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- DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. :
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THE EILECTRONIC STRUCTURE CF Iv-VI SEMICONDUCTORS
Yvonne Y. W. Tsang
Inorganic Materials Research Division, Lawrence Radlatlon Laboratory,
and Department of Physics, :
Unlver81ty of California, Berkeley, Callfcrnla
" ABSTRACT I
The Empricial Pseudopotential Method (EPM) incluaing Spin—orbif
interaction is épplied to SnTe, PbTe and GeTe. The resultant eiectronic
band structures and pseudopotential form factors are.used to examine
the following: \ |
(1) Thé imaginary part of the frequency dependent dielectrichﬁnc—
tion is éomputed in ordef to analyzé tﬁe.bptical properties.éf all three
crystals. (2) The band edge structure near the T p01nt of the Brlllouln
zone for SnTe, PbTe and (Sn,Pb)Te alloys ig studied in great detall |
(3) The Fermi surfaceS'of SnTe and PbTe are mapped out to compare W;th
experiments; (4) A method to calculate the energy shifts ariéing from
changés in témperatureuis developed within the frameWbrk of the EPM‘and
applied to the energy levels at the L point of the Briliouinfzone'in PbTe.
The correéf poéitive sign of the temperature goeffiéient for the fﬁnda_
meﬁtal gap is obtained. (5) The pressure coefficients of tRé fundamental
gap are caléulated for SnTe and PbTe. The results are in good agreement
with experiment. (6) The pseudopotential form factors_arekusedvto calculate
the intervalley deformation potential of holes scattered from.one pocket
near L tQ’another L pqqket for SnTe and PbTe. The values obtained are in

agreement with values"derived from an analysis of the measured superconduct-

ing transition temperatures as a function of hole concentration.



I. INTROQUCTION

Using the Empirical Pseudopotenitél'MEthodl (EPM),'we_have calcu-
lated the electronicvband stiructure of SnTe, bee and.GeTe (including
spin-orbiﬂ‘interactions) to study theielectronic propeftiesrbf thése
three compounds. The resulﬁing béﬁd structures andlpseudopotentials were
used'to'examine-ﬁhe'optical'propeﬁties, energy baﬁd gapvstrucfura,tsuper_
conducting propertiéé and the temperature dependende of the fundaméntal
energy gép; ,Mény of thése propefties were first studied expérimentally
- and theée.measurements.provided much of our méfiVation for fhe théoretical
study.'

We will sfartAby reviewing some of.the_principal éxperimentai fesults.
A1l thfee compounds are‘sémidon&uctofs witﬁ difectband gaps;_;P%Te and,GeTe
can be dopéd or grown to be both n-type and p—type; SnTe is usuvally
p-type with the holes arising from lack of stoichiometry; i.e. from Sn
vacanCies. Both GéTe2’5.and-SnTeu are superc anductors. Work has been
done‘on.thé visible and uitravidlet optical broperties5 of'all threé
'haterials tb explore ﬁhé electronib structure.at energies hiéher than

the fuﬁdamental gap energy. The size of the_fundamentalbandvgapsiin all
three materials arévgiven by tunneling experiments6 and laser spectro-
scopy.7' ShubniKOV'de_Héas data forvPbTe8 show éllipsoidaliFermi sur-
face arouﬁd L point of the Briilouin-zoﬁei however, the data for SnTe
are complicated and a complete picture of its Fermi éurface‘is étili '
not available.

Some questions have been faiéed.by the experimental resulté concern-
ing the fundamental energy gap and the electronic structpre near the

band edge. We 1list these in turn. First, the temperature dependence



gap decreases as temperature increases. Another<1nterest1ng questlon

Da

of the direct gap in PbTe is considered to be "anomolous"; in that the
gap gets'larger as the temperature ig increased. This is contrary to the

fag)

behav1or of the gap in the Group IV semlconductors and in SnTe where the

;was ralsed by Dlmmock et al. 2 These authors suggested that the order1ng

of the top valence band and the bottom conduction band energy levels
reverses as one goes from SnTe to PbTe. This suggestion was motiwated

Te at 12°K. The elec-

by experlments on alloys of p-type Pbo;81 Sno.l9

trons were optically excited by a laser and the emission spectrum'gave

a direct gap of 0.0?8eV. The same experimental technigue had been

7

applled to p-type PbTe at 12° K and a direct gap of 0.18 eV was observed.

Shubn1KDV' de-Haas data gave the fundamental band edge of PbTe at L

_Knight—shift experimentslo and'Augmented Plane Wave (APW) band structure

_'calculationl found the symmetry of the top valence band to be Lg and

that of the bottom conductlon band L6 From the -tunnellng-experlment6

SnTe has a fundamental energy gap of 0.3 eV, the band edge is also 3

7. . . . : . 8a‘ 2 - .v " .
expected to be at L from "Shubnikov de-Haas data. s L If the ordering

of the top valence band and bottom conduction band were the same in SnTe

" was obtained experimentally, In order to get a consistent picture fram

. the experimental gap data on SnTe, PbTe and the alloy PbXSn

‘done for SnTe,

and PbTe, one should expect the size of the gap in the alloy Pbo 81 O 19

" %o be between 0.18ev and 0.3eV rather than the small value 0.078-eV that

l_XTe,‘Dlmmock

\ o/

et al.9 proposed the band ordering reversal as one goes from PbTe to SnTe

(i.e. the top valence band in SnTe has symmetry L6— and the bottom conduc -

_tlon band L6 ) A prev1ous empirical pseudo—potentlal calculatlon was

13

however, spln orblt effects were not 1ncluded and the
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ordering at the band edge was not determined acguraﬁély.j
With.the rich experimental data available to us, we‘made a theoreti-
cal study 6f the three canpbuhds,'focdsingvmainly'bn_the'questions mén—.

tioned in the previoué discussion. A pseudopotential band structure

calculation including spin-orbit effects for each compouhd serves as

the siarting point of our study. Therefore the theory and fhé-band
structure calculation for SnTe, PbTe and.GeTe_is covered in'the'néxt
chapter (Chapter II). In Chapter IIT we will discuss the opticai CQnétants
of theseICQmpounds evaluéted from the palculated band strucfureé and a
cémparisbnx with experimental data is made. Chapter_IV deals wjﬁh |

the band edge ordefing and électronic structure near L‘for PbTé, énTe

and their alloys. The temperature dependence';of PbTe energy -levels will
be discussed in.Chapt.-V. The'case for;SnTe is'onlyatoﬁghediuﬁbn,briefly. In
Chapter VI we present a defor@ation pctential calculation for SnTe and
PoTe, tﬁié-deformation potential is relevant to the supercohduétiné

properties in SnTe.
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IT. THE EMPIRICAL PSEUDOPOTENTIAL METHOD INCLUDING. SPIN-ORBIT
INTERACTIONS AND TTS APPLICATION TO SnTe, PbTe and GeTe

A. The Pséudopotential'Hamiltonian

The use of pseudopotentialé_for elécfronic‘band structufe calculatiqns
is now eommoﬁ.in the stﬁdy of sqlids. As an example of fhe utility of
pseudopotentials, the Empirical Pseudopotential Method (EPM) withbut spin-
orgit.inﬁéraction was used by Cohén and Bergstressérl in 1966 to evaiuate
the band structures of fdurteeﬁ semiconductors._ Since that time the_method
has been applied with much success to many other matérialslé—légtmuch of
this work and calculationé arevsummariied in the review article by.Cﬁhen

L7

and Heiné; We wili therefore review the method briefly and indiéate(
how to inéorpogate thé spin-orbit intefactioﬁ into this method. The main
idea of a pseﬁdopotential isvthe following: 1in addition to the usuai
atfractive Coulomb potential, the vaience electron sees a repuisi&é |
potential arising from the orthogonality of the valence electfon wave -
functiohs to the core.electron:Wavefunctions. The net effect is a weak
bseudopotential. We can illustrate the origin of the repulsive term,in
the following_way. Iﬁ aﬁalogy with the OPW method; we write the wave-

function of a valence electron lwv) as a smooth part !¢v) minus its pro-

jectioh on all the core states,

vy o= ey - % o) (o o) = (1 -P2) [}  (2-1)

each core.state is denoted by [bt) and the projection operator on thé'core

state is ' _ |
P = f b, ) <th' BN CION

In band structure calculations, the energy elgenvalues are obtained

by solving a secular equation; i.e. to solve for E in the equation:

a



=

(H - E) ]w ) ="o , ’. : - }f (2-3) -
we dlagonallze the métrlx |
wvl(li - Ejly) = o . - e
Substituting Eq.'(2-l)'into Eq.:(2.u>, we can write Eq. (2.4) in terms
of the smooth part of the valence wavefunction, . _ o
(0,1 (2 P)(M-E)(l-P )l ¢) = 0. - (2.9)
For the calculatlpn nqt including spin,_the‘one‘electron'Hamithnian is

o= pfm+vx), - (2.6)
where the‘first term is the kinetic energy and V(r):is the attractive periodic

crystal potential seen by one valence electron. Using Egs. (2.2), (2.5)

and (2.6), we obtain

(¢ | [be/em_+ v(r) + z (E - E, [b Y (o 1 ~-Efg) = 0 (2.7)

@) GPfen+v(x) +v)) ~E [6) = 0 fem)

R

V. is the repulsive potential arising from the ofthdgonaliﬁy of vaieﬁce

electrons -to cofe-electrons, it contains the pr@jection operator and 1is
non'local The sum V(r) + V then reqults in a weak pseudopotential Vp.
Therefoxe, by our deflnltlon of lw ) in.Eq. (2.1), we have transformed

the eigenvalue Eq. (2uh)_of the real Hamiltonian ;H between actual
véleﬁce-eiectron wavefunction l¢§> to the eigenvalue Eq. (2.7&), wheré the
Hamilfonian is a pseudo-Hamiltonian HT and the matrix elements are takén
between fhe pseudo—wavefunctions [¢ ) (prev1ously called the smooth part

of lw )), however, even though we are working with pseudo—wavefunctlons and

a pseudﬁ-Hamlltonlan, we obtaln the energy elgenvalueq of the actual
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Hamiltonian.
For. the band calculations, we mdkebthe further approximationJof :

.assuming a local pseudopotential‘and expand Vp(f)‘in the reciprocal space,

V) = = v el&T (o
L o

where G 1is a reciprocal lattice vector and

.V(Q) - i Yx(g) Sa (g): : : ' ' (2.9)
5,() _=  e, _— (2.10)
- va(g) = v2/9=~i; v, (=D gt G d5£, -  _: (é.li)'

The index ¢ is introduced for crystals with more than one atom per primitive
cell, wiﬁh-cell voluhe Q, and so T is thg positiop1ofvthg qth éton with
respect.tb‘sqme origin ;nside‘a primitive cell. The potential Va(G) is

‘the Fourier‘ﬁransform of the pseudopoteﬁtial Va(lgl) Which.is asSUmed.to

be sphérical about each atom &. We call Sa(g) and Va(G) the siructu:e

" factor and thé form féctor respectively, each corresponding to the ath
atan and the reciprocal lattice vector G. Sinee |¢v) is a smooth wave-
functién, ih our calculation, we expand l¢v) in a basié of piéne waves

ik'r . . Y.
el~ L * and solve the matrix equation

. ,
[M; £ -E 8%'% [

= 0 - - (2.12)
Because the pseudopotential Vp is weak and the pseudo-wavefunction {¢v)'

is smooth, we can truncate the otherwise infinite matrix in solving

Eq. (2-12).



We can now put in the sbin—orbit term,'following-essentially Weisé'sl8

formulation

MS -0

- . : : . v
A (Wxe) 0 (2.13)
= A q,
where V is the periodic crystal pot ential and o ‘represents the Pauli spin
mtrices. Including this term H  © in the eigenvalue Eq. (2.5) is equi-

valent to adding the following term to the'pseudd-Hamithnian

W = (-») 345_'0-(1 -P) | (2.14)

in solving the eigenvalue equationv
| 1.2 WS -0 - S
+ + T- e = . ’ . . .
@ /em + v+ HT) - E ) = 0 N (2.15)
With the inclusién of spin, all our states will now be'labeled by a
configuraﬁion space index as well as a spin index s, therefore, the core
states now become ‘ ' o
YN Ll - (2.16)
and: the indices for the basic states of f¢v> will be k  for the plane
wa.ve and s for the spin. The'projection'operatdr becornes, .

o= 2l (gl = 1 s ) o) o ean
0 t : L _

where T is the. identity in spin space. It is clear then we need the

additional matrix element

M5 s g = ( (12) ¥ (12)

k'8, ks K's', ks (2-18)

in solvihg the secular determinant (2-12) for the band energies. We now

write out Eg. (2-18) explicitly:



o 8.

( (i_- Pc) Hs-0 (1 - .Pé))k‘S',kS\ - <1§rs§']]~&.g[15‘s)

~§ (i's' | By) (Bglarglks) - g(lj'S'l{}‘_SlBR) (B |xs)
o+ 2 (k'st . ‘B,Afc‘. VB s)

e (x IBR_H‘ 1A ~,_BR> (Bl xs)

= (s'lgls) * CCxrlalx) -3 (b, (b 8]k

© 30l (yf) £ 3 (o) (o Ll ) byl )

b4

= (stlls) o (PTE 425 4 AP0 4 0070, (2

.Thevfour terms_in'the_curlysbracket of (2-19) are denotedlfpr obvious
reésoné:by.ép_p, QF‘p,1éP'C and‘éc_c respectively, the superécript P étands
for planewave and superscript ¢ for core. Evaluation of Eq.. (2-19)
vinvqlves solving for terms such as (§Ibt), (gléjbt)vand (btfélbt);"Apﬁendix
A shows the Calculation'of these métrix elements. It turns out-that é?-c
is;sevéxai érders larger than the .Qp-g and.ép—p comtributions and we.

‘retain only the core-core term, éc_c.

For the three IV-VI materials Which we will consider, the éére comsists -
of s,‘p and d electrons. The s electrons cmtribute nothing to the_spin— v
.orbit'interaction, and since the valenéé electrons SnlTe, GeTe and bee'
are § dnd p-like, we expect the projection of the valence wavefunctibn_
ontd d core states to be small so that we may also neglect (bé]é}bd)rin
thé core-core term where [bd} is a d-like core state, we are therefore -
left with bnly one contribution in QC-?,to consider, i.e. the COntribufion

arising from p core electrons. Then Eq. (2-19) becomes:



&

for Ge, Sn, Te and»Pb'réSpectively. We used Herman and Skillman's

(J:fs_o)lsfst’§s - .- gs'.rs (k X k)

| | * ’ ' - (2.20)
X g -8y (& - k1) g (k1) |

where Sa(g—g')is the usual structure factor for‘atom a defihéd in'Eq: (E—iO).
ThebangUlér part of the m@trix,element (bplélbp) gives-(ﬁf X ﬁj and the radial
part gives Ka(k,k') which is essentially a préduct of tWo orthogonal
integrals.ﬁiz(k') and Bnl(k)‘multipiied by an adjgstable_numerical péfa—
meter as_ig shown in Appendix A. The orthogonal'integfalsvare définéd
in Eq. (A;17) af Appeﬁdix A, | -

| Bnl(k‘) = J{fizi[4n(gz+1)]l/2 jz(k'r') ha(r')f?'?‘dr'”: ‘ | (2.21)
In our.caée‘ﬁhe subscgipt‘z = 1 for b core electrons, n = 3, Lok aﬁd'B

; v _ ‘ 19

tabulated atomic p.orbital;'in a- numerical integration of (E.E}J_to obtain
the k,k' dependence of Nx»(k’k'j in Eq.“(QQQO),

‘Now we may write down ﬁhevtotal péeudo—Hamithnién'matrix‘element.

in the plane wave representation

_ _ 2 /n . - . . :
Hogr g = P/ By 8+ T 8, (k') x [V(Jx-x])
~ 7 ~ = o=1 . ]
Byrg - 1v(k'xk) N UelsleD-s, 100 - (222)

" For binary compounds, it is convenient to deccmpose both the A_.'s.
of Eq. (2.20) and the form factors va(lgf-gl) of Eq. (2-11) into a symmetric

part-and an antisymmetric part, that is,
| M Ul 5D+ Ui ]y 1D
: - :
r xl, TeD -2 (T D)

2

y o (2.23)

Sl ey =

il 1k yo (2.24)
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then Te will be labeled-by:2 and its position within the primitive cell is,

Tg = & '(i/e,'l/e,.'l/e) B , ;,( 2.3‘1)

. “For the fCC structure'factof,'We,can also show ﬁhat for each G = (h,k;Z)'

on/a, h, k, £ must all bé odd integers or all be even integers, the fdnner .

gives oddvfg{g éndvthe,latterfgiVés evéh‘[g[25 then
‘ - ‘ .'4fi'for'éven IQIQTL".' o o
e [T~ 2 = . o e T (2.32)
- o - 1 for odd“|G]° "
Therefofe, | .
o) - (5.00) + 5, (@)

~

* l_for'lGTE'EVen ”,A,and A e _2(2.55)

Q) = (5@ - sy(@)/e
o ifor Jglfeaa o (e3h)

0 for Igrg even
Bﬁfh SnTefand PbTé have fcc crystal structure while GeTeyié facé:
cehfered.rhombic; hpwever,‘the distérﬁion-from fcc is small and we have
assumed‘the fcé stfucture for all threé materials, with‘latticé,consténts
equal;tqt6;§;53, 5.9962,-6.&54§-fqr SnTe, GeTe and PbTe respecfively.
!The;pqtentials'are.chdsen in the following way.  F§r SnTe;vwé-étartu
v'wiﬁﬁitheisame set,Of_symmetric.form factoré used in. the pre&iéué EPM
;cgléﬁlation%j.andNQary the two éﬁtigymmetric form.factofs to givéia few
‘éf.the;principal gaps. The symmetric form.factors ére ﬁheﬁ Varied siightly
.in én attempt tovget.eveﬁ closer agreémeht withvﬁhe experimentél spiittings.

' The form factors chosen were:

i

¥
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VS_(G2 = 4) - .232 Ry., VS('S) = -.02h, |
 vS(12) = o018, VA(B) = 055 and VA(ll) = ',023;,
These are almost 1dent1cal w1th the form factors of Lin et al. 15'rthe largQ

est variation is 0.00% Ry. in the symmetrlc potentlal and 0.02 Ry in the
antisymmetric potential. For .GeTe, the starting point for the choos1ng

of the form‘factors was taken as an average of the Sb and As form factors“
extracted from.the‘symmetric and éntisymmetric form factors of'InSblvahd
GaAs,l with appropriate scaling faétors to account for the lattice:changes.
(The basic assumption here is that only.thgklattice'constant.and'not the
atomic pseudopotential in real_space changeé from oné crystal to another,

then the pseudopotential form factor

I

Vd(G) 2/ fva ”{') &G d5£' - | ©(2.36)

i

scales to Q aB/h in fhe»denominafor‘and G = 2r/a in the*integrand accord-
ingly).  Af£er this set.was chosen; the_fofmbféctors were varjed.slightly
to give some of fhe 6bserved7gaps. Thé GeTe form faétors gré»VS(%)'g -.2L45
Ry., V°(8) = -.022, V5(12) = .052,. VA(3) = .060 and VA(ll)‘ = .017. |

The form factors for PbTe are obtained in a slightly different
fashion.from those of SnTé énd_GeTe. As a first attempt, we mereiy
scaled the.SnTe form factars to the PbTe lattice as a tesf to explore
theAﬁossibility‘of a band inversion at the L point going from SnTe tb PoTe.
The ordering in SnTe is L6- for the-valence_bahd maximum and L6+ for the
conduc@ion:band minimum with a splitting L6+ - L6_ = 0.3%eV." Tunﬁeling
measurements6 give 0.3%eV at h.2°K.for.thié gap. The result of the.scaling

L - + : ' :
is that the L6 and L6 levels move within 0.08eV of each other, but the

ordering has not yet reversed. If ﬁe had started with a slightly.smaller



. ‘m_ll;_ -

_SnTe gap, the inversion would have taken place. The final form factors for

T vThese

v o L ) - +.
PbTe were chosgp to give the gap at L to be Ly - Ly = 0.18eV.
form factors were only slightly different from the scaled values for'SnTe;
. , o VSl 82
the changes were -.01 Ry. in V (G =4) and -0.003 Ry. in V (G=8). The
values for the form factors are: V (4) =  -.241 Ry., V (8) = -.0352,
v (iz) = .017, VA(B) = .052, and VA(ll) = .021. This shift fram the’

scaled wvalues is'consistent with the difference between the Pb and Sn

23

potentials as calculated by Animalu and Heine. The calculated Pb poten-
tial is more negative for small G's than the Sn potential. We conclude,

therefore, that the band inversion at L results both from the lattice

constant change and from the difference in the Sn and Pb crystél potentials.

. The final sets of form factors used for SnTe, PbTe and GeTe are
tabulated in Table 1. The resultant band structures of SnTe, GeTe and PbTe

are given in Figs. 1, 2 and 3.

C. Discussion of Resultant Band Structures

All three IV-Vi compounds have ten valence electrons (two bufermost
S—electfoﬁs.and two outermost p-eléctrons fran the foﬁrth cdlumh afcﬁ and
two s—electrons, fogf p-electrons from the sixth column atom). Because
of the invérsion symmetfy in the fcc structure and time reversél'symmetry,
all bands are Boubly degenerate throughout the Briliouin zZone. InIFigs..
1, é and 3 we show fiye doubly degenerate valence bands and a few bf fhe-
conductionkﬁands. Allvthree band structures give the minimum gaé near the
L point of thevBrillouin zone. PbTe has the minimum gap at L, but in both
SnTe aﬁd GeTe, the'extfeme are slighly away from L in the hexagonal‘face
of the fcc Brillouin zone in the direction perpendicular to A'aXié.

The L point becomes a saddle point§ it is a maximum along the -A direction,




the 5 axis is a poss1ble choice
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but a local minimﬁm in.theidirection pérpendiéular to A. We will discuss

the band'structure near L in more defail in Chaptér iv -Fof thié éhapter

we still refer to the direct gap. at L as the fundamental gap. | The.L

gap for SnTe and PbTe were glven in Section B to be O. BBeV and 0.18eV

respectively; for GeTe Ly ~'-"L6’ - 0.23eV, which is consistent with the
: ¢ i _ o

tunneling‘value of 0.2eV.

Both SnTe and PbTe have a Secoﬁd valénce'maximum along the 2 axis

(although Fig. 2 seems to‘indiéate the same for GeTe, we are guided by a

critical p01nt analys1s Whlch only glves a saddle p01nt along Z rather than

an absolute maximum for GeTe) There is experlmental ev1dence for the

824 29

ex1stence of a second valence maximum in these two crystals nd

B for this maximum. The second band
maximum is:.0.15 and 0.3%eV below the L valence maximum in SnTevand PbTe
respectively. In oﬁr calculation we implicitly assume éero temperature
values for the fundamental gaps for all three crystals. This gap has a
negative temperature coeffici?nt for SnTeBQ'and a positive temperature

3L

coefficient for PbTe. We therefore expect that at room temperature,
: + ’ . o
the L6 maximum will move closer to the second maximum in PbTeé than the
L6_ maximum in SnTe will move to its second maximum.

In'thevhext chapter (Chapter'III) we discuss the optical‘propertiés

of SnTe, GeTe and PbTe derived from our band structure caleulations.
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ITIT. OPTICAT, PROPERTIES OF SnTe, GeTe and PbTe
To analyzevﬁhe'visible andvultravidlet.optical‘properties of these
crystals, we have compﬁted the imaginary part of ‘the freduenéy dependent
dielectric function eg(m).' The_detemmination of eg(w) requires a knowledge
of the energy bands throughout the Brillouin zore since this function

‘has the form

&2 2 a } '
(@) = o—— = [ 8 (E (X)-E(X) -0
: 3 @ C,V o
x| (u, Ve 017 ok | RN Y

where u. - and
» k,v o' Yy e

are the periodic parts of the valence and cohduction'
i o

bahd Wavefunctio;s. The interbahd ehergies and the dipole matrix.element
are obtained from eigeﬂvalues and eigenvectors of fhe bseudo—ﬁamiltonian.
A féctor'of two arising from spin degeneracy is included iﬁ Eq” (3;1) béu
" cause all bands are Héubly degenerate even with épin—orbit effects.' Be-
cause of»the éubic symmetry of SnTe, GeTe and PbTe, band energles and
eigénvectprs for the dipole matrix element in Eq. (B.I)Ineed only be
célcﬁlated'ih 1/48 of the Brillouin zote. Thé Hamiltonian matfix is'
diagonalized'and the dipole matrix elements computed_for.a mesh éf 356
polnts in this subzone. Approximately 5XlO6 sampliﬁg points are chosen
randomly by a Monte Carlo method, the energy eigenvalues and dipole matrix
elémehts asSociatéd'with each point are obta ined by interpolation between
the points on the mesh. The resultant eg(m) for SnTe, GeTe and PbTe are
given in Figé.h, 5, and 6 respectively. Part of these results héVe,been

32,33

published earler. . The integration over k space in Eq. (3.1) may

also be written as
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where S is a surface of constant interband energy =“E - E ;Athe prominent
: , c %

3h.36,17

optical structure in eé(é)‘originateg from Van Hove.singularities
: o i , .

at the critical points (c.p.) where Vgn = 0. These critical points can
be classified éccording fo‘Symmetryel Zminima, saddie points and naxima)
Mb, Ml’ M2 and MB. The critical point analysis for SnTe, GeTe and PbTe
is given in Tables 2). - | |

For SnTe the onset of our ez(m) épectrum occurs near 0.%eV coming from
transitions near the fundamental band gap at L, this is in good égreément
with £uﬁﬁé1ing-da£a.6 The drop in intensity at 0.7eV is not attributed
+to ény critical point, but rather to a lack of interband transitions
with diféct energy differences in thié energy fange. The spectrumuriSes
again above 0.85eV to>givé the first peak‘ét L.1leV as.compared to the

>

experimenfal transmission peak at 0.97eV. Thi s peak canes from a M

0]
critical point arisingvfrbm transitions from band 5 to 6 at‘the'second

va lence band maximum aiong 5. Transition from this ame valence band_ ‘
maximum to band 7 give rise to the main peak at 2.0eV; the decrease above
this peak arises from é strong Mé critical point from transition along A.
The 3.2eV shoulder obsérved in the optical reflecfivity spectrﬁm is identi-
fied as afising from a 4 — 7 band transitioﬁ along Zﬁcriticai péint sym- -
métry M, at B.OeV)vand a U496 band transition along A(criticai-péint
symmetry M, at 3.02eV). The relative intensity of this shoﬁldér'is t00

low compéred with optical reflectivity data. We attribute this-to the

fact that the pseudo-wavefunction dipole matrix elements for the A transi-
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responsible for the main peak at 2.Q eV. The three high eneréy'bumps
6. eV, 7.5 eV, 8.7 eV, in the calculated eg(m) are shif?ed considerebly.from
their experimentél5 values 6.1 ev, 7.4 eV, and 9.5 eV respectively; they>
appear to>arise mainly from clusters of critical points, i.e. there are
a large number of transitions between bands with interband energy in the
above range..

The'aﬁalysie of the GeTe eg(w) spectrum is very'similar.to_fhet of
- SnTe. The onset of the spectrum comes_frem the fundamental band gap6 af L

at 0.23 eV. The ¢, function then drops slightly because of lack of volume,

2
ut it rises quickly aftervo.65 eV, as predicted by the onset of ther
experimental57 transition spectrum. The main peak occurs at 2.1 eV. The

ehoulder'at'5.§ eV is again low in intensity because of small matrix ele-

ments as well as a lack of volume. The two high energy bumps 7.5 eV,

8.25 eV, are shifted from the experimental5

values 6.2 and 7.8 eV._,Again
these arise‘from clusters of critical points.. |

. For PbTe, the onset of the eg(m) spectrum comes from the fundamental
band gap at L near 0.18 eV.7 Transition from bend 5 to 6 atlﬁhe second

valence maximum along X gives rise to the M. critical point at 1.07 eV

0

the spectrum rises sharply above this point. The main peak at 2 eV again
arises from transitions between bands 5 and 7 at 3 and between band 5 and
"6 at A. This energy is 0.2 eV lower than that given by optical reflectivity

vdata.5

The shoulder at 3.1 eV is again low in intensity and given by the
seme transitions as in the case of SnTe and GeTe. The experimental value

of this shoulder is 3.36 V. The two high energy peaks in our €. spectrum

2
(6.9 and 7.6 eV) come from a cluster of critical points, mainly near the
X points in the zone , and they correspond to the two experimental peaks

(6.3 and 7.8 eV) in the optical reflectivity data.”



-

The agféement between the calculafed qptical.specfrum and experiment
is better_ét :‘lo‘w energies than at higher enefgies. This is what ore ‘usually
expeéts for the EPM, however, the shifts from ‘experimer.lt avt. high energies
are rélativély'larger than observéd for 'severalvother crysta‘l's.58_uol We

also note that we are camparing the ;calculated eg(w) with lreflec’ic'ivity

since an experimental ee(m) iz not available.
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v.. ELECTRONIC.BAND STRUCTURE ANDAfERMI'SURFACE NEAR THE
- FUNDAMENTA L ENERGY GAP FOR SnTe. and PbTe
In thls chapter, we present results from a detalled study of the
valence and_conductlon band structure near the fundamental band gap for
PbTé=and'SnTe. 'In the critical point analysis of 62(09 for SnTe; we

discovered that the minimum band gap was.not'at L. If we take a coarse

mesh in evaluating ee(m)5 we obtained an M. critical point for the transi-

0
tion from the top valence band (band.5)‘to the bottom conduction'baﬁd'(band
6) at L,i.e.;, this transition has lower interband energy than the ﬁwb*neigh_
boring k points along the principal axes (these points are éﬂ/a (O.ﬁé9,
0.429, 0.429Y) and 2n/a (0;571, 0.5, 0.429) in the mesh of 356 points we have
chosen for the ee(aﬂ calculation). Howevef, a finer mesh shows that-fer a
mesh point not on thevprincipal axes but close'to$i, i.e. k = 2ﬂ/a.(0,5,
0.5, 0.429), the interband energy (band 5 — band 6) furned out to be 0.06eV

lower than the 0.33%eV given by the L point transition.

A.‘ Electronic Structure Near L for'SnTe, PbTe and

(8n,Pb)Te Alloys

For PbTe the calﬁcleted gap 1s at the L point. The valence bandesym—
metry is L6+ and the conduction band is_L6-. The caLculated epiitting is
0.18eV. In SnTe, the ordering of the bands reverses and the energy surface
at L is a saddle point. The valence band energy decreases.as ehe movés‘
,away from L along A but increases in the direction'perpendicular_to the
A axis at I as shown in Fig. 7. The extrema foir both the valence and
conduction bands lie in the hexagormal face of the Brillouin zone displaced
fromn L by approximately 1/25 of the (l;l,l) reciprocalvlattice yecter.35

The hump'shape of energy bands in the hexagonal face in SnTe results from



alloys of SnTe and PbTe verify this (Fig. 7).
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ordering of bands,at L. Tf'we'expioré {using a simple perturbatibn_mddei)
what happehs as we go from the PbTe band order ing at T to that of SnTe,

v v N . - .
the bands would cross at the point of the hump structure (Fig. T7) if they .

did not interact with each other. The bands do, hdwever, repel e&bh,other,

thus‘formiﬁg gaps at this point. Becéuse of the larger band ma ss aldng A
direction; this hump structure does not appear along this direction. Figure
8 illustrates this in a qualitative Way, The magnitude of the gaps at L

and near-L'are'sensitive_to'the pseudopotential. However, the hump .

shape of the energy bands in the hexagonal face'in SnTe is invariant to the

choice Qf potential once the bands have crossed. Band edge structure for

We have computed the band structure of alloys SnX Pb,  Te for X = 0.25

0.5, and 0.75. The method of computation is straight forward, the

lattice constant, a , was scdled linearly, that is,
PbTe (k.1)

SnTe

n .Pb
a(ng 1-

. Te) = xa_ . =+ (1x)a

“the form'factbrs are then scaled to the alloy lattice constant.according

to Eg. (2.36). The values of lattice constants, form factors and spin-
orbit parameters for the alloys as well as for pure SnTe and pure PbTe
are tabulated in Tabe 3} The resultant band structures very near L_ére
plotfed in Fig. T for the directions parallel and perpendicﬁlarvto the A
axis. Since we are looking atddetailed structure in a small region ‘_
(about 1/16 bf the Brilléuin zong), we have used the El = 10 instead of

9 in this calculation in order tg keép the size.of the'Hamiltoniaﬁ matrix
bonstant_throughout the calculation. This eliminates the possibility:-

of spurious effects in the.band edge structural arising from the different
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convergenée limits of the matrix sizés. The results shown in Fig. 7 clearly
agrees with our prediction Fig. 8.
We might add here that in our critical'point analysis for GeTe, we : -

 found that at point k = or/a (0.5, 0.5, 0.429), .the conduction band is about

~

.002eV lower than that at L but the valence band maximumvstill'occuré at L

so that the interband energy is still a minimum at L. Since GeTe has the
i . . -
SnTe band ordering at L in-ocur EPM calculation, only with a smaller gap

(0.2eV), we expect the GeTe energy bands to be similar to those of Sno 75

Pb, 25Te (Fig. 7d) which has the "hump" structure, but much less prominent

than in the case of SnTe, which has a larger gap equal to 0.33%eV.

B. Fermi Surfaces for PbTe and SnTe

The inversion of the Ordefingcafvthe bands which mékesvthe L éoint of
the zone not an extremum but a saddlé point hés interesting effect on the
Fermi sﬁrfdce of SnTe. Webhave mapped oﬁt the Fermi surfaées bf PbTe and
‘lSnTe. In fhé PbTe case Wevobtdin ellipsoidal sUrfacés centéféd at the L
| point with méjor axis along L, whereas‘for SnTe, each bo&et ofiholes centered
about L consists of mulfiply connected surfacés. We wiil next_discuss the
'method of.conputation and results in the following paragraphs.

Tobﬁap out the energy surfaces, we make use of the symmetry of the
problem'tblchoose the mostnefficient set of sampling points in thevb
Brillouin zone near L, i.e., we would like.to solve the eneréy‘eigenvalue
problem on a computer for the smallest nﬁmber of points possibie and still
'~obtainiﬁg an adequate-picturé of'the eneigy contours. We decided to choose . 4
T a cylindrical co-ordinate system in reciprocal space, with L as the origin
and TL, the A direction, as our z axis. The polar angle QIis then defined

in the planes perpendicular to this z axis. We let = O to be the
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directionﬂparallel'to'ﬂw line; The>three-fold rotation symmetry about the

z axis and the reflectlon symmetry about the 6 = 30° and B = 90 planes

allows us to confine our sampllng polnts in the two regions: (1),0 <6

< 30° and (ii) 60° < © < 90°. Every sampling po:l'nt is defined by its coordi-

e tes (k 0 k’) where k, and k' are the transverse and longitudinal campo-

t

nents of the k vector, expressed in unlts of (2ﬂ/a Sample points are

- taken with k_ in O. 02 (2ﬂ/a) 1ntervals and K in O 04 (em/a) 1ntervals,

t

a nd one.kat most two) value of O in each of regions (i) and (11)'seened
to servebour purpose adeqnately; The energles of other'g ‘points in the
reciproeal'space are'linearly interpolated from the energies of tne érid
of the aboVe sampling points.

The valence band energy contours are drawn in planes of constant k :
k, = 0, k, = .0k (2m/a) and kZ = .08 (EW/a) for SnTe are shown in Flgs
9a, 9b and 9c). We do not show energy contours for PbTe since they are
merely circles for eacn constant kz"plane‘for an ellipsoidal surface;
From these energy contours, we cknmuted,'for.various Fermi energy levels,
the corresponding holevcarrier concentration required tobfill'up to this
level. Thebresults are given in Table k4. |

The Fermi surface of SnTe consists of four pocketg each centered_
abont an L point of the Brillouin zore. For‘low concentration (for»example,
the experimentally attainable 5><lOl9 carriers cm-B),.eachvpocket resembles

"hollowed cylinderﬁ,pthe "mean inneriradius" of this' "hollowed cylinder"

is smallest at L and increases as one moves away from L along the Aﬂ
direction.  For higher carrier concentrations,,the central part of tne

"cylinder" in the immediate vicinity of L becomes filled with carriers and

the cylinder is no longer hollow at this point. For states near the A axis
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feature%3of'the'theoretically calculated Fermi‘surface which persists for

19

all'carrier concentrations greater than 7X10 Hcm-B.' In order to get,a

further laway from L the cylinder remains hollow.. This_is'a characteristic

clearer picture of -the actual Fermi surface,_we made a cardboard model

of e - of the energy pockets w1th an assumed Fermi energy of -0.11 eV (this
energy corresponds to the 0.04 eV contour in Fig. 9.s1nce_the zero_energy
reference-here is taken to be at the.valence maximum.which-is'o.o7ev nigher
than_the energy at L point). This Fermi energy, —O.lleV.cornesponds to
'a.total carrier concentration of approximately 1020 Cm'B, ’The;tWO.Views

of this model in Figl 10 demonstrates the characteristic features'of

the calculated Fermi surface which.were described earlier The three—fold
symmetry and the multiply connected nature of the energy pocket which
‘show up - in Fig 10 explains the use of quotation marks around terms such

as ﬁradius" and "cylinder" used earlier to describe the surface since these
terms implied an analytic surface with a rotational'symmetry_this'sur—
) face does not nave. As stated earlier;'our band structure'also.givesi

a second valence band maximum along 5 direction. However,'in order

for the hole Fermi energy to reach this second valence band maximum,

the calculation predicts.that a carrier concentration of at least
E.Iilogo‘carriers cm_5 must be reached. This is in good agreementvwitn
‘énubnikou—de-Haas experimental dataaa which indicates that the effect of
- the presence of holés in a second valence band becomes evident for'nole
@rrier concentrations greater than 2. OXlO20 Carriers cm_B. 'For lower
carrler concentrations between 1.00 to 1. OBXlO 3,8a all the carriers

can be accounted for in'the four pockets of Fermi surface centered abaut

L. The experimental data for SnTe are canplicated and the exact shape of
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these pdékets_is nﬁt»yet-m@pped out eXpefimentally. TﬁéréfhaVE'beenvéome
sﬁggestionsu; that the “knobsﬁ'oﬁ oﬁr‘theoretical Fermi surface might lead
to extrémal areas'ﬁhich cah ekpiain éome.pf the expefiﬁentai results. However,
becaﬁse éf the.néﬁ-analyticity.of our:calcﬁlated Fermi surface,'Our past‘
attempts to extract extremal areas f%om it in ordefxto C anpa,re With experi-
ments have not been fruitfulf It is thefefére still an open qUestibh
as to the‘exfent'to whiéﬁfou%'presenfithéoreticai.modél'for.ﬁhe Fermi_sﬁr-
face»ofiSnTe'dOrréspondéftb feélityf |

The calculated Fermi surfaée for PbTe are eliipsoids along the_[1,1,11
directions céhtefed at L.. For carrier concenfrations up to-1019 cm—B, the
anisotropy ratiq'sz'm*l/m*% increades élmost linearlthith cdfrier'con—
éentration énd its.value does not exceed two. In particular, for carrier

19

corcentmtions. beloﬁ 0.3x10 ém—3, the anisotropy ratio becdnes.slightly
less than one so that the ellipsoids:afe oblate with respect to the [1,1,1]
.directions. Cyclotron resonance aﬁd Shubnikov;de Haaé8 exbefiments.give
a much larger anisotropic ratio than the theoretical result. vFor a |

18

carrier concentration of 1.2X10 cm—B, the experiments give K = 9. There-
fore, only qualitative ggreemant at high densities with experiment was
obtained fram the calcuiation of Fermi surface for PbTe.

Lastly, we investigatéd andthef band edge propertyf the Variation of

the energy.gap at L for PbTe with changes in the lattice constant. We

have related this to the pressure dependence of the direct gap,

JE h OE

5| - | w2

T T T
the value obtained was BEg/BP]T = -7.Ox10-6 eV/Bar, the experimental

1l



‘ valuehg-{is (7.4 % 0.2)x10 6eV/Bar. ‘The calculated value-involved the

use of t4é~measured-compressibilityée’which give 1/V BV/BP[T = 52.55XIO_6 ‘

xBar'l._ If_in.PbTe, the ordering ofthe bands at L Would-have'been the same

as in SnTe, we would have gotten a positive valﬁé for aEg/BP!T,
We conéludé then that the different band ordering obtained frdm;dur EPM

|
1
|
I

caliculation for SnTe and PbTe is crucial in explaining qualitatively the

experimental Fermi surface results. The ordering is again importént in
giving good.quantitative agreement with experiment for the "anomalbusf
energy gap temperature dependence BEg/BV!T BV/BT[P (Chapter V) and the

positive sign in the pressure dependence BEg/BP[T.in PpTe.
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Expériments at cohstant_pressure show the energy gap of PbTe

increases‘linearly with temperature in the temperature range from 80°K

to 550°K; fdr higher temperatures the_Eg(T)_curve approabhes a. constant
value. The value of the linear temperature coefficient BEg/BTIP lies

between 4.1°F and 4 . 5x10 t eV/OK.42 The positive sign of the temperature
coefficient 1s interesting since most common semiconductors (including
SnTe) have negative temperaturé coefficients. PbTe is therefore .con-

sidered to be "anamolous." In this section, we outline a theofetidal»

calculation of’ BEg/BTfP using the pseudopotential method for PbTe and

compare thé resﬁlts with experiment. We will concludé:this section with
a detailed discussion of our results.

A. Theory of the Explicit Temperature
Dependence of Band Energies

Brooks'aﬁd YﬁB’hh

have shown that the explicit temperature depen-
dence of energy bands in solids may be computed by includingvthe Debye-

Waller factor in the structure factor of the potential. We will essent-

ially rederive thieir result here within the framework of the pseudopotential

method which was outlined in the second chapter.

The Born-OppenheimerA5-apprOximatidncg%lows one to write the Hamil-
tonian for the electrons in solids as if éﬁé?electrdns were in a static
lattice. In the zero temperature band struc%ure calculation in:Chapter IT
we'havebtaken the static iattice to be one where all the cores are at.
the equilibrium position,then soiveifor the eigenvalues EV and the
pseudo-wavefunctions ¢v(£) which are the eigegfunctions:of'fhe‘pSeudo-

Hamiltonian (Eq. 2.15)
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whefe both L and. ¢V(£) correspond t6 cores-assumed to be'in eqﬁiliﬁrium
positioﬁs. At fipite temperature,vthe iattiée iswnot.frozen éq.that'Ev
and‘¢v(§) will be dependent, on the_ihstantaneoﬁs.cofe configuféfiéns.,

We will denote the configurations by' {B the set of'corevco—ordinates,

[’a}’ ‘
£ indexing the primitive cells and @ indexing the basis. Therefore ¢v(§)'
and E_ become ‘¢(£, {Rzya})'and Ev“({Rz,a}) respectively. Since.

. &perimental measurements of the electronic energies cannot be carried out
instantaneously, the observed electronic énergies are'actually the time

average of the energies EV({R }). Assuming the validity of the ergodic

Z’,'Ol

- theorem, we replace the time average by an ensemble average over all the
sets of core wavefunctions. For our calculation, we use the harmonic,
approximation to simplify the potential energy of the core systém, so that

the core wavefunctions Xj ({ R, _}) may be regarded as the wavefunctions

1,
describing the phonon system.‘ dust as in Chapter IT we solved‘fbr'the
band energies by diagonélizing a matrix | |
| (@) |}, - Bl o) - o R
and now Wé take the ensemble average of (5.2), that is |
©Og Ry G L (0 Hy o)) 1% (B 1) D= (B, (B, (1) )y
- (53)
The averaging process in Eq. (5.5) gives rige to a temperature de;eﬁdénce
of the electronic energies at constant volume. -
We proceed first witﬁ the pseudopotential term Vp in Eq.j(§i3>§_the
core motion is accounted for by writingﬂ | | .

V() = % V(r-R,.)), o (5.b)
L ra o e
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where
' S R° -+ B8R T (55)
R 21,0 -8~Z,a_’ | (5 ?)
R; a beihg.the equilibrium position of the.f, & core and S8R, _ the devia=.
=1, : _ : ~

. ‘ ‘ s
‘tion from the equilibrium position, RE o
I _ ! 1,

of the core at some temperafure T. Then

y1s then the instantaneous position

| - e |
V() = S v (e) s, (9) e T E
Goa -7 (5.6)
iG°R |
~L -~ il . 4
-3 (Ve "B v (6) e 18Ry p) MO
1 2~ ’
G .
Equation (5.6) is similar to Egs. (2.9), (2.10) except now R, o
| _ _ : & S , [ =1,
. ° : . o
differs froQZﬁhe Eg,a by Sgg,a‘ We may expand_ﬁgz,a 1nvthe phonon
coprdinates,
. . VO
5R = 5 l/? (e a e1g : Lo
A q,t QMQ Nm%t N ~q, £, 44
. o - |
e—l q-R 1,0 o (5J7)

: a
Eg:t:a . g,t

We recall from Chapter‘II that the pseudo—Wavefunction; [¢v) is expanded
in plane waves and the eigenvalues are obtained by diagonalizing the trun-
ated Hamiltonian ﬁatrix in this plane wave representation, it is clear
then that fhe ensemble averaging process ( )av’ in Eq. (5.3), necessary
for finite temperature calculétions, brings-;n only an additional-
vmultiplicativefactor-of'(e -1 G'SR?,Q )avvin_the zero.tempéfature struc-
ture factors in the Hamiltoniah; Giéuberh6 had shown that for a genefal
m-real-phonon procesé, v

1/m? Am e (1/2 (xj[AEI»xj)a;) = 1/mi AR e | 'lfz (5.8)

where -~ A éi(g—g‘) - B8R, o



we recall from Chapter II that v, = (0,0,0)a and

. ,._30_ :'

and _  ﬁ : o -
w, (lxx'|T) = 1/2 = , —  (en. [ +'1)
~ o~ i . N : -
' q,t QMa mg,t ~_,t
: 0y L _ o
| Gex) - Sq,4,0 =5 - (59
an% ﬁq tmis the average occupation number of phonons ih the mode g, t and
-2W

L the usual Debye4Waller facter. To take care ef the self energy.
correction to the zero temperature band energieé,-we includevall the
processes where Virfuél‘phononS'are.eﬁitted and feabeorbed,_fhatfis~oﬁiy zZero-
real-phonon processes'are_ihcluded ih our»finite_tempeiature ealcﬁiaﬁion,

therefore the finite temperature pseudo-Hamiltonian matrix element in -

'he plane wave representation is,

. . 2 ) .:
2, . y : ik -k) et
= i G+ -~ = o
'S"IE"S . P /2m SE')iﬁ,{ 8S')S Zl € : S

Wy (el ,m) % [y, (fst=xD) s,

. ~ . - . .Y i
-1 (kX%) Ny szs] , , (5410)

' As we have remarked earller, this expreéssion only dlffers from 1ts zZero

temperature analog Eq. (2—22) by the presence of the square root of

Debye-Waller facter,~e4ﬂ, in the structure factor. We may noW deflne the
finitertemperaturevstrﬁctufe.factor ' |
Ak xl,T)

ik k)T

‘vsa(T) ~Q (5 il)

(0.5,0.5,0.5)a

Xa
[

for the IV and VI atoms respectively.

. B. Calculation

1. Evaluation of the Debye-Waller Factor

We first turn to the evaluation of W (|G],T) in Bq. (5.9), (k'-k)
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is now the reciprocal lattice Vector, G. ,Substituting‘

- .
- 2n +1 = + 1
CPRe St [Rgh) g
= coth (m%'t/EkBT) 0 (5.12)
into Egq. (5.9), yields - | i
| - S coth(fm /ek.T)
q,t o a,t ~7
| ‘ . NQ‘ Z coth(ﬁnq,t/ngT) . [2 ., 3
© e 20K O 2, t,0l T
' T SR v ' (5.13)
Now we may write |
Wy (gl ™= /2 e <5Rz v R R

‘since the ensemble average over phonon states of <8R£ a) 1s, using “the

(kflnltlon ‘of SR in Eq. (5.7),

# 1/2.
<R Yoo = 3 —{w ., ® . )
! alav 9,9 ENMd gt "gq't _
t,t!
. . .r v
( {n ,tl Eq,t,a_' ~q',t',Q ag,t ag' t" g,t> av

gy,ti~g,t,0 T ~gt,t'a Tg,t g't' q, av
i No 5 n_ coth (Hm 4.t /2k T)
(er)> % M- ®q, ¢
2 | . ‘ -
l5q, 8,0 g . (5.15)
,t ,

Kefferu7’u8 has evaluated the q integral over the Brlllouln zore numeri-

cally using the PbTe Phonon spectrumcnq L and polarlzatlon vectors eq t,0
2
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obtained by Cochrah et_al_.u9 In Table 5 we tabulate Keffer s resultu7’u8
" at variousutemperatures for Pb-and Te in PbTe. The'tabulated results a
have a common zero point motion contribution to each (SRg a)‘ (T)..
substracted out ‘because our method to determlne the band energles at

T =lO 1nvolves potentlals obtained by fitting a few gaps to experlment
, ,

and|therefore presumably alreainOMElnS the zero p01nt motlon

2. Modlflcatlon of Hamlltonlan Matrix Elements'

Since Wy, ]gl, T) is not equal.tc:W IG[, T), the property of the
vanishing of symmetricfbrmwfactors for odd lg’ and antisymmetric form‘
factors for even leg (discussed in Chapter\II, Eq.s (2.30)—(2;35))

“no longer valid. For finite temperatures, one needs\f ([GI = 3, 11)
and v (l§’2“= L, 8, 12) as well as those requlred_for the zero temperature
calculation, namely v° (IG]2 = b, 8 12) and v (]G[ 3, li); vThese
five addltlonal form factors are obtalned merely by an 1nterpolatlon and
extrapolatlon-scheme using the form factors formerly used. To_be spec1flc;
 given the four values of VS-(IGlg = ﬁ, 8, 12) and VS‘([GJ2 =16) = 0O, |
-we-fit a smooth curve with a polynomial of order three to them and then
jnter'polate'-VS ([G[e = 3,'11); The same procedure is applied to the set
of VA's. -

Finally, to obtain the total temperature depeodence of the bapd-.

“energies in our calculation, we must include the lattice expansion with
ihcreasing temperature. The change in lattrce constant a, modlfles

the Hamiltonian matrix element in the following terms: (1) the kinetic
energy term scales as a > since k is expressed in units of (Qﬂ/a),r(é)
all the reciprocal lattice vectors scale as (em/a) vy definition‘and (3).

the pseudopotential form factors
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v (G = Q/QfVa-(llgl') gL dP{ - | (5.16)

scale accerding>fo.g in the exponential as well as the volume faetorAb
Q= aB/&. We have aseumed'Va([rl), the atomic pseudopotential to beA
independeht of temperature in our sealing procees, which is the rigid
ion assumption. |

We new.have all the tools to calculate the temperatﬁre dependent band
structurevwithin fhe framework of thevpseudopofential method; the actual
procedure_used for PbTe wili be summarized:

>‘v(a) We determined the latﬁice constant a(T) for various tehperatures
in the range T-= 0% to LOO°K from ex?erimehtal data.5o The experimental
expansion coefficient q = l/a(Aa/ZﬁwI,.is constent above T =.100°K and
has tﬁe valﬁe 1.97X10-6/9K§.fer.temperatﬁres less than 100°K, « increases
with tempera,ture‘. The lattice consfants a(T) are listed in Table 6. |
B (b),.For the Debye{Waller effect, we now'heed both symmetric and

antifsymmetric structure factors (SS and SA, respectively) and the symme -
tric_and entisymmetric form factors‘(VS and VA) at values 5f ]G[2 = (2n/a)2
(3, 4, 8, 11, 12). Therefore the [G[2 are explicitly functionsjof lattice
constant'a (in the discussion for the Zero temperature band structure
calculation in Chapter II, we have assumed implicitly that G is measured
in units of (2m/2) and for abbreviation, used 16| = 3,4,8,11,12).

(c) The form factors are scaled and interpolated to thev[Gfg
appropriate to the lattice constant a(T), as described in earlier part
of this section. o

(d) The Debye-Waller facﬁérs_ S

o (Jal, o) _ /e 6 eRGa ) (5:17)
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are included.in the.structure‘factors so that for PbTe,

. . ' ‘ 2
Sp, (G,”jj) = e‘lg"fpb'_ e“WEb (lal,m - 8)_
Gorp, o (J6lE, T (518
51 (G, T) = e < Te e Te' ™
and - | A

57(6,7) = (8, (6, 1) *+ 5y, (6,1))/2 e

A o (5. 19

s (G,T) = (st (G, T) - Sre (G,j}))/ei o

(e) The truncated pseudo-Hamiltonian matrix with modifications (a),
(b), (c) and (d) is then diagonalized as discussed in Chapter IT to
obtain the energies, for finite temperature. The reference zero temperature

form factors are tabulated in Table

C. Temperature Dependent Energy Gap Results

Table 7 glves the temperature dependence of the fundamental energy

" gap at L, E (T) is giwen at nine temperatures in the temperature range

T = lOO K to AOO K. The curve E (T) versus T is also plotted in FlgT 11
together with- optlcal experlmental data. 51 Although we.obtain the correct
p081t1ve sign for the temperature coefflclent BE /BT[ its magnitude in’
the temperature range where Eq(T) is almost linear-is only 2V.25><lO-’LL eV/dK
between T = lOOéKvand T = 300°K. Opticaliexperiments51 give h;1x1o'4 eV/°K

between T = 100°K and 350°K. We - believe that our formulation of -the

theory of the temperature dependence of the energy band structure is

‘Correct, but the agreement between experiment and theory is not entirely

satisfactory. Therefore, in the following section, we consider various

possible causes for the low theoretical value of BEq/BTIP
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D. Discussion of.aEq/BTlP

(1)  Our first attempt at a morevdetailed_analyses is to separate the
iattice effect from the DebyeJWailér effect in the temperature dependent
band structﬁre calculation. Sinéé.the two_convenient'variables‘fbr
theoretiﬁal calculations §f the tempérétuxe coefficient are voiuﬁe and

temperature,-the temperature coefficient for the ehérgy gap Eg(V,T) at

constant pressure is: .

oE (v,T). JE (v,T) oy oE (v,T) | -
T o v | T :
P - T lp ly
| . ' N (5.20)
We first consider the first term in Eq. (5.18). Suppose we scale
) : 8 5 »
the five zero teémperature form factors V (G2 = 4,8,12) and VA(]GI2 = 3,11)
to values corresponding to lattice constants at (T = 100°K) and a(T = 300°K),
we obtain
EEg (T = 300°K) - Eg(T = 100°K)] /200°K = 1.75x10'u ev(qx)*}
(5.21)

If we use the experimentally measured pressure dependence of the energy
gap, 2 cbmpressibility and expansion coefficient to obtain the first term

in (Eq. 5.20), we deduce a value of 1.7x107

_eV(QK)_l for PbTe. The agree-
ment between theory and experiment results is very good for léttice éffeCtﬂ
-alone.
Now we turn to the second term aEg/aT[V in Eq. (5.20). We take the
' : S : .

set of zero, temperature form factors V (IGIQ = 4,8,12) and VA ([G!2 = 3,11)
. s 2 'VA 2 .
and interpolate V= (|G| = 3,11) and V (|G|~ = 4,8,12). Then we put in

..... S A .
. The lattice

constant a._is constrained to be the zero temperature value throughout this

calculatioh. The gap energies as a function of temperature coming from

T
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this Debye—Waller effect alone are given in Table 8 Wernote thevfollowing
p01nts from Table 8 | o | |

(a) ,The'temperature coefficient iS'very small,'on the’auerage3 it
is'about a factor of three to fourismaller than that'conung fran tha
laﬁtice effect alone. it is therefore necessary to keep‘values of Eg’
expressed in eV up to-the fourthﬁdecimal pointbin Tableh8 in order to get
a picture of how_the energy gap mores with respect to'temperature._ We
recall that our.calculation gives conuergence of energies with respect
to El (Chapter IT) only up to O.l'eV, but When we are loohing at one'point
of the~Brillouin zone, the Site of the Hamiltonian matrix to be diagona—

lized remains constant from one temperature calculatlon to another and

. oar comparison of energies up to the fourth decimal place is valid in

this context.

'(b). It is interesting to note that the temperature coeff1c1ent

: (ariSing only from the DebyeJWaller effect) OE /BT] is pos1tive from:Oo

to 300° K but for temperatures greater than 300° K, BE /BT[ becomes negative.
Our- calculation stopped at MOO K, limited by the unavailability of Debye- .

Waller factors for higher temperatures. If we were to predict that

BEg/BT IV will continue to be negative for higher temperatures, then_this

will bring about a_flattening of the theoretical curve,Eg(T) (the total
temperaturevdependent energy gap,'containing both lattice and Debye-
Waller effects) versus T (refer to Fig..ll), This flattening_of»Eg(T)
versus T above 550°K is a characteristic feature of the experimental data;
From the above discussion_it is apparent that the discrepancy betueen
»the total.theoretical temperature'coefficient and the experimental result

arises ma inly from the DebyeAWaller and not the lattice effect. We pro-
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ceed. to_investigatevthe'sensitivity of the ﬁebyeéwaller temperature
effect ae a function of‘different sete'ef form factorsvuSed

(2) In thls sectlon,vtemperature coeff1c1ent will always meen
agg/aml that is, that part arising only frometbe Debye—Waller effect.

In Table 9, we llst the gix energy levelsvat L and thelr temperature
coefficiemts from our empirical pseudopotential bend structure calcula-
tion, together with energies'given’by.other-peeudopotential, (%,QEAPW
11,51-55 |

and OPW calculatlons by various authors A close examination

of this table shows the following: 1) The energiesvofvall.leveis,_.
except one level (Lower L6+) from our ealculatiou agreee well uithrthoee
glven by‘ether eelculations, our lower L6+‘level is onbthe avezege 1;5 eV
lower than ail other calculations; 2);_the temperaturevcoefficiente of
all levels is positive,vbut‘the L6— level at the-cenduction edge has a
slightly iarger BEﬁ/BT] than the . L6 level at the valence edge, g1v1ng
rise to a net aEg/BT]_ of 0. 3 eV/°K between T = 100° K and 300°K -(the
experimental value is é.hxlo— eV/°K)§ 3) the lower L6 level has an

4 eV/oK,

extraordinary large temperature coefficient BE_/BT[V = 12.8x10
ae~compared with values between 4.5 to 7.9Xlo_h eV/°K for the other

energy leVels. From_these three points, our first gueés is te'relate

the energ& eeparationjof our lower L6+-level from the gap to the smallness
of our gap temperature'coefficient. We are therefore led:to the follewing
question: . if we were to bring the lower L6+ level'up to be near the gap;

as in other theoretical. calculatlons, can the large temperature coeffi-

clent of the lOWer L6 have the effect of enlarglng the gap temperature

coefflclent? Tovobtain an. answer to the above, we did the follcw1ng

analysis:



Given the. eriginal~set'ofvform-factors, which we hereafter call
set A we vary the form factorq one at a tlne to. move the lOWer Lé+ level,'
keeping the orderlng of all the energy levels at L unchanged It turns
out that only the two antnsymmetrlc form factors VA(B) and.VA(ll) have

+
any apprecrable effect on the lower L6 level,

|t - |
i' | ~ 2to03, and o (5.22)

avA

.. s . s . . _ o e
variations of V (h) and V (8) have almost no effect on this lower Lg level,

JR. +
Lg

—s-—| £ & = (5.3)
av® (12) o

The upper llmlt of varlatlon of each form factor is +O Ol Rydberg and the
lower limit ;s governed by the crlterlon that the orderlng of the energy
levels at L should.be the same, regardless.of the set of form facters
us ed and‘the temperatures In partlcular, we require the valence band
edge to have symmetry L6 and the conduction band edge to have symmetry
' L6-’ The resultant set of form factors used, labeled set A through set |
G, are tabulated in Table 10. For each set of form factors,_we‘calculated
the energies at L for T'; Oé,leO° and 300°K, including only the Debye-
Waller effect for the finite temperature calculatione. We obtain the
temperature coefficient BE/BT[V between 100°K and 300°K for each level
 from the.finite temperature calculations. These results are.listed in -
Table 11.

We then analyze the data tabulated in Table 11 by correlatlng the

temperature coefflclents of the top valence and the bottam corductlon.

vands with the energy separations: top valence L6 to lower L6 , top
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' + : S _ - - o+
valence Lg to upper'L6 ,  bottom COnduction_L6 to lower L6 and
bottom conduction LG- to uppef L6-‘ The temperature coefficient of the
gap, BEg/BT[V is

. S dE. +
o | Lg T

' o= _—_ L (5.24)
L T M

We observe the following as.a result of our analysis:
(a) The temperature coefficient of each energy level fluctuate
only slightly as different sets of form factors éré used, it varies at’

most bjf‘l.l'px'lo‘LL

eV/oK.
,(b)v Sets B and C correspond to a Vafiation_of the form”factoré

VA(B) froﬁ éet A, and results for sets A, Bvand.C indicate’thét when .
both'the uppér L6_ and lower L6+ levels are close to the t@plvélenbe

and bbttom conduction le#els, aEg/BTIV intreases%' Sets D and Efcofrespond.
to the Variétion of the forﬁ factor VA(ll) fromkset A; fesults‘fbrvséts

A, D and EvShow.that BEg/BT[V is larger when upper L6;‘level.is close to
top valence L6+ and lower L6+ level is close to bottom cmduction Léj'
These results also require that the two L6T conduction levelsvbe kept
apart‘as Well.as the two L6+ valence band be kept apart for avlarger .
BEg/BT[V. Lastly, sets F and G correspond to the variation of.VS(IE)' |
fram set Ai‘ Thé energies and temperatﬁre coefficients for the éets A,
F; G indicate that in ondef to obtain a larger BEg/BTIV, the‘uppér Lé—
levei should bé close fo the top valénce L6+. 'Howéver, the energy
differeﬁée between the upper L6- and'tqp valence L6+ should be 1arge;v

. ' ’ Hlr , -
and the gplitting between the lower L6 and the bottom canductim L6

" should also be large.
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Fro% (bj.it is obVious tnat'no simple conclusion. may be'drawn from:
the‘anal§siS' results fron sets A, B, B and sets A, F G are contradlctory
However,?lf we now correlate the temperature coefflcrent w1th the gap
size, We get a con31stent_trend.> In Table 12 we tabulate the energy gap
in‘one column and the”temperature coefficient in another; these numbers
'invariably show that.a smaller gap correséonds to a larger temperaturé
coefficient withinleach’éroup of form factor sets: {A,B,C} {A,D,ﬁ} and

{A,F,G},'anch group of form factor'sets corresponé to_variation of one

| form factorvby notcmore than 0.01 Ryl‘fron the starting set A. Table 12
essentlally shows that if we were to keep a gap size con31stent with
experiment, then we have to accept a gap temperature coefficient which
is far smaller than the experlmentally predlcted value, on-the ctherl‘
hand, 1f we were to allow the gap to go to nearly-zero (O 02 eV) then
OE /BTI reaches a value of 1.3y%10 - eV/°K, closer to the experlmentally
predlcted value 2.hx10" - eV/ K than our orlglnal 0.3x10 - eV/ K. It
appears that we cannot do too much better since we need to keep the correct
order1ng oflthe top valence and bottom conduction bands at L._ We Wlll
have futher discussion on thls point later, in the meantime,‘we turn
once again to the temperature effect coming from lattice expansion;

(3). We have shown in section (1) of this chapter that our theore-
tical calcnlation of the contribution to aEg/BTlP from.lattice:expansion
alone nsing form factor set (A) gives good agreement with exneriment.

Our calculation gives (BEg/BVIT) (BV/BTIP) = 1.75X10'u eV/°K while

experiment yields l.’Z><lO-lL eV/°K. In section (2) we show that by

variation of certain form factors, we may improve our BEg/aTIV calculation
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(wﬁich is the other‘conﬁribution to aﬁg/éT'P’ the total‘tempérétufev
coefficiept of the gap)g it is fheréfore necessary that we also invesfi-_
gate the éehsitivity of the lattice contribution. to BEé/BT[P by the -
variation of the form féctofs.: To ta$e care of only‘thé lattice.effeCt,

we take the lattice constants at 100°K and 300°K, scale the zero'ﬁempera;A
t ure form féctor sets A‘through G to these twovtemperatures and calcuiate
the eneféies at L fof these temperatdres. ih Table 15, we tabulate the
resultant temperature coefficients BE/BV]T BV/BT]P for the levels at L

betweeﬁ 100°K and 300°K ﬁéingvfhévsets of form factors A through G

(i.f. Table 11 for JE/AT| ). Table 13 indicates the following:

(a) Unlike the Debye;Waller effect, the lattice effecﬁ gi&es com-

parable values of the ﬁemperaturé éoefficienté fér.all levels ét‘L.

They all f&all between (3 to 5)><1o'lL eV/°K; there is not ome 1evei’£hat

has an éxceptionallyvlarge value of BE/BV[T BV/BT]P as in thévCasezof .
BE/BT[V. B | | |

(b) The fluctuation of the temperature coefficients arising from

lattice effects as we vary the sets of form faétors is only half of fhat

found for DebyeJWaller effect, that is, these temperature coéfficients are

not very sensitive to the variétion of form factors. Thé raﬁge of vélues
L

of 3E 3V, /3|y is between (1.35 to 2.2)x10™" eV/°K ag the form factors

are varied up to'OLQl;Ry.; all are in fair agreément with thevexperiméntal

b eV/oK.

value l.?xlO—
Based on the above investigations, we conclude this chapter with
the following remarks: (1) the correct ordering of bands at the gap

which We_bbtained from the empirical pseudopotential method is crucial

~in giving the correct poSitive sign for the temperature ccefficient for



PpTe. For SnTe,bbecause DebyeJWaller'factofs are:not available at
presént; we have only calculated the lattice effect term. The value of

-BEg(V’T)/aVlT BV/BT[P for SnTe using the expansion coefficient

o = fEyeverl, = 170 (°n 7 (5.25)
18 —l.h8klO_F eV/oK for the temperature coefficient due only»to the -
‘lattice effect. The sign is”again correcf»for SnTé, (2) the_ﬁagnitude

of BEg/BT’V is very sensitive to the starting set of zero temperatuyg
_férm factors. Beéaﬁse of the non-ﬁniqueness of the pseudopotential- in
fitting the.Bénd gaps? it is conceivable that if.Wevhad.used.more form
factofs as pafameters (e.g. the antisymmétric form féétor fbr high [G[g),_
we could hafe‘attainéd the objective bf'bbth keepiné,the.cdrfect.ordéring
:.and magnitude of gap éndrgettingbthe right magnitude»forvthe tenpefature
coefficiént BEg/aT]P. The'eXéeptiohally lafgevenergy'differéﬁée (as
comparedeith other calculationéll’5l_5% beﬁween the’léwér and'&algnce
L6+ levels for form factors sets A fhfough G,(Tables“9.and il) may Well‘ﬁe
the cause of the discrepancy bétWéen calculated value of aEg/aTlV-and
experimentalvvalue; that is, a set of form factors which give the'proper
»lenergies of all levels at' L could give the desired magnitude'for the .
tem@erature coéfficient raEg/BT[P.,, (3) Table 9 indicate svthafl aEg'/aT[V
(a small number) was obtained by substracting the energy coefficients

of one level from the other (béth of which are large numbers) so that

any disgrepancy in the calculated temperature'coefficiént of each level

is magnified by avfactor of 2 in the reSultanﬁ gap temperature coefficient.
A correction of 10—20%'in the temperature coefficient of the vaieﬁcé v

+ : - '
L6 and conduction'L6 levels arising from form factors change Table 11

could give the correct BEg/BT[§
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VI. DEFORMATION POTENTIAL

A. Introdiuction

In early investigations into the'possibility of superéonductivity

5k, 55

in degenerate §uperconductors,'Cohen‘s calculations indiqated.that'—
superconductivity was possible in highly.doped, ﬁany—valley semiconductors
With.largé static dieléctfic constants. It was expected that these

.n@terials Would be éuperconducting around O.l°K, that the éupérconducting
ﬁransition temperature‘Té, should bé a function of carrier density, n, ..
and that these materials would be type II superconductors.

Boﬁh SnTe and GeTe havé the desired normal state probezties andv
experiments have showh these materialsgru to be superconductiﬁg. In
additioﬁ,‘experiments56-58 on powdered samples and heat éapaciﬁy measure-
ment have firmly es£ablished that superconductivity was a buikveffect in
these métérials. The first suﬁerconducting propeity to be exblored in
detail was the dependence of the superconducting transition temperatﬁrev
on carrier céncentration, Tc(n); for both GeTe and SnTe superconductivity
was found to exist over a wide range of carrier concentration.B’u’58

A recent calculation52’59vof Tc(n) has been made. This calculation
involves 6ne adjustable parameter E, the def ormat ion potential which
measured the strength of fhevelectroﬁ:phonon coupling fof electroné'v
which are scattered fran one Fermi-surface pocket near T to another by
exchanging a short wavelength phonon. The inversion symmetry of £h¢ rock-
salt structure forbids non-zero elecgyon—phonon matrix elements connecting
electrons from one L point fo another.in the Brillouin zone. We have

therefore investigated the matrix elements between electronic states in

the L valleys near the L point.
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'~ B. Theory and Calculation
We take our band structure pseudopotential and a-rigid ion model -

forvthe electron—phoﬁon interaction,

' = X V -R 'R 6.
34 e—ph | - V (r ) 5 7 (6.1)

where V (r R ) is the pseudopotential about the atom core in 1ts
equilibrium position with lattice index I, and basis index Q, 8§£a is

the dispiacement of the core from 1ts equilibrium position R}d;'IWe

Fourier analyze v!a and express the displacement. BR

R o in termsfof.phcnon

co-ordinates:

9 ig-(r - R,) 3.
. _ R = —— 2\ T2
V/Zoz (z ~Ix ) (2.,“,)’5 f Vg a e fo d ¢ (6.2)
L \1/2 1Q°R° iQR®
R = (#n/oM e b _ _
BR (#/2 ng,t) S €7 Ay &g &~ M0
_ o . (6.3)
L B : -
where Ma is the mass of the &" atom in the primitive cell with volume
Q,;%,is the wave vector of the fth mode phonon"with frequency £ énd
: : Q,t T

€ray is the polarization vector connected with the'tth mode and the dth'

atom. - Putting Eq. (6.2) and (6.3) into Eq. (6.1) wé'get,

3
H e~ ! o (%)3 f 4 (1% ~to:) Bea ¥ qo L
1Q R° (6.4)
elg-(E—Rza) ~ <l
If we write R = ; + Ty then Eq. (6.4) becomes. ‘
o i(@-q) T, - . N\ mo
) : ig.r ~2 o 1(Q-9) 'Ry
d"q (ig-e, ) AV e 2% e S e ‘2R

.2 3 igr 1(Q-g) -t -
=3 .f____.ir &g (ig-e, ) A,V e 2 2 oM\ E o NS '
o (2m)” S Y
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where we used = e

i(%‘@) 'Ry _ N 5} |

.. S _ , ' (6;6)
In Eq. (6.5) G is the reciprocal lattice vector and N the number of .-
primitive cells in the crystal. Since the sum over lattice sites gives
us the Kronecker delta relation q = g'- G, the integral over g' values
may be written as a sum over discrete réciprocal_lattice véctors G,

converting the sum to an integral. Equation (6.5) becomes

: ' 1/2 . .

Hr I T R - S (Q-G) V.. . . el(%'g)'lﬁ
L= oG eMal\hsq’t ~£Q ~TeG,a : N

x e 2t s

If an electron isscattered from a state ¢ks in one valley to a state ¢k,s,

~ ~ o~

invanbbher valley by a phonon with wave vector g, the deformation potential

£ for crystal with only one‘fype of atom is defined54 as -

~

o . -
: ‘“’%‘s" Ml bes)| = —2——%%—* - (69

where v ig thevaegeneraéy of the phonon which connécts the kS and k's'
states. In our calculation, we have used the pseudo-wavefunctions for
ﬂé oh term. Because the initial and final electronic states of an inter-

v alley process both lie on the Fermi surface, with the same energy,

and as we mentioned before, the pseudopotential in the perturbation

Shém's theorem6o justifies our use of the pseudofwavefunctions and
pseudopotential in the calcudation of the electron-phoneon matrix element ,
the resﬁlté " will be’ - the same if we were to use the‘real‘poteﬁtiél
and the real electronic wave functions.

To modify the definition (6.8) to our case of two atoms per primi-

tive cell, we may write M = (Mi+M2)/2 in place of M on the right side



of Eq. (6;85; then..the deformation potential & may be written out explicity,
elG'Ta

a.

x Gl SEDT e N 6

From Chapter II, Eq. (2.33) and Eg. (6.-9), one obtains

=] ) ey (90 Vg g
£ ) 1gp @) Vo go T
x (6] HEB T 12  (6.10)

where the plus sigﬁ ap@ly.to‘thekevenvg‘s;and the minus,to-thé'odd,g’é'
in the’ summation. ” )
We outline the actual computétionvof Eq. (6,10)
(l) Since the pseudo—wévefunctionS' ¢ks are expanded in abouﬁ thirty

~

plane waves in our band structure calculation,

. N 1 . ) . ) . L '
¢ké - s ks -e1(§+§ )_E s S (6.11)
T~ G' - G' ~ : _ .

the matrix element in Eq. (6.11) becomes

' <¢k's'[ei(@-§)'£. |¢k_s‘) -

- 3 ks gks il-(e ) HQ-6) (g - x
gl 5 g" G' G" } o
* - o
. k's! ks : v
= 2 Cr C~, Bgn . 6.12
e gl ' Gu g' s '[(@’g)+(1§'}§') _ g ]. . ( 1 )

" (2) The wave vector of the intervalley phonon Q = k'-k ‘is'nbt‘a
reciproéal 1attice vector,  we thérefore need to interpolate given values

of Vs(g) and'vA(g) to obtain Vs(g—g) and VA(@—Q) since-in_pgeudopotehﬁial



band structure'calculation, pseudOpotential form factqrskare only given
, S ) - 5 4
~for reciprocal lattice vectors G such that la]© < 12.
- ' S A . _ o
(3)  Whereas: V and V. are convenient in the band structure cal-

are useful in this calculation,'therefoxe,

and V
. |

culation, clearly, V 5

1

we need the decomposition !

. . : (6.13)
T,(9-0) = V(@-g) - vH(g-8) o

(4) We consider the scattering of electrons fromvoné'valléy to
another by coupling to a_longitudinal acoustic phonon, that is)'wé consider
are parallel to the: phonon wave

cases where the-polarization,vectorsﬁeta

vector Q. . _ _
(5) The wave vector Q éonnecting the I point (l/2,l/2él/2) Eﬂ/éi
and T' = (-1/2,1/2,1/2) 2r/a is: | |
) . 'g - L' -1 = (1,0,0) 2n/a - ‘ (6.14)
Therefore an X phonoh éonnects'tWo.non—equiﬁalenf L points, the céupling
by this particular Q is idénticallﬁ“zero; simply beéause the-electronic
| wave functions have définite parity at the symmetry point L while all
phonons in rocksalt structure are odd. This predictiQn is verified by
our compuﬁation, we obtain £=0 for the Q = (1,0,0) 2ﬂ/a coupling.
| For bdth PbTe and SnTe, the Fermi surface of holés,centers about
the L points in the Brillouin zone. if we define lég! to be the mean
radius of the Fermi surf@pe from the L point in k space, then E

iy

)
|ak| < 0,045 (2n/anTe
18 -3

) fpr typical PbTe carrier concentrations up to
8107 em . For SnTe,zfA%{ is about 0.11 (QW/aSnTe) for moderate

o 20 -3 .- .. C . '
concentrations 10 cm > (h;gher carrier concentrations in the range



.

1021 cm_5 are also commOn for SnTé)ﬂ The estimated values of [Aﬁ{ are

derived from our Fermi surface calculations, which we discussed in
Chapter IV. TFor our calculation of & the initial and final electronic

state;¢ks, ¢k's’ are allowed to have'g vectofs such that

5 - (/21202 enfe | 5 ol

‘and

o | | (6.15)
Iz - (-1/2,1/2,1/2) 2nfa | < o] .

(6) Siﬁce [A%] << ]gf; a reciprocal lattice vector, the phonon
exchanged when electrons.are écattéredvfrom a étate near L to>a fipal
statglneaf‘Lf will have & wave véétor Q very close to that of an X phonon
that is, the phondns'that aré couﬁled to the electroné within the Fermi
surface are essentially zoﬁevedge'phonons_whichyéive,modes involving
essentially thé métion of only one atom.(when'thefe are two in:the“érimi—

tive cell). We label mode a such that

€ = 1. : o L
~al ,' - (616)
. | | € = 0 : : .
and médé b such that |
W - (6.17)
o = 0 . :

We assume these two modes for all our‘computations.

C. Results and Discussions

For SnTe we select six states at random near L, these are indexéd’by
the k vectors, 51 through E6 which are listed in Table 14. The correspond-

ing states in another vailey centered about.L' will be labeled by El’

“through 56 respectively. The primed k,' are related to the unprimed

1



hgo

ones as the following:

1]
—~~
w
h .
b
5
~

5 ~1 x ¥y oz - (6-18)

then kb= (R, ko k).

We allow eiectrons to_écatter from the unprimed to the primed valley.
| .

Th

D

'reSUitaht deformatiqn g obtained for the t&o phonon‘modes.a and 5
for sevefal.scattering prdcessés in SnTe afe ﬁébulated in Table 15.
The corrééponding k vectors and déformaﬁion'potentials.results for PbTe
are tabﬁlated in Tables lé,and.lY respéctively.

Both SnTe and PbTe give §.on the order of a few elecfroh vol£$;
Although "our calculation verifies the selection rule forbidding scatter-
ing'from L"to L', as we obtain zero-for this process, it -seems
that as soon as [Akl is sllghtly larger than zero, t already Jumps to a
flnlte value Our calculatlon shows no con51stent trend,e.g. £ does |
not appedr td increase: from zero as ]AQIL when the initial and final
states are IA%[ from L and L' in the range of ‘A%I which we considered
here. 1In addition, we found that the value of & is.enhanced_if we were
to allow the pseudopotentlal to tail off more slowly, i.e. fo allow' 
hlgher IG[ cut off values for the pseudopotential form factoré. These
led us to believe that our calculation of & in this pseﬁdopotential'
formulationvphly‘givés qualifafively“reliable'reSults.There probably is
little pféfit in a pomplete quéntitative calgulation of the value of &,
'obtaihéd by averaging ;ll the électron scatterings over.the Férmi surfaéé
It is sufficient for our purpose that the value of & we obtained for SnTe
is‘roughly the same as that used . by Allen and.Cohen52’59 (théir va lues

of t were 2.35, 2.6% eV) to explain the superconductivity properties of
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SnT_e. This calcuiation and"the_ resul’ps in Tabl'es: 15 avndv' 'l‘7 1nd1cat es‘
that 5 is vli"oughvly fhé’ .s.ame. in both materials, re’gar’dleé.:s.'of _t_hej .ofder_ing
of the bé.r_ld's at the band edge. The fact that PbTe 'i_s,‘not-_. su'pe_ré’ohdﬁéting -
is probably due to thé. vsmaller. carrier concentration :in PbTe and tot due
to the facﬁ that ";he electron phonon coupling. in_PbTe is weaker tl’an

that in SnTe.
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* APPENDIX A
Simplification and Fvaluation -of the Spin-
: Orbit Matrix Eleément

. ' - - p-C - .
We evaluate the terms Qp = éc P ép © and QC ¢ from Eq. (2.19)°

in turn. v ' \
- . _". '.- 9
m C :
E 22 ' : o (A1)
= (1/n"c” M) Ipp,. - T

Where N is the number of primitive cells and @ is the volume of each

cell, l/NQ_comes from the normalization of the plane wave states,ﬂand

' gt e
I & = J!ne i W X p elE z dBr
. pp » ~ ~ ~
' et en
= Vyx h}g e (IE }f. ) r d5£
_ . ey . .
-v Vv ( {k-x') £ S ]

The first term of the integral in (A.2) is Zero because if we expand the

real crystal potential in reciprocal lattice vectors,

V(r) = = U(e) €T, | (A.3)
_ G . :
This term becomes
’ ’ s t. .
-tk x [ 2 i(k-k' +G) U(G) o H-k G dBE _
!
o 5 : (A.4)
= Mk x % i(k-k'+G) U(G) & (k-k'*G) N2 = O

G

where we have used the notation U(G), for the Fourier transform of the

arystal potential to distinguish it from V(G), that of the pseudopotential
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in Chapter II.
The second term in (A.2) is
. ) . . - k! . . ) )
g x () [ HEEDT S im0 3 v, (k)
X 8y (x'-5) 1o o (2.5)
where S (k'-k) is the structure factor as defined in Egs. (2.9) and'(2.10)
and Ud'(geg’) is the fourier transform of the atomic crystal potential .

centered about the Oﬁh atan.in a primitive cell. Therefore,

‘ 5 o ] . . .
PP e T (0w 3 s D G (kD). )
m ¢ a o e

For the calculation of ép-c, ép—p and QC—Q we make the following
‘assumptions: (1) Whenevervé operates on a core state, [bt), é is.
" approximated by

2t <Ir:1; Bt @

where 1 is the primitive cell index and & the basis index, -g is‘the

dimensionless angular momentum operator and

#° o ovzR D

i c®  [rRigl o 3lz-Ryl

t (zm)) - @8

V(lgfgial) is just the atomic crystal potential centered about the ot

atom in_the‘ith primitive cell.
(2) The core states are'expressed in terms of spherical harmoni cs

Y? and a radical function R that is

nt’

by = Py (1) = iza R (zB]) ¥y (6,9)

(2.9)

Both assumptions (1) and (2) are based on the fact that spin-orbit inter-
action is localized near the core so that the core states are little

changed from atomic orbitals. (3) The plane wave states may also be
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m
)2

expressed in spherical harmoniecs Y, so that:-ﬁ

. oG
elbz': Z

(lA.lO)
! -

i [un(2e+1) 12 3, (kr) Y,
0 - T

©  where sz(9’¢) is therépﬁerical ha?monic with'ﬁhe rotation index m ¥§jz =0
with z defined in the k direction. | | _ | | | |
Now we have to eVéluafe three types of integralsf'(%'[bt), -
(E'Iélbt> and (bﬂlAJbt); the matrix ?lements ép—g ép;c and éé_c are
vjust different combinations of thesefintegrals. We first note thaﬁ'oné
always géts a structure factsr fran theée integrals, merely due to the
fact that the core stétes'lbt) is a sum ovér all lattice and basic sites
(Eq. A.9). For exémple, | ,‘
(k') = (m—)f{/-é— fe'ik"riza R, (lr-R 1) Y, (6,0)r (a.11)
. s - ’ o )

with a chahge of variable from E—Bia to g', Eq..(A.ll)ﬁbecones

-ik'*R e_iEf-{t R (r') Y? (6,@) d?gr (A.lé)

1 ‘
7 2 e T~ ~io
€10 R A nL
. -ik'R,. . S : . | :
Tt is the ¢ ~~ ~i in Eq. (A.12) which gives rise to a structure factor.
The reminaing intergration is over the atomic co-ordinate r'.
All three integrals can also be factored into a radial and an angular

part, we examine the radial part first. (btlg') involves a radiai integral

as follows: _ ‘ :
izQ[@W(2£+l)]l/2 j (k'r') R (r')r'2 ar' = B_, (k') (A.13)
' , 2 nf nf :
Similarly,(btléjgy‘iﬂvblves,ﬂputﬁing aside:the structure factor the radial
integral”

A (k) = fi %Elm@m}]l/g i, (krt) & (r') R, (r") r'2 art (A.14) -

From Eq.s (2.19), (A.15)'and (A.1L4)  we ~see.: that ép_c and-ép—p involves

a summation over all the core states (indexed by guantum numbers n and £ )

of products A_,(k) B *(k') snd A (k') B (k) reépeéti&ely By makiné
nf*~" "nf ~ nf nf:’ , T

the reasonable
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assumption that

: <btll‘élbt> - AS-O St,t’ 3.

o (a15)
i.e the atomic spin;orbit épliﬁting of thé energy leVel t=nl, we may
' . nf

*
') JAN
nf (k") Bn£<k) g-o °

write écnc'also in terms of summation of products B
Our first attempt in sélving these integrals involved the use of

6 ‘ .
Slater orbitals . for the core state, these orbitals are essentially
riodeless hydrogen- like wavefunctions with an effective charge. We used

the Coulomb potential with the same effective charge in the spin'orbit 

interaction £ (E) Q,‘ g. We found from the evaluation of these integrals -

that Ap_é-is at least three orders of magnitude larger than the prc terms

which in turn are orders of magnitude larger than ép—p. This result is

‘not surprising since the spin-orbit interaction is a localized one and

we would therefore expect the core-core comtribution, Q?-C, to dominate.

Now we consider the angular matrix element

<Y£.Ef l'g IY15> = <Y£§,I£IY£§> S : . (A,lé)

in the.écic term. We define a set of right hand orthonormal cartesian

axes {cl,cg,c5} such that

k' = k' '83 S (A.17)
k = k sin 6 Ei + k cos @ @5, ”._-(A}18)
and the operator L isy ’
b4 = f.c. + 1 c_+ [ T -
*1 'y 2 =z 3 (A.19)
(2. +12) (£2.-2) '
= t = + —= T v T

T

©
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In other words, k may be obtained from_§' by a rotation operation R(a,B,y)»
of =7y =0,8-= 6, where ¢, B,¥y are the usual Eulerian angles as defined
by Rose 2 and Tinkham. 5‘;The-wavefunctionhY[m-with k taken to be its.

z axis transforms to the primed system, where k' is along the cl axis .

as follows: _. -

i
R(C.B.y) Yzm = 3 Yj'Zm\-D( ) (a,B,'y)m,m (A.20)
. m' .
For f=1 » a v ' ' w
'D(;) (OQG,O) _ ltcos O sin 6 l-cos B

2 RN S22

- gin 6 - o . sin B
: _ - cos® . - —_——
NE - SRR
l-cos B ‘sin 6 < 1+cos
2 e o F
(A.21)
th o | S g
en (o,+0 ) (2.-1) .
(Y = [ e T e T g 2]
~ 1k > o1 ST A S
. _sin6 v? -+ cos 6 Y! +_s_3'_._r_1_____v'Y,.
7o 11 DRNRVCRE £
- A N¢ 't - oy
=. cl/E ( N2 cos @ Yq Jo  cos6 Y )‘
. . o
5 ' ' . . . .
+ o + -
51 ( 51? 6 YlO Jélcose Yll _Jévcose Yl—l}
e (- S8yt e BRE g L (a22)
J2 Je . |
The matrix element of Eq. (A.16) becomes
(Y. 02l v,y = iC, sine = -4 ('E'x'i:)_, o (a.23)

-which is the contribution to the AC-C term from angular integration.
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TABLE CAPTTONS
PSeudeeteﬁtial form factors for SnTe, PbTe and GeTe.
Ehergies and eymmetfies‘of crificel_pbints and interband transitions
assoeiated With prominent optical etructure-at low energy for SnTe,
GeTe end PoTe. N E | |
Lattice coﬁstanté, form factors and spin-orbit parameters for SnTe,
PbTe'ehd (Sn,Pb)Te alloys.
Fermi energy'(ef) in SnTe and PbTe as a function of hole_eerrief
coﬁcentrétiohs (p).
Calculated vibrational amplitudee (6Ri&%&}<withvzero point motion
contriﬁution subtracted out),_for Pb and Te in PbTe. (These values
were obfaihed from Refs. 47 ang L48).
Lattice constanté a{T) for PbTe determined from experiment (see
ref. 50)

.

Total temperature dependence of the energy gap at L.

’Temperature dependence of the energy gap at L caused only by the

DebyeQWaller effect. a v
Energy and temperature coefficients-(aE/BT[V)‘of L 1eVe1s for PbTe
given by the EPM and energies of L .levels given by.other methods
(Refs. 51, 52, 53, 11).

Sets.of form factors used in the investigation of the temperature
coefficients BE/éT]V. |

Zero temperature energjﬁlevels and temperature coefficients BE/BT]V
betﬁeen'T = 100°K and BOO°K at L usiﬁg form factor sets A through G.

Energy band gap Eg and its temperature coefficient aEg/BT[V for

form factor sets A through G.
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Témperature coefficients (BE/BV(T . BV/BT,P)'betweeh T = 100°K

" and 300°K for energy‘leveis.at L usinglfofm factor setst %hkough-G.

The'g vectors of fhe'inifial electronigﬂstaﬁés-used‘ih the calcu-
lafion_of the deformation potential for SnTé.

Deformation potentialrg for SnTe. , _— -|
Thevg vectors of'thé initial elec%ronic states used in'the'caicuf

lation of the deformation potential for PbTe. '

Deformation potential § for PbTe.



TARLE 1
Material vE(L) v5(8) v (12) VA(B) v
SnTe -.2%2 Ry -.02k © .018 .055 023
© PuTe -2k _3s2 .017 .052 .021
GeTe -.2h5 _oe2 Lo%2 .060 .017

I
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TABIE 2
Material ~ ° Band Energy -~ ‘Critical Point Band Transition
\ (in eV) ' Symmetry : B
SnTe 0.33 MO L(5 —>6)
' 0.85 M, s(556)

1.75 My (5 - 7)
1.99 M, a5 -8)
3.0 My S(b>7)
3.02 M, AL 5 6)

GeTe 0.23 M, L(5 — 6) |
1_.06 M (5 »6)
1.81 M, 25T
2.25 M, A(5 - 6)
5.2k M, (b -»7)
3.57 M, AL 5 6)

PbTe 0.18 M,  L(5 > 6)
1.07 My =(5 5 6)
1.27 My L(5 - 17)
2.00- My (5 -17)
2.02 M, A(5 - 6)
2.78 M, ok 56)
3.1 My s(h 5 7)




TABLE 3

Material Lattice Constant | Form factors (in Rydbergs) s-o Pamameters
(in &) '
v (L) vS(8) vi(1e)  vA(3) vA(u)' B A
PpTe ' 6.454 -2kl -.0352 | .017  .0%2 021 .03%  -.0009
Sny 25Pbo '75Te 6.4188 -.2388 -.032k 01725 .05275 .0215 .00273 -.0008
Sn, 5Pbo 5Te 6.383%5 © .,23%65 -.0296 L0175 .0535 .022 .00245 -,0006
S 25‘1‘e ' 6.%L83 -.23L3 -.0268 01775 .05h25  .0225 .00218 -.0005
SnTe 6.313 : -.232 -.02k .018 .055 .023 .0019 -.0003

_99_
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" TABLE L

. PbTe L SnTe .
~ep(ev) : (10% em™y '-eF(ev) o N ok

20 -

0.05 f 0.61 08 .70

0.06 o 0.77 _ .10 ' 7. .90 -

0.09 169 S : | 1.03 -

0.11 - 2.k 12 116
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TABLE 5

Tempera?ure °K o (8R2 | (.SRQ. )
_ : : Po’av 16 o Te’av 16
(units of 10 cm) (units of 1077 cm
Oé .. ‘ _ O . | ( | 0
20° .0006 .0002
Lo® _ ;ooez fooo8'
100° - .007 .0036
140° .0105 .0056
200° L0157 0086
2lo® | - .0192 L0107
300° 024k .0138
340° o .0279 0159
hoo® . 0332

.0189

%)
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TABLE .6
" Temperature (°K) .a(T)wih 'K'_
. 0° 6.313
e0f 64503
T 6.15%
100° - 6.462k
140° 6;M675
"»7260° ‘6.&751
- 2ho° 6.u8oé
300° 6.4879
3L0° 6.4929
4o0° 6.5006

N
-
|
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TABLE 7
Tempere;‘ture (OK) Enefgy gap at L(eV)
0° . _ : o.18i_
20° 0.18l
Lo° S | 0.19
100° - 0.207-
140° 0.218
200° o 0.233
300° 0.252
o® : 0.259

Loo® . Vd.269




 -7O;f;. T

 TABIE 8

Temperature (°K) .- ”’~."'EnéTéY‘

gap at L (eV)3; |

Oo . v : C : ...,,O‘

- 20° R o 0.

w0 - S0

100° , i . 0.
e | ».; R
200% - ,v' o
5006' o ‘:.r_j" o,

| 5&5#  - o S o o

400° . o o

1807

183%

1877

ighl
19Tk )
206&
2007
1997
1993

¥



TARTE 9

i —— —— oAt s St e e T .

Energy level Energy (eV)

Energy (eV)

-1.53 1.536 -2.802

51 Energy (eV)-'by 55. Energy (eV-) 11 En.ergy‘ (ev) Temperaturé
symmetry - of k'p method - pseudopotential by OPW method ~ by APW method by EPM (this coefficients.
. : method”>® BT o work) (eV/°K) between
= ' . T=100°K and 300°K
_ from EPM _
Lys™ 1.L496 1.4k2 1.95 . 1.6%9 1.7k 6;15xiofh_'
Lg~(upper L") 1.22k 1.319 - 1.b5 . 1.06 1.365 7.9 klO‘u '
L™ 0.3k 0.217 0.25 0.122 - 0.181 5.95x1o'%_ :
. GAP ,
L6+ 0 0 0 0 o — _5.6521o'u
Lu5+ -0.88h -0.7k8 -0.95 - -0.9112 - -0.909 4.5xlofu
~L6+(lOWer L6+)-1.A28 -1.197 12.8‘x10‘u

-1U-



| TABIE 100

Set label - L o " Form facfc’)_rsv 1nRydbergs o

@ v o e Ly

A ;i,‘f: -.2h1   -;‘035é' - f;017 " ﬂ ".,o52i-’
B V; i ."ehi ;'}1035é357-_1017 .  _;_.,06é }f;':
Cel U aam oss o7 Lok

'D*ffff7'. 4.2hi‘_f’-;Oséé;_ :L.dl7,' T ompth

G -2l i03%2 007
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TABLE 11

OF/3T |, (lO_ueV/OK)
between T=100"K.

0°K .energy (eV) with

Set label | energy reference shifted

 Symmetry label

to valence band edge for and BOOOK
* each set . ,
Lu5_ %.75 6.15
L™ 1.36 7.9
Lg- 7 0.18 5.95
. GAP

L6+ 0 565

. A
st -0.91 k.5

+ .
L6 _2780 12.8
s 2.11 5.8
Lg™ 1.75 7-“5

| L6~ O.Ll»6 5.2
GAP

+ 6.5
L 0 6.55

+
Iy -1.18 5:0
L -3.07 e
Lyo” 1.55 _6.&5
L 1.16 8.15
L 0.02 6.4

GAP




Table lligontinued

-Th-

 Set label  Symmetry label .

0°K energy (eV) with
energy reference shifted.

&/l (107 %ev/fK)

© between T=100°K

to valence band edge for . and 300°K
each set ” .
:;_+_ __1 T
: 1 | 'o . 5.2
, Iys' 0.79 h.25
L6 -2_'683 12.6
. o RIS 56
Lg™ 21.277. l 7.55
Lg ;0.7031 - 5.55
cAp
— " |
I, o 6.4
'Lh5+. 3-07695 B k.55
' 2578 12.9
B M5 65 °:35
= Each 8.05
L6" :0.028 6.1
‘GAP
th, - -0.973. . k.55
L -2.869 12.85
F Lys .1157.:- 6.8
s L0 R
L SR P
6- '0.128" i 6.5

L

.




Table 11 continued
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. Set label

0°K energy (eV.) with

OE/3T| (1o'uev/°}<)

_ Symmetry ;abgl  energy reference shifted between T=100°K
' " to valence band edge for and 300°K
each set o :
L L
L. o 5.55
Iy -1.0%2 k95
L6+ -2.898 12.9 _
: Ly 1.919 I
L 1.525 RS
L¢” 0.227. 5.5
- GAP
N o
L 0 | 5.75 -
Lys -0.772 e
+ -2.612 12.8
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Cou
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TABLE
Formfactor - . Variation of Energy gap gap te.rhper_a.turvé__ co?ffici_ént

set’ " formfactor Eg (ev) Lo SEg/aT[V (ZLO'L*.eV/ K)

Al _ 0.18" 0.3
B VA'(B) 0.46. -1.35

c 0.02 1.2

A 0.18 0.3

D v, (11) 0.70% -0.85 .

E 0.028 0.7

A 0.18 0.3 -

F v (12) 0.128 0.95

G | 0.227 0.25
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TABIE 13

Set label Symmetry label

OE/av|, ov/or|,

L

BEg/BVIT v /aT|

107" ev/°K . (1ofu eV/°K)
A ‘Lu5 -ufo. ‘
Lg™ 4.2
Lg™ -k |
- GAP +1.75
+
Lg -5.85
Lu5_+ .—5-65
-+
Lo -5-15
B- Lh5 -3.9
Ly 2
L6' 4o
CAD 2.2
+
Lg -6.2
o+
.Lu5 -3.65
+
Lg -5.1
G Lu5 -ho
‘L6' b2
Lg~ b, 15
GAP +1.6
£ 5.75
Ly 3.7
+ 5.15

—— et et < s et
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Table 13 continued
Set label  Symmetry label aE/avrT\av/aT{P - >"aEg/av[T av/aTlP'_"
1o'LL ev/°k - . -(-_10'h ev/°K)
P s 20
LeT o ke
' L6_ . : .- . ‘)'_*~25
o R
Lg -5.6
+ .
. LL;.5 "5'7
L¢ N -5.25
E o LAB" -u;q
'> L6‘ :' | -u.es
Ls' o -L.05
AP | — R - 1.9 |
+ o |
- Lg o 595
P : :
Lu5 | :-5.65
’ + . .
L6 . . "5-15
F Lu5' . 3.7
L6_ ] v' ‘ —14'.2
GAP - T .8
-+ .
Lg B 6.1

L6+_' _ -5.05




" Table 13 continued
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Set label  Symmetry label _aE/BvlT av/aT[P.

| vaEg/av[T aV/BTIP

10~ ev/°K (107 ev/°K)
G Lu5‘ | Co-blh
Lg” k.6
Lg~ --u.lj
GAP +1.8
Lt -5.95
+ o
Lys k.05
+ .
-5.5
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TABLE 14
k index ko= (kg_Qky;kZ) || £rom L
(units of 2m/a) (units of om/a)

ok (.43, 48k, .L76) Lo72

Ky (.bz2, 465, .L6hL) .085

kB (.ho2, kb1, ,154) .12% -

k), (.h22, .L03, .L71) .128.

kg (.58, 543, .5) 06

kg (487, 487, .56) 0633




i871-

TABLE 15

Initial electronic Final electronic & from mode a £ from mode Db

state - state coupling (eV)  coupling (eV)
ST k' | Les Lo
PR % ' . K, R 199 L.65 .
| k | N Ky 09 1.26
i kL% 15
k), | k'), 0.k5 2.18
ks | kg ‘ 1.68 | | 1.98
g k' 0.53 ' 1.06
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TABIE 16

k index k = (x ,k',k ) |Ak| from L
~ . ~ Xyl oz - L -
(units of QTr/a) “(units of 27T/a)
ky (.5029, .5029, .5029) .005%
k, (.5058, .5058, .5058) .01
33 (.5115, .5115, .5115) .02
K, (.5408, .5408, .5408) .0707'f~
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TABLE 17

Initial electronic :Finél electronic ‘£ from mode a. & from mode b. -

state . state coupling (eV) coupling (eV)
. ’ 1 . .
ky k' 1.h9 3.08

1 ’ g
k, k', 0.278 1.4 E

. |

k, k' 0.48 2.52
5 53 2

’ ,
k), k'), 0.57, 1.34




Fig. 1

Fig. 2
Fig. 3.
Fig. &
Fig. 5
Fig. 6.
Fig. 7
}

Fig. 8
Fig. 9

‘cular to A at the L point for PbTe, Sn,_- Pb

-8l

,FIGﬁRE CAPTICNS
Electronic energy band structufe of SnTe.
Electronic energy band sfructure of Gg?e, ¢
Electronic energy band structufe of PbTe{
Imaginaryvpart ofbthe.frequency §ependeﬁt dielectricffﬁnéfio? eg(w)
for SnTe. | | h
Imaginary part of fhe frequency dependent dielectric funcfion.eg(m)
fbr GeTe.
TImaginary part of the frequency dependent ‘dielectric funcfion €é(m) B
for PbTe.’ |
Energy bands near L in directions parallel to A. and perpendi-
1 Te (x = 9.25, 015
0.75) and SnTe.
Two band perturbation result to iilustrate'thé.formatiﬁﬁ of thé
énTé.band edgé strﬁcture., | |
(é) bee_orderihg | |
(b) Band croséing ca se assuming no interaction between'thé:
valence and .conduction bands. |
(¢) Band créssing case aséﬁming interaction. between valéﬁ§é ahd
céndﬁction bandslfesuiting in band edgevstrﬁcturé éimii@f to
SnTe. : | ,. : | :  .: L -
Valence bénd energy conﬁouré in pianeé of constants kZ  (a) k£ ; 0
corresponding to the hexagonal plane of the Brillouiﬂ'zone, (p) v
k, = 0.0k (2r/a), (c) k= 0.08 (2m/a). The energies are in.eV

with the zero energy reference defined to be at L point of the

zone .



_85; '

Fig. 10 Two views of Fermi surface pocket centered at L for onTe. The

hole Fermi energy is -0. 11 eV (which corresponds to the =0. OheV
contours in Fig. 9).

Fig. 11 Calculated and experimental temperature dependert energy gap Eg(T)”m

for PbTe. -(The experimental %ata were from Ref. 31).
. . v I .
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0a 0 Measured optical energy gap
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, 'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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