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ABSTRACT . 

A procedure is presented to display and analyze epidemiologic data with the use of 
density-equalized maps. The algorithm for geqerating these maps is discussed in terms of 
several simple examples~ Two specific methods for statistically analyzing these maps are 
given in detail, followed by an application of maps and methods to six sets of age-, race-, 
sex-, site-specific cancer incidence data. The data were obtained from the Surveillance, 
Epidemiology and End Results (SEER) project for San Francisco city/county (1978-1981) 
and combined with 1980 U.S. Census data. 
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INTRODUCTION 

Distribution of disease is at the foundation of epidemiology as noted by A. Lilienfeld 
[1], who.begins his text: 

Epidemiology may be defined as the study of the distribution of a 
disease or a pathological condition in human populations and the fac­
tors that influence this distribution. 

Recent epidemiologic investigations have focused on geographic distributions of 
disease {e.g. [2]-[ 4]). Much of this recent work employs computer-generated maps 
that identify the highest and lowest site-, race-, sex-specific age-adjusted cancer 
mortality rates for the U.S. Further epidemiologic interpretation or extensive sta­
tistical analysis is generally not attempted. A major limitation of dealing with 
disease plotted on geopolitical maps sterns from the fact that geographic subunits 
such as states, counties, or census tracts are not defined in terms of the 
population-at-risk to the disease. Large, sparsely populated areas tend to dom­
inate a geopolitical map, whereas epidemiologic interest should be focused on areas 
with highly dense populations. The visual impact of a county map of the U.S., for 
example, is disproportionately influenced by .the large and sparsely populated 
counties of the Rocky Mountain area and insufficiently influenced by the counties of 
the East Coast. Rigorous statistical analysis of maps based on geopolitical boun­
daries is complicated for essentially the same reason -- the geographic subunits 
often represent extremely different populations-at-risk. Statistical analysis of 
maps usually consists of a significance test to identify those high rates that were 
unlikely to have occurred due to random fluctuation. Often these statistical tests 
are based on the dubious assumption that disease with low frequency is described, 
at least approximately, by a Poisson distribution. Another way to deal with random 
fluctuations resulting from variation associated with small populations is to com­
bine these less populated areas into larger geographic units {e.g., State Economic 
Areas [5]). This strategy involves a somewhat arbitrary combining of geographic 
units and decreases the specificity of any geographic analysis. 

Ideal data for geographic analysis should contain the location of the cases of 
disease under study. Exact location data are rarely available for practical reasons 
and because of concern for confidentiality. The most detailed cancer incidence 
data available, on a large scale, come from cancer registry data (e.g., Surveillance, 
Epidemiology and End Results (SEER) [6]), where often the census tract of the 
cancer incident case is recorded. Corresponding age-sex-race specific population 
denominators are available from the decennial census {specifically the 1970 Second 
Count and the 1980 Summary Tape File 2A). As for geographic coordinates, 1970 
census tract boundaries produced by Lawrence Berkeley Laboratory are available 
from the U.S. Census Bureau; 1980 census tract boundaries can be purchased from 
private sources. 

Although census tract information is useful as an indicator of location, direct geo­
graphic analysis is still complicated by the lack of equality of risk among tracts. 
Presented here is a new approach using an old technique. The old technique 
involves drawing cartograrns, i.e. maps scaled according to criteria other than the 
usual geopolitical boundaries. Here, the criterion is the equalization of population 
density, and the process will be referred to as a density equalizing map projection 
(DEMP). The goal of the transformation is to produce a map which depicts the dis­
tribution of disease uninfluenced by geopolitical boundaries but which preserves 
approximate spatial relationships. Such a map can be used for display purposes, or 
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it can be statistically analyzed to rigorously assess any observed pattern. 

Such cartograrns, produced . by laborious non-computational methods, were 
described and used in publichealth applications as early as the 1920's [7)-[14]. 
Tobler discussed theoretical aspects of such transformations [15] and in 1974 
developed.a DEMP compu\er algorithm [16]{17). · . · 

In the next sectio.n; we pre~ent a DEMP algorithm developed at Lawrence Berkeley 
Laboratory, followed by two sugg~sted methods for statistical analysis of incidence 
data. In the final section, sampl~ data for_ six cancer sites, from the SEER (Surveil­
lan~e. Epidemiology and End Results) projec't. are analyz'ed with the use of density 
equalized maps. 
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ALGORITHM 

The DEMP algorithm, as the name suggests, transforms boundaries so that all geo­
graphic units {e.g. census tracts) in a map have areas proportional to their popula­
tion, i.e. equal population density. A pre-chosen density is set and the boundary of 
each tract is either expanded or contracted, creating a new map formed of these 
"equal density" tracts. If a number of tracts have equal population density, then a 
phenomenon which occurs with equal likelihood with respect to each individual will 
occur randomly over the entire map and the tract boundaries can be ignored. 
Specifically, the distribution of a disease plotted on a map with uniform population 
density is free from the interfering bias caused by unequal population densities 
inherent in a geopolitically defined map. 

To illustrate the DEMP algorithm we start with the simplest possible example. Con­
sider the two concentric circles in the left part of Figure l {a hull's eye). Suppose 
that the inner circle has an area A= 10 square units; the outer circle encloses an 
area A+ B=30 square units, so that the doughnut-shaped area lying between the 
two dashed circles has an area B=20 square units. Suppose also that the popula­
tions associated with A and B are equal. 

To achieve an equal population density, area A can be increased from 10 to A' =20 
square units while area B is maintained at 20 square units {total area = A' + B = 
40). The change in the radius of circle A (dr

11
) and the corresponding change in the 

outer radius { dr 
11 

+b) to achieve equal density are: 

dr · = r, - r = v'201 rr- v'101 rr = 2.52- 1.78 = 0.74 
II II II 

and 

dr = r - r = v' 401 rr - v'30I rr = 3 57 - 3 09 = 0 48 ll+b 11' +b 11+b • • • 

where r a' and r a' +b are the radii of the transformed circles, shown in the right pcn·t 
of Figure 1. In general, for circles of arbitrary radius, the transformed area of A is 

2 
A' = A+dA = rrr a' 

where dA represents the necessary increase in A. Equivalently, 

1/2 
ra, = ra v'1+dAI A = ra MA 

where MA = 1 +dA I A = (A +dA )I A = A' I A is the areal magnification factor applied 
to A. The necessary increase in the radius of A is 

1/2 
dra = rJMA -1]. 

To keep the area of B the same, increasing the outer circle to compensate only for 
the increase in A, the transformed area of (A +B) is 

2 
A' +B =A +dA +B/= rrr 

II' +b 

and the new radius is 
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The necessary change in the radius is 

dra.+b = ra.'+b -ra.+b = ra.+bl , where 
. . . . . . 2 2 . 1/2 

I =[ v'1 +dA/ (A +B)-1] = [(1+(MA -1)ra./ra.+b), -1] . 

The result has the following expected properties: 

dra.+b is zero if MA = l{no change in A) . 

. The radius r a.+b increases for MA > 1 (magnification of A). and decreases for 
.. ¥A< 1 ( derrui..gnification. of A). . 

The formula for dr a +b reduces to the expression· for dr a, for the special case 
r =r b, i.e. when the circle A and the outer circle coincide. a a.+ . 

The change in radiU:s, dra+b" becomes small at large distances (ra+b »ra.). 

For the example of Figure 1, .. 

dr = VlO/ rr [v'2-1] = .74, and 
a, 

. ' .112 
dra.+b = V30/rr [(1+(2-1)(10/ rr)/ (30/ rr)) -1] = .48. 

' ·. •' ' 

Computer maps are normally made up of polygons. These polygons are represented 
as a series of discrete line segments defined by a series of coordinate points (xi ,yi ). 
Instead of operating on radii of circles, a computer implementation to form equal­
density areas requires a calqulation in ,termsof xy-coordii1ates of points describing 
polygon boundarie~: The expression for I giv~n here for the case of concentric cir­
cles applies also to· arbitrary points.(xi,yi)' provided that ra and ra+b are suitably 
redefined. For a fuller discussion, see the Appendix. 

Figure 2 shows the application of the DEMP algorithm to a geometric configuration 
slightly more complicated than two concentric circles. Suppose the circle A has a 
population density 16 times that of the area A, circle B has a population density 
1/20 that of area B, and the areas A and B {not including A and B respectively) 
have equal population density. The lower half of Figure 2 results from applying the 
DEMP algorithm to increase the area A by a factor of 16, to decrease the area B by 
factor of 20 and to leave the areas A and B unchanged. The new projection now 
has equal population density over the entire figure. That is, distances between 
occurrences plotted on this DEMP are no longer influenced by the original density 
inequality inherent in the top figure. If a phenomenon occurs at random (with pro­
bability proportional to the population at risk) within areas A, A,B, and B, then the 
distribution of points of occurrence will be uniformly distributed over the entire 
two-dimensional region. 

The two maps in Figure 3 show the result of applying the DEMP algorithm to the 
contiguous states of the U.S. Obviously, the large Rocky Mountain states play only 
a small role with respect to any phenomenon related to population, such as the fre­
quency of disease. California and the states in the northeast are enlarged, while 
states such as Montana, North Dakota and Idaho all but disappear. Although the 
transformed shape of the U.S. is not very familiar, a phenomenon that has the same 
probability of affecting each individual will be uniformly distributed over the 
transformed map. Such a Poisson random variable will be "fairly" depicted and the 
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contributions from each state to the visual impact will be proportional to the 
population-at-risk (surface area of the map). 

Figures 4, 5 and 6 illustrate applications of DEMP to the 150 census tracts of the 
city and county of San Francisco. Figure 4 is a standard geopolitical representa­
tion of the 1980 census tracts with selected census tracts variously shaded. 

In Figure 5 the same map of San Francisco has been transformed to yield equal 
population density for white males 35 to 54 years of age. Note that areas of high 
population density (dotted shading) are expanded, and areas of low population 
density (diagonal shading) are decreased. Two areas, namely Golden Gate Park (the 
long rectangle in the west) and an industrial tract in the extreme southeastern 
corner, completely disappear because both have no permanent residents and, 
therefore, no relevance to population-related phenomena. 

Figure 6 is a similar DEMP for the 35 to 54 year old black male population of San 
Francisco. A predominantly black neighborhood (solid shading in Figure 4) shows an 
expectedly large increase in size from Figure 4 to Figure 6. The equal-density map 
of black males 35 to 54 years old reveals that these persons live predominately in 
three neighborhoods of the city. 

Figure 7 shows thirteen cases of a hypothetical "disease" with a rate of 26 cases per 
100,000 population (among white females 35 to 54 years old) and no assumed geo­
graphic pattern. The clustering in the north-eastern part of San Francisco is due to 
the high population density in that part of the city. 

The DEMP produces a distribution of "cases" on a map with equalized population 
density (Figure 8). As expected, the distribution of this "disease" has no defined 
pattern, and this fact is reflected in the distribution plotted on the DEMP of San 
Francisco. In the next section, statistical analysis is used to assess chance varia­
tion as a likely explanation for such an observed configuration. 
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STATISTICAL ANALYSES 

In this section, two statistical methods are used to illustrate ways in which data 
plotted in .a DEMP can be analyzed. Both methods provide rigorous ways of identi­
fying non-random patterns of disease. The null hypothesis underlying these two 
techniques is that the cases of disease are randomly distributed among the indivi­
duals residing in the area under investigation. The end product, as in most statisti­
cal analyses, is a probability· ("p-value'') associated with the likelihood of finding 
the observed distribution, given this null hypothesis. 

A reduction (when compared to randomness) in the average distance (between all 
possible pairs) amo'ng the cases of a specific disease indicates one type of non­
random pattern. For example, if cases of a disease are associated with a point 
source of pollution or the life-style of a specific neighborhood, ·a cluster of cases 
would be expected. Of course there are many ways to measure the degree of clu:-;­
tering in a set of observations [18], each with its own properties. A simpie measure 
is the average squared distance among the cases. If k cases occur, then the average 
squared distance is 

- 2 k 
d =~~d . ./ (2) 

•• 1.J 
I<J 

where d .. ·is the distance between case i and case j. If 15 is the random variable 
associat~d with the measured valued, then under the null hypothesis, the expecta­
tion and variance of 15 are 

- 2 2 
E(D) = 2(EX +EY) and 

- .· _2 2 2 2 -
Var(D) = ~[4-W~(ED) ]k-4[W'"-4(EXY) +4EX EY]+3(ED)jlk(k-1) ,with 

4 2 2 4 
W = EX - 2EX Y + EY , where 

i _j , n i j 
EX r is estimated by ~k= 1 (xk -x) (yk -y) In, and 

(xi,yi),i=1,2, ... n are the centroids of then census tracts. For example, for San 
Francisco white males 35 to 54 years old, 

E(D) = 15.71 and 

Var(D) = (90.0k +162.5)/ k (k -1) 

are the expectation and variance calculated from the centroids of the n = 150 
transformed census tracts. The units of the numerical constants depend on the 
units of 15, which are arbitrary and proportional to map area. So as ·to maint~in 
approximate comparability among the d of the various age-sex-specific data sets, 
the total area of each transformed map is kept equal to that of the original map 
(see Appendix) . 

The average squared distance .d among the<k cases (under the null hypothesis) has 
a nearly symmetric distribution for San Francisco and can be accurately approxi­
mated by a normal distribution. The approximate norr:nality of the distribution of 
15 stems from the Central Limit Theorem and the fact that the transformed map of 
San Francisco is nearly square. It should be noted that the distribution of average 
distance 
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is less syrmnetric than that of the average squared distance d and, therefore, not 
as accurately approximated by a normal distribution as is IJ. 

The statistical analysis of lJ is accomplished by calculating 

z = (d -ED)/ ..J Var (D) 

and p =P(Z <z ), where Z has an approximate standard normal distribution. The 
observed value of z provides a summary assessment of the likelihood that the 
observed d could have occurred by chance under the null hypothesis. Small values 
of p are an indication of clustering. 

Alternatively, the distribution of lJ can be investigated with the use of computer 
simulation. By selecting a random sample of k census tracts, each with selection 
probability proportional to the tract population, and calculating d many times 
(say, 200 times) an empiric null distribution can be derived. In other words, the 
distribution of lJ based on k random "cases" can be found. The observed lJ can 
then be assessed using this computer simulated distribution. Both approaches give 
similar results when applied to data for San Francisco (see next section). 

The probability {power) of detecting a decrease in average squared distance, when 
it exists among a set of cases, can be approximately calculated. If one postulates 
that the average squared distance among the cases is systematically decreased by 
c.. factor f , then the probability that the data measurably reflect this decrease is a 
function of sample size alone. Given the fact that San Francisco is approximately 
square, the approximate variance of lJ is 

- 2 lc 
Var(D) = r {2k+3)/90(

2
) 

where r is the length of the side of the "square" San Francisco. The probability of 
detecting a decrease in squared distance is then 

power= P(Z <z') 

where Z has a standard normal distribution and 

z' = (1-/ )/ 3..JVar(D)- Z
1
_/ / • 

Note that Z
1

_a is the 1-o.'th percentile of a standard normal distribution where a 
is typically set at 0.05, making Z

1
_a = z.

95 
= 1.645. The confidence level a is the 

probability of detecting an apparent decrease in f if none exists {type I error); (3 = 
(1-power) is the probability of failing to detect a true decrease in f (type II error). 
Table 1 and Figure 9 show the results of the power calculation for f = 0.5, 0.6, 0. 7, 
O.B. 0.9 and 1.0. These power curves indicate that even small sample sizes are 
sufficient to statistically detect clustered observations. For example, a 50% 
decrease (/ =0.5) in average 'squared distance will be detected (o.=0.05) with close 
to .90 ([j = .10) probability for a sample size of k = 10. Of course, this power calcula­
tion depends on an extremely simple, almost simplistic, statistical structure but 
does tend to indicate the efficacy of using a measure of intra-case distance for the 
study of the distribution of cases of a disease. 
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Another approach to analyzing geographic data on a transformed map is to esti­
mate the parameters of a polynomial representation of the distribution of cases 
[19]. One such polynomial is 

2 2 
zi = a+b1xi+b2 yi+bsxi +b4 Yi +b5xiyi 

where z. is the number of cases in census tract i, having its centroid at (x. ,y. ) . 
1... t t 

The coefficients for this model can be estimated by ordinary least squares methods. 
For a random Poisson distribution of cases, the estimated coefficients o

1
,o

2
,o

3
,o

4 
and o

5 
are randomly distributed about zero. On the other hand, a systematic geo­

graphic pattern of disease will be associated with the coordinates x. and/ or y., 
t t 

increasing the likelihood that large values of the coefficients will occur. The evalua-
tions of the proposed model comes from the comparison of two quantities, namely 

n 11. 2 
5 1 = ~i=1 (zi -2'i) In 

and n 2 
S 0 = ~i= 1 {zi-z) In, where 

A 2 2 
2'i =a +b 1xi +b2yi +b3xi +b 4yi +b5xiyi • 

and z = kIn is the average number cases per tract. The degree by which S 
1 

is 
reduced relative to S

0 
· measures the usefulness of some or all of the b -coefficients 

in "explaining" the distribution of the disease. The quantity 

has an approximate ?-distribution when the cases occur at random with respect to 
the xy -coordinates. For small numbers of cases, however, the significance proba­
bility derived from f is not extremely accurate since the quantity {z. -~.) is not 

t t 
normally distributed. Nevertheless, the comparison of a series of these f -values 
gives a relative measure of randomness or lack thereof among a series of diseases. 

· Fitting a polynomial to a distribution of cases for San Francisco has the added 
feature that the terms of the model are essentially orthogonal {since San Francisco 
is approximately square), thereby increasing the estimation precision. 
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ILLUSTRATIVE DATA 

To illustrate two approaches for analyzing the geographic distribution of disease, 
data from the Surveillance, Epidemiology and End Results {SEER) program for 
residents of San Francisco are used. Incidence cases among whites (1978-1981) for 
six cancers {stomach, colon, rectum, Hodgkin's disease, chronic lymphocytic 
leukemia and acute granulocytic leukemia), two age groups {35-54 and 55-74), and 
both sexes were selected. The total of 1225 cancer cases among the white popula­
tion was reduced to 1128 since 97 cases {8%) were not assigned to a valid 1980 
census tract. The number of cases for each site, the incidence rate per 100,000 
person-years, and the results of the statistical analysis are given in Table 2. Four 
age- and sex-specific DEMP's were generated from tract-level 1980 census data 
{Summary Tape File 2A) and corresponding geographic base maps. The tract-level 
SEER data, 1980 census population data, and geographic base maps were all taken 
from the SEEDIS information system at Lawrence Berkeley Laboratory [20]. In the 
S~ER data, the exact location of the residence of each case has been suppressed to 
preserve- confidentiality. We used instead the geographic centroid of the census 
tract of residence; the error thereby introduced is not significant when the number 
of tracts is much larger than the number of cases. · 

Figures 10 through 15 show the location of the cases for white females 35 to 54 
years old, for each of the six cancer sites, on a population-adjusted tract map of 
San Francisco. The centroid of the cases is calculated, cind a circle is constructed 
with this centroid as the center, so that 50% of the k cases are contained within the 
circumference. {No circle is drawn if k <3.) 

These circles are analogous to a confidence region in that both location and varia­
bility are simultaneously depicted. The ce:qter of the circle indicates location, and 
the size of the circle indicates the degree of dispersion. For example, the circle 
generated by the distribution of colon cancers {wf: 35-54) {Figure 11) is relatively 
large and centered in the middle of San Francisco, whereas the circle associated 
with stomach cancers {wf: 35-54) {Figure 10) is off-center and somewhat reduced in 
size. 

The average squared distances d among the cancer cases are given in Table 2. The 
expected value E(JJ) for white females 35-54 years old is 13.31, which differs 
slightly from the other three age-sex cases {wm: 35-54 = 15.71, wm: 55-74 = 15.81 
and wf: 55-74 = 15.88). In white females 35-54 years old, stomach cancer (k = 6, d 
= 5.9 and p = 0.04), Hodgkin's disease (k = 2, d = 1.5 and p = 0.15), and chronic 
lymphocytic leukemia (k = 2, d = 0.6 and p = 0.12) show the smallest values of d . 

The "p-values" given in the parentheses {Table 2) result from assessing d with the 
use of simulation techniques. None of the values differs much from the "p-values" 
calculated using the normal distribution as an approximation to the distribution of 
lJ {with perhaps the exception of colon cancer among women 35-54). Using an 
empirically generated distribution will yield useful results under most cir­
cumstances. The "normal approximation" can be used only when the distribution of 
lJ is symmetric or nearly so, which depends on the shape of the region being 
analyzed. Regions that are approximately circular or square produce distributions 
of lJ that are close to symmetric. 

These data are presented primarily for illustrative purposes and no epidemiologic 
interpretation is given. In the case of Hodgkin's disease and chronic lymphocytic 
leukemia, each with only two observations, any inferences would be very tenuous. 

10 



... 

The lack of reliability comes from the fact that small samples can be highly 
influenced by biases {e.g., misclassification, wrong diagnosis, incorrect residence, 
etc.). Apart from these biases, the significance probabilities are accurate (even for 
only two cases) and do indeed represent the likelihood that the observed squared 
distances are due solely to chance variation. 

An analysis of cancer cases using estimated polynomials indicates the possibility of 
several non-random distributions among the 24 age-sex-site combinations for 
whites in San Francisco. Stoma,ch cancer in women 35-54 {k=6, p<O.Ol), colon 
cancer in both men 55-74 and women 55-74 {k=251, p<O.Ol and k=291, p<O.Ol), 
and rectal cancer in women 55-74 {k=109, p<O.Ol) show some systematic patterns 
in their geographic distributions. A more epidemiologically focused analysis will be 
necessary to verify and explain the observations noted here. 

Two points are worth reiterating. First, using a density-equalized map projection as 
an analytic tool produces a valid analysis even for extremely small numbers of 
cases. Second, routinely collected registry data such as the SEER data can be 
explored using density-equalized maps as long as the census tract of residence is 
recorded. 

As presently implemented, the DEMP algorithm is still too slow for the systematic 
analysis of large data sets. Innovative approaches are being"explored in the hope 
of overcoming these technical difficulties. In view of the growing availability of low­
cost computer resources, the authors believe that the methods described here will 
see widespread use in the epidemiologic analysis of routinely collected mortality 
and disease incidence data . 
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Table 1. Power calculations for f =0.5 through 1.0 and sample sizes 
k = 5 through 50, with the significance level set at 0.05. 

f=0.5 f=0.6 f=0.7 f=0.8 f=0.9 f=l.O 

k=5 0.30 0.19 0.12 0.09 0.06 0.05 
k = 10 0.87 . 0.58 0.32 0.17 0.09 0.05 
k= 20 1.00 0.95 0.69 0.35 0.14 0.05 
k = 25 1.00 0.99 0.81 0.43 0.16 0.05 
k = 30 1.00 1.00 0.89 0.51 0.18 0.05 
k = 35 1.00 1.00 0.94 0.58 0.20 0.05 
k= 40 1.00 1.00 0.96 0.64 0.23 0.05 
k= 45 1.00 1.00 0.98 0.70 0.25 0.05 
k =50 1.00 1.00 0.99 0.75 0.27 0.05 

• 
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Table 2. Incident cases, rates and statistical analysis of six cancer 
sites by age and sex-- San Francisco SEER data for whites (1978-1981). 

Cases Rate d "p-value" Fit 
, .. 

Stomach Cancer 
ages 35-54 wm 18 9.~ 19.7 0.95(.97) 0.88 

wf 6 4.3 5.9 0.04(.05) .( 0.01 
ages 55-74 wm 78 -50.3 16.1 0.85(.86) 0.19 

wf 49 32.8 18.5. 0.97(.98) 0.03 

Colon Cancer 
ages 3~-54 wm 34 17.6 14.0 0.15(.18) 0.34 

wf 29 19.4 11.6 0.14(.34) 0.94 
ages 55-74 wm 251 162.0 16.5 0.85(.84) <0.01 

wf 291 146.1 15.5 0.20(.26) (0.01 

Rectal Cancer 
ages 35-54 wm 26 13.7 15.4 0.45(.54) 0.52 

wf 20 13.3 14.4 0.71(.86) 0.90 
ages 55-74 wm 141 91.0 16.9 0.92(.90) 0.94 

wf 109 50.7 15.6 0.37(.41) <0.01 

Hodgkin's Disease 
ages 35-54 wm 10 5.0 20.0 0.90(.91) 0.74 

wf 2 2.7 1.5 0.15(.11) 0.30 
ages 55-74 wm 4 2.5 15.2 0.47(.49) 0.86 

wf 3 1.5 9.1 0.22(.25) 0.83 

Chronic Lymphocytic Leukemia 
ages 35-54 wm 3 1.6 25.3 0.87(.87) 0.80 

wf 2 1.4 0.6 0.12(.04) 0.73 
ages 55-74 wm 12 7.7 21.8 0.97(.95) 0.06 

wf 12 6.0 15.9 0.65(.65) 0.17 

Acute Granulocytic Leukemia 
ages 35-54 wm 4 2.1 22.0 0.83(.86) 0.71 

wf 4 2.7 15.9 0.67(.70) 0.78 
ages 55-74 wm 16 10.3 20.5 0.97(.98) 0.11 

wf 12 6.0 15.7 0.47(.49) 0.59 

,Q 

Note: rate given is per 100,000 person-years at risk. 

" 
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APPENDIX 

Here we describe the DEMP algorithm used in this paper. 

For an arbitrary polygon having area equal to area A, choose a convenient center of 
expansion, for example the geographic centroid of the polygon A. The center of 
expansion normally lies within A, but this is not necessary. 

Next consider an arbitrary point i having coordinates (x.,y.) relative to the A 
\ \ 

expansion center, at an angle 

e. = arctan(y./ x.) 
\ \ \ 

and a distance 

2 2 1/2 
ri = [xi +yi ] · 

The point i normally lies outside A, but this is not necessary. For consistency with 
earlier notation, we define r r~+b = ri. 

Depending on the configuration of the polygon A, its expansion center, and the 
point i. a line at angle e. from the expansion center to point i may intersect the 

\ 
boundary of polygon A n times, at distances we call r =r {0.). In the simplest 

. rJn rJn \ 
case the expansion center lies inside A, point i lies outside, and the line intersects 
the boundary just once ( n = 1) . For consistency with earlier notation, we define, in 
this case, r = r 

1 
• More generally, we define 

IJ IJ 

{a) center inside A, point i outside, n odd: 
2 2 2 2 2 

r = +r -r +r - · · · +r 
IJ IJ1 IJ2 IJ3 rJn 

2 2 2 2 2 2 
r · = +r -r +r - · · · -r +r. 

IJ IJ 1 IJ2 IJ3 rJn 1 
{b) center inside A, point i inside, n even: 

{c) center outside A, point i outside, n even: 
2 2 2 2 2 

r = -r +r -r + · · · +r 
IJ IJ 1 IJ2 IJ3 rJn 

2 2 2 2 2 2 
r~~ = -rr~l +rr~2 -rr~3 + · · · -r ~~n +ri (d) center outside A, point i inside, n odd: 

With these definitions for r +b and r , and with x. and y. expressed relative to the 
a rJ ' ' A expansion center, a transformation which multiplies the area of polygon A by a 

factor MA and leaves all other areas unchanged is: 

dyi = Y-;.· -yi = Y.J , where 
2 2 1/2 

I = [(1+(MA-1)r
11
/r

11
+b) -1] , and 

MA =[{pop A)/ (poptotlll )] I [(area A)/ (areatotlll )] , 

where poptotlll and areatotlll are the population and {original) area of the entire map. 

The form of I is identical to that derived earlier for the simple case of concentric 
circles. Regardless of the choice of the expansion center of polygon A, the 
transformation changes the area but not the shape of polygon A, and the shapes 
but not the areas of all other polygons. 
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First the areal magnification factors MA are calculated for all polygons. Every 
polygon of a multi-polygon area (e.g. the state of Michigan) is assigned the same MA 
based on the combined population and area of its component polygons. To remove 
uninhabited areas (e.g. deserts, rivers, lakes, etc.) by shrinking them to zero area, 
de~cri~e the_m as polygons ~~h pop A =0, .which impli~s M4 :=o. Otherwise ignore them, 
wh1eh ts eqmvalent to descnbmg them as polygons wtth MA = 1. 

Now the described transformation for polygon A is applied to every point (xi ,yi.) in 
the entire map; then another polygon A is selected and a second transformation is 
applied to every point (xi,yi.); this process is repeated for all polygons A in the 
entire map. The order in which the individual polygons A are selected for 
magnification or contraction affects the shapes but not the areas of polygons .in the 
final map. · 

The correct normalization of maps depends upon the statistical analyses to be per­
formed. The stated definition of MA implies that after all transformations are com­
plete, 

area'eatal = areatotal , 

i.e. the total area of the map is unchanged. This normalization is appropriate for 
the discussion in this paper, in particular the comparison among sexes and races of 
the four values qf E(D), or of the various values of din Table 2. 

If one wishes instead to equalize population density over all sexes and ages, for 
example for sex-age comparisons of case densities (rates), all x. and y. in each 

l l 
age-sex-specific map must be multiplied by the constant factor 

[(pop total )I (areatotal)] 
1/2 

either before or after the DEMP transformation, where popeotal is the total age-sex­
specific population. (Defining MA = pop A I area A would yield correct areas but 
would result in undue distortion). 

Yet another normalization would be appropriate if one wished to equalize density of 
site-specific cases, for example to detect clustering by analyzing the distribution of 
nearest-neighbor distances. In this case all x. andy. in each age-, sex-, site-specific 

.. l 
map must be multiplied by 

[ k I (area totaL)] 
112 

before or after the DEMP transformation, where k is the age-, sex-, site-specific 
number of cases. 

The algorithm defined here exactly describes the correct transformation of indivi­
dual points. Computationally, the only difficult task is calculation of the intersec­
tion distances r {0.). However, the transformed areas are not exactly correct, 
because the str:fght' line segments of polygon boundaries must be be transformed 
into curves, which in turn must be approximated by transformed polygons. An 
accurate representation of curves requires a large number of points, and the exe­
cution time of the DEMP algorithm increases as the square of the number of points 
in the rriap. Map subregions cannot be processed separately, or the external 
transformed boundaries will not coincide. Therefore, an implementation that is 
both accurate and fast requires judicious approximations, including selective 
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insertion and removal of points in the polygon boundaries. This necessitates 
transforming the map back and forth between the usual polygon representation 
and a node-and-string or DIME format. 

Development of an improved implementation is in progress. Details will be dis­
cussed elsewhere. 
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Fig. 2 

Another simple application of the map 
transformation algorithm. 

A 
8 

A' = 16A, A' = A 8' = 8/20, 8' = 8 

8' 

A' 
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Transformed by population -. United States. 

Fig. 3 
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San Francisco 
1980 Census Tracts 

Fig. 4 XBL 848-8623 
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San Francisco 
1980 White Male Population 
ages 35- 54 

Fig. 5 
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San Francisco 
1980 Black Male Population 
ages 35- 54 

Fig. 6 
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Hypothetical Cases (n. = 13) 
Non-transformed San Francisco map 

D 

D 

Fig. 7 
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Hypothetical Cases (n = 13) 
Transformed San Francisco map 
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I Stomach Cancer 
White Females, ages 35 - 54 
San Francisco, 1978 - 81 

D = case(s) 
® = centroid of cases 

Fig. 10 
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Colon Cancer 
White Females, ages 35 - 54 
San Francisco, 1978 ..... 81 · 

0 

0 0 

0 = case(s) 
® = centroid of cases 
Fig. 11 

0 o· 

0 0 

0 
0 0 
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. Cancer of the Rectum 
White Females, ages 35 - 54 
San Francisco, 1978 - 81 

0 

0 0 

0= case(s) 
® = centroid of cases 

Fig. 12 
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Hodgkin's Disease 
White Females,. ages 35.- 54 
San Francisco, 1978,- 81~ · · 

D = case(s) ~ 
® = centroid of cases · 

Fig. 13 
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Chronic Lymphocytic Leukemia 
White Females, ages 35 - 54 
San Francisco, 1978 - 81 

D= case(s) 

®0 
0 

® = centroid of cases 
Fig. 14 
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Acute Granulocytic Leukemia 
White Females, ages 35 - 54 
San Francisco, 1978 - 81 

D = case(s) 
® = centroid of cases 

Fig. 15 
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