maintain constant ANPP with WPE, there is an increase in bare soil. Thicketization 
occurs in more humid environments where grasses are replaced by shrubs since there is sufficient precipitation to 
support increased ANPP (Fig. S8).

Model Scenario Simulations. We performed the hydrologic simulations for a period that corresponds with 
hydrologic monitoring at the site45: July 1, 2010 – September 30, 2016 (6.25 years), a total of 7 growing seasons (1 
July to 1 October). Meteorological forcings consisted of observed values of solar radiation, wind speed, air tem-
perature, relative humidity, and barometric pressure at 30-minute intervals and applied uniformly to the water-
shed46. Precipitation at 30-minute resolution was derived from four rain gauges in the watershed45. Simulations 
were performed with a spatial resolution of 1 m resulting in ~47,000 computational elements requiring 25 CPU 
hours per year of simulation. Parallel computations were used to decrease simulation time based on subdomain 
partitioning of the channel network into 8 regions61. A base case consisting of observed vegetation at the study 
site was calibrated and validated using extensive observations of soil moisture, streamflow, evapotranspiration, 
and the energy balance46. Static model parameters are presented in Table S1. Vegetation parameters include time 
variable phenology based on phenocam measurements from the study site46. The model outputs of interest are 
the water budget components of evapotranspiration, streamflow, and transmission losses. Transmission losses are 
defined as deep percolation in the channel network and can occur even when insufficient streamflow develops to 
exit the watershed.

Climate change scenarios rely on stochastic downscaling of general circulation models (GCMs) to produce 
representative realizations of potential future climates in the region66–68. This technique applies delta change val-
ues to the statistical properties of historical precipitation and air temperature based on the differences between 
current and future periods. We obtained projections from the Coupled Model Intercomparison Project ver-
sion 5 for three GCMs shown to be effective for desert regions69: (1) CNRM-CM5, (2) CSIRO Mk3.6.0, and (3) 
HadGEM2-ES. We selected single realizations from each model that represent a late century (2085–2100) period 
under the representative concentration pathway (RCP) 8.5. The 15-year period was selected to match the length 
of a historical period from NLDAS-270 (1990–2005). We used the statistical properties of the 15-year periods 
to generate hourly forcing data, representative of the three GCMs and the historical conditions, over synthetic 
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100-year periods. These forcings should be considered representative realizations of the climate under stationary 
historical and late century conditions. Due to computational limitations, we selected three WPE scenarios to 
combine with the climate change cases: (1) 70% grass (0% shrub), (2) 0% grass xerification (35% shrub), and (3) 
0% grass thicketization (70% shrub). Each vegetation state was run with the stochastically generated forcings 
representing historical conditions and late 21st-century conditions. We note that hourly precipitation values sup-
press finer-scale variations which are important for the short duration, high-intensity events leading to channel 
transmission losses at the site. Because of this, simulations using the long-term synthetic data are used only to 
compare the relative importance of WPE and climate change on the dryland water budget.

Received: 16 November 2019; Accepted: 2 April 2020;
Published: xx xx xxxx
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