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ABSTRACT OF THE THESIS

What’s the Dam Problem?

Hazardous Dams, Flood Risk, and Dimensions of Vulnerability in California

by

Britta McOmber

Master of Urban and Regional Planning
University of California, Los Angeles, 2018

Professor Susanna B. Hecht, Chair

In the state of California, dams are aging, underfinanced, and in many cases ill-maintained. The
Oroville Dam Spillway Failure in February 2017 demonstrates that even dams with satisfactory
condition ratings can be at risk of failing from a combination of climatic, political, economic,
and structural factors. It is therefore necessary to look beyond the condition assessment of a dam
and instead consider the hazard potential status. California has 833 High Hazard Potential (HHP)
dams — which the U.S. Army Corps of Engineers defines as dams that would cause significant
loss of life, property destruction, or environmental damage in the case of failure or misoperation
(2016). Expanding on previous literature on the sociodemographic determinants of flood-risk in
cases of sea-level rise, climate change, high precipitation, and storm events, this project analyzes

variables of social vulnerability within HHP dam inundation boundaries. I rely on a series of



geostatistical analyses, two-tail independent samples statistical tests, and multiple linear
regressions to answer the overarching research question — Who is most vulnerable to dam-

induced floods in California?

The data underpinning this research comes from the National Inventory of Dams, statewide dam
inundation boundary maps, and the 2012 -2016 American Community Survey. Results from
independent samples t-tests show that individuals and households are disproportionately located
within hazardous dam flood zones if they are U.S. Citizens, live with a disability, are less
educated, are unemployed, are single parents, have lower median household incomes, live at,
below, or near the federal poverty line, and identify as either Black and African American,

American Indian and Native Alaskan, or Native Hawaiian and Pacific Islander.

Furthermore, people whose highest educational attainment is a high school degree, unemployed
individuals, those living with disabilities, Hispanic or Latino individuals, female-headed
households, renters, and people who identify as Black and African American, American Indian
and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander represent variables of
social vulnerability that are statistically significant predictors of living within a hazardous dam
flood zone. This project therefore reveals the spatial and social characteristics of vulnerability to

dam-induced flood risk in California.

Planners and policymakers can use this information to improve existing disaster management
and response plans by incorporating targeted and specific strategies to reduce the flood-risk of

highly vulnerable populations. It also provides information necessary for planners and



policymakers to address and mitigate the existing social and spatial inequalities in dam

inundation zones to create a more environmentally just California.
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Chapter 1: Introduction

In the state of California, dams are aging, underfinanced, and in many cases ill maintained.
Similar to other massive, immobile, and unyielding infrastructures, dams are acutely vulnerable
to seismic activity and changing climatic patterns. These two natural forces are highly
unpredictable and variable, and can cause even the most structurally sound dams to fail or

collapse.

Oroville Dam Spillway Failure

The 2017 Oroville Dam Spillway Failure exemplifies the critical issues of risky dam
infrastructure and associated flood hazard in California. Oroville is a High Hazard Potential dam
located in Placer County. The U.S. Army Corps of Engineers assigns a High Hazard Potential
(HHP) classification to a dam if failure or misoperation will cause significant loss of life,
property destruction, or environmental damage within the dam’s inundation zone (2016).
Oroville dam holds back the second largest reservoir in California, which has a storage capacity
of 3.5 million acre-feet of water (NID 2016). The Lake Oroville reservoir is capable of
inundating more than 3,600 square miles of land, representing one of the furthest reaching dam

flood zones in the state.

Following a significant six-year drought, California experienced the wettest water year ever
recorded in 2017 (Gomez 2017). Heavy and frequent storms throughout January and February
quickly refilled state reservoirs depleted from the drought. The continuous runoff from these

winter storms caused the water level of Lake Oroville to approach dangerous, unsafe, and



unprecedented levels. From December 2016 to February 2017, the reservoir level increased from

41 percent to over 100 percent, eventually overtopping the dam on February 12 (Lin 2017).

Dam operators opened the main spillway in early February in an attempt to lower the reservoir
level. After a few days, they noticed the water was flowing abnormally down the spillway. When
Oroville’s operators reduced the flow to investigate the matter they discovered a crater 300 feet
wide, 500 feet long, and 45 feet deep in the middle of the 3,000-foot long concrete spillway
(Graham 2017). The gates of the main spillway closed completely on February 7 to address
concerns over the erosion of rock and material beneath the spillway and to make decisions on
how best to proceed. However, the lake level continued to rise overtopped the dam at a point
known as the “emergency spillway” on February 11. This situation was extraordinary — In 50
years of operation, Oroville’s water levels had never been high enough to reach the emergency

spillway.

Unlike the main spillway, which is controlled via release gates, when water reaches the lip of the
1,700-foot emergency spillway it washes uncontrolled down a wooded hillside (Sabalow and
Kasler 2017). By February 12, the rock beneath the 30-foot concrete weir that reinforces the lip
of the emergency spillway had significantly eroded. This prompted fears that the weir would
collapse and send 30 vertical feet of the reservoir’s surface area rushing unchecked through the
dam’s inundation zone. A failure of the emergency spillway effectively amounts to total dam

failure, as the quickly eroding hillside would eventually empty the lake.



Emergency crews struggled to reinforce the emergency spillway with boulders and concrete
blocks while authorities ordered a desperate emergency evacuation of over 180,000 people. Dam
operators had no choice but to reopen the heavily damaged main spillway on February 12.
Fortunately, Mother Nature acquiesced. Within a few days the reservoir levels began to drop as

the rates of inflowing winter deluge significantly slowed.

In the aftermath of this narrowly avoided disaster, the main and emergency spillways incurred

significant damage and left the main spillway inoperable. The estimated costs of the dam repairs
to both spillways is over $500 million (Rogers 2017). Other harmful impacts included damage to
riverbanks, personal property, and farmland, roads used in the evacuation, the Thermalito power

generating facility, and the Feather River Fish Hatchery.

Subsequent investigations identified a number factors contributing to the failure of the main
spillway and near-failure of the emergency spillway. Among these, investigators found that
flawed original engineering designs, superficial and behind schedule inspections, unidentified
erosion and leakage problems, and aged and dilapidated components (“Independent” 2018).
Together these factors had severely weakened parts of the dam and spillways. These structural
issues were exacerbated and in part caused by decades of underfinanced legislative allocations

for dam maintenance, repair, safety, and inspection programs.

Finally, the record-setting water year and series of high precipitation winter storms set in motion
the chain of events that led to the spillway failure. Climate change models predict these types of

“outlier” weather patterns will be more common, if not more intense and frequent, in the future.



It is therefore entirely possible for another dam in California to experience the same rapid

increases in water levels that led to the Oroville crisis.

Hazardous Dams and Social Vulnerability

Both the National Inventory of Dams and the California Division of Safety of Dams consider the
Oroville dam to be in satisfactory condition, which makes these findings even more troublesome
(2016, 2016). If a satisfactory dam can come so close to failing, what does that mean for dams
classified as fair, poor, or unsatisfactory? The serious physical and structural problems masked
by a satisfactory condition rating are not an anomaly among California’s dams. Rather, the issues
leading up to the spillway failure exemplify the current shortfalls in policy, planning, and action
for managing large-scale water infrastructure and safeguarding the public from avoidable

environmental hazards.

The convergence of complex physical, structural, political, economic, and climatic factors
increases the disaster- and flood-risk for communities living within inundation zones of dams.
The near-crisis shows that even dams with satisfactory condition ratings have the potential to
fail, and suggests that condition status is not the best indicator for identifying hazardous dams in
California. Thus, I use downstream hazard status as a proxy for assessing vulnerability to dam-
induced flood-risk. The California Division of Safety of Dams explains that the hazard status of
the dam is separate from the condition rating; whereas the former refers to the scope and degree
of damage possible in an inundation scenario, the latter is an assessment of the dam’s structural

integrity (2017). The U.S. Army Corps of Engineers rates 833 of the state’s 1,585 dams as High



Hazard Potential (HHP), where failure or misoperation will result in significant loss of life,

property destruction, or environmental damage (2016).

This project therefore proposes to analyze aspects of social vulnerability for individuals and
households located in the flood zones of High Hazard Potential dams in California. The
consensus among researchers and planners is that a multitude of demographic and
socioeconomic factors influences an individual’s social vulnerability to environmental hazards.
These social vulnerability characteristics create an uneven capacity for preparedness, response,
or recovery to disasters (Hazards & Vulnerability Research Institute 2014). For example, while
certain people may be exposed to hazards due to physical factors, like living in a floodplain, they
may also suffer additional and greater relative losses due to a lack of social, financial, or political

support networks (Maantay & Maroko 2009).

The academic literature supports that individuals who are nonwhite, Hispanic, low income,
younger than 14 or older than 65, female, disabled, renters, unemployed, non-automobile
owners, non-college educated, and foreign-born are less prepared for floods, face additional
hurdles to evacuating during a flood, and take longer to recover to a pre-flood livelihood after the
disaster (Chakraborty et al. 2014, Cutter et al. 2003, Donner and Rodriguez 2011, Fielding and

Burningham 2005, Maldonado et al. 2015).

It follows that these 11 demographic and socioeconomic categories of race, ethnicity, income,

age, gender of the head-householder, ability, employment status, home ownership, car



ownership, educational attainment, and citizenship are determinants of an individual’s social

vulnerability to flood hazards.

Research Questions and Overview of Results

With social vulnerability framed by these 11 categories, the following research questions guide
this project:

1) Are socially vulnerable households more likely to live within dam flood zones than
outside of them in California?

2) Are socially vulnerable households more likely to live within HHP dam flood zones than
outside of them in California?

3) Which factors of household social vulnerability are significantly correlated with living in
a dam flood zone? Do these differ from factors significantly correlated with living in an
HHP dam flood zone?

4) Is there a relationship between social vulnerability and the HHP dam characteristics of
age and inspection compliance?

a. Do HHP dams built more than 50 ago have higher proportions of socially
vulnerable households within their inundation zones than HHP dams built less
than 50 years ago?

b. Do HHP dams with failed inspection compliance have higher proportions of
socially vulnerable households within their inundation zones than HHP dams in
compliance?

To answer these questions, I use Geographic Information Systems and Statistical Package for the
Social Sciences software to perform geoprocessing, two-tail independent samples tests, and
multiple linear regressions on variables spanning three distinct datasets. The datasets include a
state subset of the National Inventory of Dams, California dam inundation maps, and a state

subset of the 2012-2016 American Community Survey. The expected contributions of this

research project are a comprehensive analysis and understanding of the demographic,



socioeconomic, and spatial characteristics of vulnerability to dam-induced flood risk in

California.

Results from independent samples t-tests show that individuals and households are

disproportionately located within hazardous dam flood zones if they are U.S. Citizens, live with
a disability, are less educated, are unemployed, are single parents, have lower median household
incomes, live at, below, or near the federal poverty line, and identify as either Black and African

American, American Indian and Native Alaskan, or Native Hawaiian and Pacific Islander.

Furthermore, people whose highest educational attainment is a high school degree, unemployed
individuals, those living with disabilities, Hispanic or Latino individuals, female-headed
households, renters, and people who identify as Black and African American, American Indian
and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander represent variables of
social vulnerability that are statistically significant predictors of living within a hazardous dam

flood zone.

Comparing the means of social vulnerability variables by the grouping factor “Dam Age” reveal
that people who lack car ownership, foreign-born individuals, people with at least a 2- or 4-year
degree, non-Hispanic or Latino, female-headed households, living at, below, or near the federal
poverty threshold, renters, and those who identify as White, as Black and African American,
American Indian and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander are more

likely to live in HHP dam flood zones aged 50 years or older.



Finally, the independent samples test for social vulnerability and the grouping factor “Inspection
Compliance” show that those lacking car ownership, foreign-born individuals, people aged 65 or
older living with a disability, individuals with at least a 2- or 4-year degree, non-Hispanic or
Latino, unemployment, living at, below, or near the federal poverty threshold, renters, and those
who identify as Black and African American, Asian, and Native Hawaiian and Pacific Islander

are more likely to live in HHP dam flood zones with failed inspection compliance.

Research Significance

Emergency and disaster planners depend on knowledge of socially vulnerable populations to
ensure sufficient disaster preparedness and response policies in a given place. For example, a
community with a high percentage of older adults will require a different type of emergency
response in terms of warning, evacuation, and assistance. Failing to account for the spatial
patterns and geographic concentrations of socially vulnerable populations in the planning process
can have devastating consequences. Consider that in the aftermath of Hurricane Katrina, almost
50 percent of nearly 1,000 fatalities were adults aged 75 or older (Brunkard et al. 2008). Many of
these older adults lived alone and lacked the means to evacuate, either because they did not own
a car or were unable to drive, or lived in care facilities that did not provide transportation during
the evacuation (Brunkard et al. 2008). It is possible that many of these fatalities could have been

avoided had different disaster response policies and plans been in place.

Spatially informed disaster preparedness, response and emergency planning has the ability to
reduce the flood-risk for socially vulnerable populations. The theoretical framework for this

assertion comes from the field of environmental justice. Environmental justice is broadly defined



as equitable environmental quality for all social groups, with particular consideration that
socially vulnerable groups are not disproportionately exposed to environmental hazards
(Montgomery and Chakraborty 2015). In addition to older adults, flooding from Hurricane
Katrina disproportionately affected African-American and low-income residents in New Orleans
during and after the disaster. According to Montgomery and Chakraborty, the stark social and
economic inequalities of who was impacted by the flood hazard led to an expansion of the EJ
framework to include natural disasters, and initiated empirical investigations on the EJ

implications of flooding (2015, 2).

This project reveals spatial and social characteristics of vulnerability to dam-induced flood
hazards in California. Planners and policymakers can use this information to improve existing
disaster management and response plans by incorporating targeted and specific strategies to
reduce the flood-risk of highly vulnerable populations. Furthermore, it provides the information
necessary for planners and policymakers to address the existing social and spatial inequalities in

dam inundation zones to create a more environmentally just California.

There is a breadth of social vulnerability literature on the demographic and socioeconomic
determinants of flood risk in cases of sea-level rise, climate change, and high precipitation and
storm events. However, social vulnerability and dam-induced flood risk is an area less explored
or documented. My research has the ability to fill this existing gap in the flood-risk literature.
Notably my results, findings, and conclusions can inform an initial understanding and
comparison of social vulnerability and flood-risk between the scenarios of sea-level rise, climate

change, high precipitation and storm events, dam-induced flooding. The similarities across these



categories reveal which factors social vulnerability may be universal predictors of flood-risk, and

the differences reveal which factors are specific to dam inundation areas in California.

This project focuses on the patterns revealed at the broader geographic scale of the state of
California, which may mask regional and local differences of social vulnerability. The methods
presented in this project are replicable at different geographic scales to provide the most useful,
relevant, and necessary information for local disaster and emergency planners throughout the

state.
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Chapter 2: Background

History of Dam-building in California

Dams are inherently multi-purpose structures. Their uses span hydroelectricity generation, flood
protection, improved navigability, water supply for drinking, irrigation, and industrial purposes,
and making the surrounding region more resilient to drought. In the American West, and
particularly in California, dams play a crucial role in capturing, storing, and delivering water to
arid and water-scarce regions. The absence of such large-scale water management infrastructure

would make it impossible for California to sustain its thriving urban and agricultural economies.

There are currently 1,585 total dams in California, with 1,249 falling under state jurisdiction
through Department of Water Resources Division of Safety of Dams. The remaining 336 are
managed by federal agencies such as the Federal Energy Regulatory Commission, Army Corps
of Engineers, Department of Defense, and Department of the Interior (2016). The majority of
these dams were built between 1920 and 1980, though the history of dam building dates back to
the Gold Rush era. Beginning in 1848, miners harnessed the power of rivers by constructing
dams, sluices, aqueducts, and canals to aid in the search for gold. In the following decade
hydraulic mining emerged as one of the most environmentally destructive mining methods,
damming and diverting entire streams and rivers to generate high-pressure torrents to blast at

hillsides (Kahrl 1982, 27).

The gold rush put California on the map quite literally, ushering statehood in 1850. The prospect
of mineral wealth and the completion of transcontinental railroads in the 1870s and 1880s

encouraged a steady stream of migration to the state. While the urban areas established during

11



the gold rush, such as San Francisco and Sacramento, continued to grow, many settlers turned to
the fertile alluvial plains of the Central Valley to pursue a livelihood. The legacy of dam, canal,
and sluice building from the mining era expanded into a system of channels and levees for
irrigation purposes. These systems tended to be small-scale in nature, and designed with local
conditions in mind. Though they made the flood-prone Central Valley more suitable for

agriculture, they proved inadequate for successful regional flood control.

To address flood control issues, the state legislature passed the Wright Act in 1887. The Act
authorized the formation of irrigation districts with the power to acquire water rights, construct
water projects, and sell bonds to support water development and distribution (Kahrl, 1982, 30).
Newly formed irrigation districts financed and built the first regional-scale dam and canal
systems to store and distribute water on a regional basis (Kahrl 1982, 30). However, the arid
southern region of the state lacked a local water supply that could sufficiently support growing
populations. The burden of financing projects on the scale needed to move water from where it
was available to where it was scarce disproportionately impacted places like Los Angeles, where
local capital fell short of the cost of such infrastructure (Karhl 1982, 31). The size, scope, and
cost of large-scale water storage, supply, and transport systems was typically beyond the

capacity of cities, counties, or irrigation districts to undertake.

At the turn of the 20™ century, California had the nation’s fastest-growing economy and
population. This growth required a shift in water and flood policy from local to interregional
projects that could manage water over much larger distances (Kahrl 1982, 31). Between 1900

and 1940, both the federal and state government became increasingly involved in large water

12



projects. State and local policymakers viewed these large dam and reservoir projects as an
effective solution to the problem of water scarcity in much of the state, exacerbated by the ever-
growing urban and agricultural communities. Projects at this scale also were able to bypass many
of the financial and political barriers that delayed most local water supply and flood control

projects.

The 1930s through the 1970s saw a period of unmatched dam and reservoir building across the
state. Recognizing the importance of the Central Valley in national food production, the Bureau
of Reclamation and the Army Corps of Engineers devised an ambitious water capture, storage,
and delivery project known as the Central Valley Project (CVP). Authorized in 1933, the CVP
presented a comprehensive plan to transfer water from the Sacramento Valley to the San Joaquin
Valley for irrigation, power generation, and prevention of salt-water intrusion in the Sacramento-
San Joaquin Delta (Stene 2015). Following the construction of several dams and reservoirs of the
CVP, the state developed the State Water Project (SWP) in 1957 with the main objective of
providing domestic water supply to urban centers in the state. Together, the CVP and SWP are
among the world’s largest water storage and transport systems, with 56 reservoirs providing
water to 27 million domestic users and irrigating 3.5 million acres of land a year (California

Department of Water Resources 2017).

The majority of California’s dams, including the major projects of the CVP and SWP, were
completed before 1975. By the late 1970s, a growing number of people and organizations
contested new dam construction. The high price tag of water infrastructure created political and

financial opposition between constituents and governing agencies. Awareness of the

13



compounding and often irreversible environmental impacts of dams, such as ecological
degradation, habitat destruction, and species endangerment, fueled further resistance to new dam

projects. Furthermore, nearly every significantly flowing river or tributary in California was

dammed or diverted by 1975.

Figure 1:Number of Dams by Year Completed
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The Geography and Typology of California’s Dams

Dams in California vary in type, size, purpose, and location. They range from a shallow
irrigation pond behind a three-foot dam to a major reservoir impounded by a 770-foot dam. The
volume of water stored in the state’s reservoirs are between 0 and 30 million acre-feet,

depending on the time of year, type, and purpose of the dam (DHS 2015, 42; NID 2016).

Table 1: Primary Purpose of Dams in California Count
Water Supply 750
Hydroelectric 281
Flood Control 233
Other 167
Irrigation 47
Unknown 37
Fish and Wildlife Pond 30
Fire Protection, Stock, Or Small Fish Pond 17
Recreation 14
Debris Control 5
Tailings 4
Total 1585
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Figure 2: Geographic Distribution of Dams in California
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Figure 3: Geographic Distribution of Dams with Inundation Zones in California
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What’s the Dam Problem? Political, Economic, and Structural Context

The issue of aging dam infrastructure is a broad problem across the U.S. The federal government
estimates that the useful economic life for a dam is 50 years, and though the physical life span of
dams is typically greater than 50 years, the physical diminishment of dams and their components
result in high budgets for maintenance and repair (Ho et al. 2017). In California, over 70 percent
of dams are 50 years or older, with the average dam age being 70 years old (USACE 2016).
Furthermore, the American Society of Civil Engineers indicates that 97 percent of the dams in
the U.S. are inadequately funded, which increases the probability of at-risk dams going
undetected (Ho et al. 2017). California is no exception; the Department of Water Resources

recently estimated the cost of repairing dams statewide to be $5 billion (Editorial Board 2017).

At the time of construction, many dams were low-hazard and surrounded by undeveloped
agricultural land. However, as populations grew, communities added homes, businesses, public
buildings, and roads downstream, increasing the amount of people and infrastructures at risk
(Spillman et al. 2017). The U.S. Army Corps of Engineers defines High Hazard Potential (HHP)
dams as those that have the potential to result in significant loss of life, property destruction, or
environmental damage in the case of failure or misoperation (USACE 2016). This compounds
the problem of aging dam infrastructure in California, where 833 of the state’s 1,585 dams (53
percent) are High Hazard Potential. This is the fourth most of any state, and well above the

national average of 15 percent (Spillman et al. 2017).

On March 12, 1928, the sudden failure of St. Francis Dam in Southern California resulted in a

major disaster and 431 casualties. Before this, State supervision and oversight of dams was
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limited in scope and applied to only about half of the state’s dams. This prompted the enactment
of a new statute in 1929 that gave regulatory jurisdiction of all non-federal dams to the State, and
led to the creation of the California Dam Safety Program, now known as the Division of Safety
of Dams (Babbitt 1993, 1). The new laws provided for (1) examination and approval or repair of
dams completed prior to the effective date of the statute, (2) approval of plans and specifications
for and supervision of the construction or modification of dams and (3) supervision of operation
and maintenance of dams (Babbitt 1993, 1). There are 1,249 dams currently under the
supervision of the DSOD, though the legal owner of the dam is responsible for the operations,
maintenance, and repair of dams and its facilities (“Dam Rating” 2017). Dam owners can be
Federal, State, local public agencies, utilities, private landowners, and water and irrigation

agencies (“Dam Rating” 2017).

California has one of the best dam safety inspection programs in the nation (Adler 2017).
Though the program is severely understaffed and underfunded, Lori Spragens from the
Association of State Dam Safety Officials claims, “every other state is more understaffed and
underfunded... Other states still look to California” (Adler 2017). For context, the state of
Oklahoma budgeted just $106,376 for dam safety for 4,601 dams in 2016, while California

budgeted $13,711,000 for 1,249 dams the same year (“State Program” 2016).

A recent analysis of dam inspections in the state showed that nearly 44 percent failed to be
examined within the required inspection frequency (Spillman et al. 2017). Currently, 22 field
engineers are responsible for inspecting 1,249 dams, which rounds out to about 57 dam

inspections per engineer per year (Adler 2017). Though the amount of money California budgets

19



for its dam safety program increases every year, from about $6.5 million in 1999 to about $13.5
million in 2015, the number of full-time equivalent dam safety staff has declined from 68 to 61
FTE positions in the 1999-2015 period (“Dam Safety”” 2016). Furthermore, original dam designs
rely on simplistic assumptions about hydrology and earthquakes. More than 90 need major
upgrades to better handle large floods or withstand earthquakes. Dam operations also need to be
updated to work with improved weather forecasting technology and account for a changing

climate (Escriva-Bou et al. 2017).

The DSOD dam safety inspectors will assign a condition rating to the dam after inspection or
after recommended actions have been taken, including Remediated, Not Rated, Unsatisfactory,
Poor, Fair, and Satisfactory. Out of 1,249 dams under the state’s jurisdiction, 92 percent are in
satisfactory condition (NID 2016). This condition assessment can mask serious design and
operating issues filed in inspection reports. Consider that an investigation of Oroville’s last three
inspection reports revealed that the DWR and the dam operator had knowledge of significant
structural weaknesses, including cracking and water seepage on the dam face and main spillway,
and concerns that the high-tensile steel anchor tendons used to strengthen the spillway concrete

needed replacement (Street 2017).

Despite reservoir restrictions for these deficiencies, the Oroville dam reservoir filled rapidly and
overflowed, setting off a chain of events that ended with the spillway failure and a narrowly
avoided dam failure. The Oroville example demonstrates how even dams deemed to be in
satisfactory operating condition by the Department of Water Resources Division of Safety of

Dams can be at risk of failing under a combination of circumstances. It is therefore useful and
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necessary to analyze dams by their hazard potential, since High Hazard Dams are those that pose
the highest risk to human life, property damage, regional and state economy, and environmental

and ecological function and integrity.
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Chapter 3: Literature Review

Dams as Critical Infrastructures

Dams are critical infrastructures. The U.S. Department of Homeland Security defines critical
infrastructure sectors as those “whose assets, systems, and networks, whether physical or virtual,
are considered so vital to the United States that their incapacitation or destruction would have a
debilitating effect on security, national economic security, national public health or safety, or any

combination thereof” (DHS 2017).!

The federal government added the Dams Sector to the list of critical infrastructures in 2003,
recognizing the substantial economic, environmental, and social contributions of its assets and
resources (DHS 2015, iii). Furthermore, the Dams Sector supports many other critical
infrastructure sectors and industries as it delivers water retention and control services,
hydroelectric power generation, municipal and industrial water supplies, agricultural irrigation,
sediment and flood control, river navigation for inland shipping, industrial waste management,
and recreation (DHS 2015, v). The interdependencies of the Dams Sector with other critical
infrastructure sectors such as the Communications, Energy, Food and Agriculture,
Transportation Systems, and Water and Wastewater Systems sectors mean that complete or
partial dam failure would have significant and widespread consequences. As such, identifying
and assessing the threats, vulnerabilities, and hazards facing the Dams Sector are a top priority of

the Department of Homeland Security.

! There are 16 identified critical infrastructure sectors in the U.S., including the Chemical, Commercial Facilities,
Communications, Critical Manufacturing, Dams, Defense Industrial Base, Emergency Services, Energy, Financial
Services, Food and Agriculture, Government Facilities, Healthcare and Public Health, Information Technology,
Nuclear Reactors, Materials, and Waste, Transportation Systems, and Water and Wastewater Systems sectors.
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In the most recent “Dams Sector-Specific Plan,” the DHS identifies natural disasters and extreme
weather as the most significant risks to the Dams Sector (2015, 9). Since dams and reservoirs are
massive, concrete, and unyielding structures, they are acutely vulnerable to both seismic activity

and climate change. This is especially true in California, a state known for its earthquakes and

unpredictable precipitation patterns.
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Impacts from Seismic Activity and Climate Change

California is predisposed to high rates of earthquakes due to the convergence of several tectonic
plates and volcanism. These seismic forces result in the active and major San Andreas, San
Jacinto, Owens Valley, Hayward, and Garlock Faults, as well as over 15,000 other fault lines
throughout the state. Earthquakes occur when small, additional increments of stress are added to
a fault that is loaded close to its breaking point (Foulger et al. 2017). This can happen from
natural processes like plate tectonic movement and melting snow or ice, or from human activities

like oil and gas extraction (Foulger et al. 2017).

There is ample evidence documenting the impacts of seismic activity to dams. Earthquakes can
seriously impede dam function and cause heavy damage, depending on the intensity of the
earthquake and dam type. Of California’s 1,585 dams, 74.7 percent are earthen embankment
dams, while 12.1 percent are unknown, and around 3.5 and 3.7 percent are rockfill embankment
and gravity dams, respectively (NID 2016). According the Federal Energy Regulatory
Commission, instability for earthen embankment dams after an earthquake is not a frequently
occurring event (2005, 6). However, seismic activity can cause soil liquefaction, where saturated
sand and silt behaves like a liquid when shaken by an earthquake (USGS 2006). Earthquake
waves cause water pressures to increase in the sediment, causing the sediment to lose strength
and lead to ground settlement (USGS 2006). Soil liquefaction and ground settlement near a dam
or reservoir can seriously affect the physical dam structure and create embankment deformations.
FERC states, “If liquefaction of the dam embankment or foundation has occurred, the dam may

have already failed or may be on the verge of failure” (2005, 6).

24



While structural flaws are more likely to cause dam failure than seismicity, the processes of
earthquakes, soil liquefaction, and ground settlement can exacerbate existing structural
weaknesses. For example, internal erosion from piping seepage, external erosion caused by the
wear from water over time, settlement of the dam crest over time, and foundational defects have
caused about 50 percent of all U.S. dams to fail (DHS 2015, 9). When the California Division of
Safety of Dams or FERC identifies structural problems, they place operating restrictions or
conditions on the dam. Restrictions might include limiting the amount of water in the reservoir or
reducing the allowable speeds of water flowing through dam gates or spillways. Additionally, the
DSOD or FERC will recommend seismic retrofits for dams with identified deficiencies. This is
especially important for older dams, because engineers in the early part of the 20" century did
not realize that the loose rock and soil they used to form the base of some dams could liquefy in
a strong earthquake, potentially causing the top of the structure to deform and spill (Carlton

2017).

The Perris Dam in Riverside County, Calaveras and San Pablos dams in Alameda County, and
Anderson, Calero, and Guadalupe dams in Santa Clara County are either currently planning,
undergoing construction, or recently completed seismic retrofits (Lin 2017). In addition to the
seismic retrofits, the Anderson Reservoir near San Jose has a state-imposed limit of holding no
more than 68 percent of its total water capacity because it lies near an active fault (Carlton 2017).
Similarly, the Calaveras Dam must keep the 31 billion-gallon capacity of Calaveras Reservoir no
more than 40 percent full because the 92-year old structure is built atop loose earth on the site of

a previous failed dam (Carlton 2017).
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The most well-known seismic damage to an earthen embankment dam in the state came from the
1971 San Fernando earthquake. The Department of Homeland Security acknowledges that a
large number of high hazard potential dams are located within active seismic areas. Despite
progress in seismic analysis methods and assessment procedures, predicting the behavior of

dams and levees under earthquake conditions remains a significant challenge (2015, 9).

Technological, geological, and remote sensing advancements have led to the discovery of new
fault lines in California in recent years, uncovering new vulnerabilities and risks for critical
infrastructures. The Daily Mail reports that the discovery of the Polaris Fault came as a surprise
to scientists who thought they had found all of California’s seismic danger spots (2011). Though
experts already knew of two faults near the structure, the Polaris Fault is just 200 yards from the
Martis Creek Dam near Truckee, California (Daily Mail 2011). The Army Corps of Engineers
owns the dam and keeps the water levels as low as possible, though a dam failure could

potentially endanger 16,000 people in Placer County (Daily Mail 2011).

The function of dams is influenced by existing weather and climatic patterns. These impacts will
be exacerbated by projections of climate change in the state in coming years. Storms, hurricanes,
and high precipitation events can cause water deluges and flooding that overwhelm the flood
storage or water capture capacity of a given reservoir. In these cases, the volumetric pressure of
impounded water can overly stress the physical structure of the dam or reservoir. For dams with
structural weaknesses, cracks, and deficient or aged components, the pressure of the water alone

can be enough to cause the entire structure to fail.
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Many large multipurpose dams operate with conflicting goals. For example, to manage floods,
operators must release enough water to create space in reservoirs for winter floodwaters, which
increases the chances that reservoirs will not be full in spring. Over the summer, when recreation
demands are highest, reservoirs draw down to meet water and hydropower demands. Finally,
many dams are required to conserve and slowly release the cold water collected at the bottom of
reservoirs to support downstream salmon and steelhead habitat. Managing these trade-offs is
becoming increasingly challenging as California’s climate warms and precipitation becomes

more variable (Escriva-Bou et al. 2017).

Changing climatic and weather patterns as a result of anthropogenic global warming pose a risk
for areas around dams and reservoirs. The drainage infrastructure for U.S. cities was originally
designed for a vastly different built environment, and was tailored to hydrologic conditions that
are now historically outdated. Urban sprawl and the disappearance of permeable surfaces
throughout the metropolis increase the chances that drainage networks are overburdened during
high precipitation events, and cause higher volumes and velocities of stormwater runoff to
accumulate in reservoirs. Climate scientists agree that the intensity and frequency of storms will
become more variable and less predictable in the coming years, which will increase the
likelihood of dam failure if water begins to overtop reservoirs or rises higher than designated

safe operating levels (Pittock and Hartmann 2011).

In the recent Hurricane Harvey event, there was more rainfall than from any U.S. storm in 138
years of record-keeping, with more than 60 inches of rain reported in two locations (Feldblum

2018). Fifty thousand 911 calls were made on the first night alone, at least 68 people died and
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half a million cars flooded out (Feldblum 2018). This extreme weather event added billions of
gallons of floodwater to the area’s reservoirs which takes many months to safely release. As part
of this release of water from the Addicks and Barker reservoirs in West Houston, many nearby
communities were flooded (Satija et al. 2017). The Oroville dam flooding threat was also a direct
result of severe weather patterns and climate change, for which the aging dam was not designed

to deal with (Nagourey et al., 2017).

The relationship between climate change, seismic activity, and dams is even more complex with
research that shows large dams and reservoirs can actually induce minor earthquakes. The first
way a reservoir can cause an earthquake is through either rapid filling or rapid emptying of the
lake behind the dam, which changes the weight and force acting on a fault (Lin 2017). Though
water levels in reservoirs normally fluctuate in an annual cycle in line with precipitation patterns,

a drastic change in the water levels over a short time period can cause tremors.

Furthermore, a recent study by Johnson et al. linked the alternating wet and dry cycles in
California to the rates of earthquakes, concluding that crustal stress changes from variations in
fluid pressure during wet months lead to more earthquake ruptures (2017, 1161). Christiansen et
al. also conclude that stresses associated with the hydrological loading cycle are sufficient to
fracture critically stressed rocks and cause microquakes along the San Andreas Fault (2007). The
pattern found by both studies show the Earth’s crust depressing under the load of rain and snow
in winter months, and rebounding as the snow melts and rivers drain, where the stress changes
associated with unloading make faults fail more often in late summer and early fall (Christiansen

et al. 2007).
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Secondly, as the water stored in reservoirs percolates deep into the earth, it changes the normal
compression stresses acting on geologic faults. This process, known as “unclamping,” occurs
when fluid pressure counteracts the normal stresses, allowing two sections of rock to slip or
move along the fault, resulting in an earthquake (Kuchment 2016). This phenomenon occurs in
cases of oil and gas production, horizontal drilling, and hydraulic fracturing, when the pressure
from injected fluid or wastewater triggers earthquakes (Kuchment 2016). Research linking fluid
pressure and induced earthquakes dates back to a seminal study by a team of U.S. Geological
Survey geophysicists and hydrologists in 1976, along with recent studies analyzing oil and gas
injection wells and the high, historically unprecedented rates of earthquakes in in Oklahoma,
Kansas, Ohio and Texas (Raleigh et al. 1976, Petersen et al. 2016). The biggest uncertainty with
these reservoir-induced earthquakes is the difficulty in measuring how close to failure a fault is,

or predicting the scope or intensity of a potential earthquake (Lin 2017).
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Dam Tradeoffs: Are the Benefits Worth the Costs?

The most prevalent debate about dam building has to do with their necessity, utility, and
tradeoffs. Dams can bring large-scale grid electrification to an area through hydropower
generation, and in many areas, dams are the heart of the engine of economic development. They
are the main mechanism for water storage, supply, delivery, and flood-control, and vital for
ensuring a steady flow of water year-round to agriculturalists, industries and manufacturers,
urban powerhouses, and domestic users. Reservoirs also provide a recreational resource for
citizens and tourists. While nearly 15 percent of California’s electricity supply comes from
hydropower, the water stored and delivered through the dam and reservoir network supports the
most populated state in the country and the sixth largest economy in the world (Escriva-Bou et

al. 2017).

Despite these many benefits, dam-building comes at an enormous and often irreparable cost to
the environment by altering or degrading natural riverine and delta hydrology, ecology, and
animal habitat and life (Nilsson et al. 2005). For example, the dams and reservoirs of the Central
Valley Project block access for salmon and steelhead to reach their native spawning grounds,
leading to their status as endangered species. Furthermore, the diversion of water for irrigation
resulted in a loss of over half of the valley’s native freshwater wetlands and destroyed habitat for
native migrating birds and fish species (Kahrl, 1982, 61). The Sacramento-San Joaquin Delta
smelt population has declined by more than 90 percent since the completion of large-scale CVP
and SWP dams and reservoirs (Kahrl, 1982, 61). In terms of social impacts, dam projects may
forcibly displace existing populations, and can pose significant risks to flooding or destruction of

life and property. As with many large infrastructural projects, dams tend to be extremely
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expensive and have years-long construction timelines, which can lead to political, financial, and

taxpayer holdouts.

Over the past three decades, support for dam removal and river restoration projects have
increased across the U.S. Since 1987, California removed more than 36 dams (Escriva-Bou et al.
2017). There are many reasons to remove a dam, including the costs of improving or retrofitting
aged and dilapidated dams, protecting endangered species (i.e. salmon and steelhead fish,
migratory bird habitats), the decreasing energy share from many hydroelectric dams, earthquake
safety hazards, and reduced benefits (Johnson and Graber 2002, Poff et al. 1997, Stanley and
Doyle 2003). The 2015 breaching of San Clemente Dam on the Carmel River was the largest
dam removal in state history (Escriva-Bou et al. 2017). Several other large dams are ready for
removal, including Matilija Dam in Southern California and four aging hydropower dams on the

Klamath River in Northern California (Escriva-Bou et al. 2017).

On the other side of the issue is a camp of thinkers who believe in the face of climate change,
dams are more necessary than ever. For example, Beatty et al. argue that artificially created
waterbodies can serve as barriers to invasive species, and actually maintain habitats for
endangered aquatic organisms where changing climatic conditions dewater, reduce, or warm
their habitat water bodies (2017). Moreover, water-poor regions under climate change can use
additional dams and reservoirs to increase resilience to droughts and secure adequate water

supply for their populations.
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California is an area expected to experience warmer average temperatures along with more
variable rain and snowfall due to climate change, which has the potential to diminish the future
supply of water (Pittock and Hartmann 2011). Additionally, the majority of surface water
precipitation falls in the Northern part of the state as snow over the Sierra Nevadas, leaving the
Southern part of the state extremely water-scarce. These factors, along with historic and
projected long, mid, and short-term droughts, contribute to the dam debate in California being
focused on maintaining, repairing, and adding to existing infrastructure, rather than on removing
dams. There are currently several water supply expansion projects that involve constructing four
new reservoirs using Proposition 1 funds, including a large-scale dam on the San Joaquin River
in Fresno County, which would hold enough water for 6.5 million people a year and become the

second tallest in the state (Rogers 2017).
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The Social Vulnerability Concept: What Is It, and Why Is It Important?

The attitude of California policymakers and constituents is favorable to maintaining existing and
building additional dams and reservoirs. Given what we know about California’s aging dam
infrastructure, and that 833 of the 1,585 dams are High Hazard Potential dams, it is necessary to
take a critical look at who is most vulnerable to flood-risk in a scenario of dam failure or
misoperation. To do this, this project employs a method to measure the social vulnerability to

HHP dams in the state.

Considerable research has examined components of biophysical vulnerability and the
vulnerability of the built environment, with less attention payed to understanding the social
aspects of vulnerability. Social vulnerability is described using the individual characteristics of
people (i.e. age, race, health, income, type of dwelling unit, employment, etc.) and is partially the
product of social inequalities — or social factors that influence the susceptibility of various groups
to harm and that govern their ability to respond (Cutter et al. 2003). Maantay and Maroko make
the case that, “certain people may be disproportionately exposed to hazards due to physical
factors, like having poor quality housing that inadequately withstands hazard events... but they
may also be at a disadvantage due to lack of strong social, financial, or political support
structures, and thus suffer greater relative losses, and experience a longer recovery time after a

disaster... than the affluent, mainstream, or socially supported” (2009).

According to Cutter et al., one of the barriers to social vulnerability theory and research is the
debate on whether it can be quantified or measured for empirical analysis, and subsequently how

to do so (2003). Rufat et al. state that over the past decade, social vulnerability indices have
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emerged as a leading tool to quantify and map human dimensions of hazards vulnerability
(2015). These indices are valuable tools for policy formulation and disaster preparedness and
response planning (Rufat et al. 2015). However, the authors note that social vulnerability indices
exhibit a large degree of uniformity in index construction approaches. This may result in
misleading conclusions if pertinent variables are excluded or if weakly influential variables are
overrepresented (Rufat et al. 2015). Furthermore, Rufat et al. argue that factors such as social
capital, risk perception, and psychosocial dimensions of health are important indicators of flood-
risk that typically cannot be computed from national census data, and require qualitative

methods, targeted surveys, and participatory approaches to measure (2015).

It has been argued that quantification of the complex nature of social vulnerability is an
important and long overdue addition to the hazard mitigation planning and implementation
processes, especially in the context of climate change adaptation and disaster risk reduction
strategies (Tate et al. 2010). There is increasing momentum for research that measures
vulnerability, especially as governments turn their attention to planning for, and responding to,
natural hazards (Stafford and Abramowitz 2017). Environmental hazards can be neither
eliminated nor controlled, but humans can reduce the risk associated with them by integrating
knowledge on the multifaceted dimensions of risk, which include social, demographic, and

economic factors (Solangaarachchi et al. 2012).

Several methodologies exist for assessing social vulnerability across different scales and
systems. However, the indicator-based approach is common for analyzing patterns in areas that

are addressing specific environmental hazards (Mavhura et al. 2017). There are still
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disagreements in the selection of indicators of social vulnerability. This is due to the fact that
natural disasters, and by extension vulnerability, are highly contextual, temporal, spatial, and
variable phenomena. Despite this challenge, Chang et al. argue that the indicator approach is
ideal for comparative purposes of places (2005). The approach can provide an estimation of the
baseline vulnerability at the local level, which is important for policy- and decision-makers in
disaster risk reduction (Mavhura et al. 2017). Mavhura et al. conclude that the most important
aspect in the selection of indicators is to ensure that the indicators address the research question

and test the concepts under operationalization (2017).

Overall, my review of the methods for quantifying social vulnerability informed my decision to
use an indicator-based approach in lieu of a social vulnerability index. The following section
provides a deeper look at the specific literature on social vulnerability and flood-risk, and serves

as the rationale for the selection of variables that address my research questions.
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Social Vulnerability and Flood-Risk: Previous Research and Findings

Despite a dearth of literature on the social vulnerability of populations to dam-inundation events,
there is abundant research on the social determinants of flood-risk in cases of sea-level rise,
climate change, high precipitation, and storm events. From a geographic perspective, coastal
cities, inland floodplains, densely populated areas, and regions with more exposure to tropical
storms and hurricanes (such as the Northeast, South, and Midwest) experience much higher rates

of flooding than others.

Nearly 80 percent of the U.S. population reside in urban areas, which exacerbates flood-risk
because sprawling impervious surfaces prevent ground absorption, concentrate urban runoff, and
overload water drainage systems during storms. High population densities in flood-prone urban
areas can also hinder evacuation due to congestion, limited exit routes, and dense building

infrastructure (Donner and Rodriguez 2011).

Considering the social determinants of flood-risk, striking indicators and inequalities along the

lines of race, ethnicity, socioeconomic status, age, gender, education, homeowner status, native
language, and citizenship emerge. These characteristics are inextricably bound up with location,
as socially and economically marginalized groups have the least choice about where to live, and
often end up in more hazardous areas where housing costs are lower (Fielding and Burningham

2005).

Chakraborty et al. (2014) and Donner and Rodriguez (2011) find that Black, Latino, Hispanic,

and low-income communities are significantly more likely to reside in high flood-risk zones,
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including 100-year floodplains and flood-prone sections of cities with less structural resilience. It
follows that other factors correlated with poverty, including gender, age, and education level are
also correlated with higher vulnerability to floods. Moreover, research shows that language
barriers contribute significantly to the inadequate dissemination of flood warnings and
evacuation announcements, and that fear of deportation influences undocumented migrants and
mixed-status families’ decision to go to evacuation shelters (Donner and Rodriguez 2011,

Maldonado et al. 2015).

In addition to being more vulnerable to floods, socially and economically disadvantaged groups
face unequal barriers to recovery. For example, Fielding and Burningham show that low-income
people are less likely to have enough financial resources to cover them during an emergency
(2005). Furthermore, low-income individuals are more likely to lose their job if they are
displaced from their homes, because even temporary relocation can prevent a person from
getting to or from work (Fielding and Burningham 2005). These populations tend to work in
employment sectors with higher turnover, fewer labor protections, lower job security, and
invisible or informal occupations, where missing even a day of work can result in
unemployment. This pattern further places a disproportionate economic burden on low-income

groups struggling to recover from a flood event or disaster.

Maldonado et al. find that racial and ethnic minorities are less likely than non-Hispanic

Caucasians to take certain disaster precautions, like purchasing flood insurance, or installing

storm shutters (2015). Additionally, agencies like FEMA and HUD deny post-disaster assistance
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to foreign-born individuals at higher rates than citizens, regardless if they are green-card holders

or legal residents (Maldonado et al. 2015).

Fielding and Burningham summarize that the risk of the initial disaster and speed of recovery
from a flood event is often disproportionately borne by the very young, very old, and the
disabled. These reasons include dependency and inability to transport themselves to safety zones,
the fact that many elderly live alone, and that these groups may not have the same access to
evacuation warnings or evacuation centers (2005). Populations younger than 5 older than 65 may
also have additional needs in a disaster event, such as refrigerated medications and assisted

transportation (Fielding and Burningham 2005).
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Chapter 4: Data and Variables

Description of Datasets

To answer the project’s proposed research questions, I use the three datasets listed below.

Table 2: Summary of Datasets

Data Source Publisher Data Year(s)
National Inventory of Dams U.S. Army Corps of Engineers 2015
Dam Inundation Maps California Office of Emergency Services 2017
American Community U.S. Census Buyeau American Fact 2012 — 2016
Survey Finder

The National Inventory of Dams

The main source of dam data comes from the 2016 U.S. Army Corp of Engineers’ National
Inventory of Dams (NID). Free access to this dataset is limited to relevant government agencies
and employees. However, I was able to purchase this dataset through the ProPublica Data Store
with a Graduate Research Grant provided by the UCLA Luskin Center for Innovation. The 2016
NID uses information collected through 2015 on 90,580 dams in the United States. According to
the NID, any dam that exceeds 25 feet in height and 15 acre-feet in storage, exceeds 6 feet in
height and 50 acre-feet in storage, or is classified as a High or Significant Hazard is included in
the NID. The comprehensive dataset includes 71 variables of the physical, structural, regulatory,

operating, and geographic characteristics of these dams.
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Table 3: Selected NID Variables

Variable Description

Code indicating the potential hazard to the downstream area resulting
from failure or misoperation of the dam or facilities.
Low (L), Significant (S), or High (H).

Downstream
Hazard Potential

Year (four digits) when the original main dam structure was

Year Completed completed.

Date of the most recent inspection of the dam prior to the transmittal

Inspection Date of the data by the submitting agency.

Inspection

e — The scheduled frequency interval for periodic inspections, in years.

For the purposes of this project, I investigate several variables from the NID. These include dam
size (NID Storage), age (Year Completed), and inspection compliance (ratio of Inspection Date
to Inspection Frequency). Additionally, the variable “Downstream Hazard Status,” determines
the subset of dams I need to answer research questions 2, 3, and 4. The California Division of
Safety of Dams assigns a hazard status based on the potential downstream impacts to life and
property should the dam fail when operating with a full reservoir (2017). Furthermore, the hazard
status is separate from the condition of the dam or its appurtenant structures (DSOD 2017).
FEMA'’s publication “Federal Guidelines for Inundation Mapping of Flood Risks Associated
with Dam Incidents and Failures” defines the criteria for downstream hazard status (Beadenkopf

etal. 2013).

The downstream hazard of a dam falls into one of three categories of increasing severity: Low,
Significant, and High. A dam with a High Hazard Potential (HHP) status means that the failure

or misoperation of the dam will result in significant loss of life, property destruction, or
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environmental damage (USACE 2016). The state of California has a higher number and
proportion of hazardous dams than most other states in the nation, with 53 percent (833 of 1,585)
classified as HHP. To compare this percentage to states with a similar number of dams, consider
that just 5 percent of Wyoming’s dams (97 of 1,617) and 14 percent of Illinois’s dams (231 of
1,607) are High Hazard Potential. Out of 1,736 total dams, Colorado has 425 HHP dams (or 25
percent). Among other West Coast states, about 17 percent of Oregon’s dams (146 of 869) and
31 percent of Washington’s dams are HHP (243 of 784). The only state with similar number and
proportion of hazardous dams is Pennsylvania, where 809 of 1,525 dams are high hazard (53

percent).

The 2016 NID data includes a disclaimer that the 2015 hazard and condition status for each dam
is not included in the dataset, for reasons of protecting national security and critical
infrastructures (NID 2016). However, the dataset includes both the 2002 and 2013 inventory of
the nation’s dams, with the 2002 dataset reflecting the hazard status of each dam. The USACE
warns that the hazard potential assigned to 2002 dams may have changed in recent years, if
substantial repairs, construction, or restrictions occurred in that time period. To bolster the
validity of isolating the High Hazard Potential dams in California and reflect the most accurate
hazard status given these limitations, I cross-reference the HHP dams from the 2002 NID with a
2017 publication from the California Division of Safety of Dams. This publication, titled “Dams
within Jurisdiction of the State of California,” is also based on the 2015 NID (2017). It
republishes 17 of the NID’s 71 variables, including the hazard rating. The DSOD has jurisdiction

over about 79 percent of the state’s dams (1,249 of 1,585), and the combination and cross-
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checking of these two sources together represent the most comprehensive list of hazardous dams

available.

Dam Inundation Boundary Maps

The second data source I use in my project is a compiled package of dam inundation maps
obtained through the California Office of Emergency Services (CalOES) via a Public Records
Act request. This data arrived through the U.S. Postal Service on a CD-ROM drive, containing
the GIS shapefiles of 564 dam inundation zones. The dam inundation mapping program began in
response to the Sylmar earthquake on February 9, 1971, which caused severe damage to the
Upper and Lower Van Norman Dams and threatened to cause extensive damage to life and
property had dam failure occurred (CalOES 2018). The California Code of Regulations §335
dictates that “inundation maps shall be prepared for dams and critical appurtenant structures
regulated by the state, except dams classified by the department as low hazard as described in
§335.4” (“Emergency Regulations” 2018). Thus, inundation maps for all dams with Significant
and High Hazard Potential status within the jurisdiction of the DWR DSOD are included in this
dataset (581 of 1,249). The DSOD permits waivers to this requirement provided no risk to life or

property exists (CalOES 2018).

CalOES conveys that these maps approximate the maximum water flow resulting from a
complete dam failure, and therefore portray a catastrophic failure of the dam as opposed to the
failure of a critical appurtenant structure such as a spillway (De Alba 2018). These maps are
prepared by civil engineers on behalf of dam owners, as required by California Code of

Regulations §335.8 and §335.12 (“Emergency Regulations” 2018). The main underlying

42



assumption for determining each inundation zone is that the amount of water in the dam is at the
safe operating capacity at the time of failure (De Alba 2018). Refer to Appendix F for a full list

of dam inundation boundary maps included in this project.

The American Community Survey

The final dataset I use is the American Community Survey, which underpins the analysis of
social vulnerability to dam-induced flood risk. This data is publicly available, and I downloaded
it through the United States Census Bureau American Fact Finder website. The American
Community Survey “is a nationwide, continuous survey designed to provide communities with
reliable and timely demographic, housing, social, and economic data every year” (U.S. Census
Bureau 2017). I use the 2012-2016 five-year estimates for all census block groups in California.
The census block group (CBG) is the smallest geographic scale that the data is available. To
select the social vulnerability variables for analysis, I drew on previous literature and academic
research on the demographic and socioeconomic determinants of flood-risk. These include race,
ethnicity, age, gender, income, ability, employment status, housing tenure, car ownership,

educational attainment, and citizenship.

Across these 11 social vulnerability categories, I analyzed 30 specific variables. In addition to
seven variables for race and ethnicity, I include three distinct measures of income in order to
gain a deeper understanding of relative and absolute poverty in California. The rationale for this
stems from social vulnerability and flood-risk literature that identifies income among the most
significant indicators of flood hazard exposure (Fielding and Burningham 2005). Though I use

an indicator-based approach to analyzing social vulnerability, the two best-known and widely-
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used social vulnerability indexes incorporate several variables of wealth, income, and poverty for

similar reasons.?

Absolute poverty is measured according to the official U.S. poverty line. This income-based
threshold fluctuates depending on family size, household combination, and the annual Consumer
Price Index (Fritzell et al. 2015). For example, in 2016 a family of four with a total household
income at or below $24,339 was considered poor (Semega et al. 2017, 43). The major drawback
to this measure is that it fails to consider place-to-place differences in the cost of living (e.g.,
transportation, housing), does not adjust for state and local difference in taxes, and ignores in-
kind income such as housing vouchers or food stamps (Lichter and Schaftt 2016, 15). A relative
measure of poverty is the ratio of the household’s income to the surrounding area’s median
income. Relative poverty measures account for the place-specific differences that absolute
measures fail to. The Area Median Income is typically at the scale of the county or the

Metropolitan Statistical Area.

There is wide variation in local taxes and housing and transportation costs across the cities and
counties of California. To reveal the spatial patterns and nuances of poverty, I chose seven

variables to assess the median income, absolute poverty rate, and relative poverty rate for each
census block group. The Median Household Income variable allows for an initial interpretation

and comparison of income. The variable is measured at the census block group level, and is the

2 University of Southern Carolina Hazards and Vulnerability Research Institute developed the Social Vulnerability
Index (SoVI). It uses principle components analysis to synthesize 29 socioeconomic variables from the American
Community Survey and create a county-level vulnerability “score.” Five of these 29 variables are categorized as
“Wealth” indicators and together explain nearly 16 percent of the variance in the index (2013). The Center for
Disease Control Agency for Toxic Substances and Disease Registry developed the Social Vulnerability Index (SVI).
It uses 15 variables from the Decennial Census to create a single tract-level percentile rank for vulnerability. Four of
the 15 variables are categorized as “Socioeconomic Status.”
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median dollar amount of all household incomes within the block group. CBGs with lower
median household incomes can reveal the geographic distribution or concentration low-income

households.

The three variables “VIExtrmLowInc” “V9VeryLowInc” and “V9LowInc” provide information
on the number of households experiencing relative poverty by CBG. These income categories are
used by the U.S. Department of Housing and Urban Development (HUD) to determine eligibility
for the Section 8 Housing Choice Voucher Program (HCD 2017). Households are Low Income if
they earn 80 percent of the Area Median Income (AMI), Very Low Income if they earn 50
percent of the AMI, and Extremely Low Income if they earn 30 percent of the AMI. To capture
the number of households experiencing absolute poverty, I included the three variables
“V10PctBlw50” “V10PctBlw100” and “V10Pctlw150.” These account for the number of

individuals earning at or below 50 percent, 100 percent, or 150 percent of the federal poverty

threshold.
Table 4: Selected Social Vulnerability Variables
Variable
Category Variable Name Description
ACS Table
Percent of dependent age population, defined as
Age VL6 65 younger than 14 or older than 65.

B01001 Percent of dependent age population, defined as
ViPet_14_85 younger than 14 or older than 85.

Automobile V2Pct NoAuto Percent of households with no vehicle available.
B25044 -
. . V3PctCitizen Percent of the population born in the United States.
Citizenship
B99051 VA Rs e Is’te;fee;nt of the population born outside the United
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Disability
C21007

Education
B15003

Employment
B23025

Ethnicity
B03003

Gender
B11001

Income
B19013 (V9)
C17002 (V10)

V4PctDis

V4PctDis65

V5Pct No HS

V5Pct HS Deg

V5Pct Abv HS

V6PctUNEMP

V7PctHISP
V7PctNotHISP
V8PctFHH

V8PctMHH

VI9ExtrmLowlInc

V9VeryLowlnc

V9Lowlnc

VOMEDHHINC

V10PctBIw50

V10PctBIw100

V10Pctlw150

V11PctWhite

Percent of the population aged 18 or above with a
disability.

Percent of the population aged 65 or above with a
disability.

Percent of the population aged 25 or above with no
high school degree or GED.

Percent of the population aged 25 or above whose
highest educational attainment is a high school degree
or GED.

Percent of the population aged 25 or above whose
highest educational attainment is at least a 2- or 4-
year degree.

Percent of population aged 16 or above in the civilian
labor force that are unemployed.

Percent of the population that are Hispanic or Latino.

Percent of the population that are not Hispanic or
Latino.

Percent of female-headed households (no partner
present).

Percent of male-headed households (no partner
present).

Number of "Extremely Low Income" households.
Defined by HUD as earning 30 percent of the Median
Area Income.

Number of "Very Low Income" households. Defined
by HUD as earning 50 percent of the Median Area
Income.

Number of "Low Income" households. Defined by
HUD as earning 80 percent of the Median Area
Income.

Median household income in the past 12 months (in
2016 inflation-adjusted dollars) of the Census Block
Group.

Percent of the population with income at or below 50
percent of the federal poverty line.

Percent of the population with income at or below the
federal poverty line.

Percent of the population with income at or below 150
percent of the federal poverty line.

Percent of the population that is White alone.
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Race
B02001

Tenure
B25003

V11PctNonWhite
V11PctBlack
V11PctIndigenous
V11PctAsian
V11PctPacific
V12PctRenter

V12PctOwner

Percent of the population that is Nonwhite.

Percent of the population that is Black or African
American alone.

Percent of the population that is American Indian and
Alaska Native alone.

Percent of the population that is Asian alone.

Percent of the population that is Native Hawaiian and
Other Pacific Islander alone.

Percent of the population that rents their housing unit.

Percent of the population that owns their housing unit.
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Data Limitations

There are unique limitations to each data set that are dependent on a number of factors related to
their respective methods for collection and representation. The glaring limitation of the National
Inventory of Dams data is the suppression of the most up-to-date hazard status of dams. Though
I use the methodology of validating the 2002 NID dataset with hazard potential information
supplied by the California DSOD, there is potential omission of HHP dams for the 336 (of 1,585)

dams that are not under the jurisdiction of the state.

Considering the set of 564 dam inundation maps, some acknowledgement of the approximation
of the inundation zone is necessary. First, since civil engineers prepare the maps on behalf of
dam owners, there is variation in the modelling software, methods, and assumptions used to
determine each inundation boundary. Second, the main assumption for each map is that the
amount of water at the time of dam failure is within the safe operating capacity of the dam (De
Alba 2018). One issue with this assumption is that capacity restrictions or limitations are
imposed as necessary when structural or safety problems are identified. Another issue,
demonstrated by the Oroville Dam Spillway Failure, is that the water level of a reservoir can rise
well above the safe operating capacity in a short time period under certain climatic conditions

and weather events.

Taken together this means that some inundation maps may over or under-approximate the flood
zone boundary, and do not reflect current reservoir levels “on the ground.” Finally, the sample
size of dam inundation boundary shapefiles is constrained to 581 because the California Water

Code does not require every dam to create an inundation zone map. The sample size if further
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limited to 564 zones because 5 of shapefiles were missing data and could not be projected and an

additional 12 could not be matched with existing dam from the NID.

Finally, the ACS is a survey, and thus has the potential to contain a number of errors stemming
from issues of sample size, data entry and imputation error, and the nature or phrasing of survey
questions. Sampling error is the difference between an estimate based on a sample and the
corresponding value that obtained if the entire population were surveyed (Census Bureau 2017,
10). The Census Bureau states that sampling error in the ACS data "arises due to the use of
probability sampling, which is necessary to ensure the integrity and representativeness of sample

survey results” (2017, 9).

Non-sampling error can occur if survey data is inputted incorrectly, when a variable is weighted
inaccurately, or during the data editing and cleaning process. For example, the “hot-deck”
imputation method used to generate values for missing fields and nonresponses can be erroneous
because it replicates the answer of an existing survey taker with similar demographic or
socioeconomic characteristics (Census Bureau 2017, 12). The Research and Training Center on
Disability in Rural Communities describes the issues with survey results from rural counties,
which include smaller sample sizes, higher margins of error, and an “urban bias” in design of
survey questions (2017). Regarding ACS estimates for populations with disabilities, they state,
“The high margins of error [from small sample sizes] make data less reliable at smaller
geographies (e.g. counties) and forces researchers to aggregate the data to increase data validity.
This limits the ability to analyze county level disability data, particularly for subgroups like race

and ethnicity” (2017, 7).
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The disabled population estimates are also complex because “disability is a dynamic concept that
changes over time as one’s health improves or declines, as technology advances, and as social
structures adapts. As such, disability is a continuum... Various cut-offs are used to allow for a
simpler understanding of the concept, the most common of which is the dichotomous ‘With a
disability’ / ‘No disability’ differential” (U.S. Census Bureau 2018). Weathers compares
disability data from six nation-wide population and health surveys, and concludes that “The ACS
population and prevalence rate estimates are lower than estimates from datasets that use a larger
set of questions to estimate the size of the population with disabilities and higher than estimates
from datasets that use a smaller set of questions™ (2005, 28). This indicates that the number
questions and the nature of the questions asked can cause an under- or over-estimate of disabled

individuals.

However, in 2008, the Census Bureau conducted a conceptual and empirical overhaul of the
ACS disability questions, to the extent that they do not recommend any comparisons of post-
2008 disability data to previous years. A recent study comparing the 2012 ACS disability
estimates with the 2011 National Health Interview Survey affirms that ACS questions identify a
representative sample of the population with hearing, cognitive, ambulatory, self-care, and
independent living difficulties (Altman et al. 2017, 489). The authors assert that their results do
not support the argument that the ACS questions result in a population sample that is biased (i.e.,
that misses an important segment of the population with disabilities) (2017, 490). Thus, I assume
the results of my statistical analyses concerning individuals with disabilities to be an unbiased

and representative snapshot of this population.
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The wording of survey questions and range of acceptable potential responses can be a limitation
for other estimates as well. For example, after the 2000 Decennial Census the Bureau changed
the question regarding race by adding a sixth category, “Some Other Race,” and began allowing
respondents to select more than one race. Brooks claims, “This change, while meant to allow for
more inclusiveness, made it difficult to accurately calculate racial and ethnic trends” (2008, 2).
Autry reports that these shifts in racial classifications raise questions about how people interpret
the same question differently (2017). For example, how can researchers accurately evaluate
demographic trends when people’s perception of their racial background changes? (2017). A
2015 study by the Pew Research Center found at least 9.8 million people reported a different
racial or ethnic background on the 2010 Decennial Census than they did in the 2000 census
(Autry 2017). To address this in my research, I include variables for the five major race
categories of White, Black or African American, American Indian or Alaskan Native, Asian, and
Native Hawaiian or Pacific Islander, as well as a calculated variable Nonwhite. The Nonwhite
variable captures these four nonwhite populations, as well as individuals who identify as “Some

other race alone,” and “Two or more races.”

Misinformation and nonresponses on the part of the survey taker also influences the accuracy of
ACS data. Individuals may be unable to respond to question because they are unsure of the
potential answer, misunderstand the question due to language barriers or question phrasing, are
in poor health, or have another impairment impeding their ability to complete the survey as
accurately as possible. Other factors for nonresponse and measurement error include disinterest

and lack of time (Meyer et al. 2015). Individuals might experience internalized biases and social
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stigmas that influence their answers. For example, Meyer et al. concludes that between 25 and 36
percent of survey takers either failed to report or significantly underreported income from
transfer benefits and social programs such as the Temporary Assistance for Needy Families,
Supplemental Nutrition Assistance Program, or Supplemental Security Income (2015). Meyers
cites societal stigma against social safety net recipients as a reason answers are mis-reported,
such as anti-poor rhetoric that ignores structural influences and blames individuals for their

economic status (2015).

Survey takers may intentionally leave questions blank or report incorrect information because of
privacy concerns or unease about how unease about how local, state, or federal government
officials might use certain survey answers. For example, question 8 of the ACS asks whether
respondents were born in the United States or were born abroad. Though the ACS does not ask
specifically about immigration status, Passel et al. show that citizenship and legal status is
strongly associated with country of birth and the number of years a person has lived in the U.S.
(2006; Van Hook and Bachmeir 2013). By comparing the responses to this question with the
Office of Immigration Statistic’s official estimates of the undocumented foreign-born population,
Van Hook and Bachmeir found significant underreporting and nonresponse among all
immigrants with less than five years of U.S. residence, among Mexican men of all ages and
durations of residence, and among Mexican women ages 40 and older (2013, 12). Therefore, I
expect the results of my statistical analysis of foreign-born populations to be an under-

represented and incomplete estimate.
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Despite the limitations of the NID, dam inundation maps, and ACS survey data, these three

datasets represent the best available data for the purposes of this investigation.
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Chapter 5: Methods

Research Design

This research uses quantitative methods and follows four main steps, including identification of
vulnerable groups, data acquisition, data editing and geoprocessing, and statistical analysis. |
modelled the research design after previous, recent studies of social vulnerability and flood risk,

similar to the methods of Lawal and Arakoyu (2015).

The geographic focus of this research project is the state of California. More specifically, the
boundaries of analysis are dam inundation zones across the state. The selected population, and
units of analysis, are individuals and households within census block group either inside or

outside these dam flood zones.

The instruments I use to measure outcomes in this study are Geographic Information Systems
(GIS) and Statistical Package for the Social Sciences (SPSS) software. Within the GIS platform,
I utilize several geoprocessing tools to identify populations living within or outside of dam flood
zones. | use SPSS to conduct comparison of means tests and multiple regression analyses to
identify the relationship between social vulnerability characteristics, dam inundation zones, and

certain dam characteristics including reservoir size, age, and inspection frequency ratio.

The main questions of this study are as follows:

1) Are socially vulnerable households more likely to live within dam flood zones than
outside of them in California?
a. Statistical Test: Comparison of means with a two-tailed independent samples test
i. Test Variables: Selected social vulnerability characteristics
ii. Grouping Variable: Within (1) or outside (0) all dam flood zones.
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2) Are socially vulnerable households more likely to live within HHP dam flood zones than
outside of them in California?
a. Statistical Test: Comparison of means with a two-tailed independent samples test
i. Test Variables: Selected social vulnerability characteristics
ii. Grouping Variable: Within (1) or outside (0) HHP dam flood zones.

3) Which factors of household social vulnerability are significantly correlated with living in
a dam flood zone? Do these differ from factors significantly correlated with living in an
HHP dam flood zone?

a. Statistical Test: Multiple linear regression
i. Independent Variables: Selected social vulnerability characteristics
ii. Dependent Variable: Within (1) or outside (0) HHP dam flood zones.

4) Is there a relationship between social vulnerability and the HHP dam characteristics of
age and inspection compliance?

a. Do HHP dams built more than 50 ago have higher proportions of socially
vulnerable households within their inundation zones than HHP dams built less
than 50 years ago?

i. Statistical Test: Comparison of means with a two-tailed independent
samples test
1. Test Variables: Selected social vulnerability characteristics
2. Grouping Variable: Dam Age > 50 years (1) or < 50 years (0).

b. Do HHP dams with failed inspection compliance have higher proportions of
socially vulnerable households within their inundation zones than HHP dams in
compliance?

i. Statistical Test: Comparison of means with a two-tailed independent
samples test
1. Test Variables: Selected social vulnerability characteristics
2. Grouping Variable: Fail (1) or Pass (0).

Research Procedure

As stated above, the procedure of this project’s methods follows 1) identification of vulnerable

groups, 2) data acquisition, 3) data editing and geoprocessing, and 4) statistical analysis.
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Identification of Vulnerable Groups
To identify the characteristics of socially vulnerable groups, I draw on previous flood-risk and
social vulnerability literature. This process resulted in the identification of 12 variables of social

vulnerability, described in detail in the Data and Variables section.

Data Acquisition

I obtained the first dataset, the National Inventory of Dams, on February 1, 2018 through the
ProPublica Data Store. The second dataset containing geospatial shapefiles for 564 dam
inundation zones in California arrived via U.S. mail on January 11, 2018. I downloaded the third
dataset, containing 30 variables of social vulnerability selected from the American Community

Survey, on January 24, 2018.

Data Editing and Geoprocessing

Once I had access to all three datasets, I began the process of data projection, editing, and
geoprocessing. I loaded the National Inventory of Dams data into GIS and spatially projected the
file based on the latitudes and longitudes included for each dam in California. This resulted in a
point shapefile of the data, showing the geographic location and each of the 71 attributes from

the NID.

The American Community Survey data was also straightforward to project in GIS software.
After downloading the tables for the 30 selected social vulnerability characteristics, I combined
all the data into a single excel spreadsheet. I then downloaded the Census Block Group

geographic boundary shapefile from the U.S. Census Bureau website. Once I projected this
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shapefile in GIS, I joined it with the selected ACS variables based on the unique 17-character
Geographic Identification Number (GEOID Data). This resulted in a spatial representation of all

30 social vulnerability variables for each census block group in California.

Next, I projected all dam inundation boundary shapefiles within GIS. This step required a
significant amount of geoprocessing and attribute editing because many shapefiles were not in
the right format to perform spatial analyses on. For example, to select census block groups
within dam flood zones, I ran an Intersect function, which requires all inundation boundaries to
be polygon shapefiles. However, the data I received contained 373 shapefiles in polygon format
and 191 in polyline format (not counting the 17 shapefiles that I excluded because they were
unable to be geospatially projected). Converting polyline flood zones to a polygon format took a
degree of manual geographic editing to create a completely closed shape. I took care to alter the
original polyline shape as little as possible, though I had to make some assumptions in cases of
ambiguity. The common ambiguity I came across was an open-ended shape at the start and end

of the inundation zone. In these cases, I enclosed the shape without adding any curvature.
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Once all 564 dam inundation boundary shapefiles were in the polygon format, I joined them with
the National Inventory of Dams point data shapefile, based on the field Dam Name. Thus, each
dam inundation boundary also contained the 71 variables of the NID. I then merged all 564 dam
flood zones into a single shapefile, keeping the boundaries and NID attribute information intact. I
replicated this process for HHP dams by selecting and merging the 481 flood zones attached to
hazardous dams. The result was one shapefile that contained all dam flood zones and one

shapefile that contained only HHP dam flood zones.

The final step of GIS analysis was to differentiate the census block groups that fall within dam
flood zones from those outside of them. This process produces the data necessary to perform
statistical analyses comparing the social vulnerability characteristics of people living within or
outside of the inundation areas. Most dam inundation zones cross portions of census block
groups, where only a certain percent of the block group falls within the flood zone. To address
this, I created a copy of the ACS social vulnerability shapefile using the Make Feature Layer tool
in ArcToolbox. This tool allows for an area-weighted, proportional result when running

geoprocessing functions that overlay two shapefile layers with different spatial boundaries.

Using the shapefile outputted from the Make Feature Layer tool and the shapefile with all 564
dam flood zones, I ran the Intersect tool. This tool returns a shapefile containing the whole or
partial census block groups that fall within dam inundation boundaries. After running this
function, I had a shapefile reflecting proportionalities in the social vulnerability variables for

intersected census block groups. For example, consider a CBG where 100 households do not
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own a car and 25 percent of the block group falls within a dam flood zone. After running
Intersect, the output shapefile would show that 25 households in that CBG do not own a car. |
replicated this process using the Symmetrical Difference tool, which is the inverse of the
Intersect tool. In other words, the Symmetrical Difference function shows all the census block
groups that are outside of a dam inundation zone. The same assumptions for ensuring

proportionality applied to this step as well.

At the end of this process, I had one shapefile with CBGs within all 564 dam inundation zones
and one shapefile with CBGs outside these zones. I ran these steps again for HHP dam flood
zones. The result was a third shapefile with CBGs within the 481 HHP dam flood inundation
zones and a fourth shapefile with CBGs outside these zones. The Intersect and Symmetrical
Difference geoprocessing functions split many of the 23,212 total census block groups into

multiple parts, which explains the high number of CBGs within or outside dam flood zones.

Table 5: Number of CBGs for Selected Shapefiles

CA Census Block Groups 23,212

CBGs Within All Dam Flood Zones 49,414

CBGs Outside All Dam Flood Zones 17,473

CBGs Within HHP Dam Flood Zones 38,927

CBGs Outside HHP Dam Flood Zones 17,500
Statistical Analysis

The final step of the statistical analysis for this project was to export the data from GIS to an

excel format, so it could then be uploaded into SPSS. I used the GIS conversion tool “Table to
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Excel” for the four flood zone shapefiles. After opening each table in excel, I added a new field
reflect the variable “In Flood Zone.” A value of 1 indicates census block groups within dam
inundation zones, and a value of 0 indicates block groups outside of zones. The excel tables were
then combined. Next, I added new fields calculate the percentages of each social vulnerability
characteristic in each census block group. The first finalized spreadsheet, “All Dam Flood
Zones,” contained the census block groups within and outside 564 inundation zones in
California. The second finalized spreadsheet, “HHP Dam Flood Zones,” contained the census
block groups within and outside 481 HHP inundation zones in California. Both included the 30

selected social vulnerability variables and 71 NID variables by census block group.

After uploading these two datasets into SPSS, I completed a number of steps to normalize the
independent variables and account for any missing or null values. To compute missing values, |
selected all variables measured at the scale level and recoded them into the same variables by
replacing “System- or user-missing” values with -9999. I selected this value because it does not
normally appear in any of the data. I then entered this value in the “Discrete missing values”
column for all relevant variables, which ensures the exclusion of missing values from the

statistical analyses and regressions.

Second, I normalized all of the independent variables to the best of my ability. This is an
important step because non-normalized variables included in the independent samples tests or
multiple linear regressions can influence the validity, character, and interpretation of the results.
The independent variables for multiple regressions are the 30 social vulnerability characteristics

identified previously. For each, I applied a square root, natural logarithmic, or arcsine
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transformation. I then performed the Kolmogorov-Smirnov test for normality and compared the
skew, kurtosis, K-S test statistic, and histogram of the original variable against the three
transformed variables. Out of these four variable iterations, I selected the one that had skew,
kurtosis, and Kolmogorov-Smirnov test statistic values closest to 0.> When multiple variable
iterations had similarly skew, kurtosis, or K-S values, I referred to the histograms to determine
which one had a distribution closest to the normal distribution curve. While none of the original
or transformed social vulnerability variables had perfectly normal distributions, the ones selected
to use in statistical tests are as close to a normal distribution as possible. Refer to Appendix A for
a complete list of normalized variables and histograms for all dam inundation zones and for HHP

dam inundation zones.

I used two different statistical tests to answer the four research questions guiding my project. For
research questions 1, 2, and 4, I performed independent samples t-tests. The test variables were
the 30 normalized social vulnerability variables. The grouping variables included “In Flood
Zone,” “Dam Age,” and “Inspection Compliance.” I used a 95 percent confidence interval
threshold for determining statistically significant differences in means. Test variables with
missing or null values were excluded analysis-by-analysis. The sig. value for Levene’s Test for
Equality of Variances determined which values I include in the summary tables in Chapter 6:

Results and Findings. After identifying the means for the normalized test variables, I then back-

3 Skewness is the extent to which a distribution of values deviates from symmetry around the mean. A value of zero
means the distribution is symmetric. A skew value of +/- 1 is considered an acceptable range for most normality
tests (Cutting 2017). Kurtosis is a measure of the “peakedness” or “flatness” of a distribution. A kurtosis value near
zero indicates the shape is close to normal, while a negative value indicates a more peaked distribution, and a
positive value indicates a flatter distribution. A kurtosis value of +/- 2 is considered an acceptable range for most
normality tests (Cutting 2017). The Kolmogorov-Smirnov test statistic (D) is based on the largest vertical difference
between the theoretical distribution (if the data were normal) and the empirical cumulative distribution function of
the variable. A smaller K-S value implies the empirical distribution of the data is closer to a normal distribution.
Larger values indicate the data do not follow normal distribution (Minitlab 2017).
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transformed the values based on normalization method. The back-transformed values for each
social vulnerability variable are listed in the summary tables in Chapter 6, while the complete
outputs for each independent samples t-test are located in either Appendix B (RQ 1), Appendix C

(RQ 2) or Appendix D (RQ 4).

I ran two multiple linear regressions to answer research question 3. The dependent variable was
the indicator “In Flood Zone.” Before selecting independent variables for the regression models,
I assessed the multicollinearity among the 30 normalized social vulnerability variables. I ran the
multicollinearity test for both datasets, “All Dam Flood Zones” and “HHP Dam Flood Zones.”
Based on these results, I excluded certain variables that had high and statistically significant
Pearson Correlation values (typically 0.8 and above).

Despite the difference in the number of flood zones between the datasets “All Dam Flood Zones”
(564) and the “HHP Dam Flood Zones” (481), the multicollinearity tests revealed similar highly
correlated variables. The variables “V5PctAbvHS,” V5PctNoHS,” “VOMHHINC,”
“V10PctBlw100,” and “V10PctBlw150” had high, statistically significant correlations with other
indicators, and were excluded from the regressions. Furthermore, I excluded one of two variables
for categories that were inverses of each other, such as Hispanic or Latino / Not Hispanic Latino,
White / Nonwhite, and Citizen / Foreign Born. The total number of possible independent

variables was limited to 21 of the selected 30 social vulnerability characteristics.

I performed the multiple linear regression multiple times for both “All Dam Flood Zones” and

“HHP Dam Flood Zones.” I used a 95 percent confidence interval threshold to determine
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statistically significant variables and coefficients. Furthermore, I generated collinearity statistics
for all regression model iterations. This calculates the variance inflation factor (VIF) of each
variable. The general rule of thumb is that a variable with a VIF value less than 1 or greater than
10 is significantly correlated with another variable included in the model (IDRE 2018). As such,
I excluded a number of additional variables that had high VIFs (typically a value of 4 or more).
Finally, I examined the p-value of the independent variables in the model to identify those that
were not statistically significant. While testing different combinations of independent variables, I
paid attention to the inclusion or exclusion of these in relation to their effect on the R-Square
value. The final regression models therefore reflect the combination of normalized social
vulnerability variables that result in the highest R-Square value, accounting for multicollinearity.

Refer to Appendix D for the final outputs of all multiple linear regression models.*

4 Due to my own statistical analysis limitations, I was unable to fully back-transform the normalized variables in the
model. Thus, when discussing the regression results I rely on the standardized coefficients to provide a baseline for
interpreting the independent variables that have the highest degree of influence.
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Chapter 6: Results and Findings

In this section, I present the results of the statistical analyses performed for each research
question. In order to present these findings in a clear and concise way, I exclude the number of
cases and standard deviations from the summary tables below. I omit the significance values for
research question 4b) for similar reasons, though statistically significant results are still

Gk

demarcated with a symbol. This information is listed in the full statistical outputs for each
research question located in Appendix B (RQ 1), Appendix C (RQ 2), Appendix D (RQ 3), and

Appendix E (RQ 4).

On a technical note, I narratively distinguish between the absolute and relative changes for social
vulnerability variables included in the independent samples two-tail t-tests. The absolute
differences in means are discussed as percentage point increases or decreases and are meant to
convey how the proportions of the variables compare based on the test factor. I use the
percentage change between means, or the relative difference, to present another way of
interpreting the magnitude of the difference. For example, the average proportion of the
households with no automobile is 4 percent within dam inundation zones and 4.4 percent outside
of them. While the absolute difference in means is 0.4 percent, the relative difference is 9.3
percent. I also describe the relative difference in terms of likelihood, i.e., households with no
automobile are 9.3 percent more likely to live outside of dam flood zones than within them. This

descriptive choice of words does not reflect a calculated likelihood or probability ratio.

Finally, RQ 4 compares social vulnerability variables that are solely located within HHP dam

flood zones. To avoid repeating this lengthy distinction so many times, I use the phrase “near”
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interchangeably. For example, the phrase “renters are more likely to live within flood zones of
HHP dams that are 50 or more years old” is equivalent to “renters are more likely to live near

older dams.”

Results for Research Question 1

Are socially vulnerable households more likely to live within dam flood zones than outside of

them in California?

Table 6: Comparison of Social Vulnerability Means for All Dam Flood Zones

Within Zone Outside Zone Sig.*
Difference in Percent
Mean Mean Means Change

V1Pct 14 65 33.08% 32.82% 0.25% 0.77% 0.002
V1Pct 14 85 20.31% 19.96% 0.35% 1.77% 0.000
V2Pct NoAuto 3.96% 4.37% -0.40% -9.25% 0.000
V3PctCitizen 82.59% 78.06% 4.53% 5.80% 0.000
V3PctForeignBorn 17.11% 21.59% -4.49% -20.78% 0.000
V4PctDis 14.09% 12.26% 1.83% 14.91% 0.000
V4PctDis65 36.42% 34.34% 2.08% 6.07% 0.000
V5Pct No HS 12.90% 12.02% 0.88% 7.28% 0.000
V5Pct HS Deg 22.66% 19.81% 2.85% 14.38% 0.000
V5Pct Abv_HS 34.23% 38.83% -4.59% -11.83% 0.000
V6PctUNEMP 8.60% 7.17% 1.43% 19.96% 0.000
V7PctHISP 24.72% 26.65% -1.93% -7.23% 0.000
V7PctNotHISP 74.47% 72.35% 2.13% 2.94% 0.000
V8PctFHH 11.42% 10.90% 0.51% 4.72% 0.000
V8PctMHH 4.50% 4.02% 0.49% 12.12% 0.000
VOMEDHHINC $57,711 $66,151 -$8,440 -12.76% 0.000
VI9ExtrmLow 1.00% 1.00% 0.00% 0.00% 0.014
V9VeryLowlInc 7.00% 7.00% 0.00% 0.00% 0.721
V9Lowlnc 33.00% 29.00% 4.00% 13.79% 0.000
V10PctBlwS50 5.61% 4.67% 0.94% 20.07% 0.000
V10PctBlw100 14.39% 11.60% 2.79% 24.08% 0.000
V10PctBlw150 24.37% 19.90% 4.47% 22.48% 0.000
V11PctWhite 69.84% 68.32% 1.53% 2.23% 0.000
V11PctNonwhite 29.45% 30.88% -1.43% -4.62% 0.000
V11PctBlack 3.01% 2.67% 0.34% 12.61% 0.000
V11PctIndigenous 0.39% 0.20% 0.19% 98.41% 0.000
V11PctAsian 6.81% 8.24% -1.44% -17.42% 0.000
V11PctPacific 0.09% 0.04% 0.05% 122.01% 0.000
V12PctRenter 37.54% 37.85% -0.31% -0.81% 0.201
V12PctOwner 61.32% 60.94% 0.38% 0.62% 0.120

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means
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I performed an independent samples t-test for 30 social vulnerability variables, with the grouping
variable “In Flood Zone.” The grouping variable is a categorical indicator where 1 is assigned to
values within dam flood zones, and 0 is assigned to values outside of them. The results show 27
of the 30 variables have statistically significant differences in means. The non-significant
differences in means are Very Low Income households and individuals who either rent or own
their homes. In total, 22 characteristics of individual and household social vulnerability are more

likely to be located in dam flood zones.

Of these 22 variables, the highest differences in means include U.S. citizenship (4.5 percent), the
absolute poverty threshold of at or below 150 percent of the federal poverty line (4.5 percent),
and the relative poverty measure of low-income populations (4 percent). Contrastingly, the
highest differences in means for variables located outside of dam flood zones are foreign-born

individuals (4.5 percent) and Californians with at least a 2- or 4-year degree (4.6 percent).

There is a large disparity in median household income by location. For households within dam
flood zones the median income is $57,711, compared to $66,151 those households outside zones.
This means that households earning around $57,700 are nearly 12.8 percent more likely to be in
a dam inundation zone than households earning more than $66,150 are. Among other income
indicators, households experiencing absolute or relative poverty are also more likely to be in
flood zones. This includes households earning at or below 50 and 100 percent of the federal
poverty threshold (20 and 24 percent more likely) and Low Income households earning below 80

percent of the Area Median Income (13.8 percent more likely).
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Several additional demographic and socioeconomic characteristics appear to be at higher risk for
potential dam-induced flood disasters. For example, there are 14.9 percent more disabled
individuals and almost 20 percent more unemployed individuals in dam flood zones. Higher
proportions of age-dependent populations, U.S. citizens, people whose highest educational
attainment is a high school degree, female or male single parents, and homeowners also live in

these zones.

Race and ethnicity by location have some notable distinctions. Although there are slight
differences in the average proportions of American Indian or Native Alaskan (0.2 percent) and
Native Hawaiian or Pacific Islanders (less than 0.1 percent), these represent a 98.4 percent and
122 percent increase if these groups live within inundation areas. White and Black and African
Americans have higher population proportions within zones, while Asian-identifying individuals
are 17.4 more likely to live outside of zones. Finally, foreign-born and Hispanic or Latino
individuals and households with no available car are less likely to live in a dam flood zones by

20.8 percent, 7.2 percent, and 9.3 percent, respectively.

Results for Research Question 2

Are socially vulnerable households more likely to live within HHP dam flood zones than outside

of them in California?

Table 7: Comparison of Social Vulnerability Means for HHP Dam Flood Zones

Within Zone Outside Zone Sig.
Mean Mean Difference in Percent
Means Change
V1Pct 14 65 33.08% 32.83% 0.26% 0.78% 0.002
V1Pct 14 85 20.66% 19.96% 0.70% 3.51% 0.000
V2Pct NoAuto 4.01% 4.37% -0.35% -8.12% 0.000
V3PctCitizen 80.98% 78.05% 2.92% 3.75% 0.000
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V3PctForeignBorn 18.71% 21.60% -2.89% -13.37% 0.000

V4PctDis 13.48% 12.26% 1.23% 9.99% 0.000
V4PctDis65 36.06% 34.34% 1.72% 5.00% 0.000
V5Pct No HS 13.52% 12.02% 1.50% 12.49% 0.000
V5Pct HS Deg 22.38% 19.81% 2.57% 12.97% 0.000
V5Pct_Abv_HS 34.06% 38.84% -4.78% -12.31% 0.000
V6PctUNEMP 8.10% 7.17% 0.93% 12.99% 0.000
V7PctHISP 27.16% 26.63% 0.52% 1.96% 0.020
V7PctNotHISP 71.94% 72.36% -0.42% -0.58% 0.072
V8PctFHH 11.52% 10.90% 0.62% 5.70% 0.000
V8PctMHH 4.36% 4.01% 0.35% 8.68% 0.000
VOMEDHHINC $60,232 $66,171 -$5,940 -8.98% 0.000
VI9ExtrmLow 1.02% 0.86% 0.16% 18.63% 0.069
V9VeryLowlnc 6.76% 6.72% 0.04% 0.57% 0.868
V9Lowlnc 30.66% 28.88% 1.77% 6.14% 0.000
V10PctBIw50 5.24% 4.67% 0.57% 12.27% 0.000
V10PctBlw100 13.26% 11.59% 1.66% 14.32% 0.000
V10PctBlw150 22.88% 19.89% 2.99% 15.01% 0.000
V11PctWhite 68.98% 68.30% 0.68% 1.00% 0.001
V11PctNonwhite 30.31% 30.90% -0.58% -1.89% 0.004
V11PctBlack 3.08% 2.67% 0.41% 15.32% 0.000
V11PctIndigenous 0.35% 0.20% 0.15% 78.88% 0.000
V11PctAsian 7.23% 8.26% -1.02% -12.39% 0.000
V11PctPacific 0.07% 0.04% 0.03% 80.26% 0.000
V12PctRenter 38.48% 37.84% 0.64% 1.69% 0.010
V12PctOwner 60.39% 60.95% -0.55% -0.91% 0.029

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means

I performed an independent samples t-test for 30 social vulnerability variables, with the grouping
variable “In Flood Zone.” The grouping variable is a categorical indicator where 1 is assigned to
values within HHP dam flood zones, and 0 is assigned to values outside of them. The results
show that 27 out of 30 variables have statistically differences in means, and that 22 variables are
more likely to occur in HHP zones. The non-significant results for this question are proportions
of non-Hispanic individuals, Extremely Low Income households, and Very Low Income

households.

The characteristics with noticeable differences between means are located outside of HHP
inundation areas, such as the number of people with at least a 2- or 4-year degree (4.8 percent

difference) and median household income ($5,940 difference). These variables also have
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strikingly lower likelihoods of being in HHP dam flood zones: The average college educated
person is 12.3 percent more likely to live outside such areas, while households outside these

areas earn about 9 percent more median income ($66,171 compared to $60,232).

The other income indicators examined, such as the absolute and relative poverty thresholds, have
higher proportions located within hazardous dam flood boundaries. These differences in means
are small. Consider the average population at or below 50, 100, and 150 percent of the federal
poverty line (0.6, 1.7, and 3 percent difference) and households considered Extremely Low, Very
Low, and Low Income (0.2, less than 0.1, and 1.8 percent difference). However the difference in

means for Extremely Low and Very Low Income individuals are not statistically significant.

The results indicate that age-dependent populations, U.S. Citizens, disabled individuals, people
whose highest educational attainment is a high school degree, unemployed individuals, female
and male single parents, and non-homeowners are more likely to live in HHP inundation zones.
The differences between race and ethnicity shows similar patterns among flood areas for all 564
dams and the 481 HHP dams. Namely, that higher proportions of Hispanic (0.5 percent), White
(0.7 percent), Black and African American (0.4 percent), American Indian or Native Alaskan
(0.2 percent), and Native Hawaiian or Pacific Islanders (less than 0.1 percent) live within HHP
zones and higher proportions of Asian populations (1 percent) live outside these zones. Finally,
foreign-born and non-Hispanic or Latino individuals and households with no available car are

less likely to live in a dam flood zone by 13.4 percent, 0.6 percent, and 8.1 percent, respectively.
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Results for Research Question 3

Which factors of household social vulnerability are significantly correlated with living in a dam

flood zone? Do these differ from factors significantly correlated with living in an HHP dam

flood zone?
Table 8: Multiple Linear Regression for All Dam Flood Zones

Adjusted R Std. Error Colllineari.ty

Model R R-Square Square of the Dlggnostlc

Estimate Condition Index
0.216 0.047 0.046 430 33.099
Unstandardized Standardized .
Coefficients Std. Error Coefficients Sig. VIF
0.617 0.013 0.000

V1Pct 14 65 -0.134 0.029 -0.026 0.000 2.067
V2Pct NoAuto -0.235 0.015 -0.083 0.000 1.789
V3PctForeignBorn -0.411 0.014 -0.164 0.000 2.025
V4PctDis 0.205 0.023 0.047 0.000 1.825
V5Pct HS Deg 0.370 0.021 0.083 0.000 1.457
V6PctUNEMP 0.153 0.017 0.040 0.000 1.364
V8PctFHH -0.078 0.015 -0.024 0.000 1.577
V8PctMHH 0.077 0.014 0.023 0.000 1.218
V9VeryLowlInc -0.023 0.008 -0.013 0.004 1.367
V9Lowlnc 0.029 0.005 0.030 0.000 1.750
V10PctBIw50 0.055 0.016 0.017 0.001 1.627
V11PctBlack 0.069 0.012 0.026 0.000 1.351
V11PctIndigenous 0.172 0.021 0.033 0.000 1.166
V11PctAsian 0.159 0.011 0.074 0.000 1.725
V11PctPacific 0.301 0.028 0.043 0.000 1.077
V12PctRenter 0.086 0.011 0.042 0.000 2.057

p <0.05

Refer to the Statistical Analysis subsection in Chapter 5: Methods for a full description of the

testing parameters, assumptions, and process for this statistical test.

The multiple linear regression test shows that 16 social vulnerability variables are statistically
significant predictors of being located within a dam inundation zone in California. The model

has an R-square value of 0.047. This means that taken together, the 16 independent variables
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explain about 4.7 percent of the variation in the dependent variable “In Flood Zone.” In other
words, about 95.3 percent of the locational outcome of living within a dam flood zone is due to
other factors. Due to the low R-square value, it is unlikely that the linear equation derived from

the coefficients of the independent values creates a best-fit prediction curve for the data points.

More importantly, this model conveys the values of interest for answering research question 3.
The positive coefficients represent the demographic and socioeconomic variables correlated with
living in a dam flood zone. These 11 variables include individuals with disabilities, people with a
high school level education, unemployment, male-headed households, households earning 80
percent of the Median Area Income, individuals with incomes at or below 50 percent of the
federal poverty threshold, and renters. Furthermore, people who identify as Black, American
Indian and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander have statistically
significant positive coefficients. Of these, people whose highest level of education is a high
school degree and Asian-identifying individuals appear to have the greatest influence in the

model (with standardized coefficients of 0.083 and 0.074, respectively).

The negative variables in the model are statistically significant predictors of living outside of
dam inundation zones. These include age-dependent populations, households with no
automobile, foreign-born individuals, female-headed households, and people who earn 50
percent of the Median Area Income. The negative variable with the most influence in the model

is individuals born in a country other than the U.S., with a standardized coefficient of -0.164.
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Another way to interpret the results of the multiple regression model is that for a variable with a
positive coefficient, a census block group with a higher percentage of the given variable’s
population is more likely fall within a dam flood zone. Positive variables with larger
standardized coefficients are also more likely to predict location in these zones. For example, a
CGB with a 30 percent population of Asian-identifying people is more likely to be in a flood
zone than a CBG with a 30 percent population of Black-identifying people (standardized

coefficients of 0.074 and 0.026, respectively.

Table 9: Multiple Linear Regression for HHP Dam Flood Zones
Adjusted R | Std. Error of Collhnearllty
Model R R Square Square the Estimate Diagnostic

Condition Index
0.187 0.035 0.035 454 29.499
Unstandardized Standardized .
Coefficients Std. Error Coefficients Sig. VI
0.535 0.014 0.000
VIPct 14 65 -0.139 0.032 -0.026 0.000 2.137
V2Pct NoAuto -0.202 0.015 -0.070 0.000 1.656
V3PctForeignBorn -0.357 0.019 -0.133 0.000 2.876
V4PctDis 0.206 0.024 0.046 0.000 1.656
V5Pct HS Deg 0.405 0.023 0.088 0.000 1.472
V6PctUNEMP 0.122 0.018 0.030 0.000 1.242
V7PctHisp 0.071 0.014 0.035 0.000 2.798
V8PctFHH -0.082 0.017 -0.025 0.000 1.576
V11PctBlack 0.068 0.013 0.024 0.000 1.292
V11PctIndigenous 0.214 0.024 0.040 0.000 1.128
V11PctAsian 0.140 0.014 0.062 0.000 2.108
V11PctPacific 0.277 0.033 0.036 0.000 1.074
VI12PctRenter 0.094 0.012 0.044 0.000 1.811
p <0.05

Refer to the Statistical Analysis subsection in Chapter 5: Methods for a full description of the

testing parameters, assumptions, and process for this statistical test.

The multiple linear regression model includes 13 statistically significant predictors of being

located within a High Hazard Potential dam flood zone. The model has an R-square value of
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0.035, meaning the independent variables explain about 3.5 percent of the variation in the
dependent variable “In Flood Zone.” In other words, about 96.5 percent of the dependent

variable is explained by other factors.

The statistically significant independent variables in this model are strikingly similar to the
model for all dam inundation zones. The main difference is that the variables Very Low Income,
Low Income, and male-headed households are not correlated with living in an HHP flood zone.
Additionally, the model includes the variable for Hispanic and Latino individuals, while the

model for all dam flood zones does not. This may be an important distinction.

For both regression models, the variables for age-dependent populations, households with no
automobile, female-headed households, and foreign-born individuals have negative coefficients.
These are therefore statistically significant predictors of living outside of dam flood zones.
Another similarity between the two models are the indicators with the strongest negative and
positive influence in the regression equation. For both, the variable with the highest positive
standardized coefficient is the percentage of the population whose highest educational attainment
is a high school degree (0.083 for all dams and 0.088 for HHP dams). On the other hand, the
variable with the strongest negative standardized coefficient is the proportion of the foreign-born

population (-0.164 for all dams and -0.133 for HHP dams).

To summarize, the independent variables with positive coefficients found in both regression
models include individuals with disabilities, people with high school degrees, unemployed,

renters, and people who identify as Black, American Indian and Native Alaskan, Asian, and
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Native Hawaiian and Pacific Islander. Though the magnitude of the standardized coefficients for
these variables differs between models, these 8 independent variables are significantly correlated

with living in the flood zones of all dams and HHP dams.

Results for Research Question 4

4a) Is there a relationship between social vulnerability and the HHP dam characteristics of age,

reservoir size, and inspection compliance?

Table 10: Comparison of Social Vulnerability Means by Age for HHP Dam Flood Zones

< 50 Years > 50 Years Sig.
Mean Mean Difference in Percent
— — Means Change
V1Pct 14 65 34.30% 32.93% -1.37% -3.99% 0.000
V1Pct 14 85 20.54% 2.67% -1.13% -5.22% 0.000
V2Pct NoAuto 3.21% 4.12% 0.91% 28.18% 0.000
V3PctCitizen 82.43% 80.79% -1.64% -1.99% 0.000
V3PctForeignBorn 17.38% 18.89% 1.51% 8.67% 0.000
V4PctDis 13.59% 13.47% -0.13% -0.92% 0.273
V4PctDis65 35.72% 36.10% 0.38% 1.07% 0.191
V5Pct No HS 13.94% 13.47% -0.47% -3.35% 0.037
V5Pct HS Deg 23.17% 22.28% -0.90% -3.87% 0.000
V5Pct Abv_HS 31.42% 34.39% 2.97% 9.46% 0.000
V6PctUNEMP 8.54% 8.04% -0.50% -5.86% 0.000
V7PctHISP 31.51% 26.65% -4.86% -15.42% 0.000
V7PctNotHISP 67.58% 72.46% 4.88% 7.22% 0.000
V8PctFHH 11.29% 11.56% 0.27% 2.40% 0.084
V8PctMHH 4.38% 4.36% -0.02% -0.38% 0.840
VOMEDHHINC $62,611 $59,940 -$2,671 -4.27% 0.000
VIExtrmLow 1.00% 1.00% 0.00% 0.00% 0.061
V9VeryLowInc 6.00% 7.00% 1.00% 16.67% 0.283
V9LowlInc 30.00% 31.00% 1.00% 3.33% 0.506
V10PctBIw50 4.87% 5.29% 0.42% 8.70% 0.000
V10PctBlw100 12.18% 13.40% 1.22% 9.98% 0.000
V10PctBIw150 21.53% 23.06% 1.53% 7.10% 0.000
V11PctWhite 73.48% 68.40% -5.08% -6.91% 0.000
V11PctNonwhite 26.00% 30.89% 4.89% 18.81% 0.000
V11PctBlack 2.52% 3.15% 0.64% 25.24% 0.000
V11PctIndigenous 0.28% 0.36% 0.08% 26.77% 0.000
V11PctAsian 5.11% 7.53% 2.42% 47.29% 0.000
V11PctPacific 0.04% 0.08% 0.03% 72.73% 0.000
V12PctRenter 34.89% 38.95% 4.06% 11.63% 0.000
V12PctOwner 64.25% 59.90% -4.34% -6.76% 0.000

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means
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I performed an independent samples t-test for 30 social vulnerability variables, with the grouping
variable “Dam Age.” The grouping variable is a categorical indicator where 1 is assigned to
values within flood zones of HHP dams 50 years or older, and 0 is assigned to values within
flood zones of HHP dams less than 50 years old. The results indicate that 24 of the 30 social
vulnerability variables have statistically significant differences in means. Among the non-
significant variables are the proportions of disabled individuals, single mothers and fathers, and
the relative poverty categories Extremely Low, Very Low, and Low Income households.
Furthermore, 12 variables are more likely to live in HHP dam zones less than 50 years old,

compared to 18 variables that are more likely to live zones 50 years or older.

Of these 18 variables, the highest differences in means include non-Hispanic or Latino
individuals (4.9 percent), renters (4.1 percent), and non-White identifying persons (4.9 percent).
Additionally, households with no available car, Californians with at least a 2- or 4-year degree,
and foreign-born individuals, are significantly more likely to live within flood zones of older
HHP dams (28 percent, 9.5 percent, and 8.7 percent respectively). Both female-headed
households and disabled individuals over the age of 65 are more likely to be in older zones but

these percentages are relatively small and not statistically significant.

Racial minorities and low-income households and individuals are more likely to live in older
flood zones. This includes those who identify as Black (25.24 percent), American Indian and
Native Alaskan (26.77 percent), Asian (47.29 percent), and Native Hawaiian and Pacific Islander
(72.73 percent). The difference in means for people with incomes at or below 50, 100, and 150

percent of the federal poverty line is 0.4 percent, 1.2 percent, and 1.5 percent. Median income
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also follows this pattern, with households in older zones earning $59,940 and those in younger
zones earning $62,611 (4.3 percent difference). Though this trend appears to hold true for

relative poverty indicators, these results are not statistically significant.

The variables with the largest differences in means in younger HHP inundation zones are
Hispanic or Latino individuals (4.9 percent), homeowners (4.3 percent) and White people (5.1
percent). Unemployed individuals, U.S. Citizens, male-headed households, people with or
without high school degrees, and age-dependent populations are also more likely to be found in

younger in flood zones.

4b) Do HHP dams with failed inspection compliance have higher proportions of socially

vulnerable households within their inundation zones than HHP dams in compliance

Table 11: Comparison of Social Vulnerability Means by Inspection Compliance for HHP Dam Flood Zones

Fail Pass Sig.
Difference in Percent
Mean Mean Means Change
V1Pct 14 65 32.35% 33.75% -1.39% -4.13% 0.000
V1Pct 14 85 20.56% 2.76% -0.20% -0.94% 0.011
V2Pct NoAuto 4.90% 3.29% 1.61% 48.99% 0.000
V3PctCitizen 79.96% 81.87% -1.91% -2.33% 0.000
V3PctForeignBorn 19.76% 17.79% 1.97% 11.05% 0.000
V4PctDis 13.32% 13.63% -0.31% -2.26% 0.000
V4PctDis65 37.25% 34.99% 2.26% 6.46% 0.000
V5Pct No HS 12.98% 14.02% -1.04% -7.39% 0.000
V5Pct HS Deg 22.01% 22.71% -0.70% -3.07% 0.000
V5Pct Abv_HS 35.22% 33.02% 2.21% 6.69% 0.000
V6PctUNEMP 8.28% 7.93% 0.35% 4.45% 0.000
V7PctHISP 26.30% 27.94% -1.65% -5.89% 0.000
V7PctNotHISP 72.90% 71.07% 1.83% 2.57% 0.000
V8PctFHH 12.12% 11.00% 1.13% 10.26% 0.000
V8PctMHH 4.36% 4.37% -0.01% -0.29% 0.817
VOMEDHHINC $58,221 $62,131 -$3,910 -6.29% 0.000
VIExtrmLow 2.00% 0.00% 2.00% 200.00% 0.000
V9VeryLowlInc 9.00% 5.00% 4.00% 80.00% 0.000
VI9LowInc 33.00% 28.00% 5.00% 17.86% 0.000
V10PctBIw50 5.61% 4.92% 0.69% 14.08% 0.000
V10PctBlw100 14.12% 12.50% 1.62% 12.95% 0.000
V10PctBIw150 23.99% 21.90% 2.09% 9.53% 0.000
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V11PctWhite 65.77% 71.78% -6.01% -8.37% 0.000

V11PctNonwhite 33.49% 27.57% 5.92% 21.46% 0.000
V11PctBlack 5.11% 1.68% 3.43% 203.62% 0.000
V11PctIndigenous 0.24% 0.47% -0.24% -50.10% 0.000
V11PctAsian 8.13% 6.47% 1.66% 25.69% 0.000
V11PctPacific 0.11% 0.04% 0.07% 156.92% 0.000
V12PctRenter 42.89% 34.69% 8.20% 23.63% 0.000
V12PctOwner 55.86% 64.34% -8.48% -13.18% 0.000

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means

I performed an independent samples t-test for 30 social vulnerability variables, with the grouping
variable “Inspection Compliance.” The grouping variable is a categorical indicator where 1 is
assigned to values within flood zones of HHP dams that failed to be inspected within the
required frequency (“Fail), and 0 is assigned to values within flood zones of HHP dams that have

been inspected within required frequency (‘“Pass”).

The test shows that 29 of the 30 variables have statistically significant differences in means
between dams failing and passing inspection compliance. The non-significant result is the
variable “Percentage of Male-Headed Households.” Furthermore, 19 variables have higher
population proportions within flood zones of HHP dams that failed compliance, compared to 11

that have higher proportions within zones of dams passing compliance.

Several variables have large absolute differences in population proportions when compared
across inspection compliance categories. For example, Very Low Income households, Low
Income households, and renters have higher proportions within flood zones of HHP dams failing
compliance by 4.2 percent, 5 percent, and 8.2 percent. Conversely, the highest differences in
means for variables located in zones of HHP dams passing compliance are White people (6

percent) and homeowners (8.4 percent).
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Certain demographic and socioeconomic variables have staggering relative differences between
the average amount of people located near dams failing compliance compared to those near dams
passing compliance. In terms of racial categories, individuals who identify as Black, Native
Hawaiian and Pacific Islander, and Asian are more likely to be within “Fail” dam flood zones by

203.6 percent, 156.9 percent, and 25.7 percent, respectively.

The same trend applies to Extremely Low Income households (200 percent) and households with
no automobile (49 percent). Other variables that are more likely to be located within flood zones
of dams failing compliance are include foreign-born, unemployed, and non-Hispanic or Latino
individuals, as well as people 65 years or older with disabilities, female-headed households, and

people with at least a 2- or 4-year degree.

It appears that indicators of income and absolute poverty follow this pattern as well. Households
with lower median incomes are more likely to be near “Fail” dams ($58,221) than “Pass” dams
($62,131) by 6.3 percent. Similarly, the proportions of individuals earning at or below 50, 100,
and 150 percent of the federal poverty threshold are higher in flood zones of dams failing

compliance (0.7 percent, 1.6 percent, and 2.1 percent difference in means).

Variables more likely to be within “Pass” flood zones include those who identify as American
Indian and Native Alaskan (50.1 percent), Hispanic and Latino individuals (5.9 percent), age-
dependent populations (4.1 percent), U.S. Citizens (2.3 percent), and individuals with disabilities

(2.3 percent). The proportion of people whose highest educational attainment is a high school
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degree or below is also higher in flood zones of HHP dams passing compliance (0.7 percent

difference in means).
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Chapter 7: Discussion

The Geography of Social Vulnerability and Hazardous Dams

The goal of the first research question is to gain an initial understanding of the demographic and
socioeconomic differences between populations that live within dam inundation zones and
populations that live outside such zones. The second research question has similar motivations,
but is concerned with parsing out these patterns for High Hazard Potential dams. By comparing
the findings of these two questions, I hope to uncover the aspects of social vulnerability that fall

disproportionately within dam flood zones.

Considering the results for the first and second research questions, the broader social
vulnerability categories of automobile ownership, citizenship, disability, education, employment,
ethnicity, head-of-household gender, income, and race have statistically significant differences in
means by location. While age-dependency has a very small difference, the proportions are
essentially the same. Renters, homeowners, and white people are also fairly equally located

within and outside dam flood zones.

Specifically, individuals and households are disproportionately located within dam flood zones if
they are U.S. Citizens, live with a disability, are less educated, are unemployed, are single
parents, have lower median household incomes, live at, below, or near the federal poverty line,
and identify as either Black and African American, American Indian and Native Alaskan, or
Native Hawaiian and Pacific Islander. While the magnitude of the respective means differ
slightly, all 12 of social vulnerability variables are also disproportionately located within the

flood zones of hazardous dams.
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The similarities of these demographic and socioeconomic factors, regardless of the hazard
potential of the dam, may be explained in part by the dam inundation maps themselves. There are
564 total dam inundation zones and 481 HHP dam inundation zones. Comparing the maps of
these two datasets reveals that the 83 non-HHP flood zones are attached to dams with relatively
small reservoirs, and thus have smaller inundation coverages. This means that although there is a
difference in the total inundation area between all and HHP flood zones, it is small. HHP flood
zones by nature cover the largest areas, as it is one of the factors that determines the hazard

classification.

By this account, it makes sense that the same social vulnerability characteristics are
disproportionately located in both all dam flood zones and HHP dam flood zones. This also
implies that any difference in this pattern is worthy of further examination. Notably, the only
variable that diverges from this pattern is ethnicity. For example, Hispanic or Latino individuals
are more likely to live outside all dam flood zones (7.2 percent) but are more likely to live within
HHP dam flood zones (2 percent). This could be due to spatially concentrated populations of

Hispanic or Latino individuals within the inundation areas of hazardous dams.

The results of the multiple linear regression models support the explanation that there are smaller
differences in the inundation extent of the two flood zone maps than expected. Of the 13 social
vulnerability variables correlated with HHP dam flood zones, 12 are also correlated with all dam
flood zones. Additionally, the 12 statistically significant independent variables found in both

regression models have standardized coefficients with comparable magnitudes and signifiers.
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The only independent variable in the HHP regression model not found in the regression for all
dam flood zones is Hispanic or Latino. This further supports the explanation that Hispanic and
Latino populations have a distinct spatial geography, which is significantly correlated with being

located inside hazardous dam inundation zones.

In both regression outputs, the variables for education (percent with a high school degree) and
race (percent Asian) have the greatest positive influence on the model, while citizenship (percent
foreign-born) has the greatest negative influence on the model. This partially supports the
findings of the independent samples tests which reveal that people with lower levels of
educational attainment (earning a high school degree) are more likely to be in all- and HHP-dam

flood zones, and foreign-born individuals are less likely to be in such zones.

Surprisingly, both comparison of means tests show higher proportions of Asian populations
located outside of dam flood zones, though the regression results indicate that this variable is
positively correlated with location inside zones. The multiple regression analysis confirms this is
a statistically significant predictor of location, but contradicts the directionality of the
independent samples tests. This contradiction might be explained by the influence of the
citizenship variable. The variables for foreign-born and Asian individuals have higher population
proportions located outside all- and HHP-flood zones. Though these variables have opposite
directionalities in the regression equations, the standardized coefficients show the foreign-born
variable has more than twice the influence on the model than the variable for Asian populations

(-0.164 versus 0.074 for all zones, and -0.133 versus 0.062 for HHP zones).
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If the two variables are correlated, the positive influence of the Asian population variable on the
regression model could be negated if a significant share of foreign-born individuals are also
Asian. Indeed, the collinearity matrices show these variables are moderately correlated (0.544 for
all zones versus 0.500 for HPP zones). Information of the demographic trends of immigration to
California further supports this explanation. In recent years, Asian immigration to California has
outpaced Hispanic and Latino immigration (Garofoli 2012, Reese 2015). Census data confirms

that 39 percent of the foreign-born population are Asian (Census Bureau 2016).

Hazardous Dams, Flood-Risk, and Dimensions of Vulnerability in California

The final research question comes from a desire to understand how social vulnerability variables
within High Hazard Potential dam flood zones differ depending on certain physical and
politically-influenced characteristics of hazardous dams. Since an HHP dam failure would cause
significant environmental harm, property damage, and loss of human life, the patterns revealed in
these statistical analyses shed further light on individuals and households that are at higher risk

for dam-induced flood event.

To examine differences in the proportions of social vulnerability based on the age of the dam, I
selected an age threshold of 50 years for the independent samples tests. This threshold comes
from the fact that the average useful life of a dam is just 50 years, after which the deterioration of
dam components steeply rises and impacts the physical and structural integrity of the dam (Ho et
al. 2017). Thus, any demographic or socioeconomic variables disproportionately located within
inundation areas of HHP dams older than 50 years are at a greater risk for dam failure and

flooding.
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The social vulnerability categories of automobile ownership, citizenship, education, ethnicity,
income, race, and housing tenure have statistically significant differences in means by location.
Specifically, individuals and households are disproportionately located in hazardous dam flood
zones over 50 years old if they are foreign-born, have higher levels of educational attainment, are
not Hispanic or Latino, have lower median household incomes, live at, below, or near the federal
poverty line, are renters, and identify as either Black and African American, American Indian

and Native Alaskan, or Native Hawaiian and Pacific Islander.

Several of these variables present an interesting avenue for inquiry. Consider that people with at
least a 2- or 4-year and non-Hispanic or Latino individuals are more likely to live within older
HHP dam flood zones. Intriguingly, the results of the previous independent samples test for these
variables shows the opposite trend. In the absence of the dam age grouping variable, people with
at least a 2- or 4-year degree and non-Hispanic or Latino individuals are less likely to live in
HHP-dam zones by 12.3 percent and 0.6 percent. The multiple regression model also
demonstrates that lower educational attainment (percent with a high school degree) and Hispanic
or Latino ethnicity are statistically significant predictors of residing in HHP-dam flood zones.
Taken together, the discrepancy in these patterns is explained by the age of the dam (50 or more

years old).

A possible explanation for this phenomena lies in the history of dam construction and the nature
of urbanization in the state of California. Spillman et al. explains that many urban dams were

originally surrounded by undeveloped agricultural land (2017). Over time, populations grew, city
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limits expanded, suburbs exploded, and land costs and constraints meant that homes, businesses,
public buildings, roads and critical infrastructures were built up around many dams and

reservoirs (Spillman et al. 2017).

Through the processes of urbanization, suburbanization, and city sprawl, many reservoirs are
now surrounded by development. Urban, suburban, and peri-urban dams and reservoirs are often
viewed as highly desirable environmental amenities rather than environmental hazards or sites of
flood-risk (SLRC 2017). The collinearity matrices for variables in HHP dam flood zones indicate
strong correlations between higher educational attainment and income (0.691) and non-Hispanic
or Latino populations (0.686). Previous social vulnerability research shows that less educated,
lower-income, and Hispanic or Latino populations face significant barriers to locational choice
and housing, which is a causal factor of flood-risk (Donner and Rodriguez 2011, Maldonado et
al. 2015). In the absence of such barriers, these two variables may indicate that highly educated
and non-Hispanic or Latino individuals choose to live within the inundation zones of older High

Hazard Potential dams.

The last characteristic of High Hazard Potential dams I was interested in examining is inspection
compliance. I calculated this variable from information in the National Inventory of Dams,
including the required inspection frequencies for each dam, the most recent inspection date, and
the date the inspection was reported to the NID (2016). I was able to determine which dams were
successfully inspected in the required about of time (usually annually), and which dams had
failed inspection compliance. Inspections are integral to discovering physical problems and

structural weaknesses of dams. Failing to inspect dams within the frequency required by the
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DWR Division of Safety of Dams increases the chance that a serious issue will go unnoticed or
fixed, which could potentially lead to dam failure. Inspection compliance is highly dependent on
certain political, economic, and regulatory machinations, including the amount of money the

state legislature allocates for dam safety, maintenance, and repair programs.

Thus, the patterns revealed in this statistical test can show which social vulnerability factors may
be disproportionately exposed to a dam-induced flood disaster. The overall social vulnerability
categories of automobile ownership, citizenship, disability, education, employment, ethnicity,
gender of the head-householder, income, race, and housing tenure have statistically significant

differences in means by location.

Specifically, individuals and households are disproportionately located in the flood zones of
hazardous dams with failed inspection compliance if they do not own a car, are foreign-born, are
older than the age of 65 and live with a disability, have higher levels of educational attainment,
are unemployed, are non-Hispanic or Latino, are a female-headed household, have a lower
medium household income, live at, below, or near the federal poverty line, are renters, and

identify as either Black and African American, Asian, or Native Hawaiian and Pacific Islander.

The results of the previous multiple regression test establishes that several social vulnerability
variables are statistically significant predictors of living in the flood zone of a High Hazard
Potential dam. The regression results and the independent samples test for inspection compliance
both find unemployed individuals, renters, those who identify as Black and African American or

Native Hawaiian and Pacific Islander to be more likely to live in a hazardous dam inundation
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area. This means that individuals and households with these social vulnerability characteristics
are more likely to be located within an HHP zone, and are more likely live near a hazardous dam

that has not been inspected within the required frequency.
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Chapter 8: Why Give a Dam(n)?

The state of California has 1,585 dams. These infrastructures directly and indirectly influence
important aspects of everyday life, from storing and supplying the water we drink, to irrigating
the food we eat, to generating the electricity we use to power our homes. Dams are crucial for
flood control, fire protection, debris control, and drought resilience. However, dams are also
significant environmental hazards, and increase the flood-risk for communities and populations
located within their inundation zones. Recognizing these flood-risks, both the National Inventory
of Dams and the California Division of Safety of Dams assign a downstream hazard
classification to each dam in the state. High Hazard Potential dams are those defined as causing
significant loss of life, property destruction, and environmental damage in an event of dam

failure (2016, 2016).

California’s dams are aging and lack adequate funding for safety, maintenance, and repair
programs. In 2015, nearly 44 percent of dams had not been inspected within the required
timeframe and frequency (Spillman et al. 2017). Furthermore, dams are acutely vulnerable to
both seismic activity and climate change. As evidenced by the Oroville Dam Spillway Failure in
February 2017, even dams with satisfactory condition ratings can begin to fail from a
combination of physical, structural, political, economic, and climatic factors. The events leading
up to the spillway failure exemplify the current shortfalls in policy, planning, and action for
managing large-scale water infrastructure and safeguarding the public from avoidable

environmental hazards.
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In this context, I am interested in uncovering the answer to the fundamental question — Who is

the most vulnerable to dam-induced flooding in California?

My research project analyzes variables of social vulnerability for individuals and households
located in the flood zones of High Hazard Potential dams in California. I perform a series of
geostatistical analyses, independent samples tests, and multiple linear regressions in pursuance of
four distinct research questions. The overarching goal is to determine which social vulnerability
characteristics are disproportionately located within hazardous dam inundation areas, and
examine whether these demographic and socioeconomic factors are statistically significant

predictors of location to dam-hazards.

From previous literature analyzing social vulnerability and flood-risk in cases of sea-level rise,
climate change, high precipitation, and storm events, I identified 11 broad social vulnerability
categories. Among these categories of age, automobile ownership, citizenship, disability,
education, employment, ethnicity, head-householder gender, income, race, and housing tenure, I

selected 30 specific demographic and socioeconomic variables.

Results from independent samples t-tests show that individuals and households are

disproportionately located within hazardous dam flood zones if they are U.S. Citizens, live with
a disability, are less educated, are unemployed, are single parents, have lower median household
incomes, live at, below, or near the federal poverty line, and identify as either Black and African

American, American Indian and Native Alaskan, or Native Hawaiian and Pacific Islander.
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Furthermore, people whose highest educational attainment is a high school degree, unemployed
individuals, those living with disabilities, Hispanic or Latino individuals, female-headed
households, renters, and people who identify as Black and African American, American Indian
and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander represent variables of
social vulnerability that are statistically significant predictors of living within a hazardous dam

flood zone.

Comparing the means of social vulnerability variables by the grouping factor “Dam Age” reveal
that people who lack car ownership, foreign-born individuals, people with at least a 2- or 4-year
degree, non-Hispanic or Latino, female-headed households, living at, below, or near the federal
poverty threshold, renters, and those who identify as White, as Black and African American,
American Indian and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander are more

likely to live in HHP dam flood zones aged 50 years or older.

Finally, the independent samples test for social vulnerability and the grouping factor “Inspection
Compliance” show that those lacking car ownership, foreign-born individuals, people aged 65 or
older living with a disability, individuals with at least a 2- or 4-year degree, non-Hispanic or
Latino, unemployment, living at, below, or near the federal poverty threshold, renters, and those
who identify as Black and African American, Asian, and Native Hawaiian and Pacific Islander

are more likely to live in HHP dam flood zones with failed inspection compliance.

Emergency and disaster planners depend on knowledge of socially vulnerable populations to

ensure sufficient disaster preparedness and response policies in a given place. For example, a
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community with a high percentage of older adults will require a different type of emergency
response in terms of warning, evacuation, and assistance. Failing to account for the spatial
patterns and geographic concentrations of socially vulnerable populations in the planning process

can have devastating consequences.

This project reveals the spatial and social characteristics of vulnerability to dam-induced flood
hazards in California. Planners and policymakers can use this information to improve existing
disaster management and response plans by incorporating targeted and specific strategies to
reduce the flood-risk of highly vulnerable populations. Furthermore, it provides the information
necessary for planners and policymakers to address the existing social and spatial inequalities in

dam inundation zones to create a more environmentally just California.
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Appendix A: Data Normalization

Normalized Variables for All Dam Flood Zones

Skew and Sl apd
Data Kurtosis Kurtosis Kolmggoro K-S.Test
Variable Normalizatio Before After v-Smirnov Sig.
n Method oy Normalizatio Statistic Value
Normalization n
Skew: 0.221
VI1Pct 14 65 None Kurtosis: N/A 0.050 0.000
3.724
Skew: 0.092
VI1Pct 14 85 None Kurtosis: N/A 0.016 0.000
0.371
Skew: 2.858 Skew: 0.688
V2Pct NoAuto Square root | Kurtosis: Kurtosis: 0.115 0.000
12.723 0.467
Skew: -0.649 | Skew: 0.100
V3PctCitizen Arcsin Kurtosis: - Kurtosis: - 0.037 0.000
0.102 0.582
Skew: 0.649 Skew: -0.188
V3PctForeignBorn | Square root | Kurtosis: - Kurtosis: - 0.039 0.000
0.102 0.595
Skew: 1.084 Skew: 0.088
V4PctDis Square root | Kurtosis: Kurtosis: 0.027 0.000
2.269 0.541
Skew: 0.546 Skew: 0.086
V4PctDis65 Natural log | Kurtosis: Kurtosis: 0.031 0.000
0.696 0.168
Skew: 1.297 Skew: 0.257
V5Pct No HS Square root | Kurtosis: Kurtosis: - 0.053 0.000
1.374 0.398
Skew: 0.177
V5Pct HS Deg None Kurtosis: - N/A 0.027 0.000
0.168
Skew: 0.420 Skew: -0.211
V5Pct Abv_HS Square root | Kurtosis: - Kurtosis: - 0.032 0.000
0.615 0.417
Skew: 1.572 Skew: -0.090
V6PctUNEMP Square root | Kurtosis: Kurtosis: 0.043 0.000
4.437 0.764
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Skew: 0.978 Skew: 0.196

V7PctHISP Square root | Kurtosis: Kurtosis: - 0.051 0.000
0.061 0.612
Skew: -0.978 | Skew: -0.344

V7PctNotHISP Arcsin Kurtosis: Kurtosis: - 0.063 0.000
0.061 0.522
Skew: 1.247 Skew: -0.144

V8PctFHH Square root | Kurtosis: Kurtosis: 0.041 0.000
2.224 0.407
Skew: 1.409 Skew: -0.102

V8PctMHH Square root | Kurtosis: Kurtosis: - 0.135 0.000
3.661 0.598

VI9ExtrmLowlInc N/A N/A N/A N/A N/A

V9VeryLowlnc N/A N/A N/A N/A N/A

V9Lowlnc N/A N/A N/A N/A N/A
Skew: 1.154 Skew: -0.226

VOMEDHHINC Natural log | Kurtosis: Kurtosis: - 0.032 0.000
1.876 0.134
Skew: 2.440 Skew: 0.507

V10PctBIw50 Square root | Kurtosis: Kurtosis: 0.044 0.000
9.180 0.606
Skew: 1.283 Skew: 0.240

V10PctBIw100 Square root | Kurtosis: Kurtosis: - 0.048 0.000
1.609 0.319
Skew: 0.770 Skew: 0.000

V10Pctlw150 Square root | Kurtosis: - Kurtosis: - 0.032 0.000
0.82 0.566
Skew: -0.552 | Skew: 0.007

V11PctWhite Arcsin Kurtosis: - Kurtosis: - 0.034 0.000
0.533 0.647
Skew: -0.816 | Skew: -0.137

VI11PctNonWhite | Square root | Kurtosis: Kurtosis: - 0.037 0.000
0.023 0.636
Skew: 3.180 Skew: 1.002

V11PctBlack Square root | Kurtosis: Kurtosis: 0.151 0.000
14.722 0.832
Skew: 12.378 | Skew: 2.217

V11PctIndigenous | Square root | Kurtosis: Kurtosis: 0.322 0.000
258.162 9.011
Skew: 2.076 Skew: 0.620

V11PctAsian Square root | Kurtosis: Kurtosis: - 0.095 0.000
4.862 0.091
Skew: 6.428 Skew: 2.832

V11PctPacific Square root | Kurtosis: Kurtosis: 0.460 0.000
63.082 9.003
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Skew: 0.496 Skew: -0.120

V12PctRenter Square root | Kurtosis: - Kurtosis: - 0.043 0.000
0.791 0.687
Skew: -0.496 | Skew: -0.035

V12PctOwner Arcsin Kurtosis: - Kurtosis: - 0.048 0.000
0.791 0.737

¥13 MEDINCENT | )y N/A N/A N/A N/A
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Histograms for Each Social Vulnerability Variable After Normalization
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Histogram Histogram
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Histogram

arc_V12PctOwner
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Normalized Variables for HHP Dam Flood Zones

Data Séi::oz?sd Skew and Kolmogorov TK(;sSt
Variable Normalizatio Kurtosis After | -Smirnov )
Before o .. Sig.
n Method - Normalization Statistic

Normalization Value
Skew: 0.339

VI1Pct 14 65 None Kurtosis: N/A 0.042 0.000
3.235
Skew: 0.047

VI1Pct 14 85 None Kurtosis: N/A 0.013 0.000
0.137
Skew: 2.848 Skew: 0.622

V2Pct NoAuto Square root | Kurtosis: Kurtosis: 0.125 0.000
13.249 0.366
Skew: -0.595 | Skew: 0.155

V3PctCitizen Arcsin Kurtosis: - Kurtosis: - 0.027 0.000
0.196 0.430
Skew: 0.595 Skew: -0.249

V3PctForeignBorn | Square root | Kurtosis: - Kurtosis: - 0.032 0.000
0.196 0.415
Skew: 1.155 Skew: 0.127

V4PctDis Square root | Kurtosis: Kurtosis: 0.027 0.000
2.377 0.698
Skew: 0.506 Skew: 0.065

V4PctDis65 Natural log | Kurtosis: Kurtosis: 0.024 0.000
0.565 0.099
Skew: 1.238 Skew: 0.253

V5Pct No HS Square root | Kurtosis: Kurtosis: - 0.053 0.000
1.083 0.474
Skew: 0.169

V5Pct HS Deg None Kurtosis: - N/A 0.023 0.000
0.307
Skew: 0.368 Skew: -0.234

V5Pct Abv_HS Square root | Kurtosis: - Kurtosis: - 0.037 0.000
0.709 0.513
Skew: 1.579 Skew: -0.111

V6PctUNEMP Square root | Kurtosis: Kurtosis: 0.043 0.000
4.632 0.876
Skew: 0.880 Skew: 0.165

V7PctHISP Square root | Kurtosis: - Kurtosis: - 0.051 0.000
0.202 0.708
Skew: -0.880 | Skew: -0.309

V7PctNotHISP Arcsin Kurtosis: - Kurtosis: - 0.061 0.000
0.202 0.637
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Skew: 1.154 Skew: -0.144

V8PctFHH Square root | Kurtosis: Kurtosis: 0.035 0.000
1.790 0.276
Skew: 1.1439 | Skew: -0.064

V8PctMHH Square root | Kurtosis: Kurtosis: - 0.126 0.000
2.845 0.489

VI9ExtrmLowlInc N/A N/A N/A N/A N/A

V9VeryLowlnc N/A N/A N/A N/A N/A

V9Lowlnc N/A N/A N/A N/A N/A
Skew: 1.176 Skew: -0.242

VOMEDHHINC Natural log | Kurtosis: Kurtosis: 0.026 0.000
1.963 0.053
Skew: 2.288 Skew: 0.476

V10PctBIw50 Square root | Kurtosis: Kurtosis: 0.043 0.000
8.042 0.450
Skew: 1.426 Skew: 0.289

V10PctBIw100 Square root | Kurtosis: Kurtosis: - 0.046 0.000
2.399 0.153
Skew: 0.901 Skew: 0.085

V10Pctlw150 Square root | Kurtosis: Kurtosis: - 0.032 0.000
0.308 0.484
Skew: -0.558 | Skew: -0.005

V11PctWhite Arcsin Kurtosis: - Kurtosis: - 0.033 0.000
0.509 0.604
Skew: 0.558 Skew: -0.129

V11PctNonWhite Square root | Kurtosis: - Kurtosis: - 0.034 0.000
0.509 0.588
Skew: 3.407 Skew: 1.044

V11PctBlack Square root | Kurtosis: Kurtosis: 0.145 0.000
16.959 1.134
Skew: 13.123 | Skew: 2.406

V11PctIndigenous Square root | Kurtosis: Kurtosis: 0.332 0.000
271.713 10.709
Skew: 2.067 Skew: 0.649

V11PctAsian Square root | Kurtosis: Kurtosis: 0.086 0.000
4.723 0.003
Skew: 7.160 Skew: 3.025

V11PctPacific Square root | Kurtosis: Kurtosis: 0.465 0.000
80.789 10.642
Skew: 0.456 Skew: -0.181

V12PctRenter Square root | Kurtosis: - Kurtosis: - 0.043 0.000
0.798 0.603
Skew: -0.456 | Skew: 0.023

V12PctOwner Arcsin Kurtosis: - Kurtosis: - 0.037 0.000
0.798 0.678
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Histograms for Each Social Vulnerability Variable After Normalization
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Histogram Histogram
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Appendix B: Statistical Analyses for Research Question 1

Independent Samples Tests of Social Vulnerability Variables in All Dam Flood Zones
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Group Statistics

Std. Error
In_Flood_Zone N Mean Std. Deviation Mean
V1Pct_14_65 0 17405 .3282392326 0953295172 .0007225874
1 49359 .3307679711 0832730576 0003748188
V1Pct_14_85 0 17405 1995972115  .0751032263 0005692743
1 49359 .2031300571 0758716693 .0003415045
sqrt_V2Pct_NoAuto 0 17360 .2090 16730 .00127
1 49305 1991 15559 .00070
arc_V3PctCitizen 0 17405 8957 25179 .00191
1 49359 9718 .26620 .00120
sqrt_V3PctForeignBorn 0 17405 4647 16709 00127
1 49359 4136 17903 .00081
sqrt_V4PctDis 0 17366 .3501 10239 .00078
1 49310 3753 10359 .00047
In1_V4PctDis65 0 17225 2952 13850 .00106
1 49073 3106 13685 .00062
sqrt_V5Pct_No_HS 0 17402 3467 19703 .00149
1 49347 3591 18099 .00081
V5Pct_HS_Deg 0 17402 1980784167 1008149848 0007642325
1 49347 2265705759  .0992659457 0004468584
sqrt_V5Pct_Abv_HS 0 17402 6231 18672 .00142
1 49347 5851 17098 .00077
sqrt_VEPctUNEMP 0 17371 2677 11759 .00089
1 49324 12932 11800 .00053
sqrt_V7PctHISP 0 17404 5162 .24031 .00182
1 49359 L4972 .22546 .00101
arc_V7PctNotHISP 0 17404 .8088 .37505 .00284
1 49359 .8401 .34960 .00157
sqrt_V8PctFHH 0 17360 13302 14394 .00109
1 49305 3379 13724 .00062
sqrt_V8PctMHH 0 17360 2004 13316 .00101
1 49305 2122 13277 .00060
In_VGMEDHHINC 0 16877 11.0997 .51868 .00399
1 47493 10.9632 .50939 .00234
VIExtrmLow 0 16877 .01 .092 .001
1 47493 .01 103 .000
VaVeryLowl 0 16877 .07 251 .002
1 47493 .07 252 .001
V9Lowinc 0 16877 29 453 .003
1 47493 .33 470 .002
sqrt_V10PctBIw50 0 17366 2162 13373 .00101
1 49310 2369 13543 .00061
sqrt_V10PctBiw100 0 17366 3406 16974 .00129
1 49310 3794 17957 .00081
sqrt_V10PctBIw150 0 17366 4461 19069 .00145
1 49310 4937 .18801 .00085
arc_V11PctWhite 0 17405 7521 .31828 .00241
1 49359 7732 .30908 .00139
sqrt_V11PctNonWhite 0 17405 5557 .20410 .00155
1 49359 5427 19992 .00090
sqrt_V11PctBlack 0 17405 1635 7191 .00130
1 49359 1735 16338 .00074
sqrt_V11Pctindigenous 0 17405 0443 .07607 .00058
1 49359 0624 .08906 .00040
sqrt_V11PctAsian 0 17405 .2871 .21481 .00163
1 49359 .2609 .20037 .00090
sqrt_V11PctPacific 0 17405 .0200 05572 .00042
1 49359 .0298 .06639 .00030
sqrt_V12PctRenter 0 17360 6152 .22407 .00170
1 49305 6127 .21487 .00097
arc_V12PctOwner 0 17360 6553 35592 .00270
1 49305 6601 .34288 .00154
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Independent Samples Test

Levene's Test for Equality of

ttestfor Equality of Means

95% Confidence Interval of the

Mean Std. Error Difiersncs
F sig t a Sig. (24ailed) __ Difference Difference Lower Upper
VIPct_14_65 Equalvariances 253524 000 3313 66762 001 -002528739 0007632351  -004024679  -001032799
Equalvariances not 3106 27331994 002 002528739 0008140158  -004124250  -000833227
assumed
VIPct_14_85 Equalvariances 13844 000 5296 66762 000 -003532845 0006670936  -004840348  -002225343
assumed
Equalvariances not 5322 30778903 000 -003532846  000GG3IBEI3  -004834021  -002231670
assumed
sart_V2Pet_ NoAuto Equalvariances 105.859 000 7.085 66663 000 00082 00140 00718 01267
assumed
Equalvariances not 6843 28607.370 000 00092 00145 00708 01277
assumed
arc_VaPetCitizen Equalvariances 146133 000 -32859 66762 000 -07604 00231 -08058 -07151
umed
Equalvariances not 33744 32069.221 000 07604 00225 -08046 -07163
assumed
Sar_VaPctForeignBom  Equalvariances 209.496 000 32886 66762 000 08102 00155 04798 05406
assumed
Equalvariances not 33988 32460.376 000 05102 00150 04808 05396
assume!
Sart_V4PctDis Equalvariances 37551 000 -27.603 66674 000 -02516 00091 -02694 -02337
assumed
Equalvariances not 27.758 30735795 000 02516 00091 -02663 -02338
assumed
In1_V4PciDIs65 Equalvariances 13.024 000 12635 66296 000 -01536 00122 01774 -01298
umed
Equal variances not 12662 29821781 000 01536 00122 01776 -01296
sart_V5Pct No_HS Equalvariances 278747 000 7610 66747 000 -01243 00163 -01564 -00923
assumed
Equalvariances not 7308 28410.406 000 01243 00170 01577 -.00810
assums!
VAPCt_HS_Deg Equalvariances 15593 000 -32423 66747 000 -028492159 0008787514  -030214511  -026769807
assumed
Equal variances not 32184 30093411 000 028492159 0008852874  -030227360  -026756959
assumed
SaM_VSPct Abv_HS  Equalvariances 356.438 000 245640 66747 000 03806 00154 03504 04109
umed
Equalvariances not 23625 28340319 000 03806 00161 03491 04122
SQrt_VGPCtUNEMP. Equalvariances 081 16 24477 66693 000 02546 00104 -02750 -02342
assumed
Equalvariances not 24517 30521844 000 02548 00104 -02749 -02342
assumsf
SQLV7PCHISP Equalvariances 222268 000 9414 66761 000 01904 00202 01508 02300
assumed
Equal variances not 9131 28900428 000 01904 00209 01495 02313
assumed
are_VIPetNotHISP Equalvariances 254479 000 -9.958 66761 000 -03129 00314 -03745 -02513
umed
Equal variances not 8620 28749.068 000 03129 00325 -03766 -02492
umed
Sart_VBPCtFHH Equalvariances 125554 000 6289 66663 000 -00772 00123 -01012 -.00531
assumed
Equal variances not 6147 29196761 000 00772 00126 -01018 -00526
assumef
sart_VBPetHH Equalvariances 548 459 10071 66663 000 ~01181 00117 01411 -.00951
assumed
Equalvariances not 10067 30330932 000 -ot181 00117 01411 -00951
assumed
In_VAMEDHHING Equalvariances 1708 91 29748 64368 000 13645 00459 12746 4544
umed
Equalvariances not 20494 29207.553 000 13645 00463 12738 14552
umed
VeExtmLow Equalvariances 22027 000 2344 64368 019 -002 001 -004 000
assumed
Equal variances not 2468 32793878 o14 ~002 001 -004 000
assumef
vaveryLowl Equal variances 510 a5 a8 64368 a2 -001 002 -005 004
assumed
Equal variances not 358 29813397 720 -001 002 -005 004
assumi
VaLowine Equal variances 387.740 000 9381 64368 000 -039 004 047 -031
assumed
Equalvariances not 9530 30615616 000 ~039 004 047 -031
umed
Sqrt_V10PctBIwg0 Equal variances 3738 053 17384 66674 000 ~02071 00119 -02304 -01837
assumed
Equal variances not A7.490 30762613 000 -02071 00118 -02303 -.01839
assume!
Sqrt_V10PctBiwi 00 Equal variances 95.982 000 24810 66674 000 -03876 00158 -04182 -03570
assumed
Equal variances not 25488 32001225 000 03876 00152 04174 -.03578
assumi
Sqrt_V10PctBiwi 50 Equal variances 237 626 28540 66674 000 -04753 00167 -05079 -04426
assumed
Equal variances not 28347 30048895 000 -04753 00168 -05081 -04424
umed
arc_Vi1Pctwhite Equal variances 5108 024 7681 66762 000 -02109 00275 -02647 01571
assumed
Equal variances not 7574 29743502 000 ~02109 00278 -02655 -01563
assumi
Sar_Vi1PciNonWhite  Equal variances 870 351 737 66762 000 01307 00177 00960 01655
assumed
Equalvariances not 7305 29963.000 000 01307 00179 00957 01658
assum;
sqrt_V11PetBlack Equalvariances 585 a4 6875 66762 000 ~01004 00146 -01290 -00718
assumed
Equal variances not 6700 29211434 000 ~01004 00150 -01297 -.00711
umed
sar_vi1Pctindigenous  Equal variances 517524 000 23907 66762 000 -01810 00076 -01958 ~01661
assumed
Equal variances not 25760 35381.074 000 ~01810 00070 -01947 -01672
assum;
sqrt_V11PetAsian Equalvariances 61396 000 14531 66762 000 02616 00180 02263 02969
assumed
Equal variances not 14.085 28766792 000 02616 00186 02251 02981
assum;
sart_vi1PctPacific Equalvariances 926893 000 17367 66762 000 -00976 00056 -01087 -00866
assumed
Equal variances not 18874 36009.739 000 ~00976 00052 -01078 -.00875
umed
Sar_V12PciRenter Equal variances 45201 000 1305 66663 192 00250 00192 -00126 00626
assumed
Equalvariances not 1279 29337.264 201 00250 00196 -00133 00634
assum;
arc_Vi2Pctowner Equal variances 43184 000 -1582 66663 114 -00484 00306 -01083 00116
assumed
Equal variances not 554 29450120 120 00484 00311 -01093 00126
assumi
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Appendix C: Statistical Analyses for Research Question 2

Independent Samples Tests of Social Vulnerability Variables in HHP Dam Flood Zones
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Group Statistics

Std. Error
In_Flood_Zone N Mean Std. Deviation Mean
V1Pct_14_65 0 17432 3282635938 0953003503 .0007218067
1 38876 3308354217 0845075377 .0004286025
V1Pct_14_85 0 17432 1996354763 0750858485 0005687016
1 38876 2066373638 0747894427 0003793146
sqrt_V2Pct_NoAuto 0 17387 .2090 16728 00127
1 38833 .2003 15577 .00079
arc_V3PctCitizen 0 17432 .8955 25184 00191
1 38876 .9438 25017 00131
sqrt_V3PctForeignBorn 0 17432 4648 16712 00127
1 38876 4326 17384 .00088
sqrt_V4PctDis 0 17393 .3501 10239 .00078
1 38838 .3672 10206 .00052
In1_V4PctDis65 0 17252 .2952 13847 .00105
1 38663 .3079 13780 .00070
sqrt_V5Pct_No_HS 0 17429 .3466 19700 .00149
1 38864 3677 18592 .00094
V5Pct_HS_Deg 0 17429 1980685937 1008423243 0007638474
1 38864 2237632508 .0991305879 .0005028448
sqrt_V5Pct_Abv_HS 0 17429 6232 18674 00141
1 38864 .5836 17579 .00089
sqrt_VEPctUNEMP 0 17398 2677 11756 .00089
1 38852 .2845 11449 .00058
sqrt_V7PctHISP 0 17431 5161 .24029 .00182
1 38876 5211 .22684 00115
arc_V7PctNotHISP 0 17431 .8090 37501 .00284
1 38876 .8030 35367 00179
sqrt_VBPctFHH 0 17387 .3302 14389 .00109
1 38833 .3395 13946 .00071
sqrt_V8PctMHH 0 17387 .2004 13315 .00101
1 38833 .2089 13149 .00067
In_VAMEDHHINC 0 16903 11.1000 51860 .00399
1 37637 11.0060 48915 .00252
VIExtrmLow 0 16903 .01 .092 .001
1 37637 .01 100 .001
VaVeryLowl 0 16903 .07 250 .002
1 37637 .07 251 .001
V8Lowinc 0 16903 .29 453 .003
1 37637 .31 461 .002
sqrt_V10PctBIw50 0 17393 2161 13368 .00101
1 38838 .2290 13376 .00068
sqrt_V10PctBIw100 0 17393 .3405 16969 .00129
1 38838 3641 7161 .00087
sqrt_V10PctBIw150 0 17393 4460 19067 .00145
1 38838 4783 18508 .00094
arc_V11PctWhite 0 17432 7519 .31829 .00241
1 38876 7613 .30300 .00154
sqrt_V11PctNonWhite 0 17432 5559 .20410 .00155
1 38876 5506 19555 .00099
sqrt_V11PctBlack 0 17432 1634 17182 .00130
1 38876 1755 15987 .00081
sqrt_V11Pctindigenous 0 17432 .0443 .07605 .00058
1 38876 .0592 .08972 .00046
sqrt_V11PctAsian 0 17432 .2874 .21497 .00163
1 38876 .2690 19697 .00100
sqrt_V11PctPacific 0 17432 .0200 05573 .00042
1 38876 .0269 06270 .00032
sqrt_V12PctRenter 0 17387 6152 .22408 .00170
1 38833 6204 21231 .00108
arc_V12PctOwner 0 17387 6554 35595 .00270
1 38833 .6484 33873 00172
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Independent Samples Test

Levene's Test for Equality of

ttestfor Equality of Means

95% Confidence Interval of the

Mean Std. Error Difiersncs
F sig t a Sig. (24ailed) __ Difference Difference Lower Upper
VIPct_14_65 Equalvariances 133789 000 3207 56306 001 -002571828 0008020577  -004143865  -000999790
Equalvariances not 3064 30206148 002 002571828 0008394671  -004217218  -000826437
assumed
VIPct_14_85 Equalvariances 073 87 10258 56306 000 007001888 0006625653  -008339719  -005664056
assumed
Equalvariances not 10243 33423689 000 -007001888 0006835842  -008341756  -005662019
assumed
sart_V2Pet_ NoAuto Equalvariances 94585 000 5959 56218 000 00867 00145 00582 01152
assumed
Equalvariances not 5798 31388370 000 00867 00149 00574 01160
assumed
arc_VaPetCitizen Equalvariances 24790 000 -20595 56306 000 -04823 00234 -05262 -.04364
umed
Equalvariances not 20822 34436106 000 04823 00232 -05277 -.04369
assumed
Sar_VaPctForeignBom  Equalvariances 43582 000 20562 56306 000 03220 00157 02913 03527
assumed
Equalvariances not 20873 34777.633 000 03220 00154 02017 03522
assume!
Sart_V4PctDis Equalvariances 1.453 228 18321 56220 000 ~01708 00093 -01890 -01525
assumed
Equalvariances not 18200 33356.259 000 -01708 00093 -01891 -01525
assumed
In1_V4PciDIs65 Equalvariances 7.489 006 -10.043 55913 000 -01269 00126 01517 -01021
umed
Equal variances not 10024 32991281 000 01269 00127 01617 -01021
sart_V5Pct No_HS Equalvariances 98144 000 12470 56291 000 -02102 00173 -02440 -01763
assumed
Equalvariances not 11905 31852833 000 ~02102 00177 -02448 -01756
assums!
VAPCt_HS_Deg Equalvariances 14772 000 -28.281 56291 000 -025694657 0009085612  -027475442  -023913872
assumed
Equal variances not 28007 33025075 000 025604657 0009145030  -027487115  -023902199
assumed
SaM_VSPct Abv_HS  Equalvariances 152479 000 24249 56291 000 03962 00163 03642 04283
umed
Equalvariances not 23608 31781611 000 03962 00167 03635 04290
SQrt_VGPCtUNEMP. Equalvariances 23584 000 -16.007 56248 000 -01686 00105 -01892 -01479
assumed
Equalvariances not 5846 32672743 000 01686 00106 -01894 -01477
assumsf
SQLV7PCHISP Equalvariances 149.908 000 -2384 56305 o7 -00502 00211 -00915 -.00089
assumed
Equal variances not 2333 31861764 020 ~.00502 00215 -00924 -.00080
assumed
are_VIPetNotHISP Equalvariances 148583 000 1837 56305 066 100603 00329 -00040 01247
umed
Equal variances not 1796 31834.086 072 00603 00336 -00055 01262
umed
Sart_VBPCtFHH Equalvariances 36693 000 7216 56218 000 -00827 00129 -01179 -.00676
assumed
Equal variances not 71430 32511432 000 00927 00130 -01182 -00672
assumef
sart_VBPetHH Equalvariances 16599 000 7071 56218 000 -00852 00120 -01088 -.00616
assumed
Equalvariances not 7037 33060962 000 00852 00121 -01089 -00615
assumed
In_VAMEDHHING Equalvariances 78.366 000 20377 54538 000 00405 00462 08500 10309
umed
Equalvariances not 19.930  30891.765 000 00405 00472 08480 10330
umed
VeExtmLow Equalvariances 12.443 000 1762 54538 078 -002 001 -003 000
assumed
Equal variances not 1820 35192155 069 ~002 001 -003 000
assumef
vaveryLowl Equal variances 111 740 o166 54538 868 000 002 -005 004
assumed
Equal variances not 166 32622878 868 000 002 -005 004
assumi
VaLowine Equal variances 72123 000 4476 54538 000 -018 004 026 -.009
assumed
Equalvariances not 4204 33057617 000 -018 004 -026 -009
umed
Sqrt_V10PctBIwg0 Equal variances 770 380 10550 56229 000 ~01287 00122 -01526 -01048
assumed
Equal variances not 0862 33471.442 000 -01287 00122 -01526 -01048
assume!
Sqrt_V10PctBiwi 00 Equal variances 1753 85 15105 56229 000 02357 00158 -02663 -02051
assumed
Equal variances not 5171 33798962 000 -02387 00155 -02661 -.02052
assumi
Sqrt_V10PctBiwi 50 Equal variances 18.081 000 -18.952 56229 000 -03230 00170 -03564 -02896
assumed
Equal variances not 8738 32569110 000 ~03230 00172 -03568 -.02692
umed
arc_Vi1Pctwhite Equal variances 38.667 000 3341 56306 001 -00837 00281 -01487 -00387
assumed
Equal variances not 3279 32008582 001 00937 00286 -01498 -.00377
assumi
Sar_Vi1PciNonWhite  Equal variances 28238 000 2919 56306 004 0027 00181 00173 00882
assumed
Equalvariances not 2872 32282137 004 00527 00184 00167 00887
assum;
sqrt_V11PetBlack Equalvariances 13713 000 -6.093 56306 000 -01207 00149 -01500 -00e15
assumed
Equal variances not 7874 31463924 000 ~01207 00153 -01508 -.00907
umed
sar_vi1Pctindigenous  Equal variances 423.443 000 19119 56306 000 -01434 00078 -01647 ~01381
assumed
Equal variances not 20352 39144248 000 01494 00073 -01638 -.01350
assum;
sqrt_V11PetAsian Equalvariances 137739 000 9955 56306 000 01840 00185 01477 02202
assumed
Equal variances not 9630 31052797 000 01840 00191 01465 02214
assum;
sart_vi1PctPacific Equal variances 448.460 000 12409 56306 000 -00686 00055 -00794 -00877
assumed
Equal variances not 12076 37423832 000 00686 00053 -00789 -.00582
umed
Sqrt_Vi 2PeiRenter Equalvariances 97.857 000 2627 56218 009 -00518 00197 -00904 -00132
JRacsIITE
Equalvariances not 2674 31866689 010 ~00518 00201 -00912 -00124
assum;
arc_Vi2Pctowner Equal variances 90733 000 2219 56218 026 00697 00314 00081 01313
assumed
Equal variances not 2178 31988.690 029 00697 00320 00070 01324
assumi
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Appendix D: Statistical Analyses for Research Question 3

Multiple Linear Regression for Social Vulnerability Variables in All Dam Flood Zones

Model Summary

Adjusted R Std. Error of
Model R R Square Square the Estimate

1 216° .047 .046 430

a. Predictors: (Constant), sqrt_V12PctRenter, sqrt_V4PctDis,
sqrt_V11PctPacific, sqrt_VBPctMHH,
sqrt_V11Pctindigenous, VIPct_14_85, sqrt_V11PctAsian,
sqrt_VEPctUNEMP, VAVeryLowl, sqrt_V11PctBlack,
V5Pct_HS_Deg, sqrt_V8PctFHH, sqrt_V10PctBIw50,
V3Lowinc, sqrt_V2Pct_NoAuto, sqrt_V3PctForeignBorn,

V1Pct_14_65
ANOVA?
Sum of
Model Squares df Mean Square F Sig.
1 Regression 580.174 17 34128  184.995 .000P
Residual 11871.277 64350 184
Total 12451.451 64367

a. Dependent Variahle: In_Flood_Zone

h. Predictors: (Constant), sqrt_V12PctRenter, sqrt_V4PctDis, sqrt_V11PctPacific,
sqrt_VB8PctMHH, sqrt_V11Pctindigenous, V1Pct_14_85, sqrt_V11PctAsian,
sqrt_VBPctUNEMP, VaVeryLowl, sqrt_V11PctBlack, V5Pct_HS_Deg, sqrt_V8PctFHH,
sqrt_V10PctBIw50, V3Lowinc, sqrt_V2Pct_NoAuto, sqrt_V3PctForeignBorn,

V1Pct_14_65
Coefficients?
Standardized
Unstandardized Coefficients Coefficients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) 617 013 45831 .000

V1Pct_14_65 -134 .029 -.026 -4.651 .000 484 2.067
V1Pct_14_85 .260 .033 .044 7.930 .000 484 2.068
sqrt_V2Pct_NoAuto -.235 .015 -.083 -16.170 .000 559 1.789
sqrt_V3PctForeignBorn -411 .014 -164 -30.021 .000 494 2.025
sqrt_V4PctDis .205 .023 .047 9.124 .000 .548 1.825
V5Pct_HS_Deg 370 .01 .083 17.768 .000 .686 1.457
sqrt_VEPctUNEMP 153 017 .040 8.922 .000 733 1.364
sqrt_VBPctFHH -.078 .015 -.024 -5.012 .000 634 1.577
sqrt_VBPctMHH 077 .014 .023 5.395 .000 821 1.218
VaVeryLowl -.023 .008 -013 -2.909 .004 732 1.367
V3Lowlinc .029 .005 .030 5938 .000 572 1.750
sqrt_V10PctBIw50 .055 .016 .017 3.368 .001 615 1.627
sqrt_V11PctBlack .069 .012 .026 5738 .000 740 1.351
sqrt_V11Pctindigenous A72 .01 .033 8.012 .000 857 1.166
sqrt_V11PctAsian 159 .01 074 14.560 .000 .580 1.725
sqrt_V11PctPacific 301 .028 .043 10.769 .000 929 1.077
sqrt_V12PctRenter .086 .01 .042 7.652 .000 .486 2.057

a. Dependent Variable: In_Flood_Zone
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Collinearity Diagnostics®

Variance Proportions

Condition sqr_V2Pct_N  sqrt_V3PctFor  sqrt_V4PctDi VEPct_HS_D sqrt_VEPctUN
Model Dimension  Eigenvalue Index (Constant)  V1Pct_14_65 V1Pct_14_85 oAuto eignBorn s eg EM

1 1 12.840 1.000 .00 .00 .00 .00 .00 .00 .00 .00
2 1.128 3.374 .00 .00 .00 .01 .00 .00 .00 .00

3 877 3.826 .00 .00 .00 .00 .00 .00 .00 .00

4 759 4112 .00 .00 .00 .00 .00 .00 .00 .00

5 497 5.082 .00 .00 .00 .00 .00 .00 .00 .00

6 .382 5797 .00 .00 .00 .02 .00 .00 .01 .00

7 314 6.390 .00 .00 .00 .02 .02 .00 .02 .01

8 .265 6.956 .00 .00 .00 4 .00 .00 .00 .00

9 .206 7.888 .00 .01 .00 .20 .00 .00 .00 .01

10 165 8.834 .00 .01 .02 .06 .00 .00 .01 .04

11 125 10.129 .00 .00 A2 .01 .01 .04 19 10

12 115 10.570 .00 .05 .01 .00 .06 .03 3 .00

13 .092 11.827 .00 .00 .00 .00 .00 .01 .26 .65

14 .081 12.603 .01 .00 .04 13 A .00 .01 .01

15 .069 13619 .01 .00 A7 .02 .05 A1 12 14

16 .051 15.850 .00 .01 .06 .01 .65 .02 .04 .01

17 .021 24.595 .05 47 46 .03 .04 74 .03 .00

18 012 33.099 93 44 10 .08 .05 .06 .00 .03

a. Dependent Variable: In_Flood_Zone

Collinearity Diagnostics®

sqrt_V8PctFH  sqrt_V8PctMH sqrt_V10PctBl  sqri_V11PctBl  sqrt_V11Pctin = sqr_V11PctA  sqri_V11PctP  sqrt_V12PciR
Model Dimension H H V9VeryLowl  V3Lowinc w50 ack digenous sian acific enter

1 1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
2 .00 .00 37 .07 .00 .00 .01 .01 .01 .00

3 .00 .00 .00 .00 .00 .03 14 .01 52 .00

4 .00 .00 .00 .01 .00 .01 .34 .03 37 .00

5 .00 .01 33 .34 .01 .02 18 .04 .01 .00

6 .00 .01 19 .04 .00 51 12 .00 .05 .00

7 .00 .00 .01 14 .00 24 A .25 .00 .00

8 .00 21 .04 .09 .01 .04 .01 .03 .02 .01

9 .01 .65 .01 A .00 .00 .00 .01 .00 .00

10 .00 .01 .00 .05 .62 .01 .00 .04 .00 .00

1 .07 .01 .00 .00 .06 .01 .04 .09 .00 .03

12 15 .04 .00 .05 .01 .05 .00 .01 .01 .02

13 .05 .00 .00 .00 A7 .02 .00 .03 .00 .00

14 24 .00 .02 .00 .04 .01 .01 A7 .00 .25

15 .40 .03 .00 .00 .01 .02 .01 .00 .00 .02

16 .01 .01 .00 .01 .05 .04 .01 .26 .00 33

17 .04 .01 .01 .01 .01 .00 .00 .00 .00 .00

18 .02 .01 .01 .08 .00 .00 .00 .01 .00 .36

a. Dependent Varia
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Multiple Linear Regression for Social Vulnerability Variables in HHP Dam Flood Zones

Model Summary

Adjusted R Std. Error of
Model R R Square Square the Estimate

1 187° .035 .035 454

a. Predictors: (Constant), sqrt_V12PctRenter,
sqrt_V11PctAsian, VIPct_14_85, sqrt_V11PctPacific,
sqrt_V11Pctindigenous, sqrt_V4PctDis,
sqrt_VEPctUNEMP, sqrt_V11PctBlack, V5Pct_HS_Deaqg,
sqrt_VB8PctFHH, sqrt_V2Pct_NoAuto, sqrt_V7PctHISP,
V1Pct_14_65, sqrt_V3PctForeignBorn

ANOVA?
Sum of
Model Squares df Mean Square F Sig.
1 Regression 417.891 14 29.849 144741 .0o00°
Residual 11589.877 56200 .206
Total 12007.768 56214

a. Dependent Variable: In_Flood_Zone

h. Predictors: (Constant), sqrt_V12PctRenter, sqrt_V11PctAsian, V1Pct_14_85,
sqrt_V11PctPacific, sqrt_V11Pctindigenous, sqrt_V4PctDis, sqrt_VEPctUNEMP,
sqrt_V11PctBlack, V5Pct_HS_Deqg, sqrt_VBPctFHH, sqrt_V2Pct_NoAuto,
sqrti_V7PctHISP, VIPct_14_65, sqrt_V3PctForeignBorn

Coefficients®
Standardized
Unstandardized Coefficients Coefficients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance VIF
1 (Constant) 535 014 38.315 .000
V1Pct_14_65 -139 .032 -.026 -4.332 .000 468 2137
V1Pct_14_85 337 .038 .054 8.964 .000 467 2.143
sqrt_V2Pct_NoAuto -.202 .015 -.070 -13.053 .000 .604 1.656
sqrt_V3PctForeignBorn -.357 .019 -133 -18.955 .000 .348 2.876
sqrt_V4PctDis .206 .024 .046 8.548 .000 .604 1.656
V5Pct_HS_Deg 405 .023 .088 17.466 .000 .680 1.472
sqrt_VEPctUNEMP 122 .018 .030 6.589 .000 .805 1.242
sqrt_V7PctHISP .07 014 .035 5117 .000 357 2.798
sqrt_V8PctFHH -.082 017 -.025 -4.777 .000 635 1.576
sqrt_V11PctBlack .068 013 .024 5103 .000 a74 1.292
sqrt_V11Pctindigenous 214 .024 .040 9.040 .000 .887 1.128
sqrt_V11PctAsian 140 .014 .062 10.230 .000 474 2.108
sqrt_V11PctPacific 277 .033 .036 8.466 .000 93 1.074
sqrt_V12PctRenter .094 .012 .044 7.883 .000 552 1.811

a. Dependent Variable: In_Flood_Zone

Collinearity Diagnostics®
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Variance Proportions

Condition sqrt_V2Pct_N  sqrt_V3PctFor  sqrt_V4PctDi  V5Pct_HS_D
Model Dimension Eigenvalue Index (Constant)  V1Pct_14_65 V1Pct_14_85 oAuto eignBorn s eq
1 1 11.532 1.000 .00 .00 .00 .00 .00 .00 .00
2 .859 3.663 .00 .00 .00 .00 .00 .00 .00
3 765 3.884 .00 .00 .00 .00 .00 .00 .00
4 439 5127 .00 .00 .00 10 .00 .00 .00
5 .384 5.477 .00 .00 .00 .01 .00 .00 .02
6 297 6.230 .00 .00 .00 49 .00 .00 .01
7 186 7.864 .00 .03 .00 .01 .04 .04 .00
8 132 9.329 .00 .03 A2 .01 .00 .00 .33
9 109 10.278 .00 .00 .00 .03 .00 .00 .36
10 .090 11.332 .01 .00 .02 .06 .04 .01 .01
11 077 12.206 .01 .00 10 1 .01 .04 .03
12 .061 13.765 .00 .01 16 .01 .05 15 A7
13 .032 18.844 .00 .07 .05 .00 .56 A7 .06
14 .022 22.967 14 .24 .35 .09 31 57 .00
15 .013 29.499 .83 .61 19 .09 .00 .01 .00
a. Dependent Variable: In_Flood_Zone
Collinearity Diagnostics®
ns
V5Pct HS_D  sqri_V6PctUN  sqrt_V7PctHl  sqrt_VBPctFH  sqrt_V11PctBl  sqrit_V11Pctin  sqi_V11PctA  sqri_VI1PctP  sqrt_V12PctR
Model  Dimension eq E SP H ack digenous sian acific enter
1 1 .00 .00 .00 .00 .00 .00 .00 .00 .00
2 .00 .00 .00 .00 .01 .05 .00 .78 .00
3 .00 .00 .00 .00 .01 61 .01 1 .00
4 .00 .00 .00 .00 A7 .01 .03 .02 .00
5 .02 .00 .01 .00 .05 21 26 .04 .00
6 .01 .00 .00 .01 .29 .00 .01 .02 .00
7 .00 .01 1 .03 .01 .05 .00 .00 .01
8 33 15 .00 .01 .02 .03 .04 .00 .00
9 .36 .65 .00 .00 .02 .00 .01 .00 .01
10 .01 .01 .04 .62 .07 .00 .05 .01 .06
1 .03 14 .03 22 .02 .01 .01 .00 26
12 A7 .01 .07 .06 .01 .00 .02 .01 .33
13 .06 .00 A7 .04 .01 .01 .39 .00 .00
14 .00 .00 21 .01 .00 .00 .07 .01 .01
15 .00 .01 .07 .01 .00 .00 .09 .00 31

a. DependentVaria
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Appendix E: Statistical Analyses for Research Question 4

Independent Samples Tests of Social Vulnerability Variables and Age for HHP Dams
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Group Statistics

Std. Error
Dam_Age_2Cats N Mean Std. Deviation Mean
V1Pct_14_65 0to 49 Years 4306 .34 1 0822952449 0012541161
50 or More Years 34549 3293136547 0846740975 0004555466
V1Pct_14_85 0to 49 Years 4306  .2166990015  .0721190313  .0010990384
50 or More Years 34549 2053924568 0750239578  .0004036289
sqrt_V2Pct_NoAuto 0to 49 Years 4303 1793 14232 .00217
50 or More Years 34509 .2030 15720 .00085
arc_V3PctCitizen 0to 49 Years 4306 9689 21193 .00323
50 or More Years 34549 9405 26428 .00142
sqrt_V3PctForeignBorn  0to 49 Years 4306 4169 14268 .00217
50 or More Years 34549 4346 17722 .00095
sqrt_V4PctDis 0to 49 Years 4303 .3687 .09456 .00144
50 or More Years 34514 3670 10298 .00055
In1_V4PctDis65 0to 49 Years 4264 3054 13040 .00200
50 or More Years 34378 .3082 13870 .00075
sqrt_V5Pct_No_HS 0to 49 Years 4306 3733 18607 .00284
50 or More Years 34537 3670 18592 .00100
V5Pct_HS_Deg 0to 49 Years 4306 .2317239227 0917196126 0013977362
50 or More Years 34537 2227622128 0999713975 0005379395
sqrt_V5Pct_Abv_HS 0to 49 Years 4306 5605 16714 .00255
50 or More Years 34537 5864 17665 .00095
sqrt_VEPctUNEMP 0to 49 Years 4303 2923 11356 .00173
50 or More Years 34528 .2836 11459 .00062
sqrt_V7PctHISP 0to 49 Years 4306 5613 21403 .00326
50 or More Years 34549 5162 22792 .00123
arc_V7PctNotHISP 0to 49 Years 4306 7420 33554 .00511
50 or More Years 34549 8104 35518 .00191
sqrt_VBPctFHH 0to 49 Years 4303 .3360 14320 .00218
50 or More Years 34509 .3400 13899 .00075
sqrt_VBPctMHH 0to 49 Years 4303 .2093 13065 .00199
50 or More Years 34509 .2089 13161 .00071
In_VAMEDHHINC 0to 49 Years 4140 11.0447 47602 .00740
50 or More Years 33477 11.0011 49061 .00268
VIExtrmLow 0to 49 Years 4140 .01 .088 .001
50 or More Years 33477 .01 102 .001
VaveryLowl 0to 49 Years 4140 .06 244 .004
50 or More Years 33477 .07 252 .001
V3Lowlinc 0to 49 Years 4140 .30 459 .007
50 or More Years 33477 31 461 .003
sqrt_V10PctBIw50 0to 49 Years 4303 2206 12553 .00191
50 or More Years 34514 .2300 13474 .00073
sqrt_V10PctBIw100 0to 49 Years 4303 3490 16529 .00252
50 or More Years 34514 .3660 17232 .00093
sqrt_V10PctBIw150 0to 49 Years 4303 4640 18119 .00276
50 or More Years 34514 .4802 18551 .00100
arc_V11PctWhite 0to 49 Years 4306 8253 28453 .00434
50 or More Years 34549 7532 30426 .00164
sqrt_V11PctNonWhite 0to 49 Years 4306 5099 18585 .00283
50 or More Years 34549 5558 19612 .00106
sqrt_V11PctBlack 0to 49 Years 4306 1587 14483 .00221
50 or More Years 34549 A776 16154 .00087
sqrt_V11Pctindigenous  0to 49 Years 4306 0532 07566 .00115
50 or More Years 34549 .0599 .09118 .00049
sqrt_V11PctAsian 0to 49 Years 4306 2261 16334 .00249
50 or More Years 34549 2744 20012 .00108
sqrt_V11PctPacific 0to 49 Years 4306 .0210 04917 .00075
50 or More Years 34549 0276 06416 .00035
sqrt_V12PctRenter 0to 49 Years 4303 5907 19563 .00298
50 or More Years 34509 6241 21404 .00115
arc_V12PctOwner 0to 49 Years 4303 6977 131039 .00473
50 or More Years 34509 6423 34165 .00184
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Independent Samples Test

Levene's Test for Equality of

ttestfor Equality of Means

95% Confidence Interval of the

Mean Std. Error Difierencs
F sig. t df  Sig (2ailed)  Difierence Difference Lower Upper
VIPct_14_65 Equalvariances 16.766 000 10040 38853 000 0136963054 0013642132 0110224142 0163701966
umed
Equalvariances not 10265 56504.046 000 0136963054 0013342000 0110805698 0163120410
assumed
VIPct_14_85 Equalvariances 5242 022 9365 38853 000 0113065447 0012073516 0089401060 0136729834
assumed
Equalvariances not 9657 56632060 000 0113065447 0011708124 0090112923 0136017970
assumed
sart_V2Pet_ NoAuto Equalvariances 69.732 000 9402 38810 000 -02365 00252 -02659 -.01872
assumed
Equalvariances not 10167 5693939 000 02365 00233 -02822 -01909
assumed
arc_VaPetCitizen Equalvariances 356.419 000 6780 38853 000 02838 00419 02018 03658
umed
Equal variances not 8042 6106810 000 02838 00353 02146 03530
assumed
sar_VaPctForeignBomn  Equal variances 348.223 000 6315 38853 000 01773 00281 -02324 01223
assumed
Equalvariances not 7469 6091764 000 01773 00237 -02239 -01308
assume|
Sart_V4PctDis Equalvariances 46.492 000 1026 38815 308 00169 00165 -00154 00493
assumed
Equalvariances not 1087 6652760 213 00169 00154 -00133 00472
assumed
In1_V4PciDIs65 Equalvariances 27410 000 1247 38640 212 -00279 00224 -00718 00160
umed
Equalvariances not 1300 5520997 191 00279 00213 -00697 00139
sart_V5Pct No_HS Equalvariances 239 625 2081 38841 037 00625 00300 00036 01214
assumed
Equalvariances not 2078 5433004 038 00625 00301 00036 01215
assumi
VAPCt_HS_Deg Equalvariances 71.963 000 5596 38841 000 0089617098 0016014368 0059228545 0121005651
assumed
Equalvariances not 5984 6650205 000 0118977366
assumed
SaM_VSPCt Abv_HS  Equalvariances 45632 000 9115 38841 000 -02587 00284 -03143 -02031
umed
Equalvariances not 9516 5574216 000 02587 00272 -03120 -02054
Srt_VGPCtUNEMP. Equalvariances 1218 210 485 38829 000 00867 00185 00504 01230
assumed
Equalvariances not 4718 5452149 000 00867 00184 00507 01227
assumi
SQrLV7PCHISP Equalvariances 42122 000 12337 38853 000 04514 00366 03797 05232
assumed
Equalvariances not 12955 6604.043 000 04514 00348 03831 05197
assumed
are_VIPetNotHISP Equalvariances 32700 000 11995 38853 000 -06844 00571 -07962 -05726
umed
Equal variances not 12638 5577813 000 06844 00545 07914 -05774
umed
Sart_VBPCtFHH Equalvariances 4792 028 1767 38810 077 -00398 00225 -00840 00044
assumed
Equalvariances not 4726 5362779 084 00398 00231 -00851 00054
assumi
Sart_VBPctMHH Equalvariances 061 805 202 38810 840 00043 00213 -00374 00460
assumed
Equalvariances not 203 5448776 839 00043 00211 -00372 00457
assumi
In_VAMEDHHING Equalvariances 8663 003 5415 37615 000 04363 00806 02784 05942
umed
Equalvariances not 5544 5286.566 000 04363 00787 02820 05905
umed
VeExtmLow Equal variances 11154 001 1666 37615 096 -003 002 -006 000
assumed
Equalvariances not 873 5619834 061 ~003 001 -006 000
assumi
VvaveryLowl Equal variances 4434 035 1049 37615 204 -004 004 012 004
assumed
Equal variances not 074 5287279 283 ~004 004 012 004
assumi
VaLowine Equal variances 1805 A79 865 37615 506 -005 008 -020 010
assumed
Equal variances not 667 5226475 505 -005 008 -020 010
sumed
Sqrt_V10PCtBIwg0 Equal variances 34537 000 4359 38815 000 -00943 00215 -01366 -00519
assumed
Equal variances not 4606 5612189 000 00943 00205 01344 -00541
assumef
Sqrt_V10PctBiwi 00 Equal variances 9558 002 6117 38815 000 -01696 00277 -02240 -01153
assumed
Equal variances not 6318 5534150 000 01696 00269 -02223 -01170
assumi
Sqrt_V10PctBiw 50 Equal variances 8.407 004 5419 38815 000 -01621 00299 -02208 -01035
assumed
Equal variances not 6520 5486.281 000 ~01621 00294 02197 -01085
sumed
arc_Vi1Pctwhite Equal variances 72270 000 14772 38853 000 07213 00488 06256 08170
assumed
Equal variances not 15563 6605352 000 07213 00463 06304 08121
assumi
Sar_Vi1PciNonWhite  Equal variances 54.049 000 14564 38853 000 -04590 00315 -05208 -03972
assumed
Equalvariances not 5186 5560.472 000 -04590 00302 -05182 -03997
assumi
sqrt_Vi1PetBlack Equalvariances 72589 000 7340 38853 000 -01895 00258 -02401 -01389
assumed
Equal variances not 7990 5726243 000 ~01895 00237 -02360 -01430
sumed
sar_vi1Pctindigenous  Equal variances 74,951 000 -4605 38853 000 -00667 00145 -009s1 -00383
assumed
Equal variances not 6321 5980193 000 00667 00125 -00912 -00421
assumi
sqrt_V11PetAsian Equal variances 299,856 000 15222 38853 000 -04831 00317 -05453 -04208
assumed
Equalvariances not 7814 6040.280 000 04831 00271 -05363 -04300
assum;
sart_vi1PctPacific Equal variances 175124 000 6495 38853 000 -00658 00101 -00856 -00459
assumed
Equal variances not 7974 6290341 000 00658 00083 -00820 -.00496
sumed
Sar_V12PciRenter Equal variances 89.803 000 o746 38810 000 -03342 00343 -04014 -02670
assumed
Equalvariances not 0452 5666.433 000 03342 00320 -03969 -02715
assum;
arc_Vi2Pctowner Equal variances 104592 000 10126 38810 000 108539 00547 04467 06611
assumed
Equal variances not 10911 6683924 000 05539 00508 04544 06534
assumi
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Independent Samples Tests of Social Vulnerability Variables and Reservoir Size for HHP Dams

Group Statistics

Std. Error
NID_Storage_Cats N Mean Std. Deviation Mean
V1Pct_14_65 Medium Resemvoir 14529 3235903032 0843720208 . 719
Large Resernvoir 16693 3394808828  .0817137193 .0006324523
V1Pct_14_85 Medium Reservoir 14529 2030518404  .0730163947 .0006057627
Large Reservoir 16693 .2123147483 0748707456 .0005794887
sqrt_V2Pct_NoAuto Medium Reservoir 14503 2052 15887 .00132
Large Reservoir 16684 1947 15009 .00116
arc_V3PctCitizen Medium Reservoir 14529 9084 26553 .00220
Large Resemvoir 16693 19691 25846 .00200
sqrt_V3PctForeignBorn  Medium Reservoir 14529 4560 AT761 .00147
Large Resenvoir 16693 4156 A7377 .00134
sqrt_V4PctDis Medium Reservoir 14507 3587 110403 .00086
Large Reservoir 16684 3795 .09883 .00077
In1_V4PctDis65 Medium Reservoir 14444 .3037 14098 .00117
Large Reservoir 16598 3134 13294 .00103
sqrt_V5Pct_No_HS Medium Reservoir 14521 3760 19485 .00162
Large Resemvoir 16692 .3837 17932 .00139
V5Pct_HS_Deg Medium Reservoir 14521 2160837837 0998444489 .0008285632
Large Resenvoir 16692 2357161969  .0931205911 .0007207614
sqrt_V5Pct_Abv_HS Medium Reservoir 14521 5898 18092 .00150
Large Reservoir 16692 5567 16795 .00130
sqrt_V6PctUNEMP Medium Reservoir 14515 2787 11096 .00092
Large Reservoir 16686 2941 11596 .00090
sqrt_V7PctHISP Medium Reservoir 14529 5425 .23988 .00199
Large Resemvoir 16693 5264 21907 .00170
arc_V7PctNotHISP Medium Reservoir 14529 7679 37641 00312
Large Reservoir 16693 7958 34157 .00264
sqrt_V8PctFHH Medium Reservoir 14503 .3450 14114 .00117
Large Reservoir 16684 .3369 13847 .00107
sqrt_V8PctMHH Medium Reservoir 14503 2125 12917 .00107
Large Resenvoir 16684 2115 13315 .00103
In_VIMEDHHINC Medium Reservoir 14017 11.0204 49518 .00418
Large Resemvoir 16212 10.9605 47109 .00370
VIExtrmLow Medium Reservoir 14017 .01 .099 .001
Large Reservoir 16212 .01 .098 .001
VaVeryLowl Medium Reservoir 14017 .07 257 .002
Large Reservoir 16212 .06 245 .002
VaLowinc Medium Reservoir 14017 .32 467 .004
Large Reservoir 16212 31 462 .004
sqrt_V10PctBIw50 Medium Reservoir 14507 .2286 13227 .00110
Large Resemvoir 16684 2341 13287 .00103
sqrt_V10PctBIw100 Medium Reservoir 14507 3632 16877 .00140
Large Reservoir 16684 3742 16935 00131
sqrt_V10PctBIw150 Medium Reservoir 14507 4751 18549 .00154
Large Reservoir 16684 4936 18223 00141
arc_V11PctWhite Medium Reservoir 14529 7396 .30508 .00253
Large Reservoir 16693 7855 30263 .00234
sqrt_V11PctNonWhite Medium Reservoir 14529 5645 19653 .00163
Large Resemvoir 16693 5349 19549 00151
sqrt_V11PctBlack Medium Reservoir 14529 AT4 16358 00136
Large Reservoir 16693 1610 15200 .00118
sqrt_V11Pctindigenous  Medium Reservoir 14529 0563 .08542 .00071
Large Reservoir 16693 0654 .09772 .00076
sqrt_V11PctAsian Medium Reservoir 14529 2707 19192 .00159
Large Resenvoir 16693 2563 .20447 .00158
sqrt_V11PctPacific Medium Reservoir 14529 0222 .05870 .00049
Large Resemvoir 16693 .0288 .06290 .00049
sqrt_V12PctRenter Medium Reservoir 14503 6303 21817 .00181
Large Reservoir 16684 6132 19998 .00155
arc_V12PctOwner Medium Reservoir 14503 6317 .34829 .00289
Large Reservoir 16684 6615 31870 00247
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Independent Samples Test

Levene's Test for Equality of
ttestfor Equality of Means

95% Confidence Interval of the

Mean Std. Error Difiersncs
F sig t a Sig. (24ailed) __ Difference Difference Lower Upper
VIPct_14_65 Equalvariances 5550 018 16882 31220 000 -015890580 0009412848  -017735535  -014045624
Equalvariances not 16844 30334903 000 -015800580 0009433751  -017739634  -014041525
assumed
VIPct_14_85 Equalvariances 12595 000 -11.030 31220 000 -009262908 0008397634  -010908877  -007616939
assumed
Equalvariances not 11050 30820152 000 009262908 0008383052  -010906020  -007619795
assumed
sart_V2Pet_ NoAuto Equalvariances 72665 000 5977 31185 000 01047 00175 00703 01390
assumed
Equalvariances not 5953 30023699 000 01047 00176 00702 01391
assumed
arc_VaPetCitizen Equalvariances 10.898 001 -20.445 31220 000 -06072 00297 -.06655 -.05490
umed
Equalvariances not 20407 30384765 000 06072 00298 -06656 -.05489
assumed
Sar_VaPctForeignBom  Equalvariances 6107 013 20267 31220 000 04037 00199 03647 04428
assumed
Equalvariances not 20237 30433559 000 04037 00200 03645 04428
assume!
Sart_V4PctDis Equalvariances 26637 000 18118 31189 000 -02083 00115 -02308 -.01858
assumed
Equalvariances not 18053 30093.004 000 02083 00115 -02300 -.01857
assumed
In1_V4PciDIs65 Equalvariances 75563 000 6224 31040 000 -00968 00156 -01273 -.00663
umed
Equal variances not 6109 20875726 000 00968 00156 -01275 -.00662
sart_V5Pct No_HS Equalvariances 147.442 000 3613 31211 000 -00765 00212 -01181 -.00350
assumed
Equalvariances not 3502 20749.448 000 00765 00213 -01183 -.00348
assums!
VAPCt_HS_Deg Equalvariances 101.987 000 -17.964 31211 000 -019632413 0010928826  -021774506  -017490320
assumed
Equal variances not 7877 29910078 000 019632413 0010981867  -021784906  -017479920
assumed
SaM_VSPct Abv_HS  Equalvariances 177768 000 16747 31211 000 03308 00198 02921 03696
umed
Equalvariances not 16661 29856.004 000 03300 00199 02919 03698
SQrt_VGPCtUNEMP. Equalvariances 39758 000 11915 31199 000 -01537 00129 -01790 -01284
assumed
Equalvariances not 11951 30017.475 000 01537 00129 -01789 -01285
assumsf
SQLV7PCHISP Equalvariances 279.495 000 6218 31220 000 01616 00260 01106 02125
assumed
Equal variances not 6179 29668.840 000 01616 00261 01103 02128
assumed
are_VIPetNotHISP Equalvariances 302421 000 6856 31220 000 -02787 00406 -03583 -.01990
umed
Equal variances not 6810 29587521 000 02787 00409 -03589 -01985
umed
Sart_VBPCtFHH Equalvariances 10351 001 5116 31185 000 00812 00159 00501 01122
assumed
Equal variances not 5110 30413601 000 00812 00159 00500 01123
assumef
sart_VBPetHH Equalvariances 25609 000 698 31185 485 00104 00149 -00188 00396
assumed
Equalvariances not 699 30812721 a4 00104 00149 -00188 00396
assumed
In_VAMEDHHING Equalvariances 32599 000 10756 30227 000 {05985 00556 04894 07075
umed
Equalvariances not 10718 20118331 000 05085 00558 04890 07079
umed
VeExtmLow Equalvariances 414 520 a2 30227 48 000 001 -002 003
assumed
Equal variances not 321 20435378 748 000 001 -002 003
assumef
vaveryLowl Equal variances 22083 000 2350 30227 019 007 003 001 o012
assumed
Equal variances not 2342 29153762 o019 007 003 001 012
assumi
VaLowine Equal variances 18.368 000 2148 30227 032 o012 005 001 55
assumed
Equalvariances not 2147 29514193 032 012 005 001 022
umed
Sqrt_V10PctBIwg0 Equal variances 7.863 005 -3660 31189 000 -00851 00151 -00846 -00256
assumed
Equal variances not 3661 30627.864 000 ~00551 00150 -00846 -.00256
assume!
Sqrt_V10PctBiwi 00 Equal variances 372 054 5713 31189 000 ~01097 00192 -01473 -00720
assumed
Equal variances not 6715 30618.497 000 -01087 00192 -01473 -.00721
assumi
Sqrt_V10PctBiwi 50 Equal variances 861 354 883 31189 000 -01843 00209 -02252 01434
assumed
Equal variances not 8823 30433085 000 -01843 00209 -02252 -01433
umed
arc_Vi1Pctwhite Equal variances 6.925 008 13317 31220 000 -04590 00345 -05265 -03914
assumed
Equal variances not 13310 30559582 000 ~04590 00345 -05266 -03914
assumi
Sar_Vi1PciNonWhite  Equal variances 4317 038 13293 31220 000 02956 00222 02520 03392
assumed
Equalvariances not 13288 30583402 000 02956 00222 02520 03392
assum;
sqrt_V11PetBlack Equalvariances 13726 000 7338 31220 000 o13n 00179 00961 01661
assumed
Equal variances not 7301 29880471 000 01311 00180 00959 01663
umed
sar_vi1Pctindigenous  Equal variances 35221 000 8719 31220 000 -00912 00105 o117 -00707
assumed
Equal variances not 8800 31219.445 000 ~00912 00104 -01115 -.00709
assum;
sqrt_V11PetAsian Equal variances 43604 000 6368 31220 000 01436 00225 00994 01878
assumed
Equal variances not 6396 31042859 000 01436 00224 00996 01876
assum;
sart_vi1PctPacific Equalvariances 201756 000 -9503 31220 000 -00658 00069 -00793 -00522
assumed
Equal variances not 9548 31066838 000 00658 00069 -00792 -.00523
umed
Sar_V12PciRenter Equal variances 227785 000 723 31185 000 o074 00237 01250 02178
assumed
Equalvariances not 7193 29665578 000 01714 00238 01247 02181
assum;
arc_Vi2Pctowner Equalvariances 239,668 000 7864 31185 000 ~02971 00378 -0a712 -02230
assumed
Equal variances not 7815 29643661 000 02071 00380 -03716 -02226
assumi
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Group Statistics

Std. Error
NID_Storage_Cats N Mean Std. Deviation Mean
V1Pct_14_65 Small Resemvoir 7654 3257329449 .0889437837 .0010166498
Large Reservoir 16693 3394808828  .0817137193 0006324523
V1Pct_14_85 Small Resemvoir 7654 2010613892 0770718234 .0008809503
Large Reservoir 16693 2123147483 0748707456 0005794887
sqrt_V2Pct_NoAuto Small Reservoir 7646 2034 16153 .00185
Large Resemvoir 16684 1947 115009 .00116
arc_V3PctCitizen Small Reservoir 7654 9556 24029 .00275
Large Resemvoir 16693 9691 25846 .00200
sqrt_V3PctForeignBorn ~ Small Reservoir 7654 4252 16136 .00184
Large Resemvoir 16693 4156 AT7377 00134
sqrt_V4PctDis Small Reservoir 7647 3565 10241 00117
Large Resemvoir 16684 3795 .09883 .00077
In1_V4PctDis65 Small Reservoir 7621 3041 14167 .00162
Large Resemvoir 16598 3134 13294 .00103
sqrt_V5Pct_No_HS Small Reservoir 7651 3168 17349 .00198
Large Resemvoir 16692 3837 17932 .00139
V5Pct_HS_Deg Small Resemvoir 7651 .2122608283 1073535495 .0012273186
Large Resemvoir 16692 2357161969 .0931205911 .0007207614
sqrt_V5Pct_Abv_HS Small Reservoir 7651 6304 AT167 .00196
Large Reservoir 16692 5567 16795 .00130
sqrt_V6PctUNEMP Small Reservoir 7651 2749 11628 .00133
Large Reservoir 16686 2941 11596 .00090
sqrt_V7PctHISP Small Reservoir 7654 4690 .20935 .00239
Large Reservoir 16693 5264 21907 .00170
arc_V7PctNotHISP Small Reservoir 7654 .8853 .32050 .00366
Large Reservoir 16693 7958 34157 .00264
sqrt_V8PctFHH Small Reservoir 7646 3345 13809 .00158
Large Reservoir 16684 3369 13847 .00107
sqrt_VBPctMHH Small Resemvoir 7646 1963 13147 .00150
Large Reservoir 16684 2115 13315 .00103
In_VAMEDHHINC Small Reservoir 7408 11.0780 50593 .00588
Large Reservoir 16212 10.9605 47109 .00370
VIExtrmLow Small Reservoir 7408 .01 108 .001
Large Reservoir 16212 .01 .098 .001
VaveryLowl Small Resemvoir 7408 .07 251 .003
Large Reservoir 16212 .06 245 .002
VaLowinc Small Resemvoir 7408 27 444 .005
Large Reservoir 16212 3 462 .004
sqrt_V10PctBIw50 Small Resemvoir 7647 2186 13783 .00158
Large Resemvoir 16684 2341 13287 .00103
sqrt_V10PctBIw100 Small Resemvoir 7647 3437 17983 .00206
Large Resemvoir 16684 3742 16935 00131
sqrt_V10PctBIw150 Small Resemvoir 7647 4512 18706 .00214
Large Reservoir 16684 4936 18223 .00141
arc_V11PctWhite Small Reservoir 7654 7495 29596 .00338
Large Reservoir 16693 7855 30263 .00234
sqrt_V11PctNonWhite Small Reservoir 7654 5585 19134 .00219
Large Resemvoir 16693 5349 19549 00151
sqrt_V11PctBlack Small Reservoir 7654 .2098 16428 .00188
Large Resemvoir 16693 1610 15200 .00118
sqrt_V11Pctindigenous  Small Reservoir 7654 0511 07775 .00089
Large Resemvoir 16693 0654 09772 .00076
sqrt_V11PctAsian Small Reservoir 7654 2932 18717 .00214
Large Resemvoir 16693 2563 20447 .00158
sqrt_V11PctPacific Small Reservoir 7654 0315 06876 .00079
Large Resemvoir 16693 .0288 .06290 .00049
sqrt_V12PctRenter Small Reservoir 7646 6171 22602 .00258
Large Resemvoir 16684 6132 119998 .00155
arc_V12PctOwner Small Reservoir 7646 6517 36077 .00413
Large Resemvoir 16684 6615 31870 00247
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Independent Samples Test

Levene's Test for Equality of

ttestfor Equality of Means

95% Confidence Interval of the

Mean Std. Error Difiersncs
F sig t a Sig. (24ailed) __ Difference Difference Lower Upper
VIPct_14_65 Equalvariances 13301 000 11849 24345 000 -013747938 0011602926  -016022182  -011473694
Equalvariances not 11482 13776637 000 -013747938 0011973190 -016094846  -011401030
assumed
VIPct_14_85 Equalvariances 3725 054 10788 24345 000 011253359 0010431777  -013298051  -009208667
assumed
Equalvariances not 0672 14486914 000  -011263350 0010544575  -013320231  -009186487
assumed
sart_V2Pet_ NoAuto Equalvariances 69.950 000 4114 24328 000 00874 00212 00458 01290
assumed
Equalvariances not 4004 13894690 000 00874 00218 00445 01302
assumed
arc_VaPetCitizen Equalvariances 105101 000 3878 24345 000 -01354 00349 -02038 -.00670
umed
Equalvariances not 3984 15877979 000 01354 00340 -02020 -.00688
assumed
Sar_VaPctForeignBom  Equalvariances 106.920 000 4073 24345 000 00956 00235 00496 01416
assumed
Equalvariances not 4186 16804821 000 00056 00228 00508 01403
assume!
Sart_V4PctDis Equalvariances 9.820 002 16646 24329 000 -02208 00138 -02569 -02027
assumed
Equalvariances not 16427 14367.021 000 02298 00140 -02672 -.02024
assumed
In1_V4PciDIs65 Equalvariances 30599 000 4945 24217 000 -00829 00188 -01297 -.00561
umed
Equal variances not 4831 13977687 000 00929 00192 -01306 -.00562
sart_V5Pct No_HS Equalvariances 9609 002 -27.287 24341 000 06687 00245 -07168 -.06207
assumed
Equalvariances not 27624 15205203 000 06687 00242 -07162 -06213
assums!
VAPCt_HS_Deg Equalvariances 279.025 000 17368 24341 000 -023455369 0013504826  -026102397  -020808341
assumed
Equal variances not 16478 13121273 000 -023455369 0014233088  -026245260  -020665477
assumed
SaM_VSPct Abv_HS  Equalvariances 17.979 000 31553 24341 000 (07368 00234 06910 07825
umed
Equalvariances not 31207 14551116 000 07368 00235 06906 07829
SQrt_VGPCtUNEMP. Equalvariances 2853 001 -11.967 24335 000 -01918 00160 -02232 -01604
assumed
Equalvariances not 11955 14806.706 000 -01918 00160 -02232 -01603
assumsf
SQLV7PCHISP Equalvariances 26643 000 19252 24345 000 -08742 00298 -06327 -.05158
assumed
Equal variances not 19570 15478124 000 05742 00293 06317 -05167
assumed
are_VIPetNotHISP Equalvariances 49.435 000 19352 24345 000 08952 00463 08045 09858
umed
Equal variances not 19814 16742636 000 08952 00452 08066 09837
umed
Sart_VBPCtFHH Equalvariances 091 763 1248 24328 213 ~00238 00191 -00613 00136
assumed
Equal variances not 248 14867.415 212 -00238 00191 -00612 00136
assumef
sart_VBPetHH Equalvariances 1952 62 8271 24328 000 -01515 00183 -01874 -01156
assumed
Equalvariances not 8310 15002827 000 -01515 00182 -01872 -01158
assumed
In_VAMEDHHING Equalvariances 35302 000 17366 23618 000 M74s 00676 10420 13072
umed
Equalvariances not 16911 13472507 000 1746 00695 10384 13107
umed
VeExtmLow Equalvariances 8.980 003 1499 23618 134 002 001 -001 005
assumed
Equal variances not 1445 13160994 g 002 001 -001 005
assumef
vaveryLowl Equal variances 3761 052 a7 23618 332 003 003 -003 010
assumed
Equal variances not 962 14050033 336 003 003 -003 010
assumi
VaLowine Equal variances 159.086 000 -6.091 23618 000 -039 006 -052 -026
assumed
Equalvariances not 6182 14884634 000 ~039 006 -051 -027
umed
Sqrt_V10PctBIwg0 Equal variances 4582 032 8367 24329 000 -01553 00185 01917 -01190
assumed
Equal variances not 8254 14354115 000 01553 00188 -01922 -01185
assume!
Sqrt_V10PctBiwi 00 Equal variances 26549 000 12773 24329 000 -03047 00239 -03514 -02579
assumed
Equal variances not 12492 14060.406 000 -03047 00244 -03525 -.02569
assumi
Sqrt_V10PctBiwi 50 Equal variances 2275 31 16708 24329 000 -04240 00254 -04737 -03742
assumed
Equal variances not 6546 14488150 000 -04240 00256 -04742 -03738
umed
arc_Vi1Pctwhite Equal variances 3165 o075 8667 24345 000 -03596 00415 -04409 -02783
assumed
Equal variances not 8738 15152975 000 -035%6 00411 -04403 -.02789
assumi
Sar_Vi1PciNonWhite  Equal variances 3115 o078 8803 24345 000 02360 00268 01834 02885
assumed
Equalvariances not 8873 15141103 000 02360 00266 01838 02881
assum;
sqrt_V11PetBlack Equalvariances 33204 000 22697 24345 000 04g87 00215 04465 05309
assumed
Equal variances not 22052 13860872 000 04887 00222 04452 05321
umed
sar_vi1Pctindigenous  Equal variances 152278 000 11308 24345 000 -01435 00127 -01684 -o1186
assumed
Equal variances not 12205 18342819 000 01435 00117 -01664 -01206
assum;
sqrt_V11PetAsian Equal variances 82628 000 13417 24345 000 03689 00275 03150 04228
assumed
Equal variances not 13863 16108.370 000 03689 00266 03168 04211
assum;
sart_vi1PctPacific Equal variances 42304 000 3026 24345 002 00271 00089 00095 00446
assumed
Equal variances not 2927 13726714 003 00271 00092 00089 00452
umed
Sar_V12PciRenter Equalvariances 266746 000 137 24328 170 00395 00288 -00170 00959
assumed
Equalvariances not 1310 13328927 190 00395 00301 -00196 00985
assum;
arc_Vi2Pctowner Equal variances 270694 000 2132 24328 033 -00979 00459 -01879 -00078
assumed
Equal variances not 2037 13310661 042 00979 00481 -01921 -.00037
assumi
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Independent Samples Tests of Social Vulnerability Variables and Inspection Compliance for
HHP Dams

Group Statistics

Std. Error
Inspect_Test_Cats N Mean Std. Deviation Mean
V1Pct_14_65 PASS 20395 3374631488 0817966162 0005727611
FAIL 18481 3235212886 0868185673 .0006386308
V1Pct_14_85 PASS 20395 2075654387 0713627526 .0004997004
FAIL 18481 2056131720 0783865584 .0005766056
sqrt_V2Pct_NoAuto PASS 20371 1813 14322 .00100
FAIL 18462 2213 16605 .00122
arc_V3PctCitizen PASS 20395 9592 27647 00194
FAIL 18481 9267 .23748 00175
sqrt_V3PctForeignBorn  PASS 20395 4218 18550 .00130
FAIL 18481 4445 15913 00117
sqrt_V4PctDis PASS 20373 .3692 10340 .00072
FAIL 18465 .3650 10053 .00074
In1_V4PctDis65 PASS 20247 .3000 13007 .00091
FAIL 18416 3166 14534 .00107
sqrt_V5Pct_No_HS PASS 20390 3744 18018 .00126
FAIL 18474 .3603 19179 00141
V5Pct_HS_Deg PASS 20390 .2270786520 0950248398 .0006654701
FAIL 18474 .2201039984 1033523836 0007603964
sqrt_V5Pct_Abv_HS PASS 20390 5746 16799 .00118
FAIL 18474 5935 18350 00135
sqrt_VEPctUNEMP PASS 20379 2816 10976 .00077
FAIL 18473 .2878 11941 .00088
sqrt_V7PctHISP PASS 20395 5286 .23359 .00164
FAIL 18481 5128 .21886 .00161
arc_V7PctNotHISP PASS 20395 7905 36499 .00256
FAIL 18481 8168 34021 .00250
sqrt_VBPctFHH PASS 20371 3316 13466 .00094
FAIL 18462 .3482 14408 .00106
sqrt_VBPctMHH PASS 20371 .2090 12957 .00091
FAIL 18462 .2087 13358 .00098
In_VIMEDHHINC PASS 19661 11.0370 47124 .00336
FAIL 17976 10.9720 50586 .00377
VIExtrmLow PASS 19661 .00 066 .000
FAIL 17976 .02 127 .001
VaVeryLowl PASS 19661 .05 212 .002
FAIL 17976 .09 .286 .002
VaLowlnc PASS 19661 .28 450 .003
FAIL 17976 .33 471 .004
sqrt_V10PctBIw50 PASS 20373 2218 12314 .00086
FAIL 18465 .2369 14415 .00106
sqrt_V10PctBIlw100 PASS 20373 .3535 15852 00111
FAIL 18465 3757 18430 .00136
sqrt_V10PctBIw150 PASS 20373 4680 A7777 .00125
FAIL 18465 .4898 19218 00141
arc_V11PctWhite PASS 20395 .8007 .30086 .00211
FAIL 18481 7178 .29938 .00220
sqrt_V11PctNonWhite PASS 20395 5251 19463 .00136
FAIL 18481 5787 19270 .00142
sqrt_V11PctBlack PASS 20395 1297 13266 .00093
FAIL 18481 .2260 17167 00126
sqrt_V11Pctindigenous  PASS 20395 .0688 .09940 .00070
FAIL 18481 .0486 07627 .00056
sqrt_V11PctAsian PASS 20395 2543 .20496 00144
FAIL 18481 .2851 18645 .00137
sqrt_V11PctPacific PASS 20395 .0209 05263 .00037
FAIL 18481 0335 07162 .00053
sqrt_V12PctRenter PASS 20371 5890 20714 .00145
FAIL 18462 6549 21260 .00156
arc_V12PctOwner PASS 20371 6989 32815 .00230
FAIL 18462 5927 34150 .00251
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Independent Samples Test

Levene's Test for Equality of

ttestfor Equality of Means

95% Confidence Interval of the

Std. Error Difference
F Sig. t df Sig. (2-tailed) Difference Difference Lower Upper
VIPct 14_65 Equalvariances 15765 000 16300 38874 000 0122653752 0156183452
Equal variances not 16.252  37928.852 000  .0139418602 0008578488 0122604543 0156232661
assumed
VIPet 14_85 Equalvariances 142510 000 2570 38874 010 0019522667 0007594954 0004636371 0034408963
assumed
Equal variances not 2559 37496778 Qo1 0019522667 0007630036 0004567592 0034477741
assumed
sqrt_V2Pet_NoAuto Equalvariances 422883 000 25457 38831 000 -03996 00157 -04304 -.03689
assumed
Equal variances not -25274 36648124 000 -.03996 00158 -.04306 -.03686
assumed
arc_VaPetCitizen Equal variances 641.211 000 12347 38874 000 03243 00263 02729 03758
umed
Equal variances not 12439 38764177 000 03243 00261 02732 03755
assumed
sart_VaPctForeignBom  Equal variances 664.776 000 12924 38874 000 -02277 00176 -02622 -01931
assumed
Equal variances not -13.021 38758813 .000 -02277 00175 -02619 -.01934
assume;
Sqrt_VAPctDis Equalvariances 15881 000 4120 38836 000 00427 00104 00224 00630
assumed
Equal variances not 4126 38645273 000 00427 00104 00224 00630
assumed
In1_V4PetDis65 Equal variances 145855 000 11866 38661 000 -01662 00140 -01937 -01388
umed
Equal variances not 11804 37106.807 000 -01662 00141 -01938 -01386
sqrt_V5Pct No_HS Equalvariances 140818 000 7470 38862 000 01410 00189 01040 01780
assumed
Equal variances not 7.447 37882734 000 01410 00189 01039 01781
assume:
V5Pet_ HS_Deg Equalvariances 196374 000 693 38862 000 0069746536 0010083051 0050022710 0089470362
assumed
Equal variances not 6.902 37614874 000  .0069746536 0010104717 0049941023 0089552048
assumed
Sr_VSPCt Av_HS  Equalvariances 332848 000 105621 38862 000 -01894 00178 -02243 -01544
umed
Equal variances not 0575 37558454 000 -01894 00179 -02245 -01543
umed
Sr_VBPCtUNEMP. Equalvariances 87.283 000 5356 38850 000 -00623 00116 -.00851 -.00395
assumed
Equal variances not 5334 37605926 000 00623 00117 -00852 -00394
assume:
SqLV7PetHISP Equalvariances 214463 000 6878 38874 000 01584 00230 01132 02035
assumed
Equal variances not 6900 38830723 000 01584 00230 01134 02033
assumed
arc_V7PetNotHISP. Equalvariances 234315 000 7345 38874 000 -02637 00359 -03340 -01933
umed
Equal variances not 7372 38843012 000 02637 00358 -03338 -01936
umed
Sqrt_VBPetFHH Equalvariances 115328 000 -11703 38831 000 -01656 00141 -01933 -01378
assumed
Equal variances not 1664 37794311 000 01656 00142 -01934 -01377
assum:
Sqrt_VaPetMHH Equalvariances 30162 000 232 38831 817 00031 00134 -00231 00293
assumed
Equal variances not 231 38196737 817 00031 00134 -00231 00293
assumed
In_VSMEDHHING Equalvariances 71659 000 12903 37635 000 06499 00504 05512 07486
umed
Equal variances not 12862 36694458 000 06499 00505 05509 07489
umed
VOEMrmLow Equalvariances 559.802 000 -11750 37635 000 -012 001 -014 -010
assumed
Equal variances not 1451 26413601 000 -012 001 -o14 -010
assum:
vaveryLowl Equal variances 1119220 000 16541 37635 000 -043 003 -048 -038
assumed
Equal variances not 16327 32968840 000 -043 003 -048 -038
assum
VaLowine Equal variances 463.291 000 -10856 37635 000 -052 005 -.081 -042
assumed
Equal variances not 10833 36949706 000 -052 005 -061 -042
umed
Sqrt_V10PCIBIWSD Equal variances 429398 000 -11185 38836 000 -01518 00136 -01784 -01252
assumed
Equal variances not 11100 36495524 000 -01518 00137 -01786 -01250
assum:
Sqrt_V10PcBIw100 Equal variances 546348 000 12765 38836 000 -02221 00174 -02562 -.01880
assumed
Equal variances not 12672 36608913 000 -02221 00175 -02565 -01878
assum
Sqrt_V10PcBIw1 50 Equal variances 177.201 000 -11619 38836 000 -02181 00188 -02549 -01813
assumed
Equal variances not 1574 37672398 000 ~02181 00188 -02550 -01812
umed
arc_Vi1Pctwhite Equal variances ll 399 27499 38874 000 08291 00305 07694 08889
assumed
Equal variances not 27.205 38535889 000 08291 00305 07694 08888
assum
sqrLV11PctNonWhits  Equal variances "7 732 27241 38874 000 -05359 00197 -05745 -04974
assumed
Equal variances not -27.255 38570772 000 -05359 00197 -05745 -04974
assum
Sqr_V11PetBlack Equalvariances 1315337 000 -62237 38874 000 -09636 00155 -09940 -.09333
assumed
Equal variances not 61469 34686.607 000 09636 00157 -09943 -09329
umed
sqrt_Vi1Pctindigenous  Equalvariances 680.011 000 22276 38874 000 02017 00091 01840 02134
assumed
Equal variances not 22562 37864950 000 02017 00089 01842 02192
assum
sqr_V11PetAsian Equalvariances 128433 000 15433 38874 000 -03078 00199 -03489 -.02687
assumed
Equal variances not 15505 38873403 000 ~03078 00199 -03467 -.02689
assum
sar_Vi1PctPacific Equalvariances 130480 000 19811 38874 000 -01255 00063 -01379 -01131
assumed
Equal variances not 19522 33682880 000 -01255 00064 -01381 -01129
umed
Sqr_V12PciRenter Equalvariances 8255 004 -30905 38831 000 06587 00213 -07005 -.06169
assumed
Equal variances not -30865 38239330 000 06587 00213 -07005 -.06169
assum
arc_Vi2Pctowner Equalvariances 31486 000 31237 38831 000 10620 00340 08953 11286
assumed
Equal variances not 31476 38103588 000 410620 00341 09952 1287
assum
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Appendix E: Inundation Boundary Maps by Dam Name and High
Hazard Potential

HHP Dam
Dam Name (NID 2016) (CalOES
2016)

HHP Dam | Non-HHP
(NID 2002) Dam

1) 10 Mg Walteria

2) 10th and Western

3) 18 Mg Walteria

4) Adobe Creek

ltadialialte

5)Agnew Lake

6) Agua Tibia X

7) Alessandro

8) Alisal Creek

9) Almaden

10) Almaden Valley

11) Almond

P PR A | R4

12) Alta Loma Basin #1

13) Anderson X

i

14) Antelope Kern

15) Antelope Plumas

ke

16) Anthony House

17) Antioch Res

18) Argyle No 2

19) Austrian

20) Azalea

21)Balch Afterbay

22)Balch Diversion

23)Balsam Meadow Forebay Main

il liaitaltadialls

24) Barrett

25)Bayley Reservoir X

26)Bear Dam X

27)Bear Gulch

i

28)Bear Valley X

29)Beardsley

30)Bell Canyon

31)Berrenda Mesa

il dialls

32) Bethany Forebay

33)Bidwell Bar Canyon Saddle X

34)Bidwell Lake

35)Big Canyon

ltadle

36)Big Creek

37)Big Creek Dam No. 4 X
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38)Big Creek Dam No. 5

39)Big Creek Dam No. 6

40)Big Creek Dam No. 7

41)Big Dalton

< | P4

42)Big Dry Creek

43)Big Pine Creek

44)Big Sage

45)Big Santa Anita

46)Big Tujunga No. 1

47)Bishop Creek Intake No. 2

ltadialiallte

48) Black Butte Dam

49) Black Mountain Water Tank

i

50)Black Rock Creek

51)Blackburn

i

52)Blakely

53)Blossom Valley Reservoir

i

54)Boca

55) Bouquet Canyon

56) Bowman Main

57)Box Canyon

58) Boxsprings

59)Boyd No. 1

60) Boyd No. 2

P PR DA | |4

61) Bradbury

62) Brand Park

i

63)Brea Dam

64) Bridgeport

<<

65) Briones

66) Brooktrails 3 North

<<

67) Buchanan Dam

68) Bucks Lake

69) Butt Valley

70)C L Tilden Park

71) Calavera

72) Calaveras

73) Calero

74) Camanche Main

75) Cameron Park

P PR DA << X

76) Camille, Lake

77) Camp Far West

i

78) Caples Lake Main

79) Carbon Canyon Dam

<[

80) Caribou Lake

81) Casitas
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82) Castaic

83) Cedar Lake

84) Cedar Springs

85) Central

86) Century

87) Chabot

88) Chabot, Lake

89) Cherry Flat

90) Chet Harritt

91) Chevy Chase 1290

92) Chili Bar

93) Chollas

94) Chorro Creek

ittt il bl taltatialls

95)Clear Lake

96) Clifton Court Forebay

< | P

97)Clover Valley

98) Cogswell

99) Coit

100) Columbine

101) Combie

102) Conn Creek

< PR

103) Contra Loma

104) Copco No 1

105) Copper Basin

106) Courtright

107) Coyote

108) Coyote Creek

109) Coyote Percolation

P PR A | R X

110) Coyote Valley Dam

111) Crafton Hills

112) Crane Valley

< | P

113) Cresta

114) Crocker

115) Crocker Diversion

116) Cucamonga Creek Debris Basin

117) Cull Creek

118) Cuyamaca

ol lalle

119) Cynthia, Lake

120) Danville

i

121)De Sabla Forebay

122) Declez Retention

123) Decoto Reservoir

124) Deer Creek

125)Deer Creek Diversion

il ialls
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126) Del Valle

127)Delta Pond

128) Devils Gate

129) Diamond Valley Lake

130) Diamond Valley Lake Forebay

131)Diederich Res

132)Diemer No. 8

133) Diemer Reservoir

134) Dixon

135) Don Pedro Main

136) Donnells

137)Donner Lake

138) Dos Pueblos

ittt il bl taltatialls

139) Drum Forebay

140) Dry Canyon

141) Dry Creek

142) Dunsmuir Reservoir

ltadle

143) Dutch Flat Afterbay

144) Dutch Flat Forebay

ke

145) Eagle Rock

146) East Glorietta

<[

147) East Park

148) Eastlake

149) Eaton Wash Debris Basin

150)Echo Lake

151)Ed R Levin

152) El Capitan

153)El Toro Reservoir

154) Eleanor, Lake

155) Elmer J Chesbro

156) Elysian

157) Emerald Lake 1 Lower

158) Emerson

159) Encino

PIPR DL PR DR [ | < 4| 4

160) Ewing

161) Exchequer Main

162) Fairmont

163) Fancher Creek

164) Farmington Dam

165) Felt Lake

166) Fern Lake

< | P

167)Ferro Debris Basin

168) Fleming Hill No. 2

169) Florence Lake

< | P

130




170) Folsom

i

171) Folsom - Mormon Island Auxiliary Dam|

172)Folsom Dike 4

173)Folsom Dike 5

174)Folsom Dike 6

175)Folsom Dike 7

176) Folsom Dike 8

177) Folsom Right Wing

il ltaltadls

178) Foothill Regulating Park

179) Forbestown Diversion

180) Forest Lake

181) Foster

182) Fountaingrove

< PR

183) Francis, Lake

184) French Lake

185) Frenchman

186) Friant

187) Fullerton Dam

< | P

188) Garvey Reservoir

i

189) Gastaldi

190) Gem Lake

191) Gene Wash

192) Gibraltar

193) Giffen Reservoir

olialialts

194)Glen Anne

195) Grant Company 2

196) Grant Lake

197) Green Verdugo

198) Gregory, Lake

199) Greystone Reservoir

200) Grizzly Forebay

201) Grizzly Valley

il lialtadls

202) Groveland Wastewater Reclamation #2

203) Guadalupe

204)Haiwee

205)Halsey Forebay No. 2

ltadle

206) Hansen Dam

207)Harbor View

208) Harold Reservoir

209) Harrison Street

ol lalle

210)Harry L. Englebright Dam

211)Heenan Lake

<<

212)Henne

213)Henry J Mills Reservoir

< | P
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214)Henshaw

215)Herman, Lake

216)Hernandez

ikl

217)Hidden Dam

218)Highland Creek

219) Hillside

220)Hinkle

221)Hodges, Lake

ol lialts

222)Hume Lake

223)Ice House Main

i

224)Independence

225)Indian Ole

226) Indian Valley

227) Iron Canyon

228) Iron Gate

il ialls

229)Isabella Dam

230)J C Jacobsen

231)Jackson Creek

232)Jackson Meadows

il

233)Jacobs Creek

234)James H Turner

235)James J. Lenihan

236)Jeff Davis

237)Juncal

238) Jurupa Basin

ltdialslte

239)Kelly Cabin Can

240) Keswick

241)Kidd Lake Main

242)Kimball Creek

<<

243)Kunkle

244)La Grange

<<

245) Lafayette

246) Laguna Regulating Basin

247) Lagunita Santa Clara

248) Lagunita Sonoma

249) Lake Almanor

ltadle

250) Lake Alta

251)Lake Arrowhead

252) Lake Arthur

liaike

253)Lake Co San Dist

254) Lake Curry

255)Lake Frey

256) Lake Hemet

257)Lake Loveland

ltadialialte
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258) Lake Madigan

259)Lake Ranch

260) Lake Sherwood

261) Lake Theodore

262) Lang Creek Detention Basin

263)Las Llajas

264) Laurel Creek

< PR

265) Lauro

266) Lee Lake

267)Leland

268) Lewiston

269) Little Dalton Debris Basin

270) Little Mountain

<<

271) Little Panoche Detention

272) Littlerock

273) Live Oak

274)Live Oak Reservoir

275) Log Cabin

276) Loma Rica Airport

sl liallte

277)Long Lake

278) Long Valley

279)Loon Lake Main

280) Lopez

< | PR

281)Los Angeles Reservoir

282)Los Banos Creek Detention

283) Los Carneros, Lake

284) Los Padres

285) Los Vaqueros

286) Lower Crystal Springs

287) Lower Franklin

ltdialialte

288) Lower Howell

289) Lower Peak Lake Main

ke

290) Lower San Fernando

291) Lower Stehly

292) Lower Twin Lake

293) Lundy Lake

P PR P4 4

294) Lytton

295)Mabey Canyon

296) Macumber

<[

297)Madeline

298) Maerkle

299) Magalia

300) Magnolia

301)Maloney

P PR P4 4
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302) Mammoth Pool

303) Mammoth Reservoir

304) Marie, Lake

ikl

305) Mariposa Dam

306) Mark Edson

307)Marsh Creek

<<

308) Martinez

309)Martis Creek Dam

<<

310)Mary Street

i

311)Mary, Lake

312)Matanzas Creek

313) Mathews

314)Matilija

315)Mccloud

316) Mcswain

ltadialialte

317)Meadow Lane

318)Merced Falls

319)Middlefield Res

320) Milliken

321)Miner'S Ranch

322) Miramar

323)Moccasin Lower

324) Mockingbird Canyon

325)Modesto Res

P DA AR P4 4

326) Mojave Dam

327)Monticello

< | P

328)Moraga

329) Morena

< | P

330) Morning Star

331)Morris Los Angeles

332)Morris Mendocino

333)Morris S. Jones

il lle

334) Mount Stoneman

335)Mulholland

336) Murphys Wastewater

337) Murray

338) Murry

339)Nacimiento

340)Nash

< | P

341)Nevada City Raw Water Reservoir

342) New Bullards Bar

343) New Hogan Dam

344)New Melones

<<

345)New Upper San Leandro
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346)Newell

i

347) Nimbus

348) North

349) North Battle Creek

350) Notre Dame

351)Novato Creek

352)Olson

ltadialialte

353) O'Neill Forebay

354) Orange County Reservoir

355)Orinda, Lake

356) Oroville

il lle

357)Owens Dam

358) Pacific Grove

<[

359)Pacoima

360) Palisades Reservoir

361)Palo Verde

362)Palos Verdes Res

363) Paradise

364)Pardee

il alialiadls

365)Pardee South Spillway

366) Patterson

367) Pennsylvania Creek

368) Perris

369) Peters

370) Peters Canyon

ltdialslte

371)Philbrook Main

372) Phoenix

373)Phoenix Lake

374) Piedmont

375)Pigeon Pass

376) Pilarcitos

377)Pine Creek

il lialtadls

378)Pine Flat Dam

379)Pit No. 1 Forebay

380) Pit No. 3 Diversion

381)Pit No. 4 Diversion

382) Pit No. 5 Diversion

383) Pit No. 5 Open Conduit

384)Pit No. 6 Diversion

385) Pit No. 7 Diversion

386) Pleasant Valley

it il ltaltad bl

387)Poe

388)Pond No 2

i

389)Ponderosa
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390) Portola

391)Poway

< | P

392)Prado Dam

393)Prenda

394) Priest

<[

395) Prosser Creek

396) Puddingstone

397) Puddingstone Diversion

<<

398) Putts Lake

399) Pyramid

400) Quail Lake

<<

401) Quartz

402)R. W. Matthews

403) Railroad Canyon

404)Ralphine, Lake

405)Ramona

406) Rancho Del Ciervo

407)Rancho Seco

408) Rattlesnake Canyon

409) Reba

410)Rector Creek

411)Red Mountain Reservoir

412)Redbank

ittt Ealtal bl ttai e

413)Redhawk Lake

414)Reservoir No 1

415)Reservoir No 4

416)Reservoir No 5

417)Rhinedollar

ltadle

418) Rickey

419)Righetti

420)Rinconada Reservoir

421)Riviera Reservoir

422)Robert A Skinner

423)Rock Creek

424)Rollins

425)Ross No 1

426)Ross No 2

427)Round Mountain

428) Runkle

429)Rush Meadows

430) Sabrina

431)Saddlebag Lake

ittt ltal il bl taltatialls

432)Salinas Dam

433) Salinger
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434) Salt Springs

435)San Andreas

< | P

436) San Antonio Los Angeles

437)San Antonio Monterey

i

438) San Clemente

439) San Dieguito

440) San Dimas

< | P4

441)San Felipe Ranch

442)San Gabriel

443) San Joaquin Reservoir

444)San Lorenzo Creek

445) San Marcos San Diego

446) San Marcos San Luis Obispo

447)San Pablo

448) San Pablo Clearwell

449)San Sevaine Basin #5

450)San Vicente

451)Sand Canyon

452)Sand Creek

P PR DR [ R D4 [ < | 4

453)Santa Anita Debris Basin

454)Santa Fe Dam

455)Santa Felicia

456) Santa Monica Debris Basin

457) Santa Ynez Canyon

458) Santiago Creek

459)Savage

460) Sawpit

461) Sawpit Debris Basin

462) Scott

463) Scotts Flat

464) Scout Lake

465) Searsville

466) Seeger

P PR DR DR DA | [ < 4 [<

467) Sempervirens

468) Seneca

ke

469) Sepulveda Dam

470) Sequoia Lake

471)Seven Oaks

< | P

472) Shasta

473) Shasta River

474) Shaver Lake

< | P

475) Shiloh Ranch

476) Sierra Madre

477) Silver Lake

< | P
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478) Sinaloa Lake

479) Skinner Clearwell

< | P

480) Slab Creek

481)Sly Park

482) Small Canyon

483) Sobrante Clearwell

484) Soulajule

il ialls

485) Spenser Lake

486) Spring Valley

487) St. Helena Lower

< | P

488) Stampede

489) Stanford Heights

490) Stanley A Mahr Reservoir

491) Stevens Creek

492) Stewart Canyon Debris Basin

493) Stockton Creek

494) Stone Canyon

P PR AR

495) Stony Gorge

496) Success Dam

<<

497) Sulphur Creek

498) Summit

499) Summit Reservoir

500) Sunset North Basin

501) Sunset South Basin

502) Sutherland

503) Sutro Reservoir

504) Suttenfield

505) Swanzy Lake

506) Sweetwater Main

507) Sycamore

508) Syphon Canyon

509) Tahchevah

510) Temescal, Lake

511)Terminal

el b el E el P P F i Pl P el Pl

512) Terminus Dam

513) Thermalito Afterbay

514) Thermalito Diversion

515) Thermalito Forebay

ltadle

516) Thompson

517) Thompson Creek

518) Tinemaha

519)Tioga Lake Main

520) Trampas Canyon

ol lialls

521) Trinity
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522) Tulloch

523) Tuolumne Log Pond

524) Turner

525) Twitchell

< | P4

526)Union Main

527)Union Valley

528) University Mound North Basin

529) University Mound South Basin

il

530) Upper Franklin Dam

531)Upper Howell

532) Upper Oso

i

533) Upper Otay

534) Upper Peak Lake

<<

535) Upper Stehly

536) Uvas

537) Vail

538) Vasona Percolating

539) Vermilion

540) Villa Park

541) Virginia Ranch

P PR DR < X

542) Wallace

543) Walnut Canyon

544)Ward Creek

< | P

545) Warm Springs Dam

546) Wastewater Storage

547) West Point Regulating

<<

548) West Valley

549) Westlake Reservoir

550) Weymouth Memorial Reservoir

551) Whale Rock

ltdialls

552) Whiskeytown

553) White Pines

554) Whittier Narrows Dam

555) Whittier Res No 4

556) Wide Canyon

i

557) Williams

558) Wishon Main

559) Wohlford Lake

560) Wood Ranch

561) Woodcrest

562) Wrigley Reservoir

563) Wyandotte, Lake

564) Yosemite, Lake

PP DA [ R X
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