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ABSTRACT OF THE DISSERTATION

Heterogeneity in Learning

By

Cole Randall Williams

Doctor of Philosophy in Economics

University of California, Irvine, 2018

Professor Jean-Paul Carvalho, Chair

This dissertation contributes to the understanding of heterogeneity in rational learning.

The first chapter proceeds from the observation that, in an environment of social learning

under unobserved heterogeneity, those with opinions closest to one’s own may in fact be the

most informative for oneself. For example, a similar opinion of a restaurant may suggest

similar tastes and similar political views may suggest a similarity in values or interpretations

of evidence. In this environment, individuals will display rational forms of confirmation bias

and other ostensibly anomalous patterns of behavior.

The second chapter is a research collaboration with Aydin Mohseni studying learning by

agents in social networks. Each agent has a preference for both accuracy (choosing the

“correct” action) and conformity (selecting the action taken by the majority of her neighbors)

with the relative weight placed on these two concerns being heterogeneous between agents.

Related literature finds the star network to possess optimality properties. In contrast, our

analysis finds that agents in highly centralized networks, such as star networks, take longer

to settle on the optimal action than agents in other standard networks.

To combat the replication crisis in science, a group of prominent scholars has proposed

redefining statistical significance by reducing the p-value significance threshold from 0.05 to

vii



0.005. The third chapter shows that, if researchers can exercise their “degrees of freedom”

to obtain significance and if they are heterogeneous, then this proposal may exacerbate the

problems with reproducibility. I provide an example demonstrating that even a small amount

of researcher bias can produce this effect and give a general characterization of the conditions

when it will occur.
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Chapter 1

Echo Chambers: Social Learning

under Unobserved Heterogeneity

The diversity of our opinions does not proceed from some men being more ra-

tional than others but solely from the fact that our thoughts pass through diverse

channels and the same objects are not considered by all.

Descartes, Discourse on Method.

Belief formation occurs not merely through introspection but by observing the opinions of

others. Social learning governs behavior in a number of domains, including consumption

decisions, occupational choice, political preferences, and scientific beliefs. Yet our under-

standing of how we learn from others is still incomplete.

The problem hinges on precisely how one should respond to another person’s opinion. The

rational response is context-dependent. It depends on the underlying structure of the popula-

tion, including the information available about its structure. When agents are homogeneous,

differing only in their private information, individuals observing each others’ opinions learn
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to agree [8, 36]. When agents are heterogeneous, but each agent’s type is known, individuals

may fail to agree. In this paper, we show that when agents are heterogeneous and individual

types are unobservable, individuals may not only fail to agree but also display rational forms

of confirmation bias and other anomalous patterns of behavior.

Social learning in a context of unobserved heterogeneity becomes a process of dual learning:

by observing the opinions of others an agent learns both about his parameter of interest

and the structure of the heterogeneity in the population. Encountering an agent with a

divergent opinion could now mean that this agent is importantly different from himself. As

such, learning is local: individuals place greater weight on opinions closer to their own and

rationally discount highly divergent views. This unlocks a number of new results, including

non-monotonicities in belief formation, belief polarization, and social identification through

social learning.

There are many real-world examples of dual learning processes. The following presents four

such examples. The first two—restaurant choice and political opinion—return several times

throughout the paper to illustrate our results.

Restaurant. Restaurant choice is a canonical example of social learning.1 Under unobserved

heterogeneity, a negative review of a restaurant can either mean that the restaurant is of

low quality or that the reviewer has different preferences to oneself. The more positive

experiences one has of the restaurant, the more likely one is to discount a negative reviewer’s

opinion as proceeding from different preferences.

Politics. Individuals may form their political beliefs by sharing opinions, but may also

retain distinct preferences over policies due to different normative values and/or interpreta-

tion of evidence. The larger the divergence in opinions, the more likely one is to attribute

disagreement to underlying differences.

1Expositions employing this example include [13], [11], [53], [80], [32],[25], and [34].
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Technological Innovation. Empirically consistent patterns in innovation diffusion are

often explained as the result of heterogeneity among an innovation’s potential adopters.2

A prime example is Munshi (2004) who studies the diffusion of high yield varieties of rice

and wheat during the Indian Green Revolution. Rice yields were particularly sensitive to

variations in factors like soil characteristics and managerial inputs that are not easy to

observe. Munshi finds evidence that growers came to place less weight on their neighbors’

rice-growing decisions and outcomes than they do in the case of wheat.

Scientific Theories. Experts equally fluent in a scientific discipline often disagree.3 One

possible source of disagreement is the diversity in inferences drawn from evidence. Bayesian

econometricians focus less on statistically significant p-values, and people may be convinced

to different degrees of an instrumental variable’s excludability or a theoretical model’s as-

sumptions. The different lenses through which we filter empirical observations, including

scientific research, can lead to a diversity of opinion. Hence, experts may attribute disagree-

ment to different dispositions to evidence.

The dual learning process that we study, arising from unobserved heterogeneity, unlocks a

number of new results. The following is a non-exhaustive summary.

Our first result establishes the model’s primary mechanism: learning is local in the sense

that individuals place more weight on opinions closer to their own. By increasing the dif-

ference in opinions, this weight can be made arbitrarily close to zero. We then ask how one

responds to changes in another’s opinion. We find that the answer depends on which of

the two countervailing forces of dual learning dominates. This leads to non-monotonicity in

disagreement, whereby, encountering someone with a slight difference in opinion can have a

2See [48], [57], [49], and [88].
3Galileo battled with the Catholic church and fellow scientists alike over the heliocentric model of the

solar system, the germ theory of disease was contested for centuries, and there was longstanding dissent over
theories of continental drift. Contemporary science hosts disagreements over the fundamental roles of ran-
domness and measurement in quantum mechanics [75] and the plausibility of group selection in evolutionary
biology [33]. In economics there has been disagreement over topics like the efficacy of monetary policy in
stimulating the real economy and the employment effects of raising the minimum wage.
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larger influence on one’s beliefs than if they were to hold a starkly different opinion.

In the long run, after exchanging opinions with enough other individuals, one’s own opinion

will converge. At this point, we observe social identification through social learning: learning

an additional individual’s opinion will serve almost entirely as a means for assessing the

degree of similarity between the other individual and oneself.4 Hence dual learning provides

a basis for social identification through similarity of beliefs [5, 4].

We then consider extensions to the basic framework, beginning with introducing our model

into the observational learning environment [17, 11] in which agents learn more coarsely by

observing the actions performed by others. We show that our characterization of heterogene-

ity has competing welfare effects in observational learning : (1) agents will never converge

with certainty to their optimal action in the limit of learning and (2) the process can avoid

falling into an information cascade when it would have done so with certainty under homo-

geneity.

Another extension characterizes the behavior of media consumers.5 Consumers choose to

acquire information from sources that confirm their own beliefs. Some come to place enough

trust in a media source to rely on its reports in place seeking out their own information. In

existing models, the media’s effect on public disagreement requires that the population itself

not be aware of the disagreement. Otherwise, the agents will condition on the disagreement

and the media’s effect will cease. In our model, the public’s awareness of disagreement can

strengthen the disagreement.

Section 1.2 provides the background in terms of probability and decision theory for our

more general approach to social learning which takes into account unobserved heterogeneity.

Section 1.3 introduces the model of dual learning. Section 1.4 presents the main results

4For example, following many conversations about climate policy with various people, hearing an addi-
tional person’s view may have a negligible effect on one’s own opinion, but can be quite instructive about
the similarity or differences in basic values.

5[39] review the related literature on media bias.
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of the paper, starting with the most basic setting and gradually increasing in complexity.

Section 1.5 considers extensions of the model and Section 1.6 concludes.

1.2 Related Literature

A discussion of the rational response to someone’s beliefs must begin by specifying the form

that rational belief will take and how it will respond to evidence. For this, we look to seminal

figures in the development of the subjectivist (or personalistic) view of probability, [71], [27],

and [74], who show that, if an individual satisfies certain basic coherence requirements,

then their beliefs can be characterized by probabilities and they will update according to

conditioning in response to new evidence. At this baseline level of rationality, there is no

imperative that individuals come to agreement upon discovering that they hold conflicting

views—it depends exclusively on how the other’s beliefs fit into their respective models of

the world.

“The criteria incorporated in the personalistic view do not guarantee agreement

on all questions among all honest and freely communicating people, even in

principle.”
Savage, (1954)

In the development of classical game theory, these minimal coherence requirements were

insufficient to provide general tractability for games with incomplete information, that is,

games in which some players are uncertain about the game being played. In such games, a

player’s optimal action will depend on an infinite hierarchy of beliefs: their first-order beliefs

about the game, second-order beliefs about the other players’ beliefs, third-order beliefs

about the other players’ beliefs about their beliefs, and so on ad infinitum. Harsanyi (1967)

proposed the powerful simplifying assumption that it be common knowledge that players’
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beliefs are mutually consistent: any discrepancies between the various players’ beliefs are

driven solely by differences in private information.6

As shown by Aumann (1976), a strong implication of the mutual consistency assumption is

that rational individuals cannot publicly disagree. More precisely, Aumann shows that with

mutual consistency, if individuals’ beliefs about an event are common knowledge, then they

will agree.7

But of course, public disagreement is pervasive. Roughly 63% of Americans are absolutely

certain of the existence of God, while 9% do not even believe in God, 48% believe that global

climate change is due to human activity while 31% believe the causes to be natural, and

15% believe that the collapse of the World Trade Center resulted from controlled demolition

while 75% do not.8

An account of the manifest public disagreement requires a weakening of the mutual con-

sistency assumption. One weakening of the assumption that can sustain disagreement is

to abandon the coherent belief paradigm altogether. For example, disagreement could be

driven by confirmation bias [70, 35], motivated reasoning [56, 54, 14], bounded memory [86],

or rule-of-thumb belief updating procedures [28, 29].

We could alternatively deviate from mutual consistency by allowing individuals to begin

with heterogeneous prior beliefs.9 In this case, classic results in Bayesian consistency [31]

and the merging of opinions [20, 51] guarantees that agreement is almost surely reached over

time.

6Our discussion highlights the fact that the mutual consistency assumption is stronger than the common
prior assumption, though these are often treated as equivalent in the literature. Mutual consistency entails
both a common prior and common knowledge of the information structure.

7See [36], [9], and [73] for extensions and [72] for a discussion of the Agreeing to Disagree results spawned
by Aumann.

8(Pew, Religious Landscape Study, 2014),(Pew, The Politics of Climate, 2016),(Angus Reid, Public Opin-
ion, 2010)

9For a discussion of the rationale for using models with heterogeneous prior beliefs see (author?) [63]
and for applications see [30], [84], [42], and [16].
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As has been noted in the literature, robust disagreement can emerge when we allow for

heterogeneity beyond mere differences in prior beliefs. For example, heterogeneous interpre-

tations of public signals can explain the presence of asset trading [45, 52, 2]. In contrast, the

No Trade Theorems of [61] and [82] predict that risk-averse traders with mutually consistent

beliefs will not engage in trade.

Unobserved heterogeneous priors have been studied in the context of information aggre-

gation. [76] find that if agents have heterogeneous prior beliefs that are unobservable but

correlated, then the information is fully aggregated through successive declarations of beliefs.

[78] show that when agents have unobservable heterogeneous prior beliefs, agents will come

to favor observing the opinions of those with whom they have become most familiar.

[80] study the asymptotic beliefs and actions of a population comprised of heterogeneous

types in the context of observational learning. The important difference between their model

and ours is that agents in our model receive a signal of their own parameter of interest

(e.g. utility from performing an action) and agents in their model receive signals of the

state of the world which then determines their parameter of interest. This difference is the

fundamental driver of our results and leads to distinct and interesting outcomes when applied

to observational learning (see section 1.5.1).

1.3 Dual Learning

In our model, agents are sorted into heterogeneous and unobservable types. Agents of the

same type seek to learn the same parameter of interest. In the examples, this translates to

agents of the same type having the same tastes, values, or dispositions towards evidence.

Each agent receives an informative signal of his parameter of interest and observes the

opinions of the other agents from which he performs dual learning: he learns about his
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parameter as well as the likelihood that other agents are of the same type.

A way to visualize dual learning is to consider a variant of the classic ball and urn model.

The following illustrates the process of dual learning and also foreshadows our result of

‘non-monotonicity in disagreement.’

1.3.1 A Tale of Two Urns

Imagine that before you is an urn containing 100 green and red balls. You are asked to guess

the number of green balls in the urn and will be paid in accordance with how close your

guess Ĝ is to the actual number of green balls G.10 You are permitted to draw a ball from

the urn 10 times (with replacement) and your draws come up with 8 green and 2 red balls.

Suppose there is also another participant who makes 30 draws which you observe prior to

making your guess. The left panel in Figure 1.1 illustrates how your guess would change by

observing that the other participant, whose first 10 draws were identical to yours (8 green

and 2 red), continued drawing only red balls, ending with a total of 8 green and 22 red.11 On

the y-axis is your guess Ĝ (the posterior expected number of green balls) and on the x-axis

is the additional red balls drawn by the other participant.

Now imagine there is also a second urn containing 100 green and red balls and you are un-

certain which of the two urns the other participant is drawing from. Firstly, this uncertainty

will lead you to place less weight on the other’s draws than your own when forming your

guess. Secondly, you will engage in dual learning—the weight you place on the other’s draws

will be updated based on the similarity of their draws to your own. In our example, as

the other participant continues drawing red balls, it becomes increasingly likely that they

are drawing from a different urn than you. Hence, you begin to place less weight on their

10For example, your payment could be given by the quadratic loss function 1− ( G
100 −

Ĝ
100 )2.

11The simulation assumes a uniform prior over the number of green balls in the urns, π(G) = 1
101 for

G = 0, 1, 2, ..., 100.
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One Urn Two Urns

Figure 1.1: Both diagrams depict how your guess Ĝ changes as the other participant draws
additional red balls. In the left panel there is a single urn and in the right there are two
urns. At the origin you and the other participant have each drawn 8 green and 2 red balls.

draws in forming your guess. The right panel illustrates how dual learning leads your guess

to move non-monotonically as we increase the disparity in the color frequency of the other

participant’s draws and your own.

1.3.2 A Model of Dual Learning

In a standard social learning model, a population of agents i ∈ N seek to learn a single

parameter θ∗ ∈ Θ. Our model extends this to permit unobserved heterogeneity so that

agents i and j seek to learn possibly distinct parameters θ∗i and θ∗j .

Nature first partitions the population
⋃T
t=1Nt = N where agents i and j belonging to the

same element of the partition Nt are said to be of the same type. The partition is formed

randomly, with an agent being independently assigned to Nt with probability γt. We may

assume the vector of assignment probabilities γ = (γ1, γ2, ..., γT ) to be either known or chosen

by nature from a known distribution, but the realized partition is unknown.

Nature then independently assigns θt to each member of the partition Nt according to the
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known probability measure Π(·) with density π(θ). Agents of the same type seek to learn

the same parameter, that is, for i and j in Nt, θ
∗
i = θ∗j = θt.

Each agent receives a signal si ∈ S in accordance with a conditional distribution with

density fθ∗i (s). The family of conditional densities fθ(s) are one-to-one,12 continuous in

θ and s, and the accompanying measures Fθ are mutually absolutely continuous.13 An

agent then merges his signal with any of the other information he acquires (e.g. other

agents’ actions or opinions) to obtain his posterior probability measure Πi(·|Ii) defined as

Πi(A|Ii) ≡ Pr(θ∗i ∈ A|Ii) for measurable A ⊂ Θ with density πi(θ
∗
i |Ii). Observing other

agents’ actions or opinions can also be informative of whether they are of the same type

as himself. Define Qij(Ii) = Pr(j same type as i |Ii) for j 6= i to be the collection of i’s

posterior perceived similarity.

Each agent then uses his information to select an action xi from the set X maximizing his

expected payoff E[u(xi; θ
∗
i )|Ii]. The particular form of the payoff function will be specified

for each application.

As in [34], our results are most crisply articulated when agents have clarity in their inferences.

For this reason, our primary analysis (section 1.4) allows agents to observe each others’

opinions θ̂(si). When parameters are real-valued Θ ⊂ R, we follow [77, 78] and specify an

agent’s opinion to be the expectation of his parameter given only his private information

θ̂(si) = E[θ∗i |si]. More generally, we can think of an agent’s opinion as some sufficient statistic

of his private information. Qualitatively, our results remain under more coarse learning.

12If fθ(s) = fθ′(s) almost everywhere in S, then θ = θ′.
13Mutual absolute continuity provides that almost surely no single signal will perfectly reveal the distri-

bution from which it is drawn.
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1.4 Interactive Belief Formation

This section analyzes the basic workings of the model. Beginning with a characterization

of disagreement in the simplest setting of two agents and two actions, we move gradually

toward increasing generality. Each step toward generality provides an additional insight into

the role of dual learning in belief-formation and disagreement.

1.4.1 Two Agents & Two Actions

Our analysis begins by considering two agents 1 and 2 who are each faced with a choice

between two actions xi ∈ {0, 1}. Agents are assigned one of two possible parameter values

θ∗i ∈ {0, 1} whereby the payoff to choosing the action xi = θ∗i exceeds the payoff to choosing

xi 6= θ∗i . Each agent assigns a prior probability of π to θ∗i = 1 and a prior of π̃ to the other

agent being of the same type. Each agent observes his signal si ∼ fθ∗i and forms his opinion

θ̂(si) = E[θ∗i |si]. In this setting, an agent’s opinion coincides with what the literature calls

an agent’s private belief

θ̂(si) = p(si) = Pr(θ∗i = 1|si). (1.1)

From this, we obtain a natural notion of disagreement whereby 1 and 2 disagree when

p(si) < π < p(sj), that is, their opinions are pushed in different directions from the prior.

Each agent then observes the other’s opinion. We take the perspective of agent 1 and simplify

notation. Denote 1’s posterior belief by P (s) = Pr(θ∗1 = 1|s1, p(s2)) and the posterior

perceived similarity by Q(s) = Pr(2 same type as 1 |s1, p(s2)) where s = (s1, s2).

As a benchmark for comparison, consider how agents update upon observing each other’s

opinions when they are certainly of the same type θ∗1 = θ∗2 = θ∗. In this case, it is straight-
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forward to see that both agents come to agreement on what we call the shared opinion

θ̂(s1, s2) = E[θ∗|s1, s2] which simplifies

θ̂(s1, s2) = p(s1, s2) = Pr(θ∗ = 1|s1, p(s2)) (1.2)

Unobserved heterogeneity adds an additional layer of complexity to the updating procedure.

Fortunately, we can compute agent 1’s posterior simply as the weighted average between his

own opinion and the shared opinion where the weight is precisely the perceived similarity

P (s) = p(s1, s2)Q(s) + p(s1)(1−Q(s)). (1.3)

By inspection of (1.3), when the perceived similarity is small, agent 1 mostly disregards 2’s

opinion P (s) ≈ p(s1). Conversely, when the perceived similarity is close to unity, 1’s beliefs

resemble those of the standard model P (s) ≈ p(s1, s2).

The perceived similarity is itself revised upon observing opinions. It will be highest when the

agents receive, in a sense, similar signals and shrink as their signals diverge. More precisely,

following Bayes Rule we can write the perceived similarity

Q(s) =
f(s1, s2)π̃

f(s1, s2)π̃ + f(s1)f(s2)(1− π̃)
=

[
1 +

f(s1)

f(s1|s2)

1− π̃
π̃

]−1

(1.4)

where f(s) ≡
∫

Θ
fθ(s)dΠ(θ) is the marginal likelihood of receiving signals s, assuming that

they were drawn from the same distribution. As seen in (1.4), 1’s perceived similarity

increases upon observing the signals just in case f(s1|s2) > f(s1), that is, the likelihood of

receiving s1 from a distribution from which we already obtained s2 exceeds the unconditional

likelihood of having drawn s1. With just two parameters, this inequality simplifies to [f1(s1)−

f0(s1)][f1(s2)− f0(s2)] > 0.

The picture of interactive belief formation under dual learning is distinct from the standard
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model. When two agents share their opinions, their beliefs are drawn closer, but generically,

we should not expect full agreement. Letting Pi(s) represent i’s posterior belief, the difference

in posterior beliefs is proportional to the difference in opinions

Pi(s)− Pj(s) =
(
1−Q(s)

)(
p(si)− p(sj)

)
. (1.5)

Thus full agreement only occurs when agents hold equivalent private information p(si) =

p(sj) or if they are certainly of the same type Q(s) = 1.

The behavior predicted by the dual learning model can depart strongly from that predicted

by the standard model. We shall see this difference in the following example.

Restaurant Example

Consider a new restaurant. If individual i chooses to dine there xi = 1, he receives either

high (ui = 1) or low (ui = 0) satisfaction. The payoff to any given visit is random and

depends on an unknown parameter θ∗i ∈ {0, 1}, with ui(1; θ∗i ) = θ∗i with probability 0.75.

Thus i’s expected payoff to dining at the new restaurant is 0.75 if θ∗i = 1 and 0.25 if θ∗i = 0.

Specify i’s payoff to not dining at the new restaurant xi = 0 to be ui(0) = 0.4 with certainty.

Assume agents’ prior beliefs are π = π̃ = 1
2
.

This example resembles [10] in that an agent’s realized payoff operates as a signal. Before

addressing the decision problem, let us first see how beliefs evolve if both agents repeatedly

dine at the new restaurant and have opposed experiences.

Figure 1.2 illustrates the dynamics in agent 1’s beliefs when both agents repeatedly dine

at the restaurant and each time agent 1 receives high (u1 = 1) satisfaction and 2 receives

low (u2 = 0) satisfaction. Along the horizontal axis, we increase the number of times each

has dined at the restaurant. Under the standard model of learning, agents combine their
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Figure 1.2: Belief Dynamics. The diagram depicts the change in 1’s beliefs as we increase
the number of high payoffs s1 = (1, 1, ...) received by 1 and low payoffs s2 = (0, 0, ...) received
by 2.

opinions and form the shared opinion p(s1, s2) which, due to their conflicting experiences,

remains unchanged from the prior. Allowing for multiple types, the disparity in satisfaction

provides increasingly strong evidence that agent 2 is of a distinct type to that of 1 and the

perceived similarity vanishes Q(s)→ 0. This observation, taken together with equation (1.3)

implies that 1’s posterior P (s) quickly converges to his own opinion p(s1).

Consider how the agents’ decisions are affected by their divergent experiences. For simplicity,

suppose that an agent selects the dining option that maximizes his expected payoff, that

is, each will dine at the new restaurant whenever it yields an expected payoff of at least

0.4.14 The ex ante expected payoff to dining at the new restaurant is 0.5, and thus both

agents choose this option. If the agents were homogeneous, then their persistent conflicting

experiences would lead both to continue dining at the new restaurant.

After one visit to the new restaurant, before observing agent 1’s opinion, agent 2’s low

satisfaction experience would reduce his expected payoff to dining at the new restaurant to

14Given our objective of illustrating opinion formation, we set aside the questions of optimal or strategic
experimentation as studied in Bolton (1999) and section 1.5.4 of this paper.
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0.375. With no other information, agent 2 would not choose to dine there again. Upon

learning that agent 1 had received high satisfaction from the new restaurant, agent 2 would

revise his expected payoff to about 0.43 and would thus be willing to give the new restaurant

another chance. After a second visit to the new restaurant brings agent 2 low satisfaction,

he will not choose to dine there again, regardless of agent 1’s satisfaction.

We can formalize our observation from the restaurant example that disparity between opin-

ions leads one to place less weight on another’s opinion in the following proposition.

Proposition 1.1. Say that agent 1 and 2 agree if π < p(si) ≤ p(sj) or p(si) ≤ p(sj) < π

and disagree if p(si) < π < p(sj).

(a) If agent 1 and 2 agree, then the perceived similarity is strictly increasing as we increase

the certainty of either of their opinions.

(b) If agent 1 and 2 disagree, an increase in the difference of their opinions reduces the

perceived similarity.

(c) Under maximal disagreement the perceived similarity vanishes and 1’s posterior belief

converges to his opinion: p(si)→ 0 and p(sj)→ 1 imply Q(s)→ 0 and thus |P (s)−p(s1)| →

0.

Proofs of this and all further propositions can be found in the appendix.

1.4.2 Two Agents & Continuum of Actions

We now expand the action and parameter spaces X = Θ = R. In doing so, we show that

increasing the disagreement between opinions can lead to more interesting, non-monotonic

changes in actions.
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As before, an agent observes his signal si and forms his opinion θ̂(si) ≡ E[θ∗i |si]. Assume θ∗i

to be normally distributed θ∗i ∼ N (θ0, σ
2
0) and signals also normal distributed si ∼ N (θ∗i , σ

2)

so that an agent’s opinion is a sufficient statistic of his information.

Each agent then observes the other’s opinion, and updates his beliefs. If agents were ho-

mogeneous with certainty θ∗1 = θ∗2 = θ∗, then they would come to agreement on the shared

opinion θ̂(s) = E[θ∗|s], s = (s1, s2). For this section, payoffs are assumed to take the form

u(xi; θ
∗
i ) = −(xi − θ∗i )2. (1.6)

Agent i’s optimal action coincides with the posterior expectation of his parameter

x∗i = E[θ∗i |si, θ̂(s2)] = θ̂(s)Q(s) + θ̂(si)(1−Q(s)). (1.7)

How does 1’s action respond to a change in 2’s opinion? The answer to this will depend on

which of the two countervailing forces of dual learning dominates. Observe that s2 enters

(1.7) first through the shared opinion θ̂(s1, s2) and second in the perceived similarity Q(s).

We can think of the movement in the shared opinion as the direct effect of shifting s2. This

effect captures the change in 1’s beliefs if he takes 2’s opinion at face value and does not

consider the possible differences between them. Similarly, we can think of the adjustment of

the perceived similarity as the indirect effect of shifting s2. When 2’s opinion θ̂(s2) is made

increasingly dissimilar to 1’s opinion θ̂(s1) the indirect effect counteracts the direct effect

and the net result will depend on which of these two effects dominates. In the following, we

continue the political opinion example from section 1.1 to show that the net change in 1’s

beliefs is not a foregone conclusion, but can vary on the domain of s2.
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Politics Example

Suppose the space of political policies can be described by the real line. Let us now think

of si as i’s interpretation of a piece of evidence based on his epistemic and normative values

and θ∗i as i’s most preferred policy if he were to observe all the possible evidence. Specify i’s

interpretation of a piece of evidence as a noisy signal si = θ∗i +εi with εi distributed standard

normal. Individuals who share the relevant underlying values will be receiving signals about

the same preferred policy. Assume 1’s prior over his preferred policy θ∗1 is standard normal

and he receives evidence that suggests a policy of 0.7 = s1.

Figure 1.3 shows how 1’s choice of policy x∗1 = E[θ∗1|s] changes as we alter 2’s opinion. The

direct effect of s2 on the shared opinion θ̂(s1, s2) is represented by the positive dashed line in

the top sub-figure. The indirect effect of s2 on the perceived similarity is given in the bottom

sub-figure. Notice that the perceived similarity peaks near the point where 2’s opinions are

identical to 1’s (s2 = 0.7) and declines as 2’s opinion moves in either direction. When 1

and 2’s opinions are closest, the direct effect dominates and 1’s action moves in a positive

and roughly linear fashion. However, as 2’s opinion moves further away from 1’s in either

direction, the indirect effect dominates and 1’s action moves negatively with s2. We call this

pattern non-monotonicity in disagreement: when in close agreement 1 responds to changes

in 2’s opinion in a qualitatively similar way as the standard model, pushing 2’s opinion too

far leads 1 to respond in precisely the opposite manner of the standard model.

Moderating Extremists & Radicalizing Moderates

An important implication of non-monotonicity in disagreement relates to the processes of

moderating extremist or radicalizing moderate behavior. In the previous example, imagine

that higher actions are deemed more extreme and socially-undesirable. When confronted

by a far less extreme agent 2 (s2 ≤ −2) figure 1.3 shows that 1’s behavior will be almost
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Figure 1.3: Non-Monotonicity in Disagreement. The diagrams illustrate the dependence of
1’s beliefs and action on 2’s signal.

entirely unchanged. If agent 2 were in fact more extreme (s2 ≈ 0), which may mean that 2

advocates performing some degree of socially-undesirable behavior, then 1 would reduce the

extremity of his actions.

The converse observation is made by supposing instead that agent 1 is already moderate

in his behavior. There is more danger in him encountering a marginally more extreme

individual (s2 ≈ 1.5) than someone who is vastly more extreme (s2 ≥ 2.5).

We now formally characterize the portions of the domain on which 1’s action moves either

positively or negatively to changes in 2’s opinion. Consider as an analogue the identity

Revenue = Price × Quantity from first principles. Revenue’s response to a shift in the

price can be positive or negative depending on the price elasticity of demand. Similarly, the

response of 1’s action to changes in 2’s opinion will depend on the relative elasticity of the

perceived similarity. To simplify notation, let ∆(s) ≡ θ̂(s1, s2)− θ̂(s1).
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Definition 1.1. Define ε ≡ −Q(s′)−Q(s)
Q(s′)+Q(s)

/
∆(s′)−∆(s)
∆(s′)+∆(s)

to be the elasticity of 1’s perceived simi-

larity Q(s) which is said to be relatively elastic if ε > 1 and relatively inelastic if ε < 1.

The following proposition makes the regularity assumption that θ̂(sj) < θ̂(s′j) implies θ̂(si, sj) <

θ̂(si, s
′
j). A similar (but less intuitive) statement could be made without use of this assump-

tion.

Proposition 1.2 (Non-Monotonicity in Disagreement). Agent 1’s action x∗1 = E[θ∗1|s] moves

positively (negatively) with a change in 2’s opinion θ̂(s2) if the perceived similarity Q(s) is

relatively inelastic (elastic).

1.4.3 Larger Finite Population (n > 2)

In this section, we will see that dual learning in a larger population produces different

behavior than standard learning. In particular, we find persuasion in numbers: the opinions

of the many outweigh the opinions of the few or one, even if both sets of opinions are

equivalent in terms of information.

For example, consider customer product reviews. When many customers write reviews for a

product, there is a good chance that some proportion of them will share the same preferences

of the reader of these reviews. In contrast, when a single customer writes a review, the reader

of this review cannot be sure if the customer’s preferences match his own. Therefore, if many

customers report satisfaction from single uses of a product it can more strongly influence

the reader’s purchasing decision than if a single customer were to report satisfaction from

many uses of the product. In contrast, if it were known ex ante that everyone shared the

same preferences, then both sets of reviews would influence the reader’s beliefs identically.

To illustrate this, we continue the restaurant example from section 1.4.1.
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Restaurant Example Cont.

Suppose that agent 1 has not yet dined at the new restaurant and must solicit the opinions of

his fellow agents prior to making his dining decision. We proceed by comparing three cases

(1) agent 1 observes agent 2’s repeated positive reviews (2) agent 1 observes the negative

reviews from agents 3, 4, ..., n, and (3) agent 1 observes both sets of reviews.

(a) (b)

Figure 1.4: Belief Dynamics. The diagrams depict the change in agent 1’s beliefs as we
increase the number of high payoffs s2 = (1, 1, ...) received by agent 2 and low payoffs
(s3, s4, ...) = (0, 0, ...) received by agents 3, 4, ... .

Suppose first that agent 1 observes that agent 2 repeatedly receives high satisfaction from

dining at the restaurant. The plot of P (s2) in Figure 1.4.a shows how agent 1’s beliefs update

after each of 2’s visits. Notice that, while 2’s positive experiences increase 1’s beliefs of his

own self receiving a high expected payoff from the new restaurant, the effect tapers off. It

becomes increasingly clear that 2’s expected payoff from the restaurant is high, but there is

no guarantee that he shares 1’s tastes.

Second, suppose that agent 1 observes each agent 3, 4, ...n receive low satisfaction from

dining at the new restaurant. The plot of P (s3, s4, ..., sn) in Figure 1.4.a reveals that these

observations drive 1 to certainty that he will obtain a low expected payoff from the new

restaurant. The effect is stronger in this case because there is a good chance that some

fraction of these agents share the same tastes as agent 1.
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Finally, we turn to Figure 1.4.b to see the effect of agent 1 observing agent 2 receiving ever

more satisfying dining experiences and agents 3, 4, ..., n sequentially receiving low satisfac-

tion experiences. The plot of the shared opinion p(s2, s3, ..., sn) demonstrates that, if the

agents were homogeneous, then the conflicting experiences would lead 1’s beliefs to remain

unchanged from the prior. In contrast, the decline of P (s2, s3, ..., sn) reveals that the negative

experiences of the many dominates the positive experiences of the one. Observing enough

of these reviews will induce agent 1 to forgo dining at the new restaurant.

The following proposition describes persuasion in numbers. The phenomenon is most clearly

identified in an environment in which X and Θ are finite, the prior over the assignment

probabilities γ takes full support in the T -dimensional simplex, payoffs are finite, and x(θ) ≡

arg maxx∈X u(x; θ) varies in θ.

We say that agent j is certain x(θ∗j ) = x if Pr
(
x(θj) = x|sj

)
= 1 and agent k is boundedly

certain x(θ∗k) = y if δ < Pr
(
x(θ∗k) = y|sk

)
− Pr

(
x(θ∗k) = x|sk

)
< 1 for all x 6= y and some

δ > 0.

Proposition 1.3 (Persuasion in Numbers). Suppose agent i’s choice x∗i is informed by the

opinions of n < +∞ other agents, whereby nx ≥ 1 of these agents are certain x(θ∗j ) = x and

the remaining ny agents are boundedly certain that x(θ∗k) = y 6= x.

(a) If the population is homogeneous, then x∗i = x for all ny < +∞.

(b) With a positive ex ante chance of heterogeneity and ny sufficiently large, x∗i = y.

1.4.4 Countably Infinite Population

What is the expected behavior of an agent’s beliefs in an arbitrarily large population? Imag-

ine that agent 1 observes his signal and the other agents’ opinions in sequence. In a standard

model, well-known results guarantee almost sure consistency of 1’s posterior for the true θ∗.
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The heterogeneity in our framework precludes an immediate application of these results. To

make progress on this question, we must introduce some further notation.

Let Ω = ΘT × ∆T be the set containing the vectors of type parameters and assignment

probabilities ω = (θ1, θ2, ..., θT , γ1, γ2, ..., γT ), where ΘT is the T -fold product space (Θ ×

Θ × ... × Θ) and ∆T represents the T -dimensional simplex. The population signal density

belongs the finite mixture family gω(s) ≡
∑T

t=1 γtfθt(s), ω ∈ Ω and is said to be identified

just in case gω(s) = gω′(s) a.e. implies that both ω and ω′ assign the same proportion of the

population θ∗i = θ for all θ ∈ Θ [81].15 An agent’s opinion θ̂(si) is a random quantity such

that s 7→ θ̂(s) is one-to-one with realized opinions belonging to a complete separable metric

space.

Define π∗ to be the true distribution of thetas throughout the population as assigned by

nature, i.e. π∗(θ) gives the proportion of the population with θ∗i = θ. Let Θ∗ ≡ supp(π∗)

be the finite support of π∗. Under the assumption of identifiability, as agent i continues

observing the opinions of the other agents, his posterior almost surely converges to a function

of only his own signal and the true distribution of parameters. Denote the vector containing

the signals of the first n members of the population by sn = (s1, s2, ..., sn) and let “⇒”

correspond to weak convergence.

Proposition 1.4 (Belief Convergence.). Suppose that Θ and S are complete separable metric

spaces endowed with their respective Borel sigma algebras with gω(s), ω ∈ ΘT×∆T comprising

an identified finite mixture family. Then for almost all ω∗, as n→ +∞

Πi(·|sn)⇒ Πi(·|si, π∗) a.s. (1.8)

15Formally,
∑T
t=1 γt1(θt = θ) =

∑T
t=1 γ

′
t1(θt

′
= θ) for all θ ∈ Θ where ω = (θ1, θ2, ..., θT , γ1, γ2, ..., γT )

and ω′ = (θ1
′
, θ2

′
, ..., θT

′
, γ′1, γ

′
2, ..., γ

′
T ). See [87] and [55] for further discussion of identified finite mixture

models.

22



For continuity sets16 A ⊂ Θ, we can write i’s asymptotic posterior explicitly as

Πi(A|si, π∗) =

∑
θ∈Θ∗ fθ(si)π

∗(θ)δθ(A)∑
θ′∈Θ∗ fθ′(si)π

∗(θ′)
(1.9)

where δθ(A) = 1θ(A) is the Dirac measure assigning point mass at θ. If Θ is finite, we can

write i’s posterior probability mass function even more simply as

πi(θ|si, π∗) =
fθ(si)π

∗(θ)∑
θ′∈Θ∗ fθ′(si)π

∗(θ′)
. (1.10)

These expressions have a nice interpretation. If agent i momentarily sets his own signal

to the side and observes an infinite sequence of the other agents’ opinions, he will learn

the distribution of parameters throughout the population π∗. This distribution essentially

becomes his new prior distribution over θ∗i which he then updates by reintroducing his private

signal.

It is worth noting that the belief convergence obtained in Proposition 1.4 does not guarantee

that agents will likewise converge to their optimal action in the limit of learning. Section

1.5.1 discusses this in some detail.

In the limit of exchanging opinions, agents’ beliefs converge. At this point, observing an

additional agent’s opinion serves almost entirely as an indicator of their underlying sim-

ilarity. To examine the asymptotic behavior of i’s perceived similarity, let us revisit the

political opinion example where we left off in 1.4.2. We state this observation formally in

the proposition that follows.

16Sets A for which the boundary has an asymptotically measure zero boundary Πi(∂A|si, π∗) = 0. In
other words, none of the θ∗i lie on the boundary of A.
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Politics Example Cont.

Imagine now that agent 1 continues conversing with other agents, learning their opinions

about the optimal policy. After enough conversations, agent 1 will learn the distribution of

opinions throughout the population. With that, the effect that each additional conversation

has on his own view declines to zero. However, each conversation continues to be instructive

for 1 to assess the similarity between the other agents and himself. In the long run, learn-

ing an individual’s opinion functions almost entirely for social identification: serving as an

indicator of the similarity in values between this individual and himself.

Let ρ be the Prokhorov metric defined over the space of measures over Θ. For our purposes,

it is sufficient to know that weak convergence corresponds to convergence in ρ. Details can

be found in section 6 of Billingsley (2009).

Proposition 1.5 (Social Identification via Social Learning). Suppose agent i observes the

other agents’ opinions in sequence. As n goes to infinity, observing n’s opinion has a van-

ishing effect on i’s beliefs but a non-vanishing effect on i’s perceived similarity of n,

ρ
(
Πi(·|sn),Πi(·|sn−1)

)
→ 0 (1.11)

d
(
Qi,n(sn), Qi,n(sn−1)

)
→ w(si, sn) (1.12)

where w(si, sn) is not almost surely zero.
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1.5 Extensions

Now that we have studied the basic workings of the model and identified the relationship

between dual learning and disagreement, let us expand the discussion and ask the model

what it has to say when other modifications and features are introduced. To summarize the

findings: (1) dual learning can enhance learning while disallowing optimal action convergence

in the observational learning environment, (2) agents can be more persuasive if they agree

with each other on auxiliary topics, (3) over-representing those with extreme views can result

in polarization when there would otherwise be none, and (4) we give a basic characterization

of news media’s consumer behavior.

1.5.1 Learning From Actions

Dual Learning delivers new insights to the observational learning literature. In the observa-

tional learning framework introduced by [17] and [11], an individual chooses from a set of

actions based on a private signal and information obtained through observing the actions

taken by those who have chosen before. The principal finding has been the presence of infor-

mation cascades whereby it becomes optimal for one (and hence all succeeding individuals)

to follow the behavior of the individual who has chosen before oneself without regard for

one’s private information.

Let X be a finite set of actions, Θ a finite set of parameters, and x(θ∗i ) the optimal action

for an agent with parameter θ∗i . Agents choose their actions sequentially. When agent i

selects an action, he does so using the information contained in his private signal si and the

actions of those who have selected before him. Further technical details are reserved for the

appendix. Our discussion requires the following definitions:

1. Learning is complete if agents asymptotically assign probability one to the true distri-
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bution of parameters throughout the population π∗(θ).

2. A process exhibits optimal action convergence17 if

lim
n→∞

Pr
(
xn = x(θ∗n)

)
= 1. (1.13)

3. An information cascade occurs whenever some agent’s choice of action does not depend

on his private signal.

4. A confounding outcome occurs when the population’s limiting beliefs do not converge

to certainty on π∗(θ) nor to a belief at which an information cascade would occur.

It will also be useful to define the following properties of the private beliefs that were in-

troduced in 1.4.1. Letting pθ(si) = Pr(θ∗i = θ|si) be i’s private belief in θ, we say that the

signal structure has unbounded private beliefs if the support of pθ contains 1 for all θ and

bounded private beliefs if the support of pθ does not contain 1 for any θ.

When is the process guaranteed to produce complete learning and when is there optimal

action convergence? [80] study the case in which the population seeks to learn a single

parameter θ∗. They show that if private beliefs are unbounded then either the process results

in a confounding outcome or there is complete learning and actions converge to optimality.

In contrast, there is never complete learning and thus no optimal action convergence when

private beliefs are bounded. [1] extend the analysis to the case when agents only observe a

subset of the history of actions. They find that with unbounded private beliefs and if agents’

observations are sufficiently rich, then actions will converge in probability to the optimal

action.

The introduction of unobserved heterogeneity has both a positive and a negative effect on

asymptotic outcomes. Firstly, unobserved heterogeneity completely disallows optimal action

17The literature often refers to almost sure convergence or convergence in probability to the optimal action
as asymptotic learning. See [1], [3], and [64].
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convergence. To see why, observe that even if the population were to asymptotically learn the

true distribution of thetas amongst the population π∗(θ), each individual i’s private signal

is insufficient for him to deduce his own parameter of interest θ∗i . For example, suppose

that after observing many agents’ purchasing decisions, the population learns that half of

the agents in the population enjoy consuming some product while the remaining half do not.

When the next agent is tasked with deciding whether or not to consume the product, he

cannot be certain as to which half of the population he belongs.

Secondly, unobserved heterogeneity can facilitate learning when homogeneity would preclude

it. In particular, when agents in the standard model have bounded private beliefs they

cannot asymptotically assign certainty to the true θ∗. The reason is that as the population

grows increasingly certain of the true θ∗, it will eventually be the case that an agent’s action

carries no information about his signal. In contrast with unobserved heterogeneity, when

the population grows increasingly certain of the true distribution of parameters π∗(θ), there

is always information about an agent’s signal in his action. This finding is demonstrated by

the example that follows in 1.5.1 adapted from [17].

Unobserved heterogeneity also facilitates learning when private beliefs are unbounded. When

agents in the standard model have unbounded beliefs, either complete learning or a con-

founding outcome will obtain. In our model, each agent’s action provides sufficiently rich

information to prohibit the possibility of a confounding outcome and complete learning will

always obtain.

Heterogeneity Facilitating Learning

Consider first the case which we know will result in an information cascade. A countable

population of agents sequentially decide whether to adopt or reject some behavior. There is

either a low or high value to adopting the behavior θ∗ ∈ {L,H} and the value to rejecting
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it is 0. For simplicity, assume L = −1 and H = 1.

Each agent receives a privately observable signal si ∈ {L,H}, with Pr(si = θ∗|θ∗) = r > 1/2.

When agent n+1 is asked to choose between adopting or rejecting the behavior, he computes

his expected payoff using the information contained in his private signal as well as the actions

of those who have chosen before xn = (x1, x2, ..., xn), xj ∈ {adopt, reject}. The expected

payoff to adopting is 2Pr(θ∗ = H|sn+1,x
n)− 1. Thus n+ 1’s best response is to adopt just

in case Pr(θ∗ = H|sn+1,x
n) ≥ 1

2
. Using Bayes theorem, n+ 1 will select adopt if


r + Pr(θ∗ = H|xn) > 1 sn+1 = H

Pr(θ∗ = H|xn) > r sn+1 = L

(1.14)

The literature refers to Pr(θ∗ = H|xn) as the public belief—the likelihood each agent j > n

assigns to the parameter being H after observing the first n actions of the other agents, but

not his own private signal. Notice that the process will enter an information cascade if the

public belief exceeds r as n+ 1 will choose ‘adopt’ regardless of his private signal. Similarly,

a cascade ensues if the public belief falls below 1− r as n+ 1 will always choose ‘reject’.

Must the process eventually enter into a cascade? There is a simple argument for why in fact

it will eventually enter into a cascade with probability one. For a contradiction suppose that

with positive probability the process does not at any point enter a cascade. For this to be

true, the public belief could never have entered [0, 1−r)∪(r, 1]. Being that the process never

enters a cascade, we can infer the precise signal of each actor. [31] shows that observing an

infinite sequence of IID draws will lead the public belief to almost surely converge to certainty

on the true state and will thus converge to 0 or 1. This implies a contradiction as the almost
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sure convergence of the public belief will require it to have entered into [0, 1− r)∪ (r, 1] and

thus a cascade with probability one.

Now suppose that we introduce heterogeneous types into the model and define z(xn) =

Pr(θ∗j = H|xn) for j > n to be the public belief. As before, extreme public beliefs z(xn) ∈

[0, 1−r)∪(r, 1] induce an information cascade. However, the process is no longer guaranteed

to end up in a cascade! Notice now that if the process remains out of a cascade, the public

belief will not converge to 0 or 1, but rather to the true proportion with θ∗i = H. In the

appendix, we show that whenever this proportion lies within (1 − r, r), there is positive

probability that the process never enters a cascade and complete learning will occur. The

following proposition formalizes the discussion.

Proposition 1.6. In a population with unobserved heterogeneity:

(a) Optimal action convergence does not occur.

(b) There is generically complete learning with unbounded beliefs.

(c) Complete learning outcomes robustly exist with bounded beliefs.

1.5.2 Multiple Learning Problems

Up until now, we have maintained the assumption that agents form and share their opinions

about a single topic. Realistically, there are many related topics we wish to learn about. The

main lesson of this section is that the degree to which one can influence another’s opinion is

larger when they agree on auxiliary topics. Conversely, substantial disagreement on auxiliary

topics can mitigate one’s influence over another’s opinion. Suppose that agent 1 has dined at

many restaurants with agent 2 and they have shared largely the same quality of experiences

each time. When 1 receives word that 2 holds a differing opinion about some new restaurant,

he will be less swift in dismissing 2 as having distinct tastes. However, if 2 had a history of
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holding differing opinions about restaurants, he would hardly have placed any weight on 2’s

opinion of the new restaurant even if it had agreed with his own.

We reconsider the continuous action and parameter space of section 1.4.2. Agent i’s payoff to

an action x∗i ∈ R takes of the form of quadratic loss from his parameter θ∗i as in (1.6). He has

previously engaged in L auxiliary learning problems, receiving private signals for parameters

θ`i ∈ Θ` for ` = 1, 2, ..., L. We assume that the type partition is constant between different

learning problems θ∗i = θ∗j and θ`j = θ`i for all `, though this could be weakened to positive

correlation. We want to show how the similarity in beliefs over the L auxiliary issues θ`i

affects the susceptibility of i to be influenced in his action x∗i = E[θ∗i |s]. Assuming two

agents, we can write 1’s perceived similarity as

Q(s) =

(
1 +

1− π̃
π̃
· f(s1)

f(s1|s2)
· R̄L

)−1

(1.15)

where R̄ =
(∏L

`=1
f(s1`)

f(s1`|s2`)

) 1
L is the geometric mean of the likelihood ratios f(s1`)

f(s1`|s2`)
. Recall

from section 1.4.1 that f(s1`|s2`) > f(s1`) implies that the likelihood of observing s1` from

a distribution from which we already obtained s2` exceeds the unconditional likelihood of

having drawn s1`. We can think of this geometric mean R̄ as capturing the degree to which

1 and 2 agree on the L auxiliary problems. When R̄ < 1 the agents tend to agree and

when R̄ > 1 the agents tend to disagree. Let “sufficient auxiliary agreement (disagreement)”

denote “R̄L sufficiently small (large)”.

Politics Example (Multiple Policies)

The example illustrating non-monotonicity in disagreement in section 1.4.2 demonstrated

that there was a necessary limit on the extent to which 2 could influence 1’s view on a

particular political policy. Now suppose the two agents continue their conversation and 1

discovers that he shares much common ground with 2 on a large array of other political
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L=1

L=5

L=2

L=10

Figure 1.5: Multiple Learning Problems

policies. This discovery will open up 1’s belief about the original policy to being more

susceptible to influence by 2. Figure 1.5 illustrates the persuasive power of agreeing on

auxiliary issues. In each diagram, we fix s1 = 0.7 and vary s2 just as in figure 1.3. Between

the diagrams we vary the number of other issues L on which the agents agree, where we

specify the agreement as R̄ = 0.75.

There are a couple of different ways to express the idea that the degree to which 2 can

influence 1’s action is larger when they agree on auxiliary topics. Firstly, notice in figure

1.5 that by increasing L we expand the domain on which 1’s action moves positively with

2’s opinion. More generally, we can show that for every compact subset of the signal space

S ′ ⊂ S, there is sufficient auxiliary agreement such that 1’s action will move positively with

2’s opinion for all s1 and s2 in S ′.

Secondly, observe in figure 1.5 that increasing the auxiliary agreement raises the peaks

and lowers the troughs of the E[θ∗1|s] curve. Generally, if the shared opinion θ̂(s1, s2) is an
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unbounded function of s2, then maxs2 E[θ∗1|s] can be made arbitrarily large and mins2 E[θ∗1|s]

arbitrarily small. Unbounded shared opinions can be found in the above example with

normally distributed signals and a setting in which 2’s signals consist of all vectors of finitely

many draws from fθ∗2 (s).

Consider a modification to the above example so that instead the agents disagree on the

auxiliary topics R̄ > 1. This change would result in figure 1.5 showing the opposite quali-

tative effect of increasing L. In particular, an increase in L lowers the variation of x∗1 in 2’s

opinion and thus the influence that 2 can have on 1’s beliefs.

Proposition 1.7.

(a) For every compact subset S ′ ⊂ S, there is sufficient auxiliary agreement such that 1’s

action x∗1 moves positively with a change in 2’s opinion θ̂(s2) for all signals in S ′.

(b) If the shared opinion is unbounded in s2, then 1’s action x∗1 can be made arbitrarily large

or small given sufficient auxiliary agreement.

(c) The distance between x∗1 and his own opinion θ̂(s1) will be arbitrarily small under suffi-

cient auxiliary disagreement.

1.5.3 (Perceived) Polarization

What happens if the media and social media skew their coverage in a way that over-represents

those with more extreme views and this distortion is not accounted for by the population?

We are going to look at an example of how dual learning can serve as a channel through

which this type of distortion can lead to polarization where there would otherwise be none.

First, let us see why this distortion cannot drive polarization in the homogeneous case.

Suppose all agents seek to learn θ∗ ∈ {L,M,R} (left, moderate, right) and are faced with a
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Figure 1.6: Conditional Densities

set of actions xi ∈ {L,M,R} that yield a payoff of ui(xi) = 1(xi = θ∗). Each agent receives

si ∼ fθ∗ . The conditional densities are represented in figure 1.6, with fL(s) = 3
2
− s skewing

signals left, fM(s) = 1
2

+ 2s for s < 1
2

and 5
2
− 2s for s ≥ 1

2
giving moderate signals, and

fR(s) = 1
2

+ s skewing signals right.18

Each agent observes his own signal si and an infinite sequence of other agents’ opinions.

Consider the effect of a systematic distortion of the publicly observable opinions that over-

represents extreme opinions (opinions assigning near certainty to L and R). In this case, the

publicly observable opinions will outweigh each individual’s private signal and the population

will fully agree. Of course, the particular belief that the population settles on could be

affected by the distortion, but there would nonetheless be agreement.

Now introduce the ex ante possibility of unobserved heterogeneity. Suppose that in actual

fact θ∗i = M for each and every agent i. Then observing infinitely many undistorted opinions

will reveal this to be the case and the limiting behavior will be all agents selecting xi = M

regardless of their signal.

As before, suppose there is a systematic distortion that over-represents extreme opinions.

Then in the limit, the population might come to believe that there is true polarization.

Furthermore, this very belief will drive polarized behavior.

Let π̂ = (π̂L, π̂M , π̂R) be the limiting estimated distribution of thetas amongst the population.

18These densities are used to simplify the exposition. That dual learning can serve as a conduit for
generating polarization does not depend on the form of densities.
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The expected payoff from action x ∈ {L,M,R} for an agent with signal si is

U(x; si, π̂) = Pr(θ∗i = x|si, π̂) =
fx(si)π̂x

fL(si)π̂L + fM(si)π̂M + fR(si)π̂R
. (1.16)

By inspection of (1.16), an agent’s optimal action is the one maximizing the product fx(si)π̂x.

Figure 1.7 demonstrates that leading the population to believe that there are in fact fewer

moderates (lowering π̂M) and more of the extremes (raising π̂L and π̂R) will lead the pop-

ulation to increasingly segment between agents choosing xi = L and xi = R. The top left

sub-figure shows the undistorted case in which all agents optimally select xi = M . With the

small amount of distortion in the top right sub-figure, those on fringe with the most extreme

signals are induced into choosing L or R. The bottom left shows the increase in distortion

increases the proportion of the population choosing L or R. Finally, in the bottom right

sub-figure, the distortion is sufficient to induce agents with any signal to choose L or R.

π̂ = (0, 1, 0)

π̂ = (1
3
, 1

3
, 1

3
)

π̂ = (1
4
, 1

2
, 1

4
)

π̂ = (3
8
, 1

4
, 3

8
)

Figure 1.7: (Perceived) Polarization. The diagrams show that an increase in the perceived
polarization π̂ can drive polarized actions.

.
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1.5.4 Application: News Media

How do individuals choose between news sources from which to acquire information? [39]

review the literature related to this topic. [65] model consumers with a preference for read-

ing news that confirms their own biases. We show that, with unobserved heterogeneity,

consumers will rationally choose to acquire news from sources that tend to confirm their

own views—without an explicit confirmation bias. We also fill a gap in this literature by

demonstrating that the media can facilitate public disagreement even when the public is

aware of the disagreement.

Media Consumer Choice

Agents are engaged in a sequence of learning problems. In period ` = 1, 2, ... agent i selects

action x`i ∈ R and receives payoff

ui(x
`
i ; θ

`
i ) = −αi(x`i − θ`i )2 (1.17)

where θ`i ∈ R and αi measures i’s idiosyncratic preference for holding accurate beliefs. Before

selecting an action, i can choose to acquire a signal s`i ∼ fθ`i at a cost ci > 0 and choose

whether to observe the opinion θ̂(s`M) of media firm M at opportunity cost d. We are

interested in the case when acquiring direct information about an issue requires more effort

than the time it takes to observe the media’s report and hence we assume ci > d. We also

assume fθ to be a normal density with mean θ and precision τ .

For the moment, suppose that there is a single media firm and consider the decisions faced

by i in a given period `. After acquiring the information that he wishes to obtain, his optimal

action will be to select x`i(·) = E[θ`i |·] yielding an expected payoff of −αiVar[θ`i |·].

When choosing the information to acquire, i must take into account both the benefits to the
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current period as well as the potential benefits to future periods. Assume i discounts the

future at the rate 0 < βi < 1.

Proposition 1.8 (Media Consumer Choice). A consumer’s optimal choice in period ` de-

pends on αi and Q`−1
iM as characterized by figure 1.8. Asymptotically, each α-type will select

from either their left-most or right-most column.

Figure 1.8 charts out the optimal choice for i with cost ci and discount rate βi for different

sensitivities to accuracy αi and perceived similarity Q`−1
iM (written more clearly as Q). The

symbol ∅ represents obtaining no signals, si obtaining i’s own signal, sM viewing the media’s

opinion, and si, sM obtaining i’s own and also view the media’s opinion. In the “Experiment”

region, a consumer will be willing to view both s`i and θ̂(s`M) for a period payoff that is

lower than observing either only si or no signals ∅. The term “experiment” is drawn from

the literature studying bandit processes. In the language of [41], the consumers’ decision

problem is a bandit superprocess.

Consider first αi in a neighborhood of zero (row 1© of figure 1.8). Such an agent would

never deem the value high enough to purchase any information regardless of the perceived

similarity. In row 2©, which vanishes if the cost ci is too small, the consumer is never willing

to obtain his own signal and will only observe the media’s opinion with a high enough

perceived similarity.

Next, consider the other extreme of an agent with a very large αi at level 5© who is quite

intent on forming accurate beliefs. This agent would always find a benefit in obtaining s`i

and, so long as Q is not close to zero, will also view the media’s opinion.

The behavior of agents with intermediate sensitivities to accuracy αi is interesting. At 3©,

so long as the cost of observing the media’s opinion d is not too large, there is a range

of Q for which i will obtain a signal and observe that of the media for the sole purpose

of experimentation. If the perceived similarity falls too low, the experimentation stops
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Figure 1.8: Optimal Choice. The diagram gives i’s optimal information acquisition for
various sensitivities to accuracy αi and perceived similarity Q. Row 2© vanishes if ci is too
small and there is no experimentation if d is too large.

altogether and no information observed. Once Q is sufficiently high, the experimentation

stops and the agent depends on the media’s report.

At 3©, middle values of the perceived similarity also involve experimentation if. If the per-

ceived similarity falls too low, i will give up on the media and only trust his own information.

As with 2©, if Q becomes high, i will stop obtaining his own signal and depend only on that

of the media.

Asymptotically, all αi will at some point choose from either their respective rightmost or

leftmost columns in figure 1.8. All types could learn to permanently ignore the media firm

at some point when it has a track record of disagreeing too much with them. For αi types

2© through 4©, they could find themselves in a situation where they choose to forever trust

the information of this media firm.
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Further Observations

We could conduct the same consumer analysis for the case with multiple media firms. This

would show that some agents consume no media and others attend to media sources that do

not have too low a perceived similarity. For those intermediate αi types who rely on media

without obtaining their own signals, there is a higher expected payoff when the consumed

media sources tend to agree with each other than if they are discordant.

There are a couple more observations to make. For clarity, assume that there are two media

firms A and B and the cost for a consumer to observe either of the firm’s opinions is zero.

The first observation is that a small amount of information can result in vast disagreement

among the population. An extreme example of this is found by supposing that the population

has grown divided over the course of many periods with half the population assigning a

perceived similarity of nearly one to firm A and zero to firm B and the remaining half

assigning the reverse beliefs. Suppose further that no agent finds it optimal to pay ci to

purchase his own signal. Then the population will be sharply divided whenever the media

firm’s reports are distant from each other. This would be like Fox News and MSNBC

presenting distinct opinions about some issue and viewers adopting the opinion of the news

source that they have agreed with most in the past.

This example also illustrates the second observation that public disagreement facilitated by

the media does not dissipate with public awareness of the disagreement. In existing models

where diverging opinions are driven by media bias, it is important that the agents in the

model are themselves unaware of this divergence. Otherwise, agents will simply condition

on the opinion divergence and the media’s effect vanishes. In our model, agents can grow

to trust certain media sources more than others. In fact, learning that other media sources

collide with one’s trusted source is evidence against believing these other sources. Pub-

lic disagreement is not crushed by observing the disagreement. Rather, observing public
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disagreement today lays the groundwork for even stronger disagreement tomorrow.

1.6 Conclusion

One of the unexpectedly useful insights gained from Harsanyi’s mutual consistency assump-

tion and Aumann’s theorem is that we must look to differences between individuals beyond

mere differences in their private information to understand the disagreement we observe in

the world. This paper studies the emergence and patterns in disagreement when people take

into account the unobservable differences between themselves when forming their beliefs.

This more complex form of social learning, what we refer to as dual learning, captures many

phenomena that do not fit existing models.

Disagreement is an important issue to understand. The opinions of a populace culminate in

voting behavior that drives political decisions. The views of those tasked with determining

research funding influence the very trajectory of science. It is our hope that this discussion

and analysis will provide guidance for future empirical and theoretical work in uncovering

the underlying differences that drive public disagreement.

1.7 Mathematical Appendix

Proof of Proposition 1. Let Rk ≡ fL
fH

(sk) be the likelihood ratio for drawing signal sk. The

assumption p(si) < πH < p(sj) implies Ri > 1 > Rj. Expanding (1.4)

Q(s) =

[
1 +

π2
H +RjπHπL +RiπHπL +RiRjπ

2
L

πH +RiRjπL
· 1− π̃

π̃

]−1
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we find Q to be differentiable in Ri and Rj. Upon differentiating, we find dQ
dRi

< 0 whenever

Rj < 1 and dQ
dRj

> 0 for Ri > 1. Hence, Q is reduced by any increase in Ri or decrease in Rj,

which corresponds to a decrease in p(si) or increase in p(si). Letting R−1
i and Rj go to 0

sends Q to zero. From (1.3), Q(s)→ 0 implies P (s)−p(s1) = [p(s1, s2)−p(s1)]Q(s)→ 0.

The mechanism of proposition 1.1 can be found in more general environments. The private

beliefs p(si) of the two parameter environment provided an intuitive conceptualization of

agreement and disagreement between 1 and 2. As we generalize, we now associate the

agreement between 1 and 2 directly with the likelihood ratio f(s1)
f(s1|s2)

: lower values imply a

higher degree of agreement. For measurable A ⊂ Θ we can write

Π1(A|s) = Π′(A|s)Q(s) + Π′(A|s1)
(
1−Q(s)

)
(1.18)

where Π′(·|s) is a probability measure that assumes all signals in the vector s come from

agents of the same type. Let ‖ · ‖ denote the total variation metric between two probability

measures, ‖µ−λ‖ ≡ 2 supB |µ(B)−λ(B)| where the supremum is taken over measurable B.

Proposition 1.9. Consider a change in s1 and/or s2.

(a) If f(s1)
f(s1|s2)

→ +∞ then ‖Πi(·|s)− Π′(·|s1)‖ → 0.

(b) If f(s1)
f(s1|s2)

→ 0 then ‖Πi(·|s)− Π′(·|s)‖ → 0.

Proof. (a) For any A ∈ B(Θ)

|Π1(A|s)− Π′(A|si)| = |Π′(A|s)− Π′(A|si)| ·Q(s) ≤ Q(s) (1.19)

and hence 2 supA∈B(Θ) |Π1(A|s)− Π′(A|si)| ≤ 2 ·Q(s). It follows that f(s1)
f(s1|s2)

→ +∞ implies

Q(s)→ 0 and thus ‖Πi(·|s)−Π′(·|s1)‖ → 0. Part (b) can be proved in a similar fashion.
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Proof of Proposition 1.2. Consider a shift in s2 to s′2 and define s = (s1, s2) and s′ = (s1, s
′
2).

By definition 1.1, 1−ε ≡ 1+ Q(s′)−Q(s)
Q(s′)+Q(s)

/
∆(s′)−∆(s)
∆(s′)+∆(s)

which rearranges to (1−ε) ·
(
∆(s′)−∆(s)

)
·(

Q(s′) + Q(s)
)

= 2
(
E[θ∗i |s′] − E[θ∗i |s]

)
. By the regularity assumption sgn

(
∆(s′) −∆(s)

)
=

sgn
(
θ̂(s′2)− θ̂(s2)

)
and thus

sgn(1− ε) · sgn
(
θ̂(s′2)− θ̂(s2)

)
= sgn

(
E[θ∗i |s′]− E[θ∗i |s]

)
(1.20)

where sgn(·) is the well-known signum function defined for any real number as x = sgn(x) ·

|x|.

Proof of Proposition 1.3. (a) Consider first the homogeneous case. If some agent j is certain

that Pr(x(θ∗) = x|sj) = 1 then i too obtains this certainty and no opinions to the contrary

will reduce it: Pr(x(θ∗) = x|sj, s) = 1 for any s that is not perfectly revealing. (b) As

payoffs are finite, if i assigns a high enough probability to the event x(θ∗i ) = y, he will indeed

choose x∗i = y. Let ρ denote the probability with which nature assigns an agent to a type

with parameter θy which is itself defined as the parameter at which x(θy) = y. Let the

probability with which nature assigns an agent to a type with parameter θ 6= θy be denoted

by ηθ(1− ρ) and η be the vector of length |Θ| − 1 containing all such ηθ. Agent i’s posterior

can be written

Pr(x(θ∗i ) = y|s) =

∫
D
Pr(x(θ∗i ) = y|si, ρ,η)dµ(ρ,η|s−i) (1.21)

where µ(·|s−i) is the posterior probability measure over (ρ,η) given the signals of the agents

other than i and D is the |Θ|-dimensional simplex. Expanding the integrand of (1.21)

Pr(x(θ∗i ) = y|si, ρ,η) =
fθy(si)ρ

fθy(si)ρ+ (1− ρ)
∑

θ 6=θy fθ(si)ηθ
(1.22)
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we see that there exists a cutoff such that, if Pr(ρ > k∗|s−i) > 1−ε, then i will select x∗i = y.

By the Lebesgue Decomposition Theorem, we can decompose µ = µ1 + µ2 such that µ1 is

absolutely continuous with respect to the (|Θ|-dimensional) Lebesgue measure µ1 << λ and

µ2 is singular with respect to the Lebesgue measure µ2 ⊥ λ. Let v ≡ dµ1
dλ

be the Radon-

Nikodym Derivative of µ1 with respect to λ. Let ρ < ρ′ < 1, sj the signals of the nx agents

certain that x(θ∗j ) = x, and sk the remaining ny signals, and write

v(ρ,η|sj, sk)
v(ρ′,η|sj, sk)

=
f(sk|ρ,η)

f(sk|ρ′,η)
· v(ρ,η|sj)
v(ρ′,η|sj)

(1.23)

The density v(ρ,η|sj) is almost surely positive. Let us now write the ratio of likelihoods

f(sk|ρ,η)

f(sk|ρ′,η)
=

∏
s∈sk

(
fθy(sk)ρ+ (1− ρ)

∑
θ 6=θy fθ(sk)ηθ

)∏
s∈sk

(
fθy(sk)ρ′ + (1− ρ′)

∑
θ 6=θy fθ(sk)ηθ

) (1.24)

By assumption, fθy (sk)
fθ(sk)

> b > 1 for all k some such b. With some algebra it can be shown

that (1.24) is less than

(
ρb+ 1− ρ
ρ′b+ 1− ρ′

)ny
(1.25)

which goes to zero as ny → +∞. It follows that v(ρ,η|s−i) goes to zero as ny → +∞.

Similarly, we could show that the posterior probability on any atoms goes to zero as ny →

+∞. We can thus write

Pr(ρ < k∗) =

∫
D|ρ<k∗

v(ρ,η|s−i)dλ(ρ,η). (1.26)

As the integrand of (1.26) is bounded and converges pointwise to 0, the Bounded Convergence

Theorem provides that Pr(ρ < k∗) likewise converges to 0 as ny →∞.
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Remark. If the population were homogeneous T = 1, then Doob’s Consistency Theorem

[31] tells us that if i observes an infinite sequence of signals, with prior probability one the

posterior will be consistent at the true parameter. One condition of Doob’s Theorem is that

the family of distributions is one-to-one. This assumption is not satisfied for the case of T

component mixture models with component weights γt and parameterized distributions Fθt ,

t = 1, 2, ..., T . This is indeed the setting in which we are working.

In the following, we carefully define a function h : Ω→ Ω that generates an equivalence class

of ω’s, in that gω(s) = gω̃(s) a.e. implies that h(ω) = h(ω̃). The family gω′ defined on the

image ω′ ∈ Ω′ ≡ h(Ω) is one-to-one and hence we can apply Doob’s Theorem.

By the Borel Isormorphism Theorem, there exists a Borel isormphism z between Θ and a

subset of the interval [0, 1] with the same cardinality as Θ. Without loss of generality assume

z−1(0) ∈ Θ. Define the linear order on Θ to satisfy θ ≤ θ′ iff z(θ) ≤ z(θ′).

Definition. Let h : Ω → Ω with h(ω) = ω′ = (θ1′ , θ2′ , ..., θT
′
, γ1′ , γ2′ , ..., γT ′) be defined by

the following:

1. Combine duplicate θ’s. Starting from left to right in ω, replace any of θt+k = θt for

some k > 0 with z−1(0) and add γt+k to γt while also replacing γt+k with 0.

2. Permute the indices so that the θ’s are in ascending order. If there is θt = z−1(0) with

γt > 0 for some t, place it to the right (a higher index) to all the θτ = z−1(0) with

γτ = 0.

Lemma 1.1.

1. h(ω) is Borel Measurable.

2. Ω′ ≡ h(Ω) is a Borel subset of the complete separable metric space Ω.
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Proof. (1) First decompose the domain Ω =
⋃
Bm whereby on each of the Bm the order

of the θt does not change and if θt = θt
′

or γt = 0 for some ω ∈ Bm, then it does so for all

ω′ ∈ Bm. Define the function y(ω) ≡
(
z(θ1), z(θ2), ..., z(θT ), ..., γ1, γ2, ...γT

)
. It can be shown

that each y(Bm) is a Borel subset of [0, 1]2T and as y is Borel measurable Bm ∈ BΩ.

By design, h(ω) is continuous on each Bm and the image of these subsets hm ≡ h(Bm) can

be shown to be Borel. Take any A ⊂ h(Ω) such that A ∈ BΩ and write A =
⋃
Am where

Am ≡ A ∩ hm. We can write,

h−1(A) =
⋃

(Bm ∩ h−1(A)) =
⋃

(Bm ∩ h−1(Am)). (1.27)

As h is continuous on each Bm, we know h−1(Am) is contained in each sub-sigma algebra

BBm and is thus also contained in BΩ. It follows that h−1(A) ∈ BΩ.

(2) Follows immediately from h(Ω) =
⋃
hm and the fact that each hm is Borel.

Using Lemma 1.1, we can extend Doob’s consistency theorem to the case of finite mixture

models. The statement of the theorem writes “consistency*” to emphasize the use of a

qualified notion of consistency. Consistency of the posterior at a point ω0 entails that it will

almost surely asymptotically assign probability 1 to every neighborhood of that point. For

mixture models, consistency* of the posterior at a point ω0 entails that the posterior will

almost surely assign probability 1 to every neighborhood of the set of points equivalent to

ω0. Here ω and ω′ are equivalent if they assign the same weight to each θ,
∑T

t=1 γt1(θt =

θ) =
∑T

t=1 γ
′
t1(θ′t = θ).

Theorem 1.1 (Doob’s Theorem for Finite Mixture Models.). Suppose that Θ and S are

complete separable metric spaces endowed with their respective Borel sigma algebras with

gω(s), ω ∈ ΘT × ∆T comprising an identified finite mixture family. Let Π be a prior and
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{Π(·|sn)} a posterior. Then there exists Ω0 ⊂ Ω with Π(Ω0) = 1 such that {Π(·|sn)}n≥1 is

consistent* at every ω ∈ Ω0.

Theorem 1.1 is proved en route to the proof of proposition 1.4. Without loss of generality,

the proof proceeds with i conditioning directly on the signals of agent −i. We could replace

the sj with j’s opinion θ̂j = θ̂(sj) and the proof would otherwise be unchanged.

Proof of Proposition 1.4. By lemma (1.1.1) h(ω) is Borel measurable so we can induce a

measure λ on Ω′ defined as λ(A|sn) ≡ Π̃(h−1(A)|sn) where is Π̃(·|sn) is the public belief over

ω ∈ Ω conditional on the vector sn, Π̃(B|sn) ≡ Pr(ω ∈ B|sn) for B ∈ BΩ.

First write

Πi(A|sn) =

∫
Ω′
Pr(θ∗i ∈ A|sn, ω′)dλ(ω′|sn) =

∫
Ω′

∑
t

fθt(si)γt∑
t′ fθt′ (si)γ

′
t

1(θt ∈ A)dλ(ω′|sn).

(1.28)

Claim 1: λ(·|sn)⇒ δh(ω∗)(·)

The family gω′(s) is one-to-one on Ω′ which by lemma (1.1.2) is a Borel subset of a complete

separable metric space. Hence by Doob’s Theorem [31] as stated in [40], λ(·|sn) is almost

surely consistent and by the Portmanteau Theorem paired with the fact that Ω′ is a sepa-

rable metric space, λ(·|sn) converges weakly to δh(ω∗)(·). Theorem 1.1 follows immediately

by noting that if λ assigns probability 1 to every neighborhood of h(ω∗), then Π̃ assigns

probability 1 to every open set containing ω such that h(ω) = h(ω∗).

The Portmanteu Theorem, equation (1.28), and claim 1 imply that whenever
∑

t
fθt (si)γt∑
t′ fθt′ (si)γ

′
t
1(θt ∈
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A) is almost surely continuous with respect to δh(ω∗)(·),

Πi(A|sn)→
∫

Ω′

∑
t

fθt(si)γt∑
t′ fθt′ (si)γ

′
t

1(θt ∈ A)dδh(ω∗)(ω). (1.29)

Claim 2: For all A with Πi(∂A|si, π∗) = 0,
∑

t
fθt (si)γt∑
t′ fθt′ (si)γ

′
t
1(θt ∈ A) is almost surely contin-

uous with respect to δh(ω∗)(·).

The function
∑

t
fθt (si)γt∑
t′ fθt′ (si)γ

′
t
1(θt ∈ A) is only discontinuous when some θt crosses the bound-

ary of A, and is thus almost surely continuous with respect to δh(ω∗)(·) just in case δh(ω∗)

(
D
)

=

0 where D ⊂ Ω′ is defined as the subset on which θt ∈ ∂A for some θt ∈ ω ∈ D. A set A

satisfies this condition if and only if Πi(∂A|si, π∗) = 0 implying that such an A is a continuity

set with respect to Πi(·|si, π∗). As (1.29) holds for all continuity sets A, it follows by a final

application of the Portmanteu Theorem that Πi(·|sn) weakly converges to Πi(·|si, π∗).

Proof of Corollary 5. Section 6 in [18] shows that weak convergence corresponds to con-

vergence in ρ, hence (1.11) follows from proposition 1.4 and the triangle inequality. As

Qin(sn)−Qin(sn−1) =

∫
Ω′

(
Qin(sn|ω′)−Qin(sn−1|ω′)

)
dλ(ω′|sn) (1.30)

has a continuous integrand in ω′, the difference converges to w(si, sn) ≡ Qin(sn|h(ω∗)) −

Qin(sn−1|h(ω∗)). The second term in this difference is constant in sn and Qin(sn|h(ω∗)) is

not almost surely constant in sn.

Our discussion is made commensurate with the observational learning literature by assuming

Θ to be finite, distinct θ and θ′ prescribe different optimal choices from a finite set of actions
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X, and the vector of assignment probabilities γ to be known. Assume that each action is

played for some open set of beliefs.

Proof of Proposition 1.6. (a) Under heterogeneity, there is θ∗i , θ
∗
j ∈ supp(π∗) with x(θ∗i ) 6=

x(θ∗j ). Optimal action convergence implies that with probability one such an agent i receives

signal si such that they choose xi = x(θ∗i ). Mutual absolute continuity of the signaling

distributions would also imply j receives sj inducing xj = x(θ∗i ) with probability one. Hence,

there is no optimal action convergence.

(b) This proof draws strongly from [80] (S&S). In this environment, nature chooses be-

tween only finitely many parameter vectors θ = (θ1, θ2, ..., θT ) and hence only finitely many

population distributions of thetas. Denote by π̃(θ) =
∑T

t=1 γt1(θt = θ) a generic distri-

bution of thetas and π∗ the true distribution as chosen by nature. The likelihood ratios

`π̃(xn) = Pr(π̃|xn)
Pr(π∗|xn)

for π̃ 6= π∗ and xn = (x1, x2, ..., xn) the first n actions chosen form a

Martingale conditional on π∗. Define ψ(x|π̃, `) to be the ex ante probability of an agent

performing action x conditional on π̃ being the true distribution of parameters and ` being

their prior vector of likelihood ratios `π̃.

By the Martingale Convergence Theorem, there exists a real, nonnegative stochastic variable

`∞π̃ such that `π̃(xn) → `∞π̃ almost surely. This implies that asymptotically for all π̃ and all

actions x played with positive probability

`∞π̃ =
ψ(x|π̃, `∞)

ψ(x|π∗, `∞)
`∞π̃ (1.31)

If only one action is taken with positive probability at `∞, then because private beliefs are

unbounded, the public belief must assign certainty to the population being homogeneous.

As the likelihood ratios almost surely will not converge to certainty on the false π̃, then the

47



population truly is homogeneous π∗ and complete learning has occurred.

Consider the case where two actions x and x′ are active in the limit. This would imply that

at `∞ agents assign positive prior probability to exactly two parameters θ and θ′. If only

one parameter θ were assigned positive probability only the action x(θ) would be active. If

more than two parameters were assigned positive probability, then unbounded private beliefs

would entail that more than two actions would be active. For equation (1.31) to be satisfied,

either `∞π̃ = 0 or ψ(x|π̃, `∞) = ψ(x|π∗, `∞) and we shall proceed to show that the latter

equality cannot hold for π̃ 6= π∗.

For a given `, i’s best response will be x just in case her private belief pθ(si) exceeds some

threshold K(`). Define F̃θ(pθ) and F̃θ′(pθ) to be the conditional distributions of the perceived

similarity pθ. The ex ante probability that i chooses x for a given π̃ is

ψ(x|π̃, `∞) = π̃(θ)
(
1− F̃θ(K(`))

)
+ π̃(θ′)

(
1− F̃θ′(K(`))

)
. (1.32)

From lemma A.1 in S&S Fθ(pθ) > Fθ′(pθ) whenever both are not zero or one. Thus for

distinct π̃ and π∗, almost surely ψ(x|π̃, `∞) 6= ψ(x|π∗, `∞). It follows that `∞π̃ = 0 and

complete learning has occurred.

Generically, more than two actions cannot be active at `∞. To see this, let J be the number

of π̃ 6= π∗ with `∞π̃ > 0 and M the number of actions active at `∞. Because of the identity∑
x∈X ψ(x|π̃, `∞) = 1, if the equality ψ(x|π̃, `∞) = ψ(x|π∗, `∞) holds for M − 1 of the active

actions, it must also hold for the remaining active action. Hence satisfying equation (1.31)

for all π̃ and active actions generates a system of J(M − 1) equations in J unknowns `∞π̃ .

nown 1. As the equations generically differ, they can only be solved when M = 2.

(c) Assume π∗(H) ∈ (1− r, r). The idea is to first isolate a positive measure of trajectories

that after Mε steps will never leave a small radius around π∗(H). Then we show that, of
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these trajectories, a positive proportion will have never left (1− r, r) in the first Mε steps.

Let z(sn) = Pr(θ∗j = H|sn) for j > n be a variant of the public belief z(xn) defined in 1.5.1.

Prior to a cascade z(sn) = z(xn). As per theorem 1.1, z(sn) → π∗(H) almost surely as

n→ +∞. Let Z be the set of the trajectories of the public belief with Borel sigma algebra

BZ and probability measure µ induced from the signaling distribution Gω∗ . Define Z ′ ⊂ Z

to be the subset of trajectories such that zm ∈ (1 − r, r) and at all points in the sequence.

We want to show that µ(Z ′) > 0.

Let δ ≡ 1
2

min(|r − π∗(H)|, |π∗(H) + 1 − r|). For almost all trajectories, there exists an

M < +∞ such that, for all m > M , |zm − π∗(H)| < δ. Let Mε be the smallest integer such

that µ(Zε) > ε where Zε = {z ∈ Z : ∀m ≥Mε, |zm − π∗(H)| < δ}.

As each trajectory has only received finitely many signals there are only finitely many unique

of signal frequencies observed in the first Mε steps of each trajectory. Partition Zε =
⋃
Z l
ε

where each Z l
ε comprises of trajectories which received the same signal frequencies in the

first Mε steps. The positive measure for Zε requires that at least one member of its partition

has positive measure and thus suppose µ(Z l
ε) = ε1 > 0. Denote by k the number of H signals

in the first Mε steps for trajectories in Z l
ε.

Every permutation of k “H” signals and Mε−k “L” signals has the same positive probability

denoted by ε2 > 0. Thus we can find a subset of trajectories Ẑ l
ε ⊂ Z l

ε that never leave (1−r, r)

defined by the permutation in which the first 2 ∗ min{k,Mε − k} steps form an oscillating

sequence of L,H,L,H, ... and then including whatever signals remain at the end. At no

point during the oscillation does z ∈ Ẑ l
ε leave (1− r, r) and if it leaves after then necessarily

it’s Mεth entry zMε would too, contradicting Ẑ l
ε ⊂ Zε. It follows that µ(Ẑ l

ε) = ε1ε2 > 0.

Notice that Ẑ l
ε ⊂ Z ′ as all z ∈ Ẑ l

ε never leave (1− r, r).

Thus we know µ(Z ′) ≥ µ(Ẑ l
ε) ≥ ε1ε2 > 0

49



In the low probability event of avoiding an information cascade each agent follows the action

dictated by his private signal. In the limit, the proportion choosing the correct action is r.

Proof of Proposition 1.7. (a) By proposition 1.2, it will be enough to show that for every

compact S ′ ⊂ S, R̄L can be made sufficiently small so that 1’s perceived similarity is relatively

inelastic ε < 1 for all signals in S ′. Because S ′ is compact and the conditional densities fθ(s)

continuous in s, both Q(s′)−Q(s)
Q(s′)+Q(s)

and maxs1,s2,s′2∈S′
Q(s′)−Q(s)
Q(s′)+Q(s)

are well defined on S ′. It can be

shown that for any given signals, Q(s′)−Q(s)
Q(s′)+Q(s)

goes to zero as R̄L goes to zero. It follows that

maxs1,s2,s′2∈S′
Q(s′)−Q(s)
Q(s′)+Q(s)

also goes to zero as R̄L goes to zero. From definition 1.1, it follows

that for R̄L sufficiently small, ε < 1 on S ′.

(b) We will show that for sufficient auxiliary agreement E[θ∗1|s] can be made larger than any

M < +∞. Having assumed the shared estimate to be an unbounded function of s2, we can

find an s2 such that θ̂(s1, s2) > M for any M and s1. From

E[θ∗1|s]− θ̂(s1, s2) =
(
1−Q(s)

)(
θ̂(s1)− θ̂(s)

)
(1.33)

and equation 1.15, E[θ∗1|s] − θ̂(s1, s2) → 0 as R̄L → 0, completing the proof. The proof

that E[θ∗1|s] can be made smaller than any m > −∞ and for part (c) follow by similar

arguments.

David Blackwell has shown that with a fixed and finite set of choices in each period, there is

a deterministic stationary Markov policy for which, for any initial state, the total expected

reward is the supremum of the total expected rewards for the class of all policies [19]. The

optimal policy satisfies the functional equation

V (Q) = max
ŝ∈Ŝ

U(ŝ;Q) + βE
[
V (Q′)|ŝ, Q

]
(1.34)
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with Ŝ = {∅, ŝi, ŝM , (ŝi, ŝM)} the set of signal combinations the consumer can choose to

observe. Define A(Q), B(Q), C, and D to be the expected period payoffs to observing

(si, sM), sM , si, and ∅ (no signals) respectively for Q`
im = Q and a given αi. Let Ā ≡ A(1)

and B̄ ≡ B(1).

Lemma 1.2.

1. The expected period payoff from observing s`M is increasing in Q.

2. The value function V (Q) is non-decreasing in Q. If at Q, there is positive probability

of ever observing s`M , then V (Q) is increasing in Q.

3. There are diminishing expected period returns to information at Q = 1.

4. A(Q) and B(Q) are continuous in Q.

5. For a given ci and βi, we can partition the domain for αi ∈ R+ = [0, b0] ∪ (a1, b1] ∪

(a2, b2] ∪ (a3,+∞) where am < am′ and bm < bm′ whenever m < m′. The following

inequalities hold for the various αi-types.



B̄ − d ≤ D, C − ci < D, Ā− ci − d < D, αi ∈ [0, b0]

B̄ − d > D, C − ci ≤ D, Ā− ci − d < D, αi ∈ (a1, b1]

B̄ − d > D, C − ci > D, Ā− ci − d ≤ D, αi ∈ (a2, b2]

B̄ − d > D, C − ci > D, Ā− ci − d > D, αi ∈ (a3,+∞)

Proof of Lemma 1.2.1. The proof follows the same form as the proof for 1.2.2.

Proof of Lemma 1.2.2. Expand the value function

V (Q) = Q V 1(Q) + (1−Q) V 2(Q) (1.35)
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with V 1(Q) to be value at Q if in fact i and M are of the same type and V 2(Q) if i and

M are of different types. Let Ṽ (Q) to be the value function if we remove the option of the

agent observing s`M . We want to show

V 1(Q) ≥ Ṽ (Q) ≥ V 2(Q) (1.36)

with the last inequality holding strictly whenever the optimal policy assigns positive proba-

bility to the consumer ever observing s`M .

The second inequality in (1.36) comes from the fact that Ṽ (Q) follows the policy that

maximizes the flow of utility when observing s`M is not an option. If i and M are not

of the same type, then they can do not better than by following the policy of Ṽ (Q), hence,

Ṽ (Q) ≥ V 2(Q). If the consumer ever observes s`M , then they both pay the cost d and also

receive information that will almost surely lead them to choose a suboptimal action. In this

case, Ṽ (Q) > V 2(Q).

To demonstrate that the first inequality in (1.36) holds, assume for a contradiction that it

does not hold V 1(Q) < Ṽ (Q). From what was previously shown, this would imply V (Q) <

Ṽ (Q). This implies a contradiction as the policy for V could be modified to never acquire

s`M guaranteeing V (Q) = Ṽ (Q).

Finally, it follows from the inequalities in (1.36) that if Q′ > Q

V (Q′) ≥ Q′V 1(Q) + (1−Q′)V 2(Q) ≥ V (Q) (1.37)

with the last inequality holding strictly if there is a positive probability of the consumer ever

observing s`M .
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Proof of Lemma 1.2.3. This is where the assumed normal-normal conjugate environment

comes into play. Recall that a consumer’s expected payoff to ŝ (ignoring the costs) is

−αiV ar(θ∗i |ŝ). Without loss of generality, set αi = 1.

We want to show Ā− B̄ < C −D. The payoff to ŝi with precision τ is −(τ + τ0)−1 and the

payoff to not observing si is −τ−1
0 . The effect of observing sj is to increase τ0. The desired

inequality is obtained by differentiating

d

dτ0

[
− (τ + τ0)−1 + τ−1

0

]
= (τ + τ0)−2 − τ−2

0 (1.38)

which is less than zero whenever τ > 0.

Proof of Lemma 1.2.4. As A(Q) and B(Q) give the maximized values for objective functions

that are differentiable in x and continuous in Q ∈ [0, 1], the Theorem of the Maximum implies

that A(Q) and B(Q) are continuous in Q.

Proof of Lemma 1.2.5. αi ∈ [0, b0]. All inequalities hold strictly at αi = 0. Both sides of each

inequality decrease linearly in αi, with the right side decreasing at a faster rate. Hence, there

exists a unique αi at which point the each inequality becomes an equality. That B̄ − d = D

implies C − ci < D follows from B̄ = C and d < ci. That B̄− d = D implies Ā− ci− d < D

follows from part 3 of the lemma and some algebra.

αi ∈ (a1, b1]. That C − ci = D implies Ā − ci − d < D follows again from part 3 of the

lemma.

Proof of Proposition 1.8. For αi ∈ [0, b0], any policy that acquires a signal yields an expected

payoff that is less than (strictly so if Q0 < 1) the one that does not select any in each period.
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For αi ∈ (a3,+∞), the inequalities in Lemma 1.2 entail that no policy that ever selects ∅ or

ŝm is optimal. Hence, we can consider only plans that select ŝi or (ŝi, ŝM) in each period.

Stationarity of the optimal policy implies V (Q| if ŝi is chosen) = C−ci
1+βi

and is constant in Q.

V (0| if ŝi is chosen) > V (0| if (ŝiŝM) is chosen), V (1| if ŝi is chosen) < V (1| if (ŝiŝM) is chosen),

and by Lemma 1.2.2, V (Q| if (ŝiŝM) is chosen) is increasing in Q. Hence, there exists a Q̄

such that ŝi is the optimal control for Q ≤ Q̄ and (ŝi, ŝM) the optimal control for Q ≥ Q̄.

For αi ∈ (a1, b1), no policy that ever selects only ŝi in a period is optimal. We can thus

restrict our attention to policies that only ever select from {∅, ŝM , (ŝi, ŝM)}. As before, there

exists cutoff Q̄ such that ∅ is optimal at Q ≤ Q̄ and either ŝM or (ŝi, ŝM) are optimal for

Q ≥ Q̄

There exists another interior cutoff Q̂ such that if Q > Q̂ then ŝM is optimal. This follows

by noting that the value function, when (ŝi, ŝM) is optimal, is bounded from above

V (Q| if (ŝi, ŝM) is chosen)) < A(Q)− ci − d+ βi
B̄ − d
1− βi

. (1.39)

As the optimal policy is stationary, if only ŝM is ever chosen, it will always be chosen

thereafter, yielding a value

V (Q| if ŝM is chosen) = B(Q)− d+ βiV (Q| if ŝM is chosen)

⇐⇒ V (Q| if ŝM is chosen) =
B(Q)− d

1− βi
(1.40)
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The right side of (1.40) exceeds the right side of (1.39) when

B(Q)− A(Q) > −ci +
βi

1− βi
(B̄ −B(Q)). (1.41)

As the above inequality holds at Q = 1 for this domain of αi and A(Q) and B(Q) are

continuous in Q, the aforementioned cutoff Q̂ exists.

Let us show that for ci sufficiently high Q̂ < Q̄, i.e. the consumer will never experiment,

either always selecting ∅ or ŝM depending on the relation of Q0 and Q̄. If this is true, then

the stationarity of the policy implies

V (Q̄) =
D

1− βi
=
B(Q̄)− d

1− βi
(1.42)

Appealing to the upper bound on V (Q̄| if (ŝi, ŝM) is chosen)), we can select ci sufficiently

large such that the right side of (1.39) is less both terms in the equality of (1.42).

Next, we show that if d is not too large, there will be an open interval under which the

consumer experiments, i.e. Q̄ < Q̂. Suppose for a contradiction that for all αi ∈ (a1, b1) and

all d > 0, Q̂ ≤ Q̄. This implies again that equation (1.42) holds.

For all ε1 > 0, we can choose αi arbitrarily close to b1, such that for

C − ci < D < C − ci + ε1. (1.43)

Suppose we modify the policy to select (ŝi, ŝM) at Q̄. Then the value at Q̄ is given by

V (Q̄| if (ŝi, ŝM) is chosen)) = A(Q̄)− ci − d+ βiE[V (Q′)|Q̄, ŝi, ŝM ] (1.44)
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We can write

E[V (Q′)|Q̄, ŝi, ŝM ] =

Pr(Q′ > Q̄) · E[V (Q′)|Q′ > Q̄] + Pr(Q′ ≤ Q̄) · E[V (Q′)|Q′ ≤ Q̄] (1.45)

where all terms in the above equality condition on Q̄ and ŝi, ŝM . As E[V (Q′)|Q′ > Q̄] =

E[B(Q′)− d|Q′ > Q] > B(Q̄)−d
1−βi and E[V (Q′)|Q′ ≤ Q̄] = D

1−βi ,

V (Q̄| if (ŝi, ŝM) is chosen)) > A(Q̄)−ci−d+βi
D

1− βi
> A(Q̄)−C+D−ε1−d+βi

D

1− βi
(1.46)

where the inequality A(Q̄)−C +C − ci > A(Q̄)−C +D− ε1 follows from (1.43). For d and

ε1 sufficiently small, V (Q̄| if (ŝi, ŝM) is chosen)) > V (Q̄| if ∅ is chosen)). Hence, the assumed

optimal policy is in fact suboptimal, implying a contradiction.

The proof for “experimentation” at αi = b1 and αi ∈ (a2, b2], is nearly identical to the proof

above.
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Chapter 2

Truth and Conformity on Networks

One of the most important domains of social inquiry is that of broad public discourse. Which

social policy will lead to better outcomes? Which political candidate is more qualified for

office? Typically, public discussion on such questions of import is influenced by the human

tendency of conformity. Individual decisions are informed and influenced by peers; the

presence of conformist bias in social discourse is well-studied, and well-supported.1

We present a model of social inquiry where it exhibits two properties endemic to matters

of public discussion: (1) individuals are subject to varying degrees to conformity bias, and

(2) the influence of the pressure to conformity is expressed via social networks. We examine

how the structure of social ties in tandem with conformity bias can influence the flow and

reliability of information in matters of public opinion.

In our model, heterogeneous agents express public opinions where those expressions are

driven by the competing priorities of accuracy and of conformity. Agents learn, by Bayesian

conditionalization, from private evidence from nature, and from the public declarations of

other agents.

1See [7], [23], and [62].
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Several key findings emerge. We see that the most influential public declarations are made by

agents when they go against the consensus of their neighbors, but that the most informative

declarations, on average, are made by agents when their social influences are balanced. This

provides a unifying explanation for our results: networks that produce configurations of

social relationships that sustain a diversity of opinions empower honest communication and

hence reliable acquisition of the truth.

In related literature on network epistemology [89, 90], less connected networks are shown,

under the right conditions, to increase the reliability of inquiry. In those cases, greater

connectivity can cause premature lock-in to consensus in epistemic communities dealing

with an exploration-exploitation trade-off. We arrive at a similar moral by different means.

We show that networks are differentially conducive to informative communication depend-

ing on the degree to which a community is divided in its publicly stated opinions. When

communities are most divided, more connected networks, such as complete networks, do

best. Whereas, when communities are near consensus, less connected networks exhibiting

low degree-centrality, such as circle networks, are optimal.

Across the networks literature, star networks have been shown to possess certain optimality

properties: they emerge as the product of various processes of strategic network formation

[43, 12], can lead to efficient division of cognitive labor [44, 90], and can provide optimal

conditions for information dissemination [43]. In contrast, we find that, in the presence of

a modicum of conformity bias, star networks produce to the worst possible conditions for

social learning.

In §2.2, we explain our model. In §2.3, we present the long run success of learning in the

presence of conformist bias. In §2.4, we present simulations illustrating our central results.

In §2.5, we provide an analysis of the deeper patterns that unify and explain our results. In

§2.6, we conclude.
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2.2 The Model: Caesar or Pompeia?

To animate our model, let us consider an anachronistic allegorical vignette. A community

of Roman citizens has come together to discuss which candidate is better qualified for office.

The candidates are Caesar and Pompeia. In discussing their beliefs, the citizens are influ-

enced, to varying degrees, by two competing motivations: the motivation to say, honestly,

who they believe is the better qualified candidate, and the motivation to agree with their

neighbors, or, more particularly, those with whom they share social or economic ties.

Each citizen varies with respect to the weight she places on each honesty and conformity.

On one extreme, we may find Titus the Truth-Teller, who speaks his mind, come what may.

Titus has come to believe—both from what is public knowledge, and from his own private

information and experiences—that it is Pompeia who is more likely to be a better candidate.

And so he declares as much, and he does so without any thought or worry concerning the

impact of his declaration on the social regard of his peers.

On the other extreme, we find Cassius the Conformist, for whom harmony with peers is his

sole concern. Making his true beliefs known does not enter the picture. Whichever candidate

his peers favor, Cassius favors. Now, it happens to be Caesar.

Most of the remaining citizens, however, are not so extreme in their dispositions, but rather

fall somewhere between Titus and Cassius. They care about making their true beliefs known,

to some degree, and also about harmony with their peers, to some degree. Most make their

declarations in a way that is contingent both on the strength of their beliefs, and on the

weight of the social pressures around them.

Imagine that there are two states of the world: θ and ¬θ. We can think of these as corre-

sponding to where one social policy will lead to better outcomes, or one political candidate

will be better suited to office.
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Agents are interested in learning the true state of the world. This proceeds in two ways: (1)

They get private evidence σ ∼ fθ(σ) from Nature; we can think of these as hearing some

piece of news, or reasoning about an argument. And (2), they observe the public declarations

x−i ∈ {θ,¬θ}N−1 of other agents across the network. Declarations indicate to others the

state a declaring agent ostensibly believes to be true.

For each agent i, her payoffs are a convex combination of her truth-seeking orientation αi

and desire for conformity to her neighbors (1−αi). Her payoff for a declaration x ∈ {θ,¬θ}

then is given by

Ui(x) = αiPi(x) + (1− αi)Ni(x)

where Pi(x) is agent i’s expectation of the truth of x given her current information, and

Ni(x) is the proportion of her neighbors that have also declared x.2

We can think of an agent i as engaged in two games simultaneously which determine her

payoffs in proportion to her type: a Bayesian learning game that contributes αi of her payoff,

where the data are the agent’s private evidence σ and others’ public declarations x−i, and

an ni-player pure coordination game that constitutes the remaining (1 − αi) of her payoff,

where ni is the count of agent i’s neighbors.

Our epistemic community of N agents inhabits a society where their patterns of shared

social influence are described by a network. Here, nodes represent agents, and neighbors are

connected by edges. Standard networks include complete, circle, star, and random networks

(see Figure 2.1).

Networks vary with respect to the patterns of social influence they capture. The complete

network describes a social structure in which each agent has social ties with every other. The

circle describes a social structure in which each agent shares social ties with exactly two other

2Note that an agent’s truth-seeking payoff for a declaration is for based on her expectation that it
corresponds to the true state of the world—agents do not know, and do not find out, whether their assessments
are accurate.
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(a) Complete network (b) Circle network

(c) Star network (d) Random network

Figure 2.1: Social networks with 10 agents.

individuals. Note that complete and circle networks are special cases of regular networks,3

where the regular network is of degree N − 1 and degree 2, respectively. In contrast, the

star network describes a centralized social structure, where one individual (a central agent)

has far more connections than the rest (the peripheral agents), who are otherwise socially

isolated.

Before the game, agent types (truth-seeking/conformity orientations) are drawn from a con-

tinuous distribution:

α1, . . . , αN
iid∼ G with supp(G) = [0, 1]

And Nature randomly chooses the state of the world to be θ or ¬θ. Each state of the world

induces a distinct distribution from which evidence σ ∼ fθ(σ) may be drawn.

The distributions fθ(σ) = 2σ and f¬θ(σ) = 2− 2σ, depicted in Figure 2.2, are used in our

3Regular networks are those in which all nodes are of the same degree, or number of edges. Here, this
will correspond to all agents having the same number of neighbors.
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Figure 2.2: Densities fθ(σ), f¬θ(σ), of evidence σ, for each state of the world θ and ¬θ.

simulations due to their convenient functional form. More generally, however, the distribu-

tions need only satisfy: mutual absolute continuity and unbounded evidence. Mutual absolute

continuity requires that both distributions agree on what subsets of possible evidence have

positive probability, meaning that no single piece of evidence can falsify one or the other.

And unbounded evidence give us that evidence has the potential, in principle, to make one

arbitrarily (though not completely) confident of either state. We take this to be a reasonable

assumption, as we want to allow that, for any degree of belief shy of absolute certainty, there

can—in principle—exist some evidence, however unlikely, which is sufficiently compelling to

produce that belief.

In each round, an agent is chosen at random to receive private evidence from Nature, and

to make a public declaration to be observed by the network. Upon receiving her evidence,

an agent updates her beliefs, via conditionalization, about the true state of the world. This

is done in the normal way, using Bayes’ rule

P (θ|σ,ht) =
P (σ|θ)P (θ|ht)

P (σ|θ)P (θ|ht) + P (σ|¬θ)P (¬θ|ht)

where P (σ|θ) is the likelihood of her new evidence σ given the state θ, and P (θ|ht) is her

prior on θ given the history of declarations at that time ht. Note that P (θ|ht) is also the

public belief at that time—the shared portion of individual beliefs about the true state of the
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world constituted by the history of learning from public declarations. To simplify exposition,

assume the population begins with ignorance priors.4

Next, the agent calculates her utilities, given her truth-seeking orientation, chooses her best

response as a function of her private evidence and public prior (which, together, form her

posterior probability P (θ|σ,ht) over θ), and the composition of her neighbors:5

BRi(σ,Ni(x)) = arg max{Ui(θ), Ui(¬θ)}.

Following this, the other agents in the network observe her declaration, and update their

beliefs. To do so, they must consider the likelihood of her having made her declaration given

the composition of her neighbors, her likely evidence, her possible truth-seeking orientations,

and their own prior beliefs about the state of the world.

So, what precisely do agents learn from one another’s declarations? Well, when agent i

declares x = θ, others know that it was her best response to do so. It follows that

Ui(θ) > Ui(¬θ)

αiPi(θ) + (1− α)Ni(θ) > αi(1− Pi(θ)) + (1− αi)(1−Ni(θ))

αi(2Pi(θ)− 1) + (1− αi)(2Ni(θ)− 1) > 0. (†)

We can get an intuitive grasp of this inequality (†) by considering fixed values of the pro-

portion of the declaring agent’s neighbors who are also declaring θ (depicted in Figure

2.3.). The shaded area captures the values of agent i’s truth-seeking orientation αi (on the

horizontal axis), and posterior belief Pi (on the vertical axis), that are compatible with her

having declared θ. That is, the region in which (†) is satisfied.

4An ignorance prior is a probability distribution assigning equal probability to all possibilities. Our
proofs will require only non-degenerate priors, and our simulations will employ a range of priors.

5In the case of payoff ties, the agent chooses among her best responses at random.
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(a) Nθ = 1

2αi(1− Pi(θ)) > 1

(b) Nθ = 1/2

Pi(θ) >
1
2

(c) Nθ = 0

2αiPi(θ) > 1

Figure 2.3: What is inferred from agent i’s declaration of θ, as captured by condition (†),
about her posterior belief Pi(θ) and truth-seeking orientation αi, when different proportions
of her neighbors Ni(θ) = 1, 1/2, 0 are making the same declaration.

Consider the Ni(θ) = 1 case (Figure 2.3a). This is where all of the focal agent’s neighbors

are also declaring θ. Here, we see that a broad range of beliefs and truth-seeking orientations

are compatible with her having declared θ. What can be ruled out (the area in white) is

that it was not the case that she was both highly truth-seeking and strongly believed in the

truth of θ. Here, others do not learn much from observing the focal agent’s declaration.

Consider the Ni(θ) = 1/2 case (Figure 2.3b). This is where the focal agent’s neighbors are

evenly split; half declaring θ and half ¬θ. Here, the other agents infer that the focal agent’s

social influences are balanced, and so her truth-seeking orientation αi is no longer relevant.

Her declaration is now determined purely by her posterior belief. If Pi(θ) > 1/2, then she

would make the declaration she did, if not, she would not. Here, others learn the direction

of the focal agent’s belief, but not much about its strength.

Next, consider the Ni(θ) = 0 case (Figure 2.3c). This is where none of the focal agent’s

neighbors are declaring θ. Here, we see that only a narrow range of beliefs and truth-seeking

orientations are compatible with her declaration of θ. It must have been the case that she

was both highly truth-seeking, and possess a strong belief in the truth of θ. Now, others

learn both the direction and strength of the focal agent’s belief, and through it about the
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Figure 2.4: The content of an agent’s declaration, visualized as a hyperboloid—corresponding
to (†)—of the values of Nθ, αi, and Pi(θ) for which she could have made her declaration.

strength of her evidence.

What happens when we put all this together? The hyperboloid in Figure 2.4 gives us the

delimited domain of the likelihood of an agent’s declaration. This captures the reasoning

we just covered as to the qualitative inferences agents make about one another’s beliefs

from their declarations. From this, the agents in the population update their beliefs about

the state of the world, in the normal way, using Bayes’ rule. (See Appendix A for the

mathematical details.)

In this way, rational agents learn from their own private evidence, the declarations of other

agents in the network, and the public belief about the true state evolves through discussion

and across the network.

2.3 Truth in the Long Run

Our primary interest lies in dynamical analysis of the short-to-medium-run behavior of social

inquiry under conformist bias. Before we proceed to this analysis, however, it may help us
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in this to understand the long-run trajectory of social learning under conformity. What we

find is that, in the long run, irrespective of social structure or conformist bias, epistemic

communities like the ones we have described will converge to believing in, and publicly

declaring, the true state of the world.

More precisely, given any social network, unbounded evidence, and the possibility of suffi-

ciently truth-seeking agents 1 ∈ supp(α), a community of Bayesian learners will, with prob-

ability one, converge to knowing and declaring the truth in the long run. This is captured

by the following proposition and its corollary.

Proposition 2.1. An epistemic community learning about the state of the world will, in the

long run, converge in belief to the true state.6

Corollary 2.1. For such an epistemic community, converging in belief to the true state

implies converging to consensus in declaring the true state.

Convergence in beliefs follows from the fact that our agents learn via Bayesian conditioning,

that the true state is contained in each agent’s hypothesis set, and that agent declarations

are always to some degree informative as to the state of the world. Given this, classical

convergence results for Bayesian learning7 guarantee long run acquisition of the truth.

Convergence in declarations follows from the fact that, given convergence in beliefs, the

community’s beliefs will inevitably pass a threshold such that a consensus on declaring the

true state cannot be escaped. Moreover, with enough time following the passing of this

threshold of belief, the population will almost surely traverse a positive probability path to

consensus on the true state, whereupon it will never leave this consensus.

It may well be that “in the long run we are all dead,” [Keynes, 1923, p. 80] but it can be

helpful to confirm where we are headed. We have seen that our epistemic communities will

6All proofs can be found in Appendix A.
7For an excellent exposition of the classic results, see [? ].
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arrive at the truth in the limit of time, so we turn to short and medium run analysis of social

learning for a richer and more pressing picture of inquiry.

2.4 Truth and Conformity in the Short and Medium

Run

What can be said about the short and medium run behavior of learning under conformity?

What role does social structure play in the reliable acquisition of true beliefs? To answer

these questions, we ran simulations of our model of epistemic communities engaged in social

learning and discourse. We recorded and analyzed the resulting behavior over a parameter

sweep of network types, population sizes, initial declarations, prior beliefs, and distributions

of the individuals’ truth-seeking and conformity orientations.

For the simulations, we varied the structure of social influences by placing our agents on each

complete, regular (of degree N/2), circle, star, and random (of mean degree N/2) networks.

We varied the number of agents N in the network from 2 agents (at which all networks are

essentially identical) to 20 agents. We considered when the initial declarations of the society

were at a consensus on the true state, a consensus on the false state, and an even split.

We varied the shared prior beliefs of the population between relative confidence in the true

state (P (θ) = 0.75), skepticism toward the true state (P (θ) = 0.25), and ambivalence about

the true state (P (θ) = 0.5). Each combination of network structure, population size, initial

declarations, and prior beliefs composed one parameter setting.

For each parameter setting we ran 10,000 simulations where each simulation was composed

of 100 turns, and where each turn consisted of the following phases: (1) a randomly selected

agent receives her private evidence from Nature; (2) the agent updates her private belief

in light of this evidence; (3) the agent chooses her best response given her beliefs, her
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(a) (b)

Figure 2.5: Plots of the mean belief in the true state P (θ) (a), and declaration of the true
state θ (b), for each network type, and for network sizes from 2 agents to 20. Note that the
networks only become fully distinct at N = 6. The dashed line represents performance in
total absence of any conformity.

neighbors’ declarations, and her truth-seeking/conformity orientation; (4) the agent makes

her declaration to the network; (5) the other agents in the network update their beliefs in

light of her declaration.

Three regularities readily emerged from the data (see Figures 2.5a, 2.5b): (1) In all

simulations, the star network performed worse than all other standard networks in terms

of generating reliable belief in, and declaration of, the true state. (2) The circle network,

on the other hand, performed better than other standard networks on all counts. (3) The

other networks—complete, regular (of degree N/2), and random (of mean degree N/2)—

yielded middling performances, neither as good as the circle, nor as poor as the star, with

the regular network typically outperforming the random network, and the random network
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outperforming the complete network.8

To make sense of these regularities in our simulation results, analytic treatment of the model

and its dynamics is needed. What should be obvious is that conformity bias muddies the

waters with respect to the information content of individuals’ declarations. In the absence

of conformity, our epistemic communities would rapidly and reliably acquire the truth, and

the underlying network structure would make no difference to this learning.

What we will find is that different networks induce social configurations more or less con-

ducive to honest communication, and that this will also depend on the degree to which the

population is divided or unified in their public declarations.

2.5 Influence, Information, and Social Structure

To understand why different social networks are more or less conducive to the reliable acqui-

sition of true beliefs, we first need a measure of informativeness. For this, we introduce the

concepts of influence and informativeness of declarations, and show how they are related.

We define the influence of a declaration x ∈ {θ,¬θ} as the difference between the public

belief in x before and after its declaration to the network, q(x|x)−q(x), where q is the public

belief. Next, we define the informativeness of a declaration x ∈ {θ,¬θ}, as the reduction in

uncertainty it produces with respect to its corresponding state when starting from a maximal

entropy prior, H(q|q(x) = 1/2)−H(q|x), where H is the Shannon entropy function.

We now derive the fact that the informativeness of a declaration is monotonically increasing

in its influence on the public belief (see Lemma 2.1 in Appendix A). This gives us that a

8In our simulation plots (Figure 2.5), we mark the performance of learning in the absence of any
conformity bias—that is, of unimpeded Bayesian learning—with a dashed line. We will continue to compare
our results to this control case, denoting the case of learning in the absence of conformity bias in further
plots (Figure 2.6, 2.7, 2.8) each time with a dashed line.
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Figure 2.6: The influence and informativeness of an agent’s declaration, as a function of the
proportion of her neighbor’s who are declaring the same state.

declaration will be (minimally) maximally influential just in case it is (minimally) maxi-

mally informative. We will use this fact repeatedly to infer the relative informativeness of

declarations from their influence.

Optimal Information From Going Against the Grain

Given our measures of influence and informativeness, our first insight follows straightfor-

wardly from our model of agents learning via Bayesian conditioning under uncertainty

about one another’s evidence and truth-seeking orientations. It is that the most informative

declarations—those that have the most significant effect on the public belief—are those that

“go against the grain.” That is, those made by agents exactly when they deviate from the

consensus of their neighbors.

This insight is captured by the following proposition:

Proposition 2.2. The informativeness of an agent’s declaration is monotonically increasing

in proportion of her neighbors who are declaring the opposing state.
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And since the minimum proportion of an agent’s neighbors who may declare in favor of any

state is zero, we have the following as an immediate corollary:

Corollary 2.2. The most informative declaration in favor of a state is one made by an

agent when she goes against the consensus of her neighbors.

This corresponds to the case in Figure 2.3, where Ni(θ) = 0, and is visualized by the

plot of information of declarations in Figure 2.6 where we see the change in belief by

the population in response to an agent’s declaration as a function of the proportion of that

agent’s neighbors who are declaring the same state.

When an agent deviates from the consensus of her immediate peers, it is inferred by the

broader network that she is both likely to be more truth-seeking and that she has received

sufficiently strong evidence to justify the loss in social payoffs she incurred. No other decla-

ration is more influential on the public belief.

Optimal Expected Information From Conflicted Neighbors

We have seen what that the most informative declarations occur when an agent goes against

the consensus of her peers. But such declarations are rare, as it takes highly truth-seeking

agents with good evidence to be willing to make them. We should ask then: under what

conditions, on average, do we expect to find the most informative declarations?

These turns out to be the obverse of where we find the most influential declaration. The

most informative declarations, on average, must come from individuals whose neighbors are

perfectly divided in terms of their declarations.

This is captured by the following observation:

Observation 2.1 (Observation 1). The most influential and informative declaration, in
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Figure 2.7: The expected influence and informativeness of an agent’s declaration, as a function
of the proportion of her neighbor’s who are declaring the same state.

expectation, is that made by an agent when her neighbors are evenly divided in their decla-

rations.9

Observation 2.2 (Observation 2). The expected information of declarations is convex and

increasing for Ni(θ) ∈ (0, 1/2) and convex and decreasing for Ni(θ) ∈ (1/2, 1).

This corresponds to the case in Figure 2.3, where Ni(θ) = 1/2, and is visualized by the plot

of expected information of declarations in Figure 2.7. In Figure 2.7 we see the expected

change in belief of the population in response to an agent’s declaration, as a function of

the proportion of that agent’s neighbors who are declaring the true state. Our propositions

make use of these observations.

It is when an agent’s social influences equally represent each viable position that she is most

free to declare her honest belief, and in such a case others infer that she is most likely doing

9Our observations are computationally verified for the following distributions of types and evidence: the
distribution of truth-seeking orientations in the population was varied from Beta(1,5) (corresponding to
high conformism), to uniform, and Beta(5,1) (corresponding to high truth-seeking). And the distributions
of evidence induced by each state of the world were varied between the linear case described before, and
Gaussian distributions with means of 1 and -1, and variances of 1, 10, and 100.
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so.

2.5.1 Informativeness of Networks

Which networks then are most conducive to the social configurations that yield honest com-

munication? Using the insights developed so far, we extend the concept of expected infor-

mativeness to the level of social networks.

Assume that θ is the true state of the world, then expected influence of declarations X =

{θ,¬θ} for an N -agent network G is given by

EX [q(θ|G)− q(θ)] ∝
N∑
k=0

(Nk)∑
j=1

N∑
i=1

EX [q(θ|xi)− q(θ)]

where the first sum is over the number of the agents in the network declaring the true state,

the second sum is over the possible configurations of declarations in the network given the

number of agents declaring the true state, and the third sum is over the individuals in the

network.10 In this way, we infer the informativeness of a network in aggregate as well as for

fixed proportions of the community declaring the true state.

With a generalized measure of expected informativeness, we compute the expected informa-

tiveness of 10-agent networks for different proportions of the population declaring the true

state (see Figure 2.8).

From this, several observations emerge. Denote the proportion of the community declaring

θ by Nθ. For all networks, then, the least informative state is that of consensus, Nθ = 0 or 1,

and the most informative state is when there is an even split in declarations Nθ = 1/2. Given

10Note that we suppress the normalizing term from the definition of the influence of a declaration. The
reason for this is that both terms are constants, and are therefore irrelevant for determining maxima or
minima.
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Figure 2.8: The expected informativeness of the next declaration for 10-agent networks as a
function of the proportion of the population which is declaring of the true state. The dashed
line denotes the expected information in the absence of any conformity.

Observation 1, it should be clear why this is so. Declarations are expected to be informative

in measure to the presence of balanced dissent.

Next, we observe that, when the population is nearly split, the complete network produces

the most informative declarations among the networks considered, while the circle network

produces the most informative declarations when the population is near consensus. Finally,

the star network provides the least informative social configuration no matter the proportion

of the population making either declaration.

We may understand these results in terms of our previous insights, and sharpen them

by considering large networks. On a star network, when the population is large, practi-

cally every individual has merely one neighbor. Hence, for any proportion of declarations

in the population, the star network will be in the minimally informative state. That is,

I(Gstar|Nθ) = NθI(1) + (1−Nθ)I(0) = I(0).11

11Given the assumption of symmetry of expected informativeness across Nθ = 1/2, we have that I(0) =
I(1), and, more generally, that I(1/2− c) = I(1/2 + c) for all c ∈ [0, 1/2].

74



Proposition 2.3. For large networks, the star network is minimally informative in any

state.

On a complete network, when the population is evenly divided, Nθ = 1/2, each individual is

in the optimal position to make informative declarations. When all individuals are neighbors

and the population is sufficiently large, the expected informativeness of the network as a

whole recapitulates the expected informativeness of individual declarations given in Figure

2.7. That is, I(Gcomplete|Nθ) = I(Nθ). Given Observation 1, we show that no network can

be more informative in such a state.

Proposition 2.4. For large networks, when the population is evenly split in declarations,

the complete network is maximally informative.

On a circle network, when the population is near consensus, a single dissenting individual

can make it possible for both her their neighbors to declare their honest beliefs. That is,

given that each individual has two neighbors, their neighbors’ declarations are binomially

distributed with the success parameter given by the population proportion of declarations,

I(Gcircle|Nθ) = N2
θ I(0)+2Nθ(1−Nθ)I(1/2)+(1−Nθ)

2I(1). Contrast this with the complete

network, where near consensus, every individual faces strong incentives to conform.

Proposition 2.5. For large connected networks, for a range of states near consensus in

declarations, the circle network is the maximally informative network.

More generally, we can express the expected informativeness of the declaration of any in-

dividual with d connections and proportion Nθ of her neighbors declaring the true state

as

ENθ [Id] =
d∑

k=0

(
d

k

)
Nk
θ (1−Nθ)

d−kI

(
k

d

)
. (∗)
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From this, we can derive the informativeness of a any network, when we conceive of networks

as admixtures of proportions of individuals with different numbers of neighbors.

Given any large network, it can be represented as a distribution µ = 〈µd〉 over the degree

d of individuals within the network, Thus, the expected informativeness of the network will

be I(Gµ|Nθ) =
∑

d µd · ENθ [Id]. Using this, we provide bounds for the informativeness of

epistemic networks near consensus.

Proposition 2.6. For large networks, near consensus, any network (including any regular

or random network) of minimum degree at least two will be intermediate in informativeness

between the circle and complete network.

2.6 Conclusion

When social learning proceeds under the influence of conformity bias, the structure of social

relationships underpinning the epistemic community becomes crucial to reliable acquisition

of truth. That disagreement and diversity in publicly held opinions can be optimal for

honest communication gives us our key insight into understanding the effects of different

social networks. The question as to which social networks lead to reliable beliefs becomes a

question as to which social networks produce and sustain optimal patterns of disagreement

throughout the process of learning.

In sum, we find that in the presence of even a modicum of conformity bias the star network

always provides the worst conditions for informative communication, the complete network

provides optimal conditions exactly when the population is evenly divided, the circle net-

work provides optimal conditions near consensus, and that, in such a state, all sufficiently

connected networks will be intermediate in informativeness between the circle and complete

networks.

76



This has implications for real-world social networks, which tend to exhibit low average degree

and high degree-centrality [85]. We may conjecture that, when we suspect conformity bias

at play in social discourse and decision-making, interventions which reduce the density of

connections of a social network while still keeping it connected, and interventions which

decrease its centralization by reducing the relative influence of central individuals, may

lead to more informative communication—and so to more reliable beliefs—for the epistemic

community as a whole.

2.7 Mathematical Appendix

Learning from others’ declarations

When agent i declares x = θ, we know that it was her best response. As previously men-

tioned, this implies that the following condition holds:

αi(2Pi(θ)− 1) + (1− αi)(2Ni(θ)− 1) > 0. (†)

We plug agent i’s (publicly unknown) posterior probability P (θ|σ) into (†) to get the elab-

orated condition

αi

 2

1 +
1− P̄
P̄

1− σ
σ

− 1

+ (1− αi)(2Ni(θ)− 1) > 0 (‡)

where P̄ denotes the (publicly known) prior P (θ|ht). We then compute the likelihood of

agent i’s declaration θ, given our public prior, as follows.

Let φ denote the left-hand term of our elaborated condition (‡), under which our agent would

have declared θ, so that I[φ > 0] is its indicator function. We then get the likelihood of the

77



declaration given each possible state of the world,

P (x = θ|θ, P̄ ) =

∫
A

∫
Σ

I[φ > 0]dFθ(σ)dG(α),

P (x = θ|¬θ, P̄ ) =

∫
A

∫
Σ

I[φ > 0]dF¬θ(σ)dG(α).

From these, we obtain the posterior—the belief of the other agents in the network in light

of agent i’s declaration of θ—using Bayes’ rule as follows

P (θ|x = θ, P̄ ) =

(
1 +

∫
A

∫
Σ
I[φ > 0]dF¬θ(σ)dG(α)∫

A

∫
Σ
I[φ > 0]dFθ(σ)dG(α)

1− P̄
P̄

)−1

which yields the new public belief.

Proof of Proposition 2.1. There are two states of the world θ and ¬θ. Without loss of gen-

erality, suppose θ to be the true state of the world. Let q(ht) = P (θ|ht) be the public belief

and ht the history of declarations up to time t. As is well-known, the likelihood ratio

`(ht) ≡ 1− q(ht)
q(ht)

is a martingale conditional on θ. Let X be the finite set of declarations. For any given

declaration x ∈ X,

`(ht, x) = `(ht)
P (x|ht,¬θ)
P (x|ht, θ)

and thus the martingale property follows:

E
[
`(ht+1)|θ

]
=
∑
x∈X

`(ht, x)P (x|ht, θ) =
∑
x∈X

`(ht)P (x|ht,¬θ) = `(ht).

By Theorem 3(b) of [? ], when evidence is unbounded, individuals almost surely converge

in belief to the true state.
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We show that convergence in beliefs implies a convergence in declarations. In particular, we

show that convergence in beliefs implies that the community’s belief in the true state will

be bounded from bellow over time. We then observe, using simple probabilistic arguments,

that given sufficient time the community will almost surely arrive at a consensus state where

all individuals are declaring the true state. Finally, we show that, having arrived at such a

consensus with individual beliefs in the true state appropriately bounded from bellow, the

community must remain at this consensus forever.

Proof of Corollary 2.1. Let q and q′ denote the public belief before and after hearing a

declaration, respectively. Consider a focal agent i having received her evidence from Nature

on a given turn. Let Pi denote the focal agent’s posterior belief P (θ|σ,ht), and suppose

that this agent declared x = ¬θ. It is straightforward to show that if the population could

observe the focal agent’s posterior, the public belief would be precisely equal to her posterior

q′(¬θ, q,Ni(θ), Pi) = Pi. (*)

Let Π(·|¬θ, q,Nθ) be the distribution over the focal agent’s posterior belief given her decla-

ration of ¬θ, q the public belief when she selected her action, and Ni(θ) the proportion of

her neighbors declaring θ. By (*) we can write

q′(¬θ, q,Ni(θ)) =

∫ 1

0

Pi dΠ(Pi|¬θ, q,Ni(θ)).

We can thus interpret the public belief as the public’s expectations of the focal agent’s

posterior. As the public belief almost surely converges to certainty on the truth, for almost

all trajectories of the public belief {qt}+∞
t=0 , for all ε > 0 there exists a time Tε such that, if

t > Tε then qt > 1− ε. That is, there is a time after which the public belief in θ will always

be at least 1− ε. Then choose ε = 1/2.
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With probability 1 at some point along the trajectory after Tε all agents will be declaring θ.

To see this, let λ be the probability all N agents choose declarations in sequence, each has an

α sufficiently high such that they declare the state they believe to be more likely regardless

of their neighbors’ declarations, and they receive evidence such that their posterior assigns

higher probability on θ. However small the probability λ might be, it exceeds 0. Hence, the

probability that this event does not occur goes to zero as t→ +∞.

Assume, for the sake of contradiction, that at some point after Tε an agent goes against the

consensus and declares ¬θ, then her posterior must satisfy

Pi ≤ −
1− αi

2αi
+

1

2
.

But then we get that E[Pi|¬θ, ·] ≤ 1/2. That is, her belief in θ was less than 1/2, which

contradicts the fact that her belief was bounded from bellow. Hence, no agent can deviate

from the consensus after time Tε, and convergence in belief implies convergence in declaration.

Lemma 2.1 (Monotonicity of Informativeness in Influence). The informativeness of a dec-

laration about a state is monotonically increasing in its influence on the public belief.

Proof. Without loss of generality, let the focal agent declare x = θ. We show that the infor-

mativeness of her declaration, H(q|q(θ) = 1/2) − H(q|x = θ)), is monotonically increasing

in its influence, q(θ|x = θ)− q(θ).

First, we unpack the definition of informativeness, temporarily omitting the assumption of
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the maximal entropy prior q(θ) = 1/2, to get

H(q)−H(q(θ|x = θ) = E[−ln(q(θ|x = θ))]− E[−ln(q(θ))]

= E[ln(q(θ))− ln(q(θ|x = θ))]

= E

[
ln

(
q(θ)

q(θ|x = θ)

)]
= q(θ) · ln

(
q(θ)

q(θ|x = θ)

)
+ q(¬θ) · ln

(
q(¬θ)

q(¬θ|x = θ)

)

Now, let A ≡ q(θ) and B ≡ q(θ|x = θ), so that C ≡ B − A denotes the influence of the

declaration x = θ. Then we can re-write the preceding expression as

A · ln
(

A

A+ C

)
+ (1− A) · ln

(
1− A

1− (A+ C)

)

Taking the partial derivative with respect to influence C, and solving for when it is positive—

i.e., for when informativeness is increasing—yields

A+ C − 1 > 0 or B > 1/2.

And when q(θ) = 1/2, we have that B = q(θ|x = θ) ≥ 1/2, and so informativeness is

monotonically increasing in influence, as desired.

We will show that q′(θ,Ni(θ)
′) < q′(θ,Ni(θ)) whenever Ni(θ)

′ > Ni(θ). From this it follows

straightforwardly that, given Ni(θ) ∈ [0, 1], the most influential declaration occurs just when

Ni(θ) = 0.

To do so, consider a given focal agent i having received evidence σ ∼ fθ(σ) from Nature.

Let r = r(σ) ≡ Pi(¬θ|σ) be one minus her private belief, G¬θ(r) and Gθ(r) the conditional

cdf’s for r, and g(r) ≡ dG¬θ
dGθ

(r) the Radon-Nikodym derivative of G¬θ with respect to Gθ.

Lemma 2.2. g(r) = r
1−r almost surely.
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Proof. If an agent updates her belief after observing r, it will remain unchanged. Thus from

Bayes’ theorem r = Pi(¬θ|r) = g(r)
g(r)+1

.

Lemma 2.3. The ratio G¬θ
Gθ

(r) is strictly increasing for r in the common support of Gθ and

G¬θ.

Proof. Let r′ > r. From Lemma 2.2 we have that g(r) is strictly increasing, hence,

G¬θ(r) =

∫ r

0

g(x)dGθ(x) < g(r)Gθ(r)

And thus

G¬θ(r
′)−G¬θ(r) =

∫ r′

r

g(x)dGθ(x).

> [Gθ(r
′)−G¬θ(r)]g(r)

> [Gθ(r
′)−G¬θ(r)]

G¬θ(r)

Gθ(r)
.

It follows that G¬θ(r′)
Gθ(r′)

> G¬θ(r)
Gθ(r)

.

Proof of Proposition 2.2. Now, we proceed to show that q′(θ,Ni(θ)
′) < q′(θ,Ni(θ)) whenever

Ni(θ)
′ > Ni(θ). Define q′ to be the posterior public belief, q the prior public belief, Ni(θ)

the proportion of the focal agent’s neighbors declaring θ, and Π(·|xi, q, Ni(θ)) the posterior

belief over the declaring agent’s truth-seeking orientation αi ∈ [0, 1]. Then

q′(θ,Ni(θ)) =

∫ 1

0

q′(θ,Ni(θ), αi)dΠ(αi|θ,Ni(θ), q).

For a given αi in the support of Π(·|θ,Ni(θ), q), there exists a threshold r̄ = r̄(αi, q, Ni(θ))

82



such that the agent only selects xi = θ if r ≤ r̄. From Bayes’ theorem,

q′(θ,Ni(θ), αi) =

(
1 +

1− q
q

G¬θ(r̄)

Gθ(r̄)

)−1

.

If r̄(αi, Ni(θ)
′, q) ≥ r̄(αi, Ni(θ), q) holds, and further holds strictly for a subset of αi with

positive posterior probability, then, by Lemma 2.3, q′(θ,Ni(θ)
′) < q′(θ,Ni(θ)).

It can be shown that the threshold r̄(αi, Ni(θ), q) is strictly increasing in Ni(θ). This gives

us that q′(θ,Ni(θ)
′, αi) ≤ q′(θ,Ni(θ), αi). Furthermore, having assumed that αi and r

take full support in [0, 1], we can find a neighborhood of αi = 1 with positive probabil-

ity such that r̄(αi, Ni(θ), q) > 0 for all αi in this neighborhood. Hence, in this neighborhood

q′(θ,Ni(θ)
′, αi) < q′(θ,Ni(θ), αi).

Proof of Corollary 2.2. We have, from proposition 2.2, that q′(θ,Ni(θ)
′) > q′(θ,Ni(θ)) when-

ever Ni(θ)
′ < Ni(θ). It follows directly that

arg max
Ni(θ)∈[0,1]

q′(θ,Ni(θ)) = 0.

Thus, the most influential declaration is made just when Ni(θ) = 0. And we have, from

Lemma 2.1, that this is also the most informative declaration.

Proof of Proposition 2.3. On a large star network, proportion 1 of individuals have a single

neighbor. Thus for any proportion of the population declaring θ, every individual is in the

minimally informative state where either Nθ = 0 or 1. Therefore, for all Nθ ∈ [0, 1], and

symmetric I, I(Gstar) = I(0) ≤ I(G) for any connected network G.

Proof of Proposition 2.4. On a complete network, every individual individual is neighbors

with every other. Hence, the proportions of an individuals neighbors declaring θ is the same
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as the proportion of the population declaring θ. The expected informativeness is maximized

when an individual’s neighbors are equally split Ni(θ) = 1/2. Thus, when exactly half the

population is declaring θ, the declaration of every individual in the population is at maximal

expected informativeness. Hence, no other network can be more informative in this state.

That is, when Nθ = 1/2, I(Gcomplete) = I(1/2) ≥ I(G) for any connected network G.

To show that the circle is maximally informative near consensus, first we show that for

regular networks of degree at least 2 informativeness is decreasing in degree near consensus.

This implies that any regular network of degree greater than two is less informative than

the circle network. We combine this with Proposition 2.3, which implies that networks of

degree 1 are also less informative than the circle network, to show that the circle network

is the maximally informative regular network. Next, using the fact that any network can

be formulated as an admixture of individuals of various degrees we derive that the circle

network is maximally informative near consensus.

Lemma 2.4. For regular networks of degree at least 2, informativeness is decreasing in

degree near consensus.

Proof. Take the derivative of the informativeness of any regular network Gd of degree d ≥ 2

with respect to the proportion of the population declaring the true state.

d

dNθ

[I(Gd)] =
d

dNθ

[
d∑

k=0

(
d

k

)
Nk
θ (1−Nθ)

d−kI

(
k

d

)]
.

Let Nθ go to 0. This makes it so only the constant terms of the derivative remain, and the

expression simplifies to

lim
Nθ→0+

d

dNθ

[I(Gd)] = d[I(1/d)− I(0)].

This term corresponds to the slope of the secant line connecting I(0) and I(1/d). Since I is
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an increasing function, this term must be decreasing in d. Thus, for networks of degree two

and greater, informativeness is decreasing in degree near consensus.

Lemma 2.5. The circle is the maximally informative regular network near consensus.

Proof. This follows from Lemma 2.4 and Proposition 2.3, which state that a regular network

of degree 2 (the circle) is more informative than any network of greater degree near consensus,

and that a regular network of degree 1 is less informative than any other at any state. Taken

together, they imply that, near consensus, regular networks of degree two are maximally

informative among regular networks.

Proof of Proposition 2.5. Now, recall that any large connected network Gµ can be formulated

as an admixture µ = 〈µd〉 of proportions of individuals of degree d ≥ 1, where
∑

d µd = 1

and µd ≥ 0. The expected informativeness of any network then is a proportion-weighted sum

of the expected informativeness of the individuals of each degree contained in the network.

That is, I(Gµ|Nθ) =
∑

d µd · ENθ [Id]. It follows from Lemma 2.5 that, near consensus, any

network not entirely composed of individuals of degree two is strictly less informative than

one which is in fact composed entirely of individuals of degree two. Thus, when Nθ = 0 or

1, I(Gcircle) > I(Gµ) for any Gµ such that µ0 = 0 and µ2 6= 1, as desired.

Proof of Proposition 2.6. It follows directly from Lemma 2.4 that, near consensus, the max-

imally and minimally informative regular networks of degree at least two are the circle and

complete network, respectively. We combine this with the fact that any large network Gµ can

be formulated as an admixture µ = 〈µd〉 of regular networks of degree d, and the linearity

of expected informativeness, to adduce that the informativeness of any network is bounded

above by that of the circle network and bounded bellow by the complete network. That is,

when Nθ = 0 or 1, I(Gcircle) ≥ I(Gµ) ≥ I(Gcomplete) for any Gµ such that min{d : µd > 0} ≥ 2,

as desired.

85



Chapter 3

How Redefining Statistical

Significance will Worsen the

Replication Crisis

The strength of an empirical science is in the ability for the evidence of its discoveries to

be reproduced—independently and with statistically-satisfying consistency. For this reason,

the low success rate of replication studies in the social [68, 24], biological [21], and medical

[69] sciences has been seen as a threat to the credibility of the scientific enterprise.

In a recent, high-profile proposal aimed to ameliorate the crisis in replication, a large group

of prominent scientists and statisticians have called for a reduction in the p-value significance

threshold from its conventional level of 0.05 to 0.005 [50, 15]. They argue that the higher

evidential burden would have the effect of lowering the false positive rate—the rate at which

claimed discoveries are in fact untrue—thereby improving reproducibility.

However, this argument rests on the assumption that researchers follow sound statistical

protocol. As such, it does not account for the ways in which researchers exploit their “degrees
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of freedom”1 to obtain statistical significance (e.g. p-hacking, multiple comparisons, selective

reporting).

In this article, I show that these degrees of freedom can generate unintended consequences

wherein redefining statistical significance actually leads to an increase in the false positive

rate, in turn exacerbating problems with reproducibility. The adverse effect will occur when:

(1) false positive rates differ across studies and (2) lowering the significance threshold reduces

the number of significant outcomes more for studies with the lowest false positive rates.

To illustrate the result, consider the following example. Imagine that some fraction of studies

are sound, the remaining are unsound, and assume an unsound study always obtains signifi-

cance regardless of the truth of the hypothesis being tested. In this case, redefining statistical

significance will result in lowering the false positive rate of sound studies (as in [15]), but also

increasing the proportion of significant outcomes that are unsound. Furthermore, once the

significance threshold is made sufficiently small, the latter effect will dominate the former,

resulting in an increase in the false positive rate.

The identification of this mechanism contributes another reason for growing concern with

the proposal to redefine statistical significance [38, 6, 26, 60, 59, 83]. In particular, it justifies

apprehension about the interplay between redefining statistical significance and researcher

degrees of freedom. However, it also suggests caution for counterproposals to abandon p-

value significance thresholds or 0-1 decision rules altogether as these expand the domain of

researcher degree of freedom and will thus further threaten the reproducibility of claimed

findings.

Section 3.2 begins by introducing the first version of the model in which all studies are

perfectly homogeneous, as is the case in [15]. Here we find lowering the significance threshold

can only reduce the false positive rate. Section 3.3 expands the model to allow studies to be

1See [47], [79], and [37] for extended discussions of researcher degrees of freedom.
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of heterogeneous types, varying along dimensions which affect their propensity to produce

false positives. Under heterogeneity, lowering the significance threshold will increase the

false positive rate if and only if doing so sufficiently increases the proportion of significant

outcomes of types with the highest false positive rates. Section 3.3.1 provides an example of

this mechanism and section 1.6 concludes.

3.2 Homogeneity

Consider a unit mass of independent studies.2 In each study, a researcher conducts a hypoth-

esis test between a pair of null (H0) and alternative (H1) hypotheses, with the prior chance

the alternative hypothesis is true for any particular study being π ∈ (0, 1). Let fθ(x) denote

the sampling density of test statistic x ∈ R under both the null (θ = 0) and alternative

(θ = 1) hypotheses. Assume fθ(x) satisfies the monotone likelihood ratio property (MLRP):

f1

f0

(x) ≤ f1

f0

(x′), x ≤ x′. (3.1)

The p-value p(x) from observing x is

p (x) ≡ Pr (X ≥ x|θ = 0) = 1− F0(x). (3.2)

The MLRP provides that lower p-values provide stronger evidence against the null, in favor

of the alternative. Let Gθ(p) ≡ Pr (p (x) ≤ p|θ) denote the CDF of the p-value under

hypothesis θ and gθ(p) the corresponding PDF. Using (3.2), we can express these functions

Gθ(p) = 1− Fθ
(
F−1

0 (1− p)
)
, gθ(p) =

fθ(F
−1
0 (1− p))

f0(F−1
0 (1− p))

. (3.3)

2Assuming a continuum allows for simple statements of our results. Alternatively, one could insert the
addendum “as the number of studies goes to infinity almost surely” in each result.
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It follows from (3.3) that the p-value is distributed uniform(0,1) under the null. The following

properties of the p-value distributions will be used in our results. Omitted proofs can be

found in the appendix.

Lemma 3.1.

1. G0 has first order stochastic dominance over G1.

2. g1(p) and G1

G0
(p) are non-increasing in p.

The researcher conducting study i selects an action a from the set A and receives the payoff

U(y, a) (3.4)

where y = 1 if i is significant, y = 0 if i is non-significant, and significance is preferred

to non-significance U(1, ·) ≥ U(0, ·). The outcome for i is significant if and only if the

reported p-value p̂ is less than or equal to the significance threshold α. The reported p-value

p̂ is determined by both the true p-value p and the researcher’s action a and is assumed to

satisfy the following monotonicity condition

p̂(p, a) ≤ p̂(p′, a) if p ≤ p′. (3.5)

That is, if we fix a researcher’s action and change the data so that the true p-value decreases,

so too does the reported p-value.

To avoid trivialities, assume the set of payoff maximizing actions to be well-defined. For

simplicity, if a researcher is indifferent between actions yielding significance and others that

do not, then an action yielding significance is chosen.3

3The appendix shows that the results do not depend on this assumption.
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Suppose a researcher, upon obtaining a p-value of p, finds it optimal to select an action

yielding significance. Then, if another researcher obtains a p-value of p′ ≤ p, he too must

find it optimal to select an action yielding significance. By this logic, significance is obtained

for all p-values below some cutoff b(α). Furthermore, if a researcher optimally obtains

significance at α, then significance must also be optimal at a less stringent α′ ≥ α, and thus

the cutoff b(α) must be nondecreasing.

Lemma 3.2. There exists a (weakly) increasing function b(α) such that significance is ob-

tained if p < b(α) and non-significance obtained if p > b(α).

We turn to the primary object of interest, the false positive rate R(α). A false positive

occurs when a hypothesis test yields a significant outcome when the null is in fact true. The

false positive rate is equal to the number of false positives divided by the total number of

significant outcomes

R(α) =
(1− π)Pr (y = 1|α,H0)

(1− π)Pr (y = 1|α,H0) + πPr (y = 1|α,H1)
(3.6)

and by lemma 3.2

R(α) =

(
1 +

π

1− π
G1

G0

(b (α))

)−1

. (3.7)

The false positive rate of sound research is given by replacing b(α) with α in (3.7). In general,

b(α) may be less than, greater than, or equal to α. In the special case where researchers may

choose sound reporting
(
p̂ (p, a0) = p for some a0 ∈ A

)
and deviations from this action are

costly
(
U(1, a) ≤ U(1, a0)

)
, the cutoff exceeds the significance threshold b(α) ≥ α and the

resulting false positive rate in (3.7) exceeds the false positive rate of sound research.

Observe also in (3.7) whenever b(α) is non-constant, the qualitative response of R(α) to a

90



change in α is the same as with sound research.

Theorem 3.1. Under homogeneity, reducing the significance threshold α (weakly) decreases

the false positive rate R(α).

Thus, if studies are homogeneous, redefining statistical significance will, at the very least,

not worsen reproducibility. As we shall now see, this is no longer true with a departure from

homogeneity.

3.3 Heterogeneity

Realistically, studies can vary along many dimensions that influence their likelihood of pro-

ducing a false positive. We capture this by allowing studies to be of distinct types t ∈ T .

Examples include heterogeneous prior chances πt, statistical power Gt
1, preferences Ut, or

capacity to exercise degrees of freedom At or p̂t.

Let types be distributed according to probability measure µ with probability space (T,Σ, µ)

and maintain all the previous assumptions of section 3.2. For a particular type t, lemma

3.2 ensures the existence of a weakly increasing function bt(α) such that a study of type t

obtains significance if and only if p ≤ bt(α). For the false positive rate to be well-defined, we

require the mapping t 7→ (πt, G
t
θ (bt (α))) to be measurable for all α.

To obtain the false positive rate under heterogeneity, define Rt(α) to be the false positive

rate for studies of type t and η(D|α) to be the proportion of significant outcomes that are

of a type in D ∈ Σ at significance threshold α,4 and write

R(α) =

∫
Rt(α)dη(t|α). (3.8)

4The appendix provides a formal derivation of η.
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The false positive rate is thus a weighted average of the false positive rates for the individual

types, with the weights being endogenously determined by α. Theorem 3.1 guarantees each

Rt(α) will not increase with a reduction in α. It follows that, if a reduction in α is to increase

R(α), it must be due to a change in the type-composition of significant outcomes η(·|α).

Define Bδ,α = {t ∈ T |Rt(α) > δ} to be the set of types with false positive rates exceeding

δ at significance threshold α so that (Bδ,α, B
C
δ,α) partitions types between those with the

highest false positive rates t ∈ Bδ,α and those with the lowest false positive rates t ∈ BC
δ,α.

The following theorem states that, lowering the significance threshold increases the false

positive rate if and only if, by some partitioning of types (Bδ,α, B
C
δ,α), those with the highest

false positive rates increase sufficiently as a proportion of the total significant outcomes.

Theorem 3.2. Reducing the significance threshold from α to α′ increases the false positive

rate R(α) < R(α′) if and only if there is a sufficient increase in the proportion of significant

outcomes that are of types with false positive rates exceeding δ, for some δ ∈ (0, 1). In

particular,

η(Bδ,α′ |α′)− η(Bδ,α|α) > ψ(δ, α, α′) > 0. (3.9)

The precise form of ψ(δ, α, α′) can be found in the appendix.

In other words, if the studies most prone to producing false positives are the least affected by

reducing α, then redefining statistical significance will worsen reproducibility. This condition

will naturally hold when the same factors that originally led a study to have a higher false

positive rate also induce a lower response to changes in the significance threshold. This point

is illustrated in the following example.
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3.3.1 Example

Consider the motivating example from the introduction. Suppose there are two types of

studies T = {ts, tu} assigned with probabilities µ(ts) = 1 − λ and µ(tu) = λ. The available

actions and preferences for a researcher of type ts induce sound statistical protocol p̂ts = p.

In contrast, the available actions and preferences of a researcher of type tu induce unsound

protocol so that significance is obtained p̂tu ≤ α at all α. Assume all hypotheses have the

same prior chances π and fθ(x) is differentiable.5

The false positive rates for each type areRs (α) =
(

1 + π
1−π ·

G1(α)
α

)−1

andRu (α) =
(
1 + π

1−π

)−1

so that sound research produces a lower false positive rate Rs(α) < Ru(α) for all α < 1. The

proportion of significant outcomes that are unsound is η (tu|α) =
(
1 + 1−λ

λ
(πG1(α) + (1− π)α)

)−1
.

Reducing α results in (1) lowering the false positive rate of sound studies Rs(α) and (2)

increasing the proportion of significant outcomes that are unsound η(tu|α). As shown in

figure 3.1, for α below some threshold α∗ ∈ (0, 1), the former effect becomes dominated by

the latter, so that reducing α increases R(α).

Figure 3.1: False Positive Rate. The diagram depicts the false positive rate R(α) as a
function of the significance threshold α when fθ ∼ N (θ, 1) and λ = π = 1

2
.

5There is an alternative description of this example relating to the model of bias in science by [58].
Maintain the MLRP assumption and assume all studies are sound except that with chance λ an insignificant
outcome is reported as significant. The first description provides a decision-theoretic basis for this simpler
one.
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Proposition 3.1. For any λ ∈ (0, 1), lowering the significance threshold α decreases the

false positive rate R(α) if α > α∗ and increases the false positive rate if α < α∗ for some

α∗ ∈ (0, 1).

And thus if any fraction of studies are unsound, reducing the significance threshold by too

much (α < α∗) will worsen reproducibility. Furthermore, even in the complementary domain

(α ≥ α∗) the presence of unsound studies will mitigate the positive effects of redefining

statistical significance.6

3.4 Conclusion

This article has shown how redefining statistical significance will worsen reproducibility if

doing so disproportionately reduces the number of significant outcomes for studies with the

lowest false positive rates. Furthermore, this will occur even in the presence of arbitrarily

small researcher bias. And while the analysis was motivated as a response to [15], the

findings apply more generally to any 0-1 decision rule in science, so long as the appropriate

monotonicity assumptions hold.

These findings emerge from mild monotonicity assumptions, but hold even more generally.7

The online appendix analyzes extensions of the model. It shows that when researchers

have the option to preregister their studies [67], redefining statistical significance produces a

qualitatively similar effect as in section 3.3.1 and that multiple-hypothesis testing will only

negatively impact reproducibility in the presence of some form of heterogeneity.

It is not clear what the path towards a more reliable science will entail, whether it be

6If R̂(α) is the false positive rate when all studies are sound, then ∂R
∂(−α) >

∂R̂
∂(−α) .

7Theorem 3.2 is still obtained if we dispense with all the assumptions in section 3.2 and simply take as
primitive that Rt(α) is nondecreasing. The subsequent example requires only that data satisfies MLRP and
that a positive fraction of studies are unsound.
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more stringent statistical requirements, increased adoption of Bayesian methods, further

proliferation of preregistration, or even more radical changes than these. What is clear is

that the incentives and preferences underlying both the supply and demand of science cannot

be ignored. The consumers of science demand crisp and clean conclusions from research and

the producers of science are incentivized to meet this demand. Future proposals that fail to

account for the confluence of these forces are likely to be less effective or, as we have seen in

this article, exacerbate the problem.

3.5 Mathematical Appendix

Proof of Lemma 3.1. (1) By the MLRP, F1 has first-order stochastic dominance over F0,

F1(x) ≤ F0(x) for all x. This further entails that G0 has first-order stochastic dominance

over G1, G0(p) ≤ G1(p) for all p ∈ [0, 1].

(2) That g1(p) is non-increasing follows immediately from its definition the MLRP. The

derivative of G1

G0
(p) is proportional to g1(p)G0(p) − g0(p)G1(p) which is non-positive if and

only if g1
g0

(p) ≤ G1

G0
(p) which holds because G0 has FOSD over G1.

Proof of Lemma 3.2. Choose any p′ such that there exists an action ã yielding significance

p̂(p′, ã) ≤ α and this action is optimal U(1, ã) ≥ U (y (p′, a′) , a′) for all a′ ∈ A. If no such p′

exists, set b(α) = 0.

Let A0
p(α) ⊂ A be the actions yielding nonsignificance for p at α. Notice for p ≤ p′, ã yields

significance at p′ it must also at p, p̂(p, ã) ≤ p̂(p′, ã) ≤ α and A0
p(α) ⊆ A0

p′(α). This implies

U(1, ã) ≥ U (0, a′) for all a′ ∈ A0
p(α) and thus an action yielding significance must be optimal

at p. Thus, we can set b(α) equal to the supremum of the set of p′ at which at which an

action yielding significance is optimal.
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To establish that b(α) is weakly increasing, notice that if α ≤ α′, then A0
p(α) ⊂ A0

p(α
′), and

thus if U(1, a) ≥ U(0, a′) for all a′ ∈ A0
p(α
′) then U(1, a) ≥ U(0, a′) for all a′ ∈ A0

p(α).

Let us justify the claim that assuming an action yielding significance is chosen when faced

with indifference can be greatly weakened. Uninteresting technical complications arise in

the case of indifference when: (1) unknown to the researchers themselves, the decisions of

researchers with precisely the same p-value p are correlated with the truth of the hypotheses

θ (2) a researcher changes his decision after a reduction in α to α′, even though he was

indifferent at both significance thresholds. We wish to rule these cases out.

Let γ(p, α) be the likelihood of obtaining significance at p and α. Assume (1) γ(p, α) does

not depend on θ (2) If a researcher at p is indifferent at both α and α′, then γ(p, α) = γ(p, α′)

and (3) γ(p, α) is Gθ measurable. Define

g̃θ(p) =
γ(p)gθ(p)∫ 1

0
γ(s)gθ(s)ds

and G̃θ(p) =

∫ p

0

g̃θ(s)ds. (3.10)

First observe that g̃ satisfies the (inverted) MLRP. Consider a decrease in the significance

threshold from α to α′ < α.

R(α′) ≤ R(α) ⇐⇒ G̃1

G̃0

(b(α′)) ≤ G̃1

G̃0

(b(α)). (3.11)

By lemma 3.2 b(α′) ≤ b(α) and as the (inverted) MLRP guarantees G̃1

G̃0
(p) is decreasing, the

inequality holds. Thus Theorem 3.1 holds under these more general conditions.

Deriving η.

Let M0(α, t) and M1(α, t) be the false and true positives for type t respectively. The

measurability of t 7→ (πt, G
t
θ (bt (α))) guarantees M0(α) =

∫
M0(α, t)dµ(t) and M1(α) =
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∫
M1(α, t)dµ(t) are well-defined.

R (α) =

∫
Rt (α)mt (α) dµ (t) (3.12)

with mt(α) = M0(α,t)+M1(α,t)
M(α)

and M(α) = M0(α) +M1(α).

Define the probability measure η(·|α)

η(D|α) =

∫
D

mt(α)dµ(t) (3.13)

and thus

R(α) =

∫
Rt(α)dη(t|α). (3.14)

Proof of Theorem 3.2. The measurability of Bδ,α follows from the measurability of t 7→

(πt, G
t
θ (bt (α))). Denote the conditional expectation ofRt(α) for types inD ∈ Σ by R̄(D|α) =

E[Rt|D,α]. Making the condition in (3.9) explicit

ψ(δ, α, α′) =
R̄(Bδ,α|α)− R̄(BC

δ,α|α)

R̄(Bδ,α′|α′)− R̄(BC
δ,α′|α′)

η(Bδ,α|α) +
R̄(BC

δ,α|α)− R̄(BC
δ,α′ |α′)

R̄(Bδ,α′ |α′)− R̄(BC
δ,α′ |α′)

. (3.15)

Expand the false positive rate

R(α) = R̄(Bδ|α)η(Bδ|α) + R̄(BC
δ |α)η(BC

δ |α) (3.16)

and note R(α′) > R(α) if and only if the first inequality in (3.9) is satisfied. All that remains

to be shown is, if R(α′) > R(α), then there exists δ satisfying ψ(δ, α, α′) > 0.

To obtain a contradiction, assume ψ(δ, α, α′) ≤ 0 for all δ. Define the CDF ν(δ̂|α) = Pr(δ ≤
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δ̂|α) = η(BC
δ |α). By assumption, ν(·|α) dominates ν(·|α′) in terms of first-order stochastic

dominance. Recalling Rt(α
′) ≤ Rt(α),

R(α′) =

∫
Rt(α

′)dη(t|α′) ≤
∫
Rt(α)dη(t|α′) =

∫
δdν(δ|α′) ≤

∫
δdν(δ|α) = R(α) (3.17)

contradicting R(α′) < R(α).

Proof of Proposition 3.1.

R(α) =

(
1 +

π

1− π
· λ+ (1− λ)G1 (α)

λ+ (1− λ)G0 (α)

)−1

(3.18)

R′(α) is of the opposite sign as

h(α) = λ (g1 (α)− g0 (α)) + (1− λ) (G0 (α) g1 (α)−G1 (α) g0 (α)) . (3.19)

Upon differentiating, h′(α) = (λ+ (1− λ)α) g′1(α) ≤ 0. Finally, noting lim
α→0+

h(α) > 0 and

lim
α→1−

h(α) < 0 completes the proof.

3.6 Appendix: Extensions

Uncertainty & Preregistration

We expand on the example presented in the body of the paper to show that our findings

do not rely on the exogeneity of unsound practices. We do this by supposing that prior

to observing the data, a researcher chooses whether or not to preregister his study [67]. A

preregistered study must follow sound statistical protocol. A study that is not preregistered is

free to engage in unsound protocol. Preregistration offers a payoff premium but significance is

still always preferred: U(y,Preregister) = uy, U(Do not Preregister) = ū, and u0 < ū < u1.
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Figure 3.2: False Positive Rate under Uncertainty. The diagram depicts the false positive
rate R(α) and preregistration rate ρ(α) as functions of the significance threshold α when
si|θ ∼ 2si + θ(2− 4si), π = 1

2
, x ∼ N (θ, 1), and ū = u1+u0

2
.

Prior to choosing, each researcher receives an informative signal si of the hypothesis being

tested H i
θ. Assume the beliefs induced by the signals π(si) are smoothly distributed within

some interval.8 Writing a researcher’s expected payoff to preregistration

EU (Preregister|si) = Pr (p ≤ α|si)u1 + Pr (p ≥ α|si)u0 (3.20)

so that a researcher’s optimal action is to preregister whenever Pr (p ≤ α|si) ≥ ū−u0
u1−u0 .

Figure 3.2 portrays both the researcher choices and the false positive rate as a function of the

significance threshold when signals are drawn from the conditional density 2si + θ(2 − 4si)

with support si ∈ [0, 1], x ∼ N (θ, 1), and ū = u1+u0
2

. For α > 1/2, all researchers choose

preregistration, conduct sound studies, thus a reduction in α reduces R(α). Once α is

8In particular, the distribution of beliefs is differentiable with a non-degenerate, convex support.
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reduced below 1/2, researchers with the lowest expectations on their hypotheses π(si) will

abstain from preregistration and opt for the latitude to exercise degrees of freedom. Once α

is made less than approximately 0.15, no researchers preregister and thus R(α) is constant.

More generally, in this environment, R(0) = R(1) and R(α)′ > 0 in the neighborhood of 1,

yielding the following proposition.

Proposition 3.2. In the preregistration example, there exists an open set on which lowering

the significance threshold α increases the false positive rate R(α).

Multiple Hypothesis Testing

In the ideal picture of science, a scientist makes a prediction and then gathers data to test

the prediction. Hypothesis testing intends to capture this ideal by requiring the null and

alternative hypotheses to be specified prior to observing the data. It may thus be seen as

“anti-scientific” to invert the order of operations—for a scientist to first observe the data

and then to choose a hypothesis. Borrowing from [67], refer to ex post hypothesis choice as

postdiction.

Does postdiction contribute to the false positive rate per se? We shall see that the answer to

this question will turn on whether there is an adequate degree of heterogeneity among the

hypotheses the researcher chooses from.

To illustrate the point, consider the following example of homogeneity. Suppose a researcher

observes some data and obtains the p-values for L independent and ex ante identical hypoth-

esis tests. Consider the following strategies.

Strategies.

1. Prediction R(1)(α): Test single hypothesis.
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2. Postdiction R(2)(α): Randomly select from significant hypotheses.

3. Selective Postdiction R(3)(α): Report hypothesis with the lowest p-value.

Consider the posterior probability when significance is obtained in these strategies. Under

prediction and postdiction, the posterior probability of the alternative hypothesis is deter-

mined by the chance of obtaining a significant p-value under the alternative relative to the

null. Whether a hypothesis was declared before or after observing the data has no bearing

on the posterior and thus the false positive rate.

The posterior under selective postdiction is determined by the chance of obtaining a p-

value that is not only significant, but also smaller than the p-values of the other available

hypotheses. The additional evidential burden selective postdiction places on a hypothesis

functions in qualitatively the same way as lowering the significance threshold. This gives

rise to the following proposition.

Proposition 3.3. Under homogeneity,

1. Prediction yields the same false positive rate as postdiction, both exceeding the false

positive rate of selective postdiction

R(1)(α) = R(2)(α) ≥ R(3)(α) (3.21)

2. The false positive rate for selective postdiction is decreasing in the number of hypotheses

L.

The proof can be found at the end of the appendix.

Heterogeneous Hypotheses.
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Figure 3.3: False Positive Rate under Multiple Testing. The diagram depicts the false
positive rate when only the primary hypothesis is reported R(1)(α) and under multiple testing
R(2)(α) as functions of the significance threshold α when π`∗ = 0.9, π`′ = 0.1, and σ = 2.

Now suppose a researcher begins with a primary hypothesis H∗ but may also choose from

L−1 auxiliary hypotheses {H l}L−1
`=1 . The primary hypothesis has the benefit of prior empirical

or theoretical support while the auxiliary hypotheses do not. We capture this notion but

specifying π∗ > π` for ` = 1, 2, ..., L− 1.

Compare the two strategies: (1) test primary hypothesis (prediction) (2) report primary

hypothesis if significant, otherwise randomly select from significant auxiliary hypotheses

(postdiction).

Figure 3.3 shows that, naturally, if researchers always stick to their primary hypotheses, then

lowering α reduces the false positive rate R(1)(α). If researchers are prone to report auxiliary

hypotheses with low priors when their primary hypothesis fails: (1) the false positive rate

will be larger than if they stayed strictly with the primary hypothesis (2) lowering α may,

once again, lead to an increase in the false positive rate R(2)(α). The intuition for the last

observation is that, while lowering α reduces the false positive rates for both the primary

and auxiliary hypotheses, it also increases the propensity for researchers to select auxiliary

hypotheses.
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Proof of Proposition 3.3. Under prediction R(1)(α) =
(

1 + π
1−π

G1(α)
α

)−1

. For postdiction, let

z` be a random variable such that z` = 1 if hypothesis ` is selected to be reported and z` = 0

otherwise.

R(2)(α) =

(
1 +

M
(2)
1 (α)

M
(2)
0 (α)

)−1

. (3.22)

M
(2)
j = E`

[
Pr(z` = 1 ∧H`

j )
]

= E`
[
Pr(z` = 1|p` ≤ α,H`

j )Pr(p` ≤ α|H`
j )Pr(H

`
j )
]
. (3.23)

Given that the choice of significant result to report is independent of the p-value

Pr(z` = 1|p` ≤ α,H`
j ) = Pr(z` = 1|p` ≤ α). (3.24)

Using both this observation and Pr(p` ≤ α|H`
j ) = Gj(α), the equality R(2)(α) = R(1)(α)

immediately follows.

To consider selective postdiction, let p∗−` = inf`′ 6=` p`′ and also

R(3)(α) = E`
[
R

(3)
` (α)

]
and R

(3)
` (α) = Ep∗−`

[
R

(3)
`

(
α; p∗−`

)]
. (3.25)

For all p∗−`

R
(3)
` (α; p∗−`) =

(
1 +

π

1− π
G1 (min {α, p∗`})
G0 (min {α, p∗`})

)−1

≤
(

1 +
π

1− π
G1 (α)

G0 (α)

)−1

= R(1)(α) (3.26)

and thus R(3)(α) ≤ R(1)(α) = R(2)(α).

To prove the second claim, first note that R
(3)
`

(
α; p∗−`

)
is increasing in p∗−` for p∗−` < α

and constant otherwise. The CDF of p∗−` given the number of hypotheses L is Pr(p∗−` ≤
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t|L) = Pr(p`′ ≤ t)L−1 and thus Pr(p∗−` ≤ t|L) is first-order stochastically dominated by

Pr(p∗−` ≤ t|L′) for L′ < L. It follows that R(3)(α) is decreasing in L. Furthermore, as L

tends to infinity, the distribution of p∗−` weakly converges to the dirac measure δ0(·) and thus

Ep∗−`
[
R

(3)
`

(
α; p∗−`

)
|L
]
→ R

(3)
` (α; 0) as L→ +∞. (3.27)

If g1(p) is unbounded then R
(3)
` (α; 0) = 0 and thus R(3)(α|L)→ 0 as L→ +∞.
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