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Asymmetric design for compound elliptical concentrators (CEC) and 

its geometric flux implications  
Lun Jianga and Roland Winstona* 

aUC Solar, University of California Merced, 5200 N Lake Rd, Merced,CA, 95343 

ABSTRACT  

The asymmetric compound elliptical concentrator (CEC) has been a less discussed subject in the nonimaging optics 

society. The conventional way of understanding an ideal concentrator is based on maximizing the concentration ratio based 

on a uniformed acceptance angle. Although such an angle does not exist in the case of CEC, the thermodynamic laws still 

hold and we can produce concentrators with the maximum concentration ratio allowed by them. Here we restate the 

problem and use the string method to solve this general problem. Built on the solution, we can discover groups of such 

ideal concentrators using geometric flux field, or flowline method.  

Keywords: CEC, flowline method, asymmetric, string method, geometric flux 

 

1. INTRODUCTION  

The asymmetric ideal concentrators have been first accomplished by[1] using two parabolas. Other people built on it with 

a non-flat absorber and produced similar ideal concentrators with infinitely far away source. [2]. Such designs are generally 

referred to as the asymmetric compound parabolic concentrators (CPC), however, the parabola is not necessarily the 

accurate name to describe the shape when the absorber is non-flat. For concentrators with finite source, compound elliptical 

concentrator (CEC) was proposed, and extended to non-flat absorbers[3]. Parallel to this effort, the alternative method for 

building the CPC or CEC from a geometric flux field (i.e. flowline) perspective, have been showcased in several papers 

[4][5][6]. More recently, a discussion of using pharosage[7], or effectively the flowline method have been proposed for 

3D ideal concentrators[8][9]. A generalized string method has been proposed for double stage symmetric 

concentrators[10]. Built on it, the asymmetric case was also developed for double stage concentrators[11]. Both the 

asymmetric and symmetric setups allow the second stage concentrators to degenerate into a small concentrator. This can 

be accomplished by keeping the absorber below the crossing over edge rays (A’B and AB’). It is also revealed in these 

discussions that the shape of the absorber can be any convex shape. Such a prior art, with both symmetric and asymmetric 

setups, will inevitably produce a CEC-type concentrators as the second stage, which is the main topic of discussion for 

this paper. Within this paper, instead of discussing about double stage concentrators, we give the same solution from the 

perspective of directly generating the general ideal concentrator. We discuss about the CEC with asymmetric finite sources 

and propose the method for building the ideal concentrator using the string method. This eliminate the complex setup of 

both first and second concentrators and directly arrive at the degenerated case. Built on it, we will also include a short 

derivation of generating a group of flowline concentrators with the asymmetric setup. The concept can be quickly extended 

to non-flat absorbers due to the flexibility of the string method. At the end of the paper we will predict several other designs 

that can be extended from the current concentrators.  In the end, we will also discuss the potential of this method for 

angular transformers. 

Ideal concentrators 

Ideal concentrators obeying both the first and second law of thermodynamics can be defined using the understanding of 

the radiative heat transfer between a source and sink at equilibrium temperature 𝑇, assuming both bodies are ideal black 

bodies[12] [13]. Here we give a more robust argument to reframe the arguments made in [13]. 
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Figure 1. General problem of a concentrator design. 

Here, we call the radiation source as 1, absorber as 3, the goal is to construct a concentrator that performs the highest 

geometrical from aperture 2 to absorber 3. 

Define geometric concentration ratio 𝐶 = 𝐴2/𝐴3. 

Define the probability of radiation power transferring from any blackbody a to b as 𝑃𝑎𝑏 . For example, the probability of 

any ray from 1 to 2 is defined as 𝑃12 = 𝑄12/𝑄1, here, 𝑄12 is the power(watts) going from 1 to 2, and 𝑄1 is the total power 

emitted by 1. 

According to the first law of thermodynamics, energy would be conserved, assuming a zero loss system, concentrating 

light from 2 to 3: 

𝑄12 = 𝑄13 

𝑄1𝑃12 = 𝑄1𝑃13 

Using Stefan-Boltzmann law: 

𝐴1𝜎𝑇4𝑃12 = 𝐴1𝜎𝑇4𝑃13 

𝐴1𝑃12 = 𝐴1𝑃13 (1) 

According to the second law of thermodynamics, at equilibrium temperature, the radiative heat exchanged between the 

two black bodies must be the same, otherwise a colder body will transfer heat to a hotter body, considering only radiative 

heat transfer. 

𝑄12 = 𝑄21 

𝑄13 = 𝑄31 

Or, similar to how we reached EQ (1), 

𝐴1𝑃12 = 𝐴2𝑃21 (2) 

𝐴1𝑃13 = 𝐴3𝑃31 (3) 
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Combining (1), (2) and (3), we conclude: 

 

𝐶 =
𝐴2

𝐴3

=
𝑃31

𝑃21

≤
1

𝑃21

 
(4) 

The maximum concentration ratio 𝐶𝑚𝑎𝑥will be reached if and only if 𝑃31 = 1. The conventional nonimaging optics is a 

group of such concentrators, where any ray from the absorber will reach the source only, as long as the absorber is treated 

as a black body. Here we define them as the thermodynamically ideal concentrators. These concentrators allow the 

absorber to “see” only the source. In other word, the usable etendue (or phase space) of the absorber can be traced to the 

source and the source only. 

2. THERMODYNAMICALLY IDEAL CONCENTRATORS 

String method 

 
Figure 2. The asymmetric setup for ideal concentrators. 

 

Now consider the asymmetric setup of the source and the absorber as shown in Fig.2. Due to the property of the 

elliptical curve b’c’, ab’+b’c = ac’+c’c. Similarly a’b+bc’=a’c+cc’. Combine the above two equations and we get 

2cc’=a’b+ab’-ab-a’b’. Imaginary strings can be used to form the curves, especially for the cc’ part, where we can 

allow the string to be bent over a convex shape. This string method guarantees that  𝐶 =  
𝑏𝑏′

𝑐𝑐′ =
𝐴2

𝐴3
=

2𝐴2

𝐴7+𝐴6−𝐴4−𝐴5
=

1

𝑃21
= 𝐶𝑚𝑎𝑥 according to Hottel string[14]. As long as the string is taut and tied on points a and c for the b’c’ curve, 

and tied on a’c’ for the bc curve, the curves will be ideal concentrators. Two deductive conclusions can be made. 

First, cc’ does not need to be flat, it can be any convex shape as shown in[3]. Second, due to the string’s capability 

of dealing with asymmetry, the absorber shape does not need to be symmetric either. Third, the source aa’ can be 

infinitely far away, giving ideal concentrators for asymmetric acceptance angle setup as mentioned in [2]. Now we 

propose the asymmetric, any convex shape of absorber, ideal concentrator solution as the following: 
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Figure 3. The ideal concentrator for any convex, asymmetric scenario.(a)The absorber is closed shape.(b)The absorber is open.(Note 

that these curves are not exactly traced out here.) 

 Choose the source and absorber shape and position.  

 Draw the crossover lines a’c and ac’, which are tangent to the upper and lower edge of the absorber. 

 Choose one point on the absorber for the closed shape absorber Fig.3.(a), or the two ends of the open shape 

absorber Fig.3.(b), to start with the curve. 

 Tie the corresponding strings to the chosen points and the source edges. For example, 𝑎𝑐′𝑐 are tied to 𝑎 and 𝑐, 

with 𝑐′ as the initial movable point for tracing out the curve 𝑐′�̂�. 

 Keep the string tight and trace out the upper and lower curve of the concentrator. 

 Stop as the curves cross the crossover lines. 

Notice that the source and absorber must be chosen first, once they are determined, the aperture will be fully determined 

too. This process cannot be reversed. This is also similar to the Figure.1. of [10], where the absorber is in region 3, and 

exactly tangential to AB and AB’. The difference between our method and [10] is that we predetermine the source and the 

absorber as the only configuration of the setup. The double stage concentrator, which has two foci potentially mismatching 

the absorber’s position, need additional curves to maintain the ideal concentration to the aperture of the second stage. 

Although exactly as described in [10], such a requirement degenerates by eliminating these curves once the absorber falls 

below the crossover of a’c and ac’. 

Geometric flux implications of the ideal concentrators 

From the ideal concentrators that do not disturb the geometric flux field, we can trace the flowline inside the ideal 

concentrator described in Fig.2. There are four different regions to generate the field, as shown in Fig.4. 

 Region I, any point within this region sees one of the extreme rays being from c’ and the other from the reflection 

of a’, so flux is simply elliptical shape with a’and c’ as foci. 

 Region II, any point within this region sees one of the extreme rays being from c and the other from the reflection 

of a, so flux is simply elliptical shape with ac as foci. 

 Region III, here a point sees only the absorber cc’, and therefore are hyperbolas 

 Region IV, similarly, a point sees the source aa’, and the flux line is hyperbola. 
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Figure.4. The regions of geometric flux field within an ideal asymmetric concentrator. 

Using a simple Matlab® code, we can show case the flowline within the ideal concentrator as in Fig.5. The interesting fact 

is, when plotted over different regions as shown in Fig.4, the crossing over of the flowline from one region to the other is 

smooth (with the same tangent).  

 

Figure. 5. The geometric flux within an ideal concentrator 

By observing the geometric flux inside, we can reach the following conclusions. 

 Because there is no sink or source for the flowline 𝐽 , ∇ ⋅ 𝐽 = 0 

 We can take any pair of the flowline in between and form an ideal concentrator, just as shown in [8] for the 

symmetric case, we have asymmetric ones here. 

 Such a method can be utilized for any convex absorber as shown in Fig.3, both closed and non-closed. 
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 If we trace the flowline from the absorber A3 to source A1, for any pair of them, the absorber is always effectively 

put at the source. This is also why it achieves the highest concentration possible. 

 

Figure.6. The flowline pair that can form the ideal concentrators. Here the aperture of the concentrator is yellow, the absorber is the 

purple, the concentrator shape is the pair of flowline connecting their edge. and if we trace the flowline all the way back to red. Due 

to ∇ ⋅ 𝐽 = 0, the purple and the red will be the same. 

 

Discussion 

The idea of ideal concentrators formed using string method can be easily extended also to angular transformers, as long as 

the wave front can be represented by strings.[15] How to form a flowline method for these ideal concentrators have only 

been vaguely discussed[16]. It is obvious that a simple “mountain top” shape in 2D cannot produce rotational symmetric 

ideal results.[4] Therefore the question remains as in what way the geometric flux field in include both the source and sink 

information in a 3D setup. Even if such a field exists, is it possible to produce the ideal concentrators following the 

flowlines as reflectors? 
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