
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
The prediction of human cortical bone strength using the finite element method

Permalink
https://escholarship.org/uc/item/7hb7222x

Author
Rossi, Stephen Andrew

Publication Date
1996
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hb7222x
https://escholarship.org
http://www.cdlib.org/


THE PREDICTION OF HUMAN CORTICAL BONE STRENGTH
USING THE FINITE ELEMENT METHOD:

A STUDY OF THE FLEXURAL AND TORSIONAL BEHAVIOR OF

FEMORAL SHAFTS WITH SIMULATED METASTATIC LESIONS

by

STEPHEN ANDREW ROSSI

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BIOENGINEERING

in the

GRADUATE DIVISIONS

of the

UNIVERSITY OF CALIFORNLA SAN FRANCISCO

and

UNIVERSITY OF CALIFORNLA BERKELEY

Approved:

Committee in Charge

Date University Librarian
Degree Conferred: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



copyright 1996

by

Stephen A. Rossi

\\\\\\\
-º“■ ,AA\

w
Lº
…\\\

_\\■ \■ ]
\\

--

~ || -



This work is dedicated to my father, William Rossi, Jr.,

a man whose complete fascination by science and unfailing faith in me

have always encouraged my pursuit of knowledge.

~ || --



Acknowledgments

In the twenty-eight years of my being, this will be my first written

acknowledgment. I hope that I have not waited until this point, the completion of

my doctoral dissertation, to thank those who have enriched and enlightened me

throughout the years. If I have indeed failed to acknowledge those outstanding

individuals in the past, then these pages are chance to finally rectify such an

omission. I would like to believe I have already thanked the important

participants in my academic and personal development with both words and

deeds. These pages would then serve to remind me of how lucky I am to have

had such support.

First I must acknowledge those most directly responsible for the completion

of my dissertation and the conferment of my degree. Harry Skinner, Doctor of

both Philosophy and Medicine, was the man who took in that naive student five

years ago. With an ability to inspire performance without commanding it, Dr.

Skinner allowed me to create my own path. Few students have had the

opportunity to write a grant proposal, define an entire project, and conduct

independent research as I have. It was his faith in my ability to do good science

that fostered my independence and spurred my growth. Dr. Steve Lehman

boasted an important role in my academic progression, whether as graduate

student advisor, chair of my qualifying examination committee, or member of my

thesis committee. By treating me as an equal regardless of whether I had

earned that status, he became an important sounding board for my making

important decisions. I respect Steve a great deal for his complete dedication to

both the advancement of science and the achievement of young scholars. I

need to thank two other professors for their participation on my quals and thesis

-

* - /

2
* º

=x_*
~

*…* *

7 -
**

~~~~
■ _ _
* º -*.

* * * * * *
º **
!---
*

_- Tº

L!--
-

ºa ºº

~ iv -



committees: Dr. James Johnston and Dr. Jeff Lotz. These professors dissected

my ideas with a critical eye, contributing their expertise to the performance of

sound research.

If grad school were likened to war, it was Joyce Keyak with whom I fought in

the trenches. It was her bullet-sharp mind and vigilant guard that saved me

from many of the pitfalls of the research experience. For much of the Six Year's

War, it was only she with whom I could share my ideas. Many other soldiers

came and went (Rob Fassberg, Kim Jones, Irving Lee, and Louis Vu), helping

with both little details and the big ideas. Without their assistance, the war would

still be raging on. If graduate school were likened to family, Debra would be the

mother to all of us bioengineering students. Her keen mind and compassionate

heart were our only defense against administrative quagmires and personal

nightmares. As students, we were brothers and sisters in the travails toward

candidacy and beyond. There are a few students in particular that buttressed

me in my efforts toward academic success: Kevin Clark, Kathy Cortopassi,

Margot Damaser, Sue Moyher, Liz Penades, Peter Quesada, and Mary Wagner.

In our sharing common graduate experiences, we were able to constructively

vent our frustrations and share our successes.

But graduate school is neither a war nor a family; it is just long hard work.

That is why the technical support of Frank Ashford and Moira Heilmann became

invaluable. That is why the administrative support of Elizabeth Jameson proved

essential. That is why the craftsmanship of Laszlo Bosckai and William Doyle

seemed indispensable. Of course in addition to contributing their talent, they

contributed their generosity and warmth, two qualities often lacking in people

within a research institution. I will also use this opportunity to thank the hands

that fed me: Department of Veterans Affairs, Rehabilitation Research and

Development Service for their generous funding of my research; the UCSF



Anatomy Department, UCSF Tissue Bank, Central California Blood Bank Tissue

Service, and National Disease Research Interchange for their provision of

human specimens; and California Advanced Imaging for the use of their CT

scanning capabilities.

Outside the realm of the academic world is the real world — the world where

many significant others have contributed their thoughtfulness to making my life

rich and whole. First and foremost, I owe much to the people who brought me

into this world, William and Dorothy Rossi. As parents and role models, they

were tireless in their dedication to raising children with curious minds and

compassionate hearts. I have also valued the support of my brothers and

sisters in the Rossi Clan (Mike, Traci, Jeff, Cynthia, and Matt). Beyond my God

given family were the kindred spirits that I have chosen as family. It would be

impossible to describe the importance of each of these individuals, but let a

simple list serve to honor them.

Faith Bertrand

Steve Raiff - Kathleen Gerety

Catherine Hopman • Michael Cuesta • Kim Ranalli

David Quigg - Denise Shushan

Chris Covin

I hope that I have indeed accomplished what I set out to accomplish — to

thank those whom I have forgotten to thank and to remind myself of my own

good fortune.



Abstract

Current methods for determining the risk of fracture for bones with metastatic

lesions are inadequate. This research investigated the flexural and torsional

behavior of femoral shafts with simulated lesions as a means toward improving

clinical guidelines. Four-point bending tests demonstrated differences in the

failure characteristics of whole bones and bones with hemispherical defects;

whole bones exhibited greater structural ductility with five times the energy-to

failure (p < 0.01). Linear finite element (FE) models predicted failure loads for

both sets of bones a priori and demonstrated the benefit of using computed

tomography (CT) scan data to describe bone geometry and density-based

heterogeneity. Models not utilizing CT scan data were less accurate and

precise (r = 0.76) than models using CT scan data for geometry (r = 0.93) or for

both geometry and heterogeneous material properties (r = 0.97). A parametric

sensitivity analysis revealed that linear FE models could not explain the

differences in structural behavior of whole bones and bones with defects.

Nonlinear models that incorporated a bi-linear stress-strain relationship for

cortical bone performed as well as linear models in predicting ultimate strengths

for the flexural experiment (r = 0.99). Moreover, the behavior of these nonlinear

models provided a possible explanation for differences in ductility between the

two sets of bones; perhaps, the "brittle" failure of bones with defects was the

consequence of early but concentrated plastic yielding, imperceptible on

macroscopic load-deflection curves. CT scan-derived linear models were then

used to predict the torsional strengths of bones with hemispherical defects. The

linear FE models achieved high precision (r = 0.99), but overestimated ultimate

torques by a factor of two. This was most likely the consequence of a failure

~ vii~



criterion that did not account for the orthotropy of cortical bone. Future studies

should address the issue of material property assumptions and failure criteria

used in the modeling of cortical bone structures. Until that time, the precision of

the CT scan-derived FE models of this investigation marks a significant step

toward the prediction of failure for bones with metastatic lesions.

Dissertation Committee Members

Harry Skinner, M.D., Ph.D. (Chair)

James Johnston, M.D.

Steven Lehman, Ph.D.

Jeff Lotz, Ph.D.
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Chapter I

Introduction and motivation

With the aging United States population, the overall cancer death rate has

been increasing at the rate of 0.4% per year (Stephens, 1991). It has become

the second leading cause of death, accounting for 24% of all deaths in 1984

(Harrington, 1988). The increased incidence of cancer brings an attendant

increase in the incidence of metastatic lesions found in bones, the common

causes being cancers of the breast, kidney, lung, and prostate. It is estimated

that as many as 90% of patients dying of disseminated malignancy have bone

metastases (Rubens and Fogelman, 1991). Though only 10% of patients with

bone metastases actually sustain pathological fracture, the consequences of

fracture are so devastating that prophylactic management of individual lesions

becomes essential. With a 5 year survival rate of 60%, breast cancer has a

particularly long survival time following the development of bone metastases

(Myers and Ries, 1989), and accounts for 60% of all pathological fractures

(Harrington, 1988). Because the most common site of fracture secondary to

breast cancer is the femur, a bone of great functional importance, the

orthopaedic management of metastatic carcinoma in the femur requires

significant attention.

Metastatic carcinoma usually has devastating consequences on the patient;

however, aggressive palliative treatments including a sophisticated

combination of hormone manipulation, chemotherapy, and radiation therapy

(7.



have been successful in prolonging life. With prolonged life comes the

concomitant increase in the presence of bone metastases and subsequent

bone fractures. Treatment of metastatic lesions of the bone often includes

radiation therapy, which can effectively halt the progression or even stimulate

the regression of a lesion (Harrington, 1982). Moreover, radiation therapy

provides the most effective means of relieving bone pain. Unfortunately,

radiation therapy and the subsequent osteonecrosis can lead directly to

pathological fracture. For cases in which fracture occurs, stabilization of the

fracture is required in order to ease the pain, improve patient care, and offer the

only opportunity for the restoration of ambulatory skills (Murray and Parrish,

1974). Treatment by bed rest is a poor solution, as fracture healing is rare in

irradiated bone, and many complications result from extended immobilization.

With the advent of methylmethacrylate as an augmentation to fixation,

successful fixation has become more common and patient survival rates have

improved (Habermann et al., 1982).

A major goal in the management of skeletal metastases is sparing patients

the trauma of pathological fracture. One strong argument for prophylactic

fixation of impending fractures is that post-operative survival rates for those

undergoing prophylactic fixation is significantly higher than for those

undergoing fracture fixation for pathological fracture (Hardman et al., 1992).

Additional evidence suggests irradiated bone can heal provided internal

fixation is used to avoid fracture (Bonarigo and Rubin, 1967). Averting

pathological fracture also yields the obvious benefits of allowing early

ambulation, decreasing hospital stay, reducing operative difficulty, and reducing

pain when compared with the treatment of pathological fracture. The issue then

becomes the evaluation of metastatic defects to determine fracture risk.

Currently, the criteria for determining the need for providing prophylactic fixation

~ 2 ~



are based on empirical evidence and consist of the following: (1) femoral bone

destruction exceeding 50% of the cortex; (2) lesions larger than 2.5 cm in

diameter in the proximal femur; (3) lesions involving the lesser trochanter; and

(4) persistent pain despite irradiation. These criteria are rough guidelines

based on radiographic evidence and leave much to the discretion of the

surgeon.

The shape and characteristics of metastatic lesions in bone vary depending

on the type of tumor and the rate of tumor progression. The appearance of a

lesion is usually described with the terms geographic, moth-eaten, or

permeative, depending on whether its effects are localized, distributed, or

diffuse, respectively. In general, faster growing tumors are more permeative in

nature and do not have sharply marginated borders. Unless a lesion is

geographic in nature, the involvement of cortical bone is difficult to assess from

plane radiographs. Even geographic lesions must be larger than 1.5 cm and

demonstrate 50% loss of bone mineral content before they are detectable by x

ray (Rubens and Fogelman, 1991). The use of computed tomography (CT)

scans can assist in early tumor detection and in evaluation of metastatic lesions,

benefiting from higher resolution, sharper contrast, and three dimensional

capabilities. It seems likely that improvement in the criteria for determining

lesions at high risk of fracture would come from the implementation of this more

advanced technology.

The research described in the following manuscript has been performed

within the context of developing improved criteria for determining the risk of

fracture for bones containing metastatic lesions. Clinical practice currently uses

defect size as the determinant of fracture risk, which assumes that risk of

fracture is a function of bone strength. Accepting this premise, the present study

targeted predicting the strength of bones in vitro as a means toward the ultimate

~ 3 -



goal of improved clinical guidelines. Because of limitations in using two

dimensional radiographic evidence for evaluating bone strength, this study

used CT scan data as a tool for assessing the three-dimensional geometry and

density variation in human femoral shafts. These data were incorporated into

three-dimensional finite element (FE) models for the evaluation of stresses and

prediction of failure loads. Strengths predicted by the FE models were then

compared with the results of flexural and torsional mechanical testing. By

validating FE models for failure prediction and the dissecting basic modeling

assumptions, the present study examined the following hypotheses: (1) using

CT scan data to characterize geometry and material properties increases FE

model precision; (2) including the simplifying assumptions of material

homogeneity, elasticity, isotropy, and symmetry limit FE model generality and

accuracy. More specific objectives are detailed below.

• To compare the flexural load-deflection characteristics of whole bones to

those of bones with hemispherical defects.

• To show that using CT scan data to describe geometry and material

heterogeneity increases the precision of FE flexural strength predictions.

• To explore the modeling of cortical bone plasticity as a means of

explaining cortical bone structural behavior.

• To validate linear CT scan-derived FE models for predicting torsional

failure loads of bones with hemispherical defects.

• To evaluate the influences of geometry and material properties on the

structural behavior of cortical bone using established engineering theory.
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Chapter II

Strength of bones with defects

Prophylactic fixation of an impending fracture is always preferable to the

treatment of pathological fracture. Predicting the likelihood of fracture, however,

poses a challenging question that requires, in part, an understanding of how

bone responds mechanically to the presence of a defect. For this reason, some

investigators have performed retrospective studies of patients with metastatic

lesions in order to ascertain the risk of fracture based on tumor geometry and

location. Others have approached the question from a more fundamental

perspective by addressing the issue of the actual strength of bones with

experimentally-introduced defects. The premise of such studies is that a better

appreciation of strength reductions caused by metastatic lesions will lead to a

clinical tool for evaluating fracture risk.

Radiographic studies

The current clinical criteria are derived from early investigations into using

the radiographic assessment of metastatic defects for determining fracture risk.

A retrospective study of 118 metastatic breast cancer patients found that 58% of

the bones that fractured met a 2.5 cm criteria, and used that information to imply

that the 2.5 cm criteria was predictive over 50% of the time (Beals et al., 1971).
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Since they did not report on the percentage of defects meeting the criteria that

did not fail, it is difficult to determine if this criterion was truly predictive. A

subsequent study evaluated the radiographs of 66 consecutive patients and

categorized defects into four groups by percentage of cortical involvement

(Fidler, 1981). Fidler found marked increases in the failure rate when defects

exceeded 50% cortical involvement. Other retrospective studies have

concluded that the presence of pain foretells pathologic fracture and calls for

surgical fixation (Schurman and Amstutz, 1973).

Keene et al. evaluated the use of radiographic criteria for judging the need

for prophylactic fixation by studying skeletal metastases from carcinoma of the

breast, the form of tumor responsible for 30% to 50% of long bone fractures

(Keene et al., 1986). This study of 2,673 breast cancer patients found no

statistically significant difference in the percentage of cortical involvement for

bones that failed and those that did not. It was explained that the variability in

radiograph depictions of tumors made them of little predictive value; the same

tumor could appear completely different in size depending on radiographic

orientation. Additionally, the majority of tumors witnessed were a permeative

type that were not amenable to measurement. The authors concluded that

radiographic criteria were unacceptable and that future studies should look to

the use of CT scan data.

Experimental studies

The previous studies were aimed at developing radiographic criteria, but the

limited nature of radiographic measurements confounded their ability to derive

definitive criteria. Several investigators turned to experimental studies to begin
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to explore the mechanical strength of bones and changes in strength with the

presence of defects. By loading bones in torsion, Brooks et al. showed that 2.8

and 3.6 mm drill holes in canine femora reduced the energy absorbing capacity

by 55% (Brooks et al., 1970). The calculated stress concentration factors

associated with these load reductions were considerably less than those

expected from an elastic homogeneous isotropic material, which was attributed

to the natural presence of defects and inhomogeneities in bone. Clark et al.

found that the torsional strength of human femora was more dependent on the

width of the defect than on its length (Clark et al., 1977). A study by Leggon et

al. found that bones with defects involving 50% of the cortex retained only

12.7% of the intact torsional strength and recommended both plating and

cementing the bone (Leggon et al., 1988). Though not suggesting new criteria

for identifying metastatic bones at risk of fracture, these studies demonstrated

significant factors affecting bone strength that the 50% rule of thumb had not

recognized.

Edgerton et al. studied the effect of defect size on bone strength by testing
sheep femora in torsion with defect sizes ranging from 10% to 60% of the bone

diameter (Edgerton et al., 1990). This study found no statistically significant

reduction in strength until defects exceeded 10% of the bone diameter,

consistent with the presence of natural defects and inhomogeneities in bone.

With 20% defects, bone strength had dropped dramatically but followed a more

gradual, linear decrease until reaching 28% of its original ultimate torque at a

defect size of 60%. This study suggested that a more prudent criterion for

fracture fixation would consider defects 33% of the bone diameter, the value at

which bone strength was approximately halved. However, this new criterion

arbitrarily set the threshold and did not address the issue of problematic

radiographic assessment of tumor size.
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Finite element modeling studies

McBroom et al. conducted the first study to model trends in the strength

reduction of bones with increasing defect size (McBroom et al., 1988). In this

study, drilled holes served as defects in canine femora which were then

subjected to four-point bending. Simplified cylindrical finite element models

provided the stress distributions needed to correlate the experimental failure

stresses with theoretical predictions. The authors found linear FE models

predicted the correct stress concentrations according to engineering literature,

but that elastic-plastic finite element models better predicted the decrease in

bone strength exhibited by the experiment. This study was valuable in showing

that the traditional criterion, which uses 50% of the cortical diameter as the

critical parameter, does not account for severe weakening caused by defects

smaller than 50% of the bone diameter. Shortcomings of this study included its

use of simplified geometry, canine femora, and non-biological loading

conditions. For clinical relevance, the study recommended the use of CT scan

data to model the rough cortical boundaries of metastatic defects.

Hipp et al. continued the search for appropriate criteria with a study on the

structural consequences of endosteal lesions (Hipp et al., 1989). Canine

femora were reamed to simulate endosteal defects, and then subjected to four

point bending. CT scans were used to approximate the geometry needed for

both a bending and torsional FE model of each bone tested. In contrast with the

previous study, this study found that both a linear and elastic-plastic model

correlated with the experimental results, which can be explained by the

absence of the sharp stress risers previously caused by drill holes.

Interestingly, the site of minimum cortical thickness, a location which can only



be determined from CT scan data, was the point of maximum stress and the

most significant geometric parameter for predicting failure. Additionally, the

models demonstrated a sensitivity to the reduction of material properties at the

margins of defects, suggesting the importance of characterizing partially

demineralized bone found near metastatic lesions in vivo. A limitation of this

study was the dependence on artificial geometry, not only in modeling but also

in the normalization of experimental data to determine strength reductions. This

study also emphasized the need for CT scan data to obtain more accurate

geometric information.

Finite element modeling of long bones in torsion was conducted by Hipp et

al. (Hipp et al., 1990) in an effort to explain the strength reduction data

generated by sheep experiments (Edgerton et al., 1990). A linear model

underestimated the strengths found in the experimental results, while an elastic

plastic model overestimated the strengths. Neither model explained the shape

of the strength retention curves found by the torsional experiment. The authors

implied that the conservative predictions of strength by linear modeling would

be more appropriate for developing clinical fracture risk criteria. Once again,

cortical wall thickness seemed to be an important factor in predicting strength.

The poor correlations achieved by this study were attributed to deficiencies in

mesh density, boundary conditions, failure criterion, material properties, and

geometry. Two valuable insights came from this study: (1) linear models can

provide reasonable correlations with experimental results and are far less

computationally demanding; and (2) the decreasing elastic modulus in the

region of a metastatic tumor should be incorporated into the model, for it not

only affects torsional stiffness but also reduces stress concentrating effects.

A recent study by Kuo et al. criticized previous works for not identifying the

true location of maximum stress relative to the defect (Kuo et al., 1991). By

~ 9 -



testing acrylic rods in torsion, this study found a shift in the maximum stress with

increasing defect size and maintained that stress distributions were highly

dependent on local geometry. According to Kuo et al., these findings suggest

that strength reduction characteristics in the long bones of one species may not

be applicable to another. The study added that future studies should

concentrate on geometric irregularity.

Cheal et al. performed the most sophisticated finite element modeling of

human femurs with metastatic defects (Cheal et al., 1993). With seventeen

matched pairs of proximal femurs, they hoped to demonstrate the strengths

associated with superior-lateral and inferior-medial defects in the femoral neck.

The authors used a 550 element representative model containing both cortical

and trabecular elements to identify the failure strengths caused by an axial load

through the femoral head. Unfortunately, the model underestimated strengths

by a factor of three and failed to quantify the difference between inferior-medial

and superior-lateral defects. The authors attributed the study's poor

correlations to two facts: (1) the model femur was not representative of the

population; and (2) the model did not account for material property variation.

The literature cited above details the scientific events leading up to my

decision to pursue improved methods for determining the strength of human

cortical bones with simulated metastatic lesions. Many issues confounded the

ability of these studies to successfully predict failure. Recurrent problems

included the use of simplified geometry, non-representative models, non

human femurs, insufficient mesh densities, and homogeneous material

properties. Equal import was given to the need for future studies to investigate

the use of CT scan data, especially for cases of irregular geometry and

heterogeneous material properties. The present study strove to address these

issues in the development of new modeling techniques to predict femoral

~ 10 -



fracture. By using CT scan data to develop three-dimensional FE models, this

research benefited from the following: (1) use of human bone specimens; (2)

rapid generation of FE models with small elements; (3) accurate assessment of

bone and defect geometry; and (4) heterogeneous material properties based on

bone densitometry.

^*
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Chapter Ill

Mechanical properties of bone tissue

Before establishing a methodology for studying femoral bone strength, it was

important to examine current knowledge of cortical bone biomechanics. Many

researchers have studied cortical bone in an attempt to link its biology with

fundamental mechanics. It is from this research that the basic modeling

assumptions for the present study were derived.

Materials testing

Human cortical bone is a fibrous organic matrix whose major constituents

are hydroxyapatite crystals (45%), bone collagen (35%), and water (20%).

Cortical bone varies in porosity from about 5% to 30% and has an approximate

apparent density of 1.8 g/cc, where apparent density is defined as tissue mass

divided by bulk volume (Carter and Spengler, 1978). While the composition of

cortical bone is relatively uniform, its structure can vary depending on whether it

is primary or secondary bone. Primary bone is that bone formed directly by

endochondral ossification or subperiosteal deposition and is dominantly

lamellar in human long bones. It can be found in the form of circumferential

lamellae, which line the periosteal and endosteal surfaces of the bone, or in the

form of primary osteons, which are characterized by tight concentric lamellae
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without any cement lines. However, the majority of adult cortical bone is

secondary bone, the product of extensive remodeling through osteoclastic and

osteoblastic activity (Ross et al., 1989). The resultant Haversian systems are

concentric lamellae, 200 to 300 pum in diameter, that surround vascular

channels and are bordered by cement lines (Martin and Burr, 1989). The

purpose in understanding the organization of cortical bone is that its

longitudinal arrangement and inherent porosity have natural consequences on

mechanical properties.

-

Direction Testing Mode Strength (MPa)

Longitudinal Tension 133

Compression 193

Transverse Tension 51

Compression 133

Shear 68

(Reilly and Burstein, 1975)

Table 3.1 Ultimate strength properties of human femoral cortical bone

Reilly and Burstein conducted a particularly complete investigation into the

mechanical properties of cortical bone (Reilly and Burstein, 1975). By testing

both bovine and human bone in tension, compression, and torsion, this study

derived transversely isotropic mechanical properties for cortical bone (Table

3.1). This study was followed by the work of Van Buskirk et al. in which the

transverse properties were divided between the circumferential and radial

directions (Van Buskirk et al., 1981). For the purposes of modeling bone as a

structural material, it became customary to utilize the material properties derived
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from these two studies, i.e. ultimate strengths, Young's moduli, Poisson's ratios,

and shear moduli (Tables 3.1 and 3.2).

Material Properties Reilly & Burstein, Van Buskirk et al.,
1975 1981

E1 (GPa) 11.5 13.0

E2 (GPa) 11.5 14.4

E3 (GPa) 17.0 21.5

G12 (GPa) 3.6 4.74

G13 (GPa) 3.28 5.85

G23 (GPa) 3.28 6.56

V12 0.58 0.37

V13 0.31 0.24

V23 0.31 0.22

V21 0.58 0.42

V31 0.46 0.40

V32 0.46 0.33

Table 3.2 Elastic properties of human cortical bone

(Terms defined in Equation 3.1)

The stress and strain at a particular point within a material can be expressed

as second-order tensors, mathematical representations that are independent of

the particular Cartesian bases used to express their components (Cowin, 1989).

The tensors of stress and strain can be related through a fourth-order material

compliance tensor according to Hooke's Law (Equation 3.1). The material

compliance matrix for an orthotropic material shows that strains arise from
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normal and shear stresses with no coupling between the two, provided that the

material is stressed along the principal material directions. For cortical bone,

the coordinate system corresponding to the directional material properties has

x1 as the radial coordinate axis, x2 as the circumferential coordinate axis, and

x3 as the longitudinal coordinate axis. The lack of coupling between shear and

normal stresses holds only for directions coincident with the coordinate axes.

The anisotropic qualities of cortical bone are important to mention, for they

become a confounding variable in one's ability to predict bone mechanical

behavior in nontrivial loading configurations.

■ 1 "21 *31 0 0 0 -

El E2 E3
V12 +

-
V32 0 0 0

El E2 E3

[Sºl= l 2 3 1
0 0 0

-
0 0

G23 1
0 0 0 0

-
0

G31 1
0 0 0 0 0

-

-
Giz

[Sj] = Compliance coefficients

E. - Young's modulus in the i-direction

Vij - Poisson's ratio for strain in the j-direction

when stressed in the idirection

Gj - Shear modulus in the i-jplane

Equation 3.1 Orthotropic elastic compliance tensor
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Material strengths published in the literature are usually derived from

uniaxial material tests. However, most loading configurations produce

multiaxial stress states, requiring a more comprehensive method for relating a

triaxial stress state to the results of a uniaxial test. The von Mises — or effective

stress – criterion is the engineering approach used for most isotropic ductile

metals (Equation 3.2). This failure theory postulates that yielding is due to the

angular distortion of an element and is independent of hydrostatic stresses.

The von Mises equation defines a yield surface for all triaxial stress states and

requires only the result of a uniaxial tension or compression test. The

complicating issue for cortical bone is that it does not behave isotropically; the

strength of bone is highly dependent on loading direction as indicated above.

Determining failure for orthotropic materials requires a more complicated failure

criterion — such as the Tsa-Wu theory of failure (Tsai and Wu, 1971) – that

would account for strength asymmetry and anisotropy. Cezayirlioglu et al.

found good agreement between experiment and multiaxial failure theory for

cortical bone (Cezayirlioglu et al., 1985) by using the equations of Tsai-Wu to

determine failure for a variety of combined axial-shear loading conditions.

1

Ovonºmises = º; No.
-

o,)* +(o,
-

o,)” +(o,
-

o,)*

O; Principal stress in the i-direction

Effective stressOvon Mises

Equation 3.2 Von Mises failure criterion
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The basic assumption of the preliminary reports on cortical bone material

properties was material homogeneity. This assumption was subsequently

challenged, and new theories began to arise about the variation of material

properties in bone. By combining the results from compression tests on

trabecular and cortical bone, Carter and Hayes found that compressive strength

was proportional to the square of apparent density, and modulus proportional to

the cube of density (Carter and Hayes, 1977). This study also found that

modulus was slightly strain rate-dependent. Though this preliminary study had

obvious limitations due to its use of bovine bone and insufficient cortical bone

sampling, it was one of the first to examine the heterogeneity of bone material

properties.

Cortical bone exhibits definite age-dependent characteristics. With age,

there is progressive remodeling of cortical bone, resulting in an increased

number of osteons and increased porosity (Martin, 1993). These structural

changes correspond with a gradual deterioration of mechanical properties.

McCalden et al. found that ultimate tensile strength and ultimate strain

decreased dramatically with age; diminished post-yield behavior explained the

majority of this decrease (McCalden et al., 1993). This study also found that all

of the variation in strength could be explained by porosity alone and that

mineral content and changes in microstructure had virtually no independent

effects. This implied that material property information could be obtained from a

knowledge of apparent density, an indirect measure of porosity.

Many studies have attempted to define cortical bone mechanical properties

as functions of apparent density, with varying degrees of success. A

complicating factor has been the narrow range of densities found in cortical

bone; any experimental variability confounded the ability to derive accurate

relationships. Schaffler and Burr found that the modulus of steer cortical bone
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varied with apparent density raised to the power of 7.4 (Schaffler and Burr,

1988), higher than the power of 3 found by Carter and Hayes (Carter and

Hayes, 1977). In a subsequent study, Keller et al. used four-point bending to

test 155 specimens of human femoral diaphyseal bone with an apparent

density range of 0.5 to 2.1 g/cc (Keller et al., 1990). The power associated the

elastic modulus correlation was 1.54, and the power associated with the

strength correlation was 2.18, with reported standard error of the mean (SEM)

values of 0.07 and 0.09, respectively. A follow-up study by Keller tested 550

specimens of vertebral and femoral compact bone in compression and found

that over 93% of the variation in modulus and strength could be explained by

power functions of apparent density (Keller, 1994). He postulated that

variations in the exponents found by different studies were largely a function of

the range of data spanned; small ranges of higher density cortical bone would

lead to higher power relationships. This strongly suggested that relationships

found for a limited range of data, such as that for trabecular bone, cannot be

extrapolated to include the entire data range. Lotz et al. investigated the three

point bending strength and stiffness of thin specimens of cortical shell and

derived linear relationships between apparent density and mechanical

properties (Lotz et al., 1991). Once again, mechanical property differences

between proximal and distal bone were explained by density differences.

The key to understanding the power relationships found by the different

studies is recognizing what data they represent. By graphing the findings of

multiple studies on the same axes, it becomes clearer that the different

relationships all represent pieces of some fundamental relationship that exists

between density and mechanical properties (Figures 3.1 and 3.2). The

differences in the magnitudes of the mechanical properties can be explained by

experimental differences, i.e. loading modality, specimen origin, specimen
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dimensions, and measurement techniques. For example, the extremely low

magnitudes for modulus presented by Keller et al. can be attributed to the fact

that flexural tests do not measure material properties directly and have errors

associated with imprecise measurement of deformation (Keller et al., 1990).

Despite discrepancies in the relationships found in the various studies, the

consistency of the trends warrants the use of second-power relationships

(Chapter IV) in the present study (Figures 3.1 and 3.2). Though only an

approximation of the published data, these second-power relationships may

account for some of the variability associated with cortical bone heterogeneity.
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Figure 3.1 Relationship between bone modulus and apparent density
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Figure 3.2 Relationship between bone strength and apparent density

Computed tomography

Quantitative Computed Tomography (QCT) is a non-invasive, three

dimensional imaging technology with densitometric capabilities. Through the

rotation of x-ray sources and detectors, linear attenuation coefficients are

determined at each pixel in a particular slice and are indicative of the material

densities.

The use of QCT for bone densitometry has several sources of error, such as

beam hardening, material inhomogeneity, and scanner drift. Beam hardening

effects, which are caused by the preferential absorption of lower energy
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photons, can be reduced by scanning relatively uniform cross-sections of

similar material types. Material inhomogeneity effects in bone densitometry are

aggravated by the presence of bone marrow fat and tend not to be significant

with cortical bone. The effect of scanner drift is mitigated with the use of a

calibration phantom. Provided that the proper methodologies are employed,

the accuracy of densitometry for cortical bone is on the order of 2%, with

reproducibility better than 1% (Cann, 1988).

To determine the utility of bone densitometry for clinical use, many studies

have investigated the implications of low bone mineral density for the risk of

vertebral body failure and femoral fracture. Reviews by Faulkner et al. and

Hayes et al. summarized the status of the research in this area (Faulkner et al.,

1991; Hayes et al., 1991). It was reported that the frequency of age-related

fractures of the hip and spine increases as bone mineral density falls below

certain thresholds; however, the overlap in fracturing and non-fracturing

patients made many of the findings inconclusive. With both geometry and

density information provided by QCT, the obvious next phase of research was to

explore three-dimensional modeling of bone in order to determine strength and

ultimately risk of fracture. Such models required a knowledge of geometry,

material properties, and loads on the bone. QCT cross-sectional geometry was

directly available, but relating bone densitometric data to mechanical properties

proved more problematic. A study by Snyder and Schneider tested diaphyseal

cortical bone in three-point bending, but could not find significant correlations

between CT numbers and material properties due to the small range of material

properties investigated (Snyder and Schneider, 1991). However, a recent

study on cortical bone from the equine metacarpus found that QCT-derived

K2HPO4 equivalent density proved to be an excellent estimator of dry density,

elastic modulus, yield stress, and ultimate stress (r2 values between 0.92 and
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0.95) (Les et al., 1994). Though this study involved non-human bone, it was the

first to demonstrate a significant relationship between QCT data and bone

density for cortical bone. Its other findings regarding the strong dependence of

material properties on bone mineral density are consistent with the findings in

human studies, and the inclusion of material property variation in bone

modeling techniques would seem justified.

There have been several studies of whole bone strength involving QCT.

Esses et al. tested eight intact femurs in a gait loading configuration (Esses et

al., 1989). They found the average CT data from the subcapital region

correlated to the ultimate fracture load applied under in vitro conditions (r2 =

0.64). A similar work by Lotz et al. found a very high positive correlation (r2 =

0.93) between fracture load in a fall loading configuration and average CT

values in the intertrochanteric region multiplied by cross sectional area (Lotz

and Hayes, 1990). A two-part study by Lotz et al. investigated fracture

prediction for the proximal femur using finite element models (Lotz et al., 1991;

Lotz et al., 1991). In Part I, the researchers found excellent agreement between

in vitro failure data and linear models of two cadaveric femora. Both the onset

of structural yielding and the load at fracture were predicted for the two femora

tested. In Part II, they used nonlinear material properties for both trabecular and

cortical bone, and once again found excellent agreement between model

predictions and in vitro fracture data. They concluded from these studies that

while nonlinear models provided insight into events preceding fracture, linear

models may be adequate for fracture prediction.

The developments described in the preceding pages outline research efforts

into understanding bone as a structural material and applying that

understanding to clinical issues. At the fundamental level, studies have

investigated the material properties of human bone. By involving CT imaging
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technology, the research advanced to the level of determining material

properties in vitro and finally to constructing three-dimensional models. These

models show promise of demonstrating whole-bone fracture strengths with the

potential clinical application of predicting fracture risk. From this vantage, the

current investigation sought to develop accurate models of bones containing

simulated metastatic defects.
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Chapter IV

Research methodology

A primary objective of the present study was to determine the effects of using

CT scan data in the finite element (FE) modeling of human femoral shafts. By

investigating both intact femoral shafts and shafts with simulated metastatic

defects, the study was designed to evaluate the mechanical effects of defects

and validate FE model predictions of cortical bone strength.

The experimental component of the study involved six matched pairs of

femoral shafts. One shaft of each pair was left intact, while the contralateral

shaft was given a hemispherical defect (6, 11, or 16 mm in diameter).

Computed tomograghy (CT) scan data was collected for all shafts for use in FE

modeling of bone strength. Mechanical testing of the femoral shafts in four

point bending was delayed until after all FE analyses had been performed.

The theoretical component of the study involved three types of FE models for

each shaft. The first model was a homogeneous cylindrical structure with a

hemispherical defect having dimensions based on shaft diameter and drill bit

size. The second model used the CT scan data for truer geometrical contours,

but material properties remained homogeneous. The third model used the CT

scan data not only for the generation of model contours, but also for the

application of heterogeneous material properties. All models were analyzed,

and the results were used to predict failure loads of the experiment.
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The failure loads ascertained in mechanical testing were then correlated to

model predictions for each type of model. The strength of the correlations were

used to test the hypothesis that increasing model sophistication (i.e. more

accurate bone geometry and heterogeneous material properties) leads to more

precise predictions of bone strength.

Specimens

The study required 6 matched pairs of human femoral shaft at least 16 cm in

length from adults over 25 years of age (Table 4.1). The preponderance of

specimens from the male gender was an unfortunate consequence of limited

bone availability.

Specimen Pair Patient Age Patient Sex Defect Size

1 41 Male Medium

2 44 Male Small

3 53 Male Large

4 43 Female Medium

5 74 Male Small

6 33 Female Large

Table 4.1 Specimen information for bones tested in flexion

The bones were harvested within 24 hours of death and frozen at -80

degrees Celsius; subsequent storage was at -20 degrees Celsius. Evidence

has shown that freezing and thawing cortical bone does not significantly affect
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its mechanical properties (Fedlin and Hirsch, 1966). The bones were inspected

for evidence of previous fracture, disease, and other defects to ensure that there

were minimal outside factors influencing the strength of bone. Additionally,

serologies, x-ray, and cause of death were noted to ensure the safety of the

investigators.

Specimen preparation

To ensure that the FE models represented the precise geometry and loading

conditions used experimentally, it was important that the specimens be

positioned in the servo-hydraulic loading device in a known loading

configuration. To this end, the femoral shafts were cut to 16 cm in length and

potted in polymethylmethacrylate (PMMA) leaving 12 cm of exposed shaft.

Before potting, the soft tissue and cartilage was removed from the bone shaft in

order to improve the strength of the interface between bone and cement.

During the potting process, the bones were kept moist to avoid the deleterious

effects of dehydration. The potting fixture (Figure 4.1) used a solid bar

connecting the two pots to maintain alignment, ensure distancing, and provide

the spacing required to have the point loads on the mechanical testing device

contact the bone simultaneously. The dimensions of the blocks were selected

to distribute the loads over the PMMA and provide enough material to diminish

stress concentration effects. Having a block of PMMA on the ends of the shaft

provided a permanent coordinate system with respect to the femur for the

purpose of accurate modeling and provided torsional restraint during

mechanical testing.
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Figure 4.1 Cross-section of fixture used to pot bone shafts

A hemispherical defect, 6, 11, or 16 mm in size, was burred into one of each
pair of potted femoral shafts; these defect sizes corresponded roughly to 20%,

40%, and 60% of the bone diameter. The defects were placed on the lateral

aspect of the anterior surface, which was the surface experiencing tension in

the four-point bending experiment. The compressive point loads were applied

to the posterior medial surface, chosen for its relatively planar contour. The fact

that the bone bows in the same direction as our testing mode implies that the

bone naturally experiences this loading mode in vivo.

CT imaging

A bone and the contralateral bone containing a defect were simultaneously

processed for CT scanning. Each bone was placed within a container, and the

container was filled with distilled water to reduce artifacts caused by the
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interface between air and bone. The potted ends were taped within the

container to avoid movement of the bone during scanning. The container was

then placed within another container to satisfy biosafety requirements for the

transport of potentially infectious tissue.

The CT scanning was performed using the GE 9800 Quick Scanner at

California Advanced Imaging, San Francisco. A Cann Genant phantom was

included in each scan for calibrating each slice in terms of K2HPO4 equivalent

densities and mitigating the effects of scanner drift (Cann and Genant, 1980).

Scout views (AP and lateral) and a CT slice through a potted end allowed for

the alignment of the shaft within the scanner, using the PMMA blocks for

reference planes. Careful positioning was required because the alignment of a

bone within the scanner determined the direction of loads in the finite element

models. CT scan slices, 1.5 mm in thickness, were taken for the 75 mm central

region of the bone, a region which included the interior two compressive load

points. The scans were obtained using established parameters for bone

densitometry (80 kVp, 280 mAs, 320 x 320 matrix, 1.078 mm pixel size, and

120 mm table height).

Formulation of FE models

The objective of this research was to determine the utility of CT scan data in

the modeling of human bone strength. To this end, three different finite element

models were generated for each specimen. The first model (Model I) was

based on simplified geometry with bone shafts represented as cylindrical tubes

and defects as hemispherical cavities. Material properties were assumed to be

linearly isotropic and homogeneous throughout the specimen in agreement
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with models that have been done in previous studies (Hipp et al., 1990; Hipp et

al., 1989). The second model (Model II) used CT scan data to create a model

with more realistic bone geometry, once again employing linear and

homogeneous material properties. The third model (Model III) not only used the

CT contouring data to represent the bone geometry, but also ascribed

heterogeneous material properties to elements within the model using CT

numbers obtained from within the bone.

The procedure for generating a finite element model was similar for each of

the three models and employed a methodology developed at our lab (Keyak et

al., 1993; Keyak et al., 1990; Keyak and Skinner, 1992). The first step was to

derive the endosteal and periosteal contours for each CT scan slice of a

particular bone shaft, using an edge detection algorithm developed by Seitz

and Ruegsegger (Seitz and Ruegsegger, 1983). Based on recommendations

in the literature, the CT number threshold used to determine the presence of

bone was 1600, the average between the CT numbers for water and cortical

bone (Sumner et al., 1989). After establishing interior and exterior contours for

all CT scan slices within a shaft, the CT numbers of the voxels within each slice

were calibrated to K2HPO4 equivalent densities. The Cann Genant phantom

contained regions of known K2HPO4 densities (0 to 200 mg/cc), allowing for the

direct conversion of CT numbers to equivalent density. Typically, these

calibration curves are not extended to the densities of cortical bone; however,

recent work has shown that this extension can be done without an appreciable

loss in accuracy (Les et al., 1994). Using the bone contours, calibration data,

and original CT data, a finite element input file was generated which included

node, element, and material definitions.

The software for generating finite element meshes used CT scan-derived

bone contours to determine where to establish 1.5 mm cube elements. Surface
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elements often overlapped contours and included both bone and non-bone

voxels. All model types allowed for weighted averaging of material properties in

elements which extended beyond the region enclosed by the contours. For the

cylindrical geometry of Model I, circular contours were used whose dimensions

were based on average midshaft vertical and horizontal diameters. Material

properties for the two homogeneous models (I and Il) were based on values

reported in the literature; a Young's modulus (E) of 20 GPa and a

tensile/compressive strength (S) of 200 MPa were assigned to all interior

elements (Reilly and Burstein, 1975; Van Buskirk et al., 1981). Assigning

heterogeneous material properties in Model Ill required a series of equations to

convert the calibrated CT scan densities to basic material properties (Equation

4.1). This was achieved by converting the K2HPO4 equivalent density (poc■ )

of each voxel to an ash density (pash) according to a linear relationship found in

the literature (Les et al., 1994). Ash densities were then converted to moduli

and strengths using the simple power relationships shown in the equations.

Chosen for their simplicity more than correctness, these relationships

approximated the empirical relationships found in previous studies (Carter and

Hayes, 1977; Keller, 1994; Keller et al., 1990; Lotz et al., 1991; Schaffler and

Burr, 1988; Snyder and Schneider, 1991). Simplified relationships seemed

appropriate considering the similarity in the literature data despite having

variable loading configurations, bone origins, and density ranges (Figures 3.1

and 3.2). The material properties of the voxels within each element were finally

averaged to determine the individual element material definitions.
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pasm = 1.22poor +0.053

E - 1 1p.

S - 1 10p.

pOCT = K2HPO4 equivalent density (g/cm3)

pash = Ash density (g/cm3)

E - Young's modulus (GPa)

S - Ultimate strength (MPa)

Equation 4.1 Equations used to determine elemental material properties

Each of the three models for a given femur contained between 9000 and

15,000 linear, isoparametric, cube-shaped elements which were 1.5 mm on a

side. By using the same element size and shape for all models, the effects of

model geometry and homogeneity were isolated. Loads were applied to the

ends of the model to simulate a 500 N load applied to each of the four points in

the bending test. Because the model only included the 75 mm center section of

the shaft, the four point loads were translated to shear loads and force couples

applied to nodes on the model ends. The loads were added to the input file,

and the model was analyzed using ABAQUS software (Hibbitt, Karlsson, &

Sorensen, Inc., Pawtucket, RI).

With the completion of each FE analysis, the resultant von Mises stress

distributions were examined for general characteristics. More significantly,

factors-of-safety were calculated for each element within a model by dividing

strength by the Von Mises stress of that element. This resulted in a distribution

of factors-of-safety with the lowest factors indicating elements at high risk of
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failure, whether from high stress or low strength. Failure was defined by the

presence of eight "failed" interior elements in the center 37.5 mm of the model.

Using too few elements for a failure criterion would tend to exaggerate model

artifacts and using too many would tend to neglect stress concentration effects;

"eight" was the number of elements touching a single interior node and seemed

like a good compromise. A sensitivity analysis would later indicate the

importance of this initial selection. The region observed for "failed" elements

was the central 37.5 mm, which included most of the 51 mm between the two

interior load points. This span was selected to avoid the influence of the interior

load points on the failure analysis. While limiting this span would not have had

any effect on failure prediction for bones with defects, it may have had some

effect for whole bones.

To apply the eight-element definition of failure, the highest factor-of-safety of

the eight was used as the global factor-of-safety for the model. Multiplying the

global factor-of-safety by the 1000 N applied load produced a predicted failure

load for the whole specimen. These failure loads were tabulated for the three

models of each of the 12 bones for comparison with the mechanical testing

results.

Mechanical testing

After finite element analysis had been performed and failure predictions had

been made, each femoral shaft was mechanically tested in four-point bending

using a servo-hydraulic mechanical testing machine (Bionix 858 Test System,

MTS, Eden Prarie, MN). Four-point bending was chosen as the loading

modality for this study because of its relevance and simplicity. As for relevancy,
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flexural studies have been performed by other researchers, providing an

important basis for comparison (Hipp et al., 1989; McBroom et al., 1988).

Regarding simplicity, flexural experiments are relatively easy to perform and do

not require complex FE models to handle their primarily uniaxial stress state.

Throughout mechanical testing, specimens were carefully handled following

extensive biosafety precautions; this included the use of lab coats, gloves, area

liners, masks, plastic shields, and bleach. Specimens were allowed to thaw

thoroughly prior to mechanical testing. For the test, the PMMA blocks encasing

the ends of a shaft were placed on the bottom two load points (separated by 14

cm), and the actuator was positioned so that the top two load points (separated

by 5.1 cm) were within a centimeter of the bone (Figure 4.2). The position and

force transducers were zeroed, and an automated testing program was

employed. The actuator was slowly ramped down to touch the bone with a

force of 50 N, and a data file was opened for the collection of time,

displacement, and force data. The actuator continued at a rate of 0.5 mm per

second until the load dropped below 50 N, an indication of fracture. The vertical

loading rate of 0.5 mm per second corresponded to an approximate average

surface strain rate of 0.001 per second based on geometric calculations. A

strain rate of 0.001 was chosen because of its similarity to physiological strain

rates experienced during human walking.

To analyze the mechanical testing data, the load-deflection curves were

reduced to measures of yield, ultimate load, maximum slope, and energy-to

failure. Yield was determined by the intersection of the load-deflection curve

with a line parallel to the elastic portion of the curve and offset 0.1 mm (Figure

5.1). In the absence of true stress-strain data, a 0.1 mm offset seemed a

reasonable method for approximating structural yield. Ultimate load was simply

the highest load recorded during experimental testing. Maximum slope was
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calculated by using neighboring data points to the determine slope at each

possible point throughout a curve; the number of neighboring data points used

in the calculation was 25% of the total number of points between test initiation

and failure. Determining energy-to-failure was a calculation of the areas under

the load-deflection curves, based on a piecewise approximation of the area

under each data point.

k—sian →

|<— 14cm —s

Figure 4.2 Diagram of the four-point bending configuration

Analysis of results

The procedure in this study was designed to correlate the mechanical

testing data from the four-point bending of femoral shafts with theoretical failure

load predictions by linear finite element models. By establishing failure criteria
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for the models a priori, it was possible to determine the relationship between

experimental and theoretical data regardless of values chosen for the specific

modeling assumptions. Moreover, the use of multiple models for each bone

facilitated the comparison of specific modeling assumptions without the many

confounding variables typical of finite element studies (i.e. material symmetry,

isotropy, plasticity, failure theory, and mesh size).

Initially, the raw testing data were analyzed for differences in mechanical

behavior for whole bones and bones with defects. Paired t-tests were used to

compare the maximum slopes and energy-to-failure for the two data sets. Yield

and ultimate failure loads were simply tabulated for comparison with model

predictions.

Correlations between the measured ultimate load and the eight-element FE

model predictions were derived using a multivariate linear regression analysis

for each model type. This method of analysis was chosen because this study

utilized two shafts from a single donor, one with a defect and one without. The

multivariate analysis accounted for the effects of specimen donor and defect

presence. After the influence of defects and specimen origin were understood,

the three models were compared by the strength of their correlation coefficients,

a strong indication of their ability to predict fracture.

The primary focus of the bending experiment was to understand how the use

of CT scan data in the FE modeling of bone shafts affected the ability of those

models to determine fracture load. Because this was a first attempt to predict

actual bone strength, however, additional measures were used to compare the

results of this study to the work that has been performed in the past. To this end,

strength reductions (defect bone strengths normalized to the contralateral intact
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bone strengths) were also correlated to model predictions using linear

regression analysis.

Reformulation of FE models and sensitivity analysis

The finite element modeling of the flexural experiment exposed some

weaknesses to certain aspects of the modeling technique. These problematic

aspects included the following: (1) excessive stresses near the applied loads;

and (2) errors associated with manually counting "failed" elements. Software

revisions described in the following section addressed these weaknesses of the

original modeling technique.

Modeling only the central region of the bone shafts necessarily complicated

the loading conditions. The outer two loads of the four-point bending set-up

had to be applied to the ends of the model in the form of vertical forces and

transferred moments. Applying these forces to single nodes, especially the

transferred moments, created stress concentrations and element distortions that

caused singularity problems, possibly affecting the solution of the global model.

To alleviate this concern, three planes of elements at each end were made into

a stiff plate with three times the modulus and strength of ordinary cortical bone

(60 GPa and 600 MPa, respectively). The loads applied to these plates were

then distributed linearly over the cross-section, consistent with an idealized

bending moment. The interior load points of the four-point bending models

were also distributed across the top of the bone in a manner consistent with the

experimental loading of the bone by a horizontal roller. These changes to the

boundary conditions theoretically reduced artifacts caused by unrealistic

loading conditions and restraints. A secondary benefit to distributing the loads
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was that all elements within the 51 mm section between the interior loads could

be considered in the failure analysis because of the absence of severe stress

gradients associated with single-node loading.

The most important concern with the methodology for predicting failure was

that counting "failed" elements by hand introduced error and user bias into the

process. Counting was difficult due to the three-dimensional nature of the

models and was further complicated by the need to exclude surface elements.

Developing three-dimensional visualization software, which included the option

to count clusters of elements, resolved these issues. No longer was it

necessary to step through all the slices of a model and count the number of

failed elements by hand; the software counted the number of contiguous

elements for a given load value, automatically excluding all elements on the

surface of the model.

With these modifications to the procedure, the true-geometry,

heterogeneous models were reformulated and re-analyzed. The software that

counted elements facilitated a sensitivity analysis on the number of elements

used to determine structural failure. Correlation coefficients were derived for

the different structural failure criteria in order to evaluate the robustness of the

FE model predictions and to differentiate between the failure characteristics of

whole bones and bones with defects.

tº

º sº

y -,

5 º

~ 37



Chapter V

Results

Flexural tests of six pairs of femoral shafts demonstrated differences

between the load-deflection characteristics for whole bones and bones with

simulated metastatic lesions. Failure load predictions by linear finite element

models of these same femurs were significantly correlated with the measured

ultimate loads. The precision of the predictions increased with the use of CT

scan data in the FE models to assess bone geometry and heterogeneity. A

parametric sensitivity analysis exposed differences in the behavior of the FE

models for the two sets of bones. The specific findings are detailed below.

Mechanical testing

The fracturing of cortical bone shafts was a dramatic and instantaneous

phenomenon, sending bone fragments flying into the shield. The fracturing of

bones with defects always occurred through the defects, resulting in transverse

fracture lines with occasional butterfly fragmentation on the compressive side.

The fracturing of whole bones was variable in location, but tended to be oblique

in shape with occasional comminution.
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Scrutiny of the load-deflection curves revealed that bones containing defects

underwent brittle fracture, while whole bones exhibited more ductile behavior

(Figure 5.1). The load-deflection curves for the bones containing defects

closely resembled the elastic portions of the curves for the contralateral whole

bones, but fractured before any visible yielding had occurred. In fact, there was

no statistically significant difference between the maximum slopes for whole

bones and bones with defects (p = 0.37). Whole bones, on the other hand,

withstood loads beyond yield and underwent extensive plastic deformation

before reaching a final ultimate load. Due to this difference in toughness, the

mean energy-to-failure was 50.3 Nem for whole bones and 10.0 Nem for bones

with defects. The 40.3 N-m difference in energy-to-failure for the two sets of

bones was statistically significant (p < 0.01) with a 95% confidence interval of

19.9 to 60.6. Interestingly, there was a strong relationship between yield and

failure loads measured for the whole bones (Figure 5.2), demonstrated by the

regression equation, y = 1.35x + 0.17 (r = 0.96).
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Figure 5.2 Relationship between measured yield and ultimate load
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Bones with defects failed at lower ultimate loads than the contralateral whole

bones. For bones with defects, failure loads ranged from 5.2 to 11.9 with an sº

average value of 8.9 kN. Failure loads for whole bones ranged from 9.0 to 18.3

kN with an average value of 14.6 kN. To assess bone strength as a function of •

defect size, the failure loads of the bones with defects were normalized to those *...,

of the contralateral whole bones, and defect diameters were normalized to the |

original shaft diameters. The flexural tests demonstrated a progressive

reduction in strength with increasing defect size (Figure 5.3); a bone with a

defect whose diameter was 23% of the shaft diameter retained 83% of its

original strength, whereas a bone with a 67% defect retained only 37% of its

original strength.
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Figure 5.3 Relationship between strength retention and defect size º

Linear finite element analysis

All linear FE models in this study were solved without apparent
computational errors (i.e. excessive element distortions or numerical r
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singularities). The stress gradients for bones with small defects were more

severe than those for bones with larger defects. Consequently, larger defects

produced stress gradients whose effects were more distributed over entire

cross-sections. Factor-of-safety distributions roughly approximated the stress

profiles, with high stress regions resulting in regions of low factors-of-safety. For

bones with defects, the first elements to fail were at the periphery of the defects.

Whole bones initiated failure in regions of maximal tensile stress usually in

areas of reduced cross-section.

Specimen Model 1 Model || Model || Measured Measured

Pair Prediction Prediction Prediction Yield Ultimate

(*) (kN) (kN) (kN) (kN) (kN)

1 (W) 22 21 18 14.0 18.3

(D) 18 14 11 10.3 10.3

2 (W) 23 17 14 10.8 14.3

(D) 15 18 14 11.9 11.9

3 (W) 21 21 17 11.8 17.7

(D) 13 14 10 10.5 10.5

4 (W) 16 10 9 6.6 9.0

(D) 11 8 5 5.2 5.2

5 (W) 21 17 14 10.0 13.0

(D) 21 16 12 9.8 9.8

6 (W) 16 16 14 10.6 15.2

D 9 9 7 5.6 5.6

* (W) whole bone, (D) bone with defect

Table 5.1. Failure loads found in modeling and mechanical testing
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Model predictions resulting from an eight-element failure criterion and

ultimate loads recorded in the experiment are presented in the table above

(Table 5.1). Models I, II, and Ill predicted mean failure loads of 19.8, 17.0, and

14.3 kN for the intact bones, respectively, and 14.5, 13.2, and 9.8 kN for the

bones with defects, respectively.

A multivariate linear regression analysis performed for each model type

demonstrated the significance of specimen donor, defect presence, and model

prediction for determining failure load. Specimen donor had no significant

effect on the regression equations, and was removed from the analysis. A

backward stepwise regression analysis for each model type indicated which of

the remaining variables were important for predicting bone strength. For Model

l, the model predictions alone had significance in the regression equation.

Models II and Ill demonstrated a small but significant effect of the defect on the

correlations, specifically on the slope of the regression equation for measured

versus predicted failure load. The amount of variability explained by the

inclusion of a "defect" parameter (10% for Model II, and 3% for Model III) was

nominal compared to the amount explained by the model predictions. The

three models types were then directly compared for their ability to predict bone

strength (Table 5.2 and Figure 5.4).

Model Equation R Value SEE P Value

| y = 0.69x - 0.13 0.76 2.9 < 0.01

|| y = 0.91x - 1.93 0.93 1.7 < 0.0001

| || * = 1.05X - 0.92 0.97 1.2 < 0.0001

Table 5.2. Regression equations for failure loads
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Strength reductions determined from the in vitro experiment were also

correlated to predictions of strength reduction determined by the three models.

Simple linear regression analysis found significant correlations for only Models

II and III (Table 5.3).

Model Equation R Value SEE P Value

| y = 0.48x + 25 0.48 16 = 0.34

|| y = 0.81x + 21 0.95 5.9 < 0.01

| || y = 0.76x + 15 0.93 6.8 < 0.01

Table 5.3. Regression equations for strength reductions

Sensitivity analysis

The development of an automated approach to counting post-failure

elements facilitated a sensitivity analysis on the number of elements used to

determine failure. Linear regression analyses quantified the relationships

between measured and predicted failure strengths for failure criteria ranging

from 1 to 60 elements (Table 5.4). The correlation coefficients showed that for

each group of bones (whole bones and bones with defects), the strength of the

correlations were almost completely insensitive to the number of elements

used. The relationship between experiment and theory, however, was unique

for the two sets of bone. This was evident from the deteriorating correlation

coefficients with increasing element count for the combined data sets.
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Number of Correlation Coefficients

Elements Whole Bones Bones w/ Defects All Bones

1 0.99 0.99 0.98

10 0.98 0.93 0.95

20 0.97 0.98 0.94

30 0.95 0.99 0.91

40 0.96 0.99 0.89

50 0.95 0.99 0.86

60 0.96 0.99 0.84 =

Table 5.4 Correlation coefficients for varying "failed" element criteria

Failure load was portrayed as a function of number of elements used to

determine failure (Figure 5.5). Failure load predictions for whole bones were

relatively insensitive to the number of elements used as a failure criterion due to

large numbers of elements having identical factors-of-safety. Bones with

defects, on the other hand, demonstrated a higher sensitivity to failure criterion.

The recruitment of elements for these bones was more gradual, initiating in the

region of the defect and emanating to the surrounding areas.
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Chapter VI

Discussion

A major hypothesis of the present study was that using CT scan data to

characterize the geometry and material properties of femoral shafts would lead

to more precise prediction of strength by linear FE models. In proving this

hypothesis, significant differences were found between the mechanical

behavior of whole bones and bones with simulated metastatic lesions.

Additionally, the precision of the resulting models provided the opportunity to

explore differences in the FE modeling of these distinctly different bone

geometries. The specific findings are discussed below.

Mechanical behavior of bones tested in flexion

Flexural testing of bones with and without defects revealed some interesting

characteristics of cortical bone failure. The shape of the breaks, for example,

showed that bone preferentially yielded along transverse surfaces in tension

and oblique surfaces in compression, probably because of cortical bone's

relatively weak tensile and shear properties. The load-deflection curves of the

tested femoral shafts demonstrated the elastic and plastic behavior of cortical

bone. Interestingly, bones with defects fractured before progressing into the

plastic region, while the whole bones exhibited extensive plastic deformation.
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This finding suggested that a hole through the cortex introduced a stress

concentration causing the region near the defect to experience post-yield

stresses and initiate failure. Whole bones, on the other hand, distributed the

stresses along the shaft and allowed the bone to gradually move into post-yield

behavior.

The load-deflection curves for a given pair of bones were remarkable similar

prior to yield but subsequently diverged in their post-yield behavior. The

equivalence of the maximum slopes validated the use of contralateral bones as

controls; more importantly, it suggested that the reduction of cross-sectional

area was not the dominant parameter affecting structural behavior. The

dramatic difference in post-yield behavior was exemplified by the 5-fold

increase in energy-to-failure. Such a significant increase implied that the two

most critical factors affecting structural behavior were the distribution of stresses

and the post-yield behavior. Consequently, the concentration of stresses

around a defect undermined the ability of the bone shaft to absorb plastic

energy throughout its length.

Introducing defects into bone decreased mechanical strength. The

relationship between defect size and bone strength was crudely demonstrated

in the plot of strength retention as a function of defect-to-bone diameter ratio

(Figure 5.3); McBroom et al. reported similar trends (McBroom et al., 1988).

The higher magnitudes found for strength retention in the present study were

probably due to the difference in defect geometry, a burred hemisphere versus

their drilled hole. The fracturing of whole bones in the previous study were

facilitated by a fracture initiator, which was obviated in this study by loading the

bone directly and eliminating the problematic stress riser caused by potted

ends. Hence, this study benefited from the direct measure of whole bone

strength.
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Predicting mechanical behavior with linear FE models

Because of the complexity inherent to biological materials, modeling the

strength of human bone requires simplifying assumptions. Previous authors

assumed simplified geometry for their finite element models to reduce

computational and user complexity (McBroom et al., 1988). In doing so, they

were able to use one model with a specific defect-to-bone diameter ratio to

represent pooled experimental data. Their linear models demonstrated

significant stress concentrations around the drilled defects and severely

overestimated bone strengths. It was the introduction of plasticity into their

models that brought the failure predictions down to reasonable values.

Unfortunately, their representative models could not be used to derive

correlations between experimental and theoretical values, and their use of

multiple modeling assumptions detracted from the significance of the findings.

In the calculation of a ratio between the high stress around a defect and the

nominal stress of an intact bone, they reported a range of values from 2.9 for the

10% defects to 6.3 for the 70% defects. This was not corroborated by either

their experimental data, in which strength ratios ranged from 1.3 to 2.3 for the

same defect size span, or our data, which ranged from 1.3 to 2.6 for defects

spanning 38% to 66% of the bone diameter.

Another study assumed simplified geometry to correlate strength retention of

femoral shafts tested in bending to the percentage of remaining cortical wall

resulting from an endosteal defect (r2 = 0.77) (Hipp et al., 1989). They indicated

that the results of both the elastic and elastic-plastic representational models fell

within the 95% confidence interval of this initial correlation. The lack of

differentiation between the linear and nonlinear models resulted from the
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absence of stress concentrations with endosteal defects. The minimum cortical

thickness served as the only independent variable, with the model becoming a

complex methodology for treating this variable. Their demonstration that the

models predictions were at least as correlative as the crude geometric

measurements neither validates the correctness of the model nor justifies its

use as a clinical tool. Because correlations were not provided between model

predictions and experimental data, it was impossible to directly compare their

results with the results of this study.

In order to determine the benefit of using CT scan data in the finite element

modeling of bone, Model I employed the assumptions made by previous

authors by including cylindrical geometry and homogeneous material

properties. Subsequent models introduced CT scan-derived geometry (Model

II) and CT scan-derived material properties (Model III) to allow for direct

comparison to the idealized models. The cylindrical geometry employed in this

study was slightly different from that of previous studies (Hipp et al., 1989;

McBroom et al., 1988) in that the contour space was subdivided into cuboidal

elements, making it unreasonable to evaluate of stresses directly at the surface.

This mitigated the presence of high stress gradients near defects and

decreased the concomitant failure load prediction. Despite these inaccuracies,

the use of cuboidal elements enabled the direct comparison of models with

idealized geometry to models with CT scan-derived geometry. Moreover, the

use of cuboidal elements in the CT scan-derived models allowed for high

resolution models to be achieved with minimal user involvement.

The correlations between measured failure loads and model predictions

demonstrated significant relationships for all three types of models. Increases

in the correlation coefficients were achieved with each increase in model

sophistication. Models II and Ill explained 86% and 93% of the variability,
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respectively, in the measured flexural strengths of all bones, a significant

improvement over 57% for Model I. These improvements in precision did not

include the effects of the defect parameter on the regression equations;

otherwise, Models Il and Ill could have accounted for 96% and 97% of the

variability, respectively. The use of CT scan data for the determination of

geometry and material properties unequivocally improved the precision of FE

model strength predictions. Increasing model sophistication brought improved

accuracy improved as well. Model Ill demonstrate remarkable accuracy with its

slope of 1.05 and intercept of -0.92. This model's accuracy must be interpreted

carefully, for it can only be generalized to the conditions of the experiment and

the particular modeling assumptions employed; however, it is promising that

accuracy improved with the more complex models.

Strength reduction caused by the introduction of defects, not actual strength,

was the variable of primary interest to previous authors (Hipp et al., 1989;

McBroom et al., 1988). Focusing on this variable made the accuracy of the

model irrelevant because of the normalization of theoretical and experimental

values. Normalization was claimed to reduce the effects of geometry, material
properties, and boundary conditions on the quality of the results. These authors

showed, however, only that a relatively crude geometric parameter, whether a

defect-to-bone diameter ratio for a transcortical hole or a minimum cortical

thickness for an endosteal coring, correlated to strength reduction. The present

study derived actual correlation coefficients between measured and predicted

strength reductions. The models with idealized geometry faired poorly in this

study, despite being generated with specific dimensions for each bone. It

became evident from actual bone cross-sections that cylinders are poor

representations of bone geometry. Models Il and Ill yielded much better

correlations for strength reduction than Model I, though not quite as strong as
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the correlations between actual and predicted strengths. As stated by previous

authors, normalizing to whole bone strength may reduce the effects of faulty

modeling assumptions and improve accuracy; however, calculating strength

reduction actually compounds the errors associated with whole and defective

bone strength predictions and diminishes precision. Normalizing the strength

data reduces systematic error, a type of error which does not influence

correlation coefficients. The compounding of error associated with the strength

reduction calculation and the significant effect of non-systematic error may

explain why the correlation coefficients for strength reductions were slightly

reduced when compared to the correlation coefficients for actual strength.

The fact that linear FE models predicted the strength of whole bones is

significant in light of recently published results (Stromsoe et al., 1995). They

performed three point bending experiments on whole bone shafts and found

reasonably good correlations between mechanical strength and each of the

following parameters: QCT mass (density x slice area), DXA density, and DXA

content (areal density x slice area). These were correlated at four geographic

sites and their coefficients ranged from 0.60 to 0.79. They did not find good

correlations between QCT density and mechanical parameters, most likely

because of the absence of geometric information in a density measure. Their

study derived over 50 correlations (a feature which necessarily weakens

statistical power), all of which were significantly poorer than those found for the

two CT scan-based models of this study. These results suggest the benefit of a

fully automated finite element technique that uses CT scan data for geometry

and density information.

Comparing the models of this study to models done by others understates

the significance of the findings. Unlike the models done by previous

investigators, the models of this research account for irregular and changing
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cross-sectional geometry and material heterogeneity. The methodology can

potentially be extended to bones whose defects manifest odd geographies,

moth-eaten borders, or permeative qualities. This marks a significant step

toward developing a useful clinical tool.

Sensitivity analysis

The parametric variation of the number of elements used to determine failure

resulted in consistently high correlation coefficients for both sets of bones

(whole bones and bones with defects). Combining the data sets, however,

resulted in the deterioration of the correlation coefficients with increasing

number of elements. This divergence in the regression equations for the two

data sets was indicative of the differences in stress distributions experienced by

the two geometries. Whole bones demonstrated an instantaneous failure of

large numbers of elements, consistent with the fact that a relatively uniform shaft

was tested in flexion. Bones with defects had small clusters of failed elements

originating near their defects, an obvious consequence of the reduced cross

sections and stress concentrations associated with defects. The excellent

correlation coefficients found for the combined data sets in the previous chapter

were due to the fortuitous choice of an eight-element failure criteria. This does

not mitigate the significance of the previous findings, as they were meant to

show differences in modeling assumptions. In fact, Model | produced poorer

correlations regardless of whether the data was pooled.

The implications of the results of this sensitivity analysis went beyond

suggesting the robustness of the modeling technique. They also partially

explained the differences between the load-deflection curves for whole bones



and bones with defects. With their relatively uniform cross-sections, whole

bones subjected to four-point bending experienced high stresses along the

surface furthest from the neutral axis throughout the entire high-moment region.

This implied that a large region of bone began to yield at the same time and

explained the insensitivity to the selection of a failure criterion. Moreover,

equilibrium and compatibility equations for the bending of a uniform shaft make

it possible to extract stress-strain data from a load-deflection curve. It was

therefore not surprising that the shape of the load-deflection curve for whole

bones resembled the stress-strain curve found for cortical bone, with its elastic

and post-yield regions. The bones with defects, on the other hand, had a

geometric irregularity and the concomitant irregularity in the stress distribution.

The region surrounding the defect experienced higher stresses due not only to

a reduced cross-section but also to the presence of abrupt geometrical changes

(i.e. stress concentration). These concentrated stresses imply that a small

region of bone experience post-yield stresses and subsequent failure before

the rest of the shaft even reached yield. This was demonstrated by the

sensitivity of the failure load predictions to number of elements used and was

corroborated by the brittle load-deflection curves of the experiment.

Understanding the differences in the prediction of failure for whole bones

and bones with defects is critical to developing a technique that can be

generalized to predict failure of bone in all of its many normal and pathological

shapes, e.g. the proximal femur, the vertebral body, and the moth-eaten shaft.

The CT scan-based finite element models of this study have shown remarkable

ability to predict the flexural strength of femoral shafts both with and without

defects. It has been shown that given a particular geometry, the ability of the

models to predict flexural failure load is insensitive to the number of elements

used as a failure criterion. More complete information is needed, however,
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Chapter VII

Alternative material assumption: nonlinearity

In the finite element modeling of human bone, most researchers assume

elastic material properties, for linear models are far less computationally intense

than nonlinear ones. Linear models benefit from more expeditious processing,

easier data storage, and less sophisticated modeling parameters (i.e. material

definitions and failure criteria). Assuming perfect elasticity for a material that is

inherently plastic, however, introduces obvious limitations on the generality of

the modeling technique. It is therefore important to explore the assumption of

material plasticity to understand its influence on the prediction of failure in

cortical bone.

In testing the robustness of the finite element method for predicting bone

failure, the previous chapter exposed some significant differences in the

characteristics of the failure in whole bones and in bones with defects. Whole

bones exhibited an initial rapid increase in post-yield elements along the tensile

and compressive surfaces. Bones with defects, on the other hand, had a more

gradual increase in post-yield elements which was focused in the region near

the defect. Though this distribution of elements for the two cases is intuitive, it

does not completely explain the brittle-versus-ductile structural behavior for the

respective groups of bones. Further discrepancies arose from increasing the

number of elements for failure determination, resulting in divergent correlations

for the two experimental groups. These factors seem to imply that linear
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models, while predictive of failure load, do not fully describe failure behavior.

For these reasons, the assumption of material plasticity became the focus of -

study.

Revised methodology C

The investigation into the effects of elastic-plastic material properties

required the reformulation and analysis of the bone FE models and the

comparison of these models to mechanical testing data. In order to allow plastic

behavior in the models, the methodology for generating CT scan-based FE

models needed modification. The basic procedure for converting CT data into a

three-dimensional model remained the same; however, the assignment of

material properties to elements with that model now involved converting the

moduli and strengths derived from ash densities into bi-linear material º s
properties. This conversion to bi-linear properties was based on tensile stress 5

* *

and strain values found in the literature (Reilly and Burstein, 1975). Reilly and D c)
Burstein reported that human femoral bone yielded in tension at 113 MPa, and 2. L

failed at an ultimate stress of 133 MPa and ultimate strain of 0.038. These data I º,

implied that bone yields at approximately 80% of its ultimate strength which it º
achieves at about 0.04 strain. These yield characteristics were used to apply *- tº

variable stress-strain curve definitions for each element within a model in the º,
present study. Ultimate stresses were derived from density-derived modulus cº
and strength (Figure 7.1). Thus, the models were both heterogeneous and

nonlinear. º,
tº

º
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Figure 7.1 Stress-strain relationship used in nonlinear models

The analysis of a model with a nonlinear stress-strain relationship requires

an iterative process in which loads are increased incrementally and stresses

are re-evaluated. For the models of the 12 bones tested in four-point bending,

the loads started at zero and increased by 1 kN until a maximum load of 20 kN.

The selection of a 20 kN maximum load was based on the loads seen in the

actual experiment and a concern about the excessive deformations that a

model could experience after yield. In its treatment of plastic material

definitions, ABAQUS employed the standard Mises yield surface and

associated plastic flow. This treatment assumed that the inelastic deformation

rate was in the direction normal to the yield surface and that the yield surface

changed uniformly in all directions with increased plastic straining (i.e. isotropic

hardening).

With the element definitions and load increments redefined, the new FE

models were analyzed, a process which took approximately 3 days of CPU time

for each model. Each load increment for a given bone analysis resulted in

stress data, producing a time course of the loads and resultant factors-of-safety.

º

-
*
º
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º:
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Events in the factor-of-safety data (i.e. exceeding yield and ultimate strength

criteria) were then compared to the mechanical testing data. The yield criteria

used for the nonlinear models was the yielding of one, fifteen, and twenty-five

elements in the region of the defect. Plastic failure was defined as the load at

which the effective plastic stress within a single element exceeded 85%, 90%,

or 100% of its strength. This was equivalent to allowing an element to

experience 25%, 50%, or 100% of the permissible post-yield strain.

Results

The correlation between the measured yield in flexural tests and first-yield

predicted by nonlinear models was not as good as the previous correlations

between measured ultimate load and linear model predictions (Table 7.1).

Inspection of the data revealed that there was a definite difference in the

relationship between experiment and model for whole bones and bones with

defects. Increasing the number of elements used as a criterion for structural

yield, however, brought the two data sets into closer agreement and improved

correlation coefficients (Figure 7.2).

Element Count Equation R Value SEE P Value

One y = 0.68x +3.90 0.83 1.5 < 0.001

Fifteen y = 0.84x + 1.00 0.94 0.9 < 0.0001

= Twenty-five == 0.94X - 0.47 0.97 0.7 < 0.0001

Table 7.1 Regression equations for yield strength

- -
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7.2 Prediction of yield load using nonlinear models

Significant correlations were found between measured ultimate loads and

the 80%, 85%, and 100% plastic failure criteria (Table 7.2). TWO of the

correlations are missing data points associated with the two strongest bones
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due to an insufficient number of load increments. Even without these data

points, the results were significant. The regression equations for predicting

bone strength from the one-element criterion of the linear FE models and the

85% criterion of the nonlinear FE models are presented below for the purpose

of comparison (Figure 7.3).

Model Type Correlation Coefficients

(36 strength) Yield Ultimate

Linear (100%) 0.79 0.98

Non-linear (80%) 0.83 0.99

Non-linear (85%)
-

0.99

Non-linear (90%)
-

0.99 *

Non-linear (100%
-

0.98 *

* missing data points

Table 7.2 One-element failure results for linear and nonlinear models
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Discussion

The one-element yield criterion in plastic modeling was equivalent to the

one-element failure criterion presented in the chapters on linear finite element

models of cortical bone. Once again, the loads at which one element yielded in

the models were highly correlated to the ultimate failure loads achieved by all of

the bones in the four-point bending experiment (r = 0.99). Based on the

observation that the two groups of bones — with and without defects —

demonstrated different structural failure characteristics, it seemed only

coincidental that the regression equations were indistinguishable for the two

data sets. It seemed unlikely that linear models would consistently identify

fracture load for two distinctly different geometric configurations of an elastic

plastic material.

The analysis of linear models in previous chapters employed multiple

element fracture criteria to determine failure. Though this may have

demonstrated the insensitivity of the FE models to failure criteria for a given

bone geometry, it had little theoretical justification within the context of linear

models. In essence, counting multiple "failed" elements forced those elements

which had failed at lower loads to endure stresses beyond failure. It would

have been more appropriate to use only the first element exceeding the von

Mises stress limit to indicate structural yield. Plastic modeling, on the other

hand, does not suffer from the same limitation; after exceeding the effective

yield stress, an elastic-plastic element would cease to exhibit dramatic stress

increases for increasing strain. Instead, the element would strain plastically and

permit the redistribution of stresses to neighboring elements. For this reason,

modeling bone with elastic-plastic material properties allowed more than one

yielded element to be counted.

º
.
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The relationship between measured yield load and FE model predictions of

one-element yield were different for whole bones and bones with defects.

Differences were previously apparent from the load-deflection data for the two

sets of bones; whole bones structurally yielded at approximately 70% of their

ultimate load, while bones with defects failed without manifesting structural

yielding. Relative to the models of whole bones, the models of the bones with

defects underestimated experimental yield. This underestimation could not

have been explained by the failure to use orthotropic properties and failure

criteria or by a lack of smoothness in the models. All of these factors would

have had the effect of reducing the concentration of stress at the defect and

increasing model predictions. Therefore, the difference in the relationships for

first yield for the two sets of bones must have been a consequence of the

difference between material and structural yielding. Possibly, the appearance

of structural yielding in the experiment corresponded to significantly more than

one yielded element in the model.

The convergence of the two regression equations for a yield criterion of

twenty-five elements provided a plausible explanation for the discrepancy

between the onset of yield in whole bones and bones with defects. Possibly the

"brittle" failure of bones with defects was the result of early material yielding that

could not be discerned on load-deflection curves due to an insufficient volume

of plastic distortion. This explanation assumes plastic material behavior for

cortical bone; several important pieces of information support this assumption.

First of all, the load-deflection curves for whole bones exhibited obvious post

yield behavior. By definition, the flexural test of a nearly uniform shaft

resembles the underlying stress-strain relationship; thus, the changes in load

deflection slope indicated post-yield, or plastic, behavior. Material plasticity was

also the most likely explanation for why bones with defects did not fail at loads
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indicated by theoretical stress concentration factors. For example, the linear

models in the study by McBroom et al. determined that the stress concentration

factors ranged from 2.6 to 2.3 for defects ranging in size from 10% to 70% of the

outer cortex diameter (McBroom et al., 1988). These theoretical calculations,

however, severely overestimated the strength reductions occurring in the

experiment. In fact, the magnitudes of their linear model predictions for bones

with 10%, 50%, and 70% defects underestimated strengths of bones in these

groups by as much 70%; this was not the case for their nonlinear models.

The assumption that cortical bone behaves plastically has direct

consequences on the use of finite element modeling to interpret load-deflection

data. With their nonlinear models of bone with drill holes, McBroom et al.

demonstrated that yield was detected in their finite element models at only two

thirds of failure load (McBroom et al., 1988). Applied to this experiment, this

implies that material yielding would have begun in the linear region of the load

deflection curves, well before structural yielding of the bone. The "brittle" failure

of bones with defects would, in fact, be the consequence of early but

concentrated plastic yielding, imperceptible on the macroscopic load-deflection

curves. Thus, the only unequivocal piece of information provided by the load

deflection data would be the structural failure load, and a phenomenologically

correct FE model would require the application of a plastic failure criterion.

The failure of one element was highly correlated to the ultimate loads for the

85%, 90% and 100% failure criteria (Table 7.2). Demonstrating the

agreement between experiment and nonlinear models was the graph of the
measured ultimate loads versus the 85% plastic load predictions (Figure 7.3).

The precision of the nonlinear models for the combined data sets further

strengthened the argument for including post-yield material behavior in the FE

modeling of cortical bone. Interestingly, by the time the first element had

º

..]

3

~ 65 -



reached 85% of its maximum effective stress, whole bones had experienced an

average of 378 yielded elements, and bones with defects only 17. This

difference in volume could explain the absence of structural yielding for bones

with defects and the large energy-to-failure for whole bones.

The fact that nonlinear models are required to simulate mechanical behavior

of cortical bone does not explain the excellent performance of one-element

failure predictions from linear FE models. The strong relationship between

structural yield and ultimate loads for whole bones provides only a partial

explanation; at least there seems to be an empirical link between the initiation

of yield, a linear phenomenon, and the occurrence of failure, a nonlinear

phenomenon. The complete answer is more elusive, however. Perhaps the

yielding of a single element is remarkably predictive of the subsequent failure of

that element within the structure, regardless of geometry. Accordingly, whole

bones and bones with defects initiated yield in flexion at about 70% of their

ultimate loads, despite the fact that structural yield was only evident in the load

deflection data for whole bones.

º
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Chapter VIII

Alternative loading configuration: torsion

Previous chapters have demonstrated excellent agreement between

measured failure loads for femoral shafts tested in four-point bending and the

predictions by both linear and nonlinear finite element models. Strong

correlations were demonstrated for both whole bones and bones with simulated

metastatic defects. Nevertheless, the simple bending experiment was not an

adequate test of the modeling technique's generality; the flexed bones

experienced high stresses mainly along the longitudinal axis, the direction of

highest strength. The bones with defects did experience a slightly more

complex stress distribution; however, it was impossible to separate material

from geometric effects. To test the validity of the modeling technique properly,

an alternative loading condition applied to the identical geometry would be

required.

Modeling and testing bones in torsion provided an ideal solution, for many of

the reasons described by Burstein and Frankel (Burstein and Frankel, 1971): (1)

clinical relevance; (2) uniform loading along entire shaft; and (3) ease with

which a constant loading rate can be applied. Most importantly for this study,

the torsional testing of femoral bones with defects would apply pure shear to a

geometry previously tested in bending. Now, the effects of material modeling

assumptions (i.e. isotropy and linear elasticity) would manifest as changes in

the relationships between model and experimental parameters.
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Revised Methodology

The torsional experiment involved 5 pairs of human femoral shafts (Table

8.1), which were harvested according to the protocol described in Chapter IV.

Each shaft was potted in the fixtures used for the flexural bending experiment,

with two slight modifications — the shaft was clamped at each end before potting

and the length of exposed shaft was shortened by 2.5 cm. Both of these

changes were made to improve the quality of the grip of the PMMA on the bone.

An 11 mm diameter hemispherical defect was burred into the anterior aspect of

one bone of each pair; a 16 mm defect was burred into the anterior aspect of the

other.

Bone Pair Patient Age Patient Sex Femur Defect Size Location

1 67 Female Right Large Lateral

Left Medium Lateral

2 74 Female Right Medium Medial

Left Large Medial

3 67 Male Right Medium Lateral

Left Large Medial

4 68 Female Right Medium Lateral

Left Large Lateral

5 92 Female Right Medium Medial

Left Large Lateral

Table 8.1 Specimen information for bones tested in torsion

.
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CT scanning procedures were identical to those followed in the bending

experiment, except that an additional slice was taken through one of the potted

ends of the shaft. The CT scan pixel coordinates of the potting material would

later aid in the alignment of the constructed model to the actual mechanical

testing configuration. As in the bending experiment, 1.5 mm CT scan slices

were taken for the 75 mm central region of each bone using the following

parameters: 80 kVp, 280 mAs, 320 x 320 matrix, 1.078 mm pixel size, and 120

mm table height. In addition to their important role in the FE modeling

technique, the CT scans provided the information necessary to distinguish right

from left shafts and determine the placement of the defect (Table 8.1).

Distinguishing right from left was more important than knowing the exact

location of the defect; shafts from contralateral limbs required testing in opposite

rotational directions because of the tendency of osteons to spiral down bone

shafts (Martin and Burr, 1989).

The formulation of finite element models was similar to the most

sophisticated of the linear modeling techniques employed in the four-point

bending study. This involved the use of CT scan data to determine the contours

of a bone, generate a three-dimensional mesh with 1.5 mm cubic elements, and

assign heterogeneous, linear, isotropic material properties to all elements

within the model. Once again, the conversions from CT number to modulus and

strength were the second-power relationships described in Chapter IV. After

the generation of the FE mesh, loading conditions were applied to simulate the

torsional testing configuration. This required the careful examination of the CT

data to determine the center of rotation of the model relative to the testing

fixture. The edges of potting material were used as reference lines. In the

potting of some bones, it was noticed that the spacer used for leveling the bone

within the fixture did not center the bone accurately in the direction formerly

:
5
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used to apply the bending loads. Re-centering in this direction was

accomplished by relocating the center of rotation in the model, thus determining

the amount the actual fixture needed to be adjusted within the mechanical

testing apparatus. The stiffness and strength of elements at the ends of a model

were defined at three times that of cortical bone (60 GPa and 600 MPa,

respectively). A torque of 10 Nem was applied to each model in the counter

clockwise direction for right shafts, clockwise direction for left shafts. These

loading conditions were equivalent to an external rotation of the femur, a

physiologically relevant loading configuration.

The completed models were analyzed using ABAQUS software, and factors

of-safety were calculated for each element within a model using the distortion

energy theory of failure. Global failure of a model was defined as the load at

which five contiguous interior elements had factors of safety below one.

Previous experiments demonstrated that the yielding of the first element was

most predictive of failure; the five-element criterion was considered a

compromise between using a minimal number of elements and protecting

against single element artifacts. The number of elements used to determine

failure was determined a priori, a sensitivity analysis would later determine the

significance of this initial selection. The predicted failure loads were then

tabulated for the 10 bones in preparation for the mechanical testing.

Mechanical testing was performed on servo-hydraulic testing machine

(Bionix Model, MTS, Eden Prairie, MN) under angular displacement control.

The potting fixtures were mounted to the machine platens, accounting for the

lateral adjustment required to center the bone. The actuator was specified to

rotate 60 degrees in femoral external rotation at a rate of 1 degree per second.

Data was collected at a frequency of 200 Hz for the entire duration of the

experiment, and peak torques were recorded. Simple linear regression

.
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analysis was used to compare ultimate torques occurring in the mechanical

testing to those predicted by the linear FE models.

Results

Using the five-element failure criterion, the FE models demonstrated

torsional failures at torques ranging from 32 to 251 Nem. Failed elements within

the linear FE models clustered at the periphery of the defects. The mechanical

testing of shafts in torsion resulted in spiral fracturing through their defects. The

shape of the torque-angle curves exhibited brittle failure characteristics (Figure

8.1), with ultimate torques ranging from 19.9 to 122.7 Nem.

100T-T—H-T—T-
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Figure 8.1 Typical torque-angle curve for a bone tested in torsion

(Right bone specimen from pair 4)

In four of the torsional tests, the potting material cracked slightly, resulting in

the appearance of artifacts in the torque-angle curves. After the appearance of

an artifact, the torque-angle curve usually resumed its original course; however,

}2
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in one case, slipping caused an instantaneous high torque and premature bone

failure. With the exclusion of this data point, the results of the linear model
-

analyses and the mechanical testing were tabulated (Table 8.2).

Bone Pair Predicted Torque (Nem) Measured Torque (Nem)

Left Right Left Right

1 171.5 220.0 92.6 122.7 .
º

2 93.0 82.0 57.8 44.2 :

3 251.0 204.0 122.5 *
2 C.

4 187.5 152.5 109.6 80.4 º

5 37.5 32.0 21.7 19.9 * *.
i

* missing data

Table 8.2 Ultimate torques found in modeling and mechanical testing - >

} -
}

~,

The linear regression analysis showed a strong linear relationship between } cy
predicted and measured torque at failure (Figure 8.2). The predicted values ‘o 1.

for failure torque were about twice those measured in the experiment (y = 0.51x C.

+ 5.1, SEE = 6.2, r = 0.99, p < 0.0001). Varying the number of elements used to Sº
determine failure demonstrated the considerable insensitivity of the results to , ºr

–8

the number of elements used in the failure criterion, whether or not the data was - .*

pooled (Table 8.3). cº

º,
º

CO
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Figure 8.2 Correlation between measured and predicted torsional load

Number of Correlation Coefficients

Elements Small Defects Large Defects All Bones

1 0.99 0.98 0.99

10 0.96 0.99 0.98

20 0.92 , 0.99 0.95

30 0.94 0.99 0.96

40 0.94 0.99 0.96

Table 8.3 Correlation coefficients for varying "failed" element criteria

Discussion

The topic of strength reduction caused by drilled defects has already been

well documented in the literature (Burstein et al., 1972; Edgerton et al., 1990).

The goal of the present study, however, was to use linear, isotropic,

}

*
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heterogeneous FE models to predict actual torsional failure loads for femoral

shafts with defects. Torsional loading produced a vastly different stress state

from flexural loading and could have introduced variables that would have

confounded the ability of the FE models to predict fracture. As it turns out, the

models were highly predictive of ultimate torsional load with an r value of 0.99

for the five-element failure criterion. Moreover, the use of five contiguous

elements was not exclusively predictive; varying the number of elements from 1

to 40 demonstrated consistently high r values.

By using simplified geometry, finite element models in the literature have

obviously lacked generality; this became apparent with the inability of the FE

models (Hipp et al., 1990) to explain the behavior of bones tested in torsion

(Edgerton et al., 1990). The reduction of strength between a whole shaft and a

shaft with a drilled defect has been the parameter typically used to compare

experimental and modeling results. It is known that in both experiment and

theory, the virgin bone will have 100% of its strength, with strength diminishing

for increasing defect sizes; in fact, defect size alone was highly correlated (r =

0.95) with reduction in strength (Edgerton et al., 1990). The overestimation of

strength reductions by linear models and underestimation by nonlinear models

revealed little about what parameters are important in the modeling of femoral

shafts (Hipp et al., 1990). One obvious unexplained discrepancy between

experiment and model was that sheep bones demonstrated no reduction in

strength with defects less than 10% of the bone diameter, while models of

sheep bones demonstrated the most dramatic decrease with defects less than

10%.

Even more than in the case of flexural experiments, the stress distributions in

a bone loaded in torsion is highly sensitive to local geometry. In any flexural

test, the stress distributions across a cross-section are linear regardless of

.
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shape, while torsion often creates nonlinear stress distributions. For example,

maximum shear within a section is usually located on the surface closest to the

center; the corners of a square cross-section sustain no shear, while dimples in

a circular cross section experience high shear stresses. Moreover, holes of

excessive longitudinal dimensions create an "open section" effect, severely

diminishing torsional strength (Burstein and Wright, 1994). This sensitivity to

geometry may explain why defects smaller than 10% did not reduce the

torsional strength in sheep bones. Small defects in regions of larger cross

section or along surfaces of low shear stress may not have been sufficient to

decrease torsional strength. Cylindrical models would completely miss these

local geometric phenomena.

The fact that the linear finite element models of this study explained nearly

all of the variability in torsional strength of bones with only two defect sizes is

impressive. Nevertheless, the FE modeling technique with its many simplifying

assumptions may not have the accuracy required to predict failure of cortical

bone regardless of geometry and loading configuration. On average, the

measured torsional failure loads were half of the linear FE model predictions,

which was not true for the analogous bending models. The systematic errors in

the torsional models suggested the probability of faulty modeling assumptions,

either in geometric or material parameters. Because of the similarity in

geometry for the two experiments, inaccurate material properties or unrealistic

failure criterion were the most likely reasons for differences in modeling

accuracy between the two loading configurations.

One obvious reason for the discrepancy between experiment and theory

was that the assumption of isotropy neglected the role of the weaker transverse

properties of cortical bone. This was not an issue in bending as most of the

stresses were in the longitudinal direction. However, one would expect that in
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torsion, the weaker transverse properties would seriously decrease shear

strength, and consequently resistance to torsional loads. The Tsai-Wu failure

theory was shown to effectively handle simple cases of combined loading of

bone with its orthotropic properties (Cezayirlioglu et al., 1985). According to this

theory, ultimate shear stress is an independently-measured failure parameter,

valued at about 50% of the tensile properties for cortical bone (Burstein and

Frankel, 1971). The von Mises failure criteria employed in the linear isotropic

models of the present study would predict ultimate shear stresses to be 58% of

ultimate tensile stresses for the case of pure torsion. Though a likely source of

error, the difference between 58% and 50% is not enough to explain the gross

overestimation of torsional strengths in the experiment.

Another material assumption that may have caused additional errors in

accuracy was the assumption of material elasticity. One could argue that simple

elasticity was assumed for both the bending and the torsional experiments and

could not have generated an additional source of error. However, cortical bone

is not nearly as ductile in the transverse direction as in the longitudinal

direction. The accuracy of the linear models in bending was probably

dependent on the ductile behavior of cortical bone in the longitudinal direction;

plastic response to stress in the region near a defect most likely resulted in

higher ultimate structural loads. In the absence of shear ductility, the bones

tested in torsion failed at first yield; accurate torsional models would have

needed substantially lower strength values to predict the brittle structural failure

of the experiment.

Though not achieving the desired accuracy, the linear models of bones

tested in torsion performed extremely well. It becomes apparent from the lack of

accuracy that the FE modeling technique requires further modification before it

can achieve complete generality. The data suggests that applying material

.
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plasticity and employing orthotropic failure criteria are the two most likely

methods for improving the modeling technique, and ultimately increasing its

accuracy.
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Chapter IX
Building a general model

Developing a useful clinical tool was the major impetus for the research

detailed in the previous chapters. Such a tool would improve the treatment

protocol for patients suffering from metastatic lesions in long bones. A good

understanding of the strength of femoral bones with such defects would help

surgeons make prophylactic decisions aimed at averting pathological fracture.

Toward this end, this research employed finite element models that used CT

scan data for information on geometry and material property variation. In

reliably predicting the failure loads and torques achieved by femoral shafts in

mechanical testing, these models marked a significant step in research efforts to

predict the strength of human femurs in vivo. Furthermore, the process of
developing these models for fracture prediction revealed characteristics of

cortical bone failure with far reaching implications for bone modeling,

regardless of application. These failure characteristics can be classified as

either the effects of geometry or the effects of material properties on the

behavior of bone structures in both theory and experiment.

Geometric issues: stress concentrations

For femoral shafts tested in either bending or torsion, the introduction of a

defect into the periosteal surface caused significant reductions of strength.
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Previous studies characterized these reductions in strength for both experiment

and theory by comparing the strength of a shaft with a drilled hole to the

strength of the intact contralateral femur (Hipp et al., 1990; McBroom et al.,

1988). Their findings for three different defect sizes have been tabulated for

ease of comparison (Table 9.1).

Method for Percentage of Intact Bone Strength

Determining Failure 10% Defect 30%. Defect 50% Defect

Flexural Experiment “ 76% 59% 50%

Linear Flexural Model “ 34% 29% 23%

Torsional Experiment “ 100% 55% 37%

Linear Torsional Model “** 61% 46% 33%

Non-linearl■ orsional Model tº —*— *—ºtº

* (McBroom et al., 1988)

“ (Edgerton et al., 1990)

“ (Hipp et al., 1990)

Table 9.1 Experimental and theoretical strength retention in femoral shafts

Assuming that cortical bone behaved as a perfectly elastic material, the

reductions of strength caused by a defects in cylindrical shaft would be similar

to those determined by theoretical stress concentration factors reported in

engineering literature. For example, a 10% defect would have stress

concentrations of 2.3 in bending and 1.7 in torsion, and a 30% defect would

have stress concentrations of 1.9 in bending and 1.4 in torsion (Peterson,

1953). By adjusting these factors to account for original cross-section, they can

be converted to strength retentions for comparison to those measured and
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calculated in the experiments. The flexural factors-of-safety for 10% and 30%

defects translate to strength retentions of 37% and 26%, respectively; the

torsional factors of safety for 10% and 30% defects translate to strength

retentions of 56% and 53%, respectively. Not surprisingly, these values

correspond to the predictions by the linear models reported in the above table

(Table 9.1); they are not exactly equivalent because of the difference between

double and single cortex holes, and because of the difference between

maximum and effective stress analyses.

The importance of describing the theoretical context for stress analysis in

shafts with holes is that the behavior of bones with defects did not behave

according to predictions based on linear failure theory or stress concentration

factors. While faulty material property assumptions are the most likely cause of

this incongruency, flaws in the geometric representation of bone shafts must

have also played a role. For example, models of sheep bones tested in torsion

could not explain the non-existent decline in strength with defects less than

10% of the shaft diameter (Edgerton et al., 1990; Hipp et al., 1990). While it was

hypothesized that natural defects in the bone caused this phenomenon, it is

equally likely that cylindrical models underplayed the importance of local

geometry in determining the effects of small holes on bone strength. More

importantly, the CT scan-based finite element modeling of the present study

concretely determined that more accurate geometric representation led to

greatly improved model precision. With its lack of precision for failure

determination, the cylindrical model, regardless of material assumptions, could

not have been expected to accurately describe the response of a bone to the

presence of defect. This was especially true for torsion, a mode of loading

whose stress distribution is highly dependent on cross-sectional geometry.

-

t"
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Material issues: heterogeneity, plasticity, and anisotropy

While the effects of geometry are important in discerning differences in

strength between whole bones and bones with defects, the effects of material

property assumptions are more likely to explain gross inaccuracies in the

modeling of bone strength, independent of the presence of a defect or the

method of loading employed. In looking at the flexural and torsional strengths

of femoral shafts, the present study elucidated some probable consequences of

different material modeling assumptions (i.e. heterogeneity, plasticity, and

anisotropy). A better understanding of the effects of different modeling

assumptions would hopefully lead to the development of more general bone

models that can be confidently extended to conditions in vivo.

The heterogeneous nature of cortical bone is easily proved. At a purely

microscopic level, the microstructure of cortical bone, with its uneven

distributions of pores and cement lines, would seem to cause material

heterogeneity. However, this alone does not demonstrate material

heterogeneity, for if the spatial frequency of these variations is high and uniform

enough to be invisible to the stress distribution, the material could be

considered homogeneous. For the case of cortical bone, it is macroscopic

evidence that attests to its heterogeneity. The fact that appreciable density

variation can be measured in cortical bone and that this density variation

correlates to material behavior confirms that cortical bone is heterogeneous.

Supporting these facts are the changing porosity and bone distribution with age

and the hypertrophic response of bone to the presence of a metastatic lesion.

Despite the ease of proving bone heterogeneity, quantifying this variability

poses a challenging problem for researchers. In the present study, a second
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power relationship between CT scan-derived density and the material

properties of modulus and strength was used to explain some of this variability.

The extremely high correlation coefficients achieved by the heterogeneous

models gave merit to the assumed heterogeneity. More importantly, it can be

conjectured that its role in accurate strength predictions will only increase for

cases where the heterogeneity is more pronounced. Even if cortical bone does

not demonstrate significant intra-specimen heterogeneity, the application of

some relationship between density and material properties could quantify

differences in material properties between specimens.

The evidence for material plasticity in cortical bone is compelling. The

literature discusses how bone may be considered a bi-phasic material in which

the more flexible collagen combines with the stronger ground substance to

provide more composite strength than either material alone would predict

(Fung, 1993; Nordin and Frankel, 1989). In fact, one study postulated that only

in the presence of the purely elastic behavior of collagen is the mineral

substance elastic-perfectly plastic, together giving cortical bone its characteristic

bi-linear stress-strain curve (Burstein et al., 1975). The importance of assuming

plastic behavior in cortical bone becomes evident in the structural behavior of

whole bone subjected to four-point bending; the extensive deformation

occurring after yield can only be explained by plastic material behavior.

Despite the obvious plasticity of cortical bone, many argue that elastic modeling

is equally predictive of failure and much less computationally intensive.

Because of the strong relationship between yield and ultimate strength for the

mechanical testing of a uniform section, linear models are often just as

predictive of strength as nonlinear models. However, these relationships

between yield and ultimate failure load can only hold for a given geometry, thus

limiting the generality of the modeling technique to the exact cases which have
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been tested empirically. The presence of a defect, for example, causes the

relatively brittle failure of shafts tested in torsion or bending. For both of these

cases, the literature reported extremely poor modeling accuracy and an inability

to explain the less than drastic reductions in strength caused by defects (Hippet

al., 1990; McBroom et al., 1988). The results of the present study show that a

high degree of precision can be achieved in the linear modeling of flexed bones

with and without defects and torqued bones with defects, provided the

geometric representation is reasonably accurate. Nevertheless, the extremely

different mechanical behavior for whole bones and bones with defects made

the assumption of material elasticity suspect. By analyzing nonlinear models for

the flexural experiment, it was postulated that assuming material plasticity

showed potential for not only increasing the accuracy of the models in

predicting failure, but also increasing the generality of the model to multifarious

loading conditions and explaining actual mechanical behavior (e.g. structural

brittleness versus ductility).

With its inherent secondary osteonal organization, cortical bone

demonstrates directionality to its material behavior, discrediting the assumption

of isotropy. Though the orthotropic properties of cortical bone are well

documented (Reilly and Burstein, 1975; Van Buskirk et al., 1981), it remains

unclear exactly how to implement this knowledge in the FE modeling of cortical

bone structures. For example, one study demonstrated that model solutions

were dependent not only on the inclusion of orthotropic behavior but also

whether the orthotropy was aligned with the changing principal axes of the

osteons along a curved bone (Ricos et al., 1996). Even if the moduli were

accurately assigned to a bone model, the question remains how to apply a

failure criterion that would also account for strength anisotropy. It is obvious that

a multiaxial criterion is necessary. Many have noted that bone fractures on
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surfaces of maximum shear for compressive loading and on surfaces of

maximum tensile stresses for pure tensile or shear loading, indicating a

hierarchy of failure modes which depends on directional weaknesses (Burstein

and Wright, 1994; Hipp et al., 1992). One study has successfully applied a Tsai

Wu failure criterion to cortical bone specimens under combined axial-shear

loading, further strengthening the argument for the assumption of anisotropic

material properties and the use of a multiaxial failure theory in the modeling of

cortical bone. Complications still arise with the fact that multiaxial failure

theories usually define yield surfaces, which could be confounded by the

additional directionality associated with post-yield behavior (Keaveny and

Hayes, 1993). Having precisely modeled the strength of bones in torsion, the

present study offers more evidence to justify the need for orthotropy in the

modeling of cortical bone structures. The severe underestimation of the

torsional strength of bone with defects, despite accurate predictions for flexural

strength, can only be attributed to the anisotropy manifested by the transverse

loading configuration of torsion. No doubt, the fully general FE model of cortical

bone would accommodate orthotropic material properties in addition to material

heterogeneity and plasticity.



Chapter X
Conclusion

Investigating the use of CT scan data to build models of femoral bone shafts

produced many significant findings. Though the previous chapters have served

to quantify these findings and extrapolate their physical significance, it is

important to qualify them, placing them solidly within the context of the scientific

and clinical knowledge. Understanding both the implications and limitations of

the findings is essential for moving medical research toward the ultimate goal of

improved patient care.

Research findings

A principal goal of this research was to determine if CT scan data offered
some benefit in the FE modeling of femoral shafts. To give this research

additional clinical significance, shafts with simulated metastatic defects were

also included in the investigation. While the effects of drilled holes in long

bones had already been studied, no study had ever performed both finite

element modeling and experimental testing of human bones with defects.

Moreover, previous FE models of animal bones with defects all assumed a

simple cylindrical geometry. In performing multivariate linear regression

analysis on the ability of three model types to predict strength, the present study

determined that using CT scan data to describe bone geometry resulted in

marked increases in model precision, and that using it to describe geometry
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and material heterogeneity brought both precision and accuracy. The

correlation coefficients for predicting the flexural strength of bones with and

without defects were the highest ever reported in the literature.

Within the maelstrom of data on the strength characteristics of human bone,

the material property assumptions were carefully justified for the performance of

the early linear models of the four-bending tests; the idea was only to compare

geometry and heterogeneous modeling assumptions. These models included

assumptions of linear elasticity, isotropy, and density-based heterogeneity.

With the success of these models in predicting bone strength, other modeling

assumptions were open to exploration. It was through the variation of number

of elements used to determine bone failure and a closer inspection of the load

deflection curves that it was determined that bones with defects were distinctly

different in their failure characteristics than bones without defects. Despite

showing considerable robustness of the modeling technique, varying the

number of elements to failure suggested that linear modeling probably could

not explain the subtleties of the different failure mechanisms in whole bones

and bones with defects.

The next modeling assumption to be explored was that of nonlinear material

properties. By allowing plastic deformation in the region of a defect, a bi-linear

stress-strain relationship would potentially explain the differences in the

characteristic load-deflection curves for the two sets of bones tested in bending.

It was found that nonlinear models performed quite well and provided a

probable explanation for why local yielding near a defect did not translate to

structural yielding on a load-deflection curve. The nonlinear models also

suggested the mechanism by which bones retained a much larger portion of

their original strength than predicted by presence of stress concentrations. It

seems likely that including plasticity in models will play an increasingly
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important role as geometries become more complex and loading conditions

more varied.

Because flexural tests provide limited data on the multiaxial failure

characteristics of bone, torsional experiments of bones with defects were

performed. Torsional models proved to be even more precise than the original

bending models; however, they did not achieve equivalent accuracy. As

models were predicting strengths to be twice their empirical values, isotropy

and the associated uniaxial failure theory were the most likely sources of

systematic error. Based on reduced strengths in the transverse directions and

an incongruency between longitudinal ductility and transverse brittleness, both

orthotropic material properties and a multiaxial failure criterion may be required

to characterize bone strength more accurately in such complex loading

configurations. Even with its limitations, linear modeling proved to be a reliable

predictor of bone strength in both bending and torsion, marking a significant

step in the modeling of cortical bone as a structural material.

Sources of Error

Even with the high degree of precision achieved by each of the experiments

in this study, it is important to understand the limitations of the general FE

modeling technique for predicting bone strength. The errors associated with

faulty material property assumptions have already been described in detail.

Absent a fully heterogeneous, elastic-plastic, orthotropic modeling technique,

one can expect errors to always be present. Two material assumptions which

were not mentioned were strain rate dependence and asymmetry, also potential

sources of error. Beyond using faulty material assumptions, there are errors

inherent to the biology of bone. For example, bone may manifest effects of
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osteoporosis or tumor metastasis completely independent of bone density, the

only parameter measured by a CT scan. Until osteoporotic or lytic bone can be

more fully characterized, it will remain a mystery what variability these factors

would introduce to the strength modeling process. Additionally, any in vitro

experiment lacks the reality of a bone's interaction with its environs, including

the effects of temperature, pressure, biochemical interactions, and real time

bone adaptation.

Regarding the experiment itself, errors originated from each step in the

process. Preparing the specimens exposed the bones to cold temperatures of

the freezer and hot temperatures of the potting process, desiccating

environments of the freezer and rehydrating environments of the water bath.

Using CT scan data to determine bone geometry and density had a host of

potential confounding variables: scanner drift, threshold selection, scanner

resolution, and beam hardening artifacts. Additionally, ensuring that the bone

within a scan precisely corresponded in alignment to the bone within the

mechanical testing machine gave the researcher many places to err, such as

within the scanner, the mechanical fixture, and the model. The formulation of

the models from CT scan data created a rough-surfaced model with its cuboidal

elements, necessarily eliminating surface elements from consideration in stress

analysis. Because of this roughness, the accuracy of the stress distributions

was completely dependent on the resolution of the model, perhaps causing

errors in regions with drastic stress gradients. The physical breaking of the

bone may have introduced even more errors associated with stress

concentrations at load points and interface problems near the potting material

(e.g. premature cracking).

Possible sources of error for the present study have been only cursorily

described, because with only 4% of the variability in the experiments left
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unexplained, it would be futile to quantify the myriad sources of error in search

of a direction for improvement. However, many of these possible sources of

error can be addressed by thoughtful modifications to the modeling technique in

future experiments.

Future directions

The results of the present study hold promise for the development of fracture

risk criteria for patients suffering from metastatic lesions in the femur. Absent

new techniques for risk determination, many patients will be either subjected to

unnecessary fixation procedures or suffer preventable painful fractures. In this

investigation of flexural and torsional strength, the strengths of human bones

with hemispherical defects were determined theoretically with great precision.

The sophistication of the modeling technique coupled with its facility allows it

potentially to be extended to bone configurations of greater complexity. Before

accurate models are ultimately achieved, however, there are many smaller

research steps that must be taken.

Throughout the entire discussion of bone strength, many simplifying

geometric and material property assumptions have been suspected of

detracting from the quality of the modeling technique. Regarding geometry,

increasing mesh refinement would be the obvious direction for improving model

precision; with the constant advancements in computer technology, this

improvement should come inexpensively. Material property assumptions will

always be a source of error in modeling bone, a material with complex

biological behavior. Nevertheless, discussion in the preceding chapters

suggests that a fully general and accurate model would require closer

approximations of the inherent properties of cortical bone, such as
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heterogeneity, plasticity, anisotropy, and asymmetry. Future studies could

investigate how the inclusion of closer approximations of material behavior

would affect model predictions of structural behavior. In addition looking at

ultimate failures, these studies of material behavior could characterize the

structural stiffness and local strains of the loaded bones. Other important areas

for investigation including alternate bone geometries and loading

configurations.

Thus far, the focus has been on improving in vitro fracture prediction. Other

areas for investigation become important if the FE modeling technique is to be

of clinical significance. For the purpose of scientific exploration, it has been

assumed throughout this research that developing a fully general model was

the ultimate goal. Perhaps, clinical practice could benefit from research with

less ambitious expectations. For example, results from the present study could

possibly be developed into criteria for deciding on the need for prophylactic

fixation. Applying engineering beam theory to the cross-section of a bone with

a metastatic lesion may allow surgeons to realize the benefits of this research

without the cost of expensive technologies. The poor performance of current

clinical criteria warrants this search for better rules of thumb.

The value of achieving the most general model for bone strength depends

on results of future clinical studies. For example, the region neighboring a

metastatic lesion can be osteolytic or reactive, depending on the span of time

over which the tumor has developed. Characterizing the strength of this

neighboring bone becomes a confounding issue, because it is possible that

density measures do not fully incorporate the demineralization associated with

lytic bone or disorganization associated with reactive bone. One study applied

acid to bone to approximate the structural effects of a lytic lesion with little

success (Hipp et al., 1991), most likely because acid did not produce a region of
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graded demineralization. The CT scan-based technique offers the capability to

model bone with actual tumors, eliminating the need for a flawed simulation.

Another important issue regarding the development of a clinical tool for fracture

prediction involves the loading a femoral bone can expect to experience in vivo.

Fracture prediction based on simple in vitro loading configurations may not

satisfactorily represent the complex loading configurations of normal human

activity; future research should address this issue. A final extension of this

research would be the application of the FE method to other regions of bone,

such as the proximal femur or the vertebral body. One study reported a 30.6%

incidence of spinal metastases in patients dying from malignant neoplasms

(Ortiz Gómez, 1995), a testimony to the need for other bone studies. Only one

parametric FE study on spinal metastases has been done to date (Mizrahi et al.,

1992).

Only after the appropriate amount of background research has been

performed can a FE-based fracture criterion be introduced into the clinic.

Clinical trials would be required to prove the method efficacious and justify its

use. With the current fracture risk criteria so unreliable, it seems likely that the

precision of the FE models using CT scan data would afford great benefits,

especially with its ability to uniquely characterize bone geometry and

heterogeneity. This is obviously a very exciting field in which to be doing

research!
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