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ABSTRACT OF THE DISSERTATION

Controller Certification: The Generalized Stability Margin Inference for a Large

Number of MIMO Controllers

by

Jisang Park

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California, San Diego, 2008

Professor Robert R. Bitmead, Chairperson

In this dissertation, we investigate MIMO stability margin inference of a large number

of controllers using pre-established stability margins of a small number of ν-gap-wise

adjacent controllers. The generalized stability margin and the ν-gap metric are inher-

ently able to handle MIMO system analysis without the necessity of repeating multiple

channel-by-channel SISO analyses. This research consists of three parts: (i) develop-

ment of a decision support tool for inference of the stability margin, (ii) computational

considerations for yielding the maximal stability margin with the minimal ν-gap metric

in a less conservative manner, and (iii) experiment design for estimating the generalized

stability margin with an assured error bound.

A modern problem from aerospace control involves the certification of a large

set of potential controllers with either a single plant or a fleet of potential plant systems,

with both plants and controllers being MIMO and, for the moment, linear. Experiments

on a limited number of controller/plant pairs should establish the stability and a certain

level of margin of the complete set. We consider this certification problem for a set

of controllers and provide algorithms for selecting an efficient subset for testing. This

is done for a finite set of candidate controllers and, at least for SISO plants, for an

infinite set. In doing this, the ν-gap metric will be the main tool. We provide a theorem

restricting a radius of a ball in the parameter space so that the controller can guarantee

xv



a prescribed level of stability and performance if parameters of the controllers are con-

tained in the ball. Computational examples are given, including one of certification of an

aircraft engine controller. The overarching aim is to introduce truly MIMO margin cal-

culations and to understand their efficacy in certifying stability over a set of controllers

and in replacing legacy single-loop gain and phase margin calculations.

We consider methods for the computation of; maximal MIMO stability margins

bP̂ ,C , minimal ν-gap metrics δν , and the maximal difference between these two values,

through the use of scaling and weighting functions. We propose simultaneous scaling

selections that attempt to maximize the generalized stability margin and minimize the

ν-gap. The minimization of the ν-gap by scaling involves a non-convex optimization.

We modify the XY-centering algorithm to handle this non-convexity. This is done for

applications in controller certification.

Estimating the generalized stability margin with an accurate error bound has

significant impact on controller certification. We analyze an error bound of the gen-

eralized stability margin as the infinity norm of the MIMO empirical transfer function

estimate (ETFE). Input signal design to reduce the error on the estimate is also studied.

We suggest running the system for a certain amount of time prior to recording of each

output data set. The assured upper bound of estimation error can be tuned by the

amount of the pre-experiment.

xvi



1

Introduction

In this dissertation, we study the inference of generalized stability margins for a

large number of controllers. The stability guarantee of candidate controllers is given by

pre-established stability margins of a small number of ν-gap-wise adjacent controllers.

The generalized stability margin and the ν-gap metric are inherently able to handle

MIMO stability analysis without the necessity of repeating multiple channel-by-channel

SISO analyses. This research consists of three parts: (i) development of a decision

support tool for inference of the stability margin, (ii) computational considerations for

obtaining the maximal stability margin with the minimal ν-gap metric in a less conserva-

tive manner, and (iii) experiment design for estimating the generalized stability margin

with an assured error bound.

1.1 Motivation

This problem was formulated in the aerospace industry, where a single engine

is required to operate at a large number of possible constraint points depending on

task. Often the demand for highly efficient operation pushes engine conditions to the

their physical limits. For instance, the best thermal efficiency of an engine is attained

at the temperature of near melting point of parts. Temperature overshoot can cause

catastrophic turbine degradation. Fan and compressor efficiency is best at near stall,

surge, and flutter margins. Once the fan or compressor is operated beyond these margins,

the engine would suffer from unstable operation for a while, which is unacceptable to

1



2

an aircraft that requires high performance maneuvering. Therefore, a high performance

jet engine must respect many possible constraints. Typically, Dynamic Inversion and/or

Model Predictive Control are applied to generate linearized engine controllers to maintain

stability and control at one of a large number of possible operating constraints (Davies,

Holt & Griffin 2006, Holt 2006). Particularly in jet engine control for a Short Takeoff and

Vertical Landing (STOVL) aircraft, constraints are connected with the engine hardware

limits such as actuator amplitude/rate limits, operating temperature limits, cooling flow

pressure ratio limits, and compressor stall margin. The upper limits will not be active

at the same time as lower limits on the one variable. The engines are necessarily highly

coupled MIMO systems. The same engine operates in low altitude, low velocity, high

power demand for short takeoff and in supersonic flight, leading to dramatically different

constraint sets operating. For example, if there were 20 constraints and up to four were

active at any one instance, there are 6196 possible combinations of constraints, and hence

roughly this many different controllers. In practice, the plant-controller testing will need

to be fully MIMO and to permit the computation of generalized stability margin as a

function of frequency. This, as we will show, will require H∞-norm estimation, which is a

data-intensive and therefore costly experimental test, for each controller. This motivates

our desire to minimize the number of necessary test points by developing an inferential

technique. In recent days, by the Group for Aeronautical Research and Technology in

Europe (GARTEUR), active research on certification of flight control law has been done

(Fielding, Varga, Bennani & Selier 2002). In (Fielding, Varga, Bennani & Selier 2002),

different kinds of tools for clearance of flight control laws were investigated including the

ν-gap analysis, µ-synthesis, bifurcation method, and optimization-based the worst case

search method. In this dissertation, we will use the ν-gap metric for the stability inference

tool for a high performance jet engine controllers. The ν-gap metric was introduced

by Vinnicombe (Vinnicombe 1993) as the notion of closeness between systems in the

feedback control sense. The generalized stability margin of a plant and controller pair

denotes a neighborhood of perturbations about the normalized coprime factors of the

plant stabilized by controller such that the perturbed closed-loop system will remain

stable (McFarlane & Glover 1989). A higher value of the generalized stability margin is

equivalent to the ability of the feedback loop to retain stability margin against the larger
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deviations in controllers. For a single-input-single-output (SISO) system, the gain margin

(GM) with the phase margin (PM), the magnitude margin, and delay margin can be used

as a measure for the stability robustness. Vinnicombe’s ν-gap metric with the generalized

stability margin can be understood as an extension of SISO stability robustness to the

realm of multi-input-multi-output control systems. Glover et al. (Glover, Vinnicombe

& Papageorgiou 2000) provide the interpretation of the generalized stability margin

with allowable gain and phase changes of independent input and output channel without

loosing stability. A fundamental relationship between stability margin, bP,C , and distance

between candidate controllers, δν(Ci, Cj), is given by,

arcsin bP,Cj
≥ arcsin bP,Ci

− arcsin δν(Ci, Cj). (1.1)

Definitions of terms in (1.1) will be given in Chapter 2. This inequality is a dual expres-

sion of (Vinnicombe 1993) where the ν-gap is used to measure plant variability and/or

uncertainty. Whereas, we use the ν-gap metric to explain the legitimate amount of con-

troller variations. In (1.1), the larger stability margin of the Cj can be inferred by the

larger bP,Ci
with the smaller distance between two controllers. In Chapter 2, we will

develop a decision support tool for certification of a large set of MIMO controllers using

the inference inequality (1.1). Our aim is to replace multiple legacy channel-by-channel

certifications by a single full MIMO procedure.

In Chapter 3, we will discuss a method for computing a non-conservative mar-

gin and ν-gap through LMI formulations. Crucial ingredients of controller certification

are computations of the generalized stability margin and the ν-gap between any two

controllers. Theses computations involve finding H∞-norms, i.e., the maximum singular

value of a transfer function matrix over all frequency points. Thus the source of conser-

vatism in the margin and ν-gap computations can be identified as two characteristics of

H∞-norm being

• the supremum over frequencies and

• a scalar measure of a matrix property.

The first conservatism can be removed through frequency-by-frequency analysis. How-

ever, to ameliorate the second type of conservatism, we must resort to use of scaling
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matrices. Relative signal magnitudes or measurement units pertaining to the input and

output signals greatly affect the size of the maximum singular value. Indeed, the singu-

lar value of a stable transfer function, T , is square root of the energy gain in the worst

direction of input and output vectors,

σ(T ) = sup
u 6=0

‖Tu‖2

‖u‖2
= sup

u 6=0

‖y‖2

‖u‖2
.

Thus, if the system is not scaled appropriately and magnitude of any input or output

signal is extremely larger than other magnitudes of signals then, the maximum singular

value can be correspondingly very large. These reflect the conservatism of the H∞-norm

as a MIMO stability margin. The scalings in the generalized stability margin and the

ν-gap metric computations have a stability analysis purpose and we can say the scaling

reveals what the generalized stability margin should look like. The scaling problem

for the generalized stability margin can be formulated as a convex optimization. This

optimization problem is readily solved using LMI methods minimizing norms by scaling

as in (Boyd, Ghaoui, Feron & Balakrishnan 1994). Whereas, scaling of the ν-gap metric

cannot be formulated as a convex optimization. To tackle non-convex optimization, we

modify the XY-centering algorithm (Iwasaki & Skelton 1995). We propose simultaneous

scaling selections that attempt to maximize the generalized stability margin and to

minimize the ν-gap jointly. Let us consider square matrices, Wi and Wo, namely an

input and output scaling matrix, respectively. Then the inference inequality (1.1) can

be rewritten as a scaled version,

arcsinbWoPWi,W
−1
i CjW

−1
o

≥ arcsin bWoPWi,W
−1
i CiW

−1
o

− arcsin δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o ).

(1.2)

Since Wi and Wo that improve bWoPWi,W
−1
i CW−1

o
cannot always make

arcsin δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o ) smaller or, at least, same with δν(Ci, Cj), the in-

put and output scaling martices that try to increase bWoPWi,W
−1
i CW−1

o
and to decrease

arcsin δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o ) simultaneously must be considered for efficient con-

troller certification.

Another important component for efficient controller certification will be stud-

ied in Chapter 4. Along with less conservative computations of the generalized stability

margin and the ν-gap, estimating the generalized stability margin with an accurate error
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Figure 1.1: A feedback loop with a large number of candidate controllers.

bound has a significant impact on controller certification. At a fixed frequency point,

we analyze an error bound on the generalized stability margin as the infinity norm of

the MIMO empirical transfer function estimate (ETFE). We also provide, by bounding

the interpolation error bound between any two frequency points, an upper bound on

the error on a continuous frequency interval. Input signal design to reduce the error of

the estimate is also studied. The swept-sine signal is used as a scalar test input signal.

For MIMO estimation, we conduct as many experiments as the number of inputs. Each

vector input can be generated by multiplying the scalar input by each column vector of

a full rank matrix so that invertibility of the input DFT matrix can be assured. The

magnitude of estimation error depends on several factors, such as the number of sam-

ples in the DFT computation, the energy in the input DFT at a specific frequency, the

number of samples of pre-experimental running, and downsampling so on. We suggest

running the system for a certain amount of time prior to recording of each output data

set. The assured upper bound of estimation error can be tuned by the amount of the

pre-experiment.

1.2 Outline of Dissertation

In Chapter 2, as shown in Figure 1.1, we consider an uncertain plant, P , with

a single model, P̂ , and a large set of candidate controllers, Ci, each designed to achieve
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internal stability with the model. The unknown plant, P , probably be a non-linear

system and the model, P̂ , would be a local representation of P . According to the active

physical constraints, a single particular controller Ci is employed in the feedback loop.

The problem studied in Chapter 2 is to select a small subset of controllers, so that

through experimental tests the complete set is guaranteed or not to achieve a certain

level of stability with the unknown real plant. A controller, C, is said to be certified at

level α, if the generalized stability margin of the unknown plant and the controller pair

(P,C) is shown to be greater than a pre-specified margin level α ∈ [0, 1),

bP,C > α.

On the other hand, a controller C is said to be rejected at level β ∈ [0, 1) if

bP,C ≤ β.

Let us assume we have two controllers, C0 and C1, and bP,C0 is already estimated from

closed-loop data. Then, if the ν-gap distance between two controller is bounded as in

the following inequality,

arcsin δν(C0, C1) < arcsin bP,C0 − arcsinα,

certification of C1 (bP,C1 > α) can be inferred without doing an extra experiment for

estimation. Rejection of C1 (bP,C1 ≤ β) can also be guaranteed if bP,C0 ≤ β and

arcsin δν(C0, C1) ≤ arcsinβ − arcsin bP,C0 .

In Chapter 2, we provide algorithms to reduce the number of experiments to certify/reject

a large number of controllers using the above two inequalities.

In Chapter 3, computational considerations for the generalized stability margin

and the ν-gap metric as considered. As shown in Figure 1.2, we use the input scaling, Wi,

and the output scaling, Wo, to attempt to reduce conservatism in those computations.

Three interesting classes of scaling function matrices arise naturally:

1) Wi, Wo positive definite symmetric matrices, constant over frequency ω ∈ R,

2) Wi, Wo positive definite hermitian matrices at a fixed frequency ωn, and
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Figure 1.2: A feedback loop with the input and output scaling matrices.

3) Wi(s), Wo(s) bistable and bi-proper transfer function matrices interpolating Wi,

Wo at a sequence of frequency values {ωn}.

We shall consider the first two kinds of scaling matrices in Chapter 3. We will present

the formulation of a convex optimization problem to find the input/output weights for

maximization of bP̂ ,C . This optimization problem is readily solved using LMI methods

minimizing norms by scaling as in (Boyd, Ghaoui, Feron & Balakrishnan 1994). With the

analysis in (Fielding, Varga, Bennani & Selier 2002), conservatism of bP̂ ,C can be reduced

fairly well.We also propose an approach to simultaneous alleviation of the conservatism

in both of the bP̂ ,C and ν-gap metric computations.

In Chapter 4, we consider estimation of the generalized stability margin from

closed-loop data using the MIMO empirical transfer function estimate (ETFE). Consider

N -point of experimental data, {x(0), x(1), · · · , x(N − 1)}. Then the function X l
N is

defined as,

X l
N =

1√
N

N−1∑

t=0

x(t)e−j
2πl
N
t,

with l = 0, 1, · · · , N − 1 forming the discrete fourier transform (DFT) of the finite data

sequence, {x(0), x(1), · · · , x(N − 1)}. For SISO system, we will identify the residual

error, RlN , in the following DFT relationship,

RlN = Y l
N −

(
G(ej

2πl
N )U lN + V l

N

)
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where, Y l
N , U lN , and V l

N are the DFT of the output, y(t), input, u(t), and noise signal,

v(t).

and formulate a bound on RlN (not true).

and suggest an appropriate input signal to maintain the size of error due to the

initial conditions and additive measurement noise. We extend the SISO result to MIMO

error analysis using a full rank matrix, e.g., the Hadamard matrix.

1.3 Contributions

The contributions of this dissertation can be summarized as follows:

(1) Development of the stability inference tool that establishes the generalized stability

margin of a large number of controllers by performing tests on a small subset.

(Chapter 2)

• Identifying the ν-gap metric as a MIMO controller certification tool.

• Derivation of a radius of a ball in the Euclidean parameter space in which the

controllers will guarantee a certain level of stability.

• Providing the certification algorithm and the rejection algorithm for a finite

set of MIMO controllers.

• Providing the certification algorithm for an infinite set of SISO controllers.

(2) Numerical considerations for the generalized stability margin and the ν-gap metric

computations for efficient MIMO Controller Certification(Chapter 3)

• Reducing conservatism in computations of the generalized stability margin

and the ν-gap metric individually and simultaneously through scalings.

• Formulating the frequency dependent LMIs yielding the input and output

scalings that can be used to find the maximal inferred generalized stability

margin.

(3) Experiment design for the generalized stability margin estimation with an accurate

error bound (Chapter 4)
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• Derivation of the error bound in estimating the generalized stability margin

from closed-loop data

• Reducing the error bound by conducting the pre-experiments before each

recording of measurement for the DFT

• Designing vector inputs for MIMO ETFE
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Controller Certification

A modern problem from aerospace control involves the certification of a large

set of potential controllers with either a single plant or a fleet of potential plant systems,

with both plants and controllers being MIMO and, for the moment, linear. Experiments

on a limited number of controller/plant pairs should establish the stability and a certain

level of margin of the complete set. We consider this certification problem for a set of

controllers and provide algorithms for selecting an efficient subset for testing. This is

done for a finite set of candidate controllers and, at least for SISO plants, for an infinite

set. In doing this, the ν-gap metric will be the main tool. Computational examples

are given, including one of certification of an aircraft engine controller. The overarching

aim is to introduce truly MIMO margin calculations and to understand their efficacy in

certifying stability over a set of controllers and in replacing legacy single-loop gain and

phase margin calculations.

2.1 Introduction

We consider a single but uncertain plant system, P , with a fixed model, P̂ , with

a “large” set, C, of candidate controllers, Ci, designed to achieve internal stability and

performance on P̂ . The problem studied is to select a “small” subset, {Ci} ⊂ C, so that

through experimental testing of pairs (P,Ci) the complete set C is certified, meaning that

all pairs (P,Cj) are guaranteed to achieve internal stability with a prescribed margin.

This problem is termed Controller Certification.

10
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This problem was formulated in the aerospace industry, where a single engine

is required to operate at a large number of possible constraint points depending on task.

Typically, Dynamic Inversion and/or Model Predictive Control are applied to generate

linearized engine controllers to maintain stability and control at one of a large number of

possible operating constraints (Davies, Holt & Griffin 2006, Holt 2006). Particularly in

jet engine control for a Short Takeoff and Vertical Landing (STOVL) aircraft, constraints

are connected with the engine hardware limits such as actuator amplitude/rate limits,

operating temperature limits, cooling flow pressure ratio limits, and compressor stall

margin. The upper limits will not be active at the same time as lower limits on the

one variable. The engines are necessarily highly coupled MIMO systems. The same

engine operates in low altitude, low velocity, high power demand for short takeoff and

in supersonic flight, leading to dramatically different constraint sets operating. For

example if there were 20 constraints and up to four were active at any one instance,

there are 6196 possible combinations of constraints, and hence roughly this many different

controllers. The plant model also must be adjusted for operating points. However, this

latter variation is not yet our concern, nor do we consider time-varying stability due to

controller change or operating point change since this requires at least stability at each

stationary value. In practice, the plant-controller testing will need to be fully MIMO

and to permit the computation of generalized stability margin, bP,C (to be introduced

later), as a function of frequency. This will require H∞-norm estimation, see (Chen

& Gu 2000), which is a data-intensive and therefore costly experimental test for each

controller. This motivates our desire to minimize the number of necessary test points.

The aim is to use controller validation to determine a feasible subset of tests

of the most informative controllers – as determined using the plant model P̂ – and

thereby to reduce the requisite number of overall physical tests. This certification

of controllers is a central part of the commissioning of new high-performance multi-

input/multi-output (MIMO) engine controllers, which historically has been conducted

using single-loop closed-loop tests based on approved gain and phase margins.

The approach which we consider here is based on linear multivariable control

ideas using Vinnicombe’s ν-gap metric tools. It extends earlier approaches from single-

input/single-output (SISO) loop consideration to a full MIMO problem. It remains linear
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at this stage, although there are techniques being developed based on Sum-of-Squares

methods (Papachristodoulou & Prajna 2002) for extension to nonlinear systems.

Recently this safety issue was studied by Action Group 11 of GARTEUR (Group

for Aeronautical Research and Technology in Europe) who explored advanced clearance

techniques to prove, before the aircraft is tested in flight, that a flight control system is

safe and has the desired performance under all possible flight conditions and in the pres-

ence of certain controller failures (Fielding, Varga, Bennani & Selier 2002). In Chapter

18 of the book (Fielding, Varga, Bennani & Selier 2002), Steele and Vinnicombe used

the ν-gap metric to obtain a linearized approximate model of a nonlinear system with

parametric uncertainty.

The importance of using experimental evaluation of designed controllers is also

advocated by controller unfalsification (Safonov & Tsao 1997). By using experimental

input-output data of a plant, the unfalsified control theory sifts the controllers that

are demonstrably unrobust from a set of candidate controllers. In this paper, however,

using experimental data, we guarantee certified controllers to have the required degree of

stability and margin. Quantitative Feedback Theory (QFT) (Horowitz & Sidi 1972) has

been proposed as a computational approach to deal with a related problem of determining

whether a controller is capable of stabilizing a number of different plants. Here the roles

of plant and controller are reversed, but the method otherwise is related. The tack

taken here is ideologically similar to QFT, which is based typically on Nichols charts

and frequency response data. However we use analytical tools such as the frequency-

dependent Vinnicombe ν-gap metric as a more formal tool which deals rationally and

computationally with the MIMO nature of the problem and further lays the groundwork

for extension to dealing with aircraft fleet variability.

The first category of the problem is certification of a finite candidate controller

set, C, which is considered in Section 3. In Section 4 an illustrative example of solving

this first category is provided based on the F-100 jet engine and a parametrized set of

LQG PI controllers. This example is purely computational and uses a full-order ‘truth

model’ P and a reduced-order P̂ . A fully practical example is as yet not possible,

because the development of a guaranteed certification process remains a hurdle to the

full implementation of MIMO engine controllers. The second class of problems that we
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consider is the finite certification of an infinite (but ν-gap compact) controller set, which

is considered in Section 5. In this section, we are able to give for the SISO case alone an

algorithm and an example of certification for C with infinite cardinality but parametrized

by a finite-dimensional parameter. We point to central issues with the parametrization

of MIMO controllers, which limits the extension of this approach to the MIMO case.

In the next section we provide basic definitions and a theorem for stability and margin

guarantees based on the ν-gap metric.

2.2 Definitions and a guarantee

The ν-gap metric (Vinnicombe 1993, Zhou & Doyle 1998, Vinnicombe 2001),

δν(·, ·) measures the distance between two systems yielding a number δν(Ci, Cj) ∈ [0, 1].

Definition 2.2.1. (The Winding Number Condition; WNC). Two controllers, C0(s)

and C1(s), satisfy the Winding Number Condition if

det(I + C∗
1C0)(jω) 6= 0, ∀ω and

wno det(I + C∗
1C0) + η(C0) − η(C1) = 0,

(2.1)

where wno(·) indicates the winding number of the Nyquist diagram of the scalar transfer

function evaluated on a contour enclosing the right-half-plane and indented along the

imaginary axis to the right around any pure imaginary poles, and η(C) is the number of

open right-half-plane poles of det(C).

Definition 2.2.2 (κ function). Given two commensurate transfer function matrices,

C0(s) and C1(s),

κ(C0, C1) =
∥∥∥(I + C1C

∗
1 )−

1
2 (C1 − C0)(I + C∗

0C0)
− 1

2

∥∥∥
∞
. (2.2)

Definition 2.2.3 (Vinnicombe’s ν-gap metric).

δν(C0, C1) =





κ(C0, C1), if the WNC holds

1, else
(2.3)

The generalized sensitivity function of the plant-controller feedback pair (P,C) is given

by
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Definition 2.2.4 (Generalized Sensitivity Function).

T (P,C) =



 P (I + CP )−1C P (I + CP )−1

(I + CP )−1C (I + CP )−1



 . (2.4)

Then the generalized stability margin of (P,C) is defined by the generalized sensitivity

function as follows.

Definition 2.2.5 (Generalized Stability Margin).

bP,C =





(‖T‖∞)−1, if (P,C) is stable,

0, else.
(2.5)

McFarlane and Glover (McFarlane & Glover 1989) used bP,C to denote a neighborhood

of perturbations about the normalized coprime factors of P stabilized by C such that

the perturbed closed-loop system will remain stable. bP,C has a value between [0, 1]

and the fact that bP,C > 0 indicates the feedback pair (P,C) is stable and a higher

value of bP,C is equivalent to the fact that the pair (P,C) retains stability for larger

deviations in controller, as measured by the ν-gap metric. The definitions of the stability

margin and the ν-gap metric may be extended from an infinity norm over all frequencies

to singular values at each specific frequency, yielding frequency dependent quantities

bP,C(ω) and δν(Ci, Cj , ω) (Vinnicombe 2001). The values bP,C bP,C(ω) can be retrieved

from experimental data, as will be shown in Chapter 4. The key relation of the ν-gap

metric follows.

Theorem 2.2.1 (Vinnicombe(Vinnicombe 1993, Vinnicombe 2001)). Consider a plant

P and two controllers Ci and Cj, with Ci stabilizing P . Then the following results hold.

Stability guarantee: (P,Cj) is stable if

δν(Ci, Cj) < bP,Ci
. (2.6)

Margin guarantee: If δν(Ci, Cj) < bP,Ci
then

arcsin bP,Cj
≥ arcsin bP,Ci

− arcsin δν(Ci, Cj), (2.7)

and further,

δν(Ci, Cj) ≤ ‖T (P,Ci) − T (P,Cj)‖∞

≤ δν(Ci, Cj)

bP,Ci
bP,Cj

.
(2.8)
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Notice that Theorem 2.2.1 is only a sufficient condition for stability guarantee, i.e., at a

ν-distance greater than bP,Ci
from Ci, there might exist a controller that stabilizes the

plant, P . Further note that equipping the set of controller systems with a metric creates

a metric space within which one may define neighborhoods. Using the ν-gap metric and

the generalized stability margin, we can define the largest neighborhood of controllers

about a given stabilizing controller for which a minimum level of margin (or performance

measured by ‖T‖−1
∞ ) is guaranteed with the plant.

2.3 Vinnicombe’s Winding Number is not Transitive

In this section, we show non-transitivity of the winding number condition and its

impacts on controller certification. The ν-gap metric computation consists of two pieces:

checking a winding number condition, and computing a frequency-domain norm, κ(·, ·).
Again, the aim of certification is establishing a certain level of the generalized stability

margin of a large number candidate controllers with as few experiments as possible. The

certification algorithm which will be introduced in Section 2.5 requires computation of the

ν-gap distance between every pair of controllers. If the winding number condition were

transitive, then we could eliminate the computational burden of checking the winding

number condition in the ν-gap computations for the entire controller certification for the

large set. The positive aspect is that non-transitivity could be warranty for searching

for a controller that can certify at least two other controllers C0 and C1 even with

δν(C0, C1) = 1 so that all controllers might be certified by a single experiment. We will

go into this issue in detail in the following section.

Cautious adaptation and the YK-homotopy

Anderson & Gevers (1998) proposed an approach to the selection of a new

controller in which the inclusion of a ν-gap limit is easily feasible. This is based on the

use of the Youla-Kucera parametrization of stabilizing controllers. Here we develop this

slightly by using a normalized coprime factorization for the definition of the homotopy.

Definition 2.3.1 (YK-homotopy). Suppose we are given:

– A plant model P0 with normalized coprime factorizations P0 = XY −1 = Ỹ −1X̃,
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– P0-stabilizing and P -stabilizing controller C0 with right coprime factorization C0 =

ND−1 satisfying Ỹ D + X̃N = I,

– P0-stabilizing candidate controller C1 with right coprime factorization given by the

Youla-Kucera parameter Q, C1 = (N − Y Q) · (D +XQ)−1 .

Then we define the YK-homotopy of P0-stabilizing controllers by

{
Cρ = (N − ρY Q) (D + ρXQ)−1 : ρ ∈ [0, 1]

}
. (2.9)

Theorem 2.3.1. For two controllers within the same YK-homotopy we have

δν (Cρ1 , Cρ2) ≤ ‖T (P0, Cρ1) − T (P0, Cρ2)‖∞
= |ρ1 − ρ2| ‖Q‖∞

(2.10)

Proof : The first inequality comes from Theorem 2.2.1. The second is derived

as follows from

T (P0, C0) =



 N

D




(
Ỹ D + X̃N

)−1 (
X̃ Ỹ

)

=



 N

D




(
X̃ Ỹ

)
.

T (P,Cρ1) − T (P0, Cρ2) = (ρ1 − ρ2)



 −Y
X



Q
(
X̃ Ỹ

)
,

‖T (P0, Cρ1) − T (P0, Cρ2)‖∞

= |ρ1 − ρ2| sup
ω
λ

1
2
max







 −Y
X



Q
(
X̃ Ỹ

)


 X̃⋆

Ỹ ⋆



Q⋆
(

−Y ⋆ X⋆
)




= |ρ1 − ρ2| sup
ω
λ

1
2
max




(

−Y ⋆ X⋆
)


 −Y
X



Q
(
X̃ Ỹ

)


 X̃⋆

Ỹ ⋆



Q⋆





= |ρ1 − ρ2| ‖Q‖∞ .

∇∇∇
This establishes the following property.
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Corollary 2.3.1. Within the YK-homotopy, δν(C0, Cρ) is continuous in ρ.

Proof : From the theorem above and the triangle inequality of the ν-gap metric,

we have

|δν(C0, Cρ+dρ) − δν(C0, Cρ)| ≤ δν(Cρ+dρ, Cρ)

≤ |dρ| ‖Q‖∞ .

∇∇∇
We have the immediate corollary, which marginally extends an idea of Anderson

& Gevers (1998).

Corollary 2.3.2. Given an arbitrary bound ǫ > 0, it is always possible to choose a

positive value ρmax = min [1, ǫ/‖Q‖∞] such that δν(C0, Cρ) < ǫ for all ρ < ρmax.

This corollary may be used to develop cautious control adaptation by combining

condition (2.6) with this bound on ρ. The result (2.10) further shows that the YK-

homotopy provides a path between controllers C0 and C1 which is connected in the

ν-gap metric. It further provides a bound on the deviation of the designed closed-loop

performance with model P0 as ρ is varied. Although this is less important than bounds

on the performance with P , which are captured by (2.7).

Nontransitivity of the Winding Number Condition

Satisfaction of the winding number condition (WNC) by two controllers is a

reflexive and symmetric relation. Reflexivity follows since det(I+C⋆0C0)(jω) is a strictly

positive function whose winding number is therefore zero. Thus the pair (C0, C0) satisfies

WNC. Symmetry follows from the conjugate-negation of wno det(I + C⋆1C0). So that if

(C0, C1) satisfies WNC, then so does (C1, C0). Transitivity would make satisfaction of

the winding number condition an equivalence relation.

Transitivity of the WNC would validate the following implication.

[(C0, C1) satisfies WNC] ∧ [(C1, C2) satisfies WNC]

=⇒ [(C0, C2) satisfies WNC] .

We shall shortly demonstrate by example that this is false. However, were it to be

true, then one would have from Corollary 2.3.2 that all controllers in the YK-homotopy
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would satisfy pairwise the winding number condition. Then the search for guaranteed P -

stabilizing controllers would need only to consider the computation of the frequency norm

κ(C0, Cρ) among the candidate controllers. As will be demonstrated in the example, the

κ function can return close to zero as one explores the YK-homotopy for larger values of

ρ than those given by Corollary 2.3.2. The fact that we need separately to verify WNC

is a reflection of the coarseness of the ν-gap metric.

Example

We borrow a example from (Blondel, Gevers & Bitmead 1997), in which two

dramatically different plant models are stabilized by the same constant controller, yield-

ing very closely similar closed-loop responses. We consider the dual of the example.

P (s) = 5.918,

X(s) = X̃(s) = 0.9860,

Y (s) = Ỹ (s) = 0.1666,

C0(s) =
(s− 1)

(s− 2)(s− 3)
,

D(s) = D̃(s) =
(s− 2)(s− 3)

0.1666s2 + 0.1530s+ 0.0137
,

N(s) = Ñ(s) =
(s− 1)

0.1666s2 + 0.1530s+ 0.0137
,

C1(s) =
−1.22

s+ 7.32
,

Q(s) =
2.22s2 + 0.22s

0.0278s3 + 0.0283s2 + 0.048s+ 0.0002
,

These transfer functions satisfy the conditions required for us to develop the

YK-homotopy of controllers, {Cρ(s)}. Figure 2.1 shows two curves. The solid curve

depicts δν(C0, Cρ) versus ρ, and the dashed curve shows δν(C1, Cρ) versus ρ. A zoomed

version of the region in the neighborhood of ρ = 0.383 is shown in Figure 2.2. In these

figures, a value of δν less than one indicates that the winding number condition is satisfied

by the two transfer functions. Thus from Figure 2.2, it is apparent that (C0, C0.383)

and (C1, C0.383) satisfy WNC. A simple examination shows that (C0, C1) does not satisfy

WNC. This establishes by example that WNC is not transitive.

Figure 2.3 shows the plot of κ(C0, Cρ) as a function of ρ. For small values of
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ρ it follows the δν(C0, Cρ) curve, of course. However, for larger ρ the function κ fails to

indicate the dissatisfaction of WNC.

2.4 The Generalized Stability Margin Inference

Definition 2.4.1. Given a set of controllers, not necessarily finite, C = {C}, each

element of which is designed to stabilize the fixed plant model P̂ , a particular controller

C is said to be certified at level α if, using experimental data with the unknown actual

plant P , we can guarantee that the generalized stability margin of the pair (P,C) is

greater than a pre-specified performance level α ∈ [0, 1),

bP,C > α. (2.11)

Definition 2.4.2. A controller C is said to be rejected at level β if

bP,C ≤ β. (2.12)

Note that controllers might remain neither certified nor rejected after an ex-

periment.
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Clearly, one could certify or reject all candidate controllers in a finite set by

testing experimentally all pairs (P,Cj). Our aim here is to devise a systematic procedure

for testing only a small subset of the candidate controllers and thence certifying all the

remaining controllers. For an infinite controller set, one must rely on certification based

on tests involving finite subsets of the candidates. The central tool that we shall apply

in controller certification is the ν-gap metric. We have the following immediate result.

Lemma 2.4.1. Given stabilizing plant-controller pair (P,Ci) with bP,Ci
> α, if

arcsin δν(Ci, Cj) < arcsin bP,Ci
− arcsinα, (2.13)

then Cj is certified at level α. On the other hand, if 0 < bP,Ci
≤ β and

arcsin δν(Ci, Cj) ≤ arcsinβ − arcsin bP,Ci
, (2.14)

then Cj is rejected at level β.

From Theorem 2.2.1, if δν(Ci, Cj) = 1, neither controller can guarantee the

stability of the other with the plant, no matter how big their generalized stability mar-

gins might be. In this case, it seems that we must conduct the experiment twice to

find whether both bP,Ci
and bP,Cj

are sufficiently large. However, there could exist a

controller, Ck, such that δν(Ci, Ck) < 1 and δν(Ck, Cj) < 1, because the winding num-

ber condition associated with the ν-gap metric is not transitive as shown in Section 2.3.

Furthermore, if bP,Ck
is sufficiently larger than α so that the controller, Ck, is able to

satisfy both

arcsin δν(Ci, Ck) < arcsin bP,Ck
− arcsinα

arcsin δν(Ck, Cj) < arcsin bP,Ck
− arcsinα

then both bP,Ci
> α and bP,Cj

> α are guaranteed by Lemma 2.4.1. Thus if we perform

an experiment to retrieve bP,Ck
, the certification for both Ci and Cj could be confirmed

by a single experiment. From this fact, we notice that the total number of experiments

for solving the certification problem depends on the choice of specific controllers. For a

fixed P and given α, the number of experiments will decrease as the generalized stability

margin of the chosen controller, Ck, increases and the number of candidate controllers in

the δν-neighborhood of the chosen controller, Ck, increases. In the next section, we will

first develop an algorithm to search for such a controller Ck in a finite set. In Section 5,

this will be generalized to an infinite but ν-gap-compact controller set.
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2.4.1 Estimating bP,C from closed-loop data

An indispensable ingredient in controller certification is the estimation of the

∞-norm of the sensitivity matrix T (P,C) which involves a matrix version of estimating

a frequency response of a SISO transfer function. An H∞ identification problem seeks

an identification algorithm estimating frequency response values from closed-loop input-

output data and managing maximal bounds on the error (Chen & Gu 2000). Satisfactory

identification requires some prior information on the systems to be identified. As we will

discuss in Chapter 4, this a priori information is usually in the form of relative stability

of the system and an upper bound of the noise level. The reader is also referred to

source material in (Gu & Khargonekar 1992, Helmicki, Jacobson & Nett 1993, Ninness

& Goodwin 1995, Parker & Bitmead 1987) and the associated references.

From an experiment design perspective, for a MIMO system with a wide-band

analysis, estimating the stability margin will be both difficult and expensive in its re-

quirement of a large number of data samples collected under many different experimental

conditions. This reinforces the need to minimize the number of experiments. We will

provide more detailed experiment design in Chapter 4.

2.5 Algorithms for a Finite Controller Set

In this section the candidate controller set has a finite number of elements, i.e.

C = {C0, C1, · · · , Cn}. To certify a collection of controllers, we need to guarantee the

generalized stability margins bP,Ci
> α for all Ci ∈ C. Since the transfer functions of

the plant model, P̂ , and all the controllers are known, the ν-gap distances of candidate

controller pairs and the bP̂ ,C can be easily calculated. However, the bP,C can only be

evaluated through an experiment which is a relatively time consuming and expensive pro-

cess. Instead of bP,Ci
, we will let bP̂ ,Ci

guide us to determine which subset of controllers

should be tested so that we can reduce the number of experiments required to finish

certification of the whole set. If a nominal plant model P̂ sufficiently approximates an

unknown real plant P , the bP̂ ,Ci
provide good guidance to solve the certification problem.
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2.5.1 Algorithm - Certification

Before starting certification for the collection of candidate controllers, C, we

need to compute bP̂ ,Ci
for all i = 0, 1, · · · , n. This could be a likely by-product of the

design process for Ci. Other data we need to prepare are a numerical table comprising

the ν-gap distances δν(Ci, Cj) for all controller pairs in C. Since the ν-gap is a metric,

this table will have a form of an n × n symmetric matrix whose diagonal elements are

zero. The δν(Ci, Cj) computation for C requires n(n−1)
2 times the δν(·, ·) calculation.

This could be a significant amount of computation if the number of controllers is very

large. However, if we take into account the computational complexity of high fidelity

simulations or difficulties of experiments to evaluate bP,Ci
for all i = 0, 1, · · · , n, the

δν(Ci, Cj) calculation is significantly preferable. The following algorithm yields a finite

subset of controllers for test to manage the number of experiments. In the algorithm, α

is the margin specification.

Step 1(Search) For each uncertified controller, Ci, with bP̂ ,Ci
> α, count the number

of uncertified controllers, Cj , that satisfy,

arcsin δν(Ci, Cj) < arcsin bP̂ ,Ci
− arcsinα. (2.15)

Then choose the controller, Ci, with the most controllers, Cj , satisfying (2.15). If

several controllers have same number of controllers that satisfy (2.15), then choose

Ci with the maximal bP̂ ,Ci
.

Step2(Experiment) Perform the experiment on (P,Ci) to retrieve bP,Ci
from closed-

loop data.

Step 3A(Certify) If bP,Ci
> α, certify the controllers, Cj , satisfying (2.16) of Lemma

2.4.1,

arcsin δν(Ci, Cj) < arcsin bP,Ci
− arcsinα, (2.16)

and exclude these candidate controllers from further tests. That is, for those

controllers, Cj , we have shown that bP,Cj
> α.

Step 3B(Reject) If bP,Ci
≤ α, reject the controllers, Cj , satisfying (2.14) of Lemma

2.4.1,

arcsin δν(Ci, Cj) ≤ arcsinα− arcsin bP,Ci
,
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and exclude these candidate controllers from further tests. That is, for those

controllers, Cj , we have shown that bP,Cj
≤ α.

Loop If uncertified or unrejected controllers with bP̂ ,Ci
> α remain in the collection C,

iterate from Step 1 to Step 3 until all controllers are certified or rejected.

Notice that the only difference between (2.15) and (2.16) is that pre-computed bP̂ ,C is

used in (2.15), while experimentally retrieved bP,C is used in (2.16).

2.5.2 Algorithm - Rejection

Step 3B of the Certification Algorithm introduces the idea of using the rejection

test of Lemma 2.4.1 to explore implied rejection of untested controllers. Clearly, in a

circumstance where bP̂ ,Ci
< α one could develop an efficient rejection algorithm along

the same lines as the certification algorithm. Although, this would imply an incipient

margin problem even at the design stage.

In the certification algorithm, we can observe the ν-gap radius of the ball in

which one controller Ci certifies its neighbors Cj shrinks as the value of α approaches

bP,Ci
. In other words, in (2.16), the admissible value of δν(Ci, Cj) decreases as the α

gets close to the bP,Ci
. This is the same case in the rejection algorithm. The upshot

of this observation, as will be illustrated in a later example, is that around the edge

of the stabilizing region where bP,Ci
= α, the certification or rejection balls shrink in

radius and a very large number of experimental tests is necessary. Indeed, it is clear

from Lemma 2.4.1 that a controller satisfying bP,Ci
= α is unable either to certify or

reject any other controllers, no matter how ν-gap-close. Thus, the capacity is limited for

resolving the exact boundary of the stabilizing region with a small number of tests. This

shall become apparent in both subsequent computed examples, where fine resolution of

this boundary requires exhaustive local testing. Of course, one might skirt around this

problem by combining a certification test at level α −△α, say, with a rejection test at

level α+ △α for a small positive △α.
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2.6 Numerical Examples for Finite Controller Set

In this section, we develop two certification examples. The first example shows

certification of SISO controllers that are parametrized by two parameters. The second

certification example of an F100 jet engine puts more emphasis on MIMO characteristics.

2.6.1 Certification of SISO Control System

In this section, we will show a computer example of a controller certification

of a SISO control system using the algorithm developed in the previous section. We

consider that the controllers are parametrized by (ρ1; ρ2) and presume that the range

of parameters that stabilizes the nominal plant P̂ (z) is given from a separate controller

synthesis process.

C(z) =
ρ1z

z + ρ2
(2.17)

Let us assume, the unknown real plant P (z) is

P (z) =
0.1z2(z − 0.3)

(z − 0.8)(z2 − 0.4z + 0.85)(z2 − 1.2z + 0.72)
. (2.18)

The stability margin bP,Ci
can be estimated from closed-loop data. Although, in this

example, because the mathematical expression (2.18) of the real plant P (z) is available,

the experiment estimating the stability margin bP,Ci
will be substituted by computation

of (2.5). We obtain the plant model P̂ from model reduction of the real plant P (z).

P̂ (z) =
0.002985z2 + 0.08012z + 0.1259

z3 − 1.123z2 + 1.014z − 0.394
. (2.19)

Since δν(P (z), P̂ (z)) = 0.1917, which is an unknown value, the maximum difference

between bP,Ci
and bP̂Ci

is guaranteed to be less than 0.1917 by Theorem 2.2.1. In this

example the actual maximum difference between bP,Ci
and bP̂Ci

is 0.1874.

In Figure 2.4, the axes measure controller parameters ρ1 and ρ2. The thicker

line depicts the boundary of the stabilizing region for the model P̂ (z) and the thinner line

delineates the P (z)-stabilizing region. Notice, once again, that we presume the boundary

for the P (z)-stabilizing region is unknown. Inside the thick solid line, we select 74 points

of (ρ1; ρ2), i.e. 74 model-based controllers, which are represented by rectangles with their
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Figure 2.4: Stabilizing region for the real plant P (z) and the nominal plant P̂ (z) and

selected controller parameters.

indices. From the figure 2.4, we can expect several controllers should not be used in real

operation since they are outside stabilizing region of the actual plant. As a preparation

step we calculate δν(Ci, Cj) for all pairs of controllers in C so that we can use these

distances when we check for the certification conditions (2.15) or (2.16). Using (2.5), the

generalized stability margins bP̂Ci
of all the controllers C with the nominal plant P̂ are

calculated in advance.

Certification for Stability

As a minimum requirement, the candidate controllers should guarantee stability

when they are applied to the actual feedback loop. Certification for stability is accom-

plished by letting α = 0 in (2.15) or (2.16). The key step in the controller certification

procedure is the choice of the specific sequence of controllers for experiments. Hence we

start the controller certification by counting the number of controllers satisfying (2.15)

at each of the 74 candidates. Figure 2.5a shows the number of controllers, Cj , that
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Figure 2.5: Numbers of Cj satisfying (2.15) after 1st searching using bP̂ ,Ci
,

a) α = 0, b) α = 0.3.

satisfy (2.15) with each Ci for i = 1 · · · , 74. After calculating bP̂ ,Ci
we count the number

of controllers Cj . Figure 2.5a shows that bP̂ ,Cj
advises us that the 37th controller could

potentially certify 34 other controllers from the P̂ -stabilizing region. After retrieving

bP,C37 from the closed-loop data, we realize that actually 21 controllers satisfy (2.16). In

Figure 2.6a the controllers inside and on the line are those certified controllers.

We iterate this search and experiment process until all controllers in the set C
are certified or rejected. Before searching for the next controller to be tested, we need

to exclude the certified controllers in the previous iteration from C and search for the

best remaining controller for the second experiment. In this manner, as shown in Figure

2.6, we complete the certification process for all 74 controllers in 31 experiments. In

Figure 2.6a, the filled circle corresponds to the test controller and the other 20 hollow

circles represent the controllers whose positive generalized stability margins (bP,Cj
> 0)

have been inferred without requiring further experiments. For those controllers inside

and on the solid line, the certification criterion (2.11) is satisfied. From Figure 2.6d, we

can see that inside and on the line there are 60 certified controllers out of 74 candidate



28

ρ
1

ρ 2

After 1st Experiment

−4 −2 0 2

−2

−1

0

1

2

ρ
1

ρ 2

After 2nd Experiment

−4 −2 0 2

−2

−1

0

1

2

ρ
1

ρ 2

After30th Experiment

−4 −2 0 2

−2

−1

0

1

2

ρ
1

ρ 2

After31th Experiment

−4 −2 0 2

−2

−1

0

1

2

a) b)

c) d)

Figure 2.6: Certification process for stability (α = 0, �: untested, ◦: certified, •:tested
& certified, N: tested & rejected)

controllers. 14 red triangles represent the tested and rejected controllers (bP,Cj
= 0).

Since we are exhaustively testing all 74 possible controllers which extend outside

the stabilization region for P , and since we are applying a sufficient condition for stability,

it is necessary to test experimentally all rejected controllers as well as many near the

stabilization boundary. Figure 2.6b indicates that two experiments yield the certification

of the bulk of the certifiable controllers.

Certification for Performance

It is important in controller certification not only to guarantee stability, but

also to achieve a specified level of performance. When ‖T (P,Ci) − T (P̂ , Ci)‖∞ is large,

the controller based on the model P̂ cannot guarantee good performance with an actual



29

plant P . The dual inequality of (2.8), with δν(P, P̂ ) < 1, is

δν(P, P̂ ) ≤
∥∥∥T (P,Ci) − T (P̂ , Ci)

∥∥∥
∞

≤ δν(P, P̂ )

bP,Ci
bP̂ ,Ci

.
(2.20)

For any particular δν(P, P̂ ), if we find a certain controller that makes bP̂ ,Ci
large, then

the ‖T (P,Ci)−T (P̂ , Ci)‖∞ may be smaller, which means we can achieve a better perfor-

mance level with the chosen controller Ci. By increasing α in (2.15) and (2.16), we would

expect better performance in the certified controllers. Figure 2.5b shows the numbers of

controllers satisfying (2.15) after the first search for the best controller, when α = 0.3.

This figure tells us that there are 47 controllers that the algorithm will not try to certify

since bP̂ ,C ≤ 0.3 for those controllers. Figure 2.7 shows the process of certification for 74

controllers with α = 0.3 and shows that 27 controllers are certified in 7 experiments by

the suggested algorithm.

2.6.2 Certification of the F-100 Engine Control System

In this section, we develop a certification example for a set of controllers for

the F100 jet engine. The F100 engine controllers are legacy systems which were certified

using single-loop gain and phase margin calculations. We have chosen to conduct our

computational experiments using this engine model and a representative controller set

in order to establish a correspondence between the old scalar margins and the more

modern MIMO stability margins. Some calculations in (Vinnicombe 2001) suggest that

joint single-loop gain margin of 2.69 dB and phase margin of 17.5◦ correspond to a MIMO

margin of bP,C > 0.3. However, the appropriateness of this numerical value is really yet

to be demonstrated.

The F100 jet engine model was chosen at sea level static flight conditions with

a power lever angle (PLA) of 36◦ (Merrill, Beattie, LaPrad, Rock & Akhter 1984). In

Appendix 2.9.1, we provide the state space representation of the F100 engine and we

assume that this full-order engine model is the unknown real plant for this example.

The 2nd-order plant model P̂ is obtained by model reduction from this engine model

P and P̂ is used in the subsequent controller design. The P̂ -stabilizing multivariable

Proportional-plus-Integral controller is designed in the LQR framework.
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Figure 2.8: The set of candidate F100 jet engine controllers.

C(s) = KP +
1

s
KI (2.21)

The nominal proportional gain and integral gain matrices are given in Appendix 2.9.2.

For easy graphical representation of certification results, we certify only two parameters

among the elements of the two 5×5 matrices KP and KI . The first parameter is KP (1, 1)

and the other is KI(2, 2). Each parameter changes up to ±30% from its original value.

In Figure 2.8, the axes measure controller parameters KP (1, 1) and KI(2, 2). In this 2-

dimensional parameter space, we select 81 points, i.e. we have 81 model-based controllers

to be tested which are represented by rectangles with their indices.

Input and Output Scaling for bP̂ ,Ci
Computation

Computation of the generalized stability margin (2.5) involves calculation of the

singular values of a matrix. This is sensitive to the selection of relative signal magnitudes

or measurement units pertaining to the input and output signals; in the MIMO case, this

problem is exacerbated by the need to manage the relative scaling of all the signals. To

accommodate this, we consider the re-scaling of each input and output channel in order

that we might calculate the most favorable stability margin. Likewise, one may consider
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using different scalings at different frequencies to improve minimal margins. Some of

these issues are broached in (Fielding, Varga, Bennani & Selier 2002) for MIMO metric

computations. In Chapter 3, the input and output scaling will be explored in detail.

In our computations, we consider the incorporation of constant diagonal in-

put/output matrices, Wo and Wi. Thus the plant model, P̂ , is weighted as WoP̂Wi and

the controller is W−1
i CiW

−1
o instead of Ci. The Wo and Wi yield a weighted generalized

stability margin bWoP̂Wi,W
−1
i CiW

−1
o

. The use of Wo and Wi makes it possible to scale

engineering units of signals with closed-loop performance analysis in mind. These input

and output scaling matrices are important even for SISO systems with these margin and

metric calculations, since T (P,C) is a 2 × 2 block transfer function matrix. If we use

scaling matrices, the searching inequality (2.15) for test controllers becomes

arcsin δν(C
′
i, C

′
j) < arcsin bP̂ ′,C′

i
− arcsinα.

where, C ′
i = W−1

i CiW
−1
o , C ′

i = W−1
i CiW

−1
o , and P̂ ′ = WoP̂Wi. The constant scaling

matrices do not alter the stability of T (P̂ ′, C ′) and it is straightforward to show T (P̂ ′, C ′)

is stable if and only if T (P̂ , C) is stable.

Certification of Stability

As with SISO certification, the controller certification starts with counting the

number of controllers satisfying (2.15) at each point of Figure 2.8; that is, the number

of other controllers that would be certified by an experiment on the P̂ and Cj pair. In

this example, the first experiment of retrieving bP,C1 says that bP,Cj
of every controller

(j = 1 · · · 81) is greater than 0, which means all of 81 controllers stabilize the real F100

engine. This highly efficient certification result is due to the sufficient level of bP,Cj

over all controllers and relatively small ν-gap distance between any two candidates.

Nevertheless, this is what one would expect from many practical designs.

Certification of Margin

In Figure 2.9 the circles represent certified controllers and the filled circles

indicate those tested. In Figure 2.9a, since C19 is the controller which satisfies (2.15) for

the greatest number of other controllers , the first experiment is performed to retrieve
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Figure 2.9: Certified parameters at the level α = 0.2. (◦: certified, •:tested & certified)
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bP,C19 . From the closed-loop data it turns out actually 15 controllers are certified at the

level of 0.2. By the certification algorithm, we iterate the search and experiment process

until all controllers in the parameter space in Figure 2.8 are certified or rejected. In this

manner, as shown in Figure 2.9 the certification of all 81 controllers at the level of 0.2 is

completed in 16 tests.

Rejection

Because of the discrepancy between the real and nominal generalized stability

margins, bP,Ci
and bP̂ ,Ci

, the bP,Ci
can be less than the target certification level α. Even

in this situation, the bP,Ci
can give valuable information on the candidate controllers.

After a closed-loop experiment, if the bP,Ci
is less than α, we can recycle the bP,Ci

to

reject the controllers that have less bP,Cj
than α. The rejection algorithm can avoid

exhaustive experiments on the parameters outside the region bP̂ ,Ci
> α. Figure 2.10

shows the process of rejection at the level of 0.23. In Figure 2.10 the triangles represent

rejected controllers and the filled triangles indicate those tested.

2.7 Infinite Controller Set

2.7.1 Topological Preliminaries

In the previous section the proposed algorithm certified only a finite number of

points in the parameter space and therefore infinitely many untested parameters remain.

We now move from a finite set to an infinite controller set and consider the modification

of the preceding enumerative algorithm. However, we restrict ourselves to SISO plants

and controllers. Extension to MIMO is nontrivial because of issues dealing with the

parametrization of MIMO systems and the proper understanding of coprimeness in a

parametrized MIMO setting (Hannan & Deistler 1998).

The key idea is to use the properties of the (C, δν) metric space to develop a

sequence of controllers {C0, C1, · · · } for experimental test which validate all candidate

controllers in an open neighborhood of C. In this section we provide answers to the

main issues in developing an algorithm which eventually certifies the whole continuous

parameter space without testing exhaustively. Anderson et al (Anderson, Brinsmead,
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Figure 2.10: Rejection procedure at the level of α = 0.23 .
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De Bruyne, Hespanha, Liberzon & Morse 2000) establish that for a controller set C con-

tinuously parametrized by parameter θ in a compact set Θ, it is possible to construct a

finite open covering of C by δν-balls about centers {C0, C1, · · · }. This relies on the Heine-

Borel property and pivots on continuity and compactness. However, it is important to

note that the factorization of controllers must maintain coprimeness when they contin-

uously move from one parameter to another in Θ. If the set of SISO rational functions

of a fixed degree n (without common factors) is topologized in a natural way, the set is

the disjoint union of n+1 open sets (Brockett 1976). When a controller moves from one

of these open sets to another, it must pass through a region of common factors. If there

are unstable common factors, the controllers cannot cross from one controller set to an-

other without an unstable pole-zero cancellation which causes violation of coprimeness

of controllers. Thus the certification algorithm should restrict one individual δν-ball to

be contained in only one disjoint set. These disjoint sets contain transfer functions with

the same Cauchy index.

We shall apply these ideas here to explore this construction for a specific natural

parametrization associated with the controller certification problem. Let us assume the

candidate controllers are parametrized as follows

C(θ0) =
b0,0 + b1,0z

−1 + · · · + bn,0z
−n

1 + a1,0z−1 + · · · + an,0z−n
,
n0

d0
,

C(θ1) =
b0,1 + b1,1z

−1 + · · · + bn,1z
−n

1 + a1,1z−1 + · · · + an,1z−n
,
n1

d1
.

(2.22)

And define an infinite collection of controllers to be certified,

C , {C(θi)|θi ∈ Θ i = 0, 1, · · · },

where θi is a parameter vector such that

θi = (a1,i, a2,i, · · · , an,i, b0,i, b1,i, · · · , bn,i)T ∈ Θ, (2.23)

and Θ ⊂ R
2n+1 is the controller parameter space which must be assumed to be compact.

Suppose the known plant model has normalized coprime factorizations,

P̂ = XY −1 = Ỹ −1X̃. (2.24)

Define unit transfer functions such that

U0 , n0X + d0Y, U1 , X̃n1 + Ỹ d1.
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Then, I = U−1
0 n0X + U−1

0 d0Y, I = X̃n1U
−1
1 + Ỹ d1U

−1
1 . Choose Ñ0, D̃0, N1, and D1

such that Ñ0 = U−1
0 n0, D̃0 = U−1

0 d0, N1 = n1U
−1
1 , and D1 = d1U

−1
1 . This provides

coprime factorizations of C(θ0) = D̃0
−1
Ñ0 and C(θ1) = N1D

−1
1 = [N0−QY ][D0+QX]−1

with Youla-Kucera parameter,

Q = Ñ0D1 − D̃0N1 = U−1
0 (n0d1 − d0n1)U

−1
1 . (2.25)

Let us define ∆d and ∆n such that, d1 = d0 + ∆d, n1 = n0 − ∆n, then n0d1 − n1d0 =

n0∆d+ d0∆n = SC(θ1 − θ0), where SC =
(

1 z−1 · · · z−2n+1 z−2n
)
× V and the

matrix, V , is a Sylvester matrix of two polynomials n0 and d0. Therefore, from (2.25),

Q can be represented in terms of the difference of two parameter vectors, θ1 − θ0,

Q = U−1
0 SC(θ1 − θ0)U

−1
1 . (2.26)

Suppose a parameter vector θ0 is selected then so is U0. Thus we have only two variables

in (2.26), θ1 and U1. Further simple manipulation of the unit transfer function U1 makes

(2.26) a combination of only (θ1 − θ0) and other known terms. Let the plant model P̂ =

p0+p1z−1+···+pnz−n

1+q1z−1+···+qnz−n = XY −1 = p(z)
r(z)

(
q(z)
r(z)

)−1
, where as above X and Y are a normalized

coprime factorization of the plant model. Then U1 = n1X + d1Y = U0 + SP (θ1 − θ0)r
−1

where the vector SP =
(

1 z−1 · · · z−2n
)
× VP , and VP is a Sylvester matrix for

−p and q. Therefore,

Q =
(
U−1

0 SC (θ1 − θ0)
) (
U0 + SP (θ1 − θ0) r

−1
)−1

(2.27)

Now we show that, in the δν-gap metric space, there exists a finite covering

of the compact set of controllers, C, by ǫ-balls. For every controller C(θρ) contained in

the ball B(C(θi), ǫ), which is centered at C(θi) with the δν-radius of ǫ, if we choose ǫ

less than bP,C(θi), then δν(C(θi), C(θρ)) < bP,C(θi). In addition, if this C(θi) stabilizes

P , every controller C(θρ) in the ball B(C(θi), ǫ) stabilizes the unknown actual plant P

by Theorem 2.2.1. Thus if the δν-radius ǫ is strictly positive, we are able to construct a

finite number of non-vanishing balls such that,

C ⊂
N⋃

i=0

B(C(θi), ǫ),

where N is a finite number. We will find a radius of the ball in the Euclidean parameter

space, Θ, instead of the the ν-gap metric space, so that all candidate controllers will
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satisfy (2.15) in the ball. Thus,

δν(C(θ0), C(θ1)) ≤ ||T (P̂ , C(θ0)) − T (P̂ , C(θ1))||∞

= ||Q||∞

=

∥∥∥∥
U−1

0 SC (θ1 − θ0)

U0 + SP (θ1 − θ0) r−1

∥∥∥∥
∞

and we need to find an upper limit on |θ1 − θ0| satisfying

arcsin δν(C(θ0), C(θ1))

≤ arcsin

∥∥∥∥
U−1

0 SC (θ1 − θ0)

U0 + SP (θ1 − θ0) r−1

∥∥∥∥
∞

≤ arcsin bP̂ ,C(θ0)
− arcsinα.

The following theorem gives us the radius of a ball in Euclidean space which contains

only certified controllers.

Theorem 2.7.1. Let arcsin γ̂ = arcsin bP̂ ,C(θ0) − arcsinα.

If

|θ1 − θ0| ≤
γ̂

‖U−2
0 SC‖∞ + γ̂‖r−1U−1

0 SP ‖∞
, (2.28)

then

arcsin δν(C(θ0), C(θ1)) ≤ arcsin bP̂ ,C(θ0) − arcsinα.

Proof.

|θ1 − θ0|
(
‖U−2

0 SC‖∞ + γ̂‖r−1U−1
0 SP ‖∞

)
≤ γ̂

‖U−2
0 SC(θ1 − θ0)‖∞ + γ̂‖r−1U−1

0 SP (θ1 − θ0)‖∞ ≤ γ̂

‖U−2
0 SC(θ1 − θ0)‖∞

1 − ‖r−1U−1
0 SP (θ1 − θ0)‖∞

≤ γ̂

‖U−2
0 SC(θ1 − θ0)‖∞

‖1 + r−1U−1
0 SP (θ1 − θ0)‖∞

≤ γ̂

∥∥∥∥
U−2

0 SC(θ1 − θ0)

1 + r−1U−1
0 SP (θ1 − θ0)

∥∥∥∥
∞

≤ γ̂

Since δν(C(θ0), C(θ1)) ≤
∥∥∥ U−2

0 SC(θ1−θ0)

1+r−1U−1
0 SP (θ1−θ0)

∥∥∥
∞
, we have δν(C(θ0), C(θ1)) ≤ γ̂.

Therefore arcsin δν(C(θ0), C(θ1)) ≤ arcsin bP̂ ,C(θ0) − arcsinα.

Using this theorem, in the next section we will construct a finite cover for an infinite set

of certified controllers.
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Figure 2.11: Initial squares with circles by computation of (2.28).

2.7.2 Certification Algorithm and Numerical Example for an Infinite

Controller Set

A k-cell (also known as a rectangle or l∞-ball) is a set of all points x =

{x1, · · · , xk} such that ai ≤ xi ≤ bi (1 ≤ i ≤ k) for given {ai, bi}. We require |ai − bi| to

be the same for all i for simplicity here. We divide the candidate controller set C into

small k-cells and then we certify the C on a subset by subset basis. After determining

k-cells inside C, we pick one of the centers of the k-cells as the experimental parameter.

In the case of k = 2 and |a1 − b1| = |a2 − b2|, the k-cell is simply a square.

Certification Algorithm: In Euclidean coordinates, a k-cell is a convex poly-

gon, thus to show the k-cell is covered by a ball it suffices to check the the all vertices

of the k-cell are enclosed by the ball. Before starting the certification, we make initial

grids on the candidate controller set, C, as Figure 2.11 shows.

Step 1(Search) For each uncertified k-cell, pick the centroid of the k-cell as a test

controller parameter, θi, with bP̂ ,C(θi)
> α and measure the radius of the certifying

cover of the C(θi), γ̂

‖U−2
i SC‖∞ + γ̂‖r−1U−1

i SP ‖∞
,
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Figure 2.13: 2nd certified square.

where arcsin γ̂ = arcsin bP̂ ,C(θi)
− arcsinα. Then choose the controller, C(θi), with

the largest radius of the cover.

Step 2(Experiment) Perform the experiment on (P,C(θi)) to retrieve bP,C(θi), ‖U−2
i SC‖∞,

and ‖r−1U−1
i SP ‖∞ from closed-loop data.

Step 3(Certify) Certify the k-cell that contains all controllers, C(θj), satisfying,

|θj − θi| ≤
γ

‖U−2
i SC‖∞ + γ‖r−1U−1

i SP ‖∞
,

where arcsin γ = arcsin bP,C(θi) − arcsinα. Exclude the k-cell from further tests.

That is, for those controllers in the k-cell, C(θj), we have shown that bP,C(θj) > α.

Step 4(Refinement of the Grids) If the cover generated at θi does not enclose all

of the vertices of the k-cell then divide the k-cell into 2k identical k-cells. If the

divided k-cell is smaller than a prescribed size then exclude the k-cell from the

candidate set. Otherwise, if there is any uncertified k-cell with center controller,

C(θi) and bP̂ ,C(θi)
> α in the refined grids, then go to Step 1.

Numerical Example: Here we provide a certification example for a set of

continuously parametrized discrete-time controllers. We use the same SISO plant and
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model with Section 2.6.1: the actual plant,

P =
0.1z2(z − 0.3)

(z − 0.8)(z2 − 0.4z + 0.85)(z2 − 1.2z + 0.72)
,

the plant model,

P̂ =
0.002985z2 + 0.08012z + 0.1259

z3 − 1.123z2 + 1.014z − 0.394
,

and the controllers,

C =
ρ1z

z + ρ2
.

Here ρ1 and ρ2 are controller parameters to be certified, thus k = 2 in this example.

The radii of circles in Figure 2.11 are computed with the plant model using (2.28) and

the center of the circle having the largest radius is chosen as the first parameter to

be evaluated. In Figure 2.12, we represent this point, (ρ1, ρ2) = (−0.125, 0.125), as

a filled small circle. Through the first experiment on the actual plant with controller

C(θ0) = −0.125z
z+0.125 we find bP,C(θ0), ‖U−2

0 SC‖∞ and ‖r−1U−1
0 SP ‖∞. We then draw a circle

centered at (-0.125, 0.125) with radius of 0.2034. The first square is certified, since this

solid lined circle has a radius greater than the distance from the center of square to the

vertices. After certifying the first square, we look for the next parameter by searching

for the center of the square that has the largest radius excluding the already certified

square(s). In Figures 2.12, 2.13, and 2.14, we filled the certified square with gray color.

In Figure 2.12, after the second experiment, we can draw a dashed line circle having a

radius of 0.1484 on (−0.125, 0.375). Since the radius of the dashed line circle is less than

the distance from the center of the initial square to the vertices, the second square is

not certifiable. So we need to divide the second square into 4 smaller identical squares

and then try to certify smaller squares. Figure 2.13 shows that the third experiment at

(−0.0625, 0.3125) certifies the refined square. In this way, as is shown in Figure 2.14, we

construct a cover for certifiable parameters that guarantees α > 0.3. As was identified

at the end of Section 2.5, the radii of the certifying circles diminishes as they approach

the certification boundary. This is evident in Figure 2.14 by the fracturing of the k-cells

towards the edge of the set of certifiable controllers. To avoid an excessive number of

experiments in the edge area, we excluded the squares if the radius of ball located at the

centroid of the square was less than 0.03.
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2.8 Conclusions

We have developed a search method for a subset of designed controllers to

reduce the number of experiments required in controller certification. By doing experi-

ments only on a small subset of controllers, we can solve the certification problem for a

large or, in the SISO case at least, an infinite set of candidate controllers in an efficient

fashion. Precomputed design quantities such as bP̂ ,C and δν(Ci, Cj) are used to guide

the search for controllers to be tested experimentally with the actual plant to yield cer-

tification of the complete set C. A required margin for the controller certification can be

maintained as we appropriately choose α in (2.11). For the SISO case when the candi-

date controller set has an infinite number of controllers, we have shown that only a finite

number of experiments are required to solve the certification problem. We provided a

theorem restricting the radius of a ball in Euclidean space and we gave an example that

the controller will guarantee a prescribed level of stability and performance if parameters

of a scalar controller are contained in that ball.

Further work required in this area is apparent to explore joint approaches to

incorporating controller certification and fleet variability. There remain many open ques-

tions about extension to nonlinear systems and about the inclusion of significant time-

variation among either or both the plants and controllers. From a practical perspective,

questions still needing resolution are concerned with the experimental calculation of a

useful tight bound on bP,C from data, and for the refinement of margins and ν-gaps to

yield the least conservative values in MIMO problems through appropriate scaling. Some

of these issues are introduced in (Fielding, Varga, Bennani & Selier 2002), but there still

remains a wealth of problems. In Chapter 3, we will explore this issue fully. Clearly,

extension of the SISO results for continuously parametrized sets of MIMO controllers

will require significant technical work. Although, from a practical perspective, this might

be subsumed by the enumerated solution.

Of particular interest is the extension of these results dealing with stability

and stability margins to cover issues of guaranteed closed-loop performance. Already,

weighting functions are used in the computation of MIMO margins and it is clear that

weighting functions also play a central role in loop-shaping control designs.
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2.9 Appendices

2.9.1 State Space Data of the F100 Jet Engine

The following model is at the F100 jet engine model of sea level static flight

conditions with a power level angle (PLA) of 36 degrees. This comes from the report

(Merrill, Beattie, LaPrad, Rock & Akhter 1984). The model itself is provided in Impe-

rial/English units in the report; the symbol ◦R refers to temperature in degrees Rankine,

the Fahrenheit equivalent of Kelvin.

A=[ -3.9180e+0 4.1886e+0 -4.1148e-2 1.2279e-1;

-1.8061e-1 -2.1480e+0 1.5853e-1 6.6994e-4;

-1.3190e-1 -2.4056e-1 -6.6630e-1 2.3770e-4;

-3.8191e-1 -1.0501e+0 -6.7400e-2 -2.0000e+0];

B=[ 5.1991e-1 1.1942e+0 2.1974e-1 -2.4990e-2 -1.7226e-2;

3.6266e-1 1.0836e-1 7.2562e-3 -1.2133e-2 -7.2114e-3;

2.8427e-1 3.3231e-2 5.7770e-3 5.7672e-3 1.6319e-3;

9.3743e-1 7.3072e-2 1.7417e-2 2.0418e-2 1.0634e-1];

C=[ 2.2043e+1 0 0 0;

0 2.7339e+1 0 0;

3.7700e+1 1.0341e+1 -7.6298e-3 -4.3237e-3;

8.0543e+0 3.1436e-1 -6.6634e-2 -3.7135e-2;

-2.9070e+0 -7.9884e+0 -5.1265e-1 2.6855e-3];

D=[ 0 0 0 0 0;

0 0 0 0 0;

1.0036e+0 -8.2350e-1 -1.5200e-1 -5.6233e-2 -5.8600e-2;

9.7674e-1 -5.7450e+0 -3.8500e-1 9.5762e-3 -2.2963e-2;

7.1316e+0 5.5560e-1 1.32470e-1 1.5533e-1 4.8290e-2];

The states of system are: x1 = fan speed [rpm], x2 = compressor speed [rpm], x3 =

burner exit slow response temperature [◦R], and x4 = fan turbine inlet slow response

temperature [◦R].
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The engine control inputs are: u1 = main burner fuel flow [lb/hr], u2 = nozzle jet area

[ft2], u3 = fan guide vane angle [deg], u4 = compressor stator vane angle [deg], and u5

= compressor bleed flow [%].

The engine outputs are: y1 = fan speed [rpm], y2 = compressor speed [rpm], y3 = burner

pressure [psia], y4 = augmentor pressure [psia], and y5 = fan turbine inlet temperature

[◦R].

2.9.2 Controller Gain Matrices

Kp=[-4.3945e-3 3.9063e-3 0 1.1719e-2 5.8594e-3;

1.9531e-3 -2.9297e-3 0 -1.9531e-3 9.7656e-3;

-2.5391e-2 1.5625e-2 -6.2500e-2 6.2500e-2 -9.3750e-2;

2.3438e-1 -1.2500e-1 -5.0000e-1 -2.5000e-1 0;

-4.5313e-1 5.0000e-1 1.5000e+0 7.5000e-1 2.0000e+0];

Ki=[ 2.4826e-4 6.6527e-3 -3.3803e-3 9.0337e-4 2.1197e-3;

9.2531e-5 -1.5441e-3 8.1495e-3 -8.8501e-3 1.2418e-3;

2.5726e-2 -2.3225e-2 -5.5274e-2 4.4241e-2 -3.6174e-3;

-2.2895e-2 -4.8496e-1 4.9878e-1 -7.8880e-2 1.3700e-1;

4.8743e-2 8.6349e-1 -1.0482e+0 1.0015e-1 -1.0255e-1];

2.9.3 Implementation of Controller Certification

The GUIs in Figure 2.15 and Figure 2.16 were developed in collaboration with

SC Solutions Inc. at Sunnyvale, CA. The main GUI, in Figure 2.15, is responsible for

• computing and displaying the generalized stability margins,

• finding input and output scalings, and

• interpreting the generalized stability margin as the gain margin and phase margin.

The certification GUI, in Figure 2.16, using the certification algorithm, suggests the best

parameters for next tests and shows the overall certification procedure.
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Figure 2.15: Main Certification GUI.



47

Figure 2.16: Certification at α = 0.3.
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Simultaneous Scaling for MIMO

Controller Certification

We consider methods for the computation of; maximal MIMO stability margins

bP̂ ,C , minimal ν-gap metrics δν , and the maximal difference between these two values,

through the use of scaling and weighting functions. We propose simultaneous scaling

selections that attempt to maximize the generalized stability margin and minimize the

ν-gap to facilitate controller certification developed in Chapter 2. The minimization of

the ν-gap by scaling involves a non-convex optimization. We modify the XY-centering

algorithm to handle this non-convexity.

3.1 Introduction

Controller certification (Park & Bitmead 2008) was introduced as a decision

support tool that reduces the number of time-consuming and expensive experiments that

are required to establish the stability margin of a large set of multiple-input/mulitple-

output (MIMO) controllers, C. Vinnicombe introduced the ν-gap metric (Vinnicombe

1993) to provide MIMO stability and performance robustness guarantees. In this chapter,

we investigate effects of scalings on these stability margin and ν-gap computations for

controller certification and propose a simultaneous scaling matrix for computation of the

margin and ν-gap to expedite a controller certification. Crucial ingredients of controller

certification are computations of the generalized stability margin, bP̂ ,Ci
and the ν-gap

49
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between the Ci, and other controllers, Cj ∈ C.

3.1.1 Computation of Margin and ν-gap

Computation of the generalized stability margin, bP̂ ,Ci
, involves calculation of

the singular values of a transfer function matrix. This singular value computation is

sensitive to the selection of relative signal magnitudes or measurement units pertaining

to the input and output signals in each channel. To accommodate this, Steele and Vin-

nicombe (Fielding, Varga, Bennani & Selier 2002) considered constant diagonal scaling

of all input and output channels in order that a favorable stability margin might be

calculated. Likewise, one may consider using different scalings at different frequencies

to improve minimal margins. Finding close to the maximal bP̂ ,Ci
uses the same analysis

with computation of an upper bound of the structured singular values. Both problems

can be solved by a convex optimization.

The ν-gap metric computation between MIMO systems also suffers the sensi-

tivity problem of computing a singular value. However, differently from the optimization

of bP̂ ,Ci
, scaling of the ν-gap metric calculation cannot be done by a convex optimiza-

tion. This is where the main difficulty arises. To tackle this non-convex optimization,

we modify the XY-centering algorithm (Iwasaki & Skelton 1995). Iwasaki and Skelton

(Iwasaki & Skelton 1995) formulated the matrix inequality problem for static output

feedback controller synthesis as a dual LMI problem. We propose simultaneous scaling

selections that attempt to maximize the generalized stability margin and to minimize the

ν-gap. We say controller certification for the candidate controller set, C, is efficient when

we are able to examine whether the generalized stability margins, bP,Cj
of C, are larger

than a pre-specified stability margin level, α, with as small a number of experiments as

possible.

3.1.2 Problem Settings

Figure 3.1a depicts the MIMO feedback loop for the control system whose

stability is under consideration. Figure 3.1b shows the same loop with weightings in-

troduced. Wi is the input weighting and Wo is the output weighting, which correspond

to defining new scaled input and output signals as shown. Three interesting classes of
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Figure 3.1: a) Feedback loop of T (P̂ , Ci) b) Scaled feedback loop

scaling function matrices arise naturally:

1) Wi, Wo positive definite symmetric matrices, constant over frequency ω ∈ R,

2) Wi, Wo positive definite hermitian matrices at a fixed frequency ωn, and

3) Wi(s), Wo(s) bistable and bi-proper transfer function matrices interpolating Wi,

Wo at a sequence of frequency values {ωn}.

We shall consider the first two kinds of scaling matrices in this thesis. The following as-

sumption allows us to extend the input/output scalings from a finite number of frequency

points of the second type problem to all frequency range.

Assumption 3.1.1. Satisfaction of the certification inequality (2.16),

arcsin δν(Ci, Cj) < arcsin bP,Ci
− arcsinα

at a finite number of frequencies, {ωn}, implies satisfaction of this inequality over the

complete frequency range.

Smoothness of the frequency response of T (P̂ , Ci)(jω) and κ(Ci, Cj)(jω) will

support Assumption 3.1.1. The internal stability of both the loops in Figures 3.1a and

3.1b is identical, although the techniques sufficient for demonstrating stability can vary
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between the two loops. In Figure 3.1b, if P̂ and C are scalar transfer functions, then the

gain margin (GM) and the phase margin (PM) of the feedback-loop between input u1

and output y1 are invariant to the choice of scalings Wo and Wi. However bP̂ ,C depends

not merely on stability from u1 to y1, but also on the maximum singular value of the

2 × 2 block transfer function matrix. Therefore, bP̂ ,C can be small with a poorly scaled

SISO system even though (P̂ , C) is well behaved and has good scalar margins. This fact

reflects the conservatism of bP̂ ,C as a stability margin. The more detailed relationship

between bP̂ ,C and the SISO GM and PM can be found in Chapter 2 and Appendix ??

as well as (Vinnicombe 2001, Glover, Vinnicombe & Papageorgiou 2000).

We will present the formulation of a convex optimization problem to find the

input/output weights for maximization of bP̂ ,C in Section 3.2. This optimization problem

is readily solved using LMI methods minimizing norms by scaling as in (Boyd, Ghaoui,

Feron & Balakrishnan 1994). With the analysis in (Fielding, Varga, Bennani & Selier

2002), conservatism of bP̂ ,C can be reduced fairly well. However, merely improving

conservatism of the generalized stability margin computation cannot always promise

successful controller certification. This is simply because the input/output scalings on

bP̂ ,C are not necessarily the optimal ones for the ν-gap metric computation and do not

necessarily positively affect the implied bounds on bP̂ ,Cj
. In Section 3.4, we propose an

approach to simultaneous alleviation of the conservatism in both of the bP̂ ,C and ν-gap

metric computations. A numerical example is given in Section 3.5.

3.2 LMI formulation for Scaling bP̂ ,C

In this Section, a short LMI formulation for bP̂ ,Ci
minimization by input and

output scalings is developed for application in the XY-centering framework in Section

3.4.1. As depicted in Figure 3.1b, if the scaling matrices Wi and Wo are involved in the

bP̂ ,Ci
computation using the T (P̂ , Ci), the frequency-wise generalized sensitivity function

of the scaled feedback loop in Figure 3.1 b) is given by,
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T (WoP̂Wi,W
−1
i CiW

−1
o )(jω)

=



 Wo 0

0 W−1
i







 P̂ (I + CP̂ )−1C P̂ (I + CP̂ )−1

(I + CP̂ )−1C (I + CP̂ )−1



 (jω)



 W−1
o 0

0 Wi





=



 Wo 0

0 W−1
i



T (P̂ , Ci)(jω)



 W−1
o 0

0 Wi



 ,

(3.1)

where T (P̂ , Ci)(jω) is used to denote the frequency-wise generalized sensitivity function,

T (P̂ (jω), Ci(jω)). Using (3.1), ‖T‖∞ =
√
λmax(T ∗T ) and λmax(AB) =

λmax(BA), the reciprocal of the scaled generalized stability margin is represented as

following,

(
bWoP̂Wi,W

−1
i CiW

−1
o

)−1

= ‖T (WoP̂Wi,W
−1
i CiW

−1
o )(jω)‖∞

= sup
ω∈R

λ1/2
max







 W ∗−1
o 0

0 W ∗
i



T (P̂ , Ci)
∗(jω)



 W ∗
o 0

0 W ∗−1
i



 ·



 Wo 0

0 W−1
i



T (P̂ , Ci)(jω)



 W−1
o 0

0 Wi









= sup
ω∈R

λ1/2
max







 (W ∗
oWo)

−1 0

0 WiW
∗
i



T (P̂ , Ci)
∗(jω) ·



 W ∗
oWo 0

0 (WiW
∗
i )−1



T (P̂ , Ci)(jω)



 .

(3.2)

The scaling matrices Wi and Wo in (3.2) are computed by solving an optimization at each

point on a frequency grid. Note that at a specific interesting frequency point ωn, (3.2)

can be solved, even though finding a solution on an infinite frequency grid is unrealistic.

3.2.1 Frequency Dependent Scaling of bP̂ ,C

From the following theorem, we can obtain a lower bound on the scaled bP̂ ,C

at a given frequency ωn.
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Theorem 3.2.1. At a fixed frequency ωn, consider positive definite hermitian matrices

Wi and Wo with Xo = W ∗
oWo and Yi = (WiW

∗
i )−1. If a solution (Xo, Yi) of the following

LMI,

minimize γ2
1

subject to γ2
1



 Xo 0

0 Yi



− T (P̂ , C)∗(jωn)



 Xo 0

0 Yi



T (P̂ , C)(jωn) > 0,

Xo > 0, Yi > 0.

(3.3)

exists with achieved objective value γ1, then the scaled bP̂ ,C at ωn is bounded below by

γ−1
1

bWoP̂Wi,W
−1
i CW−1

o
(jωn) > γ−1

1 .

Proof. At a fixed frequency point, ωn, using a solution (Xo, Yi) = (W ∗
oWo, (WiW

∗
i )−1),

the equation (3.3) can be rewritten in the following minimization form,

minimize γ2
1

subject to







 (W ∗
oWo)

−1 0

0 WiW
∗
i



T (P̂ , C)∗(jωn)



 W ∗
oWo 0

0 (WiW
∗
i )−1



T (P̂ , C)(jωn)



 < γ2
1I,

W ∗
oWo > 0, WiW

∗
i > 0.

(3.4)

Since the optimal value γ1 is an upper bound of (3.2), we have

(
bWoP̂Wi,W

−1
i CW−1

o
(jωn)

)−1
< γ1.

Since λmax(AB) = λmax(BA), by defining Xi = Y −1
i = WiW

∗
i and Xo = Y −1

o =

W ∗
oWo, an alternative formulation of (3.3) is

minimize γ2
1

subject to γ2
1



 Yo 0

0 Xi



− T (P̂ , C)(jωn)



 Yo 0

0 Xi



T (P̂ , C)∗(jωn) > 0,

Xi > 0, Yo > 0.

(3.5)
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The optimization in (3.3) and (3.5) can be performed iteratively using bisection on γ2
1

by solving feasibility problems as in (Boyd & Vandenberghe 2004). Either (3.3) or (3.5)

can be used in the algorithm in Section 3.4.1.

3.2.2 Constant Scaling Over All Frequencies

As noted in the previous section, computing solutions over an infinite frequency

gridding is impractical. Steele (Steele 2001) used a result from (Rantzer 1996) to find a

constant scaling over all frequencies by replacing a frequency domain infinite family of

LMIs with a single LMI. Define M =



 W ∗
oWo 0

0 (WiW
∗
i )−1



 and let (A,B,C,D) be

a state space realization of T (P̂ , C). Then the scaling matrix M to maximize the bP̂ ,C

can be obtained by solving,

minimize γ2
1

subject to


 (jωI −A)−1B

I




∗ 

 C D

0 I




∗ 

 M 0

0 −γ2
1M







 C D

0 I







 (jωI −A)−1B

I



 < 0 ∀ω,

M > 0.

(3.6)

Corollary 3.2.1. Over all frequencies ω ∈ R, consider constant positive definite her-

mitian matrices Wi and Wo with M =



 W ∗
oWo 0

0 (WiW
∗
i )−1



. If a solution M of the

following LMI,

minimize γ2
1

subject to



 C∗

D∗



M
[
C D

]
+



 QA+A∗Q PB

Q∗P̂ 0



 < γ2
1



 0 0

0 M



 ,

M > 0, Q = Q∗

(3.7)

exists with achieved objective value γ1, then the scaled bP̂ ,C is bounded below by γ−1
1

bWoPWi,W
−1
i CW−1

o
≥ γ−1

1 .
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By applying the theorem on the KYP lemma in (Rantzer 1996), the LMI in (3.6) can

be transformed into the LMI in (3.7). As noted in (Rantzer 1996), the equivalence for

strict inequality of (3.6) and (3.7) holds even if (A,B) is not controllable. LMI (3.7)

also can be solved using bisection on γ2
1 with iterative feasibility solution on M and Q.

Note (3.7) cannot be incorporated into the algorithm we will present in the next section.

Corollary 3.2.1 provides a guaranteed lower bound on the scaled bP̂ ,C .

3.3 LMI formulation for Scaling δν(Ci, Cj, ωn)

The input/output scaling methods in Section 3.2 may reduce the conservatism

in the bP̂ ,C computation. However the use of scaling matrices without carefully con-

sidering how Wo and Wi will alter δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o ) can bring unfavorable

ramifications to the controller certification. This is because δν(W
−1
i CiW

−1
o , W−1

i CjW
−1
o )

need not be smaller than δν(Ci, Cj), since Wo and Wi in Section 3.2.1 and 3.2.2 are in-

tended to reduce conservatism of the computation of bP̂ ,Ci
only. In Section 3.3.1, we

provide an example showing that certain scalings can cause violation of the winding

number condition (WNC) (2.1).

3.3.1 The winding number condition and scaling matrices

The value of δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o , ωn) depends on the scaling matrices

Wo and Wi. Indeed, the satisfaction of WNC can be affected by the weighting matrices.

In some cases, the input/output scalings cause a violation of WNC.

Consider a plant P̂ = 1
s+1 , P̂ -stabilizing controllers C0 = 1 and C1 = k (k >

−1). If we choose the following scalings,

Wi = Wo =
s+ 1

as+ 1
, (3.8)
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where a > 0, then from (2.1),

det(1 +W ∗−1
o C∗

1W
∗−1
i W−1

i C0W
−1
o )(jω)

=1 + k

(−ajω + 1

−jω + 1

)2(ajω + 1

jω + 1

)2

=
(a4k + 1)ω4 + 2(a2k + 1)ω2 + (k + 1)

ω4 + 2ω2 + 1

,X(ω).

Note limω→∞X(ω) = a4k + 1, and limω→0X(ω) = k + 1. If

−1 < k < − 1

a4
, then lim

ω→∞
X(ω) < 0

and, since k > −1,

lim
ω→0

X(ω) > 0.

Since X(ω) is real and continuous in ω, X(ω) = 0 for some ω. Therefore, WNC is not

preserved by the scalings (3.8). The non-invariance of WNC to scaling in this example

immediately implies non-invariance in MIMO. In order to ensure satisfaction of WNC

for specific choices of weighting matrices, we can rely on the following result.

Lemma 3.3.1 ((Vinnicombe 2001) p. 136). Let P̂ , Ci, and Cj be given such that the

feedback pair (P̂ , Ci) is stable and κ(Ci, Cj)(jω) < bP̂ ,Ci
(jω) for all ω, then (P̂ , Cj) is

stable if, and only if, the winding number condition holds.

Since the scalings Wi and Wo do not change stability of the feedback loops in

Figure 3.1, stability of the scaled feedback pair (WoP̂Wi,W
−1
i CiW

−1
o ) and

(WoP̂Wi,W
−1
i CjW

−1
o ) is also maintained. Thus, by Lemma 3.3.1,

κ(W−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jω) < bWoP̂Wi,W

−1
i CiW

−1
o

(jω) for all ω will suffice to es-

tablish satisfaction of WNC between W−1
i CiW

−1
o and W−1

i CjW
−1
o . We shall define

in Section 3.4 an iterative algorithm for successive optimization of scaling matrices

and we will need to consider whether these matrices might violate WNC in the suc-

cessive procedure. This algorithm provides monotonic decrease of an upper bound of

κ(W−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jωn) and monotonic increase of a lower bound of

bWoP̂Wi,W
−1
i CiW

−1
o

(jωn) at a specific frequency ωn. At a finite number of frequency points,

once the algorithm establishes that the lower bound of bWoP̂Wi,W
−1
i CiW

−1
o

(jωn) is greater
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than the upper bound of κ(W−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jωn), Assumption 3.1.1 extends

this result over the complete frequency range. Then Lemma 3.3.1 with Assumption 3.1.1

can ensure satisfaction of WNC between two scaled controllers. However, if we want to

minimize δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jωn) only at a specific frequency of interesting,

the algorithm needs to check violation of WNC (2.1) of the weighted Ci(s) and Cj(s)

during entire iteration of the algorithm.

Assumption 3.3.1. If weighting matrices Wi(ωn) and Wo(ωn) can be found satisfying

δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jωn) < bWoP̂Wi,W

−1
i CiW

−1
o

(jωn)

then the interpolating weighting function Wi(ω) and Wo(ω) satisfy

δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jω) < bWoP̂Wi,W

−1
i CiW

−1
o

(jω)

for all ω and hence, by Lemma 3.3.1, W−1
i CiW

−1
o and W−1

i CjW
−1
o satisfy WNC.

If Assumption 3.3.1 is not satisfied, one may resort to testing the satisfaction of WNC

over all frequencies for each constant scaling Wi(ωn) and Wo(ωn).

3.3.2 LMI Formulation of ν-gap minimization

Define the following matrices φ and ψ,

φ(Yi, Xo, γ1) , γ2
1



 Xo 0

0 Yi



− T (P̂ , Ci)
∗(jωn)



 Xo 0

0 Yi



T (P̂ , Ci)(jωn), (3.9)

ψ(Xi, Yi, Xo, Yo,γ2) ,



 γ2
2(Xi + CjYoC

∗
j ) (Cj − Ci)

(Cj − Ci)
∗ (Xo + C∗

i YiCi)



 (jωn). (3.10)

Then define two sets Φ and Ψ,

Φ(γ1) , {Yi, Xo : φ(Yi, Xo, γ1) > 0} , (3.11)

Ψ(γ2) , {Xi, Yi, Xo, Yo : ψ(Xi, Yi, Xo, Yo, γ2) > 0} . (3.12)

Then a guaranteed upper bound of the scaled ν-gap by Wo and Wi is given in Theorem

3.3.1.



59

Theorem 3.3.1. At a fixed frequency ωn ∈ R, consider the frequency response of a plant

model P̂ (jωn), and stabilizing controllers Ci(jωn) and Cj(jωn) and consider positive

definite hermitian matrices Wi and Wo with Xo = Y −1
o = W ∗

oWo and Xi = Y −1
i =

WiW
∗
i . If a solution (Xi, Yi, Xo, Yo) exists with achieved objective value γ2 for the LMIs,



 γ2
2(Xi + CjYoC

∗
j ) (Cj − Ci)

(Cj − Ci)
∗ (Xo + C∗

i YiCi)



 (jωn) > 0,



 Xi I

I Yi



 > 0, and



 Xo I

I Yo



 > 0.

(3.13)

with the following properties,





(X−1

i , Xo) ∈ Φ(γ1)

(Xi, X
−1
i , Xo, X

−1
o ) ∈ Ψ(γ2)

or





(Yi, Y

−1
o ) ∈ Φ(γ1)

(Y −1
i , Yi, Y

−1
o , Yo) ∈ Ψ(γ2)

then the scaled ν-gap metric at ωn is bounded above by γ2,

δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jωn) < γ2.

The weighted ν-gap minimization requires solving a non-convex matrix inequal-

ity. Provided the winding number condition (2.1) of two scaled controllersW−1
i C0(s)W

−1
o

and W−1
i C1(s)W

−1
o is satisfied, the weighted ν-gap is expressed as follow,

δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o )

=

∥∥∥∥
(
I +W−1

i CjW
−1
o W ∗−1

o C∗
jW

∗−1
i

)− 1
2 W−1

i (Cj − Ci)

W−1
o

(
I +W ∗−1

o C∗
iW

∗−1
i W−1

i CiW
−1
o

)− 1
2

∥∥∥∥
∞

=sup
ω∈R

λ1/2
max

((
WiW

∗
i + CjW

−1
o W ∗−1

o C∗
j

)−1 · (Cj − Ci)

·
(
W ∗
oWo + C∗

iW
∗−1
i W−1

i Ci
)−1 · (Cj − Ci)

∗
)

(jω).

(3.14)

Using positive hermitian matrices

Xi = Y −1
i = WiW

∗
i and Xo = Y −1

o = W ∗
oWo,

for a fixed frequency, ωn, minimization of (3.14) can be formulated as the following
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optimization problem. Find hermitian matrices Xo, Xi such that

minimize γ2
2

subject to
((
Xi + CjYoC

∗
j

)−1
(Cj − Ci) (Xo + C∗

i YiCi)
−1 (Cj − Ci)

∗
)

(jωn) < γ2
2I,

Xi = Y −1
i > 0, Xo = Y −1

o > 0.

(3.15)

Then using the Schur complement, (3.15) is expressed as

minimize γ2
2

subject to



 γ2
2(Xi + CjYoC

∗
j ) (Cj − Ci)

(Cj − Ci)
∗ (Xo + C∗

i YiCi)



 (jωn) > 0,

Xi = Y −1
i > 0, Xo = Y −1

o > 0.

(3.16)

Note that Xo + C∗
i YiCi is positive by its structure. We use the XY-centering algorithm

(Iwasaki & Skelton 1995) to handle the non-convexity in (3.16). To use the algorithm,

optimization (3.16) is recast as the following problem,

minimize γ2
2

subject to



 γ2
2(Xi + CjYoC

∗
j ) (Cj − Ci)

(Cj − Ci)
∗ (Xo + C∗

i YiCi)



 (jωn) > 0



 Xi I

I Yi



 > 0 ,



 Xo I

I Yo



 > 0.

(3.17)

The optimization problems (3.16) and (3.17) are identical except for the constraints on

the (Xi, Yi) pair and the (Xo, Yo) pair. The XY-centering algorithm makes the discrep-

ancy between those constraints smaller if possible. The algorithm, for example with the

(Xi, Yi) pair, pushes the constraint of Xi ≥ Y −1
i in (3.17) to head towards Xi = Y −1

i

in (3.16) by iterative minimization of λmax(XiYi). In the next section, we modify the

algorithm to accommodate minimization problems (3.3) and (3.17) simultaneously.

3.4 Simultaneous Scaling of bP̂ ,C and ν-gap

For the certification purpose, Wi andWo should not merely reduce conservatism

of the bWoP̂Wi,W
−1
i CiW

−1
o

computation but rather maximize the following quantity

bWoP̂Wi,W
−1
i CiW

−1
o

− δν
(
W−1
i CiW

−1
o ,W−1

i CjW
−1
o

)
,
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which can be interpreted as a simultaneous optimization problem of

minimize
Wo,Wi

(
bWoP̂Wi,W

−1
i CiW

−1
o

)−1

and minimize
Wo,Wi

δν
(
W−1
i CiW

−1
o ,W−1

i CjW
−1
o

)
.

(3.18)

As noticed in (Iwasaki & Skelton 1995), the XY-centering algorithm may not give a

global solution to minimizing λmax(XiYi). Then the main result of this chapter boils

down to the following theorem.

Theorem 3.4.1. At a fixed frequency ωn, consider the frequency response of a plant

model P̂ (jωn), and stabilizing controllers Ci(jωn) and Cj(jωn) and consider positive

definite hermitian matrices Wi and Wo with Xo = Y −1
o = W ∗

oWo and Xi = Y −1
i =

WiW
∗
i . If a solution (Xi, Yi, Xo, Yo) exists with achieved objective values γ1 and γ2 for

the LMIs,

γ2
1



 Xo 0

0 Yi



− T (P̂ , Ci)
∗(jωn)



 Xo 0

0 Yi



T (P̂ , Ci)(jωn) > 0,



 γ2
2(Xi + CjYoC

∗
j ) (Cj − Ci)

(Cj − Ci)
∗ (Xo + C∗

i YiCi)



 (jωn) > 0,



 Xi I

I Yi



 > 0, and



 Xo I

I Yo



 > 0.

(3.19)

with either of the following properties,





(X−1

i , Xo) ∈ Φ(γ1)

(Xi, X
−1
i Xo, X

−1
o ) ∈ Ψ(γ2)

or





(Yi, Y

−1
o ) ∈ Φ(γ1)

(Y −1
i , YiY

−1
o , Yo) ∈ Ψ(γ2)

then the scaled bP̂ ,C at ωn is bounded below by γ−1
1 and the scaled ν-gap metric at ωn is

bounded above by γ2,

bWoPWi,W
−1
i CW−1

o
(jωn) > γ−1

1

δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jωn) < γ2.
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3.4.1 XY-Centering Algorithm for Simultaneous Scaling of bP̂ ,C and

ν-gap

In this section, we provide an algorithm that minimizes γ1 and γ2 in (3.19).

Consider a linear square matrix inequality,

F (x) = F0 +
m∑

i=1

xiFi > 0,

where x ∈ R
m is the variable and Fi = F Ti ∈ R

n×n i = 1, · · · ,m are symmetric matrices.

The function ξ(x) is a barrier function for the feasible set {x : F (x) > 0},

ξ(x) ,





log detF (x)−1 F (x) > 0

∞ otherwise.

Definition 3.4.1 (Analytic Center of an LMI). Define the analytic center, x∗, of the

LMI F (x) > 0 as

x∗ , arg min
x

ξ(x).

Equivalently,

x∗ = arg max
F (x)>0

detF (x).

Intuitively, the analytic center is the most feasible point of the set, {x : F (x) >

0}, in the sense that x∗ is the point where the distance from the boundary of {x : F (x) >

0} (det(F (x)) is maximum. In the algorithm, at Step 3, we compute the analytic centers

of the LMIs to make Xi and Xo close to Y −1
i and Y −1

o respectively. Furthermore, use of

the analytic centers causes (Yi, Xo) and (Xi, Yi, Xo, Yo) to be near the most feasible points

in the sets Φ(γ1) and Ψ(γ2), respectively, at each iteration. In Step 3, ac{·} denotes the

analytic center of the LMI {·}. For example, (Xik , Xok
) is the analytic center of the LMI,

diag{αkI − Y
1/2
ik

XiY
1/2
ik

, Y
1/2
ik

XiY
1/2
ik

− I,

βkI −X1/2
ok
YoX

1/2
ok
, X1/2

ok
YoX

1/2
ok

− I, Φ(γ1), Ψ(γ2)} > 0.

Algorithm(Simultaneous Scaling):

Step 1. Choose parameters 0 < θλ < 1 and 0 < θγ < 1.

Step 2. Let the initial values, γ1 > 0 and γ2 > 0, be sufficiently large, and find initial

values for Xi1 , Yi1 , Xo1 and Yo1 such that,

(Yi1 , Xo1) ∈ Φ(γ1) and (Xi1 , Yi1 , Xo1 , Yo1) ∈ Ψ(γ2).
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Then initialize k = 1 and choose α1 and β1 such that,

α1 > λmax(Xi1Yi1) and β1 > λmax(Xo1Yo1).

Step 3. Compute the analytic centers,

(Xik , Xok
) = ac{I < Y

1/2
ik

XiY
1/2
ik

< αkI,

I < Y 1/2
ok

XoY
1/2
ok

< βkI, Xo ∈ Φ(γ1k
), and (Xi, Xo) ∈ Ψ(γ2k

)}

(Yik+1
, Yok+1

) = ac{I < X
1/2
ik
YiX

1/2
ik

< αkI,

I < X1/2
ok
YoX

1/2
ok

< βkI, Yi ∈ Φ(γ1k
), and (Yi, Yo) ∈ Ψ(γ2k

)}

Step 4. If (Xik, Xok) do not yield scaled Ci(s) and scaled Cj(s) which violate the WNC

(2.1) and they satisfy the following,

(X−1
ik
, Xok

) ∈ Φ(γ1) and (Xik , X
−1
ik
, Xok

, X−1
ok

) ∈ Ψ(γ2),

or, if (Yik, Yok) do not yield scaled Ci(s) and scaled Cj(s) which violate the WNC

(2.1) and they satisfy the following,

(Yik , Y
−1
ok

) ∈ Φ(γ1) and (Y −1
ik
, Yik , Y

−1
ok
, Yok

) ∈ Ψ(γ2),

then

γ1k+1
= (1 − θγ)Ωφ(Xok

, Yik) + θγγ1k
and

γ2k+1
= (1 − θγ)Ωψ(Xik , Yik , Xok

, Yok
) + θγγ2k

,

where

Ωφ(Xok
, Yik) = min{γ1 : φ(γ1) ≥ 0} and

Ωψ(Xik , Yik , Xok
, Yok

) = min{γ2 : ψ(γ2) ≥ 0}.

Otherwise,

αk+1 = (1 − θλ)λmax(XikYik+1
) + θλαk

βk+1 = (1 − θλ)λmax(Xok
Yok+1

) + θλβk.

Step 5. Stop, if αk+1 − 1 < ǫ, βk+1 − 1 < ǫ, γ1k+1 − γ1k < ǫ and γ2k+1 − γ2k < ǫ for small

ǫ. Otherwise k = k + 1 and go to Step 3.
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3.5 Numerical Example

In this section, we provide an example of reducing computational conservatism

in controller certification. Consider a state-space representation of a multivariable plant

model P̂ (s),

AP̂ =





−1 0 0 0

0 −0.5 0 0

0 0 −3 0

0 0 0 −5




, BP̂ =





1 0

2 0

0 2

0 1




, CP̂ =



 1 0 1 0

0 1.5 0 1



 , DP̂ =



 0 0

0 0



 .

We choose P̂ -stabilizing controllers, C0(s),

AC0 =



 −1 0

0 −1



 , BC0 =



 2 0

0 2



 , CC0 =



 0.5 0.5

0.5 0.5



 , DC0 =



 0 0

0 0



 .

and C1(s):

AC1 =



 −1 0

0 −1



 , BC1 =



 1 0

0 1



 , CC1 =



 0 1

1 0



 , DC1 =



 0.5 0

0 0.25



 .

Let us assume ωn = 0.1[rad/sec] is a frequency at which we want to investigate

the stability margin of the feedback loop of Figure 3.1. Then from P̂ (jωn), C0(jωn), and

C1(jωn), we compute unscaled values,

bP̂ ,C0
(jωn) = 0.5495, and δν(C0, C1)(jωn) = 0.5407.

These numbers allow us to state that C1 stabilizes P̂ but we are unable to provide a

guarantee that the stability margin will exceed 0.0088.

3.5.1 Maximize only bP̂ ,Ci

At ωn, a scaled version of (2.16) is,

arcsin δν(W
−1
i CiW

−1
o ,W−1

i CjW
−1
o )(jωn)

< arcsin bWoP̂Wi,W
−1
i CiW

−1
o

(jωn) − arcsinα.
(3.20)
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Using the scaling method in Section 3.2.1, we have the following scaling matrices for this

example.

Wo =



 1.3519 1.0086 − 0.0016i

1.0086 + 0.0016i 1.3073



 ,

Wi =



 0.2088 0.0700 − 0.0025i

0.0700 + 0.0025i 0.3388



 .

In this example, the inclusion of the scalings into the bP̂ ,C0
increases, the generalized

stability margin from 0.5495 to

bWoP̂Wi,W
−1
i C0W

−1
o

(jωn) = 0.9964.

However the ν-gap metric is also increased by these Wi and Wo from 0.5407 to

δν(W
−1
i C0W

−1
o ,W−1

i C1W
−1
o )(jωn) = 0.9921.

This achieves nothing in terms of extending the guaranteed margin of T (P̂ , C1).

3.5.2 Simultaneous Scaling on bP̂ ,Ci
and ν-gap

For the algorithm of Section 3.4.1, we chose the convergence speed parameters,

θλ = 0.3 and θγ = 0.7. These values were selected after several trial computations to

have appropriate convergence of γ1 and γ2 in Figure 3.2. We choose the initial values

γ1 =
√

2
(
bP̂ ,C0

(jωn)
)−1

, γ2 =
√

10δν(C0, C1)(jωn). Then identity matrices are chosen

as the initial values of Xi, Yi, Xo, and Yo since they satisfy (3.11) and (3.12). Figure 3.3

shows iterates of an upper bound of λmax(XiYi) and λmax(XoYo), at each iteration from

their initial vales, αk = βk = 1.5.

Then using the algorithm in Section 3.4.1, we have

Xi
∼= Y −1

i =



 0.2954 −0.0264 − 0.0134i

−0.0264 + 0.0134i 1.3463



 ,

λ(XiYi) = 1.00043, 1.00056

Xo
∼= Y −1

o =



 2.2905 −0.1417 − 0.0398i

−0.1417 + 0.0398i 0.8847



 ,

λ(XoYo) = 1.00001, 1.00001
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Figure 3.2: a) Achieved objective value of bWoP̂Wi,W
−1
i CiW

−1
o

(jωn) b) Achieved objective

value of δν(W
−1
i C0W

−1
o ,W−1

i C1W
−1
o )(jωn).

0 10 20 30 40 50 60 70 80
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Iteration

 

 

α
k

β
k

Figure 3.3: The upper bound of λmax(XiYi), αk, and the upper bound of λmax(XoYo), βk.
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Figure 3.4: Minimum eigenvalues of φ in (3.9) and ψ in (3.10).

As shown in Figure 3.4, the proposed algorithm does not guarantee (X−1
i , Xo) ∈

Φ(γ1), (Xi, X
−1
i , Xo, X

−1
o ) ∈ Ψ(γ2), (Yi, Y

−1
o ) ∈ Φ(γ1) or (Y −1

i , Yi, Y
−1
o , Yo) ∈ Ψ(γ2).

The algorithm is supposed to guarantee only (Yi, Xo) ∈ Φ(γ1) and (Xi, Yi, Xo, Yo) ∈
Ψ(γ2). Thus once the algorithm stops, we need to decide whether to use Xi or Yi for Wi

and Xo or Yo for Wo. For instance if (Xi, X
−1
i , Xo, X

−1
o ) /∈ Ψ(γ2), in other words, the

minimum eigenvalue of ψ(Xi, X
−1
i , Xo, X

−1
o , γ2) is not positive then only Yi and Yo can

be used to compute Wi and Wo respectively. For this specific example, we used Yi and

Yo for computation of

bWoP̂Wi,W
−1
i C0W

−1
o

(jωn) = 0.6362,

and

δν(W
−1
i C0W

−1
o ,W−1

i C1W
−1
o )(jωn) = 0.4521.

Table 3.1 shows guaranteed bP̂ ,C1
is improved by the simultaneous scaling. This shows

choice of appropriate input/output scaling matrices may increase a number of certifiable

controllers with the same choice of controller for margin test.

In this example, WNC (2.1) in Step 4 of Section 3.4.1 was never violated

throughout the entire iteration. Indeed Steele and Vinnicombe in Chapter 4 of (Fielding,

Varga, Bennani & Selier 2002), without considering WNC (2.1), investigated only the
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Table 3.1: Scaling methods and the minimal attainable margin levels of bP̂ ,C1
at ωn = 0.1.

Scaling bP̂ ,C0
δν(C0, C1) bP̂ ,C1(

> sin(arcsin bP̂ ,C0
− arcsin δν(C0, C1))

)

Without 0.5495 0.5407 > 0.0105

b−1

P̂ ,C0
only 0.9964 0.9921 > 0.0409

b−1

P̂ ,C0
and δν(C0, C1) 0.6362 0.4521 > 0.2188

maximum of κ value for two scaled transfer functions in (3.14) at a specific frequency in

lieu of the ν-gap metric.

3.6 Conclusions

We investigated the effects of scaling on the stability margin computation in

controller certification. The input/output scaling effect on bP̂ ,Ci
computation may reduce

the conservatism in the bP̂ ,C . However the use of scaling matrices without carefully

considering how Wo and Wi will alter the ν-gap metric could unfavorably affect the

controller certification. We proposed simultaneous scaling on bP̂ ,Ci
and the ν-gap so

that we can achieve an efficient controller certification. An area of further work is bi-

stable and bi-proper transfer function matrices interpolating the set of frequency points,

{ωn}.
This chapter is in part a reprint of the materials as is appears in,

Jisang Park, Robert R. Bitmead - Simultaneous Scaling for MIMO Controller Certi-

fication, Automatica, submitted, Oct. 2007.

Jisang Park, Robert R. Bitmead - Simultaneous Scaling for MIMO Controller Certi-

fication, 46th IEEE Conference on Decision and Control in New Orleans, LA, USA, Dec,

2007. pp. 4409–4414

The dissertation author was the primary author and the co-author listed in these publi-

cations directed and supervised the research.
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Estimation of the Generalized

Stability Margin

4.1 Introduction

Estimating the generalized stability margin with an accurate error bound has

significant impact on controller certification. In Chapter 2, we introduced the stability

inference inequality,

arcsin bP,C2 ≥ arcsin bP,C1 − arcsin δν(C1, C2).

As shown in the above inequality, the inferred stability margin of controller C2 relies on

the estimated value of bP,C1 and the computed value δν(C1, C2). At a fixed frequency

point, we analyze an error bound of the generalized stability margin as the infinity

norm of the MIMO empirical transfer function estimate (ETFE). We also provide, by

interpolating the error bound between any two frequency points, the upper bound of

error on a continuous frequency interval. Input signal design to reduce the error on the

estimate is also studied. We suggest running the system for a certain length of time prior

to recording of each output data set. The assured upper bound of estimation error can

be tuned by the amount of the pre-experiment.

A scalar linear time invariant process is given by

y(t) =
∞∑

n=0

g(n)u(t− n) + v(t) = G(z)u(t) + v(t) (4.1)

69
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where y(t) is the observed output, u(t) is the input, v(t) is the disturbance that is

uncorrelated with u(t), and g(n) is the impulse response of the exponentially stable

transfer function,

G(z) =
∞∑

n=0

g(n)z−n. (4.2)

Consider the N -point of experimental data record, {u(0), u(1), · · · , u(N −1)}. Then the

function U lN is defined as,

U lN =
1√
N

N−1∑

t=0

u(t)e−j
2πl
N
t, (4.3)

with l = 0, 1, · · · , N − 1 forming the discrete Fourier transform (DFT) of the finite

input sequence. By the inverse DFT, we can obtain time domain sequence u(t), t =

0, 1, · · · , N − 1,

u(t) =
1√
N

N−1∑

l=0

U lNe
j 2πl

N
t. (4.4)

Fourier analysis leads us to the definition of the periodogram, the squared magnitude of

UN (ω),

|UN (ω)|2.

Indeed the periodogram is an estimate of the power at frequency ω by filtering the data

with a bandpass filter (Kay 1988). Through Parseval’s theorem,

N−1∑

k=0

|UN (2πk/N)|2 =
N−1∑

t=0

u(t)2,

we can see clearly that, at a specific frequency ω = 2πk/N , the periodogram is one com-

ponent of the total energy of the signal u(t) t = 0, 1, · · · , N−1. It is observed that if u(t)

is zero mean white Gaussian noise, even though the average value of the periodogram of

random data converges to the true value as the data record length increases, the vari-

ance of the periodogram of random signal is a constant no matter how many data might

be taken into the computation. If it is the case that we have random data sequences,

we may resort to the averaged periodogram to estimate the frequency response. Ljung

(Ljung 1985, Ljung 1999) introduced the notation of the Empirical Transfer Function

Estimation (ETFE) as an estimate of transfer function,

Ĝ(ej
2πl
N ) =

Y l
N

U lN
.



71

The accuracy of this estimate of the frequency response function has been studied by

several researchers (Ljung 1999, Broersen 2004, Pintelon & Schoukens 2001, de Vries

1994). Broersen (Broersen 2004) provided formulations for bias and variance error of

the ETFE with a stochastic input. He showed that the bias error could be eliminated

by employing a periodic input. In the next section, we will show that, to remove the

bias error from the frequency response estimation, an infinite length of data records

must be used in the DFT computation. Pintelon and Schoukens (Pintelon & Schoukens

2001) quantified the bias and variance errors of the frequency response estimation due to

correlated input/output errors. De Vries (de Vries 1994) suggested running a feedback

system for a specific length of time prior to recording the input and output data to

reduce the error due to unknown past inputs. In de Vries’ analysis, he introduced a

partly periodic signal which is a signal that has a duplication of the last part of the

input at the first part. He extended the error analysis to MIMO estimation by using

multiple of the channel-by-channel SISO error analyses and that correspondingly many

error bounds. De Vries’s MIMO error bound cannot be used in our framework directly

since the generalized stability margin is a scalar representation of matrix property. Hence

our need is a representation of MIMO frequency response error in a scalar. Differently

from de Vries’ MIMO error analysis, in this dissertation, we provide a single scalar value

as the MIMO error bound.

4.2 Error Analysis of ETFE

In general, the following relationship does not hold.

Y l
N = G(ej

2πl
N )U lN + V l

N , (4.5)

where YN (ω), UN (ω), and VN (ω) are the M-point DFTs of y(k), u(k), and v(k) respec-

tively. Instead of (4.5), we should consider,

Y l
N = G(ej

2πl
N )U lN +RlN + V l

N . (4.6)

In this section, we will identify the term, RlN , formulate a bound on RlN and suggest an

appropriate input signal to maintain the size error due to RlN . Another error source in
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(4.6) is noise, v(t), over which we do not have control. From (4.1) with the definition of

the DFT, we have

Y l
N =

1√
N

N−1∑

t=0

(G(z)u(t) + v(t)) e−j
2πl
N
t

=
1√
N

N−1∑

t=0

∞∑

k=0

g(k)e−j
2πl
N
tu(t− k) + V l

N

(4.7)

Using the change of variables, τ = t− k.

Y l
N =

∞∑

k=0

g(k)e−j
2πl
N
k · 1√

N

N−1−k∑

τ=−k

u(τ)e−j
2πl
N
τ + V l

N

=
∞∑

k=0

g(k)e−jωk ·
(
U lN +

1√
N

N−1−k∑

τ=−k

u(τ)e−j
2πl
N
τ − U lN

)
+ V l

N

= G(ej
2πl
N )U lN +

∞∑

k=0

g(k)e−j
2πl
N
k ·
(

1√
N

N−1−k∑

τ=−k

u(τ)e−j
2πl
N
τ − U lN

)
+ V l

N .

(4.8)

Then we define the residual error in (4.8) as the bias error, RlN ,

RlN ,

∞∑

k=0

g(k)e−jωk ·
(

1√
N

N−1−k∑

τ=−k

u(τ)e−jωτ − U lN

)

Then bias error term, RlN can be rewritten as following,

RlN =

∞∑

k=0

g(k)e−j
2πl
N
k ·
(

1√
N

N−1−k∑

τ=−k

u(τ)e−j
2πl
N
τ − 1√

N

N−1∑

τ=0

u(τ)e−j
2πl
N
τ

)

=
∞∑

k=0

g(k)e−j
2πl
N
k · 1√

N

(
−1∑

τ=−k

u(τ)e−j
2πl
N
τ −

N−1∑

τ=N−k

u(τ)e−j
2πl
N
τ

)

=
∞∑

k=0

g(k)e−j
2πl
N
k · 1√

N

(
−1∑

τ=−k

u(τ)e−j
2πl
N
τ −

−1∑

τ=−k

u(τ +N)e−j
2πl
N
τ

)

=
∞∑

k=0

g(k)e−j
2πl
N
k · 1√

N

−1∑

τ=−k

(u(τ) − u(τ +N)) e−j
2πl
N
τ

(4.9)

From (4.9), we can recognize the bias error stems from the discrepancy between inputs

u(t) and u(t + n) for t ∈ [−∞,−1]. The DFT allows us to analyze frequency domain

information contents from finite duration of time domain signal. The residual error is

inevitable due to using a finite amount of data for computing the DFT in the estimation

of the frequency response of G(z). The DFT is calculated from a finite length data

record but exact G(ejω) would require knowledge of an infinite input sequence,
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Broersen (Broersen 2004) mentioned that if u(t) is a periodic input with period

N , then RlN = 0. As shown, in (4.9), if u(τ) approaches to u(τ+N) for all τ ∈ [−∞,−1],

the bias error RlN approach to zero. Thus, as we mentioned earlier in this section, the

bias error may not be removed completely from the estimation of the frequency response

of G(ej
2πl
N ) unless we have run the system with a periodic input signal from the infinite

past. Of course, if the system’s unforced response decays in the finite times, then an

infinitely long periodic input signal would not be necessary to make RlN zero. We will

use the property of a finite decay rate of the impulse response of the plant in designing

a useful input signal for estimating the frequency response of G(z) at ω = 2πl
N with a

manageable error.

4.2.1 Standard Test Signal

In this section, we will define a scalar probing signal for the error analysis and

the excitation signal design in this chapter.

Definition 4.2.1 (The Standard Test Signal, u(t)). Consider a scalar signal, u(t), for

t ∈ [−Nr, N − 1] with integers Nr and N (Nr ≥ 0 and N > 1). If u(t) has following

properties,

1) frequency domain components: U lN 6= 0 for k1 ≤ l ≤ k2, where k1, k2 are integers,

2) time domain components: for t ∈ [−Nr,−1],

u(t) = u(t+N). (4.10)

then u(t) is defined as the standard test signal.

In definition 4.2.1, the first property is the requirement on assurance of the ETFE com-

putation within a fixed frequency range. In the second property, the integer Nr can be

understood as the number of sample times while the output, y(t), is not recorded yet.

After Nr samples of waiting, the recording of output y(t) starts. Then the each of DFT

of y(t) and u(t) is computed from the output and input data collected for t ∈ [0, N−1] re-

spectively. We call the operation of feedback-loop for t ∈ [−Nr,−1] as a pre-experiment.

The purpose of this pre-experiments can be explained as a way of reducing the initial
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Figure 4.1: Implementation of the standard test signal.

condition from previous unknown operation. Figure 4.1 shows an implementation of the

standard test signal. To satisfy the first property in Definition 4.2.1, the chirp up and

down signal is chosen as u(t) and it has the pre-experiment part in t ∈ [−Nr,−1].

4.2.2 SISO Error Bound: Pre-experiment Analysis

Formulating (4.9) does not require any a priori information on the system.

The residual error is directly derived from an LTI system only using the definition of

the DFT. Since no assumption on the system is used in (4.9), it can be applied to any

LTI system. However it is not obvious how to derive a bound on the residual error,

(4.9). In this section, we will provide an error bound of the frequency response of a SISO

transfer function G(ej
2πl
N ) by employing a pre-experiment by running the system with

an input before the recording (i.e. t < 0) of data for the DFT. In this section we will

assume use of the standard test signal and show the connection between the length of

the pre-experiment and the bound on the bias error. Note that the output is in the form

of an infinite summation, (4.1).

Theorem 4.2.1. Consider the measured output sequence, y(t) for t ∈ [0, N − 1], given

by (4.1),

y(t) =
∞∑

n=0

g(n)u(t− n) + v(t),

with the standard test signal, u(t), for t ∈ [−Nr, N − 1]. Define the N-point DFTs for
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l = 0, · · · , N − 1

U lN =
1√
N

N−1∑

t=0

u(t)e−j
2πl
N
t

Y l
N =

1√
N

N−1∑

t=0

y(t)e−j
2πl
N
t

V l
N =

1√
N

N−1∑

t=0

v(t)e−j
2πl
N
t

(4.11)

and assume U lN 6= 0. Assume we are given a bound on the impulse response, g(k),

|g(k)| ≤Mρk,

with M > 0 and 0 < ρ < 1 and a bound V
l
N on V l

N . Assume there exists a bound on

input u(t),

|u(t)| ≤





u for t < −Nr

umax for t ∈ [0, N − 1]
.

Denote the empirical transfer function estimate of G
(
ej

2πl
N

)
,

Ĝ
(
ej

2πl
N

)
=
Y l
N

U lN
.

Then the following error bound is satisfied

∣∣∣G
(
ej

2πl
N

)
− Ĝ

(
ej

2πl
N

)∣∣∣

≤ 1√
N |U lN |

(umax + u)
Mρ2

(1 − ρ)2
ρNr(1 − ρN ) +

V
l
N

|U lN |
.

(4.12)

Proof. See Appendix 4.7.1.

4.2.3 Guidance on SISO ETFE estimation

Energy in U lN

To find the frequency where bP,Ci
is achieved, iterative experiments may be

required. Initially, the input signal should have a wide bandwidth so that the resultant

ETFE can show at least a rudimentary range of frequencies where the peak value of mag-

nitude of the ETFE might exist. The use of a periodic swept-sine wave is recommended,

since periodicity is also required. In addition, at the early stage, the constant |U lN | over



76

l = 0, 1, · · · , N − 1 can be used in an experiment for ETFE with roughly fixed signal

to noise ratio(SNR). After having a crude range of frequencies where the peak value of

bP,Ci
estimate exists, a narrower bandwidth can be used to refine the frequency range of

the input signal. The magnitude of |U lN | can be increased in a certain frequency range to

improve the SNR. The first term in the right hand side of (4.12) represents a bound on

the bias error and the second term indicates a bound on the estimate error due to noise.

By increasing |U lN |, in (4.12), both errors can be decreased at the frequency ω = 2πl
N .

Length of Pre-experiment, Nr

One could imagine selecting Nr so as to maintain the first term on the right

hand side of (4.12) roughly equal to the second term, thereby keeping the systematic

error bound approximately equal to the noise error bound. For a smaller estimate error

bound in (4.12), we need to keep the number of pre-excitation samples large since the

error bound (4.12) decreases geometrically with Nr.

Downsampling

The second term of the right hand side of (4.12) is due to the additive measure-

ment noise, v(t). Downsampling is one remedy of limiting the noise effect. The following

simple relationship shows that down a smpling is equivalent to increasing the energy in

the DFT of the input signal. For l = 0, · · · , N − 1,

|U rlrN | =
√
r|U lN |

where r is an integer, and assume u(t) in N -periodic. Thus the DFT of r periods of

a periodic signal is
√
r times larger than the DFT of one period of u(t). However,

downsampling decreases the number of data points in the DFT computations, which

results an increase of the first term of the right hand side of(4.12). In Appendix 4.7.3, we

prove Theorem 4.7.1 that shows the equivalence between downsampling and averaging.

4.2.4 MIMO Error Bound

A causal q-input p-output process is given by

~y(t) =
∞∑

n=0

H(n)~u(t− n) + ~v(t) = G(z)~u(t) + ~v(t)



77

where ~y(t) is the p × 1 observed output signal vector, ~u(t) is the q × 1 observed input

signal vector, ~v(t) is p × 1 output noise vector, and H(n) is the p × q impulse response

matrix,

H(n) =





h11(n) h12(n) · · · h1q(n)

h21(n) h22(n) · · · h2q(n)
...

... · · · ...

hp1(n) hp2(n) · · · hpq(n)




,

where hij(n) is the impulse response from the j-th input to the i-th output, with the

exponentially stable transfer function matrix

G(z) =
∞∑

n=0

H(n)z−n. (4.13)

The next theorem extends the result of Theorem 4.2.1 to a error bound for a MIMO

system.

Theorem 4.2.2. Consider the p-output, q-input Linear MIMO system

~y(t) =

∞∑

n=0

H(n)~u(t− n) + ~v(t), (4.14)

and the standard test signal, u(t) for t ∈ [−Nr, N − 1]. Define the N -point DFT

U lN =
1√
N

N−1∑

t=0

u(t)e−j
2πl
N
t, l = 0, 1, · · · , N − 1.

Next consider q distinct experiments with vector input signals,

~ui(t) = ~qiu(t), t ∈ [−Nr, N − 1]

and the corresponding output measurements,

~yi(t), t ∈ [0, N − 1]

Define: the q × q matrix,

Q = [~q1, ~q2, · · · , ~qq],
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the N -point vector DFTs, for l = 0, · · · , N − 1, i = 1, · · · , q

~Y l
Ni =

1√
N

N−1∑

t=0

~yi(t)e
−j 2πl

N
t,

~U lNi =
1√
N

N−1∑

t=0

~ui(t)e
−j 2πl

N
t = ~qiU

l
N ,

~V l
Ni =

1√
N

N−1∑

t=0

~vi(t)e
−j 2πl

N
t.

(4.15)

Consider the matrices,

Y
l
N ,

[
~Y l
N1, ~Y

l
N2, · · · , ~Y l

Nq

]
∈ C

p×q

U
l
N ,

[
~U lN1, ~U

l
N2, · · · , ~U lNq

]
∈ C

q×q = QU lN

V
l
N ,

[
~V l
N1, ~V

l
N2, · · · , ~V l

Nq

]
∈ C

p×q

(4.16)

Assume the following,

• U lN 6= 0 for l = 0, · · · , N − 1.

• Bounds on the test function are known

|u(t)| ≤





u for t < −Nr

umax for t ∈ [0, N − 1]
.

• σ(Q) is bounded and Q is invertible

• A bound on the maximum singular value of the impulse response matrices, H(n),

is given,

σ(H(n)) ≤ M̃ρ̃n, (4.17)

with M̃ > 0 and 0 < ρ̃ < 1, and n ≥ 0.

• A bound on the maximum singular value of the matrix of the N -point DFT V
l
N of

the noise v(t),

σ(Vl
N ) ≤ V

l
N .

Define the MIMO ETFE as

Ĝ

(
ej

2πl
N

)
= Y

l
N (Ul

N )−1 =
1

U lN
Y
l
NQ

−1. (4.18)
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Then the following error bound is satisfied

σ
(
G

(
ej

2πl
N

)
− Ĝ

(
ej

2πl
N

))

≤ 1√
N |U lN |

σ(Q)

σ(Q)
(umax + u)

M̃ρ̃2

(1 − ρ̃)2
ρ̃Nr(1 − ρ̃N ) +

V
l
N

σ(Q)|U lN |
.

(4.19)

Proof. See Appendix 4.7.2.

As in the SISO ETFE error bound given by (4.12), the MIMO ETFE error

bound (4.19) can also be tuned with energy in U lN and the number of samples of the

periodic pre-excitation, Nr. Furthermore, the bias error in MIMO ETFE is affected by

the condition number of the matrix Q.

4.2.5 Interpolating the Error Bounds

At fixed frequencies, ω = 2πl
N , l = 0, · · · , N − 1, (4.12) and (4.19) provide the

error bounds on the ETFE. These bounds apply to the ETFE at the frequency points

only. In order to bound excursions of G(ejω between these points, we require a farther

bound on the inter-frequency interpolation. The next proposition provides a bound on

error between the fixed frequency points.

Proposition 4.2.1. Consider a stable transfer function matrix given by (4.13),

G(ejω) =
∞∑

n=0

H(n)e−jωn.

Assume that a bound on the maximum singular value of the impulse response matrix,

H(n), as in (4.17),

σ(H(n)) ≤ M̃ρ̃n,

with M̃ > 0 and 0 < ρ̃ < 1, and n ≥ 0. Then

σ
(
G

(
ej

2π(l+r)
N

)
− G

(
ej

2πl
N

))
≤ M̃ρ̃

(1 − ρ̃)2
π

N
(4.20)

with l = 0, 1, · · · , N − 1 and −1
2 ≤ r ≤ 1

2 .
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Proof.

dG(ejω)

dω
=

∞∑

n=0

(−jn)H(n)e−jωn

≤
∞∑

n=0

nσ(H(n))

=
M̃ρ̃

(1 − ρ̃)2

From the Taylor series,

G

(
ej

2π(l+r)
N

)
= G

(
ej

2πl
N

)
+
dG(ejω)

dω

(
2πr

N

)
,

where the second term of the right hand side of the equation is the remainder term of

the truncated Taylor series.

The next theorem provides an error bound on the frequency response function

between a MIMO ETFE and the true value of the frequency response.

Corollary 4.2.1. Consider a stable transfer function matrix as given in (4.13),

G(z) =
∞∑

n=0

H(n)z−n,

and the ETFE of G(ejω) of (4.18) with l = 0, 1, · · · , N − 1

Ĝ

(
ej

2πl
N

)
= Y

l
N (Ul

N )−1.

Assume a bound on the maximum singular value of the impulse response matrix, H(n),

as in (4.17),

σ(H(n)) ≤ M̃ρ̃n,

with M̃ > 0 and 0 < ρ̃ < 1, and n ≥ 0. Then

σ
(
G

(
ej

2π(l+r)
N

))
≤ σ

(
Ĝ

(
ej

2πl
N

))

+
M̃ρ̃

(1 − ρ̃)2

(
π

N
+

1√
N |U lN |

σ(Q)

σ(Q)
(umax + u) ρ̃Nr+1(1 − ρ̃N )

)
+

V
l
N

σ(Q)|U lN |

with l = 0, 1, · · · , N − 1 and −1
2 ≤ r ≤ 1

2 . Therefore,

‖G(z)‖∞ ≤ max
l

{
σ
(
Ĝ

(
ej

2πl
N

))

+
M̃ρ̃

(1 − ρ̃)2

(
π

N
+

1√
N |U lN |

σ(Q)

σ(Q)
(umax + u) ρ̃Nr+1(1 − ρ̃N )

)
+

V
l
N

σ(Q)|U lN |

}
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Proof.

σ
(
G

(
ej

2π(l+r)
N

)
− Ĝ

(
ej

2πl
N

))

≤ σ
(
G

(
ej

2π(l+r)
N

)
− G

(
ej

2πl
N

))
+ σ

(
G

(
ej

2πl
N

)
− Ĝ

(
ej

2πl
N

)) (4.21)

The first term in the right hand side of (4.21) is given by (4.19) and the second term is

given by (4.20).

4.3 Error Bound on the Generalized Stability Margin Es-

timate

The generalized stability margin,

bP,C = ‖T (P,C)‖−1
∞ .

As shown in Figure 3.1, T (P,C) is a transfer function matrix from ~u(t) =



 u1(t)

u2(t)





to ~y(t) =



 y1(t)

y2(t)



. Let us assume ~y(t) ∈ R
p×1, ~u(t) ∈ R

q×1, then conduct q distinct

experiments to collect input output data set then we have,

T̂ (P,C,
2πl

N
) = Y

l
N (Ul

N )−1,

where Y
l
N ∈ C

p×q, U
l
N ∈ C

q×q.

Theorem 4.3.1. Consider the estimate,

T̂ (P,C,
2πk

N
) = Y

k
N (Uk

N )−1.

Then, using Corollary 4.2.1, the estimate of bP,C is given by,

bP,C ≥ 1

maxk

[
σ
(
T̂ (P,C, 2πk

N )
)

+ ∆Tk

] ,

where

∆Tk =
M̃ρ̃

(1 − ρ̃)2

(
π

N
+

1√
N |UkN |

σ(Q)

σ(Q)
(umax + u) ρ̃Nr+1(1 − ρ̃N )

)
+

V
k
N

σ(Q)|UkN |
.
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4.4 Excitation Signal Design for Margin Estimation

In this section, we will design specific input vectors for experiments to estimate

‖T̂ (P,C)‖∞ from recorded data set.

4.4.1 Existence of U
l
N

−1

We defined the MIMO ETFE in the form of (4.18) assuming that the inverse of

the matrix DFT, U
l
N

−1
, exists. In our analysis, we form the vector input by multiplying a

scalar input signal, u(t), with a vector, ~qi. Therefore, the input design falls into designing

of

1) the standard test signal introduced in Definition 4.2.1, u(t), and

2) as many vectors, ~qi, as the number of inputs of the transfer function T̂ (P,C) so

that Q has an appropriate condition number.

To have a wide band frequency components, the periodic swept-sine would be an ap-

propriate choice for an input signal. Now the choice of Q = [~q1, ~q2, · · · , ~qq] is fairly

straightforward. A full rank matrix Q will make the matrix DFT, U
l
N

−1
, invertible. The

Hadamard matrix or an identity matrix would be a good choice for Q but any matrix

with good condition number would be chosen.

4.4.2 Scaling for Margin Estimation

In Chapter 3, we showed that input and output scaling matrices can reduce

conservatism in the generalized stability margin computation. In the estimation of the

generalized stability margin, the maximum singular value computations of the MIMO

ETFE,

Y
l
N (Ul

N )−1,

is also involved at each frequency point ω = 2πl
N . Constant diagonal scaling matrices will

be used in the estimation of the generalized stability margin in the following numerical

example.
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4.5 Numerical Example

In this numerical example, we estimate the generalized stability margin of a

linearized the Modular Aero-Propulsion System Simulation (MAPSS) (Parker & Guo

2003) turbofan jet engine model and controller using input design developed in this

chapter.

4.5.1 MAPSS Model

Figure 4.2 shows MAPSS and we will use its linearized version as the target

system to be estimated. MAPSS is a Simulink-based turbofan engine simulation of a

modern high-pressure ratio, dual-spool, low bypass, variable cycle, military type engine

with a digital controller. In Figure 4.2, the two boxes represent the controller and engine

components and each consists of a number of sub-modules, e.g., sensors, fan, compressor,

combustor, bypass duct, afterburner, and nozzle. The sub-modules include various non-

linearities. We extracted a linearized engine model and controller from MAPSS with

power lever angle (PLA) of 21 degree, at static sea level operation.

4.5.2 bP,C Estimation for the Linearized MAPSS Model

Consider the following multi input multi output (MIMO) transfer function ma-

trix T (P,C),

~y(t) = T (P,C)~u(t). (4.22)

T (P,C) is 6× 6 and each linearized P and C is a 3× 3 system, which is extracted from

MAPSS. We will use the standard test signal u(t) that has frequency components from

DC to 5 Hz. To make U
l
N invertible, we use the Hadamard matrix,

Q =





1 1 1 1 1 1

1 −1 1 1 1 1

1 1 −1 1 1 1

1 1 1 −1 1 1

1 1 1 1 −1 1

1 1 1 1 1 −1





.
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[zwf6_time(:) zwf6_value(:)]
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Figure 4.2: Simulink Model of MAPSS.
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Figure 4.3: The Maximum singular value plot of a) T (P,C) and b) T̂ (P,C) .

In this example, since we have 6 inputs, we will perform 6 experiments to collect 6 vector

outputs so that we have

[~y1(t), ~y2(t), ~y3(t), ~y4(t), ~y5(t), ~y6(t)]

= T (P,C) [~u1(t), ~u2(t), ~u3(t), ~u4(t), ~u5(t), ~u6(t)]

= T (P,C) Qu(t).

Then the matrix DFT, Y
l
N and the invertible matrix DFT U

l
N , can be constructed. Here

we will perform six consecutive experiments and before each experiment, we will exercise

the pre-experiments. In this example, measurement noise is added at each channel and at

each experiment. Figure 4.3 a shows the maximum singular value plot at each frequency

point of T (P,C) with ‖T (P,C)‖∞ = 70.0884 dB at ω = 1.8406 rad/sec. We obtain an

estimate of ‖T̂ (P,C)‖∞ from the following relationship,

T̂
(
ej

2πl
N

)
= Y

l
N (Ul

N )−1,

and Figure 4.3 b shows ‖T̂ (P,C)‖∞ = 70.0195 dB at ω = 1.8408 rad/sec.
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Figure 4.4: Effects of length of pre-experiments: a) No pre-experiments b) 1
32 of input

c) 1
10 of input d) 1

2 of input.

4.5.3 Pre-experiments

We will observe the effects of pre-experiments on the estimated ‖T̂ (P,C)‖∞.

Figure 4.4 a to d show σ(T̂ (P,C)(jω)) with different lengths of pre-experiment. In Figure

4.4 a, we injected six consecutive vector inputs into T (P,C) without pre-experiments

and we see the estimation is greatly affected by the initial conditions from the previous

experiment. Then we performed the pre-experiment before recording each output vector.

We increased the length of pre-experiments by 1
32 , 1

10 , and 1
2 the length of the input signal

at Figure 4.4 b, c, and d, respectively. The estimation results are as follows.
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Figure 4.5: The Maximum singular value plot of a) T (WoPWi,W
−1
i CW−1

o ) and b)

T̂ (WoPWi,W
−1
i CW−1

o ) .

Length of the Pre-experiments ‖T̂ (P,C)‖∞
∣∣∣‖T (P,C)‖∞ − ‖T̂ (P,C)‖∞

∣∣∣
0 × u(t) 81.0507 dB 10.9623 dB

1/32 × u(t) 73.5809 dB 3.4925 dB
1/10 × u(t) 70.0196 dB 0.0688 dB
1/2 × u(t) 70.0881 dB 0.0003 dB

4.5.4 Scalings

In Figure 4.5, we used the constant diagonal scalings introduced in Chapter 3

to estimate the less conservative margin yielding ‖T̂ (WoPWi,W
−1
i CW−1

o )‖∞ = 8.523

dB at ω = 3.068 rad/sec.

4.6 Conclusion

In this chapter, we investigated estimation of the generalized stability margin

with an error bound using the MIMO empirical transfer function estimate (ETFE). We

used the standard test input to run the system for a specific amount of time before

recording of the output signals to manage the error caused by the initial conditions.
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For MIMO estimation, we perform as many experiments as the number of inputs. Each

vector input was generated from multiplying the scalar input by each column vector

of a full rank matrix so that invertibility of the input DFT matrix was assured. The

magnitude of estimation error can depend on several factors, such as the number of

samples in the DFT computation, energy in the input DFT at a specific frequency, the

number of samples for pre-experimental running, and downsampling.

4.7 Appendices

4.7.1 Proof of Theorem 4.2.1

Define the elementary function

ek(t) =
1√
N
ej

2πk
N
t, k = 0, · · · , N − 1 (4.23)

This set of functions defines a orthonormal basis for sequences on [0, · · · , N − 1]. Define

ûk(t) = UkNek(t) and ŷk(t) = Y k
Nek(t)

for t = 0, 1, · · · , N − 1. The infinite summation in the output y(t) from (4.1) can be

divided into two parts,
t∑

n=0

g(n)u(t− n), (4.24)

and
∞∑

n=t+1

g(n)u(t− n). (4.25)

The finite summation (4.24) is computed from known input, u(t) (t ≥ 0), while the

infinite summation (4.25) depends on known input u(t) (−Nr ≤ t < 0) and unknown

input u(t) (t < −Nr). Now we define ûek(t), infinite extension of ûk(t),

ûek(t− cN) , ûk(t), c ∈ Z and k = 0, 1, · · · , N − 1, (4.26)

then note that the corresponding infinite extension of u(t) for t = 0, 1, · · · , N−1 is given

by,

ue(t) =
N−1∑

k=0

ûek(t).
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Since u(t) =
∑N−1

k=0 U
k
Nek(t) for t = 0, 1, · · · , N − 1, using the elementary functions,

(4.23), we can write (4.24) as,

t∑

n=0

g(n)
N−1∑

k=0

ûk(t− n).

Next, swap the order of summation to yield,

N−1∑

k=0

t∑

n=0

g(n)ûk(t− n)

=
N−1∑

k=0

(
t∑

n=0

g(n)ûk(t− n) +
∞∑

n=t+1

g(n)ûek(t− n) −
∞∑

n=t+1

g(n)ûek(t− n)

)
.

Now using (4.26), we have

N−1∑

k=0

(
∞∑

n=0

g(n)ûk(t− n) −
∞∑

n=t+1

g(n)ûek(t− n)

)

=
N−1∑

k=0

(
∞∑

n=0

g(n)e−j
2πk
N
n 1√

N
U

(
2πk

N

)
ej

2πk
N
t −

∞∑

n=t+1

g(n)ûek(t− n)

)

=

N−1∑

k=0

G(ej
2πk
N )ûk(t) −

∞∑

n=t+1

g(n)ue(t− n).

Then y(t) can be written as,

y(t) =
N−1∑

k=0

G(ej
2πk
N )ûk(t) +

∞∑

n=t+1

g(n) (u(t− n) − ue(t− n)) + v(t) (4.27)

Define the error term s(t),

s(t) ,

∞∑

n=t+1

g(n) (u(t− n) − ue(t− n)) (4.28)

Through the condition (4.10) with input, u(t) = ue(t) for t ∈ [−Nr,−1], we eliminate

error in t ∈ [−Nr,−1],

s(t) =

t+Nr∑

n=t+1

g(n) (u(t− n) − ue(t− n)) +
∞∑

n=t+Nr+1

g(n) (u(t− n) − ue(t− n))

= 0 +

∞∑

n=t+Nr+1

g(n) (u(t− n) − ue(t− n)) .

(4.29)
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Using (4.36) and (4.38) stack all signals for t = 0, 1 · · · , N − 1,

N−1∑

k=0





ŷk(0)

ŷk(1)
...

ŷk(N − 1)




=

N−1∑

k=0

G(ej
2πk
N )





ûk(0)

ûk(1)
...

ûk(N − 1)





+





s(0)

s(1)
...

s(N − 1)




+





v(0)

v(1)
...

v(N − 1)





(4.30)

By pre-multiplying the following row vector at (4.30)

1√
N

[
1 e−j

2πl
N · · · e−j

2πl
N

(N−1)
]

We have,

Y l
N = G

(
2πl

N

)
U lN + SlN + V l

N . (4.31)

The bound on
∣∣SlN

∣∣ can be derived,

∣∣∣SlN
∣∣∣ =

∣∣∣∣∣
1√
N

N∑

t=1

e−j
2πl
N
t

∞∑

n=t+Nr+1

g(n) (u(t− n) − ue(t− n))

∣∣∣∣∣

≤ 1√
N

(umax + u)
N∑

t=1

∞∑

n=t+Nr+1

|g(n)|

≤ 1√
N

(umax + u)
Mρ2

(1 − ρ)2
ρNr(1 − ρN )

(4.32)

4.7.2 Proof of Theorem 4.2.2

ek(t) =
1√
N
ej

2πk
N
t, k = 0, · · · , N − 1

This set of functions defines a orthonormal basis for sequences on [0, · · · , N − 1]. Define

ûk(t) = UkNek(t) and ŷik(t) = ~Y k
iNek(t)

for t = 0, 1, · · · , N − 1. The infinite summation in the output vector ~yi(t) from (4.14)

can be divided into two parts,

t∑

n=0

H(n)~ui(t− n) =
t∑

n=0

H(n)~qiu(t− n), (4.33)
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and
∞∑

n=t+1

H(n)~ui(t− n) =

∞∑

n=t+1

H(n)~qiu(t− n). (4.34)

The finite summation (4.33) is computed from known input, u(t) (t ≥ 0), while the

infinite summation (4.34) depends on unknown inputs u(t) (t < 0). Now we define ûek(t),

infinite extension of ûk(t),

ûek(t− cN) , ûk(t), c ∈ Z and k = 0, 1, · · · , N − 1, (4.35)

then note that the corresponding infinite extension of u(t) is given by,

ue(t) =
N−1∑

k=0

ûek(t).

Using the elementary function, (4.23), we can write (4.33) as,

t∑

n=0

H(n)~qi

N−1∑

k=0

ûk(t− n).

Next, swap the order of summation to yield,

N−1∑

k=0

t∑

n=0

H(n)~qiûk(t− n)

=
N−1∑

k=0

(
t∑

n=0

H(n)~qûk(t− n) +
∞∑

n=t+1

H(n)~qiû
e
k(t− n) −

∞∑

n=t+1

H(n)~qiû
e
k(t− n)

)
.

Now using (4.35), we have

N−1∑

k=0

(
∞∑

n=0

H(n)~qiûk(t− n) −
∞∑

n=t+1

H(n)~qiû
e
k(t− n)

)

=
N−1∑

k=0

(
∞∑

n=0

H(n)e−j
2πk
N
n~qi

1√
N
U

(
2πk

N

)
ej

2πk
N
t −

∞∑

n=t+1

H(n)~qiû
e
k(t− n)

)

=

N−1∑

k=0

G(ej
2πk
N )~qiûk(t) −

∞∑

n=t+1

H(n)~qiu
e(t− n).

Then ~yi(t) can be written as,

~yi(t) =
N−1∑

k=0

G(ej
2πk
N )~qiûk(t) +

∞∑

n=t+1

H(n)~qi (u(t− n) − ue(t− n)) + ~vi(t) (4.36)
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Define the error vector ~s(t),

~si(t) ,

∞∑

n=t+1

H(n)~qi (u(t− n) − ue(t− n)) (4.37)

Through the condition (4.10) with input, u(t) = ue(t) for t ∈ [−Nr,−1], we eliminate

error in t ∈ [−Nr,−1],

~si(t) =

t+Nr∑

n=t+1

H(n)~qi (u(t− n) − ue(t− n)) +
∞∑

n=t+Nr+1

H(n)~qi (u(t− n) − ue(t− n))

= 0 +
∞∑

n=t+Nr+1

H(n)~qi (u(t− n) − ue(t− n)) .

(4.38)

Using (4.36) and (4.38) stack all signals for t = 0, 1 · · · , N − 1,

N−1∑

k=0





ŷ1,ik(0) ŷ1,ik(1) · · · ŷ1,ik(N − 1)

ŷ2,ik(0) ŷ2,ik(1) · · · ŷ2,ik(N − 1)
...

...
...

...

ŷp,ik(0) ŷp,ik(1) · · · ŷp,ik(N − 1)





=
N−1∑

k=0

G(ej
2πk
N )





û1,ik(0) û1,ik(1) · · · û1,ik(N − 1)

û2,ik(0) û2,ik(1) · · · û2,ik(N − 1)
...

...
...

...

ûq,ik(0) ûq,ik(1) · · · ûq,ik(N − 1)





+





s1,i(0) s1,i(1) · · · s1,i(N − 1)

s2,i(0) s2,i(1) · · · s2,i(N − 1)
...

...
...

...

sp,i(0) sp,i(1) · · · sp,i(N − 1)




+





v1,i(0) v1,i(1) · · · v1,i(N − 1)

v2,i(0) v2,i(1) · · · v2,i(N − 1)
...

...
...

...

vp,i(0) vp,i(1) · · · vp,i(N − 1)





(4.39)

By post-multiplying the following column vector to (4.39)

1√
N





1

e−j
2πl
N

...

e−j
2πl
N

(N−1)




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We have,

~Y l
Ni = G(ej

2πl
N )~U lNi + ~SlNi + ~V l

Ni. (4.40)

By additional (q − 1) DFT vector relationships of (4.40), we have

Y
l
N = G(ejω)Ul

N + S
l
N + V

l
N . (4.41)

The bound on σ
(
SlN
)

can be derived,

σ
(
S
l
N

)
= σ

(
1√
N

N∑

t=1

e−j
2πl
N
t

∞∑

n=t+Nr+1

H(n)Q (u(t− n) − ue(t− n))

)

≤ σ(Q)√
N

(umax + u)
N∑

t=1

∞∑

n=t+Nr+1

σ(H(n))

≤ σ(Q)√
N

(umax + u)
M̃ρ̃2

(1 − ρ̃)2
ρ̃Nr(1 − ρ̃N )

(4.42)

Therefore we have the error bound, (4.19).

4.7.3 Downsampling and Averaging of DFT

Theorem 4.7.1. Consider integers P , M , and N with N = M × P and DFT of an

experimental data record, {u(0), u(1), · · · , u(N − 1)},

UkN =
1√
N

N−1∑

t=0

u(t)ej
2πk
N
t

for k = 0, 1, · · · , N − 1.

(4.43)

Using P nonoverlapping segments of the original data record, define P of DFTs for

h = 0, 1, · · · , (P − 1),

(
U lM

)

h
=

1√
M

M−1∑

t=0

u(t+M · h)ej 2πl
M
t,

for l = 0, 1, · · · , (M − 1).

Let us consider UkN only at

k = l × P,

so that a downsampled DFT of (4.43) is given by,

1√
M × P

N−1∑

t=0

u(t)ej
2πl×P
M×P

t. (4.44)
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Then the downsampled DFT (4.44) is equal to an averaged DFT of the P blocks of data

record,

1√
P

P−1∑

h=0

(
U lM

)

h
. (4.45)

Proof. From (4.44),

1√
M

1√
P

N−1∑

t=0

u(t)ej
2πl
M
t

=
1√
P

P−1∑

h=0

1√
M

M(h+1)−1∑

t=M ·h

u(t)ej
2πl
M
t

=
1√
P

P−1∑

h=0

1√
M

M−1∑

t=0

u(t+M · h)ej 2πl
M
t

=
1√
P

P−1∑

h=0

(
U lM

)

h
.

(4.46)



5

Conclusions and Future Work

5.1 Conclusions

The main theme of the dissertation is the generalized stability margin guaran-

tee by pre-established stability of a ν-gap-wise adjacent controller. The thesis can be

roughly divided in three parts although they are closely related to each other; a decision

supporting tool for inference of the stability margin, computation of the maximal stabil-

ity margin with the minimal ν-gap metric, and experiment for estimating the generalized

stability margin.

The search algorithm for a subset of designed controllers to reduce the number

of experiments required in controller certification has been developed in Chapter 2. By

doing experiments only on a small subset of controllers, we can solve the certification

problem for a large or, in the SISO case at least, an infinite set of candidate controllers in

an efficient fashion. Precomputed design quantities such as bP̂ ,C and δν(Ci, Cj) are used

to guide the search for controllers to be tested experimentally with the actual plant to

yield certification of the complete set C. A required margin for the controller certification

can be maintained. For the SISO case when the candidate controller set has an infinite

number of controllers, we have shown that only a finite number of experiments are

required to solve the certification problem. We provided a theorem restricting a radius

of a ball in the Euclidean space and we gave an example that the controller will guarantee

a prescribed level of stability and performance if parameters of a scalar controller are

contained in that ball.

95
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In Chapter 3, we investigated the effects of scaling on the stability margin

computation in controller certification. The input/output scaling on bP̂ ,Ci
computation

may reduce the conservatism in the bP̂ ,C . However the use of scaling matrices without

carefully considering how Wo and Wi will alter the ν-gap metric unfavorably to the

controller certification. We proposed simultaneous scaling on bP̂ ,Ci
and the ν-gap so that

we can achieve an efficient controller certification. The scaling matrices for maximizing

the generalized stability margin can be found by a convex optimization. Whereas, the

minimization of the ν-gap metric cannot be formulated in a convex problem. We tackled

this issue modifying the XY-centering algorithm. The scaling on the stability margin

does not change the gain margin and phase margin in SISO case. Thus the purpose

of scalings can be understood as a stability analysis and the scalings reveal how the

generalized stability margin should be represented.

In Chapter 4, we investigated estimation of the generalized stability margin

with an error bound using MIMO empirical transfer function estimate (ETFE) error

analysis. We suggested running the system for a specific amount of time before recording

of the output signals to manage the error caused by the initial conditions. The input

signal for experiments also designed. The swept-sine signal is suggested as a scalar input

signal. For MIMO experiments, we simply multiply this scalar input by a full rank

matrix so that we can assure invertibility of the input DFT matrix. The magnitude

of estimation error can depend on several factors, such as the number of samples in

the DFT computation, energy in the input DFT at a specific frequency, the number of

samples for pre-experimental running, and downsampling so on.

5.2 Future Research

• fleet-wide certification

• direct certification of non-linear engine model

• use of experimental data on updating the plant model, P̂

Further work required in this area is apparent to explore joint approaches to incorpo-

rating controller certification and fleet variability. There remain many open questions



97

about extension to nonlinear systems and about the inclusion of significant time-variation

among either or both the plants and controllers. Clearly, extension of the SISO results

for continuously parametrized sets of MIMO controllers will require significant technical

work. Although, from a practical perspective, this might be subsumed by the enumer-

ated solution. Of particular interest is the extension of these results dealing with stability

and stability margins to cover issues of guaranteed closed-loop performance. Already,

weighting functions are used in the computation of MIMO margins and it is clear that

weighting functions also play a central role in loop-shaping control designs. It would

indeed be worthwhile to extend these stability metrics to include a performance metric.
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