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Abstract

Essays on the Economics and Politics of Wildfire Management

by

Matthew J. Wibbenmeyer

In the past several decades, wildfires in the western U.S. have become more severe,

frequent, and damaging. Federal and state governments bear substantial responsibility

for managing these incidents. Yet we know little about how government environmental

managers make decisions, whether in this context, or in the many other contexts in which

government administrators play an important role. In this dissertation, I use the example

of federal wildfire management to study decision-making among government environmen-

tal managers. In the first essay, I estimate avoided losses to structures due to wildfire

suppression. Though preventing losses to structures is a primary goal of wildfire suppres-

sion, avoided losses to structures do not justify costs of suppression for many wildfires,

especially those that begin in remote areas. In the second and third essays, my collab-

orators and I explore consequences of behavioral biases among communities affected by

wildfire management. In the second essay, we show that, due to pressure individuals place

on government administrators, behavioral biases can affect the decision-making of public

land management agencies. In the empirical context of this study, government decisions

over where to locate wildfire risk reduction projects, this can result in inefficient policy

outcomes. The third and final essay uses behavioral bias-induced shocks to community

demands for wildfire risk reduction projects to study differences in responsiveness among

government administrators to demographically-varying communities. We find that gov-

ernment administrators are more responsive to communities in which a greater percentage

of residents are white, educated, or young.
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Chapter 1

Introduction

Over the past several decades, wildfires within the western U.S. have become increasingly

frequent, severe, and damaging. While this trend owes its explanation to a number of

factors (including climate change), an important contributing factor has been the legacy

of fire suppression on public lands in the western U.S. In the West, 69% of forest land,

and 49% of land overall, is publicly owned. Beginning in the early twentieth century,

land management agencies—led by the U.S. Forest Service—adopted a policy of fire

exclusion. In many western U.S. forest types, fire exclusion has led to an accumulation

of fuels, increasing the risk that ignitions develop into severe and hazardous wildfires.

Because of the federal government’s role in contributing to current conditions in western

forests, advocates for divestiture of public lands have cited the example of wildfire to

argue that the federal government is ill-prepared to manage its extensive landholdings

(e.g. Nelson, 2017).

Though government administration of the environment has come under particular

scrutiny in the case of western public lands and the management of wildfire, wildfire

management is far from the only context in which government plays a significant role in

managing the environment. It is therefore critical to understand how governments make
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Introduction Chapter 1

decisions regarding environmental management. In general, economists either ignore

this question by assuming governments are welfare-optimizing “social planners,” or they

have adopted political economy approaches to address this question. Yet while political

economy approaches are well-suited to studying the formation of policy, outcomes may

frequently be driven by policy administration. In the case of federal land management,

bureaucratic land managers often have significant discretion in defining land (or wildfire)

management strategies.

This dissertation presents three self-contained essays that use the example of federal

wildfire management to study factors that affect decision-making among government en-

vironmental managers. In the first essay, I assess benefits of wildfire suppression in terms

of avoided losses to structures. We know very little about benefits of wildfire suppression,

in part because it is difficult to know how a fire would have spread in absence of suppres-

sion. To estimate benefits of wildfire suppression, I adopt a two-step strategy. In the first

step, I use a novel spatial duration model, historical fire perimeters, and outputs from a

state-of-the-art wildfire simulation tool to estimate the relative contributions of fire sup-

pression effort and physical factors to the probability a wildfire will be extinguished. In

the second step, estimates of the model are used to predict fire spread probabilities with

and without suppression effort, and I compute estimates of avoided structure losses due

to wildfire suppression based on these probabilities. While preventing losses to private

property is a primary goal of wildfire management, I find that avoided losses to structures

due to suppression are frequently substantially lower than suppression’s costs, especially

in the case of fires that begin in remote locations. Previous research has found that

wildfire managers are frequently highly risk averse. My results are consistent with these

findings, and suggest that in the case of wildfire management, government managers do

not effectively optimize expected social welfare from wildfire suppression.

In the second and third essays, my collaborators and I explore consequences of be-
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Introduction Chapter 1

havioral biases among communities affected by wildfire management. While a large lit-

erature has studied the effects of behavioral biases on individual decision-making, in the

second essay, we show that behavioral biases can also affect the decision-making of public

agencies as well. In this essay, we focus on salience and government land management

agency decisions over where to locate wildfire risk reduction projects. Salience is a com-

mon behavioral bias whereby people’s attention is drawn to salient features of a decision

problem, leading them to overweight prominent information in subsequent judgments.

When agencies are influenced by public pressure, and when public risk perceptions are

biased, resources may be allocated toward locations where risk is most salient, not to

where those resources are most needed. We test whether salience increases or decreases

allocation of government projects to reduce wildfire severity near wildland-adjacent com-

munities. Even though the occurrence of a wildfire likely reduces the severity of future

fires in the same area, it may increase the likelihood that fuels management projects

are placed nearby if wildfire events strongly increase the salience of losses under future

fires. We find strong evidence that the salience effects increase the likelihood of fuels

management projects, and use robustness checks to eliminate competing explanations

for our results.

The third and final essay uses behavioral bias-induced shocks to community demands

for wildfire risk reduction projects to study differences in responsiveness to demographically-

varying communities among government administrators. In general, we tend to believe

that in a democratic system public participation in governmental decisions leads to bet-

ter outcomes. However, recent research (e.g. Gilens, 2005) has argued that when prefer-

ences vary across groups, and when policymakers are differentially responsive to different

groups, greater levels of responsiveness can lead to greater inequality. Focusing specifi-

cally on the case of wildfires and wildfire risk management in the western U.S., we find

that when communities experience nearby wildfire events, it raises the salience of wildfire
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risk and leads agencies to place a greater number of wildfire risk reduction projects nearby.

However, salience-based decision-making does not benefit all communities equally. We

find that nearby fires increase rates of fuel treatment particularly among whiter and more

highly educated communities. Although there is growing evidence of inequality in leg-

islative representation, this is the first evidence we know of showing that public agencies

perpetuate inequality, via the behavioral biases of the public.

1.1 Permissions and Attributions

Andrew Plantinga, Sarah Anderson, and Olivier Deschenes provided valuable guid-

ance in the work leading to chapter 2. Randy Walsh generously provided assessor’s data

used in the chapter. As well, in writing chapter 2, I benefited from the helpful com-

ments of Kyle Meng, Becky Epanchin-Niell, Max Moritz, Ryan Abman, Corey Lott, and

Maureen Kennedy, as well as seminar participants at the 2016 Association of Environ-

mental and Resource Economists Summer Meeting, the Heartland Environmental and

Resource Economics Workshop, the University of Colorado Environmental and Resource

Economics Workshop, and departmental seminars within the Department of Economics

at University of California, Santa Barbara. This work was supported by the NSF SEES

Hazards program, the National Socio-Environmental Synthesis Center, and the Earth

Research Institute at University of California, Santa Barbara.

Chapters 3 and 4 are the result of a collaboration with Andrew Plantinga and Sarah

Anderson, and were made possible through support of the NSF SEES Hazards pro-

gram and the National Socio-Environmental Synthesis Center. In the course of writing

these chapters, we benefited from comments of seminar and session participants at Yale

University, the Paris School of Economics, the University of Maine, the University of

Ferrara, the University of Turin, the Department of Economics and the Bren School of
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Environmental Science and Management at University of California, Santa Barbara, the

Property and Environment Research Center, the American Political Science Association

2015 Annual Meeting, the Politics and Economics of Wildfire Conference, the 2016 As-

sociation of Environmental and Resource Economists Summer Meeting, and the Ostrom

Workshop Program on Natural Resource Governance & Environmental Policy. Heather

Hodges, Naomi Tague, Maureen Kennedy, Max Moritz, Ryan Bart, and Charlie Diamond

provided helpful feedback. Maribeth Todd provided assistance assembling the GIS data.
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Chapter 2

Burning down the house: Wildfire

and the benefits of responses to

natural disasters

In recent years, the western U.S. and Canada have experienced a series of devastating

wildfire events, including the Rim Fire in Yosemite National Park in 2013, the Fort

McMurray wildfire in Alberta in 2016, and the devastating fires in Napa and Sonoma

counties in California in October 2017. These wildfires are part of a pattern of increasingly

frequent and severe wildfires in the region. Since the 1970s, wildfire frequency within the

western U.S. has increased by over 500%, while area burned has increased by over 1200%

(Westerling, 2016). As wildfires have become more pervasive, costs of managing them

have increased correspondingly. Annual U.S. federal spending on wildfire suppression has

approximately doubled in real terms over the past two decades (NIFC, 2017). In 2017,

federal spending on wildfire suppression reached $2 billion for the first time.1 While the

1For reference, annual U.S. spending on all natural disasters averaged $27.7 between 2005 and 2014
(US GAO, 2016)
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increase in wildfire spending has been especially dramatic, it parallels increases in federal

disaster spending overall over the past several decades (Lindsay and McCarthy, 2015).

As the cost of managing wildfires grows, it becomes increasingly important to allo-

cate responses to wildfires efficiently. The federal government—and in particular, the

U.S. Forest Service—plays a central role in wildfire management within the western U.S.

due to its extensive landholdings in the region and its role in funding state fire manage-

ment programs.2 In the early twentieth century, Forest Service policy required that all

fires be extinguished as quickly as possible. Eventually, science supporting an ecologi-

cally beneficial role of wildfire caused a shift in official federal policy toward wildfires.

However, while prescribed fire is now used in some cases to manage wildfire risk, and

there are occasional allowances that wildfires within very remote wilderness areas be

left to burn uncontrolled, aggressive suppression continues to dominate wildfire manage-

ment (Franklin and Agee, 2003). This program of suppression is controversial. There

is some evidence that wildfire managers are excessively risk averse in their responses to

fires (Wilson et al., 2011; Wibbenmeyer et al., 2013; Thompson, 2014), and that a policy

of indiscriminant wildfire suppression has eliminated potentially beneficial wildfires. In

order to target wildfire suppression more efficiently, it is important to understand its

costs and benefits, and how they vary across incidents. Yet we know very little about

the benefits of wildfire suppression.

In this paper, I evaluate an important economic benefit of wildfire suppression effort:

protection of private property. The benefits of responding to a natural disaster are

defined as avoided losses due to the response. Therefore, estimates of the benefits of

disaster response rely on an unobserved counterfactual: what would damages have been

in absence of disaster response? To identify benefits of wildfire suppression, I adopt a

2Approximately 70% of federal wildfire spending is appropriated to the USFS (Thompson et al.,
2015).
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two-step approach. In the first-step, I estimate the effect of wildfire suppression effort

on wildfire spread. In the second step, I conduct a counterfactual analysis in which I

predict wildfire outcomes with and without wildfire suppression effort. I estimate avoided

property losses due to suppression as the difference between estimated property losses

under the two scenarios.

Identifying the effects of effort on fire outcomes is challenging because the strength

with which government managers respond to a wildfire is expected to be endogenous to

the intensity of the fire. Complicating matters further, both the physical factors that

determine wildfire intensity and the effort that managers exert to suppress wildfires vary

over space and over the evolution of a wildfire incident. I respond to these challenges

in two ways. First, I adopt an explicitly spatial-dynamic approach to the estimation

of effects of suppression effort. To account for natural and physical factors that affect

fire spread, I make use of a fire simulation model developed by the U.S. Forest Service

and used in the management of wildfire incidents. The fire simulation model, known as

Minimum Travel Time (MTT), integrates spatial data as well as time-varying vegetation

and winds data into predictions regarding wildfire behavior on the landscape. To estimate

effects of wildfire suppression effort on fire spread, I condition on predictions of wildfire

behavior. This effectively allows me to estimate effects of effort by contrasting fire spread

across locations where wildfire behavior is similar, but effort is different.

In the counterfactual analysis, I find that avoided losses to private property vary

substantially among wildfires. In some cases, avoided losses to private property may be

hundreds of times the costs of suppression. On the other hand, there are many fires—

especially fires in remote areas—for which the avoided losses to private property do not

justify costs of suppression. Though there are both costs and benefits of suppression that

are unaccounted for in this analysis, I argue that this suggests we may be over-allocating

resources toward suppression of some remote wildfires.
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This paper is one of the first studies to estimate benefits of responses to natural

disasters, and is to my knowledge the first to focus on the benefits of mitigating natural

disasters. The literature on costs of natural disasters is quite large (for a complete

review see Field et al. 2012 or Kousky 2014). However, only recently have researchers

begun to explicitly estimate benefits of responses to natural disasters.3 Natural disaster

damages can be averted through actions taken before an event (I refer to these responses

as adaptation) or during (mitigation). In contrast to the few previous papers that have

studied benefits of disaster response, I focus specifically on benefits of disaster mitigation.

In particular, I focus on wildfire suppression, a form of disaster mitigation that affects the

evolution of a wildfire event. Although mitigation is not possible for all types of natural

disasters, it is not a unique feature of wildfire management. Other examples of disaster

mitigation include deployment of flood control infrastructure and the management of

disease outbreaks.

Wildfire suppression is a spatial-dynamic problem. This paper is among the first to

empirically examine management of spatial-dynamic resources in a way that explicitly

accounts for spatial-dynamics. Spatial-dynamic models are frequently intractable due to

their high-dimensionality; therefore, much of the previous literature on spatial-dynamic

resources has been theoretical in nature.4 In the first step of the analysis, I develop a spa-

tial duration model that accounts for the spatial-dynamic nature of wildfire management

in a straight-forward and tractable manner.

I proceed by providing some background on wildfires and wildfire management within

the western U.S. I then develop a simple model of wildfire management. This model is

useful for motivating the empirical spatial duration model used in the first step of the

3For example, Hsiang and Narita (2012) study the capacity of countries to adapt to hurricanes.
4Previous studies have developed theories of optimal harvesting within a spatially-connected fishery

(Costello and Polasky, 2008), optimal control of invasive species (Epanchin-Niell and Wilen, 2012), and
optimal patterns of fuel management under wildfire risk (Konoshima et al., 2010)
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analysis. It also provides qualitative predictions regarding the factors that should affect

allocation of suppression effort. In section 2.3, I describe the methods used to estimate

avoided private property losses due to fire suppression. This includes a description of

the spatial duration model used to estimate the effect of effort on fire spread, as well a

description of the way estimates of this model are used to evaluate avoided losses. In

section 2.4, I describe the data used in the analysis, including data derived from USFS

fire simulation models. I then present results from the first step of the analysis, followed

by results from the counterfactual analysis. Finally, I conclude with a discussion of

implications of the results for wildfire management.

2.1 Background

Wildfires—defined as uncontrolled non-structure fires occurring within wildlands—

have increased in frequency and severity within in the western U.S. in recent years.

Wildfires cause a variety of damages. They damage and destroy private property in their

paths. For example, the northern California wildfires of October 2017 destroyed more

than 8,000 structures, causing more than $3 billion in insured losses. Occasionally, wild-

fires result in losses of human life among fire fighters or ordinary citizens. Other damages

result from the carbon dioxide and smoke emissions given off as wildfires burn. Carbon

dioxide released each year by fires is equivalent to approximately 40% of global annual

fossil fuel emissions (Van Der Werf et al., 2004). Though the majority of these emissions

come from tropical forest fires, emissions from fires in temperate zones are nonetheless

substantial; approximately 3-5% of California’s annual carbon emissions come from wild-

fires (Gonzalez et al., 2015). Wildfire emissions also have important implications for

human health. A large literature has evaluated the health effects of wildfire smoke and

has found, for example, that wildfire smoke leads to increases in local hospital admis-
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sions (Moeltner et al., 2013), increases in early-life mortality (Jayachandran, 2009), and

decreases in labor supply (Borgschulte et al., 2016).

Fires occur when heat, fuel, and oxygen—an assemblage known to fire scientists as the

fire triangle—combine in the proper proportions. Of these elements, most of the recent

increase in wildfire activity within the western U.S. can be attributed to increases, either

due to climate or management, in the availability of fire-ready fuels. In the western U.S.,

climate change has led to earlier spring snowmelt, longer growing seasons, and warmer

temperatures. Combined, these factors have encouraged growth of burnable fuels in

western forests (Westerling, 2016). Further, wildfire suppression within the western U.S.

has left the region’s forests laden with fire-ready fuels (Allen et al., 2002; Schoennagel

et al., 2004). Due to the build-up of fuels over time, ignitions are now more likely to

develop in large, potentially damaging wildfires.

Because of its extensive land-holdings in the western U.S.,5 the U.S. federal govern-

ment plays a central role in managing wildfire in the region. At the beginning of the

twentieth century, the primary goal of federal wildfire suppression efforts was conser-

vation of resources, primarily timber. In the 1930s, the USFS adopted the “10 a.m.”

rule, which instructed forest rangers to attempt to extinguish all fires by 10 a.m. on the

the morning following their ignition. Over the course of the twentieth century, scientific

research established the importance of wildfire within forest ecology. In the 1978, the

federal government established a policy of total fire management, which allowed some

prescribed burns (planned burns intended to reduce fuels) and “let burns” on public

lands.

Though current federal wildfire policy has been revised several times since 1978,

it now states that “Response to wildland fires is based on ecological, social and legal

consequences of the fire” (USDA and DOI, 2009). Managers are now expected to manage

5Federal lands comprise 47% of land in the western United States (Bui and Sanger-Katz, 2016).
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wildfires in consideration of the range of values they affect, including watershed values,

threatened and endangered species habitat, health impacts due to smoke, and other

possible damages. However, it has generally been politically difficult to reduce wildfire

suppression effort when private property is at-risk. In practice, wildfire managers’ efforts

are believed to be largely motivated by protection of homes and structures (USDA OIG,

2017; Gude et al., 2013; Gorte, 2013). Therefore, in many cases, wildfire suppresion policy

today is indistinguishable from that under the 10 a.m. policy; when private property is

at risk managers attempt to extinguish fires as quickly as possible.

Upon initially discovering a fire, fire managers will attempt to quickly extinguish it

in what is known as the “initial attack.” When fires escape managers’ initial attempts at

containment, they rely on three sets of tactics: direct attack, aerial attack, and indirect

attack (NWCG, 2017). Direct attack includes tactics in which managers directly apply

treatment to burning fuel. Direct attack tactics are typically used when fires are relatively

small, which enables firefighters to work close to burning material and physically smother

the flames, or apply water or chemical retardant. Aerial attack involves applying water

or chemical fire retardants from the air, using helicopters or fixed-wing aircraft. Finally,

indirect attack includes fire suppression activities that take place at some distance from

the perimeter of the actively burning fire. For example, fire managers frequently work

in advance of a fire’s spread to construct fuel breaks, areas where burnable material has

been removed in order to stop a fire’s spread. Fuel breaks can be constructed using hand

tools or heavy equipment, or by “backburning”, which involves setting fire to fuels in

the main fire’s path while wind conditions are favorable. Finally, fire managers can take

advantage of pre-existing fuel breaks, such as roads.

To guide their use of these tactics, fire managers rely on knowledge of fire behavior

and weather, as well as a series of sophisticated wildfire simulation software tools, such

as Farsite (Finney, 1998) and FSPro (Finney et al., 2011). Wildfire simulation models
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incorporate data on physical topography, data vegetation and fuels, and weather data.

Within a model of fire behavior, these data allow fire simulation models to predict how the

three elements of the fire triangle—heat, fuel, and oxygen—will come together to influence

wildfire spread. Fire simulation models can also predict important characteristics of

wildfire behavior, such as the rate of fire spread and the intensity (measured in heat loss

per unit time). These predictions help fire managers choose how to allocate resources in

order to achieve management objectives such as defense of private property.

2.2 Theory

This section develops a theoretical model of the decision problem facing fire managers

in order to motivate the empirical analysis of factors affecting fire spread. The theory

does this in two ways. First, it emphasizes the spatial-dynamic nature of the fire man-

ager’s problem, and the role that uncertainty plays. Fire spreads in multiple directions

over space and time, and an increased level of suppression effort does not guarantee a

fire’s extinction in a given direction-of-spread. Therefore, how managers allocate effort

across directions-of-spread will depend on the spatial distribution of at-risk assets, and

the manager’s assessment of the likelihood the fire will reach those assets if she is not

successful in stopping the fire at its current point-of-spread. Second, the model provides

an implicit policy function describing fire manager’s optimal allocation of suppression

effort, which motivates the specification of the empirical model developed in the next

section.

To begin, I allow to fire spread in multiple discrete directions, indexed by `, from

its ignition point. In order to avoid tracing fire spread across both distance and time, I

assume the fire burns at unit speed in all directions. Therefore, at time t = s, the fire

is distance s from its ignition point in each direction `, conditional on it not yet having
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been extinguished in that direction. Values-at-risk in location s` are described by the

vector xs`. If the fire burns to distance s in direction `, the fire destroys assets present

at that location, and fire managers lose utility u(xs`). Ignitable fuels at distance s in

direction ` are given by rs`. At each location s`, the probability the fire is extinguished is

a function of both fuels in that location and effort es` expended toward suppressing the

fire. Therefore, I write the probability the fire is extinguished at point s as λ(es`, rs`),

and assume λ(·) is decreasing in fuels, and increasing in effort. Additionally, I assume

that the marginal effect of effort on extinction probability is decreasing in fuels. The

fire manager allocates effort across directions-of-spread ` in order to minimize expected

losses across all directions. I define ys as a 1 × L vector of state variables, where L is

the total number of directions over which the fire can spread. Each element ys` of ys is

a binary variable equal to zero if the fire has not yet been extinguished in direction ` at

distance s. Therefore, the law of motion for each element of ys is:

ys+1,` =


0 with prob. 1− λ(es`, rs`) if ys` = 0

1 with prob. λ(es`, rs`) if ys` = 0

1 if ys` = 1

(2.1)

Managers are subject to a budget constraint, which says that they cannot expend more

than b̄ total effort over the course of the fire. The remaining budget at time s is denoted

bs and evolves according to bs+1 = bs−
∑L

`=1 c(zs`)es`, where b0 = b̄ and zs` is a vector of

location-specific characteristics that affect marginal costs of suppression at location s`.

I can now write the fire manager’s problem as a dynamic program in discrete time.

In each period s, the fire manager’s problem is to solve:

Vs(y`s, bs) = max
es
−

L∑
`=1

(1− y`s)u(xs`) + βEy

[
Vs+1(ys+1, bs+1)|es

]
(2.2)
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subject to equation 2.1, bs+1 ≥ 0, and the law of motion for bs. To solve this problem,

the manager will choose e∗s such that:

λe(e
∗
s`, rs`)E

[ ∂Vs+1

∂ys+1,`

(e∗s)
]

= c(zs`)E
[∂Vs+1

∂bs+1

]
(2.3)

for all directions `. Though it is not possible to find a closed-form analytic solution to

this problem, this condition nevertheless provides some intuition regarding managers’

optimal allocation of effort across directions. The condition says that managers should

choose effort to equate marginal benefits with marginal costs across all directions of

spread. The left-hand side of the condition represents marginal benefit of suppression.

Effort affects the continuation value Vs+1 through its effects on extinction probability and

expected avoided losses u(x`s). For directions of spread with greater assets, increasing

extinction probability before the fire reaches those assets may provide greater benefits.

However, because marginal effects of suppression effort on extinction probability are

decreasing in fuels r, the fire manager should also consider the landscape and allocate

effort across directions at appropriate and opportune moments. The right-hand side of

equation 2.3 represents marginal costs of suppression effort. Increases in effort draw down

the remaining budget and thus decrease the continuation value.

There are a number of ways this model abstracts from reality. In reality, managers can

take indirect actions such as building a fuel break in advance of a fire’s spread. While

the model explicitly allows managers to take action only at the fire’s current point of

spread, indirect attacks are considered implicitly by allowing managers to “save” against

their budget b. More significantly, the model requires that fires spread linearly over

independent “directions of spread.” In reality, fires spread stochastically across a two-

dimensional landscape. Unfortunately, realistically accounting for the non-linearity of

fire spread would yield a high-dimensional spatial-dynamic model. Theoretical solutions
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to such a model would be numerically as well as analytically intractable; empirically

evaluating such a model would be impractical. Simplifying the managers’ problem in

this way significantly reduces the dimensionality of the problem while retaining insight

regarding its spatial-dynamic nature.

2.3 Empirical model

2.3.1 Fire spread distance as duration

In order to estimate the effects of natural factors and wildfire manager suppression

effort on fire extinction probability, while accounting for the spatial-dynamic nature of

the fire manager’s decision problem described in section 2.2, I adapt methods from du-

ration analysis to a spatial setting. Consider a fire burning in a single direction along a

featureless line. At any point along the fire’s path of spread, there is some probability

that the fire will stop its spread. In the language of duration analysis, the fire “exits

the state.” Therefore, I draw a parallel between fire spread distances and durations and

apply tools from duration analysis. The extinction probability, or the probability a fire

is extinguished at distance s from its ignition point conditional on it not yet having been

extinguished, corresponds to a hazard rate. As in the theoretical model, I model the

extinction probability as depending on natural characteristics (rs) and fire suppression

effort (es), both of which vary over space. I then model effort as depending on the

characteristics of at-risk assets in the fire’s path and estimate how these factors affect

extinction probability.

I write the fire extinction probability as λ(s, es, rs; θ), where θ is a vector of param-

eters. Using standard derivations from duration analysis, the cdf of fire spread distance

16
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can be written:

F (s) = 1− exp
[
−
∫ s

0

λ(s, es, rs; θ)ds
]
. (2.4)

Since fires potentially spread in 360 degrees from their points of origin, I divide the

landscape around each ignition into L directions of spread, where directions of spread

are indexed by `. I then divide each direction of spread into distance intervals, where

each interval m defines a grid cell spanning the distance (am−1, am] for m = 1, . . . ,M . I

define ym as equal to 1 if the fire stops burning within am−1 and am kilometers from the

ignition point, and 0 otherwise. Each direction of spread is observed up until the interval

at which it stops burning, which is denoted M`, or until the maximum distance M . If

the fire continues to burn in direction ` upon reaching distance M , the fire-direction

observation is right-censored.

I apply grouped duration data methods (e.g. Sueyoshi, 1995) because my measure of

fire spread distance is observed within discrete distance intervals. Using equation 2.4,

the probability a fire is observed to stop burning within the interval (am−1, am] along

direction of spread ` can be written:

Pr(ym = 1|ym−1 = 0,m ≤M) = 1− exp
[
−
∫ am

am−1

λ(s, es, rs; θ)ds
]
. (2.5)

Under the assumption that factors affecting extinction probability are constant within

interval m`, I define wm` to be a vector describing es and rs within the interval. I then

define αm(wm`; θ) = exp
[
−
∫ am
am−1

λ(s, es, rs; θ)ds
]
, the probability a fire is halted within

(m − 1,m]. I assume that conditional on wm`, the probability the fire is extinguished

is independent across intervals within a single direction of spread. Then the likelihood
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function for a single fire-direction observation can be written:

L`(θ|M`) =
(
1− αm(wm`; θ)

)M`−1∏
m=1

αm(wm`; θ), (2.6)

where the first term represents the probability that the fire will stop burning within

interval M`, and the second term represents the probability the fire continues to burn

within each of the intervals prior to interval M`. Under the further assumption that

αm(wm`; θ) is independent across fires and directions of spread conditional on wm`, the

overall likelihood function over L directions of spread and K fires can be written:

L =
K∏
k=1

L∏
`=1

M∏̀
m=1

(
1− αm(wm`; θ)

)ym`kαm(wm`; θ)
(1−ym`k). (2.7)

This likelihood function is the same form as the likelihood function of a standard binary

response model, where the particular binary response model to be estimated will depend

on the specification of the probability λ(·) (Jenkins, 1995; Sueyoshi, 1995). Fire extinction

probabilities are not independent across directions-of-spread. For example, a fire that

spreads a great distance to the northeast is also more likely to spread a great distance

to the north-northeast. In section 2.3.3, I discuss how I test the model’s robustness to

non-independence among fire spread directions.

2.3.2 Specification of spread-distance model

In order to estimate equation 2.7, I assume extinction probability is of the form:

λ(s, es, rs; θ) = exp
(
em` + rm`

)
λ0(s) (2.8)
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where em` is a variable summarizing effort and rm` is a variable summarizing the effects

of landscape and weather conditions on extinction probability. That is, I assume that

the extinction probability takes the form of a standard proportional hazard model. In

allowing λ0 to vary in s, the proportional hazard model allows for duration dependence.

This is important in modeling fire spread distance because fires that grow large are more

likely to continue to burn. Letting γm = ln
∫ am
am−1

λvdv, and using equation 2.5, extinction

probability can be written:

αm(wm; θ) = exp

[
−
∫ am

am−1

exp(em` + rm` + γm) dv

]
≡ F

(
em` + rm` + γm

)
. (2.9)

This is the cdf of the complementary log-log distribution, implying that a proportional

hazard model corresponds to an easily-estimated complementary log-log model. Distance-

interval fixed effects are captured by γm; therefore, I make no assumptions regarding the

form of duration dependence.

According to the theory developed in section 2.2, effort at a given location depends

on costs of suppression as well as the benefits. Benefits are a function of assets protected

by suppression, including assets at the fire’s current location and assets further in the di-

rection of spread that are protected by suppression of the fire at that location. Therefore,

I write effort as:

em` =
m̄∑

m=0

βmxm` − z′m`δ (2.10)

where benefits of suppression include “spatial leads” of assets-at-risk (xm`) up to m̄ cells

away and suppression costs are function of the vector zm` within cell m`. In the theory

developed in section 2.2, effort can depend on physical landscape factors rm` if λer is not

equal to zero. Therefore, I also test models that include spatial leads of natural factors
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affecting fire spread. Including leads for these variables does not influence results.

In order to account for the effects of physical factors on fire spread, I rely on simulated

variables derived from a USFS fire simulation model. These variables, rate of spread and

fire intensity, are summarized in the vector vm`. Rate of spread and fire intensity do not

necessarily contribute in to extinction probability in a linear way. For example, a low rate

of spread may only contribute to the probability a fire stops spreading only when rate of

spread is very low. Therefore, I allow vm` to influence the complementary log-log index

function through the non-linear function g(·). In summary, I specify the complementary

log-log distribution I estimate as:

F
( m̄∑
m=0

βmxm` − z′m`δ + g(vm`) + γm
)
. (2.11)

2.3.3 Identification & Inference

The key identifying assumption in this paper is that, after controlling for observed

natural factors that affect fire spread, random factors that affect fire spread are uncorre-

lated with effort. A threat to identification would exist if there were omitted factors that

affected extinction probability and were correlated with effort. For example, population

density within an interval might be correlated with an area’s tendency to burn, even after

controlling for natural factors. Therefore, identification of the effects of assets-at-risk on

suppression effort rests in large part on how well simulated rate of spread accounts for

the landscape’s tendency to burn.

As indicated above, the assumption that extinction probabilities are independent

across directions of spread is likely false. Derivation of equation 2.7 requires the inde-

pendence assumption, therefore violations of independence may bias both coefficient and

standard error estimates. I adopt several strategies to test the sensitivity of results to
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violations of this assumption. First, I estimate the model using a linear probability and

compare the resulting coefficient estimates to marginal effects from equation 2.11. Since

predicted probabilities from the linear probability model may fall outside the 0,1 inter-

val, and ultimately I will use the estimated model to predict fire spread probabilities, the

LPM is not a satisfactory alternative to equation 2.11. However, comparing coefficients

from the LPM to marginal effects estimated from equation 2.11 provides a test of the

results’ sensitivity to violations of the independence assumption. Correlation in spread

distances among spread directions should decrease as the number of directions of spread

within each fire is reduced. Therefore, as a second test, I vary the number of directions

of spread L within each fire and test how results depend on how finely the data are

partitioned. Third, in my preferred specification of equation 2.9 I include fire-specific

fixed effects. Fixed effects account for a specific form of non-independence in probabil-

ity of extinction across fires—when fixed differences exist in probabilities of extinction

across fires. Finally, to ensure appropriate inference under violations of the independence

assumption, I cluster standard errors by fire (Cameron and Miller, 2010).

2.3.4 Counterfactual analysis

I use results from the estimation described above to estimate benefits of wildfire

suppression. Benefits of wildfire suppression are equal to the difference between expected

losses under the current suppression regime and expected losses under a regime with no

suppression. Letting ψ` represent the benefits of wildfire suppression within direction `,

this quantity can be calculated as:

E(ψ`) =
M∑

m=1

(
πN
m`µ

N − πS
m`µ

S
)
× hm`,
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where πS
m` and πN

m` represent the probability that fire reaches cell m`, with and without

suppression respectively and hm` denotes the total value of structures within the cell.

The parameters µ represent the fraction of total structure value that is expected to be

lost conditional on fire reaching the cell. Since some portion of fire suppression effort may

be allocated to directly defending structures, µ is allowed to vary by suppression regime

so that µS represents the rate of structure loss under the current suppression regime and

µN represents the rate of loss under no suppression.

Estimates of equation 2.11 can be used to calculate fitted probabilities that fire will

reach each cell. Under the current wildfire suppression regime, the expected probability

with which fire will reach each cell m` can be written:

π̂N
m` = 1− F

(
êm` + g(̂vm`) + γ̂m

)
(2.12)

where:

êm` =
m̄∑

m=0

x′m`β̂
m
− z′m`δ̂ (2.13)

Under a zero suppression effort regime, the probability fire reaches cell m` can be written:

π̂S
m` = 1− F

(
g(̂vm`) + γ̂m

)
. (2.14)

Using these estimated probabilities, I construct the following estimator for benefits of

suppression within direction of spread `:

ψ̂` =
M∑

m=1

(
π̂N
m`µ

Nhm` − π̂S
m`µ

Shm`

)
. (2.15)

When hm` and the parameters µ are known, this estimator can be used to calculate the
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expected benefits of fire suppression for fires within the sample. This benefit can be

compared to costs of fire management to assess the net benefits of fire suppression.

2.4 Data

2.4.1 Spread-distance model data

To estimate the model of fire spread-distance, I use three primary categories of data:

data describing fires and ignition locations, data describing determinants of fire suppres-

sion effort, and data describing natural factors that affect fire spread. Data describing

areas burned come from the Monitoring Trends in Burn Severity (MTBS) project (MTBS,

2014). Since 1984, the MTBS has used Landsat satellite imagery to map the geographic

extent of all fires greater than 1000-acres in size in the western U.S. It is possible that the

availability of only relatively large wildfires induces selection bias. Wildfires may fail to

reach the 1000-acre threshold for inclusion in the MTBS data set because they are more

responsive to suppression, or because they are relatively weak. If included fires are dis-

proportionately non-responsive to suppression, then the estimated effect of suppression

may be biased downward. Nonetheless, the estimated effect of suppression can be viewed

as a local average effect of effort among fires that escape initial containment and grow to

be greater than 1000 acres. Because I estimate benefits of suppression only for fires that

reach the 1000-acre threshold, I may omit fires for which suppression is most worthwhile

(for example, if costs of suppression are substantially smaller on small wildfires). If so,

the true distribution of net benefits may include a greater number of fires for which fire

suppression is worthwhile. But though the estimated distribution of net benefits from

fire suppression will be biased, the estimated net benefits from any individual wildfire

will not be biased.
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Ignition locations are due to Short (2017), who compiled a comprehensive database of

wildfires within the U.S. from 1993-2015 using a variety of federal, state, and local sources.

Fires within the database include coordinates of each fire’s point of origin to within 1

km. Short (2017) includes even small ignitions that never grew to be threatening fires.

I restrict my attention only to the set of fires large enough (generally greater than 1000

acres) to be mapped by MTBS. Further, I focus on fires whose ignitions were within 10

km of wildland urban interface, as mapped by Radeloff et al. (2005),6 and which occurred

in the western U.S. in years 1999- 2015. I restrict the sample to fires near wildland urban

interface areas because I am interested in benefits of fire suppression, which should be

largest for these fires. I focus on the western U.S. because wildfire hazard is a significant

concern in the region, and because fire regimes in the western U.S. are distinct from

those in the east. Under these restrictions, the sample contains 2,119 fires, the locations

of which are displayed in Figure 2.1.

To adapt the empirical model from the previous section to the data, I divide the

area surrounding each wildfire ignition point into L directions of spread. An example

is provided in Figure 2.2. In the primary set of results, L is equal to 24, and each

direction of spread has an angle of 15 degrees, though I check robustness of my results

to varying values of L. I further divide each direction of spread into a series of 1 km

distance intervals, up to a maximum distance (M) of 20 km, creating a circular grid

surrounding each ignition location. I overlay the circular grid with the corresponding

wildfire perimeter and code the fire as being extinguished (ym` = 1) within a cell if fire

fails to reach the centroid of the next cell. All prior cells (those nearer to the ignition

point) within the direction of spread are coded as burnt (ym` = 0).7 I refer to the distance

6Wildland urban interface areas are those where developed residential areas intermingle with or are
directly adjacent to large areas of wildland vegetation (US Department of Agriculture and Department
of Interior, 2001).

7Coding intervals as burnt if the fire burns any portion of the interval does not substantively change
results.
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Figure 2.1: Geographic distribution of fires within the sample

##### ##### # ## ## # #### ### # #
#

###
#

## #### ### ### #
#

#### ## ### #
# ## ## ###

##

#

##
# ##

# #
###
#

### #
# #

# #
####

#

# ### ##

#
## # # ## ##
# # ##

# ###
#

##
#

#

#

#
#

# ## #### ##
## ##### #

#

#

#
###

#
#

## #
# ### # #

# ##
###

#
#

#

# # ### ### #
## # ###### ####
#

###
#

#
# ###

###### #

#
#######

####
## ##

#
#

#

##
# #

# ##
#

### ## #

####
# #

###

##

#

#

##########
# #### #
# #
## #
###

#

#

###
###

# #

#

#####
# # #

### ## #
#

## ### ###
# ### ####
#

## ##
### ### ###
# #
## ######## ## # ####

#

#

##

##
#
##

#
#

# # ## # #
#

# # ##
# #

#
### #

# ####
##
#

##

#

##
#

#
# #

#

#
#

#
#

# #
# ## #

# #
##

#
#

##

## ## ##
#

#

#####
#

###

#

#

##
#####
##

#
##

#

#
#

##

#

#
##

##

###
##### ##

## #
##

#

#
#
##

#

#
###
#######

##

# ####
#

##
##

#

#

#

#
#

#

#

##

####

##

#
#

#

#
#

#
# #

#

#

#

#

# #

##

#

#

#

### #
## ##

#

##
#

#
##

#
###

#

#

###
#

#
## ### #

##
##

###

#

# ## #
#

#
#

#

#

##
##

##
#

##

#

#
#

#
# ## #
# ##

#
## ###

#
#

#

#
#

##
# #

#
#

# # ## #
#

###

##
#

####

#
#

#

# #

# #

## ### #

#

###

#

#
###

#
##

#

#

#

#

#
#

#

#

##

##

##

#

#
# ##

#
##

#

#

#
#

#
##

#

#

#
#

#
#

#
##

#
#

##
#

##

##
#

#

# #

#

#

######
#

###

#
### #######

#

##
#

# #

#

#
#

####
#

#

#

#

#

#

#

# #

#
## #

#

#

#
#

##
#

##
## #

#

###

#

# ##
#

# #

##

#
#

##
#

#
## #

#

###

##

#

##
####

#

#
#

#
###

#
# #
## #
#

# ###
#

# #
# ##

#

###
##

# #
##

#

#

##

#
##

#
## ##

##

###
## # #

#
### #

##

#

##

#

#

#
#

##

#

##### #
#

##
#
# ####

#

##

#

#
# #

#
#

#
#
### #

##

###
#

#

# #
#

## ### #######
## ### ## ### ### ## # #

##
#### ## # ### ### ## # ### ## # ## ##

##### #### ##
#

### ##
##

### ####
## ### ### ## # ##

# ## # ## ## #
## #

#
#

#

#
## #### ## # ####

# #
#

#
# #

#
#

##
### ####

#
#

### ##
#

## #
## ### ### #

# ###
#

#
#

## #### # #
# ## ### # ##

#
#

#####
#####

# ### ### ##
# #

##
# ##

#
##

#

#
#

#
## #

#
#

## ###
###

#
# ## ## #

#

##
# ##

#
##
#

# #### #
## ### ####

#
#####

#
# #

#
##

#

# ####
#

#
#

#
#

###
#

### ###
#

##

#

##
#

#
###

##
##

#
##

#####
##

# ####
# ###### #

#
#

##
#

#

# ##
#

# #

### #

#

#

#

##
#

#

#
#### #

# ###
# ## # #

# ## ####

#

#
#

###

#

### #

#
#

#####
#
##

#

#

#
#### ##

#

##

## ##
#

##
#

####

#
#

#
# #

#
##

## ## #
#

####
#

##
## #
## ### #
#
#

#
#
##
#

##### ##
##

#
# ## #### #####

# ###########
#

#

#

# #
### ##

# # ##
###

#### ##
### # #

#

#

##
#

#
#

#
#

#
# #

## ## ## #
## # ## #
# # #

# #
##

#
# ######
#

#

####
# ## ### ### #

#
#

# #### # #
#

## ##

##
#

#
## ## ### #

#
##

#
# ##

###

# #
#

# #

#
#

#

##
#

### # #

#
##

#
##

#
#

#
#

#
#

##

##

#

##
# #

##
# #

#
#

# ##
#
#
#

#
#

#

# # #
#

# ##
# ## ##

#
###

#
# ### #

#
# #

#
# ###

#
#

#
##### #

##
#

###
## ###

##
# ###

#

##### #

#

#
#

#
#

#
#

#

#

### ##
# #

#
#

#
#

#

#

#
# #

## ## #
#

###
#

#

# #
# ##

#

#

######
# #

## ####### ## ### ##
### ###### # ## # ### # #

#
##

# ### #### ##
## ## ## ## ## ## ### # #

#

# ## ## # ### ## ## ## ####

#

#
# #### # #### ##

## # ## ### ## ## # ##
# # ## ## ### #### ## #

#

##
#

### ### ### ## ##### ##
###

# ## ###
##

## ##### ### #####
# ## ### ####

# ##

#
## ### ###

## ## #

#

###
#

# ##

#

###
# ###

#

#

#

#
#

#

#

#

#####

#

# ##

#

####

#

#

#

#

#

### #### ## #######

#

# ##
###
####

#

##
#

##
#

#
##

#
##

#
#

#
#

# #

#

##
#

#
# #
###

##
#

#
#

#

#
#########

##
#

#

#
##

##
#

# # #
#

#
#

##
##
#

# #

#

#
##

#
# #
## #

#
### #

#

#

#
#

##

#
## #

####
#

#

#
#

#
#

# ##

#

#
#

#
# #

##

#
#

#
#

#

#
#

##

#

#

# # #

## ##

# #
#

#

# ####

#

#
#

##

#

#

#
#

##

#

#

##### #####

#

#

#

#

#

#

#

## ## ##

#

#

#

#
#

#
#

#

#
#

##
#

#
##

###

#

#

#

#
#

#

#

##

#
# #

## #

#

# # #
#

##

#

#

#
#

#
##

#

#
##

#

##

#

#

##

#

#

#####
#

######

#

#

#
#

#
# # #
####

#

# #
#

### ##
#

##
##

#

##
##

# #

#

## #
# ##

#

#
##

#

#

#

#
#

#

# ##

#

#

#

# ###
# #

##
##

#

#

#

# #
#

#

#
# ### ######## ### ######## ## #### ## ## ### ## ### #

#
##

#

### # #
###

# #

#
# #
## ## ##
####

# ### ### #
#

## #### #### ### ####
#

#
#

## ##
## ## ### ##

#
##

# ##### ## ## ### ### ## # #
# #

## # #
### #

#
# #

# ## #
#

#

#

## #
# #

## ##
#

#
# ###

#

###### #
# #

#
# ##

###
# #

#

##
# #

#
# #

##

#

###
#

##

#

###
#

# # #
# #

#
#

###
### ## # #

#
#

#### ##
#

# ###
#

#

#

##

#

##
#

##### #
##

##
#

# ##

#
###

#

##

#

###
# ####

#

## # ##
#
#

#
#

#
# #

#
#
#
#

##
##

# #
#

## ## #
# # ##

##
# #

# # ####
###

#
#

#
#### ##

# ##
#

#
#

#
#### #

##

###
#

#
##

#
#

#
## ### ##

#
#

#
##

#
#

#

# ## ### ## #
#

#
## ###

#

#
# #

#
## #

#

# ####

#
#

##
#

# #
## # ## ## ### ##### #

# ### # ##
## ## ## ### # ### ## # ######

#
#

#
#

# # ## ##
##

# ##
# ##

# ## # ## # ## ## ### ### ## ####
### #### ## #

0 200 400 km

# Ignition locations
Land cover and
population

WUI interface
WUI intermix
Populated areas,
no veg
Uninhabited
areas, no veg
Uninhabited
areas, veg
Water

interval at which the fire is first extinguished within each direction as interval M`, and

I drop all observations within each direction ` for which m > M`. Fires sometimes

spread in irregular non-convex patterns, and they may return to a direction of spread

from which they have previously been extinguished. I ignore such cases and treat fires

as remaining extinguished once they have first been extinguished within a direction of

spread.8 Figure 2.3 shows the distribution of fire spread distances. For approximately

85% of spread-directions, fires are extinguished within 5 km of the ignition point. Fewer

8An alternative would be to code y`m as 0 until the cell within direction ` from which the fire is
extinguished for the final time. Applying this alternative coding scheme does not substantively change
results.
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Figure 2.2: Illustration describing the construction of the data set
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than 1% of spread-directions are censored by the maximum distance of 20 km.

Fire suppression is a function of at-risk assets within a given direction of spread, and

of costs of suppression. To account for variation in suppression effort due to popula-

tions at risk, I use U.S. Census data collected at the block and tract-level. Population

and housing variables are available for the 2000 and 2010 censuses at the block level.

Other demographic variables, including income and education variables, are available

only at the Census tract-level. To map Census block-level and tract-level data to the

circular grids surrounding each ignition point, I assume that populations are uniformly

distributed within each Census block, and that Census blocks are demographically uni-

form within each tract. Because I lack data on home values for the 1999-2015 sample of
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Figure 2.3: Histogram of fire spread distances
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fires throughout the western U.S., I rely on Census per capita income data to provide

a proxy for home values. As can easily be seen in Figure 2.2, circular grid cells vary in

area. The increase in affected area as fire spreads away from its point of origin captures a

natural feature of spatial dynamic phenomena; spread may be more damaging, and more

costly to control, as it proceeds and the perimeter of the affected area expands (Epanchin-

Niell and Wilen, 2012). Consistent with this feature of fire spread, I use area-dependent

measures to capture both benefits and costs of controlling fire within a grid cell. To

proxy for the number of homes in a cell, I use population density. As a measure of the

total value of homes within each cell, I use population multiplied by per-capita income,

which I refer to as “total income.” To allow that fire managers may undertake greater

suppression effort on behalf of higher income residents, I also per capita income. In its

first panel, Table 2.1 summarizes demographic characteristics by distance from ignition

point. There is a clear trend in population density (as well as total income) over distance

from the ignition point. This is likely due to selection; a fire is more likely to grow to be
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Table 2.1: Summary statistics for circular grid cell-level observations, by distance
from fire ignition point

(1) (2) (3) (4) (5)

0-5 km
5-10
km

10-15
km

15-20
km

Whole
sample

Demographic vars.

Total population 8.38 40.3 80.9 132 65.2
Population density (persons/sq. km) 34 63.9 77.2 90.3 66.2
Total income (2009 USD thousands) 181 807 1,651 2,612 1,309
Per capita income (2009 USD
thousands)

23.3 23.3 23.3 23.2 23.3

Percent high school graduate 80.1 80.2 80.1 80.1 80.1
Percent college graduate 18 18 17.9 17.9 17.9

Other values at risk
Contains major road .0604 .0987 .138 .169 .116
Avg. watershed importance rating
(0-100)

31.9 31.8 31.7 31.5 31.7

Percent TES habitat (non-stream) 13.4 11.9 11.1 10.7 11.8
Percent within 0.5 km of TES
habitat (stream)

3.83 3.5 3.33 3.28 3.48

Cost vars.
Percent within 0.5 km of roads 56.9 58 57.5 57 57.3
Avg. topographic ruggedness index 21.6 19.6 19.2 18.6 19.7

Fire spread vars.
Simulated rate of fire spread
(chains/hour)

1.72 1.6 1.54 1.5 1.59

Simulated fire intensity (kW/hour) 270 298 293 285 287

Number of obs. 219,933 219,192 218,345 217,421 874,891

Note: TES refers to threatened and endangered species.

large, and therefore be included in the sample, if it begins in a more rural location. This

suggests that, in estimating the effect of population on extinction probability, controlling

for distance from ignition may be important to account for secular trends in demographic

characteristics as well as to control for effects of duration dependence.

Though protection of private property is a primary concern of fire managers, they

may also be concerned with protecting a variety of other assets, including watersheds,
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threatened and endangered species habitat, and roads. An important management ob-

jective of forest managers is to protect watershed values. Fires can impact watersheds by

increasing runoff and reducing water storage. I measure the watershed value of each cell

by multiplying its area by a spatially-weighted average of its watershed significance, based

on a 0-100 rating provided by USDA (2017). To control for the influence of threatened

and endangered species habitat on suppression effort, I construct two measures using

geospatial data describing locations of critical habitat (USFWS, 2017). I measure the

area within each cell classified as critical habitat for terrestrial species, and I measure

the area within each each cell that is within 0.5 km from riparian species. Fire managers

may be averse to closing major roads due to fire. Therefore, I construct an indicator

variable describing whether a primary or secondary road crosses each cell.9

To account for differences in the cost of fire suppression over space, I collect data

on accessibility and topographic ruggedness. Accessibility is measured as area within

each cell that is within 0.5 km of a road. I measure costs associated with ruggedness

by calculating the average topographic ruggedness index (TRI) within each cell using 30

m resolution digital elevation model (DEM), and multiplying average TRI by the cell’s

area. TRI measures the variation in elevation among a pixel and its neighbors (Riley,

1999; Nunn and Puga, 2012). Another important factor affecting cost of effort is the

availability of personnel and equipment resources. Among the models I estimate in the

next section are models including fire-level fixed effects. Fire-level fixed effects should

account for differences in availability of resources, since availability of resources generally

should be same within a given fire.

Finally, I control for natural factors affecting fire spread through inclusion of outputs

from a model of fire spread. The USFS has developed a variety of fire simulation software

9Primary roads are defined as divided, limited access state highways or interstate highways. Secondary
roads are other highways belonging to the U.S. highway, state highway, or county highway systems.
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(including Farsite, Flammap, and FSPro), each of which varies in its applications within

fire management. To simulate fire spread, I use the Minimum Travel Time (MTT) model,

which is the foundational fire simulation model underlying a variety of these programs,

including Flammap and FSPro. Rather than explicitly predicting how a fire perimeter

will expands over the landscape, MTT calculates the minimum travel time necessary for

fire to travel among a two-dimensional network of nodes across the landscape. From

these travel times, it interpolates fire arrival times. A key advantage of MTT is that

it approximates more accurate models of fire behavior in exchange for relatively low

computational cost (Finney, 2002). MTT takes as inputs features of the landscape such

as elevation, slope, and aspect, as well as characteristics of vegetation on the landscape.

An MTT simulation also includes as input a guess as to initial fuel moisture conditions

(the model then allows fuel moistures to evolve over the course of the fire) and a wind

direction and wind speed. Topographic data and time-varying vegetation and fuels data

were collected from the Landfire project (Landfire, 2014), which provides remotely-sensed

landscape data at a 30 m resolution.10 I collected observed wind speed and wind direction

at the time of each ignition from its closest Remote Automated Weather Station (RAWS

station).

I simulated fire spread for each of the 2,119 wildfires in my sample. Rather than limit

the duration of each simulated fire, I allowed each fire to entirely consume the landscape

within 20 kilometers of its ignition point. Allowing the landscape to be entirely con-

sumed by fire generates a series of landscape-wide measures describing how fire would be

expected to burn within a given pixel, conditional on reaching that pixel. I use simulated

10Vegetation characteristics comprise canopy cover, canopy height, canopy base height, canopy bulk
density, and fuel models, which describe characteristics of fuels and how they respond to fire. Landfire
collects vegetation characteristics from remote sensing data with a resolution of 30 m. Since 2008,
Landfire vegetation data have been updated every two years, but Landfire was not updated between
2000 and 2008. I use 2000 Landfire data for years 2000-2005, 2008 data for years 2006-2010, and 2010,
2012, and 2014 data for the two years following each of those updates.
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Figure 2.4: Illustration of fire simulation output
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fire intensity and simulated rate of spread as predictors of fire extinction probability. Fire

intensity measures the rate at which energy is released due to the consumption of fuels.

High intensity is characteristic of hot fires that burn in the upper canopy of the a forest,

whereas low intensity fires frequently burn on grasslands or within the forest understory.

Rate of spread measures the speed at which a fire’s flaming front moves across the land-

scape. An example output from MTT is provided in panel A of figure 2.4. Darker pixels

correspond to locations where fire is expected to spread more rapidly. Panel B illustrates

that MTT outputs are averaged over circular grid cells to yield a grid-cell level measure

of rate of spread.

In its lower panels, Table 2.1 summarizes how non-demographic values-at-risk, cost,

and fire spread variables vary with distance from the ignition point. To better illustrate
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trends in distance from the ignition point, the table includes per area measures of these

variables. Watershed importance and amount of endangered species habitat tends to

decrease with distance from the ignition point, but prevalence of major roads increases.

As distance from the ignition point increases, fires are expected to burn more slowly and

cost of suppression becomes lower.

2.4.2 Counterfactual analysis data

To apply spread-distance model results to the estimation of benefits of fire suppres-

sion, hm`, µ
N , and µS must be known. To estimate these variables I draw on two addi-

tional sources of data. The value of structures within each grid cell is based on property-

level county assessor’s data from CoreLogic, Inc. for the entire state of California in years

2010 and 2011.11 I overlay the property-level data set against each fire’s circular grid,

and I calculate the sum total of assessed structure values within each cell.12 Property

values may quite likely be influenced by the occurrence of a fire. In order to ensure that

property value estimates are not affected by fires in my sample, I focus on fires occurring

after 2011. As well, data on costs of suppression and structures destroyed are not avail-

able for 2014 and 2015. Therefore, I focus on estimating benefits of wildfire suppression

for 47 fires occurring in California between 2012-2013.

Because not all structures within the boundary of a wildfire are destroyed, I estimate

the fraction of structure value lost conditional on fire burning the cell (the parameters

µ). I collect the number of structures within each wildfire perimeter and the number

of structures destroyed for each of the 2012-2015 California wildfires. The number of

structures destroyed comes from situation reports (SIT-209 reports) submitted to the

11These data were generously provided by Randy Walsh and are used under an agreement with Duke
University Department of Economics.

12Structure values for each property are calculated as the difference between estimated property value
and assessed land values
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interagency Incident Command System, which coordinates allocation of fire management

resources across incidents. Situation reports frequently, but not always, include estimates

of the number of structures destroyed on a given fire. I use these numbers, with the

number of properties falling inside each wildfire perimeter, to construct a fraction of

structure value within the perimeter that is destroyed. This fraction provides an estimate

of µS, the rate of structure value loss under the current suppression regime. The rate

of structure loss under no suppression loss is not observed, therefore I calculate net

benefits for various value of µN . First, I assume that under no suppression, structure

value is lost at the same rate it is lost in the current suppression regime. This likely

underestimates the value of structures that would be lost under no suppression, since

some suppression resources may be used to directly defend structures. An alternate

assumption is that 100% of structure value within burnt cells is destroyed by fire. This

is likely an overestimate of losses but provides an upper bound for estimates of lost

structure value under no suppression. To assess whether avoided structure losses justify

costs of suppression, I use suppression cost estimates, which are also drawn from wildfire

situation reports.

2.5 Results

2.5.1 Spread-distance model results

Tables 2.2 and 2.3 provide estimates of the effects of suppression effort and natural fire

spread variables, respectively, on extinction probability. For variables associated with fire

suppression effort, I report marginal effects calculated at the means of the explanatory

variables. Fire managers are assumed to consider assets at risk up to 3 km in advance of

a fire’s current point of spread; however, second and third spatial leads are, in general,
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not statistically significant from zero and so they are omitted from the table. This could

be evidence that, in spite of the model developed in section 2.2, managers are relatively

short-sighted and only consider assets that are relatively directly in a fire’s path. Another

possible interpretation is that production of extinction probability is convex in effort; for

example, partially constructed fire breaks may be ineffective. In this case, fire managers

might focus their attentions and effort constructing fire breaks just ahead of important

assets in the fire’s path. A third possible interpretation of this result is that beyond the

first lag, spread directions are not accurate reflections of where managers believe fires

will spread. The paper’s empirical strategy imposes a significant amount of structure on

patterns of fire spread. Fire managers may have beliefs about where fires will spread that

are not reflected in the linear directions-of-spread. Future work could use fire simulation

models to develop landscape-based directions-of-spread.

Column 1 of Table 2.2 omits fire spread controls and estimates fire extinction proba-

bility as a function only of assets at-risk. Column 2 adds fire spread controls, and column

3 adds fire fixed effects. Fire fixed effects control for fixed differences in extinction prob-

ability within directions-of-spread and across fires. For example, fire fixed effects might

control for unobserved differences in suppression costs across fires. They may also help

control for unobserved differences in fuel moisture (which affects how readily vegetation

will burn) due to the time of year and precipitation. Within column 3, the preferred

specification, a variety of suppression effort variables are significantly different from zero

in the focal cell or the first spatial lead. Marginal effects for explanatory variables within

the focal cell indicate variables’ marginal effect on the probability fire will stop spreading

before it reaches the centroid of the next cell within the direction of spread. For example,

when fire reaches the centroid of a populated cell, it is 3.3 percentage points more likely

to stop burning before it reaches the next cell’s centroid than it would have been within

an unpopulated cell. First spatial leads reflect the marginal effect explanatory variables

34



Burning down the house: Wildfire and the benefits of responses to natural disasters Chapter 2

within the next cell in a given direction-of-spread have on the probability fire will stop

spreading before it reaches the centroid of the next cell. This explains why in some cases

the first spatial lead has a marginal effect with greater statistical significance or greater

magnitude. Focal cells where fires are extinguished may frequently be majority burnt;

at the very least, their centroid is burnt. In contrast, spatial leads of cells in which fires

are extinguished have unburnt centroids.

In general, marginal effects within Table 2.2 accord with expectations. Fires are 6.7

percentage points more likely to be extinguished when they are burning toward popu-

lated grid cells. When population within the leading cell further increases by 100, the

probability the fire will be extinguished increases by 4.4 percentage points. Increases in

population density by 1 person per square kilometer within focal and leading grid cells are

associated with 0.01 percentage point increases in extinction probability. Interestingly,

both total income and per capita income have no discernable effect on probability of

extinction. Indeed, if anything, increases in income are associated with decreases in the

probability of fire extinction. These results imply that fire managers do not preferentially

protect higher income areas or areas where the value the total value of the housing stock

is greater. Rather, it appears that effort is largely motivated by preventing fire from

spreading into populated areas. Fires are also substantially more likely to stop spreading

before they reach cells containing major roads. While this large coefficient may reflect

managerial aversion to closing major roadways, it is also possible that roadways provide

a fire break that is not adequately captured by the fire spread model. Therefore, I have

tested the sensitivity of counterfactual analysis results to the inclusion of the major road

indicator within the vector of variables determining effort. Excluding the major road

indicator from the effort vector does not substantively change the results of the couter-

factual analysis. They are also more likely to stop burning as they approach riparian

threatened and endangered species habitat, though they are somewhat less likely to stop
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burning prior to reaching non-stream sensitive habitat. Watershed importance appears

to have no effect on probability of extinction. Of the two cost variables, only the per-

centage of the cell near road is statistically significant in the preferred specification. Fire

is 2.9 percentage points more likely to be extinguished within cells with 10 percentage

points more area within 0.5 km of a road.

In columns 2 and 3 of Table 2.2, I control for effects of physical factors (landscape,

fuels, etc.) on fire spread by allowing fire simulation outputs (rate of spread and fire

intensity) to each affect the complementary log-log index function in a cubic function.

This is to allow for the fact that the effect these variables have on probability of extinction

may vary depending on their value. Since it would not be meaningful to report separate

marginal effects for the linear, quadratic, and cubic terms for each polynomial, I instead

report coefficients within Table 2.3. Columns 1 and 2 in Table 2.3 report polynomial

coefficients for fire spread variables from the regressions in column 2 and 3 of Table 2.2,

respectively. For the preferred specification, each of the polynomial coefficients is strongly

significant. This indicates that rate of spread and fire intensity have significant effects on

probability of extinction, and that these effects depend on the value of those variables.

For the range of values in the sample, simulated rate of spread has a negative effect on

probability of extinction, and simulated fire intensity has a positive effect on probability

of extinction. The effect of simulated rate of spread is of the expected sign. As shown

in Figure 2.4, simulated rate of spread is low within developed areas or areas with no

vegetation; therefore, the negative effect of rate of spread on probability of extinction

indicates that the variable is appropriately capturing the effects of fuels on extinction

probabilities. On the other hand, the marginal effect of intensity on extinction probability

is not negative, as would be expected. The positive effect of intensity on fire extinction

may capture the fact that fires tend to stop their spread on ridgelines, where fire intensity

tends to be high (Moritz, 2017).
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As discussed in section 2.3, the empirical model is based on an assumption that

spread-distances are independent across directions-of-spread within fires. Since this as-

sumption is likely false, I provide a series of tests of robustness checks intended to test

whether results depend on this assumption. First, I estimate the corresponding model

using a linear probability model. Unbiasedness of OLS does not depend on indepen-

dence among observations, therefore this provides a test for whether violations of the

independence assumption bias estimates reported in Table 2.2. Results from the linear

probability model are reported in column 1 of Table 2.4. Coefficients are very similar to

marginal effects from the preferred specification, indicating that violations of the inde-

pendence assumption do not strongly influence results. In columns 2 and 3, Table 2.4

reports estimates of equation 2.11 using logit and probit models, respectively. These

models test sensitivity of results to the specification of the hazard function, since it is

the choice of an exponential proportional hazard model that implies the complementary

log-log distribution. Results are not sensitive to the choice of binary response model.

Since the correlation between directions of spread should decrease as the number of

directions of spread within each fire decreases, I also test the sensitivity of results to

varying the number of directions-of-spread that surround each fire ignition. In Table 2.5,

I report marginal effects for explanatory effort variables when the data set is constructed

with 48, 12, and 6 directions-of-spread for each fire. The number of directions can be

increased or decreased from the number (24) used in the preferred specification with-

out substantially altering results. If the number of directions-of-spread is sufficiently

small, some results become statistically insignifcant—in part because the the number of

observations decreases with the number of directions. Even in this case though, signs

and magnitudes of coefficients remain broadly similar, providing additional evidence that

results are robust to violations of the independence assumption.
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2.5.2 Counterfactual analysis results

Using the full sample of fires across the western U.S., I calculate fitted fire spread

probabilities using equations 2.14 and 2.12, and coefficients from column 3 of Table 2.2.

These probabilities are used to predict fire spread distances with and without fire sup-

pression. Before proceeding to the counterfactual analysis, I use these probabilities to

predict fire spread distances for each of the fires in the western U.S. sample. I predict fire

spread with and without suppression 1,000 times for each fire. Figure 2.5 shows a ker-

nel density plot of the distributions of simulated fire spread distances with and without

suppression, plotted against the observed distribution of fire spread distance within the

sample. The distribution of predicted fire spread distances under suppression matches

the observed distribution of fire spread distances precisely, which indicates the model fits

the data well. When fires are not suppressed, I predict they spread further on average.

While most fires are extinguished quickly, the number of far-spreading fires is greater

when fires are not suppressed. The counterfactual analysis studies the degree to which

this difference is economically meaningful, and the degree to which it justifies suppression

spending.

Table 2.6 summarizes net benefits, calculated as estimated benefits from equation 2.15

less estimated costs of suppression from wildfire situation reports, for 47 California wild-

fires in years 2012 and 2013. Net benefits are calculated using three alternative loss rates

within unsuppressed fires: the observed sample loss rate (0.04), 0.5, and 1. Even when

the loss rate is assumed to equal 1, median net benefits are negative. However, the dis-

tribution is highly skewed with some fires having very high net benefits of suppression.

Assuming a loss rate of 1, suppression on one fire within the sample is estimated to have

yielded benefits of greater than $2 billion. Figure 2.6 illustrates the distribution of the

log of net losses and benefits under an the observed sample loss rate and a loss rate of 1.
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Figure 2.5: Kernel density plot of the distribution of fire spread distances for observed
and predicted fires. Kernel density functions are Epanechnikov with a 1.5 km band-
width. Fire spread distances predictions were repeated 1,000 times for each fire in the
sample.
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Figures 2.7 and 2.8 illustrate the geographic distributions of net loss and net benefit

fires, with unsuppressed fires causing structure losses at the observed sample loss rate

and a rate of 1, respectively. The magnitudes of net losses and benefits are shown

against the locations of major California cities, as well as wildland urban interface areas

within California. In general, fires for which suppression generates net benefits appear to

be more likely to be located closer to urban areas or extensive wildland urban interface

areas. In contrast, fires for which suppression generates large net losses tend to be located

in remote areas.
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Figure 2.6: Distribution of net benefits and losses of fire suppression, estimated for
the sample average loss rate and a loss rate of 1.
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2.6 Discussion

In this paper, I find that the net benefits of wildfire suppression, in terms of avoided

losses to structures, vary widely across wildfires. While on some fires suppression is

associated with very large net benefits, avoided losses to structures are not sufficient to

justify suppression expenditure for many wildfires, especially those that begin in remote

locations. This analysis is limited somewhat by the range of values for which I estimate

benefits of suppression. I focus on avoided losses to structures, since protection of private

property is a primary motivator of wildfire suppression effort (USDA OIG, 2017; Gude

et al., 2013; Gorte, 2013). However, it is likely that the measure of structure value I use

does not fully capture avoided private property losses due to suppression. In addition to

damaging structures, wildfires can destroy their contents, as well as vehicles and other

equipment stored on-site. Wildfire may also reduce the land value associated with a

property due to reduced amenity values (Loomis, 2004; Stetler et al., 2010).
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Figure 2.7: Geographic distribution of net benefits and net losses of fire suppresion,
estimated using the sample average loss rate for unsuppressed fires
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Furthermore, wildfire can have important effects on health outcomes and carbon

emissions. Wildfire smoke has been shown to increase hospital emissions (Moeltner et al.,

2013), as well as to have substantial negative consequences for labor supply (Borgschulte

et al., 2016). Carbon effects may also be substantial. Over the past 10 years, fires have

burnt on average 6.8 million acres within the U.S. each year (NIFC, 2016). Environment

Canada estimates that wildfires within primarily coniferous ecosystems release 4.8 metric

tons of carbon per acre burned. Using the EPA’s current social cost of carbon of $36 per

metric ton, this implies that costs of carbon released in U.S. wildfires is approximately
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Figure 2.8: Geographic distribution of net benefits and net losses of fire suppresion,
estimated using a loss rate of 1 for unsuppressed fires
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$1.2 billion per year. If these additional benefits of wildfire suppression were included in

the static analysis of costs and benefits of wildfire suppression in this paper, it is likely

that suppression would be found to yield net benefits for a greater number of fires.

On the other hand, there is a large class of costs this paper excludes as well. While

this paper treats the management of an individual wildfire as a spatial dynamic problem,

it does not consider the effect wildfire management has on the management and outcomes

of future wildfires. Although understanding benefits of wildfire suppression in a static

setting is an important first step, the dynamic consequences of wildfire suppression are
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a significant omission that future work will need to address. Two dynamic consequences

are particularly of note. First, government suppression of wildfire provides a subsidy

to homeowners who choose to live in relatively risky locations. More aggressive wildfire

suppression on behalf of homeowners increases this subsidy and should be expected to

lead to increases in development within the wildland urban interface, thus increasing costs

of suppression (Kousky et al., 2011). Second, fire serves a variety of important ecological

roles, one of which is to remove burnable fuels that have accumulated over time. Though

suppression can yield short-run benefits, when fire returns it may be likely to burn with

greater intensity. Indeed, the increase in the frequency and severity of large wildfires

within the western U.S. has been partially attributed to aggressive suppression over the

course of the twentieth century (Arno et al., 1995; Schoennagel et al., 2004). Therefore,

even when the short-run benefits of suppression outweigh its costs, an accounting that

takes into consideration dynamic consequences may not favor suppression.

Moreover, this analysis measures the total benefits of suppression rather than its

marginal benefits. While this is a limitation, the finding that total avoided losses to

structures are in many cases lower than the total costs of suppression suggests that there

may be many other fires for which marginal avoided losses are lower than marginal costs.

My findings indicate that for some fires, we may be better off not suppressing rather than

suppressing at our current level. However, if marginal costs of suppression are increasing

and marginal benefits are decreasing, my results also suggest that we may be suppressing

beyond the efficient level on a greater number of fires.

A possible explanation for these results is risk aversion on the part of wildfire man-

agers. Previous research has indicated that fire managers may be excessively risk averse,

and that this may affect their decision-making on wildfires (Wilson et al., 2011; Wibben-

meyer et al., 2013; Thompson, 2014). Figure 2.5 shows that in absence of suppression,

most fires spread a relatively short distance; however, there is substantially more prob-
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ability weight in the tail of the distribution of unsuppressed fire spread distances than

there is for suppressed fires. While suppression costs outweigh expected benefits for

many wildfires, fire managers may be averse to risking the possibility of a catastrophic

outcome. Regardless of motivations, the results suggest that we may be over-allocating

resources to suppression of some fires, especially remote wildfires. To be certain of this

result, however, future research will need to investigate other benefits of fire suppression

(such as avoided health costs), as well as the dynamic costs of wildfire suppression.

In addition to contributing to our understanding of responses to wildfire, this paper

contributes to a very small literature on the benefits of adapting and responding to

natural disasters. Previous work has indicated that adaptations and responses to other

categories of natural disasters are possible, but they are taken up at relatively low levels,

which indicates adaptation is expensive (Hsiang and Narita, 2012). Here, I find that

mitigation responses, provided by government agencies, are adopted widely, but that in

many cases the cost of responses may exceed their costs. As well, this paper contributes

an empirical examination of management of a spatial-dynamic resource to a literature

within which nearly all research has been theoretical in nature.
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Table 2.2: Marginal effects of variables affecting suppression effort on probability of
fire extinction

(1) (2) (3)
Marg. Eff. SE Marg. Eff. SE Marg. Eff. SE

Population density > 0

m -.011 (.013) -.0049 (.014) .033* (.013)
m + 1 .07** (.012) .066** (.012) .067** (.011)

Total population

m 8.3e-07 (.00024) 6.8e-06 (.00025) .00019 (.00022)
m + 1 .00046** (.0001) .00045** (.0001) .00044** (.000099)

Total income

m -8.2e-09 (6.0e-09) -8.7e-09 (6.1e-09) -9.5e-09+ (5.6e-09)
m + 1 -4.8e-09 (3.1e-09) -4.5e-09 (3.0e-09) -3.7e-09 (3.0e-09)

Per cap. income

m .00011 (.00066) -4.7e-06 (.00067) -.00043 (.00066)
m + 1 -.00049 (.00055) -.00033 (.00054) -.00067 (.00054)

Contains major road

m .0028 (.015) -.0011 (.015) .038** (.015)
m + 1 .14** (.012) .14** (.012) .12** (.012)

Area TES habitat
(non-stream)

m .0015* (.00064) .0021** (.00064) .0017** (.0006)
m + 1 -.0019* (.00076) -.0024** (.00077) -.0025** (.0007)

Area within 0.5 km of TES
streams

m -.0003 (.00065) -.00012 (.00066) -5.7e-07 (.00062)
m + 1 .0042** (.00055) .0043** (.00058) .0037** (.00052)

Watershed imp. × area

m -.0028 (.0021) .00079 (.002) -.003 (.0023)
m + 1 .0031 (.0028) .00065 (.0027) .0039 (.0028)

Cost variables

TRI × area -.0082** (.00095) -.0041** (.0013) -.00014 (.00094)

Area within 0.5 km of
roads

.00051* (.00023) .0022** (.00027) .0029** (.00025)

Fire spread controls No Yes Yes
Fire FE No No Yes
No. obs. 87,242 85,349 85,267
No. fires 2,119 2,059 2,038

Note: Three spatial leads were included for each variable. With few exceptions, second and
third leads were not statistically different from zero, and they are omitted from the table. All
models include distance from ignition fixed effects. Models two and three include cubic functions
in simulated rate of spread and fire intensity, whose coefficients are reported in Table 2.3. All
standard errors are clustered by fire. Symbols +,*, and ** denote statistical significance at the
.1, .05, and .01 levels, respectively.
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Table 2.3: Estimates of the effects of fire simulation outputs on extinction probability.

(1) (2)
Coef. SE Coef. SE

Simulated rate of spread

Linear -.084** (.03) -.32** (.04)
Quadratic .0047 (.0047) .03** (.0063)
Cubic -.00012 (.00019) -.00096** (.00028)

Simulated fire intensity

Linear .00057** (.000096) .0011** (.00013)
Quadratic -2.2e-07** (3.7e-08) -3.2e-07** (5.1e-08)
Cubic 1.9e-11** (3.1e-12) 2.4e-11** (4.7e-12)

Fire spread controls Yes Yes

Fire FE No Yes
No. obs. 85,349 85,267
No. fires 2,059 2,038

Note: Columns 1 and 2 report fire spread coefficients from models estimated
in columns 2 and 3 of Table 2.2, respectively. Both models include distance
from ignition fixed effects. All standard errors are clustered by fire. Symbols
+,*, and ** denote statistical significance at the .1, .05, and .01 levels,
respectively.
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Table 2.4: Estimates of the effects of demographic variables on extinction probability
for models estimated with alternative link functions

(1) (2) (3)

LPM Logit Probit

Marg. Eff. SE Marg. Eff. SE Marg. Eff. SE

Population density > 0

m .023+ (.013) .028* (.013) .026* (.013)
m + 1 .069** (.011) .068** (.011) .067** (.011)

Total population

m .00021 (.00015) .00015 (.00024) .000081 (.00023)
m + 1 .00031** (.000067) .00063** (.00015) .00057** (.00013)

Total income

m -9.6e-09* (4.0e-09) -1.0e-08+ (5.9e-09) -8.6e-09 (5.6e-09)
m + 1 -5.6e-10 (2.1e-09) -4.0e-09 (4.3e-09) -4.4e-09 (3.7e-09)

Per cap. income

m -.000027 (.00059) -.00024 (.00065) -.00019 (.00063)
m + 1 -.00069 (.00052) -.00071 (.00054) -.00065 (.00053)

Contains major road

m .036* (.016) .033* (.015) .033* (.015)
m + 1 .14** (.013) .13** (.012) .13** (.012)

Area TES habitat
(non-stream)

m .0013** (.00048) .0015** (.00056) .0013* (.00054)
m + 1 -.002** (.00058) -.0023** (.00068) -.0021** (.00064)

Area within 0.5 km of TES
streams

m .00014 (.00055) .00012 (.00063) .00022 (.00062)
m + 1 .0033** (.00058) .0036** (.00055) .0034** (.00056)

Watershed importance × area
m -.0033* (.0016) -.0033 (.002) -.0033+ (.0019)
m + 1 .0037+ (.0022) .0041 (.0026) .004 (.0024)

Cost variables
TRI × area -.00029 (.00073) -.00022 (.00093) -.0002 (.00077)
Area within 0.5 km of roads .002** (.0002) .0025** (.00024) .0023** (.00022)

Fire spread controls Yes Yes Yes
Fire FE Yes Yes Yes
No. obs. 85,345 85,267 85,267
No. fires 2,055 2,038 2,038

Note: All models include distance from ignition fixed effects and fire fixed effects, as well
as a cubic functions in simulated rate of spread and simulated fire intensity. All standard
errors are clustered by fire. Symbols +,*, and ** denote statistical significance at the .1,
.05, and .01 levels, respectively.
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Table 2.5: Marginal effects for demographic variables using alternative numbers of
directions-of-spread for each fire

(1) (2) (3)

48 directions 24 directions 6 directions
Marg. Eff. SE Marg. Eff. SE Marg. Eff. SE

Population density > 0

m .022+ (.012) .013 (.016) .037+ (.022)
m + 1 .084** (.0097) .07** (.014) .039+ (.022)

Total population

m -.000054 (.00037) .000074 (.00016) -.000061 (.000045)
m + 1 .00047* (.00021) .00024* (.000098) .00012* (.00006)

Total income

m -8.9e-09 (7.0e-09) -2.5e-09 (4.7e-09) 4.6e-10 (1.6e-09)
m + 1 1.1e-10 (6.4e-09) -4.0e-09 (3.2e-09) -2.0e-09 (2.0e-09)

Per cap. income

m .000021 (.0006) .000098 (.00074) -.00086 (.0011)
m + 1 -.0011* (.00047) -.00074 (.00066) .00004 (.0012)

Contains major road

m .065** (.015) .051** (.017) .02 (.019)
m + 1 .13** (.011) .09** (.016) .08** (.02)

Area TES habitat
(non-stream)

m .003** (.00095) .00069 (.00043) .00057+ (.00033)
m + 1 -.0036** (.0011) -.00025 (.00057) -.0003 (.00047)

Area within 0.5 km of TES
streams

m -.0011 (.00097) .00079+ (.00044) .00034 (.00033)
m + 1 .0069** (.0008) .0018** (.0004) .0009** (.0003)

Watershed importance × area
m -.00089 (.0033) -.00068 (.0016) .0002 (.0011)
m + 1 .00072 (.004) .0022 (.0021) -.00046 (.0017)

Cost variables
TRI × area -.00035 (.00089) -.0012 (.00085) -.00056 (.00036)
Area within 0.5 km of roads .0051** (.0004) .0018** (.0002) .00084** (.00013)

Fire spread controls Yes Yes Yes
Fire FE Yes Yes Yes
No. obs. 165,970 39,575 20,534
No. fires 2,007 1,859 1,745

Note: All models as specified in column 3 of Table 2.2. Standard errors are clustered by fire.
Symbols +,*, and ** denote statistical significance at the .1, .05, and .01 levels, respectively.
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Table 2.6: Net benefits of suppression for California fires 2012-2013, calculated under
varying assumptions of the rate of structure loss in unsuppressed fires

(1) (2) (3)

µ0 = 0.04 µ0 = 0.5 µ0 = 1

Mean net benefit (USD millions) -1.34 105.2 222.0

Median net benefit -4.50 -1.54 -0.90
Minimum net benefit -120.0 -32.7 -30.3
Maximum net benefit 247.1 2867.7 5740.3
Number of fires with net benefits ≥ 0 6 19 25
Number of fires with net benefits < 0 46 33 27

Note: For all columns, µ1 = 0.04.
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Chapter 3

Salience and the Government

Provision of Public Goods

Economists have identified many reasons why governments may fail to provide the so-

cially optimal amount of public goods, including rent seeking (Gradstein, 1993), tax com-

petition (Bucovetsky et al., 1998; Janeba and Wilson, 2011), political decision-making

(Romer and Rosenthal, 1979; Barseghyan and Coate, 2014), and overlapping market areas

(Hochman et al., 1995), among others. This paper examines another obstacle to efficient

provision stemming from the government’s reliance on the public to provide unbiased

information about the benefits derived from public goods. To achieve the Samuelson

(1954) condition, the government needs to know the demand for the good by each mem-

ber of the public. The fact that government provision is required is an indication that

markets for the public good are unlikely to exist, and thus that the government will

not have market data at its disposal to determine preferences. An alternative is for the

government to elicit preferences from the public. However, elicited preferences may not

always reveal the true benefits from public goods. Samuelson recognized this problem,

noting that “it is in the selfish interest of each person to give false signals, to pretend to
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have less interest in given collective consumption activities than he really has.” Another

source of “false signals” is that public preferences may be affected by behavioral biases.

We consider the case in which demands for public goods are distorted by salient

events. Salience is a common behavioral bias whereby people’s attention is drawn to

salient features of a decision problem, leading them to overweight prominent informa-

tion in subsequent judgments (Taylor and Thompson, 1982). Empirical evidence from

economics shows that salience affects human decision-making in a broad range of sit-

uations. Consumers are found to be less responsive to changes in price if those prices

occur through increased shipping and handling charges (Hossain and Morgan, 2006) and

stock prices are less responsive to earnings reports when they are issued on Fridays, when

investors are likely to be less attentive (DellaVigna and Pollet, 2009). Consumers are

more responsive to tax changes when they are more openly exhibited (eg. Finkelstein,

2009; Chetty et al., 2009; Cabral and Hoxby, 2012). Sexton (2015) found evidence that

when utility customers are enrolled in an automatic bill-pay program, which lowers price

salience, they are more likely to consume greater amounts of energy.

Salient events can bias the preferences expressed by the public, resulting in the ineffi-

cient provision of public goods. As an illustration of this idea, consider the government’s

response to terrorism. Terrorist attacks raise fears among the public about the reoccur-

rence of attacks and have often been followed by military operations and government

investment in security. Viewed through the lens of salience, one can think of an attack

as focusing the public’s attention on the losses that would be incurred under a future

attack. To the extent that these losses stand out from payoffs in other states of the world,

the public may overstate the expected benefits of government actions to reduce threats

of future attacks. One can envision a similar mechanism at work with government pro-

vision of public goods following natural disasters, disease outbreaks, and environmental

catastrophes.
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We formalize the notion of salience in a simple model of public good provision. In our

model, the government allocates a local public good to a community based on expected

benefits elicited from the residents.1 The benefits are expressed as a two-state lottery,

and we assume that one of the payoffs is altered by an exogenous shock. Applying the

mechanism in Bordalo et al. (2012b), the change in the payoff raises its salience and

results in a re-weighting of the state probabilities. This affects the expected benefits

from the public good and the amount allocated by the government. The theoretical

model is used to derive two results. First, we find the conditions under which allocation

of the public good increases or decreases following the shock. An important insight for

the empirical analysis that follows is that even if the shock lowers the payoff, expected

benefits and the public good allocation can increase. Second, we show that in general

the government allocation will be inefficient.

We estimate the effects of salience on public good provision with an empirical analysis

of government projects to reduce wildfire severity. Federal agencies in the U.S., including

the U.S. Forest Service, manage 250 million hectares of wildlands. A central activity

for these agencies is controlling wildfire, on which they spend approximately $3 billion

annually (Gorte, 2013). Of this amount, roughly $0.5 billion is allocated to pre-fire

fuels management projects, which involve removing fuels from the landscape through

mechanical thinning and controlled burns. The goal of these projects is to reduce the

severity of wildfires when they occur.2 We analyze whether projects are more likely to

be placed near communities that have experienced a recent wildfire. Because fire is a

1In practice, preference elicitation can take several forms. The government may use survey methods,
such as contingent valuation (Mitchell and Carson, 1989), or preferences may be revealed by behavior in
related markets and recoverable by hedonic price or travel costs methods (e.g., Freeman et al. (1993)).
Alternatively, the government may elicit preferences through such means as public hearings or contacts
with citizens and elected officials, or from voting results (Osborne and Turner, 2010). Our theoretical
results are also robust to the possibility that government officials themselves are affected by salience.

2For example, removing understory vegetation can reduce the likelihood that trees will burn in a fire.
By reducing the severity of the fire, the agency can lower suppression costs and property damage.
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contagion process whose spread depends on fuel availability, wildfires have the same effect

as fuels management projects — namely, they reduce the volume of fuels and thus the

severity of future fires in an area. Yet, despite the fact that wildfires reduce fire risk,

our theory suggests that salient wildfires may lead the public to overstate the benefits of

fuels management projects. This may result in public agencies locating projects close to

communities that have lower risk because of recent close wildfires.

We identify the effects of salience with a rich panel data set on all fuels management

projects on federal forest lands in the western U.S. between 2003 and 2011. The depen-

dent variable in our empirical model is a binary indicator for whether a fuels management

project was implemented on a given plot of land (cell i) in year t. We focus on cells that

are close to wildland-adjacent communities, which are potentially vulnerable to damages

from wildfire. We think of wildland-adjacent communities as being “treated” when a

wildfire occurs close by and test how treatment changes the probability of fuels man-

agement near the treated community. We measure effects in the year of the fire and for

several years following the fire. Our specification includes grid cell fixed effects to control

for time-invariant determinants of fuels management decisions, such as fire hazard and

proximity to assets at risk,3 and year-by-region fixed effects to control for time-trending

unobservables, such as changes in fuel moisture content. We find strong evidence that

fuels management projects are more likely to be placed near treated wildland-adjacent

communities. Our main results are robust to different definitions of “close” fires and

projects, alternative ways of clustering standard errors, corrections for serial correlation,

inclusion of placebo one and two year leads, and changes in the sample.

An alternative explanation for our empirical results is that government agencies use

the occurrence of wildfires to learn about risks from future fires, as in the application to

3Fire hazard refers to the conditions on the landscape that affect fire behavior, including vegetation
type and terrain. Fire risk is the probability that natural resources, structures, etc., are destroyed by
wildfire.
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flooding by Gallagher (2014). We use two approaches to rule out learning as a competing

explanation for our results. First, the fixed effects in our model control for all time-

invariant and region-level time-varying determinants of fire risk. The regions are defined

as sufficiently small areas (e.g., ranger districts) so that there should be little within-

region variation in fire risk trends. Second, we incorporate into the model a time-varying

measure of vegetation condition that indicates potential wildfire severity. We show that

the effect of a nearby fire on the likelihood of a fuels management project does not

vary with the vegetation condition, as would be expected if the fire informed managers

about the risk of future fires. In addition, we provide further support for the salience

mechanism by showing that effects of close wildfires are magnified near communities with

greater population and more housing units. Consistent with salience theory, our tests

show that close wildfires treat the residents of wildland-adjacent communities and that

fuels management decisions depend on the risks perceived by these residents rather than

objective risks.

In the next section, we present the theoretical model. Section 3 describes the data

used in our empirical study, and section 4 presents the main empirical specification and

results, followed by a series of sensitivity analyses, robustness checks, and evaluation of

learning as an alternative to salience. Conclusions are in the final section.

3.1 Theory

Our model builds on recent papers by Bordalo, Gennaioli, & Shleifer who provide

a formal model of the effects of salience on individual decision making. In their work,

salience is represented by a function that compares each attribute of a good to a reference

level in order to determine how much that attribute “stands out”. A salience parame-

ter determines the degree to which the salient attribute is weighted in determining the
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consumer’s valuation of the good. This model is used to explain commonly observed be-

havioral biases such as context-dependent willingness-to-pay (Bordalo et al., 2013) and

endowment effects (Bordalo et al., 2012a). Our analysis draws, in particular, on Bordalo

et al. (2012b), who apply salience theory to choice under risk. The authors use their model

to explain long-observed behavioral anomalies such as the Allais paradox and preference

reversals, to account for risk-averse and risk-seeking behavior by the same individual,

and to explain under- and over-weighting of highly unlikely events. Our paper extends

the work of Bordalo, Gennaioli, & Shleifer, which focuses on individual decision-making

with respect to private goods, to public goods where government provision is required.

The decision-maker in our model is a government agency that provides a local public

good to a community of N residents. The cost of allocating Q units of the good is

C(Q), where C ′ > 0, C ′′ > 0. The public good provides constant marginal benefits b to

individuals within the community. Thus, total benefits from Q units of the public good

are B(Q) = NbQ. The marginal benefit b is a random variable whose value depends

on the future state of the world. We assume there are two states, denoted i = {1, 2},

and define bi as the marginal benefit in state i. The states of the world occur with

probability πi > 0, and thus the benefits from the public good can be represented by

the lottery {(π1, b1), (π2, b2)}, where π2 = 1 − π1. The lottery’s payoffs are assumed to

be private information known only by the community’s residents. We discuss, below,

the extension of the model to the case where government officials are affected by salient

events.

There are two time periods. At the start of each period, the agency elicits preferences

for the public good from residents of the community4 and allocates the good to maximize

expected net benefits. We allow for residents to be “local thinkers” in the terminology

4Our model accommodates other means by which the government learns about preferences. Residents
may express their demands directly to the agency or indirectly through elected officials and voting.
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of Bordalo et al. (2012b), meaning they overweight salient payoffs in determining the

expected value of the public good. As the government agency must rely on the revealed

or stated preferences of the residents, the agency’s estimate of the expected benefits from

the public good embeds the effects of salience.5 Therefore, the agency allocates Q units of

the public good such that C ′(Q) = NẼ(b), where Ẽ(b) represents the expected value of b

as expressed by residents of the community. In results presented below, we contrast the

public good allocation based on Ẽ(b) with the allocation that uses E∗(b) = π1b1 + π2b2,

which is computed with the objective probabilities π1 and π2.

Bordalo et al. (2012b) model the psychological effects of salience in three stages. First,

decision-makers rank the salience of possible states of the world according to a salience

function. Importantly, the salience function has the ordering property: the salience of

a state is increasing in the distance between the payoffs across lotteries. Second, based

on the salience-rank ki ∈ {1, 2, ...} of state i, where lower integers indicate more salient

states, the probability of state i is distorted to π̃i = ωiπi, where:

ωi =
δki∑
i δ

kiπi
. (3.1)

The parameter δ ∈ (0, 1] captures the degree to which salience distorts the decision

weights. When δ = 1, ωi = 1 for all i and there is no distortion of the objective

probabilities. As δ tends toward zero, the decision-maker places more and more weight on

a lottery’s most salient payoffs. Third, decision-makers choose among lotteries according

to their expected values calculated with the weighted probabilities π̃i.
6

5In particular, because payoffs are private information, the government cannot distinguish over-
weighting of salient payoffs from changes in payoffs.

6As an example, consider the pair of lotteries, {(0.5,−1000), (0.5, 1000)}, {(0.5, 0), (0.5, 1000)}. The
local thinker will tend to ignore the upside payoff (1000) because it is the same in both lotteries.
Instead, she will focus on the downside payoffs, consistent with the ordering property, and re-weight the
probabilities according to equation 3.1. In the case where δ = 0.5, the expected values of the lotteries
(0 and 500) become -333 and 333, respectively.
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In our two-period model, we assume that the payoffs from the public good change

as the result of an exogenous shock occurring between periods 1 and 2. In general, the

shock could change either or both of the payoffs bi. However, for simplicity and because

it is consistent with our empirical application, we consider a change only in the state 1

payoff: payoff b1 changes to b′1 in period 2, while b2 is the same in both periods. By the

ordering property of the salience function, state 1 is more salient than state 2 because the

shock produces a non-zero difference in the state 1 payoff between periods 1 and 2. Thus,

the salience ranking for the time 2 lottery is (k1, k2) = (1, 2). The weighting functions

for state probabilities are then given by:

ω1 =
δ

δπ1 + δ2π2

, ω2 =
δ2

δπ1 + δ2π2

(3.2)

It follows that when δ < 1, ω1 > 1 and ω2 < 1 and, thus, π̃1 > π1 and π̃2 < π2. The

shock to payoffs leads to an over-weighting of the payoff in the salient state.

We use the model to derive two results. The first considers whether the shock increases

or decreases the provision of the public good to the community. The second result

examines whether the allocation of the public good is efficient. To derive the first result,

we assume that the period 1 provision of the public good is based on the expected value

E∗(b), derived with the objective probabilities π1 and π2. This assumption is not essential,

as we could allow for these probabilities to depart from their true values as a result of

earlier salience effects. What is critical for this result is just that the shock distorts the

period 1 probabilities. However, for the second result it is essential that we use E∗(b) to

determine the efficient allocation of the public good.

Result 1. If b2 − b1 > 0, the agency will increase (decrease) the provision of the public

good when δ > m (δ < m). If b2 − b1 < 0, the agency will increase (decrease) the
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provision of the public good when δ < m (δ > m), where:

m =
π2(b2 − b1)− (b′1 − b1)

π2(b2 − b1)

Proof. A proof is provided for the case b2 − b1 > 0. An parallel argument is used for

b2 − b1 < 0. According to the agency’s allocation rule, the amount of the public good

provided is increasing in its expected value. Therefore, the amount provided will increase

(decrease) if Ẽ(b) > E∗(b) (Ẽ(b) < E∗(b)). Express the inequalities as π̃1b
′
1 + π̃2b2 ≷

π1b1 +π2b2 and rearrange to obtain (1− π̃2)(b′1−b1) ≷ (π2− π̃2)(b2−b1), using π̃1 = 1− π̃2

and π̃1 − π1 = π2 − π̃2. Substitute for π̃2 and rearrange to obtain δ > m (δ < m). �

We highlight a result for the case b2 − b1 < 0 that matches our empirical application

to wildfire. The state 1 payoff b1 corresponds to the benefits of fuels reduction when a

wildfire occurs, which naturally are larger than the benefits when a fire does not occur

(b2). The shock is a wildfire between periods 1 and 2, which reduces the losses under

a future fire by removing fuels from the landscape and decreasing fire severity. This

reduces the marginal benefits of fuels reduction projects when a fire occurs (b′1 < b1).

However, it also increases the salience of the state 1 payoff. If the salience effect is strong

enough (δ is sufficiently small), then enough weight can be shifted to the higher state 1

payoff to raise the public’s expected value for fuels management.7 Thus, we might find

an increase in the allocation of fuels management following a fire (δ < m), even though

the true expected value of fuels reduction projects has declined.

Result 2. Salience leads to an inefficient allocation of the public good except when b′1 = b2

or δ = 1.

Proof. Given the change to payoff 1, the efficient allocation of the public good should be

7For this to happen, the decline in the state 1 payoff (b1−b′1) cannot be too large, implying 0 < m < 1.
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based on the expected benefit E∗(b) = π1b
′
1 + π2b2. However, the agency will elicit the

value Ẽ(b) from residents of community, resulting in an over- or under-allocation of the

good as Ẽ(b) 6= E∗(b). It is easily be shown that Ẽ(b) = E∗(b) only when b′1 = b2 or

when π̃1 = π1 (which implies π̃2 = π2). The latter condition obtains only when δ = 1. �

When the salience parameter equals 1 or the payoffs in the two states are the same,

the probability weights do not affect the allocation decision. Otherwise, when b′1 < b2,

a larger weight will be put on the smaller payoff (b′1), resulting a smaller expected value

and an under-allocation of the public good. The opposite result obtains when b′1 > b2.

Our theory assumes that the preferences of residents are distorted by salient events.

Another possibility is that government officials themselves are influenced by salience. In

this case, if the government’s objective is still to maximize expected net benefits derived

by local residents, then the results of our model carry through.8 Similar to the example

discussed above, a salient wildfire can lead the government to over-estimate the expected

benefit of allocating fuels management projects in an area that just experienced a wildfire.

Whether salient events affect residents or government officials, a testable implication

of our theory is that salience effects will vary with characteristics of the communities

receiving the public good.9 This result is confirmed in our empirical analysis, revealing

that residents of wildland-adjacent communities are part of the mechanism by which

salient events affect the allocation of fuels management projects.

8Anderson et al. (2013) find that public forest managers balance public responsiveness with technical
management.

9A salient event alters the expected benefits E(b). Applying the Implicit Function Theorem to the
first-order condition C ′(Q) = NE(b) yields dQ

dE(b) = N
C′′ > 0. This result shows that the salience effect

depends on the population size of the community.
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3.2 Data

To test the effects of salience on the provision of local public goods, we combine an

extensive panel data set of the locations of fuels management projects on public lands

with spatial data on wildfire perimeters and locations of wildland-adjacent communities.

Due to the importance of wildfire management in the western U.S., we focus our attention

on lands in 15 western states10 managed by the U.S. Forest Service (USFS), Bureau of

Land Management (BLM), and National Park Service (NPS). We identified these public

lands using BLM and NPS boundaries (BLM, 2014) and administrative National Forest

boundaries for USFS lands. Combined, our study area encompasses approximately 1.5

million square kilometers of federal land, of which the USFS and BLM manage roughly

equal shares (47%), with the remaining 6% is managed by the NPS. We divided this

area into a grid of 1 km × 1 km cells, since this is the approximate size of the average

fuels management project in our data. These 1 km2 cells are the units of analysis for the

empirical analysis.

The fuels management data come from the National Fire Plan Operations and Re-

porting System (NFPORS). The NFPORS database records the point location (latitude

and longitude), dates, and area of all fuels reduction projects for USFS and the Depart-

ment of Interior (including BLM and NPS) lands in the years 2003-2011. Projects are

classified as controlled burns, mechanical thinning, preparation for treatment, and other.

Controlled burns and mechanical thinning account for 94% of the observed projects in our

data. Because NFPORS does not provide the boundaries of fuels management projects,

we used the reported point location and area to estimate boundaries. Using ArcGIS, we

created a polygon layer in which fuels management projects were represented by circles

of the reported area, centered on the reported point location. A grid cell was designated

10These states are Arizona, California, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New
Mexico, North Dakota, Oregon, South Dakota, Utah, Washington, and Wyoming.
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as having received fuels reduction in a given year if the grid cell’s centroid was inside of

an imputed project boundary in that year.

Although the majority of land under federal management is forested (52%), there

are significant areas in shrubs (39%) and grasslands (7%).11 Our data reveal that fuels

reduction projects are implemented on non-forest lands, but at a much lower rate than

on forest lands. As shown in the first panel, second column of Table 3.2, for the whole

sample the rate of fuels reduction projects in evergreen or mixed forests is 2.5%. The

rate is lower (1.1%) in deciduous forests, but still much higher than for other land cover

types. Since fuels reduction activities are concentrated in evergreen and mixed forests,

and the relationships between fire events, fuels reduction activities, and future fire risk

are much less clear in deciduous forests and other land cover types (Keeley et al., 2009;

Moritz et al., 2014), we focus our attention hereafter on forest (evergreen and mixed

forests) lands.12 For the forest-only sample, the USFS is the dominant land management

agency (83% of all grid cells), followed by the BLM (13%) and the NPS (4%).

We define wildland-adjacent communities as wildland urban interface (WUI) Census

blocks, which encompass both interface, where developed residential areas directly abut

large areas of wildland vegetation, and intermix, where residences are dispersed among

wildland vegetation (USDA & DOI, 2001). Wildland urban interface data come from

Radeloff et al. (2005), who mapped U.S. WUI areas using landcover and housing density

data. For our purposes, we consider as WUI any U.S. Census block within our study

region that Radeloff et al. (2005) classified as low, medium, or high density interface

or intermix in 2000. Descriptive statistics for all WUI blocks in the study region are

provided in the second column of Table 3.2.

11We obtained these estimates by overlaying the National Land Cover Data for 2006 on the federal
agency data described above.

12In results not reported here, we find evidence of salience effects on non-forest lands, although it is
less conclusive.
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Table 3.1: Rates of fuels management projects by land cover type

Rate of fuels
management

Fuels management projects per grid cell

Mean
No. obs.
(grid cell-

years)
None Once Twice

3 or
more
times

No. obs.
(grid cells)

I. All grid cells

Evergreen or mixed
forest

0.025 4,830,399 0.86 0.089 0.030 0.020 536,711

Deciduous forest 0.011 211,077 0.93 0.052 0.013 0.005 23,453
Shrubland 0.005 6,392,430 0.97 0.022 0.006 0.003 710,270
Herbaceous 0.006 1,105,470 0.96 0.025 0.007 0.005 122,830
Other 0.005 472,635 0.98 0.015 0.005 0.004 52,515
Total 0.013 13,012,011 0.93 0.047 0.015 0.010 1,445,779

II. Grid cells < 5 km

from WUI

Evergreen or mixed
forest

0.035 1,864,575 0.82 0.108 0.041 0.033 207,175

Deciduous forest 0.012 98,073 0.92 0.057 0.014 0.006 10,897
Shrubland 0.010 1,450,062 0.95 0.035 0.011 0.008 161,118
Herbaceous 0.011 246,996 0.94 0.038 0.012 0.009 27,444
Other 0.012 103,482 0.94 0.037 0.013 0.011 11,498
Total 0.022 3,763,188 0.88 0.072 0.026 0.020 418,132

Note: Land categories taken from the 2006 National Land Cover Database (Fry et al.,
2011). Evergreen forests and deciduous forests consist of greater than 75% evergreen and
deciduous trees, respectively. Mixed forests are areas where neither evergreen nor deciduous
tree species dominate. Shrubland is areas dominated by shrubs less than 5 meters tall.
Herbaceous land includes land dominated by grasses or other herbaceous vegetation. Other
includes planted or cultivated land, developed land, wetlands, barren areas, and water.
For example, on evergreen and mixed forests, 2.5% of our grid cell-year observations are
treated (our dependent variable equals 1 2.5% of the time). 86% of evergreen or mixed
forest grid cells in the study area never received a fuels reduction treatment. 2.0% of grid
cells were treated 3 or more times. Out of the 1,445,779 grid cells, 536,711 are mixed forest
or evergreen forest.

Fire data come from the interdepartmental Monitoring Trends in Burn Severity

(MTBS) project (Eidenshink et al., 2007). In the western U.S., MTBS uses Landsat

satellite imagery to map fire perimeters for fires larger than 1000 acres (approximately 4
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Table 3.2: Descriptive statistics for WUI block data set

All obs.

(mean)

Obs. within 5 km

threshold (mean)

Distance to nearest fire in study period (km) 15.4 14

Population∗ 4,948 4,660
No. of housing units∗ 2,197 2,460
Per capita income∗ 21,361 21,182
Percent graduated high school∗ 83.8 86.5

Number of observations 454,767 105,613

∗Variable is observed only at the Census tract level.

km2). This focus on larger fires makes sense for this study, since we expect larger fires

to be most salient to the public.

Our analysis relies on two distance measures: the distance between each forested grid

cell and its nearest WUI blocks and the distance between each WUI block and the nearest

fire. For each cell, we calculated the straight-line distance to up to 500 of the nearest

WUI blocks within a threshold distance of 10 km. Among the nearly 1.5 million grid

cells in our sample, only 3,147 were matched with the maximum number of WUI blocks.

Therefore, limiting the sample to the closest 500 WUI blocks is unlikely to influence our

results. In a similar way, we measured the straight-line distance from each WUI block

to the nearest fire in each year. Figure 3.1 provides the kernel density functions for our

two distance measures. For forested cells, distances of less than 13 km to the nearest

WUI block are the most common. The density for distances between WUI blocks and

the nearest fire is roughly uniform, although the likelihood of fires within 15 km or more

than 40 km is somewhat lower.

Our empirical strategy requires dropping grid cells that are not close to at least one

WUI block, since we expect the placement of fuels reduction activities far from human

settlement to be determined by factors other than the salience of wildfire risk (e.g.,

protection of timber resources). In our main set of results, the sample consists only of
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Figure 3.1: Kernel density plots of the distributions of distance to WUI and distance
to nearest fire within the sample of forested grid cells and WUI blocks, respectively
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Note: Epanechnikov kernel density functions with bandwidth 5. Distributions are across
observations for which the target layer is closer than 50 kilometers. There are 372 grid 
cells for which the nearest WUI block is further than 50 km. There are 4,787,256 WUI 
block−years for which the nearest fire is further than 50 km.

grid cells closer than 5 km from the nearest WUI block. As described below, however, we

test the sensitivity of our results to different definitions of closeness to WUI blocks. We

find that restricting our attention to grid cells near WUI blocks has little effect on the

basic characteristics of our sample. Compared to the whole sample of grid cells, the rate

of fuels reduction projects increases somewhat when we consider only grid cells within

5 km of a WUI block, but the rate is still highest on forest lands (Table 3.2, panel II).

Restricting our attention to grid cells within 5 km of a WUI reduces the number of WUI

blocks by 77%, but has little effect on average community characteristics (Table 3.2).

To test whether learning can explain our results, we use a measure of vegetation con-

dition from the Landfire project.13 The Vegetation Condition Class (VCC) is a cardinal

measure of the degree to which the current vegetation departs from simulated histori-

cal vegetation conditions. For example, the largest value of VCC corresponds to “high

13Landfire is a partnership of U.S. land management agencies to provide geospatial data on vegetation,
wildland fuel, and fire regimes. See https://www.landfire.gov/about.php#planning (accessed August 31,
2017).
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departure”, which is indicative of a landscape on which fuels have built up due to long-

term fire suppression. A fine-scale measure of the VCC is available for 2001, 2008, and

2012, which we match to the grid cell data described above. Further tests are conducted

with measures of population and number of housing units (Table 3.2). Because access

to block-level U.S. Census data is restricted, these variables are measured at the Census

tract level using data from the 2000 Census.

3.3 Empirical model & results

3.3.1 Overview

The essence of our empirical approach is to determine whether fuels management

projects are more likely to occur on federal lands that are close to WUI communities

that have experienced nearby wildfires. We expect wildfire risk to be more salient to

WUI residents if they can observe smoke plumes, fire-fighting efforts, and possibly the

fire itself. Such highly localized effects of wildfires are supported by findings in McCoy

and Walsh (2014) that fires influence housing prices only if they are within 5 km.

We motivate our empirical approach with Figure 3.2, which shows a small portion

of our study area in the State of Oregon. Light-shaded areas depict lands managed by

federal agencies, and dark-shaded areas are Census blocks classified as WUI. The hatched

area is the burn scar from a fire that occurred in 2011. We think of WUI blocks as being

“treated” by close fires in the sense that the fire raises the salience of wildfire risk for

residents of the WUI block. Our definition of close is varied in the empirical analysis, but

for this illustration it is defined as 5 km. As such, WUI block A is treated because it is

within 5 km of the fire, but WUI blocks farther than 5 km from the fire are untreated. We

then consider whether there is a higher probability of fuels reduction projects occurring
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Figure 3.2: Illustration of the experimental design
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in close proximity to the treated WUI block. We identify all grid cells on federal lands

that are within 5 km of some portion of a WUI block. Grid cells 1 and 2 meet this

criterion (the radius of the solid circle is 5 km). However, only grid cell 1 is close (within

5 km) to at least one treated WUI block (WUI block A), whereas grid cell 2 is close to

untreated blocks. We test whether grid cells that are close to WUI blocks that are close

to fires (e.g., cell 1) are more likely to receive a fuels management project than grid cells

that are close to WUI blocks that have not experienced a nearby fire (e.g., cell 2).

In place of distance to an event, some recent studies have measured salience using more
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direct measures of information transmission. Gallagher (2014) uses the number of local

television stories on floods as a measure of media exposure. For our application, however,

media markets are large relative to the scale at which we expect the effects of wildfires

to operate. In the western U.S., local television media markets are comprised of many

counties and, in some cases, large portions of states.14 Furthermore, to identify effects

of media coverage we would need to omit year-by-region fixed effects from our model

that are defined at much smaller scales than media markets. A second possible way to

operationalize salience is by whether the fire is visible, since McCoy and Walsh (2014) find

that a wildfire has a larger effect on housing prices if the burn scar is visible from a house.

Measuring the visible features of a wildfire is difficult in our case because we are interested

in effects on communities of people rather than single points in space. Communities are

delineated with Census blocks, which are often large in the low density WUI areas we

study. Because of the limitations of media markets or visibility in this context, we use

distance to operationalize salience. We present tests, below, that strengthen our case for

using distance to measure the degree of risk salience.

3.3.2 Main specification

As in recent applications of the difference-in-differences estimator (eg. Conley and

Taber, 2011; Abrevaya and Hamermesh, 2012), we estimate our main specification using

a linear probability model. In a panel data setting, the advantage of the linear proba-

bility model is the ease of including fixed effects. In our application, fixed effects play a

critical role in controlling for unobserved determinants of fuels reduction activities, such

as underlying fire hazard and proximity to assets at risk. An alternative is a binary probit

or logit specification. However, including fixed effects in these models gives rise to the

incidental parameters problem that renders maximum likelihood estimates inconsistent.

14See http://www.nielsen.com/intl-campaigns/us/dma-maps.html (accessed August 31, 2017).
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The linear probability model is a good alternative considering that all of our regressors

are dummy variables and our goal is to estimate their effects at the mean of the data

(Wooldridge 2010).

The main specification of the linear probability model is:

yit = αi +
0∑

`=−4

β`
1{∃s ∈ Si : firedists,t+` ≤ c}+ δtm(i) + εit (3.3)

where i, t, and s, index cells, years, and WUI blocks, respectively, and m(i) is a mapping

from cell i to an aggregate geographical region (e.g., a Census tract), indexed by m. The

dependent variable, yit, equals 1 if a fuels management project occurs on cell i in year t

and is 0 otherwise. Si = {s : wuidists ≤ d} where wuidists is the distance from cell i

to WUI block s and d is a threshold value. Thus, Si is the set of all WUI blocks within

distance d of cell i. The indicator function 1{·} equals one when a fire occurs close to

at least one of the WUI blocks in the set Si. Specifically, firedists,t+` is defined as the

distance to the closest fire to WUI block s that occurs in year t+ `. If that fire is within

distance c of WUI block s and block s is in the set Si, then the indicator function equals

one. The parameters of the model are αi, β
`, and δtm(i), and εit is a random disturbance

term. The summation term in equation (3.3) allows each fire to have a contemporaneous

effect on the probability of fuels management projects (` = 0) and four annual lagged

effects (` = -1 to -4). We examined specifications with more lags, but did not find any

significant coefficients outside the range of effects in equation (3.3).

We identify the salience effects of wildfire based on within grid cell and within year-

by-region variation. We would expect decisions about fuels management projects to be

influenced by such factors as fire hazard, access, and administrative unit. We implicitly

control for these time-invariant factors with cell-level fixed effects αi.
15 Time-varying

15With fixed effects included, cells that are never included in fuels management projects have no
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factors could include macroeconomic trends affecting government budgets, fluctuations

in weather, and changes in management objectives. We control for these factors with year-

by-region effects δtm(i) where regions are alternatively defined as units (USFS national

forests, BLM district offices, NPS national parks), districts (USFS ranger districts, BLM

field offices), counties, and Census tracts. Districts are less aggregated than units16 and

Census tracts are less aggregated than counties. These regions are sufficiently small areas

so that within-region variation in fire risk trends should be minimal.17 We also consider

the degenerate case of a single region, which amounts to including year effects.

We are concerned about the possibility of spatial autocorrelation, which can bias

estimates of standard errors. If, for example, fuels reductions span more than one grid

cell, then the fuels reduction status of neighboring grid cells may be correlated. To

account for this possibility, we cluster the residuals in two ways, first at the district

level and next at the unit level. As a check of robustness, we also estimated our main

specifications with clustering at the level of Census tracts and counties. Our choice of

geographic unit on which to cluster does not substantively affect our results.

The results for the main specification are reported in Table 3.3. All model versions

include cell fixed effects (αi) and consider pixels and wildfires within 5 km of WUI blocks

(i.e., c = d = 5km). The models vary according to the type of year-by-region fixed effects

included. Model (1) includes only year effects. We find the contemporaneous effect of a

close wildfire on the probability of a fuels reduction project to be 1.6 percentage points, an

estimate that is significantly different from zero at the 1% confidence level. We interpret

the contemporaneous effect as an immediate response to a wildfire.18 The effect is large

influence on the model estimates.
16For NPS lands, there is no region less aggregated than a unit (National Park); therefore, year-by-

district fixed effects and year-by-unit fixed effects are equivalent on NPS lands.
17We discuss potential time-varying determinants of fire risk in more detail, below, when we evaluate

learning as an alternative explanation for our results.
18Alternatively, fuels reduction projects could be accurately placed in anticipation of wildfires. We

examine this possibility, below, with a specification that includes lead effects of wildfires, and find little
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Table 3.3: Main specification predicting fuels reduction status of forested grid cells
conditional on whether nearby WUI Census blocks experienced recent wildfires

(1) (2) (3) (4) (5)

firecloset 0.0161 0.0182 0.0161 0.0167 0.0163
(0.0038)** (0.0039)** (0.0037)** (0.0042)** (0.0041)**
(0.0048)** (0.005)** (0.0043)** (0.0053)** (0.0051)**

firecloset−1 0.0074 0.0081 0.006 0.0058 0.0085
(0.0032)* (0.0024)** (0.0025)* (0.0027)* (0.0033)*
(0.0043) (0.0031)** (0.0028)* (0.0031) (0.0043)*

firecloset−2 0.0044 0.0058 0.0018 0.0051 0.0040
(0.0032) (0.0029)* (0.0025) (0.0033) (0.0029)
(0.0035) (0.0032) (0.0025) (0.0035) (0.0031)

firecloset−3 0.0001 0.0004 0.0011 0.0011 0.0005
(0.0033) (0.0029) (0.0033) (0.0035) (0.0029)
(0.0029) (0.0024) (0.0028) (0.0025) (0.0025)

firecloset−4 -0.0008 -0.0015 -0.0008 -0.0001 -0.0009
(0.0025) (0.0025) (0.0027) (0.0027) (0.0025)
(0.0025) (0.0028) (0.0025) (0.0027) (0.0023)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 207,175 207,175 207,175 207,175 207,175
No. of obs. 1,864,575 1,864,575 1,864,575 1,864,575 1,864,575

Note: Regressions include grid cells within 5 km of any WUI Census block. Fireclose
equals 1 if a fire occurred within 5 kilometers of a nearby Census block and 0
otherwise. The sample is limited to pixels NLCD classifies as forested in 2006. In
addition to fixed effects noted in the table, all models include grid cell fixed effects.
Robust standard errors are clustered by district first and unit second, ** p<0.01, *
p<0.05.

relative to the average annual rate of fuels reduction projects in our sample. We also find

a significant effect (p < 0.05) of a close fire that occurred one year previously, but only

when we cluster the errors at the district level. This effect is smaller, indicating that a

fire last year raises the probability of a fuels reduction project by 0.7 percentage points.

Fires that occur two, three, and four years earlier do not have significant effects.

The inclusion of year-by-region effects sharpens the results. In models (2) through

(5), the contemporaneous effect remains at approximately 1.6-1.8 percentage points, but

evidence for it.
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now the one-year lagged effect is significantly different from zero, whether clustering of

standard errors is at the unit or district level. The results indicate that a close fire one

year ago increases the probability of fuels management by 0.6 to 0.9 percentage points. In

models (3), (4), and (5), longer lags do not have significant effects; however, the two-year

lag in model (2) is significantly different from zero at the 5% level when standard errors

are clustered at the district level. The estimate of 0.6 is lower than the one-year lagged

effect (0.8), adding further evidence that the salience of wildfire risk diminishes with the

time since the fire.

3.3.3 Sensitivity analysis and robustness checks

We conduct sensitivity analyses and robustness checks on our main specification. The

first test evaluates the sensitivity of our results to the definition of close fires (fires within

a distance c of the WUI) and close cells (cells within a distance d of the WUI). Figure 3.3

presents the coefficients on the firedist variable for all combinations of c = 2, 5, 10 and

d = 2, 5, 10, using version (2) of the model in Table 3.3. The lines in each panel correspond

to different definitions of close fires and the three panels correspond to different definitions

of close grid cells. For example, when we limit close fires and close cells to those within

2 km (c = d = 2; the dashed blue line in Panel A), we find that a close fire raises the

probability of a fuels management project by approximately 2.5 percentage points. The

effect is strong and persistent to a three-year lag (coefficient values marked by a solid

triangle are significantly different from zero at the 5% level and those marked by an “x”

are not).

Taken together, the results in Figure 3.3 provide support for the hypothesized salience

mechanism and the use of distance to measure risk salience. First, fires that occur closer

to WUI residents have larger effects. In all three panels, the dashed blue line, correspond-
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Figure 3.3: Sensitivity analysis of thresholds for fireclose and wuiclose

ing to fires within 2 km, is always above the dashed-dotted green line, corresponding to

fires within 10 km. Expanding the fire proximity threshold (c) is likely to include fires

that are not as salient to WUI residents. Second, for a given fire, salience effects are

amplified at distances close to WUI residents. Lines in Panel A, corresponding to grid

cells within 2 km of WUI blocks, tend to be higher than those in panel C, corresponding

to grid cells within 10 km of WUI blocks. When we expand the size of the window around

WUI blocks (d) we include fuels management projects that provide few benefits to WUI

residents concerned with wildfire risk.

The second set of sensitivity analyses considers the possibility of serial correlation in

our data. There may be negative serial correlation if management agencies are less likely
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to undertake a fuels management project in locations where fuels have recently been

reduced. On the other hand, there may be positive serial correlation if projects take

more than one year to complete or if fuels management projects take place in adjacent

areas over several years and we mismeasure the precise boundaries of these activities.19

Statistics in Table 3.2 show that, conditional on a fuels reduction project taking place,

most grid cells receive fuels management only once. However, it is not uncommon for grid

cells to receive fuels management two or more times. We address serial correlation by

recoding the dependent variable so that a multi-year fuels management project appears as

a single-year project (Table 3.4). For example, if yit = yit+1 = 1, we recode the variables

as yit = 1, yit+1 = 0. In general, when we observe a cell with consecutive values of one,

we set all but the first value to zero. This recoding procedure has the effect of purging

the data of serial correlation due specifically to multi-year fuels reductions. We estimate

all versions of the main specification with the recoded data and find little difference in

the results.20

We estimate a version of equation (3.3) with one- and two-year leads (Table 3.5)

as a placebo test, as we would not expect the likelihood of observing a fuels reduction

project today to be influenced by the occurrence of future fires. Significant lead effects

could be due to omitted time-varying cell-level factors that are correlated with wildfires

and fuels reduction projects. Formally, lead parameters are included by modifying the

summation term in equation (3.3) so that ` takes values from -4 to 2. A finding of

insignificant lead coefficients gives us further confidence that we identify causal effects

19This is possible given the way we define boundaries for fuels reduction projects, described in sec-
tion 3.2.

20Another way to test whether our results are robust to the possibility of serial correlation is with
the estimator in Arellano and Bond (1991). We estimate versions of equation (3.3) that include one-
and two-year lagged dependent variables. The results, available from the authors upon request, provide
evidence of positive serial correlation. The coefficients on the lagged dependent variables are positive
and significantly different from zero. Nevertheless, we still find evidence of contemporaneous effects of
close fires on the likelihood of fuels management projects. The effects of fires in previous years are no
longer significant, most likely because the lagged dependent variables absorb the effects of past fires.
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Table 3.4: Test of robustness in which the dependent variable is recoded in order to
examine the influence of multi-year fuels reduction projects

(1) (2) (3) (4) (5)

firecloset 0.0155 0.0171 0.0162 0.0164 0.0159
(0.0036)** (0.0038)** (0.0036)** (0.004)** (0.0039)**
(0.0045)** (0.0047)** (0.0039)** (0.0049)** (0.0047)**

firecloset−1 0.0072 0.0071 0.0058 0.0056 0.0080
(0.003)* (0.0022)** (0.002)** (0.0024)* (0.0032)*
(0.0041) (0.003)* (0.0022)** (0.0029) (0.0043)

firecloset−2 0.0036 0.005 0.002 0.0047 0.0032
(0.0026) (0.0024)* (0.0023) (0.0028) (0.0024)
(0.0026) (0.0027) (0.0022) (0.0027) (0.0024)

firecloset−3 -0.0008 -0.0004 0.0011 0.0001 -0.0007
(0.0027) (0.0024) (0.0028) (0.0029) (0.0025)
(0.0024) (0.0022) (0.0023) (0.0022) (0.0023)

firecloset−4 -0.0012 -0.0017 -0.0004 -0.0007 -0.0019
(0.002) (0.0022) (0.0024) (0.0022) (0.0023)
(0.002) (0.0022) (0.0021) (0.0022) (0.002)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 207,175 207,175 207,175 207,175 207,175
No. of obs. 1,864,575 1,864,575 1,864,575 1,864,575 1,864,575

Note: Regressions include grid cells within 5 km of any WUI Census block. Fireclose
equals 1 if a fire occurred within 5 kilometers of a nearby Census block and 0
otherwise. The sample is limited to pixels NLCD classifies as forested in 2006. In
addition to fixed effects noted in the table, all models include grid cell fixed effects.
Robust standard errors are clustered by district first and unit second, ** p<0.01, *
p<0.05.

of wildfires on government agency decisions and are not simply finding that agencies

locate fuels management projects in areas that are likely to experience wildfires. The

estimated coefficients on the lead variables are small relative to the contemporaneous

and lagged parameters and not significantly different from zero with the exception of the

two-year lead in models (2) and (5). Estimates of the other model coefficients are largely

unaffected.

Although our data set only includes pre-fire fuels reduction projects (predominantly

controlled burns and mechanical thinning), it is conceivable that some post-fire activities
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Table 3.5: Placebo test in which two-year leads of fireclose are included in order to
rule out joint determination of fire and fuel reduction project locations

(1) (2) (3) (4) (5)

firecloset 0.0176 0.0204 0.0182 0.0188 0.0190
(0.0045)** (0.0048)** (0.004)** (0.0051)** (0.0049)**
(0.0059)** (0.0063)** (0.0049)** (0.0065)** (0.0062)**

firecloset−1 0.0105 0.0104 0.0084 0.0085 0.0117
(0.0036)** (0.0029)** (0.003)** (0.003)** (0.0038)**
(0.0049)* (0.0035)** (0.0032)** (0.0035)* (0.005)*

firecloset−2 0.0088 0.01 0.0041 0.0098 0.0081
(0.0041)* (0.0037)** (0.0033) (0.0042)* (0.0039)*
(0.0045) (0.004)* (0.0033) (0.0044)* (0.0043)

firecloset−3 0.0043 0.0037 0.0028 0.0051 0.0053
(0.0041) (0.0036) (0.0039) (0.0043) (0.0038)
(0.0033) (0.0028) (0.003) (0.0029) (0.0032)

firecloset−4 -0.0007 -0.0014 -0.0002 0.0004 -0.0002
(0.003) (0.003) (0.0032) (0.0032) (0.0028)
(0.0028) (0.003) (0.0029) (0.0029) (0.0028)

firecloset+1 0.0027 0.0042 0.0026 0.0026 0.0026
(0.0027) (0.0028) (0.003) (0.0028) (0.0029)
(0.0025) (0.0028) (0.0029) (0.0027) (0.0028)

firecloset+2 0.0039 0.0071 0.0058 0.0047 0.0062
(0.0029) (0.0031)* (0.0036) (0.0031) (0.0031)*
(0.0031) (0.0036)* (0.0041) (0.0031) (0.0035)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 207,175 207,175 207,175 207,175 207,175
No. of obs. 1,450,225 1,450,225 1,450,225 1,450,225 1,450,225

Note: Regressions include grid cells within 5 km of any WUI Census block. Fireclose
equals 1 if a fire occurred within 5 kilometers of a nearby Census block and 0
otherwise. The sample is limited to pixels NLCD classifies as forested in 2006. In
addition to fixed effects noted in the table, all models include grid cell fixed effects.
Robust standard errors are clustered by district first and unit second, ** p<0.01, *
p<0.05.

could be misclassified as fuels management. Soon after a fire, land managers may thin

trees, clear debris, and conduct salvage logging. In this case, we might interpret post-fire

activities as a response by managers to heightened risk salience. We guard against this

possibility by dropping all observations within the perimeter of an earlier fire (Table 3.6).

75



Salience and the Government Provision of Public Goods Chapter 3

Table 3.6: Base specification with observations within the perimeter of previous fires
removed to avoid misclassification of post-fire activities as fuels reductions

(1) (2) (3) (4) (5)

firecloset 0.0121 0.0139 0.0115 0.0125 0.0125
(0.0032)** (0.0034)** (0.0035)** (0.0036)** (0.0035)**
(0.0039)** (0.0042)** (0.0039)** (0.0044)** (0.0041)**

firecloset−1 0.0031 0.0049 0.004 0.0031 0.0038
(0.0028) (0.0025)* (0.0027) (0.0028) (0.0025)
(0.0033) (0.0028) (0.0028) (0.0029) (0.0027)

firecloset−2 0.0033 0.0042 -0.0001 0.0037 0.0028
(0.0035) (0.003) (0.0025) (0.0036) (0.0031)
(0.0036) (0.0032) (0.0024) (0.0036) (0.0031)

firecloset−3 -0.0021 -0.0009 0.0000 -0.0006 -0.0018
(0.0034) (0.003) (0.0033) (0.0036) (0.0029)
(0.0029) (0.0025) (0.0028) (0.0028) (0.0025)

firecloset−4 -0.0006 -0.0011 -0.0008 0.0003 -0.0007
(0.0026) (0.0027) (0.0028) (0.0027) (0.0029)
(0.0026) (0.0028) (0.0027) (0.0028) (0.0024)

Fixed effects Year Year×unit Year×district Year×county Year×tract
No. of groups 200,895 200,895 200,895 200,895 200,895
No. of obs. 1,770,739 1,770,739 1,770,739 1,770,739 1,770,739

Note: Regressions include grid cells within 5 km of any WUI Census block. Fireclose
equals 1 if a fire occurred within 5 kilometers of a nearby Census block and 0
otherwise. The sample is limited to pixels NLCD classifies as forested in 2006, and
pixels within the perimeter of previous fires have been removed. In addition to fixed
effects noted in the table, all models include grid cell fixed effects. Robust standard
errors are clustered by district first and unit second, ** p<0.01, * p<0.05.

This is likely an overly conservative approach as we may discard information about fuels

reduction activities that occurred in response to a later fire occurring within the perimeter

of an earlier fire. Nevertheless, we continue to find a significant contemporaneous effect

and, in model (2), a one-year lagged effect that is significant at the 5% level.
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3.3.4 Learning as an alternative to salience

An alternative interpretation of our empirical results is that government agencies

learn about risks from future fires when a wildfire occurs. The key question to ask is,

what information could a wildfire provide to land managers? In other words, what factors

determine the likelihood of a future fire? Parisien et al. (2012) study the determinants of

large wildfires in the western U.S. over the period 1984-2008. Their statistical analysis

identifies three categories of variables — ignitions, climate, and topography/vegetation

— that have statistically significant effects on the probability that a given grid cell

burned in a large fire. Some of these factors are not applicable to our study of public

forest lands (population density and land use) and others are controlled for by the grid-

cell level fixed effects (topographic roughness, road density21) and year-by-region fixed

effects in our model (large-scale measures of lightning strikes). Parisien et al. (2012) find

that wildfire probability is predicted by a number of climate variables, including long-

term temperature, precipitation, and wind speed means. It is conceivable that weather

distributions changed over the period of analysis (i.e., climate change occurred) or that

there were sustained periods of weather anomalies such as droughts or extended rainy

periods. Wildfires may have alerted land managers to the effects of these events on future

fire risk. However, because climate change and weather anomalies tend to be large-scale

phenomena, they are also controlled for by the year-by-region fixed effects.22 The smallest

region used in our analysis is the Census tract, which has an average size of 364 km2. For

comparison, the area of the Isle of Wight in the United Kingdom is 380 km2 and Lake

Tahoe in the USA is 495 km2 in size.

21Parisien et al. (2012) indicate that there was little year-to-year variation in topographic roughness
and road densities over the period 1984-2008, which mostly covers our study period.

22Parisien et al. (2012) find that the capacity of a site to produce biomass, measured as gross primary
productivity, is also associated with wildfires, but indicate that productivity is largely determined by
climate.
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Although we expect the fixed effects in our model to control for the key determinants

of fire risk, we provide a formal analysis using the Vegetation Condition Class (VCC)

measure described above. The VCC indicates the amount of fuels on the landscape and,

thus, the potential for severe wildfires. If managers learn about vegetation conditions

from local wildfires and the fixed effects in our model do not adequately control for fire

risk, then the response to a nearby wildfire should be magnified when there are heavy fuel

loads. We investigate this hypothesis by interacting the VCC variable with the treatment

variable:

yit = αi+
0∑

`=−4

β`
1{∃s ∈ Si : firedists,t+` ≤ c}

+ ζ
0∑

`=−4

[V CCi,t+` × 1{∃s ∈ Si : firedists,t+` ≤ c}] + δtm(i) + εit

(3.4)

where V CCi,t+` is the condition class for cell i in year t+ ` and ζ is a model parameter.

If the estimate of ζ is positive and significantly different from zero, then the effect of

a wildfire on the probability of a fuels management project increases with fuels loads.

However, results in Table 3.7 reveal an insignificant effect of VCC, in opposition to the

learning model.23 The original estimates of the β coefficients are unchanged when we

include the VCC interaction term.

3.3.5 Additional support for the salience mechanism

To provide additional support for salience, we show that the effects of close fires vary

with characteristics of WUI communities and the size of fires. We estimate two sets of

23In equation (3.4), ζ is restricted to be the same for the contemporaneous and lagged effects. We use
this parsimonious specification because we do not have strong a priori reasons to expect the marginal
effects of VCC to differ by the length of the lag. We estimated alternative models that allow each lag to
have a different coefficient. Based on F -tests reported in Table 3.7 we cannot reject the null hypothesis
that the coefficients are equal.
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models with interactions similar to (3.4).24 The first version is specified:

yit = αi+
0∑

`=−4

β`
1{∃s ∈ Si : firedists,t+` ≤ c}

+ ζ
0∑

`=−4

∑
s∈Si

[zs × 1{firedists,t+` ≤ c}] + δtm(i) + εit

(3.5)

where zs is a characteristic of WUI block s or of the fire that treats block s. We define zs

as, alternatively, the population of the Census tract, the number of housing units in the

Census tract, and logged fire size.25 The second version of the model in (3.5) includes

VCC as a control for objective fire risk.

Results in Table 3.7 reveal that the effects of a close wildfire are larger as the popula-

tion and the number of housing units increase. The finding that salience effects vary with

community characteristics confirms a prediction of our theoretical model and shows that

local residents are part of the salience mechanism (see also Anderson et al. (2013)). The

results are consistent with the preferences of residents being shaped by salient events or

with government officials being affected by salience and operating on behalf of residents.

The coefficient for fire size is positive but significantly different from zero at only the

8% level. The lack of significance may be due to the fact that the fire data we use only

includes relatively large fires. Finally, we find that the effects of resident characteristics

and fire size are unchanged when we control for landscape conditions with the VCC vari-

able. This suggests that fuels management decisions depend on the risks perceived by

WUI residents rather than on objective risks.

24As in equation (3.4), ζ is restricted to be the same for the contemporaneous and lagged effects.
According to F -tests reported in Table 3.7, we cannot reject the null hypothesis that the coefficients are
equal.

25We estimate the fire size version of the model with the sample used to produce Table 3.6. A large
fire could augment salience but also limit the area available for fuels treatments. By using the restricted
sample, our estimate measures only the first effect.
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Table 3.7: Variation in salience effects by census block characteristics

(1) (2) (3) (4)

Population
Housing

units
Ln(Fire size) VCC

I. Interaction coefficient 1.1e-06 2.9e-06 .0011 -.0041

(5.4e-07)* (9.8e-07)** (.00099) (.0036)

II. Interaction coefficient 1.1e-06 2.9e-06 .0011

(5.4e-07)* (9.8e-07)** (.00099)

VCC
.00068 .00065 .0012

(.00056) (.00056) (.00054)*
Grid cells within past fire

perimeters
Yes Yes No Yes

No. demog. interaction lags 4 4 4 4
No. of groups 207,175 207,175 200,895 207,175
No. of obs. 1,864,575 1,864,575 1,770,739 1,864,575
F-statistic 0.3611 1.2714 0.2721 0.8673
Mean 4,949 2,359 8.96 2.38
Min 0 1 7.01 1.01
Max 36,146 9,905 12.4 3.86

Note: Row I presents the coefficient on the interaction terms as specified in Equa-
tions (3.4) and (3.5) and added to regressions as in column 3 of Table 3. Row II
presents a set of separate regression results that also includes a control for vegeta-
tion condition class (VCC), whose coefficient is reported. Robust standard errors
are clustered by unit, ** p<0.01, * p<0.05. Reported F-statistics use results from
an unreported regression to test the null hypothesis that estimated ζ coefficients
from regressions in row I are equal across lags of the interaction. An F-statistic
less than 3.00 indicates insufficient evidence that ζ coefficients differ among lags.
The reported mean, maximum, and minimum in each column correspond to sample
statistics for each each column’s variable (zs) among all treated blocks.

3.4 Conclusions

The economics literature on salience has focused on how consumption of private goods

is affected by salient features of the choice problem. In this paper, we extend this liter-

ature to examine how salience can affect the government provision of public goods. In
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our theoretical model, the benefits from a local public good are represented as a lottery.

An exogenous shock makes a payoff more salient to residents of a community, causing

them to over-weight the payoff in the salient state and miscalculate expected benefits. If

the government bases its provision of the public good on expected benefits as expressed

by the residents, then the allocation of the good will be inefficient. Samuelson (1954)

recognized that the public may have incentives to misrepresent their preferences for a

public good. In addition, there has been a long-running debate among economists about

whether preferences for public goods can be reliably determined using direct elicita-

tion methods (Diamond and Hausman, 1994; Hanemann, 1994; Carson, 2012; Hausman,

2012). In our case, the problem faced by the government is not deceit or flawed survey

methods, but rather that the preferences expressed by the public have been biased by

exogenous events.

The theoretical model in our paper provides insights into the nature of the inefficiency.

We show that the allocation of the public good can increase even when the shock decreases

one of the payoffs, which necessarily means that the true expected value of the good has

declined. If the shock affects the higher-valued payoff, then enough weight can be shifted

to this payoff such that the public’s expected value for the good increases. This outcome

is more likely to occur when the salience effect is large.

This result matches our empirical application, where we find support for the salience

theory of public goods provision. We find that federal land management agencies in

the western U.S. are more likely to locate fuels management projects near communities

that have experienced a nearby wildfire. This increased response comes even as the

recent wildfire has likely decreased the likelihood of loss from future fires. With our main

specification, we estimate that the probability of a fuels management project increases by

1.6 to 1.8 percentage points in the year the fire occurs, declining to 0.6 to 0.9 percentage

points in the year after the fire. These are relatively large changes considering that the
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average annual rate of fuels management projects on all forested lands in our sample is

approximately 3.5% (see Table 3.2). Our finding that the effects of the nearby wildfire

attenuate after one or two years does not necessarily mean that the salience of fire risk

has diminished, as suggested by the results in McCoy and Walsh (2014). Our results are

also consistent with a prompt response by the government that satisfies the increased

demand for fuels management. One way to investigate the dynamics of salience would

be to consider WUI blocks that experience nearby fires in multiple years and see how the

effects change over time. For this analysis we would need a data set covering a longer

time period.

The results of robustness checks support our claim that we identify salience effects.

First, we find that the effects of nearby wildfires on the likelihood of observing fuels

managment projects are strengthened when we focus our analysis on closer fires, which

should be more salient to WUI residents (Figure 3.1). The effects also increase when we

consider grid cells closer to WUI communities, suggesting that the federal agencies are

responding to heightened demand for fuels management projects. Second, we find that

effects of nearby wildfires increase with the population of the WUI community and the

number of housing units (Table 3.7). These results suggest that the residents of WUI

communities are part of the mechanism for determining the location of fuels management

projects, consistent with our salience theory. Finally, we find evidence that contradicts

alternative explanations for our results. The finding of insignificant coefficients on lead

variables suggests that agencies are not simply locating fuels management projects in

places that are likely to have fires. As well, our finding that vegetation condition does

not magnify the effects of nearby fires guards against the possibility that our results

reflect learning by agencies about the risk of future fires.

In addition to local public goods such as fuels management on public lands, salience

could affect the government provision of national-level public goods. There are many
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examples of salient events that act as a catalyst for government action. In response to

the Exxon Valdez oil spill in 1989, the U.S. Congress passed the Oil Pollution Act of

1990 that required double hulls on oil tankers. The Three Mile Island nuclear accident in

1979 led to stricter controls on nuclear plants and the outbreak of West Nile virus in New

York City in 1999 prompted the creation of a national surveillance system for infectious

diseases in the U.S. Catastrophic flooding of the Mississippi River has often been followed

by government-funded levee building and other channel engineering projects (Wright,

2000). These may be rational responses by the government to new information about

the demand for public goods. However, our paper offers an alternative explanation. The

public’s demand may be distorted by the salience of the catalyzing event, which would

mean that the government response to heightened demand for public goods is inefficient.
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Chapter 4

Inequality and government

responsiveness: Evidence from

salient wildfire events

Over the past several decades, there has been a movement toward government decision-

making arrangements that encourage participation among stakeholders in the making

and administration of policy. Proponents of participatory governance, as these arrange-

ments are known, argue that greater participation will yield more effective and informed

policy (eg. Pateman, 1970). In recent years, however, political scientists have recognized a

potential tension between equitable outcomes and government responsiveness: if govern-

ment is more responsive to some citizens than to others, inequitable policy outcomes may

result. A substantial body of literature has examined how policymaker responsiveness (in

terms of roll-call votes, or enacted policies) to constituent preferences varies across demo-

graphic groups (eg. Gilens 2005 or Bartels 2008). Yet policy outcomes only begin with

legislation; downstream, disparities in responsiveness in the bureaucratic administration

of policy can have implications for inequality as well.
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In this paper, we study differential responsiveness among bureaucratic government

agency administrators to demands from demographically-varying communities. Specifi-

cally, we focus on provision of wildfire risk reduction projects within the western U.S. In

the western U.S., a large portion of the wildlands on which wildfires occur are federally-

owned and managed. Therefore, federal land managers choices regarding fuel reduction

project locations have potential to meaningfully influence wildfire risk. If projects are

unduly awarded to favored communities, they have potential to exacerbate inequality.

Fuel projects may be disproportionately located near particular types of communities

due to differences in agency responsiveness across communities. Alternatively, they may

be disproportionately located near particular types of communities due to discrepancies

in the degree of risk different types of communities face. For example, if individuals higher

income individuals disproportionately choose to live in forested, high fire risk areas, we

might also expect them to disproportionately benefit from fuels reduction projects. To

distinguish between these two explanations, we use a quasi-experimental design motivated

by our prior work on wildfire risk salience and demand for fuels projects. In chapter 3,

we hypothesize that after wildfire events, when wildfire risk is at the top of homeowners

minds, they will be more likely to demand agencies place fuels projects nearby. Our

findings show that fuel project rates are 50-75% higher near communities that have

recently experienced wildfire. Here, we use the occurrence of wildfire as an exogenous

shock to demands for fuels projects. We then compare how responsiveness to these

demands differs across demographically-varying communities. As in chapter 3, we find

that federal fuels project rates increase near communities that have recently experienced

wildfires; however, these increases are stronger for communities that are less diverse,

more educated, and younger. In contrast to some of the existing literature, we do not

find that income is a primary determinant of government responsiveness.

This paper makes two primary contributions to the literature. First, it contributes
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to the limited literature on bureaucratic decision-making and shows how differences in

responsiveness among bureaucratic decision-makers can increase inequality. While over

the last fifteen years a literature has emerged studying inequality in government respon-

siveness, this literature has for the most part ignored potential inequalities in policy

administration. Our results suggest that this is a potentially important channel through

which government policy can increase inequality. Second, this paper contributes to the

literature on inequality in government responsiveness by using panel data and a quasi-

experimental design to causally identify differences in responsiveness across communities.

Findings within the existing literature are mixed, perhaps in part because existing stud-

ies either rely on cross-sectional or time-series data and therefore do not fully identify

effects of responsiveness from other correlated factors.

Before proceeding to our study design and results, we will provide additional back-

ground regarding the extant literature, and the setting in which our study takes place.

The next section discusses in greater detail the existing literature on government respon-

siveness and inequality, as well as the literature on bureaucratic decision-making and the

role of interest groups. In section 4.1, we discuss wildfire management in the western

U.S., the role of fuel reduction projects, and the planning process used by federal agencies

in determining how and where to situate these projects. This process includes significant

opportunities for public comment. We conclude section 4.1 by briefly describing existing

work on the role of salience in responses to natural disasters. Our prior work on this topic

describes how risk salience in the wake of a disaster can distort agency responses when

public agencies are open and responsive to the demands of the public. This finding mo-

tivates the empirical strategy we develop in this paper, which we describe in section 4.3.

In section 4.4, we discuss our results. We conclude by discussing implications of this

research, as well as its limitations of this study and potential paths forward for future

research.
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4.1 Related Literature

As Wlezien and Soroka (2011) argue, increasing responsiveness may lead to increas-

ingly inequitable outcomes under two conditions: (1) policy preferences must differ across

groups, and (2) government responsiveness must vary across groups. Since the first condi-

tion is generally taken as given, research has focused on examining the second condition.

Researchers have proposed a few possible explanations for possible differences in gov-

ernment responsiveness across demographic groups. First, a large literature indicates

political participation varies across groups (eg. Verba et al., 1995), with higher income

and higher SES individuals participating at higher rates. These groups may apply greater

pressure to politicians and government officials. Another reason to expect that govern-

ment officials might respond differentially to high SES groups is that politicians and

government officials tend to be high SES themselves. Government officials tend to be

relatively high income, highly educated individuals, and they may be more sympathetic

to the views of similar individuals (Page et al., 2013).

Motivated by these ideas, a variety of studies over the past fifteen years have tested for

inequality in responsiveness among policy-makers, usually by following Gilens (2005) in

relating political outcomes (eg. roll-call votes, legislation) to constituent opinions across

the income distribution. So far, however, these studies have not yielded a consensus

regarding bias among policymakers. As Kelly and Enns (2010) point out, studies that

find that policymakers are more responsive to higher income individuals tend to rely on

cross-sectional policy outcome data (eg. Gilens, 2005; McCarty et al., 2009; Gilens, 2011).

On the other hand, studies that make use of time-series data (eg. Ura and Ellis, 2008;

Wlezien and Soroka, 2011) cannot identify differences in responsiveness across income

groups because shifts in political opinions over time tend to be correlated across income

groups.
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More recently, researchers have begun to examine differences in responsiveness out-

side of the policy-making process. The two studies most closely related to this paper

are Sances (2016) and Grimes and Esaiasson (2014), both of which examine inequality

in responsiveness among local government officials. Grimes and Esaiasson 2014 study

siting of locally undesirable land uses, such as waste facilities, in Sweden. Consistent

with the environmental justice literature (Ringquist, 2005), they find that locally unde-

sirable land uses are more likely to be placed near low SES communities. However, they

find that electoral participation more strongly predicts siting decisions than income. A

weakness of this study is that it relies on cross-sectional data. It is likely that individuals

with low propensity to participate in the political process might sort into inexpensive,

undesirable locations, which might also be more likely to become sites of waste facilities.

Sances (2016) use panel data, as well as an exogenous shift in responsiveness caused by

a change in how local assessors are chosen, to study effects of decreased responsiveness

across the income distribution. He finds that towns that with elected assessors are less

likely perform property value reassessments, which tend to increase the effective tax rate

paid by owners of high-value homes. Throughout the literature on government respon-

siveness and inequality, data limitations have led to difficulty in identifying differences

in responsiveness across groups. Like Sances (2016), we add to this literature by making

use of panel data to credibly identify these differences.

Further, we explore an as yet unexplored avenue through which government programs

yield unequal outcomes. Most studies examining inequality in government responsive-

ness have focused on responsiveness among elected officials. This makes sense, given that

elected officials tend to be more responsive to demands from the public than appointed

officials or bureaucrats (Besley and Coate, 2003; Canes-Wrone et al., 2014; Whalley,

2013). Nevertheless, while bureaucratic decision-making is motivated by a diverse set

of factors, including budget maximizing (Niskanen, 1971), concerns regarding career ad-
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vancement (Dewatripont et al., 1999), and intrinsic motivations (Besley and Ghatak,

2005; Prendergast, 2007), satisfying demands of the public may be an important motiva-

tion. A large literature points to the influence interest groups can have on bureaucratic

decision-making. As the next section will discuss, interest groups may be particularly

influential in the case of environmental management within the U.S., which since the

1970s has required government administrators to engage the public within the planning

process.

4.2 Wildfire fuels projects and federal land manage-

ment

Over the past several decades, wildfire activity has sharply increased within the west-

ern U.S. (Dennison et al., 2014). Since the 1970s, the annual number of large wildfires

(fires larger than 400 hectares) within the western U.S. has increased by over 500 percent,

while area burned in large wildfires has increased by over 1200 percent (Westerling, 2016).

Researchers have generally attributed this trend to the combined effects of climate change

(eg. Westerling et al., 2006; Abatzoglou and Williams, 2016) and high fuel loads within

western forests (Arno et al., 1995; Keane et al., 2002; Naficy et al., 2010). For much of

the twentieth century, the US Forest Service (USFS) and other public agencies took an

aggressive stance toward suppressing wildfires. The effects of fire exclusion differ across

forest types; however, in many open canopy western forests where frequent low intensity

fires have historically removed understory brush and debris, fire exclusion has led to a

build-up of ladder fuels, which carry fire from a forests understory to its canopy. In these

forest types (eg. dry forests such as ponderosa pine forests within the U.S. southwest and

Sierra Nevada mountains), fire exclusion has increasingly led to larger and more severe
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wildfires (Schoennagel et al., 2004). As wildfire activity has increased, so too has federal

spending on wildfire management. The US Forest Service now consistently spends ap-

proximately 50 percent of its annual discretionary budget on wildfire management, while

in 2000 it spent less than 20 percent (Thompson et al., 2015). The agency, which incurs

approximately 70 percent of total federal suppression costs, spent nearly $2.4 billion on

fire suppression in 2017. Of this, $375 million were spent on hazardous fuel removal

projects (USFS, 2017).

Wildfire fuels projects are projects intended to reduce wildfire risk by restoring the

forest to conditions under which high intensity fires are less likely. Fires that burn in the

forest canopy (called crown fires) are hotter and more difficult to contain; therefore, fuel

projects are generally designed to remove fuels that promote crown fires. In particular,

fuel projects aim to remove surface and ladder fuels, which can cause a fire to burn

into the forest canopy, and to reduce the density of the forest canopy, which reduces

potential for crown fire spread (Agee and Skinner, 2005). These goals are generally

achieved either by prescribed fire, or by mechanical thinning. In a prescribed fire, the

forest understory is burnt under favorable conditions to remove surface and ladder fuels.

Under mechanical thinning, heavy equipment is used to remove trees from the stand to

reduce canopy density. Empirical evidence (reviewed in Kalies and Kent, 2016) indicates

that fuel reduction projects within dry forests in the western U.S. are effective in reducing

fire intensity, especially when prescribed fire and thinning are used in conjunction.

There is also some evidence that strategically-placed fuels projects can help pre-

vent damage to homes and structures. During the 2011 Wallow Fire in Arizona, fuels

projects placed adjacent to a residential area resulted in reduced fire severity (Kennedy

and Johnson, 2014), and have been credited with saving homes by providing firefighters

with opportunities to them (Bostwick et al., 2011). Unfortunately, while federal spending

on fuels projects has increased over the past several decades, federal agencies are bud-
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get constrained, and they cannot implement fuels projects everywhere they are needed.

Therefore, federal agencies may face competition among residential areas for their limited

resources.

While scientific management is a foundational doctrine of the USFS, previous re-

search indicates that USFS and other federal land management agencies decision-making

is frequently influenced by public pressure (Sabatier et al., 1995; Johnson and Watts,

1989). This may in part be due to the participatory decision-making structures that

have defined federal land management planning since the passage of the National Envi-

ronmental Policy Act (NEPA) in 1970. NEPA mandates that all federal agencies must

document actions that will significantly impact the environment with an Environmental

Impact Statement (EIS). Further, it mandates a public comment period during which the

public can comment on the proposed action. Similarly, the National Forest Management

Act of 1976 mandates that the public be allowed opportunities to comment on forest

management plans. This openness to public input likely affects the fuel project planning

process. According to Hakanson (2010), forest managers often have an eye toward the

NEPA process from a fuel projects conception.

In chapter 3, we investigate how, when agencies are responding to public pressure,

behavioral biases such as salience can lead them to make inefficient decisions. Salience is

a behavioral phenomenon in which individuals’ disproportionately weight concerns that

have drawn their attention (Taylor and Thompson, 1982). Salience frequently distorts

human responses to natural disasters, and can lead to inefficient or potentially even

maladaptive responses to these events (Anderson et al., 2018). Prices of homes in areas

of high fire or flood risk are lower than homes outside these areas, but only in years after

a fire or flood has occurred nearby (McCoy and Walsh, 2014; Bin and Landry, 2013).

Corporate managers increase cash holdings after hurricane events, despite the fact that

the hurricane event did not alter the base level of risk (Dessaint and Matray, 2017). In
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the political science literature, salient disaster events are referred to as focusing events,

and have been shown to influence political agenda-setting (Birkland, 1997). In chapter 3,

we found that federal wildfire fuels management projects are more likely to be placed near

communities that have experienced recent wildfires. We attribute this pattern to salience

of wildfire risk in these areas, and the ensuing public pressure community members place

on agencies. Here, we use the occurrence of wildfires as a shock to public pressure, and

use this to identify differential rates of bureaucratic responsiveness across demographic

groups.

4.3 Methods

Our units of observation in this paper are U.S. Census blocks from 15 western U.S.

states.1 We focus specifically on blocks on classified as wildland urban interface (WUI)

in 2000, since these are communities that are likely to face wildfire risk. Because we

are interested in determinants of public fuel management project locations, we further

limit our sample of Census blocks to those within 10 km of public lands managed by

the US Forest Service (USFS), Bureau of Land Management (BLM), or National Park

Service (NPS). The USFS, BLM, and NPS together manage approximately 1.5 million

square kilometers of land in the western U.S., and are responsible for 93% of federal fuels

management projects within the timespan of our data. After these restrictions, our data

comprises more than 320 thousand census blocks.

Data regarding fuel treatment locations come from the National Fire Plan Operations

and Reporting System (NFPORS). Our NFPORS data set records the point location

(latitude and longitude), dates, and area of all fuels reduction projects conducted by the

1The states comprise US Forest Service regions 1-6. They are Arizona, California, Colorado, Idaho,
Kansas, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Washington,
and Wyoming.
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Table 4.1: Summary statistics for dependent variables

Dep. vars. measuring fuel projects
near WUI block

Radius Indicator
Percent

public land
Total area
(sq. km)

2 kilometers .027 .0064 .065

5 kilometers .074 .0093 .3
10 kilometers .16 .011 1.1

Number of WUI blocks 322,683 322,683 322,683

Number of block-year obs. 5,035,247 5,485,611 1,942,522

USFS, BLM, and NPS during years 2003-2011. Since NFPORS does not provide fuels

project boundaries, we used reported point locations and project areas to impute project

boundaries, under the assumption that project boundaries are circular. We compare

variation across WUI blocks in the degree to which fuels project are placed nearby, and

we measure fuels projects three ways. First, we use as a dependent variable an indicator

for whether any fuels projects were placed within a given distance of a WUI block in a

given year. As two additional dependent variables, we measure the percentage and total

area of public lands that were treated within some distance of a WUI block in each year.

Average values of each of the three dependent variables are provided in Table 4.1, where

the table’s rows vary in the radius around each WUI block within which fuels projects

are measured.

Data on the occurrence of fires are drawn from the USGS Monitoring Trends in Burn

Severity (MTBS) project, which uses satellite remote sensing data to map all large fires

occurring within the U.S. Within the western U.S., MTBS maps all fires larger than

1,000 acres. Therefore, while the MTBS data do not include all fires within the period,

they include the largest and therefore likely the most salient wildfires. We measure

the distance from each census block to the nearest wildfire in each year over the years
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Table 4.2: Rate at which WUI blocks received nearby fuel treatments, for full sample
and for WUI block-years in which a recent nearby fire has occurred

Block-years with recent fire within distance
Full

sample
2 kilometers 5 kilometers 10 kilometers

Distance from WUI block
2 km 0.03 0.09 0.07 0.05

108,734 8,856 17,227 29,397
5 km 0.07 0.16 0.13 0.12

335,994 21,263 46,279 86,706
10 km 0.16 0.29 0.24 0.22

781,638 47,369 103,243 200,343

Number of WUI blocks 322,683 39,303 85,128 144,934

Number of block-year obs. 5,035,247 160,911 427,669 914,102

2000-2011, and we define the indicator recentfireit as equal to one for blocks that have

experienced a wildfire within some threshold distance in the past 3 years. Columns 2-4

of Table 4.2 report fuels project rates after the sample has been limited to those blocks

for which a fire has occurred within 2, 5, and 10 kilometers, respectively. Comparing fuel

projects rates in these columns with column 1 of Table 4.2, which reports the percent

of sample overall receiving treatments within a given radius, blocks are more likely to

receive a fuels project when they have experienced a recent nearby fire.

We hypothesize that the observed increase in fuels project rates may be due to height-

ened salience of wildfire risk in these areas. Where wildfire risk is more salient, home-

owners and community members may apply greater pressure on public land management

agencies to reduce wildfire hazard. However, while the pattern of fuels project rates

observed in Table 4.2 is consistent with this hypothesis, there are other explanations as

well. Areas with higher wildfire risk are more likely to have experienced recent wildfires,

and are more likely to be chosen as the location for fuels reduction projects. To separate

the effect of a recent wildfire from the fixed wildfire risk within an area, we make use
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Table 4.3: Demographic and political characteristics for the entire sample of WUI
blocks, and for WUI blocks receiving nearby fuel reduction projects

Block-years with fuels projects within distance

Full sample 2 kilometers 5 kilometers 10 kilometers

Population density 1541.1 [4400.5] 684.2 1070.6 1282.4
Per cap. income 21365.9 [10205.8] 22241.0 21818.6 21479.3
Percent older than 65 13.3 [6.65] 13.6 13.7 13.5
Percent high school grad. 84.0 [10.0] 86.9 86.5 85.7
Percent college grad. 23.8 [14.7] 25.3 25.7 25.2
Percent white 83.9 [16.2] 90.6 89.5 88.0
Percent American Indian
and Alaska Native

3.20 [11.0] 1.99 1.96 2.10

Percent Hispanic or Latino 14.0 [16.9] 8.62 9.35 10.8

Number of WUI blocks 322,683 9,042 19,169 25,933
Number of block-year obs. 3,872,196 108,734 335,994 781,638

Note: Standard deviations are included within brackets.

of the panel structure of our block-level data set and include in our estimating equation

a full set of WUI block fixed effects. These effects account for fixed differences across

blocks in the rate at which projects are implemented on surrounding land.

Finally, we collected a series of variables describing each block’s demographic char-

acteristics. Demographic variables include a series of income, education, age, and race

and ethnicity variables measured at the Census tract level, as well as population density,

which is measured at the Census block level (US Census Bureau, 2000). Since our fuels

treatment data span the years 2003-2011, we use demographic variables from the 2000

Census, and therefore our demographic variables are not measured as time-varying. Col-

umn 1 of Table 4.3 reports the means and standard deviations of demographic variables

within our sample of WUI blocks. To ease interpretation of regression results, each demo-

graphic variable is standardized so that it is distributed with mean zero and a standard

deviation of 1.

Columns 2-4 of Table 4.3 report means of demographic variables within block-years

receiving fuel reduction projects within 2, 5, and 10 kilometers, respectively. Since de-
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mographic variables are not observed as time-varying, means for demographic variables

are means of demographic variables that ever received fuels projects within for example,

2 kilometers, weighted by how frequently they received fuels projects. Blocks for which

fuels projects occur more frequently nearby tend to be less dense, wealthier, and more

educated. Most significantly, when fuels projects occur within 2 km of WUI blocks, these

blocks are 90 percent white, while blocks within the sample overall are 83.6 percent white.

Patterns in demographic variables are largely consistent with our hypotheses. Wealth-

ier, whiter, and more educated Census blocks are more likely to receive fuels projects.

However, these patterns in and of themselves should not be interpreted as evidence that

managers are more responsive to such individuals. For example, these patterns could

also emerge due to amenity-driven sorting. Whiter, wealthier, and more educated indi-

viduals may be more likely to live in high amenity, high fire risk areas, and these areas

are likely to be chosen as the location for fuels reduction projects. To identify differences

in responsiveness to demographics, we make use of the occurrence of fires, which after

accounting for fixed differences across salience of wildfire risk within an area provide a

plausibly exogenous shock to public demand for fuels projects.

Formally, we model dependent variables yit, which each measure the placement of

fuel projects in the area surrounding block i in year t, using a standard difference-in-

differences framework. We take WUI blocks as treated if they have experienced a nearby

wildfire in the past three years. We choose three years as the relevant cut-off because our

work in chapter 3 indicates that salience of wildfire events is short-lived, and does not

drive fuel project decision-making after about 3 years.2 We define nearby fires as those

occurring within 2 km of a WUI block, since we believe very nearby fires will be most

salient to homeowners and most likely to drive increases in public pressure. Therefore, we

2This finding is also consistent with other empirical work on the effects of salient disaster events on
home prices, eg. McCoy and Walsh (2014).
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define the variable recentfireit as equal to 1 if WUI block i experiences a wildfire within

2 km in the past three years and zero otherwise. We write the difference-in-difference

specification as:

yit = αi + βrecentfireit + recentfireit × x′iγ + δrt + εit. (4.1)

The coefficient β describes the main effect of a recent fire on the placement of fuels

projects. Because we are interested in how responsiveness to salient wildfire events

varies with demographics across communities, we allow the effect to vary with demo-

graphic characteristics. The degree to which the effect of wildfire occurrence varies with

demographic variables is captured by the K × 1 vector of parameters γ. Given that

demographic variables are standardized to a distribution with mean zero and a standard

deviation of 1, every element γk of γ can be interpreted as describing increases in re-

sponsiveness due to a 1 standard deviation increase in demographic variable k. In order

for β and γ to be identified, it is required that there exist no unobserved factors within

the error term εit that are correlated with the occurrence of a recent fire, and lead to an

increase in area receiving fuels projects near WUI block i. Due to amenity-driven sorting,

higher socioeconomic status individuals may be more likely to live in areas with higher

wildfire risk and higher fuels project rates (Stetler et al., 2010). To account for fixed

differences in the fuels project rates across blocks, we include block-level fixed effects αi.

Still, a threat to identification would exist if wildfire risk facing individual wild-

land urban interface blocks were to vary over time in a way that were correlated with

block demographic characteristics. To guard against this possibility, we include a set

of county-by-year fixed effects—denoted δrt, where r indexes counties—which account

for differences across counties and within years, in fuels project rates. After including

block and county-by-year fixed effects, we identify β and γ using variation in differences
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between departures from the the within county-by-year average fuel project rate for cell

i in year t, and the average departure from the within county-by-year fuel project rate

across all years for cell i.

Fuels project rates are spatially correlated, both due to underlying spatial correlation

in wildfire risk and mechanically due to the way in which our dependent variables are

constructed. Our dependent variables are defined as a function of the placement of

fuel projects within some distance from a given block. However, the same fuels project

may increase the project rates for multiple adjacent WUI blocks. Moreover, treatment

is not randomly assigned to blocks. It is spatially correlated, since a fire that occurs

near one block also occurs within the proximity of adjacent blocks. To account for non-

independence among observations within our sample of blocks, we cluster standard errors

by Census tract. Census tracts are generally quite large within the western U.S. Our

sample of nearly 5.5 million blocks, but contains only 5,470 tracts across 473 counties.

4.4 Results

We are interested in how bureaucratic responsiveness varies across different types of

communities. In particular, we are interested in how responsiveness varies with per capita

income, educational attainment, racial composition, and age. Unfortunately, within our

sample of WUI communities these variables are highly correlated. Figure 4.1 illustrates

joint distributions for demographic variables within the sample of WUI blocks. The

upper left panel, for example, indicates that blocks are most likely to have a very high

percentage of white residents and per capita income of approximately $20,000. Further,

it shows that very few blocks are observed to have a low percentage of white residents,

but a high per capita income. Similarly we do not observe blocks with high per capita

income but low levels of educational attainment, or blocks with a high percentage of
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Figure 4.1: Joint distribution of demographic variables within the sample of WUI
blocks. Observations above or below or the 97.5 or 2.5 percentiles, respectively, for
any demographic variable have been dropped from the sample.

0

10000

20000

30000

Count

40

60

80

10000 20000 30000 40000
pcincome

P
ct

. w
hi

te

60

70

80

90

10000 20000 30000 40000
pcincome

P
ct

. h
ig

h 
sc

ho
ol

 g
ra

d

5

10

15

20

25

10000 20000 30000 40000
Per capita income

P
ct

. o
ld

er
 th

an
 6

5

60

70

80

90

40 60 80
pctwhite

bo
th

_p
ct

hs

5

10

15

20

25

40 60 80
Pct. white

pc
ta

ge
65

5

10

15

20

25

60 70 80 90

Pct. high school grad

pc
ta

ge
65

senior citizens but a low percentage of white residents.

The strong correlations among demographic variables within our sample makes it dif-

ficult to separately identify which variables bear primary responsibility for any differences

in responsiveness. Therefore, in Tables 4.4-4.6, we test the effect of demographic charac-

teristics on responses to wildfire events in two ways. First, in columns 1-5 of each table,

we test how responses vary with individual demographic characteristics. A disadvantage

of these results is that because demographic characteristics are highly correlated, it is

not possible to know for example whether differences in responses are due to differences

in education or differences in racial composition. In column 6, we include each of the
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demographic interactions together in the same regression. This model provides insights

into which of these demographic variables is most responsible for driving differences in

responsiveness across locations. However, because demographic variables are highly cor-

related with one another, interaction coefficients within this model are not estimated

with great precision.

Table 4.4 provides estimates of equation 4.1, where the dependent variable is an indi-

cator for whether any public lands within 2 km of WUI block i received fuel treatments

in year t. Therefore, the model can be interpreted as a linear probability model. The

coefficient reported in column 1 indicates that the probability a fuels project is placed

within 2 km is more than 2 percentage points higher for blocks that have experienced a

wildfire within 2 km in the past three years. Table 4.1 indicates that approximately 3

percent of blocks receive projects within 2 kilometers in a given year; therefore, recent

fires cause an approximately 75% increase in the probability a fuels project will be placed

nearby. This result is similar to the result reported in chapter 3. Columns 2 and 3 indi-

cate that the magnitude of this effect doubles when the percentage of white residents or

the percentage of high school graduates within a block increases by 1 standard deviation

(16 percentage points or 10 percentage points, respectively). The probablity of receiving

a project is approximately 1.2 percentage points higher for blocks with per capita income

that is 1 standard deviation above the mean; however, this difference is not statistically

significant at the 5 percent level. Finally, blocks with a one standard deviation higher

percentage of senior citizens are 1.2 percentage points less likely than average to receive

nearby fuels projects after the occurrence of a fire. When these variables are included

together in the same regression, standard errors increase due to high correlation among

demographic variables. Nonetheless, the regression estimates indicate that whiter and

younger blocks are more likely to receive fuels projects in the wake of a wildfire event.

Interestingly, variation in per capita income does not appear to be a primary driver of re-
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Table 4.4: Linear probability model of the probability a fuels project is undertaken
within 2 km of a WUI block, as a function of indicator for whether fire has occurred
within 2 km of the WUI block in the past 3 years and community characteristics
interacted with the indicator. The sample is limited to WUI blocks with at least one
public lands grid cell within 2 km.

(1) (2) (3) (4) (5) (6)

Fire within 2 km .022* .021* .02* .021* .02* .018*

[0.01] [0.01] [0.01] [0.01] [0.01] [0.01]

Interactions with nearby fire
Pct. white .02** .017**

[0.01] [0.01]
Pct. high school grad. .023* .011

[0.01] [0.01]
Per cap. income .012 .0015

[0.01] [0.01]
Pct. older than 65 -.012* -.014**

[0.01] [0.01]

Block fixed effects Yes Yes Yes Yes Yes Yes

County-year fixed effects Yes Yes Yes Yes Yes Yes
Number obs. 4043671 4043671 4043535 4043671 4043671 4043535
Number of WUI blocks 237,863 237,863 237,855 237,863 237,863 237,855
Number of county-years 7,837 7,837 7,837 7,837 7,837 7,837

Note: Robust standard errors are clustered by Census tract, ** p < 0.01, *
p < 0.05.

sponsiveness. This finding differs from much of the literature on inequality in government

responsiveness (Gilens, 2005; McCarty et al., 2009; Gilens, 2011).

Table 4.4 captures differences in the extent to which blocks are treated, but may

underestimate differences in responsiveness if managers are not only more likely to im-

plement projects but are also more likely to implement larger projects around certain

types of blocks. In Table 4.5 we use as the dependent variable the percentage public

lands within 2 kilometers on which fuels projects are implemented, and we report results

from the same set of regressions as in Table 4.4. Occurrence of fire near a WUI block

increases the percentage area receiving projects by about 0.8 percent, where on average

0.6% of public lands within 2 km of a WUI block receive fuels projects in a given year
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(Table 4.1). This effect varies with demographic variables similarly to the effect observed

in the previous table. One concern is that there may be greater capacity for respon-

siveness to blocks that are near large areas of public lands, and that these blocks may

be more likely to have low diversity and high per capita income. To examine whether

dividing area with fuels projects by total area of public lands biases our results, in Ta-

ble 4.6 we again perform the same set of regressions, but use area receiving fuels projects

within 2 kilometers as the dependent variable. Results are consistent with the previous

regressions. The average block receives 0.065 square kilometers of fuel projects within 2

kilometers in a given year. When a fire has occured near a WUI block in the previous

three years, the block receives 0.26 square kilometers in additional fuel projects. This

effect tends to increase as the block becomes less diverse and younger.

4.5 Discussion

In this paper, we find that forest managers are more likely to implement fuels projects

near communities that have recently experienced a fire, especially if those communities

have a higher percentage of white or young residents. The literature on government

responsiveness and inequality tends to focus on variation in responsiveness across levels

of per capita income. In general, it does not explore whether other demographic char-

acteristics, which may be correlated with per capita income, instead drive differences in

responsiveness. Our results suggest that demographic characteristics such as race and

age may be important in explaining differences in responsiveness. In contrast to much

of the literature on inequality in government responsiveness, we find no relationship be-

tween responsiveness and community per capita income, even when per capita income

is included in regressions as the sole demographic interaction. It is possible that we fail

to observe an effect of income on responsiveness because government bureaucrats face a
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Table 4.5: Regression of the percent of public lands within 2 km of a WUI block
receiving a fuel project on an indicator for whether fire has occurred within 2 km of
the WUI block in the past 3 years and community characteristics interacted with the
indicator. The sample is limited to WUI blocks with at least one public lands grid
cell within 2 km.

(1) (2) (3) (4) (5) (6)

Fire within 2 km .0078* .0075* .007* .0075* .0073* .0065*

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Interactions with nearby fire
Pct. white .0081** .0068**

[0.00] [0.00]
Pct. high school grad. .0088* .0042

[0.00] [0.00]
Per cap. income .0049 .00089

[0.00] [0.00]
Pct. older than 65 -.0039* -.0044*

[0.00] [0.00]

Block fixed effects Yes Yes Yes Yes Yes Yes

County-year fixed effects Yes Yes Yes Yes Yes Yes
Number obs. 4043671 4043671 4043535 4043671 4043671 4043535
Number of WUI blocks 237,863 237,863 237,855 237,863 237,863 237,855
Number of county-years 7,837 7,837 7,837 7,837 7,837 7,837

Note: Robust standard errors are clustered by Census tract, ** p < 0.01, *
p < 0.05.

different set of incentives than do elected officials. While elected officials may be con-

cerned about pleasing voters more likely to donate to campaigns, bureaucrats may be

implicitly biased toward citizens with whom they are more similar. On the other hand,

it is possible that we observe no relationship between income and responsiveness simply

due to insufficient variation across blocks in per capita income. This explanation seems

especially likely since we find evidence that responsiveness is correlated with education

levels, and education is correlated with income.

An important limitation to this paper is that because we have no direct measure of

citizen political engagement, we cannot discern whether differences across communities

in fuel project rates after fires are due to differences in salience-motivated political action,
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Table 4.6: Regression of fuel project area within 2 km of a WUI block on an indicator
for whether fire has occurred within 2 km of the WUI block in the past 3 years and
community characteristics interacted with the indicator. The sample is limited to
WUI blocks with at least one public lands grid cell within 2 km.

(1) (2) (3) (4) (5) (6)

Fire within 2 km .26* .3* .23* .24* .27* .33**

[0.11] [0.12] [0.10] [0.10] [0.11] [0.12]

Interactions with nearby fire
Pct. white .31* .38**

[0.13] [0.14]
Pct. high school grad. .21 .058

[0.11] [0.10]
Per cap. income .061 -.061

[0.06] [0.05]
Pct. older than 65 -.13* -.2**

[0.05] [0.08]

Block fixed effects Yes Yes Yes Yes Yes Yes

County-year fixed effects Yes Yes Yes Yes Yes Yes
Number obs. 500,633 500,633 500,633 500,633 500,633 500,633
Number of WUI blocks 29,449 29,449 29,449 29,449 29,449 29,449
Number of county-years 850 850 850 850 850 850

Note: Robust standard errors are clustered by Census tract, ** p < 0.01, *
p < 0.05.

or to responsiveness per se. If the occurrence of a wildfire induces a uniform shock to

demands communities place on land management agencies, we would be able to interpret

differences in post-fire effects on project rates strictly to government responsiveness. It

is possible that, however, that in the wake of a wildfire event, certain communities are

more likely to become politically engaged and to comment on proposed fuels management

projects. If so, differences we observe in post-fire effects on project rates may be due to

differences across communities in shocks to demand induced by wildfires. Whether our

results are due to differences in responsiveness per se or differences in shocks to demand,

this paper shows that similar events can yield very different policy outcomes for different

types of communities. Further, it indicates inequality in government responsiveness ex-

tends beyond policymaking to the implementation of policy by government bureaucrats.
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