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Abstract

Although tumor-propagating cells can be derived from glioblastomas (GBM) of the proneural and 

mesenchymal subtypes, a glioma stem-like cell (GSC) of the classic subtype has not been 

identified. It is unclear whether mesenchymal GSCs (mGSC) and/or proneural GSCs (pGSC) 

alone are sufficient to generate the heterogeneity observed in GBM. We performed single-cell/

single-nucleus RNA sequencing of 28 gliomas, and single-cell ATAC sequencing for 8 cases. We 

found that GBM GSCs reside on a single axis of variation, ranging from proneural to 

mesenchymal. In silico lineage tracing using both transcriptomics and genetics supports mGSCs as 

the progenitors of pGSCs. Dual inhibition of pGSC-enriched and mGSC-enriched growth and 

survival pathways provides a more complete treatment than combinations targeting one GSC 

phenotype alone. This study sheds light on a long-standing debate regarding lineage relationships 
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among GSCs and presents a paradigm by which personalized combination therapies can be 

derived from single-cell RNA signatures, to overcome intratumor heterogeneity.

INTRODUCTION

Malignant gliomas are the most common primary tumors of the adult brain and are 

essentially incurable. Glioma genetics have been studied extensively, and yet targeted 

therapeutics have produced limited results. Glioblastomas (GBM) have been classified into 

subtypes based on gene expression (1). However, we and others have shown that GBMs 

contain heterogeneous mixtures of cells of distinct transcriptomic subtypes (2, 3). This 

intratumor heterogeneity is at least partially to blame for the failures of targeted therapies.

Tumor-propagating cells expressing markers of the mesenchymal and proneural 

transcriptomic subtypes can be derived from GBMs (4). However, no glioma stem-like cell 

(GSC) of the classic subtype has been convincingly identified. The lineage relationship 

between proneural GSCs (pGSC) and mesenchymal GSCs (mGSC) is unknown. 

Surprisingly little is known about the cellular progeny of GSCs in vivo It is unclear whether 

pGSCs and/or mGSCs are sufficient to generate the heterogeneity observed in GBM.

We performed single-cell RNA sequencing (scRNA-seq), single-nucleus RNA sequencing 

(snRNA-seq), single-cell assay for transposase-accessible chromatin using sequencing 

(scATAC-seq), and whole-exome DNA sequencing (exome-seq) of specimens from 

untreated human gliomas. Via in silico transcriptomic and genetic lineage tracing of these 

data, we defined the lineage relationships between glioma cell types. Integrating this with 

meta-analysis of sequencing data from The Cancer Genome Atlas (TCGA; https://

cancergenome.nih.gov/) and spatial data from The Ivy Foundation Glioblastoma Atlas 

Project (Ivy GAP; http://glioblastoma.alleninstitute.org/), we mapped glioma cells to 

analogous cell types in the developing brain and to specific tumor anatomic structures. From 

the scATAC-seq, we elucidated cell type-specific cis-regulatory grammars and associated 

transcription factors. Using IHC and automated image analysis of human GBM microarrays, 

we validated learned phenotypes at the protein level. Finally, we performed an in vitro 
screen of drug combinations that target genes identified from our single-cell analysis of 

GSCs.

We show that proliferating IDH-wild-type GBM cells can be described by a single axis of 

gene signature, which ranges from proneural to mesenchymal. At the extremes of this axis 

reside stem-like cells that express canonical markers of mGSCs and pGSCs. We identify an 

mGSC signature that correlates with significantly inferior survival in IDH-wild-type GBM. 

Our analysis shows that mGSCs, pGSCs, their progeny, and stromal/immune cells are 

sufficient to explain the heterogeneity observed in GBM. We show that combination 

therapies that address intratumor heterogeneity can be designed on the basis of single-cell 

RNA signatures.
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RESULTS

Single-Cell mRNA and Bulk DNA Profiling of Untreated Human Gliomas

We applied scRNA-seq or snRNA-seq to biopsies from 22 primary untreated human IDH-

wild-type GBMs and 6 primary untreated IDH-mutant gliomas (Supplementary Table S1). 

Our goal was to profile both for cellular coverage (to survey cellular phenotypes) and for 

transcript coverage (to compare genetics). Therefore, we performed sc/snRNA-seq for 19 

samples via the 10× Genomics Chromium platform (10×) and obtained 3ˊ-sequencing data 

for 31,281 cells after quality control. scRNA-seq for 3 cases was done using the Fluidigm 

C1 platform (C1), which yielded full-transcript coverage for 291 cells. We incorporated 4 

more published cases from our C1 pipeline, adding 384 cells (3). For 6 of the 10× cases and 

5 of the C1 cases, the biopsies were minced and split, and both scRNA-seq and exome-seq 

were performed (Supplementary Table S1).

We applied our pipeline for sc/snRNA-seq preprocessing (5), quantification of expressed 

mutations (3, 6), and cell-type identification (7, 8). We identified 10,816 tumor-infiltrating 

stromal and immune cells based on expressed mutations, clustering, and canonical marker 

genes (Fig. 1A; Supplementary Fig. S1A). We termed the remaining 20,465 cells neo-

plastic, as they expressed clonal malignant mutations. Only neoplastic cells were used for all 

subsequent analyses.

The Transcriptional Phenotypes of Proliferating IDH-Wild-Type GBM Neoplastic Cells Can 
Be Explained by a Single Axis That Varies from Proneural to Mesenchymal

Unbiased principal component analyses (PCA) of the IDH-wild-type GBM cases revealed 

two patient-independent clusters of neoplastic cells consistent across all three platforms 

(Fig. 1B–I; Supplementary Table S2). A differential expression test between clusters 

identified markers of the proneural (e.g., ASCL1, OLIG2) and mesenchymal (e.g., CD44, 
CHI3L1) subtypes as significant (Supplementary Table S3). Mesenchymal cells significantly 

overexpress markers of response to hypoxia (e.g., HIF1A) and cytokines that promote 

myeloid-cell chemotaxis (e.g., CSF1, CCL2, CXCL2). However, mesenchymal cells do not 

express high levels of MKI67 or other markers of cell-cycle progression. Conversely, 

proneural cells express high levels of MKI67 as well as cyclin-dependent kinase genes. We 

estimated the fraction of actively cycling cells using the Seurat package (9). By this metric, 

21% to 30% of proneural cells are cycling compared with 0.3% to 10% of mesenchymal 

cells (Fig. 1D and G). Importantly, all our clinical specimens contain cells of both 

phenotypes: proliferating proneural cells and mesenchymal cells with a quiescent, cytokine-

secretory phenotype (Supplementary Fig. S1B).

In all PCAs, cells at the left and right extremes of principal component 1 (PC1) express high 

levels pGSC or mGSC markers (4), respectively, as indicated by PC1 gene loadings (Fig. 1B 

and E). We therefore interpreted the top-loading genes from each direction as representing 

pGSC and mGSC gene signatures. We used those signatures to score all cells for stemness, 

controlling for technical variation as described previously (9, 10). In all PCAs, principal 

component 2 (PC2) is loaded by markers of cell-cycle progression (e.g., MKI67). Thus, 
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although stemness correlates with cell cycle for both proneural and mesenchymal cells, more 

pGSCs than mGSCs express markers of cell-cycle progression, and at higher levels.

IDH-Mutant Gliomas Are Composed of Cycling Stem-Like Cells, Noncycling Astrocyte-Like, 
and Oligodendrocyte-Like Cells

A PCA analysis of the IDH-mutant gliomas identified 3 patient-independent populations 

(Supplementary Fig. S1C–S1F). Two of the clusters fall on opposite ends of PC1. They 

differentially express markers (e.g., OLIG2, GFAP) of astrocyte-like (IDH-A) and 

oligodendrocyte-like (IDH-O) cell types, as has been previously described in scRNA-seq of 

IDH-mutant glioma (11). PC2 is positively loaded by cell-cycle genes, such as MKI67. A 

third cluster of cells has high PC2 sample scores and specifically expresses markers of IDH-

mutant GSCs (10, 11), as well as genes associated with cancer stem cells not previously 

described in IDH-mutant glioma (Supplementary Table S2). We term this cluster IDH-S 

following the convention of Venteicher and colleagues (11). Most cells in IDH-S have low 

PC1 sample scores, and do not express IDH-A or IDH-O genes. Almost all cycling cells are 

found in IDH-S (Supplementary Fig. S1G).

IDH-Wild-Type GBM Cells Are Stratified by Differentiation Gradients Observed in 
Gliogenesis

In our differential expression test, we observed that proneural cells specifically express 

markers of the oligodendrocyte lineage (e.g., OLIG2, SOX10), whereas mesenchymal cells 

instead express markers of astrocytes (e.g., GFAP, AQP4). We evaluated the mGSC and 

pGSC gene signatures in scRNA-seq of glia from fetal and adult human brain (12, 13). We 

found that pGSC signature genes are enriched in oligodendrocyte progenitor cells. The 

mGSC signature, however, is comprised of genes expressed by neural stem cells as well as 

markers of astrocytes (Fig. 2A).

In addition to mGSCs and pGSCs, we find neoplastic cells (possessing clonal malignant 

mutations) that do not express stemness or cell-cycle signatures above background levels. 

Instead they express either markers of differentiated astrocytes (e.g., ALDOC) or 

differentiated oligodendrocytes (e.g., MAG, MOG). Although the GSCs express high levels 

of positive WNT pathway regulators, these more differentiated cells express high levels of 

WNT pathway agonists (Supplementary Fig. S2A). Thus, GBMs contain mesenchymal and 

proneural populations that align with astrocyte and oligodendrocyte differentiation gradients, 

respectively.

PGSCs, mGSCs, Their Differentiated Progeny, and Stromal/Immune Cells Explain the 
Phenotypic Heterogeneity Observed in GBM

We found that our mGSC and pGSC gene signatures are coexpressed across TCGA datasets 

(Fig. 2B; Supplementary Fig. S2B). Although mGSC and pGSC signature genes are 

correlated among themselves, the mGSC and pGSC signatures are anticorrelated with each 

other. Moreover, the cell-cycle signature more strongly correlates in TCGA data with the 

pGSC signature than the mGSC signature, consistent with our scRNA-seq data 

(Supplementary Fig. S2C).
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Using our scRNA-seq data and published scRNA-seq data from human brain tissue (12, 13) 

as a basis, we pooled reads across cells of the same type. This yielded data-driven profiles 

for mGSCs, pGSCs, astrocytes, oligodendrocytes, neurons, endothelial cells, myeloid cells, 

and T cells. We then used these cell-type signatures as predictors in a linear regression 

model. We fit our model to each TCGA GBM RNA-seq dataset individually. A heat map of 

cell type-specific genes (Fig. 2C) agreed with our regression analysis (Fig. 2D). We found 

that samples of both the mesenchymal and classic Verhaak subtypes are enriched for mGSCs 

and depleted of pGSCs. Whereas classic samples are distinguished by higher infiltration of 

astrocytes, mesenchymal samples contain high levels of infiltrating immune cells. Proneural 

samples are characterized by the highest levels of pGSCs, oligodendrocytes, and neurons. In 

summary, the full spectrum of heterogeneity observed in TCGA GBM data can be explained 

by varying proportions of pGSCs and mGSCs, their differentiated progeny, and infiltrating 

stromal/immune content. Cox regression analysis identifies the mGSC signature as 

correlating with significantly inferior survival in TCGA data. However, pGSC content is not 

prognostic (Fig. 2E).

GSC Niche Localization and Microenvironment Interactions Elucidated Using Reference 
Atlases and Quantitative IHC

We compared our mGSC, pGSC, and cell-cycle signatures to RNA sequencing from the Ivy 

GAP (Fig. 2F and G). The Ivy GAP has annotated, microdissected, and RNA-sequenced 

GBM anatomic structures from human specimens. We found that mGSCs are enriched in 

hypoxic regions. pGSCs are enriched in the tumor’s leading edge and in regions of diffuse 

infiltration of tumor-adjacent white matter.

To visualize and quantify the associations between GSCs, the cell cycle, and hypoxia, we 

performed IHC for CD44 (mGSCs), DLL3 (pGSCs), CA9 (hypoxia), and Ki-67 (cell cycle) 

on GBM microarrays (Fig. 2H; Supplementary Table S4) and nonmalignant controls 

(Supplementary Fig. S2D). We did not find any cycling CD44+ cells in our samples, whereas 

approximately 5% of DLL3+ cells expressed Ki-67. On the other hand, CD44+ cells 

colocalized with CA9 at 2-fold greater frequency than DLL3+ cells. This dovetails with our 

findings in scRNA-seq, TCGA, and GAP data, which show that pGSCs are more 

proliferative whereas mGSCs are enriched in hypoxic regions.

Genetic and Transcriptomic In Silico Lineage Tracing of GBM GSCs Supports a 
Mesenchymal-to-Proneural Hierarchy

We identified all cycling cells from our IDH-wild-type GBM datasets (see Methods). These 

cells were then used to perform RNA velocity analysis via velocyto (14). This approach 

compares the fractions of spliced to unspliced transcripts per gene to estimate the time 

derivative of gene abundance in single cells. When projected back onto a PCA axis (Fig. 

3A), we found that RNA velocity supports stable mGSC and pGSC populations as well as an 

intermediate population that gradually transitions from a mesenchymal to proneural 

phenotype. For example, in this intermediate population, mGSC markers (e.g., CD44, 
CHI3L1) are highly expressed, but have a negative time derivative; conversely, pGSC 

markers (e.g., DLL3, PDGFRA) are lowly expressed but with a high, positive velocity.
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Mitochondrially expressed mutations have recently been identified as a reliable way to 

perform genetic lineage tracing due to the robust coverage of mitochondrial genes, even in 

scRNA-seq (15). Following this approach, for each sample we pooled cells and identified 

mitochondrial single-nucleotide variants (SNV; see Methods). For each cell, we then 

annotated the percentage of its sample’s mitochondrial mutations it harbored. We found that 

the percentage of expressed mitochondrial mutations correlated with progression from the 

mesenchymal phenotype (Fig. 3B–D). Thus, both genetic and transcriptomic lineage tracing 

supports a mesenchymal-to-proneural hierarchy.

We also compared chromosomal SNVs and CNVs in our scRNA-seq data that were 

validated by exome-seq data via our previously described approach (3, 6). We restricted 

ourselves to mutations that occurred at a minimum of 10% variant allele frequency in 

exome-seq and identified cells in our scRNA-seq that expressed these mutations. For all 

patients, we found that all expressed, validated mutations are present in the GSCs 

(Supplementary Fig. S3A). This shows that the GSCs are sufficient to explain the genetic 

heterogeneity observed in our tumor specimens.

IDH-Mutant and Wild-Type GSCs Share a Core Signature That Is Prognostic

RNA-velocity analysis of IDH-mutant glioma datasets revealed a hierarchy with a single 

root focused on the IDH-S population and two terminal points corresponding to 

differentiated IDH-A and IDH-O populations (Supplementary Fig. S3B and S3C). We 

compared gene loadings of PC2 between the original PCAs of our IDH-wild-type and IDH-

mutant gliomas. This identified a core signature of stemness enriched in the cycling cells of 

both diseases (Supplementary Fig. S3D). This signature is prognostic in a combined cohort 

of IDH-mutant grade II/III oligodendrogliomas and astrocytomas (Supplementary Fig. S3E). 

An analysis of expressed mitochondrial mutations showed that mitochondrial mutational 

load correlated with progression along the IDH-O and IDH-A lineages (Supplementary Fig. 

S3F and S3G), further supporting a cellular hierarchy with IDH-S at the apex.

scATAC-seq of Human Gliomas Identifies Cell Type-Specific Regulatory Grammars and 
Supports a Single-Axis Hypothesis

We performed scATAC-seq on 4 IDH-wild-type GBMs, 2 IDH-mutant grade II 

astrocytomas, and 2 IDH-mutant oligodendrogliomas. We considered the IDH-wild-type and 

IDH-mutant samples separately. IDH-wild-type GBM cells subjected to scATAC-seq were 

triaged according to the presence of observed genomic alterations (Fig. 4A; see Methods). 

For each cell and each gene, we computed a gene-body activity score (i.e., the gene-wise 

sum of scATAC-seq read-counts) using Seurat v3. We then clustered gene-body activity 

scores separately for neoplastic and nonneoplastic cells using Seurat. The gene-body 

activities of nonneoplastic cells were readily separated by canonical markers of myeloid, 

glial, and endothelial cells (Fig. 4B).

When we clustered the gene activity scores of neoplastic cells, we found 3 clusters of cells. 

We then performed differential motif enrichment tests between these groups of cells to 

identify enriched regulatory motifs and associated transcription factors (Fig. 4C–G; 

Supplementary Table S5; see Methods).
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In the first cluster, the proneural bHLH genes OLIG2, ASCL1, and NEUROG2 were 

enriched and both their gene-activity scores and representative motif frequencies were 

significant. The second cluster showed enrichment for mesenchymal makers (e.g., CD44, 

STAT3). When we compared the third cluster to the mesenchymal cluster, proneural markers 

were differentially enriched (Fig. 4E). Likewise, when we compared the third cluster to the 

proneural cluster, we saw differential enrichment of mesenchymal markers (Fig. 4F). 

Moreover, the most cluster-specific gene activities identified for this third cluster showed 

partial overlap with both the mesenchymal and proneural clusters, for example, CD44 and 

CDH9 (Fig. 4C; Supplementary Table S4). We plotted the expression of the cluster-specific 

genes from the third cluster on top of a PCA plot of cycling cells. We found those genes 

expressed a population that was intermediate to the mesenchymal and proneural populations 

in our RNA-velocity and mitochondrial-mutation analysis (e.g., MET; Supplementary Fig. 

S4A). Thus, we interpret this third cluster as an intermediate population between 

mesenchymal and proneural clusters.

IDH-mutant glioma cells were likewise separated by the presence of clonal mutations into 

neoplastic cells and nonmalignant glial/immune cells (Supplementary Fig. S4B and S4C). 

Clustering by gene-activity scores identified three clusters corresponding to the IDH-S, 

IDH-O, and IDH-A cell types (Supplementary Fig. S4D–S4G). Motif enrichment in each 

cluster was assessed to determine cell type-specific regulatory grammars (Supplementary 

Fig. S4H).

A Drug Combination Screen Based on Single-Cell Signatures

We identified FDA-approved drugs that target genes found to be specific to pGSCs and 

mGSCs in our single-cell analysis (Fig. 5A; Supplementary Fig. S5A). Drugs were screened 

in combination to assess synergy in vitro (see Methods). Only combinations that targeted 

both the pGSC and mGSC phenotypes were found to be synergistic (Fig. 5B; Supplementary 

Table S6). In particular, inhibition of EGFR and FGFR3 growth factor receptors did not 

synergize with WNT inhibition (all mGSC-specific targets), but targeting either EGFR, 

FGFR3, or WNT synergized with inhibition of pGSC-specific Survivin.

DISCUSSION

It is known that an individual tumor may contain multiple GSC clones (16). We applied 

exome-seq, sc/snRNA-seq, and scATAC-seq to human tumor specimens and found that all 

GBMs contain hierarchies of mesenchymal and proneural GSCs and their more 

differentiated progeny. We also observe these same cellular hierarchies in scRNA-seq 

profiling of recurrent GBM following treatment (Supplementary Fig. S5B). However, our 

study was limited to the analysis of primary tumors. Additional studies will be required to 

determine whether standard therapy exerts a selection pressure on this hierarchy.

While our manuscript was in revisions, Neftel and colleagues published a model of GBM 

heterogeneity based on scRNA-seq analysis of adult and pediatric human specimens (17). 

Neftel and colleagues describe a model with four cellular states: astrocyte and mesenchymal 

cell types enriched in Verhaak classic and mesenchymal TCGA samples and NPC- and 

OPC-like cell types enriched in proneural TCGA samples. Their data corroborate a 
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mesenchymal-to-proneural axis, and anticorrelation of mesenchymal (e.g., CD44) and 

proneural (e.g., DLL3) genes in neoplastic cells (see ref. 17; Fig. 2C). Both studies 

contribute to recent advances that use transcriptomics to identify clinically relevant 

phenotypes (18, 19).

Murine GBMs can be separated into two cell populations that have different capacities for 

tumorigenicity and self-renewal (20). The Id1hi/Olig2− and Id1lo/Olig2+ populations found 

in the model of Barrett and colleagues (20) match the expression signatures of mGSCs and 

pGSCs, respectively. Moreover, the finding of Barrett and colleagues (20) that Id1hi cells 

initiate tumors containing both Id1hi and Olig2+ cells, whereas tumors from Id1lo/Olig2− 

cells do not generate Id1hi progeny, is consistent with our transcriptomic and genetic lineage 

tracing in human specimens. More recently, Narayanan and colleagues showed that ASCL1 

is a master regulator of the proneural phenotype of GBM, and that ASCL1 directly represses 

mesenchymal-phenotype genes such as CD44 and GFAP (21). This is consistent with our 

data; in particular, our scATAC-seq analysis shows anticorrelation of CD44 and other 

mesenchymal genes with ASCL1 gene-body activity and motif enrichment (Fig. 4C and G). 

Knowledge of GBM cell types, their lineage relationships, and functional differences is 

needed to develop combination therapies that address intratumor heterogeneity.

METHODS

Tumor Tissue Acquisition

We acquired fresh tumor tissue and peripheral blood from patients undergoing surgical 

resection for glioma at University of California, San Francisco (UCSF). Deidentified 

samples were provided by the UCSF Neurosurgery Tissue Bank. Sample use was approved 

by the Institutional Review Board at UCSF. The experiments performed here conform to the 

principles set out in the WMA Declaration of Helsinki and the Department of Health and 

Human Services Belmont Report. All patients provided informed written consent.

Tissue Processing for scRNA-seq

Fresh tissues were minced in collection medium (Leibovitz L-15 medium, 4 mg/mL glucose, 

100 U/mL penicillin, 100 μg/mL streptomycin) with a scalpel. Sample dissociation was 

carried out in a mixture of papain (Worthington Biochem. Corp) and 2,000 U/mL of DNase I 

freshly diluted in Earle’s Balanced Salt Solution and incubated at 37°C for 30 minutes. After 

centrifugation (5 minutes at 300 × g), the suspension was resuspended in PBS. 

Subsequently, suspensions were triturated by pipetting up and down ten times and then 

passed through a 70-μm strainer cap (BD Falcon). Finally, centrifugation was performed for 

5 minutes at 300 × g. After resus-pension in PBS, pellets were passed through a 40-μm 

strainer cap (BD Falcon), followed by centrifugation for 5 minutes at 300 × g. The 

dissociated, single cells were then resuspended in GNS [Neurocult NS-A (Stem Cell 

Technology), 2 mmol/L L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, N-2/

B-27 supplement (Invitrogen), and sodium pyruvate]. Nuclei were extracted from frozen 

tissues following the “Frakenstein” protocol developed by Luciano Martelotto, PhD (Centre 

for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, Australia), and 
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available from 10X Genomics (https://community.10xgenomics.com/t5/Customer-

Developed-Protocols/ct-p/customer-protocols).

Fluidigm C1-Based scRNA-seq

Fluidigm C1 Single-Cell Integrated Fluidic Circuit and SMARTer Ultra Low RNA Kit were 

used for single-cell capture and complementary DNA (cDNA) generation. cDNA 

quantification was performed using Agilent High Sensitivity DNA Kits and diluted to 0.15 

to 0.30 ng/μL. The Nextera XT DNA Library Prep Kit (Illumina) was used for dual indexing 

and amplification with the Fluidigm C1 protocol. cDNA was purified and the size selection 

was carried out twice using 0.9× volume of Agencourt AMPure XP beads (Beckman 

Coulter).

10X Genomics-Based scRNA-seq/snRNA-seq

For fresh tissues, 10.2 μL of live cells, at a concentration of 1,700 live cells/μL, were loaded 

into the 10X Chromium Single Cell Capture Chip. For frozen tissues, approximately 15,000 

nuclei were loaded per capture. Single-cell/nucleus capture, reverse transcription, cell lysis, 

and library preparation were performed per the manufacturer’s protocol. Sequencing was 

performed on an Illumina NovaSeq using a paired-end 100 bp protocol.

Public Data Acquisition

Normalized counts from TCGA RNA-seq data were obtained from the Genomics Data 

Commons portal (https://gdc.cancer.gov/). Patients diagnosed as having GBM with wild-

type IDH1 expression (n = 144) were normalized to log2(CPM + 1) and used for analysis. 

TCGA glioma microarray and associated survival data were obtained from the GlioVis 

portal (22). Z-score normalized counts from regional RNA-seq of 122 samples from 10 

patients were obtained via the web interface of the Ivy GAP (http://

glioblastoma.alleninstitute.org/) database. RNA-seq of nonmalignant human brain tissues 

was obtained from the GTEx portal (https://www.gtexportal.org/home/datasets).

Exome Sequencing and Genomic Mutation Identification

The NimbleGen SeqCap EZ Human Exome Kit v3.0 (Roche) was used for exome capture 

on a tumor sample and a blood control sample from each patient. Samples were sequenced 

with an Illumina HiSeq 2500 machine (100-bp paired-end reads). Reads were mapped to the 

human genome build GRCh37 with Burrows-Wheeler Aligner (23), and only uniquely 

matched paired reads were used for analysis. PicardTools (http://broadinstitute.github.io/

picard/) and the Genome Analysis Toolkit (GATK; ref. 24) carried out quality score 

recalibration, duplicate removal, and realignment around indels. Large-scale (>100 exons) 

somatic copy-number variants (CNV) were inferred with ADTex (25). To increase CNV 

size, proximal (<1 Mbp) CNVs were merged. Somatic SNVs were inferred with MuTect 

(https://www.broadinstitute.org/cancer/cga/mutect) for each tumor/control pair and 

annotated with the Annovar software package (26).
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sc/snRNA-seq Data Preprocessing

Data processing of the C1 data was performed as described previously (3). Briefly, reads 

were quality trimmed and TrimGalore! (http://www.bioinformatics.babraham.ac.uk/projects/

trim_galore/) was used to clip Nextera adapters. HISAT2 (27) was used to perform 

alignments to the human genome build GRCh37. Gene expression was quantified using the 

ENSEMBL reference with featureCounts (28). Only correctly paired, uniquely mapped 

reads were kept. In each cell, expression values were scaled to counts per million (CPM)/

100+1 and log-transformed. Low-quality cells were filtered by thresholding number of genes 

detected at 1,000 and at least 100,000 uniquely aligned reads. For 10× scRNA-seq and 

snRNA-seq data, we utilized CellRanger (version 3.0.2) for data preprocessing and gene-

expression quantification, following the guidelines from the CellRanger web-site (https://

support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/

references#premrna).

Classification of Somatic Mutations

The presence/absence of somatic CNVs in 10× scRNA-seq and snRNA-seq data was 

assessed with CONICSmat (6). We retained CNVs with a CONICSmat likelihood ratio test 

<0.001 and a difference in Bayesian Criterion >300. For each CNV, we used a cutoff of 

posterior probability >0.5 in the CONICSmat mixture model to infer the presence/absence of 

that CNV in a given cell. For the Fluidigm C1 data, we utilized our previous CNV and SNV 

classifications (3, 6). We retained only SNVs detected in exome-seq at >10% variant 

frequency in the tumor and <10% variant frequency in patient-matched normal blood. Cells 

expressing those tumor-restricted variant alleles were considered positive for the respective 

SNVs. The presence/absence of somatic CNVs in 10× snATAC-seq data was estimated with 

CONICSmat (version 1.0; ref. 6). Here, the gene-body activity generated by snapATAC (29) 

was used to perform the CNV analysis with a CONICSmat likelihood-ratio test <0.001 and a 

difference in Bayesian Criterion >300. SNV calls in 10× sc/snRNA-seq data were obtained 

by pooling reads by patient and running the GATK RNA-seq best practices pipeline (https://

software.broadinstitute.org/gatk/best-practices/workflow?id=11164). Variant assignments in 

single cells were then assessed via VarTrix (version 1.0) tool https://github.com/

10xgenomics/vartrix).

Dimensionality Reduction and Calculation of Stemness Scores

First, we filtered cells that had >5% mitochondrial read counts. A gene with nonzero read 

counts in more than 10 cells was considered as expressed, and each cell was required to have 

at least 200 expressed genes. Seurat v3 was used for t-distributed Stochastic Neighbor 

Embedding (t-SNE) plots based on the first 10 principal components (9). PCA was done 

using R 3.4.2. The top 1,000 genes with the highest regularized variances were identified via 

Seurat v3 for each case. PCA was then performed using those genes that were among the 

1,000 most variable genes for at least 3 patients. We defined the mGSC and pGSC gene sets 

as the top 15% of genes most strongly loading PC1, positively for mGSCs and negatively for 

pGSCs. Stemness scores were calculated using these gene sets as input to the 

AddModuleScore function from the Seurat package. Cluster-specific genes were identified 

via the FindMarkers/FindAllMarkers function from Seurat package, using a likelihood-ratio 
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test. Only genes enriched and expressed in at least 25% of the cells of at least one population 

and with a log-fold change bigger than 0.25 were considered.

Deconvolution of TCGA RNA-seq Data via Linear Models

To deconvolve GBM RNA-seq data from TCGA according to the cell types learned from 

scRNA-seq, we first pooled scRNA-seq read counts by cell type across mGSCs, pGSCs, 

nonmalignant oligodendrocytes, astrocytes, neurons, tumor-associated macrophages, T cells, 

and endothelial cells. The data used for this were our GBM scRNA-seq, as well as scRNA-

seq of human fetal and adult nonmalignant brain tissues (12, 13). The resulting 8 count 

vectors were independently normalized to log2(CPM/10+1). We then fit a linear model to 

each TCGA RNA-seq dataset (also scaled to log2(CPM/10+1) using these vectors as 

predictors. We assessed the relative contribution of each predictor to the overall variance 

explained using the Lindeman, Merenda, and Gold (1mg) method as implemented in the 

relaimpo R package (30).

Lineage Reconstruction via RNA Velocity

RNA velocities were computed via velocyto (14). For GBM cases, cells with PC2 sample 

score > 0 were deemed cycling cells and used for velocyto analysis under default 

parameters. Root and terminal points in lineage reconstruction were identified with the 

functions prepare_markov and run_markov included in velocyto. These use backward and 

forward Markov processes on the transition probability matrix of the cells to determine high-

density regions for the start and end points of trajectories, respectively.

snATAC-seq Data Processing

The CellRanger ATAC software (version 1.1.0) was used for read alignment, deduplication, 

and identifying transposase cut sites (https://support.10xgenomics.com/single-cell-atac/

software/pipelines/latest/algorithms/overview). The output matrix of CellRanger was further 

processed by using the snapATAC package (https://github.com/r3fang/SnapATAC; ref. 29). 

We selected the highest-quality barcodes for each case based on two criteria: (i) number of 

filtered fragments at least 1,000; (ii) fragments in promoter ratio (FRiP) at least 0.2 for the 

case. Clustering was performed using Seurat v3 SNN graph clustering “FindClusters,” with 

the gene-body accessibility scores generated by the snapATAC package as input. 

Differentially accessible regions, peaks, and motif enrichments were computed using 

snapATAC “findDAR,” “runMACSForAll,” and “runHomer.”

IHC

IHC optimization was performed on a Leica Bond automated immunostainer using 

conditions optimized for each antibody (Supplementary Table S4). Heat-induced antigen 

retrieval was performed using Leica Bond Epitope Retrieval Buffer 1 (citrate buffer, pH 6.0) 

and Leica Bond Epitope Retrieval Buffer 2 (EDTA solution, pH 9.0) for 20 minutes 

[ER2(20)]. Nonspecific antibody binding was blocked using 5% milk in PBST or 

Novocastra Protein Block (Novolink #RE7158). Positivity was detected using Novocastra 

Bond Refine Polymer Detection and visualized with 3,3ˊ-diaminobenzidine (brown) and 

alkaline phosphatase (red). A hematoxylin nuclear counterstain (blue) was applied. Duplex 
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controls were performed to provide a reference of specificity of the selected primary 

antibody and secondary detection system. For the DLL3 and CA9 duplex, two sets of single-

stained control tissues were used because the antigens of interest are not commonly 

coexpressed in normal tissue types. Image analysis of whole-slide images (8 slides from 

patients with GBM; 5 control slides) was performed using the Aperio software (Leica) and 

the ImageDx slide-management pipeline (Reveal Bio). All tissue and staining artifacts were 

digitally excluded from the reported quantification.

Drug Screen

The U87MG cell line was obtained from ATCC and cultured in DMEM, supplemented with 

10% FBS and 1% penicillin-streptomycin. Cells were seeded in 96-well plates at a density 

of 5,000 cells/well with DMEM and held overnight at 37°C, 5% CO2. The media were then 

aspirated, and test compounds were administered through serial dilution in DMEM. After 48 

hours, the cells were washed with PBS. DMEM containing AlamarBlue (Invitrogen) 

supplemented with FBS, penicillin, and streptomycin was added and the plate was then 

incubated for 4 hours. Cell viability was assessed via absorbance using a microplate reader 

and compared with untreated control wells.

Ethics Approval and Consent to Participate

Study protocols were approved by the UCSF Institutional Review Board. All clinical 

samples were analyzed in a deidentified fashion. All experiments were carried out in 

conformity to the principles set out in the WMA Declaration of Helsinki as well as the 

Department of Health and Human Services Belmont Report. Informed written consent was 

provided by all patients.

Availability of Data and Material

The study data are available from the European Genome-phenome Archive repository, under 

EGAS00001002185, EGAS00001001900, and EGAS00001003845. Third-party data that 

were used in the study are available from the GlioVis portal (http://gliovis.bioinfo.cnio.es/), 

the gbmseq portal (http://gbmseq.org/), and The Glioblastoma Atlas Project (http://

glioblastoma.alleninstitute.org/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE:

Tumor-propagating cells can be derived from mesenchymal and proneural glioblastomas. 

However, a stem cell of the classic subtype has yet to be demonstrated. We show that 

classic-subtype gliomas are comprised of proneural and mesenchymal cells. This study 

sheds light on a long-standing debate regarding lineage relationships between glioma cell 

types.
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Figure 1. 
Single-cell sequencing reveals a single axis of variation in proliferating GBM cells. A, Left, 

t-SNE plot of 8,992 10× scRNA-seq cells from 6 patients; center, t-SNE plot of 15,975 

nuclei from 10 patients; right, t-SNE plot of 568 cells from 7 patients. Cells/nuclei are 

colored by the presence (red) or absence (black) of clonal CNVs. B, Top, PCA of neoplastic 

cells from 10× scRNA-seq of IDH-wild-type GBMs. Curves represent the density of a 

Gaussian mixture model fit to PC1 sample scores. Heat maps display the expression of top-

loading PC1 genes across cells, sorted by PC1 sample score. C, Differentially expressed 

genes between PCA clusters (abs. log2 fold change > 1 and Padj < 0.001 in red). D, Fractions 

of cycling cells. ***, Fisher P < 0.001. E-G, PCA and analysis as in B-D for 10× snRNA-

seq of IDH-wild-type GBMs. ***, Fisher P < 0.001. H, PCA of neoplastic cells from C1 

scRNA-seq of IDH-wild-type GBMs. I, Correlations between the C1-scRNA-seq and 1×-

scRNA-seq loadings. PCC, Pearson correlation coefficient.
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Figure 2. 
mGSCs and pGSCs explain the genetic and phenotypic heterogeneity of GBM. A, 
Expression of mGSC and pGSC markers in single cells from nonmalignant human brain. B, 
Hierarchical clustering of Pearson correlations between mGSC, pGSC, and cell-cycle genes 

in IDH-wild-type (IDH-WT) GBM RNA-seq samples from TCGA (n = 144). Heat map (C) 

and box plots (D) of the relative contributions of predictor cell types to the overall variance 

explained by a linear model fit to each TCGA sample. E, Kaplan-Meier analysis comparing 

survival of IDH-wild-type GBMs from TCGA to average expression of the mGSC and 

pGSC gene signatures in patient-matched RNA sequencing. F and G, MGSC, pGSC, and 

cell-cycle signatures in Ivy GAP RNA-seq of GBM-anatomic structures. H, Percentages of 

CD44+ DLL3+ cells also positive for CA9/Ki-67. ***, Wilcoxon P < 0.001. DAB, 3,3ˊ-
diaminobenzidine.
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Figure 3. 
In silico genetic and transcriptomic lineage tracing supports a mGSC to pGSC hierarchy. A, 
Left, RNA velocities of cycling neoplastic 10× scRNA-seq IDH-wild-type GBM cells are 

projected onto a PCA axis. Center, velocyto-based lineage reconstruction identifies a stable 

mGSC root population and pGSC terminal population. Right, gene expression and velocity 

for mGSC and pGSC marker genes. B, The percent of expressed mitochondrial mutations 

found in a given cell, out of all mitochondrial mutations in a patient’s sample. C, Percent 

expressed mitochondrial mutations are compared between pGSCs and mGSCs. D, PCA 

analysis as in A, but for 10× snRNA-seq IDH-wild-type GBM data.
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Figure 4. 
A, t-SNE plot of IDH-wild-type GBM scATAC-seq annotated by the presence of clonal 

mutations. B, Clustering of scATAC-seq gene-body activity scores of nonneoplastic cells. C, 
Clustering of scATAC-seq gene-body activity scores of neoplastic cells, with box plots of 

activity scores for Verhaak-subtype gene sets annotated above. *, Wilcoxon P < 0.05. D-F, 
Differential motif enrichment tests between neoplastic cell clusters. G, Neoplastic cluster-

specific motifs and associated transcription factors. Int, intermediate; MES, mesenchymal; 

PN, proneural; TF, transcription factor.
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Figure 5. 
A, A schematic overview of the drug screen. B, HSA synergy scores and dose responses for 

drug combinations screened in U87 cells in vitro.
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