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THE ELECTRONIC STRUCTURE OF IV-VI SEMICONDUCTORS 

Yvonne Y. W. Tsang 

Inorganic Materials Research Division, Lawrence Radiation Laboratory, 
and Department of Physics, 

University of California, Berkeley, Calif arnia 

ABSTRACT 

The Empricial Pseudopotential Method (EPM) including spin-orbit 

interaction is applied to SnTe, PbTe and GeTe. The resultant electronic 

band structures and pseudopotentia.l form factors are used to examine 

the following: 

(1) The imaginary part of the frequency dependent dielectric func-

tion is computed in order to analyze the optical properties of all three 

crystals. (2) The band edge structure near the L point of the Brillouin 

zone for SnTe, PbTe and (Sn,Pb)Te alloys is studied in great detaiL 

(3) The Fermi surfaces of SnTe and PbTe are mapped out to corrpare with 

ecperiments. (4) A method to calculate the energy shifts arising from 

changes in temperature. is developed within the framework of the EPM and 

applied to the energy levels at the L point of the Brillouin zone in PbTe. 

The correct positive sign of the temperature coefficient for the funda-

mental gap is obtained. (5) The pressure coefficients of the fundamental 

gap are calculated for SnTe and PbTe. The results are in good agreement 

with experiment. (6) The pseudopotential form factors are used to calculate 

the intervalley deformation potential of holes scattered from one pocket 

near L tQ. another L pocket for SnTe. and PbTe. The values obtained are in 

agreement with values derived from an analysis of the measured superconduct-

ing transition temperatures as a function of hole concentration. 
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I. INTRCDUCTION 

Using the Empirical Pseudopotenital Method 
1 

(EPM), we have calcu-

lated the electronic band structure of SnTe, PbTe and GeTe (including 

spin-orbit interactions) to study the electronic properties of these 

I 
three compounds. The resulting band structures and pseudopotentials were 

used to examine the optical properties, energy bal}d gap structure, super.-

conducting properties and the temperature dependence of the fundamental 

energy gap. Many of these properties were first studied experimentally 

and these measurements provided much of our motivation for the theoretical 

study. 

We will start. by. reviewing some of the principal experimental results. 

All three compounds are semiconductors with direct band gaps .. _ PbTe and. GeTe 

can be doped or grown to be both n-type and p-type. SnTe is usually 

p-type with the holes arising from lack of stoichiometry; i.e. frcm.Sn 

2 3 4 vacancies. Both GeTe ' and SnTe are superconductors. Work has been 

done ·on the visible and ultraviolet optical properties5 of all three 

rraterials to explore the electronic structure at energies higher than 

the fundamental gap energy. The size of the fundamental band gaps in all 

three materials are given by tunneling experiments
6 

and laser spectro­

scopy. 7 Shubnikov de-Haas data for PbTe 
8 

show ellipsoidal Fermi sur-

Sa 
face around L point of the Brillouin zone~ however, the. data for SnTe 

are complicated and a complete picture of its Fermi surface is still 

not available. 

Some questions have been raised by the experimental results concern-

ing the fundamental energy gap and the electronic structure near the 

band edge. We list these in turn. First~ the terilperatu.re dependence 
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of the direct gap in PbTe is considered to be "anomalous'', in that the 

gap gets larger as the temperature is increased. This is contrary to the 

behavior of the gap in the Group IV semiconductors and in SnTe where the 

gap decreases as temperature increases. Another interesting question 

, -was raised by ·Di'II1ri1ock et al.9 These authors suggested that the order:ing 

i of the top valence band and the bottom conduction band energy levels 

reverses as one goes from SnTe to PbTe. This suggestion was motivated 

by experiments on a'lloys of p-type Pb
0

•81 Sn0 •
19

Te at l2°K. The elec­

trons were optically excited by a laser and the emission spectrum gave 

a direct gap of 0.078eV. The same experimental technique had been 

applied to p-type PbTe at l2°K7 and a direct gap of 0.18 eV was observed. 

Shubnikov de-Haas data gave the fundamental band edge of PbTe at L, 

Knight-shift experiments
10 

and Augmented Plane Wave (APW) band structure 

calculation
11 

found the symmetry of the top valence band to beL~+ and 

t bat of the bottom conduction band L6-. From the tunneling e:Xp~riment 6 

SnTe has a fUndamental energy gap of 0.3 eV, the band edge is also 
. . . Sa' 12 

expected to be at L from · Shubnikov· de-Haas data. ' If the ordering 

of the top valence band and bottom conduction band were the same in SnTe 

and PbTe, one should expect the size of the gap in the alloy Pb
0

•
81

sn
0

.
19

Te 

to be between O.l8eV and 0.3eV rather than the small value 0.078 eV that 

was obtained experimentally_, In order to get a consistent picture fran 

the experimental gap data on SnTe, PbTe and the alloy Pb Sn
1 

Te, Dimmock 
X -X , 

et al. 9 proposed th.e band ordering reversal as one goes from PbTe to SnTe 

(i.e. the top valence band in SnTe has symmetry L6 and the bottom conduc­

+ 
. tion band L6 ). A previous empirical pseudo-potential calculation was 

done for SnTe~3 however, spin-orbit effects were not included and the 
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ordering at the band edge was not determined accurately. 

With. the rich experime rrtal data available to us, we made a theoreti­

cal study of the three c cmpounds, focusing mainly on the questions men­

tioned in the previous discussion. A pseudopotential band structure 

calculation including spin-orbit effects for each compound serves as 

the starting point of our study. Therefore the theory and the band 

structure calculation for SnTe, ~bTe and GeTe is covered in the next 

chapter (Chapter II). In Chapter III we vlill discuss the optical constants 

of these compounds evaluated from the calculated band structures and a 

comparison . l'li th experimental data is ;nade. Chapter IV deals with 

the band edge ordering and electronic structure near L for PbTe, SnTe 

and their alloys. The temperature dependence ·· of PbTe energy le-vels will 

be clisc1ls sed in Cb.apt • V~ .The· .case for SnT~ is only· .touched 1Jpon .briefly. In 

Chapter VI we p·resent a deformation pctential calculation for Sn're and 

PbTe, this deformation potential is rE•levant to the superconducting 

properties in SnTe. 

,. 
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II. THE EMPIRICAL PSEliDOPOTENTIAL METHOD INCLliDINO SPIN -ORBIT 
INTERACTIONS AND ITS APPLICATION TO SnTe, PbTe and GeTe 

A. The Pseudopotential Hamiltonian 

The use of pseudopotentials for electronic band structure calculations 

is now common in the study of solids. As an example of the utility of 

pse:udopotentials, the Empirical Pseudopot ential Method (EPM) without spin­
. l 

orbit interaction was used by Cohen and Bergstresser in 1966 to evaluate 

the band structures of fourteen semiconductors. Since that time the method 

. 13-16 . 
has been applied with much success to many other rna ter1als ; much of 

this work and calculations are summarized in the review article by Cohen 

and Heine. 17 We will therefore review the method brd:.efly and indicate. 

how to incorporate the spin-orbit interaction into this method. The main 

idea of a pseudopotential is the following: in addition to the usual 

attractive Coulomb potential, the valence electron sees a repulsive 

potential arising from the orthogonality of the valence electron wave-

functions to the core electron wavefunctions. The net effect is a weak 

pseudopoteritial. We can illustrate the origin of the repulsive term in 

the following way. In analogy with the OPW method, we write the wave­

function of a valence electron 17/J ) as a smooth part I¢ ) minus its pro-. v v 

jection on all the core states, 

(2-l) 

each core state is denoted by lbt) and the projection operator on the core 

state is 

p 
c 

(2 .2) 

In band structure calculations, the energy eigenvalues are obtained 

by solving a secular equation; i.e. to solve forE in the equation: 

,.., 
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or- E) 17/J) = o , 

we diagonalize the matrix 

( 7/J I (N - E) I 'If > = 0 . v . v ' 
(2~4) 

Substituting Eq. (2-l) into Eq. (2.4), we can write Eq. (2.4) in terms 

of the smooth part of the valence wavefunction, 

(¢ I ( l -P ) (:N - E) ( l - p ) I ¢ > i= 0. 
v c c v (2. 5) 

For the calculation not including spin, the one electron Hamiltonian is 

2 
p /2m+ v(r), (2.6) 

where the first term is the kinetic energy and V(r) is the attractive periodic 

crystal potential seen by one valence electron~ Using Eqs. (2.2), (2.5) 

and (2 .6), we obtain 

··- E I¢ > = 0 v 
(2. 7) 

or 

I¢ > = o v 
(2.7a) 

VR is the repulsive potential arising from the orthogonality of valence 

electrons to core electrons, it contains the projection operator and is 

non 'local. The sum V(r) + VR then results in a weak pseudopotential V p. 

Therefore, by our definition of l'lf ) in Eq. (2.1), we have transformed 
v 

the eigenvalue Eq~ (,2.,4) of the real Hamiltonian :N between actual 

valence electron wavefunction 17/J) to the eigenvalue Eq. (2.7a), where the v 

Hamiltonian is a pseudo-Hamiltonian }1. and the matrix elements are taken 
. p 

between the pseudo-wavefunctions l¢v) (previously called the smooth part 

of 17ft)); however, even though we are working with pseudo-wavefunctions and 

a pseUdo-Hamiltonian, we obtain the energy eigenvalues of the actual 
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Hamiltonian. 

For the band calculations, we make the further approximation of 

assuming a local pseudopotential and expand V (r) in the reciprocal space, 
p 

V (r) ~ v ( ~) 
+i G·r 

:= e ~ 

p G 
(2. 8) 

~ 

where G is a reciprocal lattice vector and 
~ 

V(~) ~ Vc/ ~) sa (~)' 
a 

(2.9) 

sa(~) 
-iG· 'T e ~ ~, (2.10) 

V a(~) == 2/D' In va (! ~J) t -i G·r 3 
~ ~ d r. (2.11) 

The index a is introduced for crystals with more than one atom per primitive 

cell, with cell volume n, and so 'E:cx is the 't. f th th pos1 1on o e a atan with 

respect to some origin inside a primitive cell. The potential Va(G) is 

the Fourier transform of the pseudopoteritial V a( I~~) which is assumed to 

be spherical about each atom a. We call S (G) and V (G) the structure · a~ a 

iactor and the form factor respectively, each corre$ponding to the ath 

atom .and the reciprocal lattice vector ~· Since I¢ ) is a smooth wave­
v 

function, tn our calculation, we expand I¢ ) in a basis of plane waves 
v 

and solve the matrix equation 

0 (2.12) 

Because the pseudopotential vp is weak and the pseudo-wavefunction I¢) 

is smooth, we can truncate the otherwise infinite matrix in solving 

Eq. (2-12). 

.. 
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We can now put in the spin-orbit term, following essentially Weisz' s
18 

formulation 

J:!S-0 (W xP) 
. ~ ~ 

(2 .13) 

A . ~-' 

where V is the periodic crystal potential and 0 'represents the Pauli spin 

ll'Rtrices. Including this term J:!s-o in the eigenvalue Eq. (2. 5) is equi-

valent to adding the following term to the pseudo-Hamiltonian 

}{s-o = 
p (l - p ) }l: (l - p ) 

c s-o c 

in solving the eigenvalue equation 

(¢ lr 2/2m + V + J:!s - o) v ~p p p - E 1¢) 
v 

0 

With the inclusion of spin, all our states will now be labeled by a 

(2.14) 

(2.15) 

configuration space index as well as a spin index s, therefore, the core 

states now become 

and the indices for the basic states of I¢ ) will be k for t re plane · 
v 

mve and s for the spin. The projection operator becorres, 

p 
c = :6 

t 

where I is the identity in spin space. It is clear then we need the 

addi tiona1 matrix element 

(lJ:S-O)k, .. ,, k" 
p ~s,~s 

( (l-P ) ;]:!S-O (l-P ) )k' . I k 
c c ~ s '~s 

(2.16) 

(2.17} 

(2-18) 

in solving the secular determinant (2-12) for the band energies. We now 

write out Eq. (2-18) explicitly: 
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- ' 

( (1- Pc) ;us-o (1- Pc))~'S',~S == (!:;'s'l-0;·~1~s) 

+ L:' 
R,R' 

== (s'l~ls> • f (~'IAI!::>- L: (~'lbt) (btl-0:1~> 
. t 

(s'l£1s) ~ (~-p + -0;c-p + ~p-c + ~c-c }. (2-19) 

The four terms in the_ curly~: bracket of ( 2-19) are denoted. for obvious 

reasons by 1\.p-p 1\.c-p Ap-e and Ac-e respectively, the superscript p stands - , - , - -
for planewave and superscript c for core. Evaluation of Eq. (2-19) 

A shows the calculation of these matrix elements. 
c-c 

It turns out that A 
"' 

is several orders larger than the .f);p-c and 1\.p-p contributions and we 

c-c 
retain only the core-core term, f); . 

For the three IV-VI materials which we will consider, the core consists 

of s, · p and d electrons. The s electrons c mtribute· nothing to the spin-

orbit interaction, and since the valence electrons SnTe, GeTe and PbTe 

are s ·and p-like, ··we expect the projection of the valence wavefunction 

onto d core states to be small so that we may also neglect (bdl~lbd) in 

the core-core term where lbd) is a d-like core state, we are therefore 

left with only one contribution in ~c-~.-to consider, i.e. the contribution 

arising from p core electrons. Then Eq. (2-19) becomes: 

• 
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CJ I 
""S S 

X 2::. -is (k .- k') 'A. (k,k') a ~ .~·· a. . 
a 

(2.20) 

wl)ere Sex(~-~' )is the usual structure factor for atom a defined in Eq. (2-10). 

The angular part of the. matrix element (bpl~lbp) gives-(k.t x k") and the radial 

part gives t..cx(k,k') which is essentially a product of two orthogonal 
-)(-

integrals Bn/k') and Bnl (k) multiplied by an adjustable numerical para-

meter as is shown in Appendix A. The orthogonal integrals are defined 

in Eq. (A-17) of Appendix A, 

Bn
1
(k') = j/- [lm(2£+1)]

1
/

2 
j/k'r') Rn

1
(r') r'

2 
dr' ( 2. 21) 

In our case the subscript £ = 1 for p core electrons, n = 3, 4, 4 and 5 

for Ge, Sn, Te and Pb respectively. We used Herman and Skillman's l9 

tabulated atomic p orbitals in a numerical integration of (2.21) to obtain 

the k, k' dependence of \.a (k, k') in Eq. (2. 20), 

Now we may write down the total pseudo-Hamiltonian matrix element 

in the plane wave representation 

J~k 1 I k 
~ s , ~s 

P
2/2m· ~ o::: uk'k us's + 

2 
2:: sa (~-~,) x [vaCI~' -~!) 

a=l 

For binary compounds, it is convenient to dec cmpose both the \xr's 

(2.-22) 

of Eq. (2.20) and the form factors Vcx(l~'-~1) of Eq. (2-ll) into a symmetric 

part and an antisymmetric part, that is, 

t..s Cl~l,l~'l) 
\.1 ( I ~I ' I ~I I ) + \.2 c I~ .I, I~' I) 

= (2.·23) 
2 

r.A Cl~l, 
\.1 Cl ~I' I ~I I) - \.2 (! kl , I ~i I) 

!~'!) 
~, 

2 
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then Te will be 1abeled-by2 and its position within the primitive cell is, 

.. 2 .a (1/2, 1/2, 1/2) . (2 .31) 

·For the fcc structure fl:i.ctor, we can also show that for each G = (h, k, 2) 

2Tr/a, h, k, f must all. be odd integer:s or all be even integers, the former o 

gives ocid.IQI 2 
and the- latter gives 

. . 2 .. 
even [QI , then 

Therefore, 
) 

= 
. I. 12 + l for even g · .. 

' 2 
l for odd' r Q[ 

. C'• 

s"'(Q) (s1(g) + s2 (g))/2 

~(Q) 

+ l for I Gl
2 

even , and 

0 for [G[ 2. od,d 

= ( sl ( Q) - s2(~))/2i 

-i for r g[ 2 
odd 

0 for I Q[
2 

even 

Both SnTe. and PbTe have fcc crystal structure while GeT~ is face 

(2.32) 

(2.33) 

(2.34) 

centered rhombic; however, the distortion from fcc is small and we have 

assu;med the fcc structure for all three materials, with lattice constants 
0 0 0 

equal,to 6.3l3A, 5.996A, 6.454A fGr SnTe, GeTe and PbTe respectively. 

The potentials are chosen in the folloWing way. For SnTe, w~ start 

with the same set of symmetric form factors used in_ the previous EPM 

caiculation13 and vary the two ~ntisymmetric form factors to give a few 
. .. 

·.of the principal gaps. The symmetric form factors are then varied siight 1y 

in an attempt to get even closer agreement with the experimental splitt ings. 

The form. factors chosen were: 
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-.024, 

v8(12) . == .018,.. ~(3) == .055 and ~(11) .023. 

These are almost identical with the form factors of Lin et al.
1
3; the larg-

est variation is 0.004 Ry. in the synimetric potential and 0. 02 Ry in the 
I . 

antisymmetric potential. For GeTe, the starting point for the choosing 

of the form factors was taken as an average of the Sb and As form factors 

1 
extracted from the symmetric and antisymmetric form factors of InSb and 

GaAs, 
1 

with appropriate scald.ng factors to account for the lattice changes. 

(The basic assumption here is that only the lattice constant and not the 

atomic pseudopotential in realspace changes from one crystal to anotber, 

then the pseudopotential form factor 

-iG·r 3 e ~ ~ d r (2.36) 

scale:s to .\1 == a 3 /4 in the denominator and G = 2rr/a in the integrand accord-

ingly). After this set was chosen, the form factors were varied slightly 

to give some of the observed gaps. The GeTe form factors are Vs(4) == -.245 

Ry., Vs(8) = -.022, Vs(l2) = .032, ~(3) == .060 and yA(ll) .017. 

The form factors for PbTe are obtained in a slightly different 

fashion from those of SnTe and GeTe. As a first attempt, we merely 

sea led the SnTe form fact ars to the PbTe lattice as a test to explore 

the possibility of a band inversion at the L point going from SnTe to PbTe. 

+ 
Tpe ordering in SnTe is L6 for the valence band maximum and L6 for the 

+ 
conduction band minimum with,a splitting L6 - L6 = 0.33eV. Tunneling 

measurements
6 

give o.3eV at 4.2°K for this gap. The result of the scaling 

+ 8 is that the L6 and L6 levels move within 0. 0 eV of each other, but tre 

ordering has not yet reversed. If we had started with a slightly smaller 

"J 
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SnTe gap, the inversion would have taken place. The final form factors for 

PbTe were chos~n to give the gap at L to be L6 
+ . 7 L6 = O.l8eV. These 

form factors were 

the changes were 

only slightly different from the scaled values for SnTe; 

-.01 Ry. in ;(G
2
=4) and -0.003 ~y. in v3

;G
2
=8). The 

s. . s 
V (4) -.241 Ry., V (8) -.0352, values for the form factors are: 

= .017, 0(3) = .052, and 0(11) = .021. This shift fran the 

scaled values is consistent with the difference between the Pb and Sn 

. A . . 23 potentlals as calculated by nimalu and Helne. · The calculated Pb paten-

tial is more negative for small G' s than the Sn potential. We conclude, 

therefore, that the band inversion at L results both from the lattice 

constant change and from the difference in the Sn and Pb crystal potentials. 

The final sets of form factors used for SnTe, PbTe and GeTe are 

tabulated in Table 1- The resultant band structures of SnTe, GeTe and PbTe 

are given in Figs. 1, 2 and 3 .. 

C. Discussion of Resultant Band Structures 

All three IV-VI compounds have ten valence electrons (two outermost 

s-electrons and two outermost p-electrons fran the fourth column at an and 

two s-electrons, four p-electrons from the sixth column atom). Because 

of the inversion sY.mmetry in the fcc structure and time reversal symmetry, 

all bands are Aoubly degenerate throughout the Brillouin zone. In Figs. 

1, 2 and 3 we shaw five doubly degenerate valence bands and a few of the 

conduction bands. All three band structures give the minimum gap near the 

L point of the Brillouin zone. PbTe has the minimum gap at L, but in both 

SnTe and GeTe, the extreme are slighly away from L in the hexagonal face 

of the fcc Brillouin zone in the direction perpendicular to A axis. 

The L point becomes a saddle point; it is a maximum along the A dire·ction 1 
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but a local minimum in the direction perpendicular to A. We will discuss 

the band structure near L in more detail in Chapter IV. For this chapter 

we still refer to the direct gap f.l,t L as the fundamental gap. The L 

gap for SnTe ar).d PbTe were given in Section B to be 0.33eV and O.l8eV 

. + 
respectively; for GeTe L6 - L6 = 0.23eV, which is consistent with the 

tunneling value of 0.2eV. 
6 

Both SnTe and PbTe have a second valence maximum along the 2: axis 

(although Fig. 2 seems to indicate the same for GeTe, we are guided by a 

critical point analysis which only gives a saddle point along 2: rather than 

an absolute maximum for GeTe). There is experimental evidence for the 

.. 8 24-29 
existence of a second valence maximum in these two crystals ' · and 

the 2: axis is a p~ssible choice13 for this maximum. The secon:i band 

maximum is 0.15 and 0.3eV below the L valence maximum in SnTe and PbTe 

respectively. In our calculation we implicitly assume zero temperature 

values for the fundamental gaps for all three crystals. This gap has a 

negative temperature coefficient for SnTe
30 

and a positive temperature 
I 4 . 

coefficient for PbTe. 3 We therefore expect that at room temperature, 

+ 
the L6 maximum will move closer to the second maximum in PbTe than the 

L6 maximum in SnTe will move to its second maximum. 

In the next chapter (Chapter III) we discuss the optical properties 

of SnTe, GeTe and PbTe derived from our band structure calculations. 
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III. OPTICAL PROPERTIES OF SnTe, GeTe and PbTe 

To analyze the visible and ultraviolet optical properties of trese 

crystals, we have computed the imaginary part of the frequency dependent 

dielectric function E2 (ro). The detetrmination of E
2

(c.o) requires a knowledge 

of the energy bands throughout the Brillouin zone since this function 

has the form 

::: 2: J 8 (Ec (~) - E)~) - ro) 
c,v 

X (3-1) 

where uk and R are the periodic parts of the valence and conduction · 
~'"IT ~' c 

band wa vefunct ions. The inter band energies and the dipole matrix element 

are obtained from eigenvalues and eigenvectors of t re pseudo-Hamiltonian. 

A factor of two arising from spin degeneracy is included in Eq. (3-1) be'-' 

cause all bands are aouply degenerate even with spin-orbit effects. Be-

cause of the cubic symmetry of SnTe, GeTe and PbTe, band energies and 

eigenvectors for the dipole matrix element in Eq. (3 .1) need only be 

calculated in 1/48 of the Brillouin zone. The Hamiltonian matrix is 

diagonalized' and the dipole matrix elements computed for a mesh of 356 

points in this subzone~ Approximately 3Xl0
6 

sampling points are chosen 

randomly by a Monte Carlo method, the energy eigenvalues and dipole matrix 

elements associated with each point are obtained by interpolation between 

the points on the mesh. .The resultant E
2

(c.o) for SnTe, GeTe and PbTe are 

given in Figs.4, 5, and 6 respectively. Part of these results have been 

published earler. 32, 33 . The integration over k space in Eq. (3.1) may 

also be written as 
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(3 .2) 

where S is a surface of constant· ihterband energy ro = E - E , the prominent 
c v 

optical structure in E
2

(ro) originates from Van H . . 1 "t. 34-36,17 ove slngu arl les 
I 

at the critical-points (c.p.) where 'Vkm = 0. TheBe critical points can 

be classified according to symmetry
21 

Cminima, saddle points and rraxima) 

M
0

, M
1

, M
2 

and ~. The critical point analysis for SnTe, GeTe and PbTe 

is given in Tables 2). 

For SnTe the onset of our E
2

(co) spectrum occurs near 0.3eV coming from 

transitions near the fundamental band gap at L, this is in good agreement 

with tunneling data.
6 

The drop in intensity at 0.7eV is not attributed 

to any critical point, but rather to a lack of interband transitions 

with direct energy differences in this energy range. The spectrum rises 

again above 0.85eV to give the first peak at l.leV as compared to the 

5 experimental transmission peak at 0 .97eV. This peak canes from a M
0 

critical point arising from transitions from band 5 to 6 at the second 

valence band maximum along 2:. Transition from this arne valence band 

maximum to band 7 give rise to the main peak at 2.0eV; the decrease above 

this peak arises from a strong M2 critical point from transition along£::... 

The 3.2eV shoulder observed in the optical reflectivity spectrum is identi-

fied as arising from a 4 ~ 7 band transition along L:{critical point sym-

metry M
1 

at 3.0eV) and a ~band transition along 6(critical point 

symmetry M
2 

at 3 .02eV). The relative intensity of this shoulder is too 

lovr compared with optical reflectivity data. We attribute thir: to the 

fact that the pseudo-wavefunction dipole matrix elements for the !::, transi-



-18-

responsible for the main peak at 2.0 eV. The three high energy bumps 

6. eV, 7.5 eV, 8.7 eV, in the calculated E2(ro) are shifted considerably from 

their experimental5 values 6.1 eV, 7.4 eV, and 9 .. 5 eV respectively; they 

appear to arise mainly from clusters of critical points, i.e. there are 

a large number of transitions between bands with interband energy in the 

above range. 

The analysis of the GeTe E
2

(ro) spectrum is very similar to that of 

SnTe. 
6 

The onset of the spectrum comes from the fundamental band gap at L 

at 0.23 eV. The E
2 

function then drops slightly because of lack of volume, 

but it rises quickly after 0.63 eV, as predicted by the onset of the 

experimenta137 transition spectrum.· The main·peak occurs at 2.1 eV. The 

shoulder at 3.3 eV is again low in intensity because of small matrix ele-

ments as well as a lack of volume. The two high energy bumps 7.5 eV, 

8.25 eV, are shifted from the experimental5 values 6.2 and 7.8 eV. Again 

these arise from clusters of critical points. 

band 

For PbTe, the onset of the E
2

(ro) spectrum comes from the fundamental 

7 gap at L near 0.18 eV. Transition from band 5 to 6 at the second 

valence maximum along 2:: gives rise to the M
0 

critical point at 1.07 eV 

the spectrum rises sharply above this point. The main peak at 2 eV again 

arises from transitions between bands 5 and 7 at .6 and between band 5 and 

6 at 6. This energy is 0.2 eV lower than that given by optical reflectivity 

data. 5 The shoulder at 3 .l eV is again low in intensity and given by t re 

same transitions as in the case of SnTe and GeTe. The experimental value 

of this shoulder is 3.36 .eV. The two high energy peaks in our E
2 

spectrum 

(6.9 and 7.6 eV) come frcm a cluster of critical points, mainly near the 

X points in the zone , and they correspond to the two experimental peaks 

(6.3 and 7.8 eV) in the optical reflectivity data .5 
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The agreement between the calculated optical spectrum and experiment 

is better at low energies than at higher energies. This is what one usually 

expects for the EPM, however, the shifts fran experiment at high energies 

38-40 
are relatively larger than observed for several other crystals. We 

also note that we are canparing the palculated E
2

(m) with reflec~ivity 

since an experimental E2(~) is not available. 
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IV. ELECTRONIC PAND STRUCTURE AND FERMI SURFACE NEAR THE 

FUNDAMENTAL ENERGY GAP FOR SnTe. and PbTe 

In this chapter, we present results fran a detailed study of the 

valence and conduction band structure near the fundamental band gap for 

!. 
PbTe and SnTe. In the critical point analysis of E

2
(co) for SnTe, we 

I 
discovered that the minimum band gap was not at L. If we take a coarse 

mesh in evaluating E
2

(m), we obtained an M
0 

critical point for the transi­

tion from the top valence band (band 5) to the bottom conduction find (band 

6) at L, i.e., this transition has lower interband energy than the two neigh-

boring k points along the principal axes (these points are 27T/a (0.429, 

0.429, 0.429) and 2:rr/a (0.571, 0.5, 0.429) in the mesh of 356 points we have 

chosen for the E
2

(m) calculation). However, a finer mesh shows that for a 

meshpoint not on the principal axes but close to·L, i.e. ~ = 27T/a .(0~5, 

0.5, 0.429), the interband energy (band 5 --Yband 6) turned out to be 0.06eV 

lower than the 0.33eV given by the 1 point transition. 

A. Electronic Structure Near 1 for SnTe, PbTe and 

(Sn,Pb)Te Alloys 

For PbTe the caluclated gap is at the 1 point. The valence band sym-

+ -
metry is 1

6 
and the conduction band is 1

6 
. The calculated splitt ir:g is 

O.l8eV. In SriTe, the ordering of the bands reverses and the energy surface 

at 1 is a saddle point. The valence band energy decreases as one moves 

away from 1 along A but increases in the direction perpendicular to the 

A axis at L as shown in Fig. 7. The extrema for both the valence and 

conduction bands lie in the hexagoml face of th= Brillouin zone displaced 

from 1 by approximately 1/25 of the (1, 1, 1) reciprocal lattice vector. 33 

The hump shape of energy bands in the hexagonal face in SnTe results from 
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ordering of bands at L. If we explore (using a simple perturbation model) 

whap happens as we go from the PbTe band ordering at L to that of SnTe, 

i 
the bands would cross at the point of the hump structure (Fig. 7) if they 

did not interact with each other. The bands do, however, repel each other, 

thus forming gaps at this point. Bec~use of the larger band rna ss along A 

direction, this hump structure does not appear along this direction. Figure 

8 illustrates this in a qualitative way. The magnitude of the gaps at .L 

and near L are sensitive to the pseudopotential. However, the hump 

shape of the energy bands in the hexagonal face in SnTe is invariant to the 

choice of potential once the bands have crossed. Band edge structure for 

alloys of SnTe and PbTe verify this (Fig. 7). 

We have computed the band structure of alloys Snx Pb1 _xTe for X 

0. 5, and 0. 75. The me·thod of computation is straight forward, the 

lattice constant, a , was scaled linearly, that is, 

0.25 

a(Sn Pb Te) = x aSnTe + (1-x) aPb.Te ·:x 1-x 
(4.1) 

the form factors are then scaled to the alloy lattice constant ace ording 

to Eq. (2.36). The values of lattice constants, form factors and spin-

orbit parameters £Dr the alloys as well as for pure SnTe and pure PbTe 

are tabula ted in Tabe 3. The resultant band structures very near L are 

plotted in Fig. 7 for the directions parallel and perpendicular to the A 

axis. Since we are looking at 'detailed structure in a small region 

(about l/16 of the Brillouin zone), we have used the E1 = 10 instead of 

9 in this calculation in order to keep the size of the Hamiltonian matrix 

constant throughout the calculation. This eliminates the possibility 

of spurious effects in the band edge structural arising from the different 
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convergence limits of the n:atrix. sizes. The results shown in Fig. 7 clearly 

agrees with our prediction Fig. 8. 

We might add here that in our critical point analysis for GeTe, we 

found that at point~ = rar/a (0.5, 0.5, o.429), .. ,the conduction band is about 

.002eV lower than that at L but the valence band maximum still occurs at L 

so 1that the interband energy is still a minimum at L. Since GeTe has the 
I 

SnTe band ordering at L in our EPM calculation, only with a smaller gap 

(0 .2eV), we expect the GeTe energy bands to be similar to those of Sn0 . 
75 

Pb
0

_
25

Te (Fig. 7d) which has the "hump" structure, but much less prominent 

than in the case of SnTe, which has a larger gap equal to 0 .33eV. 

B. Fermi Surfaces for PbTe and SnTe 

The inversion of the order:ing of the bands wl,lich makes the L point of 

the zone not an extremwn but a saddle point has interesting effect on the 

Fermi surface of SnTe. We have mapped out the Fermi surfaces of. PbTe and 

SnTe. In the PbTe case we obtain ellipsoidal surfaces centered at the L 

point with major axis along L, whereas for SnTe, each poclet of holes centered 

about L consists of multiply connected surfaces. We will next discuss the 

method of computation and results in the following paragraphs. 

To map out the energy surfaces, we make use of the symmetry of the 

problem to, choose the mostcefficient set of sampling points in the 

Brillouin zone near L, i.e., we would like to solve the energy eigenvalue 

problem on a computer for the smallest nwnber of points possible and still 

. obtaining an adequate picture ofthe energy contours. We decided to cmose 

a cylindrical co-ordinate system in reciprocal space, with L as the origin 

and f'L, the A direction, as. our z axis. The polar angle e is then defined 

in the planes perpendicular to this z axis. We let 8 = 0 to be the 
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direction parallel to LW line. The three-fold rotation symmetry about the 

z axis and the reflection symmetry about the e = 30° and e = 90° planes 

allows us to confine our sampling points in the two regions: ( i) 0° < e 

< 30° and (ii) 60° < e < 90°. Every sampling point is defined by its coordi­

rntes (kt,S,k) where kt and k are the transverse and longitudinal canpo·-
z z 1 

nents of· the k vector, expressed in units of ('~rr/a). Sample points are 

taken with kt in 0.02 (2rr/a) intervals and Kz in 0.04 ('2:rr/a) intervals, 

and one (at most two) value of e in each of regions (i) and (ii) seemed 

to serve our purpose adequately. The energies of other ~ poirrt s in the 

reciprocal space are linearly interpolated from the energies of the grid 

of the above sampling points. 

'rhe valence band energy contours are drawn in planes of constant k : z 

k 0, k ,;; .04 (2Tr/a) and k = '.08 (2rr/a) for SnTe are shown in Figs. z z z . 

9a, 9b and 9c). We do not show energy contours for PbTe since they are 

merely circles for each constant k plane for an ellipsoidal surface. 
z 

From these energy contours, we c arrputed, for various Fermi energy levels, 

the corresponding hole carrier concentration required to fill up to this 

level. The results are given in Table 4. 

The Fermi surface of SnTe consists of four pockets, each centered 

about an L point of the Brillouin zone. For low concentration (for example, 

the experimentally attainable 5Xlo19 carriers cm-3 ), each pocket resembles 

a "hollowed cylinder", the "mean inner radius" of this· "hollowed cylinder" 

is smallest at L and increases as one moves away from L along the A 

direction.·· For higher car:der concentrations, the central part of the 

"cylinder" in the immediate vicinity of L becomes filled with carriers and 

the cylinder is no longer hollow at this point. For states near the A axis 
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furtherlaway from L the cylinder remains hollow. This is a characteristic I . . 
feature~· of the theoretically calculated Fermi surface which persists for 

f 

all car:i-ier concentrations greater than 7><10
1
9 .em - 3 In order to g~t a 

clearer 'picture of the actual Fermi surface, we made a cardboard model . I 
I 

of one of the energy pockets with an assumed Fermi energy of ~0.11 eV (this 

I 
energy corresponds to the 0.04 eV contour in Fig. 9 since the zero energy 

reference here is taken to be at the valence maximum which is 0. 07eV higher 

than the energy at L point). This Fermi energy, -0 .lleV cor:re sponds to 

a total carrier concentration of approximately 10
20 

cm-3 . The two views 

of this model in Fig. 10 demonstrates the characteristic features of 

the cal'Culated Fermi surface which were described earlier. The three-fold 

symmetry and the m~ltiply-connected nature of the energy pocket which 

show up in Fig. 10 explains the use of quotation marks around terms such 

as "radius" and "cylinder11 USt2d earlier to describe the surface since these 

terms implied an analytic surface with a rotational symmetry this sur-

face does not have. As stated earlier, our band structure also gives 

a second valence band maxi!Jlum along L: direction. However, in order 

for the hole Fermi energy to reach this second valence band maximum, 

the calculation predicts that a carrier concentration of at· least 

2.1Xl0
20 

carriers cm-3 must be reached. This is in good agreement with 

Shubnikov-de Haas experimental data 8a which indicates that the effect of 

the presence of holes in a sec and valence band becomes evident for hole 

. . . 20 -3 
carr1er concentrat1ons greater than 2.0Xl0 carriers em . For lower 

carrier concentrations between 1.00 to l.03Xlo
20 

em -3 , 8a all the ca~riers 

can be accounted for in the four pockets of Fermi surface centered ab rut 

L. The experimental data for SnTe are canplicated and the exact shape of 

.. 
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these pockets is not yet mapped out experimentally. There·have been some 

. 41 
suggestions that the "knobs" on our theoretical Fermi surface might lead 

to extremal areas which can explain sane of tre exper:imental results. However, 

because of the non-analyticity of our calculated Fermi surface, our past 
I 

attempts to extract extremal areas from it in order to c anp8;re with experi-

ments have not been fruitful. It. is therefore still an open question 

as to the extent to which ·our present· theor-etical model for the Fermi sur-

face of. SnTe corresponds· to reality. 

The calculated Fermi surface for PbTe are ellipsoids along the [1, 1, 1] 

directions centered at L. For carrier concentrations up to 1019 em -3 , the 

. * * anisotropy ratio K = m 
2

jm ~ increases almost linearly with carrier con-

centration and its :value does not exceed two.. In particular, for carrier 

oorcentmtions below 0.3x1o19 em-3, the anisotropy ratio becorres slightly 

less than one so that the ellipsoids are oblate with respect to the [l; 1, 1] 

directions. Cyclotron resonance and Shubnikov-de Haas8 experiments give 

a much larger anisotropic ratio t tan the theoretical result. For a 

carrier concentration of l.2Xlo
18 

cm-3, the experiments give K = 9. There-

fore, only qualitative agreerre nt at high densities with experiment was 

obtainei fran the calculation of Fermi surface for PbTe. 

Lastly, we investigated another band edge property: the variation of 

the energy gap at L fo~ PbTe with changes in the lattice constant. We 

have related this to the pressure dependence of the direct gap, 

T 

the value obtained was dE /dP[T 
g 

T T 

-6 I -7.0Xl0 eV fur, the experimental 

(4.2) 
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. 42 ) 
value jis 

. -6 . . . 
(.,7.4 ± 0.2)Xl0 eV/Bar. The calculated value.involved the 

use of 

I . . . . , . . . 

t~e measured compressibility
42 

which give 1/V <Jvj<JP[T = -2.55xio-
6 

I 

Bar -l. If in PbTe, the ordering ofthe bands at L would have been the same 

as in SnTe, we would have gotten a positive value for dEg/<JP!T. 

i 
! 

We conclude then that the different band ordering obtained frcm our EPM 

calculation for SnTe and PbTe is crucial in explaining qualitatively the 

experimental Fermi surface results. The ordering is again important in 

giving good quantitative agreement with experiment for the nanomalous" 

energy gap temperature dependence oEgfdVIT oV/<JTjp (Chapter V) and the 

positive sign in the pressure dep:mdence <JEg/<JPjT in PbTe. 
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V. EFFECT OF TEMPERATURE ON' THE FUJ\TDAMENTAL ENERGY GAP AT L 

' 31 1+2 
Experiments ' at constant pressure show the energy gap of PbTe 

increases linearly with temperature in the temperature range from 80°K 

to 350°K; for higher temperatures the E (T) curve approaches a constant 
g 

value. The value of the linear temperature coefficient cEg/cT! p lies 

between 4.131 and 4.')Xlo-
4 

eV/°K. 
42 

The positive sign of the temperature 

coefficient is interesting since most common semiconductors (including 

SnTe) have negative temperature coefficients. PbTe is therefore con-

sidered to b.e "anamolous." In this section, we outline a theoretical 

calculation of cEg/cTJp using the pseudopotential method for PbTe and 

compare the results with experiment. We will conclui:le2this section with 

a detailed discussion of our results. 

A. Theory of the Expli.cit Tel_!2erat~ 
Dependence of Ba.nd Energies 

Brooks and yj-3, 44 
have shown that the explicit temperature depen~ 

dence of energy bands in solids may be computed by including the Debye-

Waller factor in the structure factor of the potential. We will essent-

ially rederive their result here within the framework of the pseudopotential 

method which was outlined in the second chapter. 

The Born-Oppenheimer 45 approximation a],lows one to write the Hamil·-

tonian for the electrons in solids as if the electrons were in a static 

lattice. In the zero temperature ba:nd structure calculation in Chapter II 

we have taken the static lattice to be one where all the cores are at 

the equilibrium posit ion, then solve· for the eigenvalues E and the 
v 

pseudo-wavefunctions ¢ (r) which are the eigenfunctions ;Of the pseudo­v ~ 

Hamiltonian (Eq. 2.15) 
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E· ¢ (r) 
v v ~ 

J{ ¢ (r) 
e v ~ 

( 5.1) 

where both E. and ¢ (r) correspond to cores assumed to be in equilibrium v v ~ 

positions. At finite temperature, the lattice is· not frozen so that E 
v 

and ¢v(f.) will be dependent on the instantaneous core configurations. 

We will denote the configurations by (~ £~a}, the set of core, co-ordinates, 

P. indexing the primitive cells and ex indexing the bas is. Therefore ¢ (r) v ~ 

and Ev become ¢('£,, (R1,a}) and Ev~((R.e,a}) respectively. Since 

EXperimental measurements of the electronic energies cannot be carried out 

instantaneously, the observed electronic energies are actually the time 

average of the energies Ev( {R .e, c)). Assuming the validity of the ergodic 

theorem, we replace the time average by an ensemble average over all the 

sets of core wavefunctions. For our calculation, we us.e the harmonic 

approximation to simplify the potential energy of the core system, so that 

the core wavefunctions Xj (( R£,c:x}) may be regarded as the wavefunctions 

describing the phonon system. Just as in Chapter II we solved for the 

band energies by diagonalizing a matrix 

o, (5.2) 

and now we take the ensemble average of (;5.2), that is 

(Ev ((~£ 0:}) >Av· ' . 

(5.3) 

The averaging process in Eq. (5.3) gives rise to a temperature dependence 

of the electronic energies at constant volume. 

We proceed first with the pseudopotential term Vp in Eq. :(5.3 ); the 

core motion is accounted for by writing 

V (r) p ~ 

' I, 

(5.4) 
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where 

= R0 
· + 8R , -l,a -t,a ( 5. 5) 

0 
~l,a being the equilibrium position of the £, a core and 8~£,a the devia'-

tion from the equilibrium position, R£ ,is then the instantaneous position - ,a 
of the·core at some temperature T. Then 

V (r) 
p 

2: 
G 

+iG·r 
e 

(5.6) 

Equation (5.6) is similar to Eqs. (2.9)., (2.10) except now ~P.,ex 

differs from the ~~,ex by 8~£,ex' We may expand 8~£,ex in the phonon 

CO<i.Jrdinates, 

= 2: 
g,,t (

.2M ~. 
ex g,t 

+ € . 
-~, t,ex 

a 
g,,t 

We recall from Chapter II that the pseudo-wavefunction. 

( 5. 7) 

I¢ ) is expanded 
v 

in plane waves and the eigenvalues are obtained by diagonalizing the trun-

cated Hami1tonian matrix in this plane wave representation, it is clear 

then that the ensemble averaging process ( ) , in Eq. (5 .3), necessary 
av 

for finite temperature calculations, brings in only an additional 

·lt' l' t' ( -i G·BRo a ) . th t t mu . lp lCa lVe factor of · e x., , ln e zero emperature s rue-
. · av 

. . 46 . 
ture factors in the Hamiltonian. Glauber ' had shown that for a general 

m-real-phonon process, 

1/ 
I A

m .,w 
m. . e (5.8) 

where A - i(k-k') . oR It 
e - - -x. a 

: ~ I 
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and 

( l!_:-1_: I IT) 1/2 2.: 
i'i 

(2~ t + 1) wa = 
2MaN roq t ~,t. 

q, 
~' 

(1_:-~t) 
2 

€ 

I ' ~~,t,a 
(5.9) 

and n t is the average occupation number of phonons in the mode g,, t and 
I q, 

-2W ~. 
P ·. the usual De bye-Waller factor. To take care of the self energy 

correction to the zero temperature band energies, we include all the 

processes where virtual phonons are emitted and reabsorbed, _that is only zero-

real-phonon processes are included in our finite temperature calculation, 

therefore the finite temperature pseudo-Hamiltonian matrix element in 

1he plane wave representation is, 

l!kl I k .. 
~ s ,_~s 

2 
p /2m 

2 
a ·.· + z.:· 

S I' S 

(J I ] • 
~s s 

CFl 

. -i(k 1 -k)•Trv 
e ~ ~ ""' 

(5.10) 

As we have remarked earlier, this expression only differs from its zero 

temperature analog Eq. (2-22) by the presence of the square root of 

-W 
Debye-Waller factqr, e , in the structure factor. We may now define the 

finite temperature structure factor 

S (T) a 
-i(k 1 -k) ·-r e ~ ~ ~a 

-W(Ik 1 -kl ,T) , e ~ ~ 

we recall from Chapter II that :::
1 

= ( o, 0, 0 )a and :
2 

for the TV and VI atoms respectively. 

B. Calculation 

1. Evaluation of the Debye-Waller Factor 

(5.11) 

(0.5,0.5,0.5)a 

We first turn to the evaluation of W Clgl,~) in Eq. (5.9), (~ 1 -~) 

.. 



.• 

-31-

is now the reciprocal lattice vector, Q· Substituting 

2r1 t + 1 g_, 

into Eq. (5.9), yields 

Now we may write 

l/2 2: 
q,t 

2: f ~ 

2M N 
a t 

2 

coth (1'iroq·tj2k T) 
- B 

coth(fm~· t/2kBT) 

m g_,t 

+ l. 

(5.12) 

(5. i:5) 

(5. 14) 

since the ensemble average over phonon states of (8~; a> is, using the 
. ' 

refini tion of 8~£ a in Eq. ( 5. 7), 
' 

-)~-

€ ' t' a t ·~q ' 'a q, 

t 

at, t' [n t) g_ , q, av 

+ (n [€* 
· 9,, t ~g_, t, a • ~9. ' , t ' a 

a g_,t 

2: f 
t 

2M"N a 

coth (~~.t/2kBT) 
c.o g_,t 

( 5.15 ) 

Keffer 47, 48 
has evaluated the q integral over the Brillouin zore numeri-

cally using the PbTe phonon spectrum ro t and polarization vectors E 
q, -g_,t,a 
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. 49 
obtained by Cochrah et al. In Table 5 we tabulate Keffer's .result 

47, 48 

at various temperatures for Pb and Te in PbTe. The tabulated results 

2 
have a common zero point motion contribution to each (8R l,cx> a)T) 

substracted out because our method to determine the band energies at 

T =I, 0° involves potentials obtained by fitting a few gaps to experiment 
t! 

andi therefore presumably already contains the zero point motion. 
I 

2. Modification of Hamiltonian Matrix Elements 

Since WPb CI2,L T) is not equal to WTe (I gl, T), the property of the 

vanishing of symmetric form factors for odd I g-1 2 
and antisymmetric form 

factors for even lgl 2 
(discussed in Chapter 'n, Eq.s (2.30)-(2.35)) is 

no longer valid. For finite temperatures, one needs VS: (I g;l 2 = 3, ll) 

and~ Clg-1 2 = 4, 8, 12) as well as those required for the zero temperature 

calculation, namely~ Clg-1 2 
= 4, 8, 12) and~ Clg-1 2 

= 3, n). These 

five additional form factors are obtained merely by an interpolation and 

extrapolation scheme using the form factors formerly used. To be specific, 

given the four values of -f3 Cl Gl 2 
= 4, 8 , 12) and v8 (I Gl 2 = 16) = o,· 

we fit a smooth curve with a polynomial of order three to them and then 

:interpolate v8 (I Gl 2 
= 3, ll). The same procedure is applied to the set 

of ~'s. 

Finally, to obtain the total temperature dependence of the band 

energies in. our calculation, we must include the lattice expansion with 

increasing temperature. The change in lattice constant, a, modifies 

the Hamiltonian matrix element in the following terms: (l) the kinetic 

-2 
energy term scales as a since k is expressed in units of (2rr/a), (2) 

all the reciprocal lattice vectors scale as (2rr/a) by definition and (3) 

the pseudopotential form factors 
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I f (I I). -iG·r 3 
2 D Va ~ · e d r 

scale according to ~ in the exponential as well as the volume factor 

D = We have assumed V ( [ r[), the atomic pseudopotential to be . a -

independent of temperature in our scaling process, which is the rigid 

ion assumption. 

We now have all the tools to calculate the temperature dependent band 

structure within the framework of the pseudopotential method; the actual 

procedure used for PbTe will be summarized: 

(a) We determined the lattice constant a(T) for various teiJ'!)eratures 

in the range T ::.O~t'o400°K from experimental data. 50 The experimental 

expansion coefficient a = l/a(t:::a/6J p is constant above T = l00°K and 

' -6 0 
bas the value 1.97><10 /' K; for temperatures less than l00°K, a increases 

with temperature. The lattice constants a(T) are listed in Table 6. 

(b) For the Debye-Waller effect, we now need both symmetric and 

anti-symmetric structure factors (s8 
and SA, respectively) and the symme'­

tric and antisymmetric form factors (v
8 and~) at values ~f IG[ 2 = (2rr/a)

2 

(3, 4, 8, 11, l?). Therefore the I Gl 2 
are explicitly functions of lattice 

constant 'a (in the discussion for the zero temperature band structure 

calculation in Chapter II, we have assumed implicitly that G is measured 

2 
in units of (2n/a) and for abbreviation, used [G[ = 3,4,8,11,12). 

(c) The form factors are scaled and interpolated to the I G[ 2 

appropriate to the lattice constant a(T), as described in earlier part 

of this section. 

(d) The Debye-Waller factors ; 

e -Wa (I G[, T) = e -l/2 G
2 

<: oR~ ,a .>. 
av 

('5;17) 
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are included in the structure factors so that for PbTe, 

SPb (G,T) 
-iG ·-r · -W Pb ( f G f 

2
, T ) = e ·~ ~Pb e ~ . 

( G, T) -G ·-r . e -wTeCIQI~, T) 
8Te 

e ~ ~Te 

( 5.18) 

and 

s8
(G,T) (SPb (G, T) + s 

Te (G,T))/2 

SA(G,T) (SPb (G, T) - s (G,T))/2i 
Te 

(5. 19 

(e) The truncated pseudo-Hamiltonian matrix with modificati'ons (a), 

(b), (c) and (d) is then diagonalized as discussed in Chapter, II to 

obtain the energies for f:inite temperature. The reference zero temperature 

form factors are tabulated in Table 

C. Temperature Dependent Energy Gap Results 

Table 7 gives the temperature dependence of the fundamental energy 

gap at L, Eg(T) ~s given at nine temperatur~s in the temperature range 

T = l00°K to 400°K. The curve E (T) versus T is also plotted in Fig. ll 
. g 

together with optical experimental data .31 Although we obtain the correct 

positive sign for the temperature coefficient oEqjdT[p,its magnitude in 

the temperature range where Eq(T) 

between T l00°K and T = 300°K. 

-4 /o is almost linear is only 2.25x10 eV K 

Optical experiments31 give 4.lXl0-
4 

eV/°K 

between T 0 ·0 
100 K and 350 K. We believe that our formulation of the 

theory of the temperature dependence of the energy band structure is 

correct, but the agreement between experiment and theory is not entirely .. 

satisfactory. Therefore, in the following section, we consider various 

possible causes for the low theoretical value of oEqjoTfp· 

... 
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D. Discuss ion ofoEq/2lTI P 

(1) Our first attempt a_t a more detailed analyses is to separate the 

lattice effect from the Debye-Wailer effect in the temperature dependent 

band structure calculation. Since the two convenient variables for 
I 

theoretical calculations of the temp~rature coefficient are volume and 

temperature, the temperature coefficient for the energy gap E (V,T) at 
. g 

constant pressure is: 

dE (V,T) 
g 

~T 
ClV dT + 

dE (V,T) 
g 

p v 
(5.20) 

We first consider the first term in Eq. (5.18). Suppose we scale 

p T 

. s 2 _ _A 2 
the five zero temperature form factors V (G = 4,8,12) and v-(JGI. 3, 11) 

to values corresponding to lattice constants at (T = 100°K) ahd a(T 

we obtain 

[E (T 300°K) - E (T 
g g 

-4 (0. ) -1 l. 75Xl0 eV K . 

(5. 21) 

If we use t:Q:e experimentally measured pressure dependence of the energy 

gap, 
42 

compressibility and expansion coefficient to obtain the first term 

( ) -4 ( 0 ) -1 in Eq. 5.20, we deduce a value of l.7XlO eV K for PbTe. The agree-

ment between theory and experiment results is very good for lattice effect:. 

alone. 

Now we turn to the second term ClEg/dTiv in Eq. (5.2o'). We take the 

S 2 A 2 
set of zero. temperature form factors V' (I G! = 4, 8, 12) and V · (I Gl 3, 11) 

and interpolate VS Cl G!
2 = 3, 11) and ·" Cl G!

2 = 4,8, 12). Then we put in 

the Debye-Wa1l~'t- factors in the structure factors SS and SA. The .lattice 

constant a._ is constrained to be the zero temperature value throughout this 

calculation. The gap energies as a function of temperature coming from 

'" 



this Debye-Waller effect alone are given in Table 8. We note the following 

points from Table 8: 

(a) . The temperature coefficient is ver:y SID;§.],l, on the average, it 

is 
1
about a factor of three to four smaller than that coming fran th:i 

latl.tice effect alone. It is therefore necessary to keep values of E , g 

expressed in eV up to the fourth'·'decimal point in Table 8 in order to get 

a picture of how the energy gap moves with respect to temperature. We 

recall that our calculation gives corwergence of energies with respect 

to E
1 

(Chapter II) only up to 0 .l eV, but when we are looking at one point 

of the- Brillouin zone, the size of the Hamiltonian matrix to be diagona-

lized remains constant from ohe temperature calculation to another and 

our comparison of energies up to the fourth decimal place is valid in 

this context. 

(b). It is interesting to note that the temperature coefficient 

(arising only from the Debye-Waller effect) oE /oTJV is positive from 0° 
g . 

to 300°K, but for temperatures greater than 300°K,pEg/OT[V becomes negative. 

Our calculation stopped at 400°K, limited by the unavailability of Debye~ 

Waller factors for higher temperatures. If we were to predict that 

oEg/oT I v will continue to be negative for higher temperatures, then this 

will bring about a flattening of the theoretical curve E (T) (the total 
g 

temperature dependent energy gap, containing both lattice and Debye-

Waller effects) versus T (refer to Fig. ll). This flattening of E (T) g . 

versus T above 350°K is a charact~ristic feature of the experimental data. 

From the above discussion it is apparent that the discrepancy between 

the total theoretical temperature coefficient and the experimental result 

arises rna inly from the De bye-Waller and not the lattice effect. 

,jl 
I 

We pro-
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ceed to investigate the sensitivity of the Debye-Waller temperature 

effect as a function of different sets of form factors used. 

(2) In this section, temperati.lre coefficient will always mro.n 

ClEg/ClTj V' that is, that part arising only from the Debye-:Waller effect. 

In Table 9, we list the six energy levels at L and their temperature 
I 

coefficients from our empirical pseudopotential band structure calcula-

tion, together with energies given by other pseudopotential, (k,p )AFW 
. . - -~ 

and OPW calculations by various authors~l,5l-53 A close examination 

of this table shows the following: l) The energies of all levels, 

+ 
except one level (lower 16 ) from our calculation agrees well with those 

+ 
given by other calculations, our lower 16 level is on the average 1.3 eV 

lower than all other calculations; 2)' the temperature coefficients of 

all levels is positive, but the 16 level at the conduction edge has a 

slightly larger ClE/dTjV than the 1 6+ level at the valence edge, giving 

rise to a net oE jdTjV of 0.3 eVtK between T = l00°K and 300°K-(the g . 

. 4 -4 /o ). ) + experimental value is 2. XlO eV K; 3 the lower 16 level has an 

extraordinary large temperature coefficient oE /2JTiv = l2.8xlo-
4 

ev;oK, ·-

-4 /o as compared with values between 4.5 to 7.9Xl0 eV K for the other 

energy levels. From these three points, our first guess is to relate 

+ 
the energy separation of our lower 16 level from the gap to the smallness 

of our gap temperature coefficient. We are therefore led to the fol:)_owing 

question: 
. + 

if we were to bring the lower 16 level up to be near the gap, 

as in other theoretical calculations, can the large temperature coeffi­

cient of the 
+ 

lower 1 6 have the effect of enlarging the gap temperature 

coefficient? To obtain an answer to the above, we did the following 

analysis; 
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Given the original set of form factors,. which we hereafter call 

+ 
set A, we vary the form f~ctors one at a time to move the lower L6 . level, 

keeping the ordering of all the energy levels at L unchanged. It turns 

out that only the two ant isymmetric form factors /'-(3) and /'-( 11) have 

+ 
any appreciable effect on the lower L6 level, 

I 
I 

I 
2 to 3, and (5.22) 

s s + 
variations of V ( 4) and V ( 8) have almost no effect on this lower L6 level, 

ClE + 
L6 

~ 2. ( 5-23) 

The upper limit of variation of each form factor is ±0.01 Rydberg and the 

lower limit is governed by the criterion that the ordering of the energy 

levels at L should be the same, regardless of the set of form factors 

used and the temperatures. In particular, we require the valence band 

+ 
Erlge to have symmetry L6 and the conduction band edge to have symmetry 

L6 The resultant set of form factors used, labeled set A through set 

G, are tabulated in Table 10. For each set of form factors, we calculated 

the energies at L for T = 0°, 100° and 300°K, including only the Debye-

Waller effect for the finite temperature calculations. We obtain the 

temperature coefficient 2lE/2lTiv between l00°K and 300°K for each level 

fran the finite temperature calculations. These results are listed in 

Table ll. 

We then analyze the data tabulated in Table ll by correlating the 

temperature coefficients of the top valence and the bottcm corduction 

bands with the energy separations: 
+ + 

top valence L6 to lower L6 , top 

'" ,, 
I 
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+ + 
valence 16 to upper 16-, bottom conduction L 6 to lower 16 and 

bottom conduction 16 to upper 1 6 . The temperature coefficient of the 

gap, <JEg/<JT! v is 

( 5.24) 
v 

We observe the following as a result of our analysis: 

(a) The temperature coefficient of each energy level fluctuate 

only slightly as different sets of form factors are used, it varies at 

most by l.4xlo-
4 

eVtK . 

. (b) Sets B and C correspond to a variation of the form factors 

~(3) from set A, and results for sets A, Band C indicate that when. 

+ 
both the upper 16 and lower 16 levels are close to the top valence 

and bottom conduction levels, dE j<JTfv increases. Sets D and E correspond 
g . 

to the variation of the form factor ~(11) from set A; results for sets 

A, D and E show that <JEgf<JTf V is larger when upper 1 6 level is close to 

+ + 
top valence 1 6 and lower 16 level is close to bottom cmduction 16-. 

These results also require that the two 1 6 condUction levels be kept 

+ 
apart as well as the two 16 valence band be kept apart for a larger 

s . 
Lastly, sets F and G correspond to the variation of V (12) 

fran set A. The energies and temperature coefficients for the sets A, 

F, G indicate that in order to obtain a larger dEg/oTI V' the upper 16 
+ 

level should be close to the top valence 16 . However, the energy 

+ 
difference between the upper 16 and top valence 1 6 should be large, 

+:' 
and the splitting between the lower 1 6 and the bottom cmductim 16 

should .also be large. 



Frorh (b) 
i 
I 

I 
I 

it is obvious that no simple conclusion may be drawn from 

the 
I • analysls: results fran sets A, B, E and sets A, F, G are contradictory 
I 

However,: if we now correlate the temperature coefficient with the gap 

size, we get a consistent trend. In Table 12 we tabulate the energy gap 
( 

in one column and the temperature coefficient in another; these numbers 

invariably show that a smaller gap corresponds to a larger temperature 

coefficient within each group bf form factor sets: (A, B, C} (A,D, E} and 

{A,F,G}. Each group of form factor sets correspond to variation of one 

form factor by notcmore than 0.01 Ry. from the starting set A. Table 12 · 

essentially shows that if we were to keep a gap size consistent with 

experiment, then we have to accept a gap temperature coefficient which 

iS far smaller than the experimentally predicted value, on t be other 

band, if we were to allow the gap to go to nearly zero (0.02 eV) then 

oEg/oTiv reaches a value of l.3xl0-
4 

eVtK,closer to the experimentally 

predicted value 2.4xw-
4
evtK than our original 0.3xlo-

4 
eVtK. It 

appears that we cannot do too much better since we need to keep the correct 

ordering of the top valence and bottom conduction bands at L. We will 

have futher discussion on this point later, in the meantime, ·we turn 

once again to the temperature effect coming from lattice expansion. 

(3) We have shown in section (l) of this chapter that our theore-

contribution to oE /oTI P from lattice expansion g . 
tical calculation of the 

alone using form factor set (A) gives good agreeme rrt with experiment. 

Our calculation gives (oEg/oVIT) (oV/oT!p) = -4 /o l.75xl0 eV K while 

experiment yields l.?Xl0-
4 

eV/°K. In section (2) we show that by 

variation of certain form factors, we may improve our oEg/oTiv calculation 
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(which is the other contribution to dE /oTfp, the total temperature 
g -

coefficient of the gap); it is therefore necessary that we· also investi-

gate the sensi:tivity of the lattice contribution to oEg/oT!p by .the 

variation of the form factors. To take care of only the lattice effect, 

we take the lattice constants at lOO~K and 300°K, scale the zero tempera-

t ure form fact or sets A through G to these two temperatures and calculate 

the energies at L for these temperatures. In Table 13, we tabulate the 

resultant temperature coefficients oE/oVfT oV/dTfp for the levels at L 

between l00°K and 300°K using the sets of form factors A through G 

(i.f. Table ll for oE/oTfv). Table 13 indicates the following: 

(a) Unlike the Debye-Waller effect, the lattice effect gives com-

parable values of the temperature coefficients for all levels at L. 

They all fall between (3 to 5)Xl0 -
4 

eV tK; there is not one level that 

has an exceptionally large value of oE/ovl T oV joT I p as in the case 'Of 

oE/oTiv· 

(b) The fluctuation of the temperature coefficients arising from 

lattice effects as we vary the sets of form factors is only half of that 

found for Debye-Waller effect, that is, these temperature coefficients are 

not very sensitive to the variation of form factors. The range of values 

of oEg/oviT dV/oTip is between (1.35 to 2.2)xlo-
4 

eVtKas the 'form factors 

are varied up to O.Ol.Ry.; all are in fair :agreement with the ·experimental 

-4 /o value l.7XlO eV K. 

Based on the above investigations, we conclude this chapter with 

the following remarks: (1) the correct ordering of bands at the gap 

which we obtained from the empirical pseudopotential method is crucial 

in giving the correct positive sign for the temperature coefficient for 
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PbTe. For SnTe, because Debye-Waller factors are not available at 

present, we have only calculated the lattice effect term. The value of 

dEg(Y,T)/dVIT dVjdTip for SnTe using the expansion coefficient 

/( ) ~ ;~ I -6 ·( o ) -l l 3V oV aT p = l. 75Xl0 K , 
. 4 

is -l.48xlO- eV/°K for the temperature coefficient due only to the 

lattice effect. The sign is again correct for SnTe, (2) the magnitude 

of dE~dTiv is very sensitive to the starting set of zero temperature 

form factors. Because of the non-uniqueness of the pseudopotential in 

fitting the band gaps, it is conceivable that if we had used more form 

factors as parameters (e.g. the antisymmetric form factor for high !G!
2

), 

we could have attained the objective of both keeping the correct ordering 

and magnitude of gap and getting the right IJRgnitude for the tenperature 

coefficient dE /dTI p· The exceptionally large energy difference (as 
g . 

compared with other calculati ons
11

' 51-53) between the lower and valence 

+ 
1 6 levels for form factor~ sets A through G. (Tables .. 9 and ll) may well be 

the cause of the discrepancy be"tween calculated value of dE /dTiv and 
g ·. 

experimental value; that is, a set of form factors which give the proper 

energies of all levels at· .L could give the desired magnitude for the . 

Table 9 indicates that dE /dTiv 
g. 

(a small number) was obtained by substracting the energy coefficients 

of one level from the other (both of Which are large numbers) so that 

any discrepancy in the calculated temperature coefficient of each level , .. 

is magnified by a factor of 2 in the resultant gap temperature coefficient. 

A correction of l0-2Cfl/o' in the temperature coefficient of the valence 

+ 16 and conduction 16 levels arising from form factors change Table ll 

could give the correct dE /dTI. 
g v 
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VI. DEFORMATION ParENTIAL 

A. Introduction 

In early investigations into tre possibility of superconductivity 

in degenerate ;superconductors, Cohen's54, 55 calculations indicated that 

I 
superconductivity was possible in highly doped, many-va:lley semiconductors 

with large static dielectric constants. It was expected that these 

. materials would be superconducting around O.l°K, that the superconducting 

transition temperature Tc' should be a function of carrier density, n, 

and that these materials would be type II superconductors. 

Both SnTe and GeTe have the desired normal state properties and 

. h h th t ... l 2 '"4 b d . exper1ments ave s own .:ese ma. er1a s · to e supercon uct1hg. In 

addition, experiments 56-58 on powdered samples and heat capacity measure-

rnent have firmly established that superconductivity was a bulk effect in 

these materials. The first superconducting property to be explored in 

detail was the dependence of the superconduct ing transition temperature 

on carrier concentration, T (n); for both GeTe and SnTe superconductivity 
c 

. . 3 4 58 
was found to exist over a wide range of carr1er concentrat1on. ' ' 

A recent calculation32 ' 59 of T (n) has been made. This calculation 
c 

involves one adjustable parameter ~' the deformation potential which 

rneasures the strength of the electron-.:phonon coup.ling for electrons 

mich are scattered fran one Fermi-surface pocket near L to another by 

exchanging a short wavelength phonon. The inversion symmetry of the rock-

salt structure forbids non-zero electron-phonon matrix elements connecting 
· .. '·. 

electrons from one L point to another in the Brillouin zone. We have 

therefore investigated the matrix elements between electronic states in 

the L valleys near the L point. 
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B. Theory and Calculation 

We take our band structure pseudopotential and a rigid ion model 

for the electron-phonon interaction, 

2: 
t. ,a 

J:ir 
e-ph 

= (6.1) 

where Vn ( r -R 0 
) is the pseudopotential about the atom core in its "ex ~ ~tex 

equilibrium position with lattice index £, and basis index ex, 8~.20!. is 

the displacement of the core from its equilibrium position R~ex· · We 

Fourier analyze V lex and express the displacement 8~tex in terms of ph mon 

co-ordinates: 

= (6.2) 

· l/2 iQ,'R0 
· 

( i1/2M Nm ) - € e ~ ~ i a 
a Q t ~ta 

· iQ•R0 

Atex € . e -~ ~tex 
~tex -;:; 

(6.3) 
th 

where M is the mass of the ex - atom in the primitive cell with ex volume 

n,, ~-is the wave vector of the tth mode phonon with frequency wQ, t and _, 
. . th . . th 

Sta is the polarization vector connected with the t mode and the ex 

atom. -Putting Eq. (6.2) and (6.3) into Eq. (6.1) we get, 

J:i' -e- ex 
(6. 4) 

If we write Ro = Ro + T ' then Eq. ( 6. 4) becomes 
~.ea ~£ ~ 

n J d3~ iq·r 
i(~-q) ·T . i(Q-q) ·R£ 

2: (i':l·sw) A V 
~ ~ a 

(27T)3 tex 9.a 
e ~ ~ e 2: e ~ ~ 

a £ 

(6•5) 
e i(S-~). Ta =L: 

n f d3~ Ci1· Sta) A V iq·r 
N 89;, 'i"'"<i' ( 27T)3 

e ~ ~ 

a ta 1a 

•I 



'# 

where we used L: 
£ 

== (6.6) 

In Eq. (6.5) Q is the reciprocal lattice vector and N the ·number of 

primitive cells in the crystal. Since the sum over lattice sites gives 

us the Kronecker delta relation 9, == 9: - g-, the integral over 9. values 

may be written as a sum over discrete reciprocal lattice vectors ~' 

converting the sum to an integral. Equation (6.5) becomes 

}tf fi l/2 i(Q-G)·r 
== 2:: i 

2MCXI.'bl--; 
€ 

. (~-Q) v e ~ ~ ~ 

£- ~tcx 9:-Q,a 
a,~ q, . 

( 6. 7) 
iG·Ta, 

X e ~ ~ 

If an electron is scattered from a state ¢ks in one valley to a state ¢k, s, 

in another valley by a phonon with wave vector ~' the deformation potential 

~ for crystal with only one type of atom is defined54 as 

(6.8) 

where v is the degeneracy of the phonon which connects the kS and k's' 

states. In our calculation, we have used the pseudo-wavefunctions for 

¢ks and as we mentioned before, the pseudopotential in the perturbation 

~~ h term. Because the initial and final electronic states of an inter­
e-p 

valley process both lie on the Fermi surface, with the same eriergy, 
. 6 

Sham's theorem 
0 

justifies our use of the pseudo-wavefunctions and 

pseudopotential in the calculation of the electron-phonon matrix element , 

the results will · be the same if we were to use the real potential 

and the real electronic wave functions. 

To modify the definition (6.8) to our case of two atoms per primi­

tive cell:, we may write M == (M
1

+M
2

)/2 in place of M on the right side 



of Eq. (6.8),. then:.the deformation potential ~ may be written out explicity, 

X 
i(Q-G) · r 

e· - - (6.9) 

From Chapter II, Eq. (2.33) and Eq. (6.9), one obtains 

± (M/~) i ~t2 . (~-g) v~-Q, 2 J 

X <
A-.' r ei(~-Q)·~ !-" >12 
o/k's' o/ks ' (6.10) 

where the plus sign apply.to'the even G's and the minus to the odd .G's 
....... 

in the'summation. 

We out line the actual computation of Eq. ( 6 .10) 

( 1) Since the pseudo-wavefunctions "' are expanded in about thirty o/ks 

plane waves in our band structure calculation, 

¢ks ~ 2: c~s ei(~-tg') "! ; 
G' · G' 

the matrix element in Eq. (6.11) becomes 

2: 
G' G" 

k ! t*. 
G- s c~s ei[-(~'+Q')+(~-g)+(~~")] · r 

- '-

:= 2: 
'G' 

G' G" 

G']. 

(6.11) 

(6.12) 

(2) The wave vector of the intervalley phonon-~= k' -k is not a 

reciprocal lattice vector, we therefore need to interpolate given values 

of vs(~) and -yA(Q) to obtain Vs(~-g) and yA(~-g) since in pseudopotential 
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band structure calculation, pseudopotential form factors are only given 
.. . 2 

for reciprocal lattice vectors Q: such that I Gl < 12. 

S A 
(3) Whereas V and V. are convenient in the band structure cal-

culation, clearly, V 
1 

and v2 are useful in this calculation, therefore, 

we need the decomposition 

vl (S;-Q) 

v2(S;-~) 

$ . A . v (S;-Q) + v-(S-Q) 

vs(S;~Q) - ~(S;-Q) 
( 6.13) 

(4) We consider the scattering of electrons from one valley to 

another by coupling to a longitudinal acoust.ic phonon, that is,· we consider 

cases where the polarization vectors ·~ta are parallel to the phonon wave 

vector ~· 

(5) The wave vector '1 connecting the L point (1/2,1/2,1/2) 27T/a. 

and L' = (-l/2,1/2,1/2) 27T/a is: 

Q L' - L = (l,o,o) 27T/a (6.14) 

Therefore an X phonon connects two non-equivalent L points, the coupling 

by this particular '1 is identically zero. simply because the electronic 

wave functions have definite parity at the symmetry point L while all 

phonons in rocksalt structure are odd. This prediction is verified by 

our computation, we obtain ~=0 for the '1 = (1,0,0) 27T/a coupling. 

For both PbTe and SnTe, the Fermi surface,of holes centers about 

the L points in the Brillouin zone. If we define 1~1 to be the mean 

radius of the Fermi surf~-_ce from the L point in k space, then 

'~' < o. oL~s ( 21r/aPbTe) for typical PbTe carrier concentrations up to -
8x1o

18 
em -3. For SnTe, ~~~ is" about 0.11 (27r/aSnTe) for moderate 

20 -3 .. 
concentrations 10 em (higher car:Her concentrations in the range 
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10
21 

em -3 are also common for SnTe). The estimated values of I~[ are 

derived from our Fermi surface calculations, which we discussed in 

Chapter IV. For our calculation of ~ 2 
the initial and final electronic 

state <l>ks' <t>k I S I are allowed to have k vectors such that 

~~ - (l/2,1/2,1/2) 27r/a I < l~l ~ 

and (6.;L5) 

"~I - (-l/2,1/2,1/2) 2rr/a I < 1~1 .. ~ 

(6) Since 1~1 << 1~1, a reciprocal lattice vector, the phonon 

exchc:i.nged when electrons are scattered from a state near L to a final 

state near 1 1 will have a wave vector~ very close to tbat of an X phonon 

that is, the phonons that are coupled to- the electrons within the Fermi 

surface are essentially zone edge phonons which give modes involving 

essentially the motion of only one atom (when there are two in the primi-

tive cell). We label mode a such that 

Sal l 
(6,16) 

~a2 0 

and mode b such that 

~bl l 
(6.17) 

~b2 0 

We assume these two modes for all our computations. 

C. Results and Discussions 

For SnTe we select six states at random near L, these are inrexed by 

the ~- vectors, ~l through ~6 which are listed in Table 14. The correspond­

ing states in another valley centered about L 1 will be labeled by ~1
1 

through ~~ respectively. The primed ~1
1 are related to the unprimed 



ones as the following: 

if 

then 

k. 
~l 

,I 

II 
I 

(k ' k ' k ) X y Z 

= (-k' k'; k ). 
X y Z 

(6-18) 

We· allow electrons to scatter from the unprimed to the primed valley. 
I 

The resultant deformation ~ obtained for the two phonon modes a and b 

for several scattering processes in SnTe are tabulated in Table 15. 

The corresponding ~ vectors and deformation potentials results for PbTe 

are tabulated in Tables 16 and 17 respectively. 

Both SnTe and PbTe give ~ on the order of a few electron volts. 

Although our calculation verifies the selection rule forbidding· sea tter-

ing from L to IJ', as we obtain· zero for this process, it ·seems 

that as soon as I~! is slightly larger than zero, ~ alroody jumps to a 

finite value. Our calculation shows no consistent trend,e.g. ~ does 
0 ' 

not appear to increase from zero as 1~1 "'- when the initial and final 

states are 1~1 from L and L' in the range of 1~1 which we considered 

here. In addition, we found that the value of ~ is enhanced if we were 

to allow the pseudopotential to tail off more slowly, i.e. to allow 

2 
higher IQI cut off values for the pseudopotential form factors. These 

led us to believe that our calculation of ~ in this pseudopotential 

formulation pnly gives qualitat ively··reliable ·results .There probably is 

little profit in a complete quantitative calculation of the value of ~' 

obtained by averaging all the electron scatterings over the Fermi surface 

It is sufficient for our purpose that the value of ~ we obtained for SnTe 

is roughly the same as that used by Allen and Cohen
32

' 59 (their values 

of r; were 2 .35, 2. 63 eV) to explain the superconductivity properties of 

II 
I 
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SnTe. This calculation and the results in Tables 15 and 17 indicates 

that ; is roughly the same in both materials, regardless of the ordering 

of the bands at the band edge. The fact that f£Te is not su:rercoirlucting 

is probably due to the smaller carrier concentration in PbTe and not due 

to the fact that the electron phonon coupling in PbTe is weaker t mn 

that in SnTe. 



i. 

-51-

APPENDIX A 

Simplification and Evaluation of the Spin­
Orbit Matrix Element 

We evaluate the terms J;;P-P, J;;c-p, Ap-e and Ac-e from Eq. (2.19) 

in turn. 

in/ -ik' · r e ..._ ""!._X p ik·r d3r e ~ ~ 

4 2 2 
m c 

(A.l). 

Where N is the number of primitive cells and n is the volume of each 

cell, 1/ND comes from the normalization of the plane wave states, .and 

I . f -ik' ·r ik·r d3r e N ~ ~ X E e ~ ~ 
PP 

\l_yX1'i'!s e ~~ ~dr I i(k..;k') ·r 3 

(A.2) 

"' ( :i(k-k') ·r) -Vv e ~~ ~ 

The first term of the integral in (A.2) is zero because if we expand the 

real crystal potential in reciprocal lattice vectors, 

This term becomes 

V(r) = ~ U (G) 
G 

-1i~ X j ~ i(~:..~' + Q) U(G) ei(~-~'+Q) ·~ d3r 
G 

= -tik X ~ i(~-~'+Q) U(d) 5 (~-~'+Q) ND = 0, 
G 

(A.3) 

(A. 4) 

where we have used the notation U(G), for the Fourier transform of the 

crystal potential to distinguish it from V( G), that of the pseudopotential 
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in Chapter II. 

The second term in (A.2) is 

ifik x ( ~-~' ) J v(-!') e i (!:-~' ) · E d3 r 

X Sa (~' -!:) ND 

a 

(A .5) 

where S (k' -k) is the structure factor as defined in Eqs. (2.9) and 1 (2.10) 
a - -

and Ua (~-~~) is tbe fourier transform of the atomic crystal potential 

centered about the ath at an in a primitive cell. Therefore, 

4 2 2 
m c 

(!:'X~) 2: sa (~-~~) ua (1~-~' I). 
a . 

(A.6) 

For the calculation of ~p-c, .(:;c-p and .(:;c-c we make the following 

.assumptions: (l) Whenever·~ operates on a core state, lbt)' J::: is 

approximated by 

'2: 
i,a 

(A. 7) 

where i is the primitive cell index and a the basis index, f. is the 

dimensionless angular momentum operator and 

4. 2 2 
m c 

l 

I r-R. I - -la 2ll r-R. I - -la 

(A.8) 

v(lr-R. I) is just the atomic crystal potential centered about the ath 
- -la 

t . th . th . . t. 11 a om ln e l prlml l ve ce . 

(2) The core states are expressed in terms of spherical harmonics 

r; and a. radical function Rn£' that is 

2: 
i,a (A.9) 

Both assumptions (l) ahd (2) are based on the fact that sprLn-orbit inter-

action is localized near the core so that the core states are little 

changed from atomic orbitals. (3) The plane wave states may also be 

.. 
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m 
expressed in spherical harmonics Y2 so that: 

00 

ik·r 
e - - j f. (kr) Yik' (A .10) 

where Y
2
k(e,¢) is the spherical harmonic with the rotation index m = Rz 0 

with z defined in the k direction. 

Now we have to e"ira.luate three types of integrals: (~'lbt)' 

(~~~~Jbt) and (bt'IAJbt); the matrix elements Ac-~ pp-c and Ac-e are 
. I - -

just different combinations of these 
1 

integrals. We first note that one 

always gets a structure factor fran these integrals, merely due to the 

fact that the core states Jbt) is a sum over all lattice and basic sites 

(Eq. A.9). For example, 

l 

with a change of variable from E-~icX to !:', Eq. (A.ll). becorres 

l 2:: 
i, a: 

-ik' 'R. -ik 1 'r' R ( , ) T.m (e r~,·) d3 , e - -10: e - - r Y . ~ r 
ni i ' -

(A .12) 

· . -ik' ·R.. . 
It is the e - -10: 1n Eq. (A .12) which gives rise to a structure factor. 

The reminaing intergra tion is over the atomic co-ordinate r' . 

All three integrals can also be factored into a radial and an angular 

part, we examine the radial part first. (btl~') involves a radial integral 

as follows: 

j/· [47T(2Hl)]
1

/
2 

j
2 

(k'r') Rni 
2 

( r' ) r 1 dr 1 = B ( k 1 
) 

nl 
(A.l3) 

Simila::tly, (btl-0;] ~). inv()lves, 'putiing aside the structure factor the radial 

integral 

A (k) 
n 

= J'i ~[47T(2i+l)] 1/2 j£ (kr 1
) ~ (r') Rnl (r') r;

2 
dr' (A.l4) 

From Eq.s (2.19), (A.l3) and (A.l4) , v:~e see· that Ap-e and Ac-p involves 

a summation over all the core states (indexed by quantum numbers n and.£.) 

* * (~') and -An2(k') Bn£(k) respectively. By making 

the reasonable 
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asswnption that 

.c'tt'' 
' 

(A.l5) 

i.e the atomic spin.:.orbit splitting of the energy level t=nf, we may 

write fl c -c also in terms of surnrra tion of products B * (k') B (k)l:.nf 
·- nf nf s-o 

Our first attempt in solving these integrals involved the use of 

Slater oroitals 
61 

for the core state, these orbitals are essentially 

nodeless hydrogen- like wavefunctions with an effective charge. We used 

the Coulomb potential with the same effective charge in the spin orbit 

interaction ~ ( ;£) fJ: • a. We found from the evaluation of these integrals 

c~c p c 
that A is at least three orders of magnitude larger than the A- terms 

p-p 
which in turn are orders of magnitude larger than f); . This result is 

not surprising since the spin-orbit interaction is a localized one and 

we would therefore expect the core-core contribution, Ac-e 
~ ' to dominate. 

Now we consider the angular matrix element 

(A .16) 

c-c 
in the A . term. We define a set of right hand orthonormal cartesian 

k' 

k 

and the operator £ isj 

,.. 
pxcl + £ 

( f +i 
+ -

) 

2 

k ' ...... 
c3 

k sin e c + k cos e ~ 
l 3' 

- f -c2 + c3 y z 

( £ -f ) ,... - + -
cl + 2i c2 + £ -

(A.l7) 

(A.l8) 

(A .19) 

c .. 
z 3 .. 
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In other words, ~ may be obtained from k' by a rotation operation R(ex, r3;y) 

of ex = -y = 0, [3 = e, where ex, r3;y are the usual Eulerian angles as defined 

62 . 63 
by Rose and Tlnkham. , The wavefunction YJ!. with k taken to be its . m 

z axis transforms to the primed system, where k' is along the c
1 

axis 

as follows: 

For l=l 

then 

l~Ylk 

I 

Y' D(l) ( R ). 
lm' ex~~~"~ m'm 

m' 

n(l) (o,e,o) l+cos e 
2 

sin e --=---
.[2 

l-cos e -----
2 

sin e 
.f2 

cose 

sin e 

kl +l_ 
'_+ 

) - ( l -l ) 
+ - .,..., /'.. ] [ 

2 CJ. + 2i c2 + J!z c3 

( sin e 
Yil + cos e Y' + 

sin 

.[2 10 .[2 

~ /2 ( · .f2 cos e ' .f2 
I 

yll + case yl-l l 

,r.. 

(A.20) 

l-cos e -2--

sin e 

l+cos ----2 

(A .2ly 

Y)cl) 

+ 
c2 

(2 sin e Y~o + .f2 case y~l - .f2 cose y~-l) --
2i 

I Sin e y + 
11 .f2 

(A.22) + C3 ( -

The matrix element of Eq. (A.l6) becomes 

(A. 23) 

. which is the contribution to the A c-c term from angular integration. 
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TABLE CAPTIONS 

l. Pseudopotential form factors for SnTe, PbTe and GeTe. 

2. Energies and symmetries of critical points and interb.ind transitions 

associated with prominent optical structure at low energy for SnTe, 

GeTe and PbTe. 
. . . 

3. Lattice constants, form factors and spin-orbit parameters for SnTe, 

PbTeand (sn,Pb)Te albys. 

!-1. Fermi energy ( Ef) in Sn'Te and PbTe as a function of hole carrier 

concentrations (p). 

5. Calculated vibrational amplitudes (5R~~Av,("with zero point motion 

contribution subtracted out), for Pb and Te in PbTe. (These values 

were obtained from Refs. 47 and 48). 

6. Lattice constants a(T) for PbTe determined from experiment (see 

ref. 50) 

7. Total temperature dependence of the energy gap at L. 

8. Temperature dependence of the energy gap at L caused only by the 

Debye-Waller effect. 

9. Energy and temperature coefficients (oE/oTiv) of L levels for PbTe 

given by the EPM and energies of L.levels given by other methods 

(Refs. 51, 52, 53, 11). 

lb. Sets of form factors used in the investigation of the temperature 

coefficients oE/oTiv· 

ll. Zero temperature energy.·'levels and temperature coefficients oE/oTJ V 

between T = l00°K and 300°K at L using form factor sets A through G. 

12. Energy band gap Eg and its temperature coefficient oEgjOTJV for 

form factor sets A through G. 

llj I I' 
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13. Temperature coefficients (C:JE/ovl T ClV/oTip) between T 

0 . . . 
and 300 K for energy levels at 1 using form factor sets A thro).lgh G. 

14. The k vectors of the initial electronic::;,, states used in the calcu-

lat ion of the deformation potential for SnTe. 

15. Deformation potential ~ for SnTe. 

16. The k vectors of the initial electronic states used in the calcu-

lation of the deformation potential for PbTe. 

17. Deformation potential~ for PbTe . 

. ,. 
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TABLE 1 

Material V8
( 4) V

8
(8) V

8
(12) ~(3) ~(11) 

SnTe -.232 Ry -.024 .018 .055 .023 

PbTe -.241 -.0352 .017 .052 .021 

GeTe -.245 -.022 .032 .o6o .017 

Ill 
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TABLE 2 

Material Band Energy Critical Point Band Transition 
(in eV) Symmetry 

··-~·>< 

SnTe 0.33 Mo 1(5 ~ 6) ,. 

0.85 Mo L::(5~6) 

1.75 Mo L::( 5 ~ 1) 

1.99 M2 6(5 ~ 6) 
', 

}.0 Ml L::(4 ~ 7) 

3.02 M2 6(4 ·~ 6) 

GeTe 0.23 Mo 1(5 ~ 6) 

1.06 Ml 2:(5 ~ 6) 

1.81 Ml L::( 5 -+ 7). 

2.25 M2 6(5 ~ 6) 

3.24 Ml L::( 4 ~ 7) 

3·57 M2 6( 4 ~ 6) 

PbTe 0.18 Mo 1(5 ~ 6) 

1.07 Mo 2:(5~6) 

1.27 Mo 1(5 ~ 7) 

2.00 Mo L::( 5 ~ 7) 

2.02 M2 6(5 ~ 6) 

2.78 M2 6( 4 ~ 6) 

3.1 Ml L::( 4 ~ 7) 

I i 
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TABLE 3 

Material Lattice Constant Form factors (in Rydbergs) s-o Parameters 
0 

(in A) 

vs(4) V8 (8) V
8

(12) ~(3) VA(ll) A.s A. A 

PbTe 6.454 -. 2L~1 -.0352 .017 .052 .021 .033 -.0009 

Sn0.25Pb0.75Te 6.4188 -.2388 -.0324 .01725 .05275 .0215 .00273 -.0008 

sn0 .
5
Pb0 . 5Te 6.3835 -.2365 -.0296 .0175 .0535 .022 .00245 -.0006 ,, 

Sn0.75Pb0.25Te 6.3483 -.2343 -.0268 .01775 .05425 .0225 .00218 -.0005 
.:_, 

SnTe 6.313 -.232 -.024 .018 .055 .023 .0019 -.0003 
I 
0' 
U1 
I --------
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TABLE 4 

PbTe · SnTe 

(1019 
I 7 

(1020 . -3) -EF(eV) -_)) -EF(eV) em em 

o .. o2 0.08 .01 .02 

0.04 0.56 .02 .06 

0.05 0.61 .08 . 70 

0.06 0.77 .10 .90 

0.09 1.69 .11 1.03 

0.11 2.42 .12 1.16 

0.14 3.82 .15 1.65 

--------



TABLE 5 

,~ ·o 
(8R

2 ) (5R
2 

) Tempera~ure K 
Pb av _16 _. 2 Te av 

( -16 2 
.. · (units of 10 em ) units of 10 em ) 

00 0 0 

20° .ooo6 .0002 

4oo .002 .0008 

100° .007 .0036 

140° .0105 .0056 

200° .0157 .oo86 

24oo .0192 .0107 

300° .0244 .0138 

340° .0279 .0159 

400° .0332 .0189 

:' 



T t ( OK) empera ure 

! . 

. li 
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TABLE .. 6 

0 

a(T) ... ih A 

6.313 

6.45~3 

6.4556 

6.4624 

6. )_~675 

6.4751 

6.4802 

6".4879 

6.4929 

6.5006 



Temperature (°K) 

00 

20° 

40° 

100° 

1l+Oo 

200° 

300° 

340° 

400° 

TABLE 7 

Energy gap at L(eV) 

0.181 

0.184 

0.19 

0.207·. 

0.218 

0.233 

0.252 

0.259 

0.269 
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TABLE 8 

Temperature (°K) 

. 20° 

40° 

~-00° 

'i. 

Energy gap at L (eV) 

0.1833 

0.1877 

0.1941 

0.1974 

0.2004 

·o.2oo7 

0.1997 

0.1993 

I. 
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TABLE 9 

------------------------
Energy level Energy ( eV) 

51 
Energy ( eV) by Energy (eV) Energy ( eV) 11 

Energy (eV) Temperature 
symmetry of ~·.!2 method pseudopotential by OPW method53 by APW method by EPM (this coefficients 

method52 work) (eVtK) between 
T=100°K and 300°K 
from EPM 

1.496 1.442 1.659 L747 
-4 

1 45- 1.95 6.15><10 

L6-( upper 1 6 -) 1.224 1.319 1.45 1.06 1.365 
.. -4 

7.9 X10 

L -
6 0.34 0.217 0.25 0.122 0.181 5·95X10 

-4 

-----
GAP 

-----------------
+ 6 -4 I . 

L6 0 0 0 0 o- . 5· 5X10 ----1 
1-' 

1
45 

+ -0.884 -0.748 -0.95 
4 -4 

I 

-0.9112 -0.909 .. 5X10 

+ 1 6 (lower L
6 

+) -l. 428 -1.197 -1.53 =-1.536 -2.802 12.8 XlO 
-4 

-----

·, 
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Set label 

i, 

.. 

.. 
. ·:· 

'· 
' 3t·<, 

. ' ~ 

TABLE 10 

·_,, 

\ ~ ' ... 
.. •·'·i,: 

!, 

·:·.n.: 

: ~· ' 

1.·· 

., .. ·-,. 

.,:· 
•'. 

·.,· .. · 

·p .. 

. , .... 
. . . . ~: 

l- ... 

. ' .... 

J 'I,, 

'••.' 

'.r' • 
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TABLE ll 

Symmetry label 0°K energy (eV) with 
. ~ 

Set label clE/dTiv (10- eVtK) 
~· 

energy reference shifted between T= 100° K. 
to valence band edge for and 300°K 
each set 

A 145- 1. 75 6.15 

1 -
6 1.36 7.9 

16- 0.18 5.95 

.GAP 

1 + 
6 0 5.65 

+ 145. -0.91 4.5 

1 + 
6 -2 .So 12.8 

B 145- 2.11 5.8 

16 
- 1. 75 7.45 

16 - 0.46 5.2 

GAP 

1 + 
6 0 6.55 

1
45 

+ -1.18 5.0 

1 + 
6 -3.07 13.3 

.. 
c 1

45 
- 1.55 6.45 

... 1 -
6 1.16 8.15 

16 
- 0.02 6.4 

GAP 



Table 11 continued 

Set label Symmetry label 

. . D 

E. 

F . 

-74-

.. 

0°K energy (eV) with 
energy-reference ?hifted 
to valence bapd edge for · 
each set 

0 

. 2.155 .. 

. J.. 777 

/ 0. 7031 .· . 

. ~ .. •. 

0 

-0.695 

-2.578 

1.625 

. 1.243 

·0.028 

-4 • ClEfd'rlv (10 eVfK) 
between T= 100° K 

. 0 . 

and 300 K 

. 5.2 

4.25 

12.6 

5.65 

7-35 

5-55 

6.4 

4.55 

12.9_ 

6.35 

·8.05 

6.1 

·'· 

----~---------------------------

0 

-0.973. 

-2.869 

1.57 

1.20. 

'0.128 . 

5.4 

4.55 

12.85 

6.8 

. 8.35 

. - ·~ '·- .. 

·' . 

· . 
. ,'' 



Table ll continued 

Set label Symmetry label 

L6 
+ 

L45 
+ 

L + 
6 

G L45-

L -
6 

L -
6 

·.GAP 

L6 
+ 

L45 
+ 

L + 
6 

,. 

-75_. 

0°K energy ( eV.) with 
energy reference shifted 
to valence band edge for 
each set 

0 

-1.052 

-2.898 

1.919 

1.525 

0.227 

0 

-0.772 

-2.612 

oE/OT/v (l0-
4

eV/°K) 
o· 

between T= 100 K 
and 300°K 

5.55 

4.95 

12.9 

5.55 

7.45 

5.5 

5.75 

4.1 

12.8 



' J 

Formfactor 
set 

A\ 

c 

A 

D 

E 

A 

F 

G 

. Variation of 
formf'actor 

VA (11) 

v (12) 
s 

-76- . 

TABLE 12 

Energy gap 
E ( eV) . 

g . 

gap temperature coefficient 
dEg/dT I v (10-4 ev;o K} . 

0.18. 0.3 

0.46 -1.35 

0.02 1.2 

0.18 0.3 

0.703 -0.85 

0.028 0.7 

0.18 0.3 

0.128 0.95 

0.227 -0.25 

i·!' 
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TABlE 13 

'• Set label Symmetry label 2JEj2JVIT 2JVj2JT!p dEgj2Jv!T 2Jvj2JTIP 

10-4 eVFK · (lo-4 evtK) 
-~--

A 145 
- -4.0. 

16 - -4.2 

16 - -4.1 

GAP +l. 75 

+ 
-5.85 16 

+ 14t=: 
/ 

-3.65 
'·'· 1 + 

6 -5.15 

B 145- -3-9 

. 16- -4.2 

16 -4.0 

GAP +2.2 

16 
+ -6.2 

145 
+ -3.65 

1 + 
6 -5.1 

c 145- -4.0 

16 - -4.2 

1 -
6 -4.15 

GAP +1.6 ---
,, + 
16 -5.75 

145 
+ -3.7 

1 + 
6 -5.15 

----



Table 13 continued 

Set label Symmetry label 

-78-

~E/cviT cv/d'rlp 
1~-4 ev;o·K 

oEg/ovl T <Jv /cTI P . 

{10-4 eVtK) 
--'--------:-----------------'--...;._-.,-------

D L45 
- -3-9 

L -
·6 -4.2 

L6 -4.25 

GAP 
+1.35 

L + 
6 -5.6 

L45 
+ -3.7 

L + 
6 -5.25 

E L45 
- -4.0 

L -6 -4.25 

L6 - -4.05 

GAP +1.9 

+ 
L6 -5.95 

L45 
+ -3.65 

L + 
6 -5.15 

F L45 
- -3.7 

L -
6 -3. 7. 

L -
6 -4.2 

GAP +1.8 

L + 
6 -6.1 

L45 +. -3-35 

L + 
6 -5.05 

I 
i1 

'i; 
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Table 13 continued 

Set label _Symmetry label. oE/ovl T dV /dT I p 

10-
4 

eVtK 

G L45 - -4:4 

L6 - -4.6 

L6 -4.15 

GAP 

L + 
6 -5.95 

L45 
+ -4.05 

+ 
L6 -5.5 

\• 

Ill 

dEg/oVIT dV/oTjp 

(10-4 eVtK) 

+1.8 

----
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. ' 
TABLE 14 

k index k (k ~ k 'k ) 1~1 from L 
. - X y Z 

(units of 27r/a) (units of 2rr/a) · 

k1 ( .434, .484, .476) .072 

k2 ( . 432' .465, .464) .085 

k3 (. 402, . 441, .454) .123 

k4 (. 422, .403, .471) :128 

k5 ( .458; . 543' . 5) .06 

k6 (. 487, .487, .56) .0633 

.,,!; .Iii I 



TABLE 15 

Initial electronic Final electronic ~ from mode a 
state state coupling (eV) 

1;:_ :.1 k' 
~ 1 1.95 

~2 k' 
~ 2 1.99 

~1 k'' 
~ 2 0.9 

~1 k' 
~ 3 1.56 

~4 k' 
~ 4 0.45 

~5 k' 
~ 5 1.68 

~6 k' 
~ 6 0.53 

t; from mode b 
coupling (eV) 

1.03 

l~. 65 

1.26 

1.5 

2.18 

1.98 

1.06 
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TABLE 16 

k index k == (k 'k 'k ) 161;,1 fran L .. 
~ ~ X y Z 

(units of 2:rr/a) (units of 2n/a) 
., 

~1 (. 5029, .5029, .5029) .005 

k 
~2 

(. 5058, . 5058, .5058) .01 

~3 (. 5115, . 5115, . 5115) .02 

~4 (. 5408, .54o8,. .5408) .0707 

.•. 
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TABLE 17 

Initial electronic ·Final electronic ~ frc:m mode a . ~ frc:m mode b 
state state coupling (ev) coupling (ev) 

~l k' 
~ l 1.49 3.08 

~2 k' 
~ 2 0.278 1.4 

~3 k' 
~ 3 0.48 2.52 

~4 k' 
~ 4 0.57. 1.34 

.. 

_ll! 
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FIGURE CAPI'IONS 

Fig. l Electronic energy band structure of SnTe. 

Fig. 2 Electronic energy band structure of GeTe. 

Fig. 3. Electronic energy band structure of PbTe. 

F;ig. 4 Imaginary part of the frequency dependent dielectric function E
2

(cn) 
., 

for SnTe. 

Fig. 5 Imaginary part of the frequency dependent dielectric function E
2

(cn) 

for GeTe. 

Fig. 6. Imaginary part of the frequency dependent dielectric function E
2

(cn) 

for PbTe. 

Fig. 7 Energy bands near L in directions parallel to A and perpendi..., 

cular to A at the L point for PbTe, Sn Pb
1 

Te (x = 0.25, 0.5 
X -X 

0. 75) and SnTe. 

Fig. 8 Two ·band perturbation result to illustrate the formation of the 

SnTe band edge structure. 

(a) PbTe.ordering 

(b) Band crossing ca. se 9.ssuming no interaction between the 

valence and conduction bands. 

(c) Band crossing case assuming interaction between valence and 

conduction bands resulting in band edge structure similar to 

SnTe. 

Fig. 9 Valence band energy contours in planes of constants kz (a) k = 0 
z 

corresponding to the hexagonal plane of the Brillouin zone, (b) 

k 0.04 (2rr/a), (c) k = 0.08 (2rr/a). The energies are in eV z z 

with the zero energy reference defined to be at L point of the 

zone. 

Ill 

, 'I 
I. 
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Fig, 10 Two views of Fermi surface pocket centered at L for SnTe. The 

hole Fermi energy is -0 .ll eV . (which corresponds to. the -0. o4ev 

Fig. ll 

contours in Fig. 9). 

Calculated and experimental temperature dependent energy gap E (T). . g. 

for PbTe. ·(The experimental diata were from Ref. 31). 
I 
I . 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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