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ABSTRACT OF THE THESIS 

 

What’s the Dam Problem? 

Hazardous Dams, Flood Risk, and Dimensions of Vulnerability in California 

 

by  

Britta McOmber 

 

Master of Urban and Regional Planning 

University of California, Los Angeles, 2018 

Professor Susanna B. Hecht, Chair 

 

In the state of California, dams are aging, underfinanced, and in many cases ill-maintained. The 

Oroville Dam Spillway Failure in February 2017 demonstrates that even dams with satisfactory 

condition ratings can be at risk of failing from a combination of climatic, political, economic, 

and structural factors. It is therefore necessary to look beyond the condition assessment of a dam 

and instead consider the hazard potential status. California has 833 High Hazard Potential (HHP) 

dams – which the U.S. Army Corps of Engineers defines as dams that would cause significant 

loss of life, property destruction, or environmental damage in the case of failure or misoperation 

(2016). Expanding on previous literature on the sociodemographic determinants of flood-risk in 

cases of sea-level rise, climate change, high precipitation, and storm events, this project analyzes 

variables of social vulnerability within HHP dam inundation boundaries. I rely on a series of 
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geostatistical analyses, two-tail independent samples statistical tests, and multiple linear 

regressions to answer the overarching research question – Who is most vulnerable to dam-

induced floods in California?  

 

The data underpinning this research comes from the National Inventory of Dams, statewide dam 

inundation boundary maps, and the 2012 -2016 American Community Survey. Results from 

independent samples t-tests show that individuals and households are disproportionately located 

within hazardous dam flood zones if they are U.S. Citizens, live with a disability, are less 

educated, are unemployed, are single parents, have lower median household incomes, live at, 

below, or near the federal poverty line, and identify as either Black and African American, 

American Indian and Native Alaskan, or Native Hawaiian and Pacific Islander.  

 

Furthermore, people whose highest educational attainment is a high school degree, unemployed 

individuals, those living with disabilities, Hispanic or Latino individuals, female-headed 

households, renters, and people who identify as Black and African American, American Indian 

and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander represent variables of 

social vulnerability that are statistically significant predictors of living within a hazardous dam 

flood zone. This project therefore reveals the spatial and social characteristics of vulnerability to 

dam-induced flood risk in California.  

 

Planners and policymakers can use this information to improve existing disaster management 

and response plans by incorporating targeted and specific strategies to reduce the flood-risk of 

highly vulnerable populations. It also provides information necessary for planners and 
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policymakers to address and mitigate the existing social and spatial inequalities in dam 

inundation zones to create a more environmentally just California.  
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Chapter 1: Introduction 

In the state of California, dams are aging, underfinanced, and in many cases ill maintained. 

Similar to other massive, immobile, and unyielding infrastructures, dams are acutely vulnerable 

to seismic activity and changing climatic patterns. These two natural forces are highly 

unpredictable and variable, and can cause even the most structurally sound dams to fail or 

collapse.  

 

Oroville Dam Spillway Failure 

The 2017 Oroville Dam Spillway Failure exemplifies the critical issues of risky dam 

infrastructure and associated flood hazard in California. Oroville is a High Hazard Potential dam 

located in Placer County. The U.S. Army Corps of Engineers assigns a High Hazard Potential 

(HHP) classification to a dam if failure or misoperation will cause significant loss of life, 

property destruction, or environmental damage within the dam’s inundation zone (2016). 

Oroville dam holds back the second largest reservoir in California, which has a storage capacity 

of 3.5 million acre-feet of water (NID 2016). The Lake Oroville reservoir is capable of 

inundating more than 3,600 square miles of land, representing one of the furthest reaching dam 

flood zones in the state.  

 

Following a significant six-year drought, California experienced the wettest water year ever 

recorded in 2017 (Gomez 2017). Heavy and frequent storms throughout January and February 

quickly refilled state reservoirs depleted from the drought. The continuous runoff from these 

winter storms caused the water level of Lake Oroville to approach dangerous, unsafe, and 
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unprecedented levels. From December 2016 to February 2017, the reservoir level increased from 

41 percent to over 100 percent, eventually overtopping the dam on February 12 (Lin 2017).  

 

Dam operators opened the main spillway in early February in an attempt to lower the reservoir 

level. After a few days, they noticed the water was flowing abnormally down the spillway. When 

Oroville’s operators reduced the flow to investigate the matter they discovered a crater 300 feet 

wide, 500 feet long, and 45 feet deep in the middle of the 3,000-foot long concrete spillway 

(Graham 2017). The gates of the main spillway closed completely on February 7 to address 

concerns over the erosion of rock and material beneath the spillway and to make decisions on 

how best to proceed. However, the lake level continued to rise overtopped the dam at a point 

known as the “emergency spillway” on February 11. This situation was extraordinary – In 50 

years of operation, Oroville’s water levels had never been high enough to reach the emergency 

spillway. 

 

Unlike the main spillway, which is controlled via release gates, when water reaches the lip of the 

1,700-foot emergency spillway it washes uncontrolled down a wooded hillside (Sabalow and 

Kasler 2017). By February 12, the rock beneath the 30-foot concrete weir that reinforces the lip 

of the emergency spillway had significantly eroded. This prompted fears that the weir would 

collapse and send 30 vertical feet of the reservoir’s surface area rushing unchecked through the 

dam’s inundation zone. A failure of the emergency spillway effectively amounts to total dam 

failure, as the quickly eroding hillside would eventually empty the lake.  
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Emergency crews struggled to reinforce the emergency spillway with boulders and concrete 

blocks while authorities ordered a desperate emergency evacuation of over 180,000 people. Dam 

operators had no choice but to reopen the heavily damaged main spillway on February 12. 

Fortunately, Mother Nature acquiesced. Within a few days the reservoir levels began to drop as 

the rates of inflowing winter deluge significantly slowed. 

 

In the aftermath of this narrowly avoided disaster, the main and emergency spillways incurred 

significant damage and left the main spillway inoperable. The estimated costs of the dam repairs 

to both spillways is over $500 million (Rogers 2017). Other harmful impacts included damage to 

riverbanks, personal property, and farmland, roads used in the evacuation, the Thermalito power 

generating facility, and the Feather River Fish Hatchery. 

 

Subsequent investigations identified a number factors contributing to the failure of the main 

spillway and near-failure of the emergency spillway. Among these, investigators found that 

flawed original engineering designs, superficial and behind schedule inspections, unidentified 

erosion and leakage problems, and aged and dilapidated components (“Independent” 2018). 

Together these factors had severely weakened parts of the dam and spillways. These structural 

issues were exacerbated and in part caused by decades of underfinanced legislative allocations 

for dam maintenance, repair, safety, and inspection programs.  

 

Finally, the record-setting water year and series of high precipitation winter storms set in motion 

the chain of events that led to the spillway failure. Climate change models predict these types of 

“outlier” weather patterns will be more common, if not more intense and frequent, in the future. 
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It is therefore entirely possible for another dam in California to experience the same rapid 

increases in water levels that led to the Oroville crisis.   

  

Hazardous Dams and Social Vulnerability 

Both the National Inventory of Dams and the California Division of Safety of Dams consider the 

Oroville dam to be in satisfactory condition, which makes these findings even more troublesome 

(2016, 2016). If a satisfactory dam can come so close to failing, what does that mean for dams 

classified as fair, poor, or unsatisfactory? The serious physical and structural problems masked 

by a satisfactory condition rating are not an anomaly among California’s dams. Rather, the issues 

leading up to the spillway failure exemplify the current shortfalls in policy, planning, and action 

for managing large-scale water infrastructure and safeguarding the public from avoidable 

environmental hazards.  

 

The convergence of complex physical, structural, political, economic, and climatic factors 

increases the disaster- and flood-risk for communities living within inundation zones of dams. 

The near-crisis shows that even dams with satisfactory condition ratings have the potential to 

fail, and suggests that condition status is not the best indicator for identifying hazardous dams in 

California. Thus, I use downstream hazard status as a proxy for assessing vulnerability to dam-

induced flood-risk. The California Division of Safety of Dams explains that the hazard status of 

the dam is separate from the condition rating; whereas the former refers to the scope and degree 

of damage possible in an inundation scenario, the latter is an assessment of the dam’s structural 

integrity (2017). The U.S. Army Corps of Engineers rates 833 of the state’s 1,585 dams as High 
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Hazard Potential (HHP), where failure or misoperation will result in significant loss of life, 

property destruction, or environmental damage (2016).  

 

This project therefore proposes to analyze aspects of social vulnerability for individuals and 

households located in the flood zones of High Hazard Potential dams in California. The 

consensus among researchers and planners is that a multitude of demographic and 

socioeconomic factors influences an individual’s social vulnerability to environmental hazards. 

These social vulnerability characteristics create an uneven capacity for preparedness, response, 

or recovery to disasters (Hazards & Vulnerability Research Institute 2014). For example, while 

certain people may be exposed to hazards due to physical factors, like living in a floodplain, they 

may also suffer additional and greater relative losses due to a lack of social, financial, or political 

support networks (Maantay & Maroko 2009).  

 

The academic literature supports that individuals who are nonwhite, Hispanic, low income, 

younger than 14 or older than 65, female, disabled, renters, unemployed, non-automobile 

owners, non-college educated, and foreign-born are less prepared for floods, face additional 

hurdles to evacuating during a flood, and take longer to recover to a pre-flood livelihood after the 

disaster (Chakraborty et al. 2014, Cutter et al. 2003, Donner and Rodriguez 2011, Fielding and 

Burningham 2005, Maldonado et al. 2015).  

 

It follows that these 11 demographic and socioeconomic categories of race, ethnicity, income, 

age, gender of the head-householder, ability, employment status, home ownership, car 
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ownership, educational attainment, and citizenship are determinants of an individual’s social 

vulnerability to flood hazards. 

 

Research Questions and Overview of Results 

With social vulnerability framed by these 11 categories, the following research questions guide 

this project: 

1) Are socially vulnerable households more likely to live within dam flood zones than 
outside of them in California? 
 

2) Are socially vulnerable households more likely to live within HHP dam flood zones than 
outside of them in California? 

 
3) Which factors of household social vulnerability are significantly correlated with living in 

a dam flood zone? Do these differ from factors significantly correlated with living in an 
HHP dam flood zone? 

 
4) Is there a relationship between social vulnerability and the HHP dam characteristics of 

age and inspection compliance? 
 

a. Do HHP dams built more than 50 ago have higher proportions of socially 
vulnerable households within their inundation zones than HHP dams built less 
than 50 years ago?  

 
b. Do HHP dams with failed inspection compliance have higher proportions of 

socially vulnerable households within their inundation zones than HHP dams in 
compliance? 

 

To answer these questions, I use Geographic Information Systems and Statistical Package for the 

Social Sciences software to perform geoprocessing, two-tail independent samples tests, and 

multiple linear regressions on variables spanning three distinct datasets. The datasets include a 

state subset of the National Inventory of Dams, California dam inundation maps, and a state 

subset of the 2012-2016 American Community Survey. The expected contributions of this 

research project are a comprehensive analysis and understanding of the demographic, 
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socioeconomic, and spatial characteristics of vulnerability to dam-induced flood risk in 

California. 

 

Results from independent samples t-tests show that individuals and households are 

disproportionately located within hazardous dam flood zones if they are U.S. Citizens, live with 

a disability, are less educated, are unemployed, are single parents, have lower median household 

incomes, live at, below, or near the federal poverty line, and identify as either Black and African 

American, American Indian and Native Alaskan, or Native Hawaiian and Pacific Islander. 

 

Furthermore, people whose highest educational attainment is a high school degree, unemployed 

individuals, those living with disabilities, Hispanic or Latino individuals, female-headed 

households, renters, and people who identify as Black and African American, American Indian 

and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander represent variables of 

social vulnerability that are statistically significant predictors of living within a hazardous dam 

flood zone. 

 

Comparing the means of social vulnerability variables by the grouping factor “Dam Age” reveal 

that people who lack car ownership, foreign-born individuals, people with at least a 2- or 4-year 

degree, non-Hispanic or Latino, female-headed households, living at, below, or near the federal 

poverty threshold, renters, and those who identify as White, as Black and African American, 

American Indian and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander are more 

likely to live in HHP dam flood zones aged 50 years or older. 
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Finally, the independent samples test for social vulnerability and the grouping factor “Inspection 

Compliance” show that those lacking car ownership, foreign-born individuals, people aged 65 or 

older living with a disability, individuals with at least a 2- or 4-year degree, non-Hispanic or 

Latino, unemployment, living at, below, or near the federal poverty threshold, renters, and those 

who identify as Black and African American, Asian, and Native Hawaiian and Pacific Islander 

are more likely to live in HHP dam flood zones with failed inspection compliance.  

 

Research Significance  

Emergency and disaster planners depend on knowledge of socially vulnerable populations to 

ensure sufficient disaster preparedness and response policies in a given place. For example, a 

community with a high percentage of older adults will require a different type of emergency 

response in terms of warning, evacuation, and assistance. Failing to account for the spatial 

patterns and geographic concentrations of socially vulnerable populations in the planning process 

can have devastating consequences. Consider that in the aftermath of Hurricane Katrina, almost 

50 percent of nearly 1,000 fatalities were adults aged 75 or older (Brunkard et al. 2008). Many of 

these older adults lived alone and lacked the means to evacuate, either because they did not own 

a car or were unable to drive, or lived in care facilities that did not provide transportation during 

the evacuation (Brunkard et al. 2008). It is possible that many of these fatalities could have been 

avoided had different disaster response policies and plans been in place.  

 

Spatially informed disaster preparedness, response and emergency planning has the ability to 

reduce the flood-risk for socially vulnerable populations. The theoretical framework for this 

assertion comes from the field of environmental justice. Environmental justice is broadly defined 



 9 

as equitable environmental quality for all social groups, with particular consideration that 

socially vulnerable groups are not disproportionately exposed to environmental hazards 

(Montgomery and Chakraborty 2015). In addition to older adults, flooding from Hurricane 

Katrina disproportionately affected African-American and low-income residents in New Orleans 

during and after the disaster. According to Montgomery and Chakraborty, the stark social and 

economic inequalities of who was impacted by the flood hazard led to an expansion of the EJ 

framework to include natural disasters, and initiated empirical investigations on the EJ 

implications of flooding (2015, 2). 

 

This project reveals spatial and social characteristics of vulnerability to dam-induced flood 

hazards in California. Planners and policymakers can use this information to improve existing 

disaster management and response plans by incorporating targeted and specific strategies to 

reduce the flood-risk of highly vulnerable populations. Furthermore, it provides the information 

necessary for planners and policymakers to address the existing social and spatial inequalities in 

dam inundation zones to create a more environmentally just California.  

 

There is a breadth of social vulnerability literature on the demographic and socioeconomic 

determinants of flood risk in cases of sea-level rise, climate change, and high precipitation and 

storm events. However, social vulnerability and dam-induced flood risk is an area less explored 

or documented. My research has the ability to fill this existing gap in the flood-risk literature. 

Notably my results, findings, and conclusions can inform an initial understanding and 

comparison of social vulnerability and flood-risk between the scenarios of sea-level rise, climate 

change, high precipitation and storm events, dam-induced flooding. The similarities across these 
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categories reveal which factors social vulnerability may be universal predictors of flood-risk, and 

the differences reveal which factors are specific to dam inundation areas in California. 

 

This project focuses on the patterns revealed at the broader geographic scale of the state of 

California, which may mask regional and local differences of social vulnerability. The methods 

presented in this project are replicable at different geographic scales to provide the most useful, 

relevant, and necessary information for local disaster and emergency planners throughout the 

state.  
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Chapter 2: Background 

History of Dam-building in California 

Dams are inherently multi-purpose structures. Their uses span hydroelectricity generation, flood 

protection, improved navigability, water supply for drinking, irrigation, and industrial purposes, 

and making the surrounding region more resilient to drought. In the American West, and 

particularly in California, dams play a crucial role in capturing, storing, and delivering water to 

arid and water-scarce regions. The absence of such large-scale water management infrastructure 

would make it impossible for California to sustain its thriving urban and agricultural economies. 

 

There are currently 1,585 total dams in California, with 1,249 falling under state jurisdiction 

through Department of Water Resources Division of Safety of Dams. The remaining 336 are 

managed by federal agencies such as the Federal Energy Regulatory Commission, Army Corps 

of Engineers, Department of Defense, and Department of the Interior (2016). The majority of 

these dams were built between 1920 and 1980, though the history of dam building dates back to 

the Gold Rush era. Beginning in 1848, miners harnessed the power of rivers by constructing 

dams, sluices, aqueducts, and canals to aid in the search for gold. In the following decade 

hydraulic mining emerged as one of the most environmentally destructive mining methods, 

damming and diverting entire streams and rivers to generate high-pressure torrents to blast at 

hillsides (Kahrl 1982, 27). 

 

The gold rush put California on the map quite literally, ushering statehood in 1850. The prospect 

of mineral wealth and the completion of transcontinental railroads in the 1870s and 1880s 

encouraged a steady stream of migration to the state. While the urban areas established during 
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the gold rush, such as San Francisco and Sacramento, continued to grow, many settlers turned to 

the fertile alluvial plains of the Central Valley to pursue a livelihood. The legacy of dam, canal, 

and sluice building from the mining era expanded into a system of channels and levees for 

irrigation purposes. These systems tended to be small-scale in nature, and designed with local 

conditions in mind. Though they made the flood-prone Central Valley more suitable for 

agriculture, they proved inadequate for successful regional flood control. 

 

To address flood control issues, the state legislature passed the Wright Act in 1887. The Act 

authorized the formation of irrigation districts with the power to acquire water rights, construct 

water projects, and sell bonds to support water development and distribution (Kahrl, 1982, 30). 

Newly formed irrigation districts financed and built the first regional-scale dam and canal 

systems to store and distribute water on a regional basis (Kahrl 1982, 30). However, the arid 

southern region of the state lacked a local water supply that could sufficiently support growing 

populations. The burden of financing projects on the scale needed to move water from where it 

was available to where it was scarce disproportionately impacted places like Los Angeles, where 

local capital fell short of the cost of such infrastructure (Karhl 1982, 31). The size, scope, and 

cost of large-scale water storage, supply, and transport systems was typically beyond the 

capacity of cities, counties, or irrigation districts to undertake.   

 

At the turn of the 20th century, California had the nation’s fastest-growing economy and 

population. This growth required a shift in water and flood policy from local to interregional 

projects that could manage water over much larger distances (Kahrl 1982, 31). Between 1900 

and 1940, both the federal and state government became increasingly involved in large water 
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projects. State and local policymakers viewed these large dam and reservoir projects as an 

effective solution to the problem of water scarcity in much of the state, exacerbated by the ever-

growing urban and agricultural communities. Projects at this scale also were able to bypass many 

of the financial and political barriers that delayed most local water supply and flood control 

projects. 

 

The 1930s through the 1970s saw a period of unmatched dam and reservoir building across the 

state. Recognizing the importance of the Central Valley in national food production, the Bureau 

of Reclamation and the Army Corps of Engineers devised an ambitious water capture, storage, 

and delivery project known as the Central Valley Project (CVP). Authorized in 1933, the CVP 

presented a comprehensive plan to transfer water from the Sacramento Valley to the San Joaquin 

Valley for irrigation, power generation, and prevention of salt-water intrusion in the Sacramento-

San Joaquin Delta (Stene 2015). Following the construction of several dams and reservoirs of the 

CVP, the state developed the State Water Project (SWP) in 1957 with the main objective of 

providing domestic water supply to urban centers in the state. Together, the CVP and SWP are 

among the world’s largest water storage and transport systems, with 56 reservoirs providing 

water to 27 million domestic users and irrigating 3.5 million acres of land a year (California 

Department of Water Resources 2017). 

 

The majority of California’s dams, including the major projects of the CVP and SWP, were 

completed before 1975. By the late 1970s, a growing number of people and organizations 

contested new dam construction. The high price tag of water infrastructure created political and 

financial opposition between constituents and governing agencies. Awareness of the 



 14 

compounding and often irreversible environmental impacts of dams, such as ecological 

degradation, habitat destruction, and species endangerment, fueled further resistance to new dam 

projects. Furthermore, nearly every significantly flowing river or tributary in California was 

dammed or diverted by 1975.  

 

Figure 1:Number of Dams by Year Completed 
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The Geography and Typology of California’s Dams   

Dams in California vary in type, size, purpose, and location. They range from a shallow 

irrigation pond behind a three-foot dam to a major reservoir impounded by a 770-foot dam. The 

volume of water stored in the state’s reservoirs are between 0 and 30 million acre-feet, 

depending on the time of year, type, and purpose of the dam (DHS 2015, 42; NID 2016). 

 

Table 1: Primary Purpose of Dams in California Count 
Water Supply 750 
Hydroelectric 281 
Flood Control 233 
Other 167 
Irrigation 47 
Unknown 37 
Fish and Wildlife Pond 30 
Fire Protection, Stock, Or Small Fish Pond 17 
Recreation 14 
Debris Control 5 
Tailings 4 
Total 1585 
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Figure 2: Geographic Distribution of Dams in California 

 

  

Sources: Esri, USGS, NOAA
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Figure 3: Geographic Distribution of Dams with Inundation Zones in California 
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What’s the Dam Problem? Political, Economic, and Structural Context  

The issue of aging dam infrastructure is a broad problem across the U.S. The federal government 

estimates that the useful economic life for a dam is 50 years, and though the physical life span of 

dams is typically greater than 50 years, the physical diminishment of dams and their components 

result in high budgets for maintenance and repair (Ho et al. 2017). In California, over 70 percent 

of dams are 50 years or older, with the average dam age being 70 years old (USACE 2016). 

Furthermore, the American Society of Civil Engineers indicates that 97 percent of the dams in 

the U.S. are inadequately funded, which increases the probability of at-risk dams going 

undetected (Ho et al. 2017). California is no exception; the Department of Water Resources 

recently estimated the cost of repairing dams statewide to be $5 billion (Editorial Board 2017). 

 

At the time of construction, many dams were low-hazard and surrounded by undeveloped 

agricultural land. However, as populations grew, communities added homes, businesses, public 

buildings, and roads downstream, increasing the amount of people and infrastructures at risk 

(Spillman et al. 2017). The U.S. Army Corps of Engineers defines High Hazard Potential (HHP) 

dams as those that have the potential to result in significant loss of life, property destruction, or 

environmental damage in the case of failure or misoperation (USACE 2016). This compounds 

the problem of aging dam infrastructure in California, where 833 of the state’s 1,585 dams (53 

percent) are High Hazard Potential. This is the fourth most of any state, and well above the 

national average of 15 percent (Spillman et al. 2017). 

 

On March 12, 1928, the sudden failure of St. Francis Dam in Southern California resulted in a 

major disaster and 431 casualties. Before this, State supervision and oversight of dams was 
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limited in scope and applied to only about half of the state’s dams. This prompted the enactment 

of a new statute in 1929 that gave regulatory jurisdiction of all non-federal dams to the State, and 

led to the creation of the California Dam Safety Program, now known as the Division of Safety 

of Dams (Babbitt 1993, 1). The new laws provided for (1) examination and approval or repair of 

dams completed prior to the effective date of the statute, (2) approval of plans and specifications 

for and supervision of the construction or modification of dams and (3) supervision of operation 

and maintenance of dams (Babbitt 1993, 1). There are 1,249 dams currently under the 

supervision of the DSOD, though the legal owner of the dam is responsible for the operations, 

maintenance, and repair of dams and its facilities (“Dam Rating” 2017). Dam owners can be 

Federal, State, local public agencies, utilities, private landowners, and water and irrigation 

agencies (“Dam Rating” 2017). 

 

California has one of the best dam safety inspection programs in the nation (Adler 2017). 

Though the program is severely understaffed and underfunded, Lori Spragens from the 

Association of State Dam Safety Officials claims, “every other state is more understaffed and 

underfunded… Other states still look to California” (Adler 2017). For context, the state of 

Oklahoma budgeted just $106,376 for dam safety for 4,601 dams in 2016, while California 

budgeted $13,711,000 for 1,249 dams the same year (“State Program” 2016).  

 

A recent analysis of dam inspections in the state showed that nearly 44 percent failed to be 

examined within the required inspection frequency (Spillman et al. 2017). Currently, 22 field 

engineers are responsible for inspecting 1,249 dams, which rounds out to about 57 dam 

inspections per engineer per year (Adler 2017). Though the amount of money California budgets 
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for its dam safety program increases every year, from about $6.5 million in 1999 to about $13.5 

million in 2015, the number of full-time equivalent dam safety staff has declined from 68 to 61 

FTE positions in the 1999-2015 period (“Dam Safety” 2016). Furthermore, original dam designs 

rely on simplistic assumptions about hydrology and earthquakes. More than 90 need major 

upgrades to better handle large floods or withstand earthquakes. Dam operations also need to be 

updated to work with improved weather forecasting technology and account for a changing 

climate (Escriva-Bou et al. 2017).  

 

The DSOD dam safety inspectors will assign a condition rating to the dam after inspection or 

after recommended actions have been taken, including Remediated, Not Rated, Unsatisfactory, 

Poor, Fair, and Satisfactory. Out of 1,249 dams under the state’s jurisdiction, 92 percent are in 

satisfactory condition (NID 2016). This condition assessment can mask serious design and 

operating issues filed in inspection reports. Consider that an investigation of Oroville’s last three 

inspection reports revealed that the DWR and the dam operator had knowledge of significant 

structural weaknesses, including cracking and water seepage on the dam face and main spillway, 

and concerns that the high-tensile steel anchor tendons used to strengthen the spillway concrete 

needed replacement (Street 2017).  

 

Despite reservoir restrictions for these deficiencies, the Oroville dam reservoir filled rapidly and 

overflowed, setting off a chain of events that ended with the spillway failure and a narrowly 

avoided dam failure. The Oroville example demonstrates how even dams deemed to be in 

satisfactory operating condition by the Department of Water Resources Division of Safety of 

Dams can be at risk of failing under a combination of circumstances. It is therefore useful and 



 21 

necessary to analyze dams by their hazard potential, since High Hazard Dams are those that pose 

the highest risk to human life, property damage, regional and state economy, and environmental 

and ecological function and integrity. 
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Chapter 3: Literature Review 

Dams as Critical Infrastructures 

Dams are critical infrastructures. The U.S. Department of Homeland Security defines critical 

infrastructure sectors as those “whose assets, systems, and networks, whether physical or virtual, 

are considered so vital to the United States that their incapacitation or destruction would have a 

debilitating effect on security, national economic security, national public health or safety, or any 

combination thereof” (DHS 2017).1  

 

The federal government added the Dams Sector to the list of critical infrastructures in 2003, 

recognizing the substantial economic, environmental, and social contributions of its assets and 

resources (DHS 2015, iii). Furthermore, the Dams Sector supports many other critical 

infrastructure sectors and industries as it delivers water retention and control services, 

hydroelectric power generation, municipal and industrial water supplies, agricultural irrigation, 

sediment and flood control, river navigation for inland shipping, industrial waste management, 

and recreation (DHS 2015, v). The interdependencies of the Dams Sector with other critical 

infrastructure sectors such as the Communications, Energy, Food and Agriculture, 

Transportation Systems, and Water and Wastewater Systems sectors mean that complete or 

partial dam failure would have significant and widespread consequences. As such, identifying 

and assessing the threats, vulnerabilities, and hazards facing the Dams Sector are a top priority of 

the Department of Homeland Security. 

                                                
1 There are 16 identified critical infrastructure sectors in the U.S., including the Chemical, Commercial Facilities, 
Communications, Critical Manufacturing, Dams, Defense Industrial Base, Emergency Services, Energy, Financial 
Services, Food and Agriculture, Government Facilities, Healthcare and Public Health, Information Technology, 
Nuclear Reactors, Materials, and Waste, Transportation Systems, and Water and Wastewater Systems sectors. 
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In the most recent “Dams Sector-Specific Plan,” the DHS identifies natural disasters and extreme 

weather as the most significant risks to the Dams Sector (2015, 9). Since dams and reservoirs are 

massive, concrete, and unyielding structures, they are acutely vulnerable to both seismic activity 

and climate change. This is especially true in California, a state known for its earthquakes and 

unpredictable precipitation patterns.   
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Impacts from Seismic Activity and Climate Change 

California is predisposed to high rates of earthquakes due to the convergence of several tectonic 

plates and volcanism. These seismic forces result in the active and major San Andreas, San 

Jacinto, Owens Valley, Hayward, and Garlock Faults, as well as over 15,000 other fault lines 

throughout the state. Earthquakes occur when small, additional increments of stress are added to 

a fault that is loaded close to its breaking point (Foulger et al. 2017). This can happen from 

natural processes like plate tectonic movement and melting snow or ice, or from human activities 

like oil and gas extraction (Foulger et al. 2017). 

 

There is ample evidence documenting the impacts of seismic activity to dams. Earthquakes can 

seriously impede dam function and cause heavy damage, depending on the intensity of the 

earthquake and dam type. Of California’s 1,585 dams, 74.7 percent are earthen embankment 

dams, while 12.1 percent are unknown, and around 3.5 and 3.7 percent are rockfill embankment 

and gravity dams, respectively (NID 2016). According the Federal Energy Regulatory 

Commission, instability for earthen embankment dams after an earthquake is not a frequently 

occurring event (2005, 6). However, seismic activity can cause soil liquefaction, where saturated 

sand and silt behaves like a liquid when shaken by an earthquake (USGS 2006). Earthquake 

waves cause water pressures to increase in the sediment, causing the sediment to lose strength 

and lead to ground settlement (USGS 2006). Soil liquefaction and ground settlement near a dam 

or reservoir can seriously affect the physical dam structure and create embankment deformations. 

FERC states, “If liquefaction of the dam embankment or foundation has occurred, the dam may 

have already failed or may be on the verge of failure” (2005, 6). 
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While structural flaws are more likely to cause dam failure than seismicity, the processes of 

earthquakes, soil liquefaction, and ground settlement can exacerbate existing structural 

weaknesses. For example, internal erosion from piping seepage, external erosion caused by the 

wear from water over time, settlement of the dam crest over time, and foundational defects have 

caused about 50 percent of all U.S. dams to fail (DHS 2015, 9). When the California Division of 

Safety of Dams or FERC identifies structural problems, they place operating restrictions or 

conditions on the dam. Restrictions might include limiting the amount of water in the reservoir or 

reducing the allowable speeds of water flowing through dam gates or spillways. Additionally, the 

DSOD or FERC will recommend seismic retrofits for dams with identified deficiencies. This is 

especially important for older dams, because engineers in the early part of the 20th century did 

not realize that the loose rock and soil they used to form the base of some dams could liquefy in 

a strong earthquake, potentially causing the top of the structure to deform and spill (Carlton 

2017). 

 

The Perris Dam in Riverside County, Calaveras and San Pablos dams in Alameda County, and 

Anderson, Calero, and Guadalupe dams in Santa Clara County are either currently planning, 

undergoing construction, or recently completed seismic retrofits (Lin 2017). In addition to the 

seismic retrofits, the Anderson Reservoir near San Jose has a state-imposed limit of holding no 

more than 68 percent of its total water capacity because it lies near an active fault (Carlton 2017). 

Similarly, the Calaveras Dam must keep the 31 billion-gallon capacity of Calaveras Reservoir no 

more than 40 percent full because the 92-year old structure is built atop loose earth on the site of 

a previous failed dam (Carlton 2017).  
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The most well-known seismic damage to an earthen embankment dam in the state came from the 

1971 San Fernando earthquake. The Department of Homeland Security acknowledges that a 

large number of high hazard potential dams are located within active seismic areas. Despite 

progress in seismic analysis methods and assessment procedures, predicting the behavior of 

dams and levees under earthquake conditions remains a significant challenge (2015, 9).  

 

Technological, geological, and remote sensing advancements have led to the discovery of new 

fault lines in California in recent years, uncovering new vulnerabilities and risks for critical 

infrastructures. The Daily Mail reports that the discovery of the Polaris Fault came as a surprise 

to scientists who thought they had found all of California’s seismic danger spots (2011). Though 

experts already knew of two faults near the structure, the Polaris Fault is just 200 yards from the 

Martis Creek Dam near Truckee, California (Daily Mail 2011). The Army Corps of Engineers 

owns the dam and keeps the water levels as low as possible, though a dam failure could 

potentially endanger 16,000 people in Placer County (Daily Mail 2011). 

 

The function of dams is influenced by existing weather and climatic patterns. These impacts will 

be exacerbated by projections of climate change in the state in coming years. Storms, hurricanes, 

and high precipitation events can cause water deluges and flooding that overwhelm the flood 

storage or water capture capacity of a given reservoir. In these cases, the volumetric pressure of 

impounded water can overly stress the physical structure of the dam or reservoir. For dams with 

structural weaknesses, cracks, and deficient or aged components, the pressure of the water alone 

can be enough to cause the entire structure to fail.  
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Many large multipurpose dams operate with conflicting goals. For example, to manage floods, 

operators must release enough water to create space in reservoirs for winter floodwaters, which 

increases the chances that reservoirs will not be full in spring. Over the summer, when recreation 

demands are highest, reservoirs draw down to meet water and hydropower demands. Finally, 

many dams are required to conserve and slowly release the cold water collected at the bottom of 

reservoirs to support downstream salmon and steelhead habitat. Managing these trade-offs is 

becoming increasingly challenging as California’s climate warms and precipitation becomes 

more variable (Escriva-Bou et al. 2017). 

 

Changing climatic and weather patterns as a result of anthropogenic global warming pose a risk 

for areas around dams and reservoirs. The drainage infrastructure for U.S. cities was originally 

designed for a vastly different built environment, and was tailored to hydrologic conditions that 

are now historically outdated. Urban sprawl and the disappearance of permeable surfaces 

throughout the metropolis increase the chances that drainage networks are overburdened during 

high precipitation events, and cause higher volumes and velocities of stormwater runoff to 

accumulate in reservoirs. Climate scientists agree that the intensity and frequency of storms will 

become more variable and less predictable in the coming years, which will increase the 

likelihood of dam failure if water begins to overtop reservoirs or rises higher than designated 

safe operating levels (Pittock and Hartmann 2011).  

 

In the recent Hurricane Harvey event, there was more rainfall than from any U.S. storm in 138 

years of record-keeping, with more than 60 inches of rain reported in two locations (Feldblum 

2018). Fifty thousand 911 calls were made on the first night alone, at least 68 people died and 
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half a million cars flooded out (Feldblum 2018). This extreme weather event added billions of 

gallons of floodwater to the area’s reservoirs which takes many months to safely release. As part 

of this release of water from the Addicks and Barker reservoirs in West Houston, many nearby 

communities were flooded (Satija et al. 2017). The Oroville dam flooding threat was also a direct 

result of severe weather patterns and climate change, for which the aging dam was not designed 

to deal with (Nagourey et al., 2017).                                     

 

The relationship between climate change, seismic activity, and dams is even more complex with 

research that shows large dams and reservoirs can actually induce minor earthquakes. The first 

way a reservoir can cause an earthquake is through either rapid filling or rapid emptying of the 

lake behind the dam, which changes the weight and force acting on a fault (Lin 2017). Though 

water levels in reservoirs normally fluctuate in an annual cycle in line with precipitation patterns, 

a drastic change in the water levels over a short time period can cause tremors.  

 

Furthermore, a recent study by Johnson et al. linked the alternating wet and dry cycles in 

California to the rates of earthquakes, concluding that crustal stress changes from variations in 

fluid pressure during wet months lead to more earthquake ruptures (2017, 1161). Christiansen et 

al. also conclude that stresses associated with the hydrological loading cycle are sufficient to 

fracture critically stressed rocks and cause microquakes along the San Andreas Fault (2007). The 

pattern found by both studies show the Earth’s crust depressing under the load of rain and snow 

in winter months, and rebounding as the snow melts and rivers drain, where the stress changes 

associated with unloading make faults fail more often in late summer and early fall (Christiansen 

et al. 2007). 
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Secondly, as the water stored in reservoirs percolates deep into the earth, it changes the normal 

compression stresses acting on geologic faults. This process, known as “unclamping,” occurs 

when fluid pressure counteracts the normal stresses, allowing two sections of rock to slip or 

move along the fault, resulting in an earthquake (Kuchment 2016). This phenomenon occurs in 

cases of oil and gas production, horizontal drilling, and hydraulic fracturing, when the pressure 

from injected fluid or wastewater triggers earthquakes (Kuchment 2016). Research linking fluid 

pressure and induced earthquakes dates back to a seminal study by a team of U.S. Geological 

Survey geophysicists and hydrologists in 1976, along with recent studies analyzing oil and gas 

injection wells and the high, historically unprecedented rates of earthquakes in in Oklahoma, 

Kansas, Ohio and Texas (Raleigh et al. 1976, Petersen et al. 2016). The biggest uncertainty with 

these reservoir-induced earthquakes is the difficulty in measuring how close to failure a fault is, 

or predicting the scope or intensity of a potential earthquake (Lin 2017).   
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Dam Tradeoffs: Are the Benefits Worth the Costs? 

The most prevalent debate about dam building has to do with their necessity, utility, and 

tradeoffs. Dams can bring large-scale grid electrification to an area through hydropower 

generation, and in many areas, dams are the heart of the engine of economic development. They 

are the main mechanism for water storage, supply, delivery, and flood-control, and vital for 

ensuring a steady flow of water year-round to agriculturalists, industries and manufacturers, 

urban powerhouses, and domestic users. Reservoirs also provide a recreational resource for 

citizens and tourists. While nearly 15 percent of California’s electricity supply comes from 

hydropower, the water stored and delivered through the dam and reservoir network supports the 

most populated state in the country and the sixth largest economy in the world (Escriva-Bou et 

al. 2017). 

 

Despite these many benefits, dam-building comes at an enormous and often irreparable cost to 

the environment by altering or degrading natural riverine and delta hydrology, ecology, and 

animal habitat and life (Nilsson et al. 2005). For example, the dams and reservoirs of the Central 

Valley Project block access for salmon and steelhead to reach their native spawning grounds, 

leading to their status as endangered species. Furthermore, the diversion of water for irrigation 

resulted in a loss of over half of the valley’s native freshwater wetlands and destroyed habitat for 

native migrating birds and fish species (Kahrl, 1982, 61). The Sacramento-San Joaquin Delta 

smelt population has declined by more than 90 percent since the completion of large-scale CVP 

and SWP dams and reservoirs (Kahrl, 1982, 61). In terms of social impacts, dam projects may 

forcibly displace existing populations, and can pose significant risks to flooding or destruction of 

life and property. As with many large infrastructural projects, dams tend to be extremely 
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expensive and have years-long construction timelines, which can lead to political, financial, and 

taxpayer holdouts.  

 

Over the past three decades, support for dam removal and river restoration projects have 

increased across the U.S. Since 1987, California removed more than 36 dams (Escriva-Bou et al. 

2017). There are many reasons to remove a dam, including the costs of improving or retrofitting 

aged and dilapidated dams, protecting endangered species (i.e. salmon and steelhead fish, 

migratory bird habitats), the decreasing energy share from many hydroelectric dams, earthquake 

safety hazards, and reduced benefits (Johnson and Graber 2002, Poff et al. 1997, Stanley and 

Doyle 2003). The 2015 breaching of San Clemente Dam on the Carmel River was the largest 

dam removal in state history (Escriva-Bou et al. 2017). Several other large dams are ready for 

removal, including Matilija Dam in Southern California and four aging hydropower dams on the 

Klamath River in Northern California (Escriva-Bou et al. 2017). 

 

On the other side of the issue is a camp of thinkers who believe in the face of climate change, 

dams are more necessary than ever. For example, Beatty et al. argue that artificially created 

waterbodies can serve as barriers to invasive species, and actually maintain habitats for 

endangered aquatic organisms where changing climatic conditions dewater, reduce, or warm 

their habitat water bodies (2017). Moreover, water-poor regions under climate change can use 

additional dams and reservoirs to increase resilience to droughts and secure adequate water 

supply for their populations.  
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California is an area expected to experience warmer average temperatures along with more 

variable rain and snowfall due to climate change, which has the potential to diminish the future 

supply of water (Pittock and Hartmann 2011). Additionally, the majority of surface water 

precipitation falls in the Northern part of the state as snow over the Sierra Nevadas, leaving the 

Southern part of the state extremely water-scarce. These factors, along with historic and 

projected long, mid, and short-term droughts, contribute to the dam debate in California being 

focused on maintaining, repairing, and adding to existing infrastructure, rather than on removing 

dams. There are currently several water supply expansion projects that involve constructing four 

new reservoirs using Proposition 1 funds, including a large-scale dam on the San Joaquin River 

in Fresno County, which would hold enough water for 6.5 million people a year and become the 

second tallest in the state (Rogers 2017).  
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The Social Vulnerability Concept: What Is It, and Why Is It Important? 

The attitude of California policymakers and constituents is favorable to maintaining existing and 

building additional dams and reservoirs. Given what we know about California’s aging dam 

infrastructure, and that 833 of the 1,585 dams are High Hazard Potential dams, it is necessary to 

take a critical look at who is most vulnerable to flood-risk in a scenario of dam failure or 

misoperation. To do this, this project employs a method to measure the social vulnerability to 

HHP dams in the state.  

 

Considerable research has examined components of biophysical vulnerability and the 

vulnerability of the built environment, with less attention payed to understanding the social 

aspects of vulnerability. Social vulnerability is described using the individual characteristics of 

people (i.e. age, race, health, income, type of dwelling unit, employment, etc.) and is partially the 

product of social inequalities – or social factors that influence the susceptibility of various groups 

to harm and that govern their ability to respond (Cutter et al. 2003). Maantay and Maroko make 

the case that, “certain people may be disproportionately exposed to hazards due to physical 

factors, like having poor quality housing that inadequately withstands hazard events… but they 

may also be at a disadvantage due to lack of strong social, financial, or political support 

structures, and thus suffer greater relative losses, and experience a longer recovery time after a 

disaster… than the affluent, mainstream, or socially supported” (2009). 

 

According to Cutter et al., one of the barriers to social vulnerability theory and research is the 

debate on whether it can be quantified or measured for empirical analysis, and subsequently how 

to do so (2003). Rufat et al. state that over the past decade, social vulnerability indices have 
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emerged as a leading tool to quantify and map human dimensions of hazards vulnerability 

(2015). These indices are valuable tools for policy formulation and disaster preparedness and 

response planning (Rufat et al. 2015). However, the authors note that social vulnerability indices 

exhibit a large degree of uniformity in index construction approaches. This may result in 

misleading conclusions if pertinent variables are excluded or if weakly influential variables are 

overrepresented (Rufat et al. 2015). Furthermore, Rufat et al. argue that factors such as social 

capital, risk perception, and psychosocial dimensions of health are important indicators of flood-

risk that typically cannot be computed from national census data, and require qualitative 

methods, targeted surveys, and participatory approaches to measure (2015).  

 

It has been argued that quantification of the complex nature of social vulnerability is an 

important and long overdue addition to the hazard mitigation planning and implementation 

processes, especially in the context of climate change adaptation and disaster risk reduction 

strategies (Tate et al. 2010). There is increasing momentum for research that measures 

vulnerability, especially as governments turn their attention to planning for, and responding to, 

natural hazards (Stafford and Abramowitz 2017). Environmental hazards can be neither 

eliminated nor controlled, but humans can reduce the risk associated with them by integrating 

knowledge on the multifaceted dimensions of risk, which include social, demographic, and 

economic factors (Solangaarachchi et al. 2012).  

 

Several methodologies exist for assessing social vulnerability across different scales and 

systems. However, the indicator-based approach is common for analyzing patterns in areas that 

are addressing specific environmental hazards (Mavhura et al. 2017). There are still 
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disagreements in the selection of indicators of social vulnerability. This is due to the fact that 

natural disasters, and by extension vulnerability, are highly contextual, temporal, spatial, and 

variable phenomena. Despite this challenge, Chang et al. argue that the indicator approach is 

ideal for comparative purposes of places (2005). The approach can provide an estimation of the 

baseline vulnerability at the local level, which is important for policy- and decision-makers in 

disaster risk reduction (Mavhura et al. 2017). Mavhura et al. conclude that the most important 

aspect in the selection of indicators is to ensure that the indicators address the research question 

and test the concepts under operationalization (2017).  

 

Overall, my review of the methods for quantifying social vulnerability informed my decision to 

use an indicator-based approach in lieu of a social vulnerability index. The following section 

provides a deeper look at the specific literature on social vulnerability and flood-risk, and serves 

as the rationale for the selection of variables that address my research questions.  
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Social Vulnerability and Flood-Risk: Previous Research and Findings 

Despite a dearth of literature on the social vulnerability of populations to dam-inundation events, 

there is abundant research on the social determinants of flood-risk in cases of sea-level rise, 

climate change, high precipitation, and storm events. From a geographic perspective, coastal 

cities, inland floodplains, densely populated areas, and regions with more exposure to tropical 

storms and hurricanes (such as the Northeast, South, and Midwest) experience much higher rates 

of flooding than others.  

 

Nearly 80 percent of the U.S. population reside in urban areas, which exacerbates flood-risk 

because sprawling impervious surfaces prevent ground absorption, concentrate urban runoff, and 

overload water drainage systems during storms. High population densities in flood-prone urban 

areas can also hinder evacuation due to congestion, limited exit routes, and dense building 

infrastructure (Donner and Rodriguez 2011). 

 

Considering the social determinants of flood-risk, striking indicators and inequalities along the 

lines of race, ethnicity, socioeconomic status, age, gender, education, homeowner status, native 

language, and citizenship emerge. These characteristics are inextricably bound up with location, 

as socially and economically marginalized groups have the least choice about where to live, and 

often end up in more hazardous areas where housing costs are lower (Fielding and Burningham 

2005).  

 

Chakraborty et al. (2014) and Donner and Rodriguez (2011) find that Black, Latino, Hispanic, 

and low-income communities are significantly more likely to reside in high flood-risk zones, 
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including 100-year floodplains and flood-prone sections of cities with less structural resilience. It 

follows that other factors correlated with poverty, including gender, age, and education level are 

also correlated with higher vulnerability to floods. Moreover, research shows that language 

barriers contribute significantly to the inadequate dissemination of flood warnings and 

evacuation announcements, and that fear of deportation influences undocumented migrants and 

mixed-status families’ decision to go to evacuation shelters (Donner and Rodriguez 2011, 

Maldonado et al. 2015). 

 

In addition to being more vulnerable to floods, socially and economically disadvantaged groups 

face unequal barriers to recovery. For example, Fielding and Burningham show that low-income 

people are less likely to have enough financial resources to cover them during an emergency 

(2005). Furthermore, low-income individuals are more likely to lose their job if they are 

displaced from their homes, because even temporary relocation can prevent a person from 

getting to or from work (Fielding and Burningham 2005). These populations tend to work in 

employment sectors with higher turnover, fewer labor protections, lower job security, and 

invisible or informal occupations, where missing even a day of work can result in 

unemployment. This pattern further places a disproportionate economic burden on low-income 

groups struggling to recover from a flood event or disaster.  

 

Maldonado et al. find that racial and ethnic minorities are less likely than non-Hispanic 

Caucasians to take certain disaster precautions, like purchasing flood insurance, or installing 

storm shutters (2015). Additionally, agencies like FEMA and HUD deny post-disaster assistance 
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to foreign-born individuals at higher rates than citizens, regardless if they are green-card holders 

or legal residents (Maldonado et al. 2015).  

 

Fielding and Burningham summarize that the risk of the initial disaster and speed of recovery 

from a flood event is often disproportionately borne by the very young, very old, and the 

disabled. These reasons include dependency and inability to transport themselves to safety zones, 

the fact that many elderly live alone, and that these groups may not have the same access to 

evacuation warnings or evacuation centers (2005). Populations younger than 5 older than 65 may 

also have additional needs in a disaster event, such as refrigerated medications and assisted 

transportation (Fielding and Burningham 2005).   
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Chapter 4: Data and Variables 

Description of Datasets  

To answer the project’s proposed research questions, I use the three datasets listed below. 

Table 2: Summary of Datasets 
 

Data Source Publisher Data Year(s) 

National Inventory of Dams U.S. Army Corps of Engineers 2015  

Dam Inundation Maps California Office of Emergency Services 2017 

American Community 
Survey 

U.S. Census Bureau American Fact 
Finder 2012 – 2016  

 

The National Inventory of Dams 

The main source of dam data comes from the 2016 U.S. Army Corp of Engineers’ National 

Inventory of Dams (NID). Free access to this dataset is limited to relevant government agencies 

and employees. However, I was able to purchase this dataset through the ProPublica Data Store 

with a Graduate Research Grant provided by the UCLA Luskin Center for Innovation. The 2016 

NID uses information collected through 2015 on 90,580 dams in the United States. According to 

the NID, any dam that exceeds 25 feet in height and 15 acre-feet in storage, exceeds 6 feet in 

height and 50 acre-feet in storage, or is classified as a High or Significant Hazard is included in 

the NID. The comprehensive dataset includes 71 variables of the physical, structural, regulatory, 

operating, and geographic characteristics of these dams.  
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Table 3: Selected NID Variables 
 

Variable Description 

Downstream 
Hazard Potential 

Code indicating the potential hazard to the downstream area resulting 
from failure or misoperation of the dam or facilities. 

Low (L), Significant (S), or High (H). 

Year Completed Year (four digits) when the original main dam structure was 
completed. 

Inspection Date Date of the most recent inspection of the dam prior to the transmittal 
of the data by the submitting agency. 

Inspection 
Frequency The scheduled frequency interval for periodic inspections, in years. 

 

For the purposes of this project, I investigate several variables from the NID. These include dam 

size (NID Storage), age (Year Completed), and inspection compliance (ratio of Inspection Date 

to Inspection Frequency). Additionally, the variable “Downstream Hazard Status,” determines 

the subset of dams I need to answer research questions 2, 3, and 4. The California Division of 

Safety of Dams assigns a hazard status based on the potential downstream impacts to life and 

property should the dam fail when operating with a full reservoir (2017). Furthermore, the hazard 

status is separate from the condition of the dam or its appurtenant structures (DSOD 2017). 

FEMA’s publication “Federal Guidelines for Inundation Mapping of Flood Risks Associated 

with Dam Incidents and Failures” defines the criteria for downstream hazard status (Beadenkopf 

et al. 2013).  

 

The downstream hazard of a dam falls into one of three categories of increasing severity: Low, 

Significant, and High. A dam with a High Hazard Potential (HHP) status means that the failure 

or misoperation of the dam will result in significant loss of life, property destruction, or 
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environmental damage (USACE 2016). The state of California has a higher number and 

proportion of hazardous dams than most other states in the nation, with 53 percent (833 of 1,585) 

classified as HHP. To compare this percentage to states with a similar number of dams, consider 

that just 5 percent of Wyoming’s dams (97 of 1,617) and 14 percent of Illinois’s dams (231 of 

1,607) are High Hazard Potential. Out of 1,736 total dams, Colorado has 425 HHP dams (or 25 

percent). Among other West Coast states, about 17 percent of Oregon’s dams (146 of 869) and 

31 percent of Washington’s dams are HHP (243 of 784). The only state with similar number and 

proportion of hazardous dams is Pennsylvania, where 809 of 1,525 dams are high hazard (53 

percent). 

 

The 2016 NID data includes a disclaimer that the 2015 hazard and condition status for each dam 

is not included in the dataset, for reasons of protecting national security and critical 

infrastructures (NID 2016). However, the dataset includes both the 2002 and 2013 inventory of 

the nation’s dams, with the 2002 dataset reflecting the hazard status of each dam. The USACE 

warns that the hazard potential assigned to 2002 dams may have changed in recent years, if 

substantial repairs, construction, or restrictions occurred in that time period. To bolster the 

validity of isolating the High Hazard Potential dams in California and reflect the most accurate 

hazard status given these limitations, I cross-reference the HHP dams from the 2002 NID with a 

2017 publication from the California Division of Safety of Dams. This publication, titled “Dams 

within Jurisdiction of the State of California,” is also based on the 2015 NID (2017). It 

republishes 17 of the NID’s 71 variables, including the hazard rating. The DSOD has jurisdiction 

over about 79 percent of the state’s dams (1,249 of 1,585), and the combination and cross-
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checking of these two sources together represent the most comprehensive list of hazardous dams 

available.  

 

Dam Inundation Boundary Maps 

The second data source I use in my project is a compiled package of dam inundation maps 

obtained through the California Office of Emergency Services (CalOES) via a Public Records 

Act request. This data arrived through the U.S. Postal Service on a CD-ROM drive, containing 

the GIS shapefiles of 564 dam inundation zones. The dam inundation mapping program began in 

response to the Sylmar earthquake on February 9, 1971, which caused severe damage to the 

Upper and Lower Van Norman Dams and threatened to cause extensive damage to life and 

property had dam failure occurred (CalOES 2018). The California Code of Regulations §335 

dictates that “inundation maps shall be prepared for dams and critical appurtenant structures 

regulated by the state, except dams classified by the department as low hazard as described in 

§335.4” (“Emergency Regulations” 2018). Thus, inundation maps for all dams with Significant 

and High Hazard Potential status within the jurisdiction of the DWR DSOD are included in this 

dataset (581 of 1,249). The DSOD permits waivers to this requirement provided no risk to life or 

property exists (CalOES 2018).  

 

CalOES conveys that these maps approximate the maximum water flow resulting from a 

complete dam failure, and therefore portray a catastrophic failure of the dam as opposed to the 

failure of a critical appurtenant structure such as a spillway (De Alba 2018). These maps are 

prepared by civil engineers on behalf of dam owners, as required by California Code of 

Regulations §335.8 and §335.12 (“Emergency Regulations” 2018). The main underlying 
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assumption for determining each inundation zone is that the amount of water in the dam is at the 

safe operating capacity at the time of failure (De Alba 2018). Refer to Appendix F for a full list 

of dam inundation boundary maps included in this project.  

 

The American Community Survey 

The final dataset I use is the American Community Survey, which underpins the analysis of 

social vulnerability to dam-induced flood risk. This data is publicly available, and I downloaded 

it through the United States Census Bureau American Fact Finder website. The American 

Community Survey “is a nationwide, continuous survey designed to provide communities with 

reliable and timely demographic, housing, social, and economic data every year” (U.S. Census 

Bureau 2017). I use the 2012-2016 five-year estimates for all census block groups in California. 

The census block group (CBG) is the smallest geographic scale that the data is available. To 

select the social vulnerability variables for analysis, I drew on previous literature and academic 

research on the demographic and socioeconomic determinants of flood-risk. These include race, 

ethnicity, age, gender, income, ability, employment status, housing tenure, car ownership, 

educational attainment, and citizenship.  

 

Across these 11 social vulnerability categories, I analyzed 30 specific variables. In addition to 

seven variables for race and ethnicity, I include three distinct measures of income in order to 

gain a deeper understanding of relative and absolute poverty in California. The rationale for this 

stems from social vulnerability and flood-risk literature that identifies income among the most 

significant indicators of flood hazard exposure (Fielding and Burningham 2005). Though I use 

an indicator-based approach to analyzing social vulnerability, the two best-known and widely-
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used social vulnerability indexes incorporate several variables of wealth, income, and poverty for 

similar reasons.2 

 

Absolute poverty is measured according to the official U.S. poverty line. This income-based 

threshold fluctuates depending on family size, household combination, and the annual Consumer 

Price Index (Fritzell et al. 2015). For example, in 2016 a family of four with a total household 

income at or below $24,339 was considered poor (Semega et al. 2017, 43). The major drawback 

to this measure is that it fails to consider place-to-place differences in the cost of living (e.g., 

transportation, housing), does not adjust for state and local difference in taxes, and ignores in-

kind income such as housing vouchers or food stamps (Lichter and Schafft 2016, 15). A relative 

measure of poverty is the ratio of the household’s income to the surrounding area’s median 

income. Relative poverty measures account for the place-specific differences that absolute 

measures fail to. The Area Median Income is typically at the scale of the county or the 

Metropolitan Statistical Area.  

 

There is wide variation in local taxes and housing and transportation costs across the cities and 

counties of California. To reveal the spatial patterns and nuances of poverty, I chose seven 

variables to assess the median income, absolute poverty rate, and relative poverty rate for each 

census block group. The Median Household Income variable allows for an initial interpretation 

and comparison of income. The variable is measured at the census block group level, and is the 

                                                
2 University of Southern Carolina Hazards and Vulnerability Research Institute developed the Social Vulnerability 
Index (SoVI). It uses principle components analysis to synthesize 29 socioeconomic variables from the American 
Community Survey and create a county-level vulnerability “score.” Five of these 29 variables are categorized as 
“Wealth” indicators and together explain nearly 16 percent of the variance in the index (2013). The Center for 
Disease Control Agency for Toxic Substances and Disease Registry developed the Social Vulnerability Index (SVI). 
It uses 15 variables from the Decennial Census to create a single tract-level percentile rank for vulnerability. Four of 
the 15 variables are categorized as “Socioeconomic Status.”  
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median dollar amount of all household incomes within the block group. CBGs with lower 

median household incomes can reveal the geographic distribution or concentration low-income 

households. 

 

The three variables “V9ExtrmLowInc” “V9VeryLowInc” and “V9LowInc” provide information 

on the number of households experiencing relative poverty by CBG. These income categories are 

used by the U.S. Department of Housing and Urban Development (HUD) to determine eligibility 

for the Section 8 Housing Choice Voucher Program (HCD 2017). Households are Low Income if 

they earn 80 percent of the Area Median Income (AMI), Very Low Income if they earn 50 

percent of the AMI, and Extremely Low Income if they earn 30 percent of the AMI. To capture 

the number of households experiencing absolute poverty, I included the three variables 

“V10PctBlw50” “V10PctBlw100” and “V10Pctlw150.” These account for the number of 

individuals earning at or below 50 percent, 100 percent, or 150 percent of the federal poverty 

threshold.  

 
Table 4: Selected Social Vulnerability Variables 

 
Variable 
Category 

ACS Table 
Variable Name Description 

Age 
B01001 

V1Pct_14_65 Percent of dependent age population, defined as 
younger than 14 or older than 65. 

V1Pct_14_85 Percent of dependent age population, defined as 
younger than 14 or older than 85. 

Automobile 
B25044 V2Pct_NoAuto Percent of households with no vehicle available. 

Citizenship 
B99051 

V3PctCitizen Percent of the population born in the United States. 

V3PctForeignBorn Percent of the population born outside the United 
States. 
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Disability  
C21007 

V4PctDis Percent of the population aged 18 or above with a 
disability. 

V4PctDis65 Percent of the population aged 65 or above with a 
disability. 

Education  
B15003 

V5Pct_No_HS Percent of the population aged 25 or above with no 
high school degree or GED.  

V5Pct_HS_Deg 
Percent of the population aged 25 or above whose 
highest educational attainment is a high school degree 
or GED.  

V5Pct_Abv_HS 
Percent of the population aged 25 or above whose 
highest educational attainment is at least a 2- or 4-
year degree.  

Employment 
B23025 V6PctUNEMP Percent of population aged 16 or above in the civilian 

labor force that are unemployed. 

Ethnicity 
B03003 

V7PctHISP Percent of the population that are Hispanic or Latino. 

V7PctNotHISP Percent of the population that are not Hispanic or 
Latino. 

Gender 
B11001 

V8PctFHH Percent of female-headed households (no partner 
present). 

V8PctMHH Percent of male-headed households (no partner 
present). 

Income 
B19013 (V9) 

C17002 (V10) 

V9ExtrmLowInc 
Number of "Extremely Low Income" households. 
Defined by HUD as earning 30 percent of the Median 
Area Income. 

V9VeryLowInc 
Number of "Very Low Income" households. Defined 
by HUD as earning 50 percent of the Median Area 
Income. 

V9LowInc 
Number of "Low Income" households. Defined by 
HUD as earning 80 percent of the Median Area 
Income. 

V9MEDHHINC 
Median household income in the past 12 months (in 
2016 inflation-adjusted dollars) of the Census Block 
Group. 

V10PctBlw50 Percent of the population with income at or below 50 
percent of the federal poverty line. 

V10PctBlw100 Percent of the population with income at or below the 
federal poverty line. 

V10Pctlw150 Percent of the population with income at or below 150 
percent of the federal poverty line. 

 
 V11PctWhite Percent of the population that is White alone. 
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Race 

B02001 

V11PctNonWhite Percent of the population that is Nonwhite. 

V11PctBlack Percent of the population that is Black or African 
American alone. 

V11PctIndigenous Percent of the population that is American Indian and 
Alaska Native alone. 

V11PctAsian Percent of the population that is Asian alone. 

V11PctPacific Percent of the population that is Native Hawaiian and 
Other Pacific Islander alone. 

Tenure 
B25003 

V12PctRenter Percent of the population that rents their housing unit. 

V12PctOwner Percent of the population that owns their housing unit. 
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Data Limitations  

There are unique limitations to each data set that are dependent on a number of factors related to 

their respective methods for collection and representation. The glaring limitation of the National 

Inventory of Dams data is the suppression of the most up-to-date hazard status of dams. Though 

I use the methodology of validating the 2002 NID dataset with hazard potential information 

supplied by the California DSOD, there is potential omission of HHP dams for the 336 (of 1,585) 

dams that are not under the jurisdiction of the state.  

 

Considering the set of 564 dam inundation maps, some acknowledgement of the approximation 

of the inundation zone is necessary. First, since civil engineers prepare the maps on behalf of 

dam owners, there is variation in the modelling software, methods, and assumptions used to 

determine each inundation boundary. Second, the main assumption for each map is that the 

amount of water at the time of dam failure is within the safe operating capacity of the dam (De 

Alba 2018). One issue with this assumption is that capacity restrictions or limitations are 

imposed as necessary when structural or safety problems are identified. Another issue, 

demonstrated by the Oroville Dam Spillway Failure, is that the water level of a reservoir can rise 

well above the safe operating capacity in a short time period under certain climatic conditions 

and weather events.  

 

Taken together this means that some inundation maps may over or under-approximate the flood 

zone boundary, and do not reflect current reservoir levels “on the ground.” Finally, the sample 

size of dam inundation boundary shapefiles is constrained to 581 because the California Water 

Code does not require every dam to create an inundation zone map. The sample size if further 
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limited to 564 zones because 5 of shapefiles were missing data and could not be projected and an 

additional 12 could not be matched with existing dam from the NID.  

 

Finally, the ACS is a survey, and thus has the potential to contain a number of errors stemming 

from issues of sample size, data entry and imputation error, and the nature or phrasing of survey 

questions. Sampling error is the difference between an estimate based on a sample and the 

corresponding value that obtained if the entire population were surveyed (Census Bureau 2017, 

10). The Census Bureau states that sampling error in the ACS data "arises due to the use of 

probability sampling, which is necessary to ensure the integrity and representativeness of sample 

survey results” (2017, 9).  

 

Non-sampling error can occur if survey data is inputted incorrectly, when a variable is weighted 

inaccurately, or during the data editing and cleaning process. For example, the “hot-deck” 

imputation method used to generate values for missing fields and nonresponses can be erroneous 

because it replicates the answer of an existing survey taker with similar demographic or 

socioeconomic characteristics (Census Bureau 2017, 12). The Research and Training Center on 

Disability in Rural Communities describes the issues with survey results from rural counties, 

which include smaller sample sizes, higher margins of error, and an “urban bias” in design of 

survey questions (2017). Regarding ACS estimates for populations with disabilities, they state, 

“The high margins of error [from small sample sizes] make data less reliable at smaller 

geographies (e.g. counties) and forces researchers to aggregate the data to increase data validity. 

This limits the ability to analyze county level disability data, particularly for subgroups like race 

and ethnicity” (2017, 7). 
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The disabled population estimates are also complex because “disability is a dynamic concept that 

changes over time as one’s health improves or declines, as technology advances, and as social 

structures adapts. As such, disability is a continuum… Various cut-offs are used to allow for a 

simpler understanding of the concept, the most common of which is the dichotomous ‘With a 

disability’ / ‘No disability’ differential” (U.S. Census Bureau 2018). Weathers compares 

disability data from six nation-wide population and health surveys, and concludes that “The ACS 

population and prevalence rate estimates are lower than estimates from datasets that use a larger 

set of questions to estimate the size of the population with disabilities and higher than estimates 

from datasets that use a smaller set of questions” (2005, 28). This indicates that the number 

questions and the nature of the questions asked can cause an under- or over-estimate of disabled 

individuals.  

 

However, in 2008, the Census Bureau conducted a conceptual and empirical overhaul of the 

ACS disability questions, to the extent that they do not recommend any comparisons of post-

2008 disability data to previous years. A recent study comparing the 2012 ACS disability 

estimates with the 2011 National Health Interview Survey affirms that ACS questions identify a 

representative sample of the population with hearing, cognitive, ambulatory, self-care, and 

independent living difficulties (Altman et al. 2017, 489). The authors assert that their results do 

not support the argument that the ACS questions result in a population sample that is biased (i.e., 

that misses an important segment of the population with disabilities) (2017, 490). Thus, I assume 

the results of my statistical analyses concerning individuals with disabilities to be an unbiased 

and representative snapshot of this population.  
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The wording of survey questions and range of acceptable potential responses can be a limitation 

for other estimates as well. For example, after the 2000 Decennial Census the Bureau changed 

the question regarding race by adding a sixth category, “Some Other Race,” and began allowing 

respondents to select more than one race. Brooks claims, “This change, while meant to allow for 

more inclusiveness, made it difficult to accurately calculate racial and ethnic trends” (2008, 2). 

Autry reports that these shifts in racial classifications raise questions about how people interpret 

the same question differently (2017). For example, how can researchers accurately evaluate 

demographic trends when people’s perception of their racial background changes? (2017). A 

2015 study by the Pew Research Center found at least 9.8 million people reported a different 

racial or ethnic background on the 2010 Decennial Census than they did in the 2000 census 

(Autry 2017). To address this in my research, I include variables for the five major race 

categories of White, Black or African American, American Indian or Alaskan Native, Asian, and 

Native Hawaiian or Pacific Islander, as well as a calculated variable Nonwhite. The Nonwhite 

variable captures these four nonwhite populations, as well as individuals who identify as “Some 

other race alone,” and “Two or more races.”  

 

Misinformation and nonresponses on the part of the survey taker also influences the accuracy of 

ACS data. Individuals may be unable to respond to question because they are unsure of the 

potential answer, misunderstand the question due to language barriers or question phrasing, are 

in poor health, or have another impairment impeding their ability to complete the survey as 

accurately as possible. Other factors for nonresponse and measurement error include disinterest 

and lack of time (Meyer et al. 2015). Individuals might experience internalized biases and social 
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stigmas that influence their answers. For example, Meyer et al. concludes that between 25 and 36 

percent of survey takers either failed to report or significantly underreported income from 

transfer benefits and social programs such as the Temporary Assistance for Needy Families, 

Supplemental Nutrition Assistance Program, or Supplemental Security Income (2015). Meyers 

cites societal stigma against social safety net recipients as a reason answers are mis-reported, 

such as anti-poor rhetoric that ignores structural influences and blames individuals for their 

economic status (2015).  

 

Survey takers may intentionally leave questions blank or report incorrect information because of 

privacy concerns or unease about how unease about how local, state, or federal government 

officials might use certain survey answers. For example, question 8 of the ACS asks whether 

respondents were born in the United States or were born abroad. Though the ACS does not ask 

specifically about immigration status, Passel et al. show that citizenship and legal status is 

strongly associated with country of birth and the number of years a person has lived in the U.S. 

(2006; Van Hook and Bachmeir 2013). By comparing the responses to this question with the 

Office of Immigration Statistic’s official estimates of the undocumented foreign-born population, 

Van Hook and Bachmeir found significant underreporting and nonresponse among all 

immigrants with less than five years of U.S. residence, among Mexican men of all ages and 

durations of residence, and among Mexican women ages 40 and older (2013, 12). Therefore, I 

expect the results of my statistical analysis of foreign-born populations to be an under-

represented and incomplete estimate.  
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Despite the limitations of the NID, dam inundation maps, and ACS survey data, these three 

datasets represent the best available data for the purposes of this investigation.  
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Chapter 5: Methods 

Research Design  

This research uses quantitative methods and follows four main steps, including identification of 

vulnerable groups, data acquisition, data editing and geoprocessing, and statistical analysis. I 

modelled the research design after previous, recent studies of social vulnerability and flood risk, 

similar to the methods of Lawal and Arakoyu (2015). 

 

The geographic focus of this research project is the state of California. More specifically, the 

boundaries of analysis are dam inundation zones across the state. The selected population, and 

units of analysis, are individuals and households within census block group either inside or 

outside these dam flood zones.  

 

The instruments I use to measure outcomes in this study are Geographic Information Systems 

(GIS) and Statistical Package for the Social Sciences (SPSS) software. Within the GIS platform, 

I utilize several geoprocessing tools to identify populations living within or outside of dam flood 

zones. I use SPSS to conduct comparison of means tests and multiple regression analyses to 

identify the relationship between social vulnerability characteristics, dam inundation zones, and 

certain dam characteristics including reservoir size, age, and inspection frequency ratio.  

 

The main questions of this study are as follows: 
 

1) Are socially vulnerable households more likely to live within dam flood zones than 
outside of them in California? 

a. Statistical Test: Comparison of means with a two-tailed independent samples test 
i. Test Variables: Selected social vulnerability characteristics 

ii. Grouping Variable: Within (1) or outside (0) all dam flood zones. 
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2) Are socially vulnerable households more likely to live within HHP dam flood zones than 

outside of them in California? 
a. Statistical Test: Comparison of means with a two-tailed independent samples test 

i. Test Variables: Selected social vulnerability characteristics 
ii. Grouping Variable: Within (1) or outside (0) HHP dam flood zones. 

 
3) Which factors of household social vulnerability are significantly correlated with living in 

a dam flood zone? Do these differ from factors significantly correlated with living in an 
HHP dam flood zone? 

a. Statistical Test: Multiple linear regression 
i. Independent Variables: Selected social vulnerability characteristics 

ii. Dependent Variable: Within (1) or outside (0) HHP dam flood zones.  
 

4) Is there a relationship between social vulnerability and the HHP dam characteristics of 
age and inspection compliance? 

a. Do HHP dams built more than 50 ago have higher proportions of socially 
vulnerable households within their inundation zones than HHP dams built less 
than 50 years ago?  

i. Statistical Test: Comparison of means with a two-tailed independent 
samples test  

1. Test Variables: Selected social vulnerability characteristics 
2. Grouping Variable: Dam Age ≥ 50 years (1) or < 50 years (0). 

 
b. Do HHP dams with failed inspection compliance have higher proportions of 

socially vulnerable households within their inundation zones than HHP dams in 
compliance? 

i. Statistical Test: Comparison of means with a two-tailed independent 
samples test  

1. Test Variables: Selected social vulnerability characteristics 
2. Grouping Variable: Fail (1) or Pass (0).  

 
Research Procedure  

As stated above, the procedure of this project’s methods follows 1) identification of vulnerable 

groups, 2) data acquisition, 3) data editing and geoprocessing, and 4) statistical analysis.  
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Identification of Vulnerable Groups 

To identify the characteristics of socially vulnerable groups, I draw on previous flood-risk and 

social vulnerability literature. This process resulted in the identification of 12 variables of social 

vulnerability, described in detail in the Data and Variables section. 

 

Data Acquisition 

I obtained the first dataset, the National Inventory of Dams, on February 1, 2018 through the 

ProPublica Data Store. The second dataset containing geospatial shapefiles for 564 dam 

inundation zones in California arrived via U.S. mail on January 11, 2018. I downloaded the third 

dataset, containing 30 variables of social vulnerability selected from the American Community 

Survey, on January 24, 2018.  

 

Data Editing and Geoprocessing 

Once I had access to all three datasets, I began the process of data projection, editing, and 

geoprocessing. I loaded the National Inventory of Dams data into GIS and spatially projected the 

file based on the latitudes and longitudes included for each dam in California. This resulted in a 

point shapefile of the data, showing the geographic location and each of the 71 attributes from 

the NID. 

 

The American Community Survey data was also straightforward to project in GIS software. 

After downloading the tables for the 30 selected social vulnerability characteristics, I combined 

all the data into a single excel spreadsheet. I then downloaded the Census Block Group 

geographic boundary shapefile from the U.S. Census Bureau website. Once I projected this 
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shapefile in GIS, I joined it with the selected ACS variables based on the unique 17-character 

Geographic Identification Number (GEOID_Data). This resulted in a spatial representation of all 

30 social vulnerability variables for each census block group in California.  

 

Next, I projected all dam inundation boundary shapefiles within GIS. This step required a 

significant amount of geoprocessing and attribute editing because many shapefiles were not in 

the right format to perform spatial analyses on. For example, to select census block groups 

within dam flood zones, I ran an Intersect function, which requires all inundation boundaries to 

be polygon shapefiles. However, the data I received contained 373 shapefiles in polygon format 

and 191 in polyline format (not counting the 17 shapefiles that I excluded because they were 

unable to be geospatially projected). Converting polyline flood zones to a polygon format took a 

degree of manual geographic editing to create a completely closed shape. I took care to alter the 

original polyline shape as little as possible, though I had to make some assumptions in cases of 

ambiguity. The common ambiguity I came across was an open-ended shape at the start and end 

of the inundation zone. In these cases, I enclosed the shape without adding any curvature.    
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Once all 564 dam inundation boundary shapefiles were in the polygon format, I joined them with 

the National Inventory of Dams point data shapefile, based on the field Dam Name. Thus, each 

dam inundation boundary also contained the 71 variables of the NID. I then merged all 564 dam 

flood zones into a single shapefile, keeping the boundaries and NID attribute information intact. I 

replicated this process for HHP dams by selecting and merging the 481 flood zones attached to 

hazardous dams. The result was one shapefile that contained all dam flood zones and one 

shapefile that contained only HHP dam flood zones.  

 

The final step of GIS analysis was to differentiate the census block groups that fall within dam 

flood zones from those outside of them. This process produces the data necessary to perform 

statistical analyses comparing the social vulnerability characteristics of people living within or 

outside of the inundation areas. Most dam inundation zones cross portions of census block 

groups, where only a certain percent of the block group falls within the flood zone. To address 

this, I created a copy of the ACS social vulnerability shapefile using the Make Feature Layer tool 

in ArcToolbox. This tool allows for an area-weighted, proportional result when running 

geoprocessing functions that overlay two shapefile layers with different spatial boundaries.  

 

Using the shapefile outputted from the Make Feature Layer tool and the shapefile with all 564 

dam flood zones, I ran the Intersect tool. This tool returns a shapefile containing the whole or 

partial census block groups that fall within dam inundation boundaries. After running this 

function, I had a shapefile reflecting proportionalities in the social vulnerability variables for 

intersected census block groups. For example, consider a CBG where 100 households do not 
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own a car and 25 percent of the block group falls within a dam flood zone. After running 

Intersect, the output shapefile would show that 25 households in that CBG do not own a car. I 

replicated this process using the Symmetrical Difference tool, which is the inverse of the 

Intersect tool. In other words, the Symmetrical Difference function shows all the census block 

groups that are outside of a dam inundation zone. The same assumptions for ensuring 

proportionality applied to this step as well.  

 

At the end of this process, I had one shapefile with CBGs within all 564 dam inundation zones 

and one shapefile with CBGs outside these zones. I ran these steps again for HHP dam flood 

zones. The result was a third shapefile with CBGs within the 481 HHP dam flood inundation 

zones and a fourth shapefile with CBGs outside these zones. The Intersect and Symmetrical 

Difference geoprocessing functions split many of the 23,212 total census block groups into 

multiple parts, which explains the high number of CBGs within or outside dam flood zones.  

 

Table 5: Number of CBGs for Selected Shapefiles  

     CA Census Block Groups 23,212 

     CBGs Within All Dam Flood Zones 49,414 

     CBGs Outside All Dam Flood Zones 17,473 

     CBGs Within HHP Dam Flood Zones 38,927 

     CBGs Outside HHP Dam Flood Zones 17,500 

 

Statistical Analysis 

The final step of the statistical analysis for this project was to export the data from GIS to an 

excel format, so it could then be uploaded into SPSS. I used the GIS conversion tool “Table to 
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Excel” for the four flood zone shapefiles. After opening each table in excel, I added a new field 

reflect the variable “In Flood Zone.” A value of 1 indicates census block groups within dam 

inundation zones, and a value of 0 indicates block groups outside of zones. The excel tables were 

then combined. Next, I added new fields calculate the percentages of each social vulnerability 

characteristic in each census block group. The first finalized spreadsheet, “All Dam Flood 

Zones,” contained the census block groups within and outside 564 inundation zones in 

California. The second finalized spreadsheet, “HHP Dam Flood Zones,” contained the census 

block groups within and outside 481 HHP inundation zones in California. Both included the 30 

selected social vulnerability variables and 71 NID variables by census block group.  

 

After uploading these two datasets into SPSS, I completed a number of steps to normalize the 

independent variables and account for any missing or null values. To compute missing values, I 

selected all variables measured at the scale level and recoded them into the same variables by 

replacing “System- or user-missing” values with -9999. I selected this value because it does not 

normally appear in any of the data. I then entered this value in the “Discrete missing values” 

column for all relevant variables, which ensures the exclusion of missing values from the 

statistical analyses and regressions.  

 

Second, I normalized all of the independent variables to the best of my ability. This is an 

important step because non-normalized variables included in the independent samples tests or 

multiple linear regressions can influence the validity, character, and interpretation of the results. 

The independent variables for multiple regressions are the 30 social vulnerability characteristics 

identified previously. For each, I applied a square root, natural logarithmic, or arcsine 
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transformation. I then performed the Kolmogorov-Smirnov test for normality and compared the 

skew, kurtosis, K-S test statistic, and histogram of the original variable against the three 

transformed variables. Out of these four variable iterations, I selected the one that had skew, 

kurtosis, and Kolmogorov-Smirnov test statistic values closest to 0.3 When multiple variable 

iterations had similarly skew, kurtosis, or K-S values, I referred to the histograms to determine 

which one had a distribution closest to the normal distribution curve. While none of the original 

or transformed social vulnerability variables had perfectly normal distributions, the ones selected 

to use in statistical tests are as close to a normal distribution as possible. Refer to Appendix A for 

a complete list of normalized variables and histograms for all dam inundation zones and for HHP 

dam inundation zones. 

 

I used two different statistical tests to answer the four research questions guiding my project. For 

research questions 1, 2, and 4, I performed independent samples t-tests. The test variables were 

the 30 normalized social vulnerability variables. The grouping variables included “In Flood 

Zone,” “Dam Age,” and “Inspection Compliance.” I used a 95 percent confidence interval 

threshold for determining statistically significant differences in means. Test variables with 

missing or null values were excluded analysis-by-analysis. The sig. value for Levene’s Test for 

Equality of Variances determined which values I include in the summary tables in Chapter 6: 

Results and Findings. After identifying the means for the normalized test variables, I then back-

                                                
3 Skewness is the extent to which a distribution of values deviates from symmetry around the mean. A value of zero 
means the distribution is symmetric. A skew value of +/- 1 is considered an acceptable range for most normality 
tests (Cutting 2017). Kurtosis is a measure of the “peakedness” or “flatness” of a distribution. A kurtosis value near 
zero indicates the shape is close to normal, while a negative value indicates a more peaked distribution, and a 
positive value indicates a flatter distribution. A kurtosis value of +/- 2 is considered an acceptable range for most 
normality tests (Cutting 2017). The Kolmogorov-Smirnov test statistic (D) is based on the largest vertical difference 
between the theoretical distribution (if the data were normal) and the empirical cumulative distribution function of 
the variable. A smaller K-S value implies the empirical distribution of the data is closer to a normal distribution. 
Larger values indicate the data do not follow normal distribution (Minitlab 2017). 
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transformed the values based on normalization method. The back-transformed values for each 

social vulnerability variable are listed in the summary tables in Chapter 6, while the complete 

outputs for each independent samples t-test are located in either Appendix B (RQ 1), Appendix C 

(RQ 2) or Appendix D (RQ 4).   

 

I ran two multiple linear regressions to answer research question 3. The dependent variable was 

the indicator “In Flood Zone.” Before selecting independent variables for the regression models, 

I assessed the multicollinearity among the 30 normalized social vulnerability variables. I ran the 

multicollinearity test for both datasets, “All Dam Flood Zones” and “HHP Dam Flood Zones.” 

Based on these results, I excluded certain variables that had high and statistically significant 

Pearson Correlation values (typically 0.8 and above).  

 

Despite the difference in the number of flood zones between the datasets “All Dam Flood Zones” 

(564) and the “HHP Dam Flood Zones” (481), the multicollinearity tests revealed similar highly 

correlated variables. The variables “V5PctAbvHS,” V5PctNoHS,” “V9MHHINC,” 

“V10PctBlw100,” and “V10PctBlw150” had high, statistically significant correlations with other 

indicators, and were excluded from the regressions. Furthermore, I excluded one of two variables 

for categories that were inverses of each other, such as Hispanic or Latino / Not Hispanic Latino, 

White / Nonwhite, and Citizen / Foreign Born. The total number of possible independent 

variables was limited to 21 of the selected 30 social vulnerability characteristics.   

 

I performed the multiple linear regression multiple times for both “All Dam Flood Zones” and 

“HHP Dam Flood Zones.” I used a 95 percent confidence interval threshold to determine 
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statistically significant variables and coefficients. Furthermore, I generated collinearity statistics 

for all regression model iterations. This calculates the variance inflation factor (VIF) of each 

variable. The general rule of thumb is that a variable with a VIF value less than 1 or greater than 

10 is significantly correlated with another variable included in the model (IDRE 2018). As such, 

I excluded a number of additional variables that had high VIFs (typically a value of 4 or more). 

Finally, I examined the p-value of the independent variables in the model to identify those that 

were not statistically significant. While testing different combinations of independent variables, I 

paid attention to the inclusion or exclusion of these in relation to their effect on the R-Square 

value. The final regression models therefore reflect the combination of normalized social 

vulnerability variables that result in the highest R-Square value, accounting for multicollinearity. 

Refer to Appendix D for the final outputs of all multiple linear regression models.4  

  

                                                
4 Due to my own statistical analysis limitations, I was unable to fully back-transform the normalized variables in the 
model. Thus, when discussing the regression results I rely on the standardized coefficients to provide a baseline for 
interpreting the independent variables that have the highest degree of influence. 



 64 

Chapter 6: Results and Findings 

 
In this section, I present the results of the statistical analyses performed for each research 

question. In order to present these findings in a clear and concise way, I exclude the number of 

cases and standard deviations from the summary tables below. I omit the significance values for 

research question 4b) for similar reasons, though statistically significant results are still 

demarcated with a “*” symbol. This information is listed in the full statistical outputs for each 

research question located in Appendix B (RQ 1), Appendix C (RQ 2), Appendix D (RQ 3), and 

Appendix E (RQ 4).  

 

On a technical note, I narratively distinguish between the absolute and relative changes for social 

vulnerability variables included in the independent samples two-tail t-tests. The absolute 

differences in means are discussed as percentage point increases or decreases and are meant to 

convey how the proportions of the variables compare based on the test factor. I use the 

percentage change between means, or the relative difference, to present another way of 

interpreting the magnitude of the difference. For example, the average proportion of the 

households with no automobile is 4 percent within dam inundation zones and 4.4 percent outside 

of them. While the absolute difference in means is 0.4 percent, the relative difference is 9.3 

percent. I also describe the relative difference in terms of likelihood, i.e., households with no 

automobile are 9.3 percent more likely to live outside of dam flood zones than within them. This 

descriptive choice of words does not reflect a calculated likelihood or probability ratio.  

 

Finally, RQ 4 compares social vulnerability variables that are solely located within HHP dam 

flood zones. To avoid repeating this lengthy distinction so many times, I use the phrase “near” 
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interchangeably. For example, the phrase “renters are more likely to live within flood zones of 

HHP dams that are 50 or more years old” is equivalent to “renters are more likely to live near 

older dams.” 

 

Results for Research Question 1  

 
Are socially vulnerable households more likely to live within dam flood zones than outside of 

them in California? 

Table 6: Comparison of Social Vulnerability Means for All Dam Flood Zones 
  Within Zone Outside Zone   Sig.* 

  Mean Mean Difference in 
Means 

Percent 
Change 

 

V1Pct_14_65  33.08% 32.82% 0.25% 0.77% 0.002  
V1Pct_14_85  20.31% 19.96% 0.35% 1.77% 0.000 
V2Pct_NoAuto  3.96% 4.37% -0.40% -9.25% 0.000  
V3PctCitizen  82.59% 78.06% 4.53% 5.80% 0.000  
V3PctForeignBorn  17.11% 21.59% -4.49% -20.78% 0.000  
V4PctDis  14.09% 12.26% 1.83% 14.91% 0.000  
V4PctDis65  36.42% 34.34% 2.08% 6.07% 0.000  
V5Pct_No_HS  12.90% 12.02% 0.88% 7.28% 0.000  
V5Pct_HS_Deg  22.66% 19.81% 2.85% 14.38% 0.000  
V5Pct_Abv_HS  34.23% 38.83% -4.59% -11.83% 0.000  
V6PctUNEMP  8.60% 7.17% 1.43% 19.96% 0.000  
V7PctHISP  24.72% 26.65% -1.93% -7.23% 0.000  
V7PctNotHISP  74.47% 72.35% 2.13% 2.94% 0.000  
V8PctFHH  11.42% 10.90% 0.51% 4.72% 0.000  
V8PctMHH  4.50% 4.02% 0.49% 12.12% 0.000  
V9MEDHHINC  $57,711 $66,151 -$8,440 -12.76% 0.000  
V9ExtrmLow  1.00% 1.00% 0.00% 0.00% 0.014  
V9VeryLowInc  7.00% 7.00% 0.00% 0.00% 0.721  
V9LowInc  33.00% 29.00% 4.00% 13.79% 0.000  
V10PctBlw50  5.61% 4.67% 0.94% 20.07% 0.000  
V10PctBlw100  14.39% 11.60% 2.79% 24.08% 0.000  
V10PctBlw150  24.37% 19.90% 4.47% 22.48% 0.000  
V11PctWhite  69.84% 68.32% 1.53% 2.23% 0.000  
V11PctNonwhite  29.45% 30.88% -1.43% -4.62% 0.000  
V11PctBlack  3.01% 2.67% 0.34% 12.61% 0.000  
V11PctIndigenous  0.39% 0.20% 0.19% 98.41% 0.000  
V11PctAsian  6.81% 8.24% -1.44% -17.42% 0.000  
V11PctPacific  0.09% 0.04% 0.05% 122.01% 0.000  
V12PctRenter  37.54% 37.85% -0.31% -0.81% 0.201  
V12PctOwner  61.32% 60.94% 0.38% 0.62% 0.120  

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means 
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I performed an independent samples t-test for 30 social vulnerability variables, with the grouping 

variable “In Flood Zone.” The grouping variable is a categorical indicator where 1 is assigned to 

values within dam flood zones, and 0 is assigned to values outside of them. The results show 27 

of the 30 variables have statistically significant differences in means. The non-significant 

differences in means are Very Low Income households and individuals who either rent or own 

their homes. In total, 22 characteristics of individual and household social vulnerability are more 

likely to be located in dam flood zones.  

 

Of these 22 variables, the highest differences in means include U.S. citizenship (4.5 percent), the 

absolute poverty threshold of at or below 150 percent of the federal poverty line (4.5 percent), 

and the relative poverty measure of low-income populations (4 percent). Contrastingly, the 

highest differences in means for variables located outside of dam flood zones are foreign-born 

individuals (4.5 percent) and Californians with at least a 2- or 4-year degree (4.6 percent).  

 

There is a large disparity in median household income by location. For households within dam 

flood zones the median income is $57,711, compared to $66,151 those households outside zones. 

This means that households earning around $57,700 are nearly 12.8 percent more likely to be in 

a dam inundation zone than households earning more than $66,150 are. Among other income 

indicators, households experiencing absolute or relative poverty are also more likely to be in 

flood zones. This includes households earning at or below 50 and 100 percent of the federal 

poverty threshold (20 and 24 percent more likely) and Low Income households earning below 80 

percent of the Area Median Income (13.8 percent more likely).  
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Several additional demographic and socioeconomic characteristics appear to be at higher risk for 

potential dam-induced flood disasters. For example, there are 14.9 percent more disabled 

individuals and almost 20 percent more unemployed individuals in dam flood zones. Higher 

proportions of age-dependent populations, U.S. citizens, people whose highest educational 

attainment is a high school degree, female or male single parents, and homeowners also live in 

these zones.  

 

Race and ethnicity by location have some notable distinctions. Although there are slight 

differences in the average proportions of American Indian or Native Alaskan (0.2 percent) and 

Native Hawaiian or Pacific Islanders (less than 0.1 percent), these represent a 98.4 percent and 

122 percent increase if these groups live within inundation areas. White and Black and African 

Americans have higher population proportions within zones, while Asian-identifying individuals 

are 17.4 more likely to live outside of zones. Finally, foreign-born and Hispanic or Latino 

individuals and households with no available car are less likely to live in a dam flood zones by 

20.8 percent, 7.2 percent, and 9.3 percent, respectively.   

 
 
Results for Research Question 2  

 
Are socially vulnerable households more likely to live within HHP dam flood zones than outside 

of them in California? 

Table 7: Comparison of Social Vulnerability Means for HHP Dam Flood Zones 
  Within Zone Outside Zone   Sig. 

  Mean Mean Difference in 
Means 

Percent 
Change 

 

V1Pct_14_65  33.08% 32.83% 0.26% 0.78% 0.002 
V1Pct_14_85  20.66% 19.96% 0.70% 3.51% 0.000 
V2Pct_NoAuto  4.01% 4.37% -0.35% -8.12% 0.000 
V3PctCitizen  80.98% 78.05% 2.92% 3.75% 0.000 
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V3PctForeignBorn  18.71% 21.60% -2.89% -13.37% 0.000 
V4PctDis  13.48% 12.26% 1.23% 9.99% 0.000 
V4PctDis65  36.06% 34.34% 1.72% 5.00% 0.000 
V5Pct_No_HS  13.52% 12.02% 1.50% 12.49% 0.000 
V5Pct_HS_Deg  22.38% 19.81% 2.57% 12.97% 0.000 
V5Pct_Abv_HS  34.06% 38.84% -4.78% -12.31% 0.000 
V6PctUNEMP  8.10% 7.17% 0.93% 12.99% 0.000 
V7PctHISP  27.16% 26.63% 0.52% 1.96% 0.020 
V7PctNotHISP  71.94% 72.36% -0.42% -0.58% 0.072 
V8PctFHH  11.52% 10.90% 0.62% 5.70% 0.000 
V8PctMHH  4.36% 4.01% 0.35% 8.68% 0.000 
V9MEDHHINC  $60,232 $66,171 -$5,940 -8.98% 0.000 
V9ExtrmLow  1.02% 0.86% 0.16% 18.63% 0.069 
V9VeryLowInc  6.76% 6.72% 0.04% 0.57% 0.868 
V9LowInc  30.66% 28.88% 1.77% 6.14% 0.000 
V10PctBlw50  5.24% 4.67% 0.57% 12.27% 0.000 
V10PctBlw100  13.26% 11.59% 1.66% 14.32% 0.000 
V10PctBlw150  22.88% 19.89% 2.99% 15.01% 0.000 
V11PctWhite  68.98% 68.30% 0.68% 1.00% 0.001 
V11PctNonwhite  30.31% 30.90% -0.58% -1.89% 0.004 
V11PctBlack  3.08% 2.67% 0.41% 15.32% 0.000 
V11PctIndigenous  0.35% 0.20% 0.15% 78.88% 0.000 
V11PctAsian  7.23% 8.26% -1.02% -12.39% 0.000 
V11PctPacific  0.07% 0.04% 0.03% 80.26% 0.000 
V12PctRenter  38.48% 37.84% 0.64% 1.69% 0.010 
V12PctOwner  60.39% 60.95% -0.55% -0.91% 0.029 

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means 
 
 

I performed an independent samples t-test for 30 social vulnerability variables, with the grouping 

variable “In Flood Zone.” The grouping variable is a categorical indicator where 1 is assigned to 

values within HHP dam flood zones, and 0 is assigned to values outside of them. The results 

show that 27 out of 30 variables have statistically differences in means, and that 22 variables are 

more likely to occur in HHP zones. The non-significant results for this question are proportions 

of non-Hispanic individuals, Extremely Low Income households, and Very Low Income 

households.  

 

The characteristics with noticeable differences between means are located outside of HHP 

inundation areas, such as the number of people with at least a 2- or 4-year degree (4.8 percent 

difference) and median household income ($5,940 difference). These variables also have 
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strikingly lower likelihoods of being in HHP dam flood zones: The average college educated 

person is 12.3 percent more likely to live outside such areas, while households outside these 

areas earn about 9 percent more median income ($66,171 compared to $60,232).  

 

The other income indicators examined, such as the absolute and relative poverty thresholds, have 

higher proportions located within hazardous dam flood boundaries. These differences in means 

are small. Consider the average population at or below 50, 100, and 150 percent of the federal 

poverty line (0.6, 1.7, and 3 percent difference) and households considered Extremely Low, Very 

Low, and Low Income (0.2, less than 0.1, and 1.8 percent difference). However the difference in 

means for Extremely Low and Very Low Income individuals are not statistically significant. 

 

The results indicate that age-dependent populations, U.S. Citizens, disabled individuals, people 

whose highest educational attainment is a high school degree, unemployed individuals, female 

and male single parents, and non-homeowners are more likely to live in HHP inundation zones. 

The differences between race and ethnicity shows similar patterns among flood areas for all 564 

dams and the 481 HHP dams. Namely, that higher proportions of Hispanic (0.5 percent), White 

(0.7 percent), Black and African American (0.4 percent), American Indian or Native Alaskan 

(0.2 percent), and Native Hawaiian or Pacific Islanders (less than 0.1 percent) live within HHP 

zones and higher proportions of Asian populations (1 percent) live outside these zones. Finally, 

foreign-born and non-Hispanic or Latino individuals and households with no available car are 

less likely to live in a dam flood zone by 13.4 percent, 0.6 percent, and 8.1 percent, respectively.   
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Results for Research Question 3 

 
Which factors of household social vulnerability are significantly correlated with living in a dam 

flood zone? Do these differ from factors significantly correlated with living in an HHP dam 

flood zone? 

Table 8: Multiple Linear Regression for All Dam Flood Zones 

Model R R-Square Adjusted R 
Square 

Std. Error 
of the 

Estimate  

Collinearity 
Diagnostic 

Condition Index 
0.216 0.047 0.046 .430 33.099 

  Unstandardized 
Coefficients Std. Error Standardized 

Coefficients Sig. VIF 

  0.617 0.013  0.000  
V1Pct_14_65  -0.134 0.029 -0.026 0.000 2.067 
V2Pct_NoAuto  -0.235 0.015 -0.083 0.000 1.789 
V3PctForeignBorn  -0.411 0.014 -0.164 0.000 2.025 
V4PctDis  0.205 0.023 0.047 0.000 1.825 
V5Pct_HS_Deg  0.370 0.021 0.083 0.000 1.457 
V6PctUNEMP  0.153 0.017 0.040 0.000 1.364 
V8PctFHH  -0.078 0.015 -0.024 0.000 1.577 
V8PctMHH  0.077 0.014 0.023 0.000 1.218 
V9VeryLowInc  -0.023 0.008 -0.013 0.004 1.367 
V9LowInc  0.029 0.005 0.030 0.000 1.750 
V10PctBlw50  0.055 0.016 0.017 0.001 1.627 
V11PctBlack  0.069 0.012 0.026 0.000 1.351 
V11PctIndigenous  0.172 0.021 0.033 0.000 1.166 
V11PctAsian  0.159 0.011 0.074 0.000 1.725 
V11PctPacific  0.301 0.028 0.043 0.000 1.077 
V12PctRenter  0.086 0.011 0.042 0.000 2.057 

p < 0.05 
 

Refer to the Statistical Analysis subsection in Chapter 5: Methods for a full description of the 

testing parameters, assumptions, and process for this statistical test.  

 

The multiple linear regression test shows that 16 social vulnerability variables are statistically 

significant predictors of being located within a dam inundation zone in California. The model 

has an R-square value of 0.047. This means that taken together, the 16 independent variables 
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explain about 4.7 percent of the variation in the dependent variable “In Flood Zone.” In other 

words, about 95.3 percent of the locational outcome of living within a dam flood zone is due to 

other factors. Due to the low R-square value, it is unlikely that the linear equation derived from 

the coefficients of the independent values creates a best-fit prediction curve for the data points.  

 

More importantly, this model conveys  the values of interest for answering research question 3. 

The positive coefficients represent the demographic and socioeconomic variables correlated with 

living in a dam flood zone. These 11 variables include individuals with disabilities, people with a 

high school level education, unemployment, male-headed households, households earning 80 

percent of the Median Area Income, individuals with incomes at or below 50 percent of the 

federal poverty threshold, and renters. Furthermore, people who identify as Black, American 

Indian and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander have statistically 

significant positive coefficients. Of these, people whose highest level of education is a high 

school degree and Asian-identifying individuals appear to have the greatest influence in the 

model (with standardized coefficients of 0.083 and 0.074, respectively).  

 

The negative variables in the model are statistically significant predictors of living outside of 

dam inundation zones. These include age-dependent populations, households with no 

automobile, foreign-born individuals, female-headed households, and people who earn 50 

percent of the Median Area Income. The negative variable with the most influence in the model 

is individuals born in a country other than the U.S., with a standardized coefficient of -0.164.  
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Another way to interpret the results of the multiple regression model is that for a variable with a 

positive coefficient, a census block group with a higher percentage of the given variable’s 

population is more likely fall within a dam flood zone. Positive variables with larger 

standardized coefficients are also more likely to predict location in these zones. For example, a 

CGB with a 30 percent population of Asian-identifying people is more likely to be in a flood 

zone than a CBG with a 30 percent population of Black-identifying people (standardized 

coefficients of 0.074 and 0.026, respectively.  

 

Table 9: Multiple Linear Regression for HHP Dam Flood Zones 

Model R R Square Adjusted R 
Square 

Std. Error of 
the Estimate  

Collinearity 
Diagnostic 

Condition Index 
0.187 0.035 0.035 .454 29.499 

  Unstandardized 
Coefficients Std. Error Standardized 

Coefficients Sig. VIF 

  0.535 0.014  0.000  
V1Pct_14_65  -0.139 0.032 -0.026 0.000 2.137 
V2Pct_NoAuto  -0.202 0.015 -0.070 0.000 1.656 
V3PctForeignBorn  -0.357 0.019 -0.133 0.000 2.876 
V4PctDis  0.206 0.024 0.046 0.000 1.656 
V5Pct_HS_Deg  0.405 0.023 0.088 0.000 1.472 
V6PctUNEMP  0.122 0.018 0.030 0.000 1.242 
V7PctHisp  0.071 0.014 0.035 0.000 2.798 
V8PctFHH  -0.082 0.017 -0.025 0.000 1.576 
V11PctBlack  0.068 0.013 0.024 0.000 1.292 
V11PctIndigenous  0.214 0.024 0.040 0.000 1.128 
V11PctAsian  0.140 0.014 0.062 0.000 2.108 
V11PctPacific  0.277 0.033 0.036 0.000 1.074 
V12PctRenter  0.094 0.012 0.044 0.000 1.811 

p < 0.05 
 

Refer to the Statistical Analysis subsection in Chapter 5: Methods for a full description of the 

testing parameters, assumptions, and process for this statistical test.  

 

The multiple linear regression model includes 13 statistically significant predictors of being 

located within a High Hazard Potential dam flood zone. The model has an R-square value of 
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0.035, meaning the independent variables explain about 3.5 percent of the variation in the 

dependent variable “In Flood Zone.” In other words, about 96.5 percent of the dependent 

variable is explained by other factors.  

 

The statistically significant independent variables in this model are strikingly similar to the 

model for all dam inundation zones. The main difference is that the variables Very Low Income,  

Low Income, and male-headed households are not correlated with living in an HHP flood zone. 

Additionally, the model includes the variable for Hispanic and Latino individuals, while the 

model for all dam flood zones does not. This may be an important distinction.  

 

For both regression models, the variables for age-dependent populations, households with no 

automobile, female-headed households, and foreign-born individuals have negative coefficients. 

These are therefore statistically significant predictors of living outside of dam flood zones. 

Another similarity between the two models are the indicators with the strongest negative and 

positive influence in the regression equation. For both, the variable with the highest positive 

standardized coefficient is the percentage of the population whose highest educational attainment 

is a high school degree (0.083 for all dams and 0.088 for HHP dams). On the other hand, the 

variable with the strongest negative standardized coefficient is the proportion of the foreign-born 

population (-0.164 for all dams and -0.133 for HHP dams).  

 

To summarize, the independent variables with positive coefficients found in both regression 

models include individuals with disabilities, people with high school degrees, unemployed, 

renters, and people who identify as Black, American Indian and Native Alaskan, Asian, and 



 74 

Native Hawaiian and Pacific Islander. Though the magnitude of the standardized coefficients for 

these variables differs between models, these 8 independent variables are significantly correlated 

with living in the flood zones of all dams and HHP dams.   

 
Results for Research Question 4  

 
4a) Is there a relationship between social vulnerability and the HHP dam characteristics of age, 

reservoir size, and inspection compliance? 

Table 10: Comparison of Social Vulnerability Means by Age for HHP Dam Flood Zones 
  < 50 Years ≥ 50 Years   Sig. 

  Mean Mean Difference in 
Means 

Percent 
Change 

 

V1Pct_14_65  34.30% 32.93% -1.37% -3.99% 0.000 
V1Pct_14_85  20.54% 2.67% -1.13% -5.22% 0.000 
V2Pct_NoAuto  3.21% 4.12% 0.91% 28.18% 0.000 
V3PctCitizen  82.43% 80.79% -1.64% -1.99% 0.000 
V3PctForeignBorn  17.38% 18.89% 1.51% 8.67% 0.000 
V4PctDis  13.59% 13.47% -0.13% -0.92% 0.273 
V4PctDis65  35.72% 36.10% 0.38% 1.07% 0.191 
V5Pct_No_HS  13.94% 13.47% -0.47% -3.35% 0.037 
V5Pct_HS_Deg  23.17% 22.28% -0.90% -3.87% 0.000 
V5Pct_Abv_HS  31.42% 34.39% 2.97% 9.46% 0.000 
V6PctUNEMP  8.54% 8.04% -0.50% -5.86% 0.000 
V7PctHISP  31.51% 26.65% -4.86% -15.42% 0.000 
V7PctNotHISP  67.58% 72.46% 4.88% 7.22% 0.000 
V8PctFHH  11.29% 11.56% 0.27% 2.40% 0.084 
V8PctMHH  4.38% 4.36% -0.02% -0.38% 0.840 
V9MEDHHINC  $62,611 $59,940 -$2,671 -4.27% 0.000 
V9ExtrmLow  1.00% 1.00% 0.00% 0.00% 0.061 
V9VeryLowInc  6.00% 7.00% 1.00% 16.67% 0.283 
V9LowInc  30.00% 31.00% 1.00% 3.33% 0.506 
V10PctBlw50  4.87% 5.29% 0.42% 8.70% 0.000 
V10PctBlw100  12.18% 13.40% 1.22% 9.98% 0.000 
V10PctBlw150  21.53% 23.06% 1.53% 7.10% 0.000 
V11PctWhite  73.48% 68.40% -5.08% -6.91% 0.000 
V11PctNonwhite  26.00% 30.89% 4.89% 18.81% 0.000 
V11PctBlack  2.52% 3.15% 0.64% 25.24% 0.000 
V11PctIndigenous  0.28% 0.36% 0.08% 26.77% 0.000 
V11PctAsian  5.11% 7.53% 2.42% 47.29% 0.000 
V11PctPacific  0.04% 0.08% 0.03% 72.73% 0.000 
V12PctRenter  34.89% 38.95% 4.06% 11.63% 0.000 
V12PctOwner  64.25% 59.90% -4.34% -6.76% 0.000 

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means 
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I performed an independent samples t-test for 30 social vulnerability variables, with the grouping 

variable “Dam Age.” The grouping variable is a categorical indicator where 1 is assigned to 

values within flood zones of HHP dams 50 years or older, and 0 is assigned to values within 

flood zones of HHP dams less than 50 years old. The results indicate that 24 of the 30 social 

vulnerability variables have statistically significant differences in means. Among the non-

significant variables are the proportions of disabled individuals, single mothers and fathers, and 

the relative poverty categories Extremely Low, Very Low, and Low Income households. 

Furthermore, 12 variables are more likely to live in HHP dam zones less than 50 years old, 

compared to 18 variables that are more likely to live zones 50 years or older. 

 

Of these 18 variables, the highest differences in means include non-Hispanic or Latino 

individuals (4.9 percent), renters (4.1 percent), and non-White identifying persons (4.9 percent). 

Additionally, households with no available car, Californians with at least a 2- or 4-year degree, 

and foreign-born individuals, are significantly more likely to live within flood zones of older 

HHP dams (28 percent, 9.5 percent, and 8.7 percent respectively). Both female-headed 

households and disabled individuals over the age of 65 are more likely to be in older zones but 

these percentages are relatively small and not statistically significant.  

 

Racial minorities and low-income households and individuals are more likely to live in older 

flood zones. This includes those who identify as Black (25.24 percent), American Indian and 

Native Alaskan (26.77 percent), Asian (47.29 percent), and Native Hawaiian and Pacific Islander 

(72.73 percent). The difference in means for people with incomes at or below 50, 100, and 150 

percent of the federal poverty line is 0.4 percent, 1.2 percent, and 1.5 percent. Median income 



 76 

also follows this pattern, with households in older zones earning $59,940 and those in younger 

zones earning $62,611 (4.3 percent difference). Though this trend appears to hold true for 

relative poverty indicators, these results are not statistically significant. 

 

The variables with the largest differences in means in younger HHP inundation zones are 

Hispanic or Latino individuals (4.9 percent), homeowners (4.3 percent) and White people (5.1 

percent). Unemployed individuals, U.S. Citizens, male-headed households, people with or 

without high school degrees, and age-dependent populations are also more likely to be found in 

younger in flood zones. 

 

4b) Do HHP dams with failed inspection compliance have higher proportions of socially 

vulnerable households within their inundation zones than HHP dams in compliance 

Table 11: Comparison of Social Vulnerability Means by Inspection Compliance for HHP Dam Flood Zones 
  Fail Pass  Sig. 

  Mean Mean Difference in 
Means 

Percent 
Change  

V1Pct_14_65  32.35% 33.75% -1.39% -4.13% 0.000  
V1Pct_14_85  20.56% 2.76% -0.20% -0.94% 0.011 
V2Pct_NoAuto  4.90% 3.29% 1.61% 48.99% 0.000  
V3PctCitizen  79.96% 81.87% -1.91% -2.33% 0.000  
V3PctForeignBorn  19.76% 17.79% 1.97% 11.05% 0.000  
V4PctDis  13.32% 13.63% -0.31% -2.26% 0.000  
V4PctDis65  37.25% 34.99% 2.26% 6.46% 0.000  
V5Pct_No_HS  12.98% 14.02% -1.04% -7.39% 0.000  
V5Pct_HS_Deg  22.01% 22.71% -0.70% -3.07% 0.000  
V5Pct_Abv_HS  35.22% 33.02% 2.21% 6.69% 0.000  
V6PctUNEMP  8.28% 7.93% 0.35% 4.45% 0.000  
V7PctHISP  26.30% 27.94% -1.65% -5.89% 0.000  
V7PctNotHISP  72.90% 71.07% 1.83% 2.57% 0.000  
V8PctFHH  12.12% 11.00% 1.13% 10.26% 0.000  
V8PctMHH  4.36% 4.37% -0.01% -0.29% 0.817  
V9MEDHHINC  $58,221 $62,131 -$3,910 -6.29% 0.000  
V9ExtrmLow  2.00% 0.00% 2.00% 200.00% 0.000  
V9VeryLowInc  9.00% 5.00% 4.00% 80.00% 0.000  
V9LowInc  33.00% 28.00% 5.00% 17.86% 0.000  
V10PctBlw50  5.61% 4.92% 0.69% 14.08% 0.000  
V10PctBlw100  14.12% 12.50% 1.62% 12.95% 0.000  
V10PctBlw150  23.99% 21.90% 2.09% 9.53% 0.000  
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V11PctWhite  65.77% 71.78% -6.01% -8.37% 0.000  
V11PctNonwhite  33.49% 27.57% 5.92% 21.46% 0.000  
V11PctBlack  5.11% 1.68% 3.43% 203.62% 0.000  
V11PctIndigenous  0.24% 0.47% -0.24% -50.10% 0.000  
V11PctAsian  8.13% 6.47% 1.66% 25.69% 0.000  
V11PctPacific  0.11% 0.04% 0.07% 156.92% 0.000  
V12PctRenter  42.89% 34.69% 8.20% 23.63% 0.000  
V12PctOwner  55.86% 64.34% -8.48% -13.18% 0.000  

*p-value < 0.05 is significant - bolded p-value indicates no statistically significant difference in means 
 
 

I performed an independent samples t-test for 30 social vulnerability variables, with the grouping 

variable “Inspection Compliance.” The grouping variable is a categorical indicator where 1 is 

assigned to values within flood zones of HHP dams that failed to be inspected within the 

required frequency (“Fail), and 0 is assigned to values within flood zones of HHP dams that have 

been inspected within required frequency (“Pass”).  

 

The test shows that 29 of the 30 variables have statistically significant differences in means 

between dams failing and passing inspection compliance. The non-significant result is the 

variable “Percentage of Male-Headed Households.” Furthermore, 19 variables have higher 

population proportions within flood zones of HHP dams that failed compliance, compared to 11 

that have higher proportions within zones of dams passing compliance.   

 

Several variables have large absolute differences in population proportions when compared 

across inspection compliance categories. For example, Very Low Income households, Low 

Income households, and renters have higher proportions within flood zones of HHP dams failing 

compliance by 4.2 percent, 5 percent, and 8.2 percent. Conversely, the highest differences in 

means for variables located in zones of HHP dams passing compliance are White people (6 

percent) and homeowners (8.4 percent).  



 78 

 

Certain demographic and socioeconomic variables have staggering relative differences between 

the average amount of people located near dams failing compliance compared to those near dams 

passing compliance. In terms of racial categories, individuals who identify as Black, Native 

Hawaiian and Pacific Islander, and Asian are more likely to be within “Fail” dam flood zones by 

203.6 percent, 156.9 percent, and 25.7 percent, respectively.  

 

The same trend applies to Extremely Low Income households (200 percent) and households with 

no automobile (49 percent). Other variables that are more likely to be located within flood zones 

of dams failing compliance are include foreign-born, unemployed, and non-Hispanic or Latino 

individuals, as well as people 65 years or older with disabilities, female-headed households, and 

people with at least a 2- or 4-year degree. 

 

It appears that indicators of income and absolute poverty follow this pattern as well. Households 

with lower median incomes are more likely to be near “Fail” dams ($58,221) than “Pass” dams 

($62,131) by 6.3 percent. Similarly, the proportions of individuals earning at or below 50, 100, 

and 150 percent of the federal poverty threshold are higher in flood zones of dams failing 

compliance (0.7 percent, 1.6 percent, and 2.1 percent difference in means). 

 

Variables more likely to be within “Pass” flood zones include those who identify as American 

Indian and Native Alaskan (50.1 percent), Hispanic and Latino individuals (5.9 percent), age-

dependent populations (4.1 percent), U.S. Citizens (2.3 percent), and individuals with disabilities 

(2.3 percent). The proportion of people whose highest educational attainment is a high school 
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degree or below is also higher in flood zones of HHP dams passing compliance (0.7 percent 

difference in means).  
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Chapter 7: Discussion 

The Geography of Social Vulnerability and Hazardous Dams  

The goal of the first research question is to gain an initial understanding of the demographic and 

socioeconomic differences between populations that live within dam inundation zones and 

populations that live outside such zones. The second research question has similar motivations, 

but is concerned with parsing out these patterns for High Hazard Potential dams. By comparing 

the findings of these two questions, I hope to uncover the aspects of social vulnerability that fall 

disproportionately within dam flood zones.  

 

Considering the results for the first and second research questions, the broader social 

vulnerability categories of automobile ownership, citizenship, disability, education, employment, 

ethnicity, head-of-household gender, income, and race have statistically significant differences in 

means by location. While age-dependency has a very small difference, the proportions are 

essentially the same. Renters, homeowners, and white people are also fairly equally located 

within and outside dam flood zones. 

 

Specifically, individuals and households are disproportionately located within dam flood zones if 

they are U.S. Citizens, live with a disability, are less educated, are unemployed, are single 

parents, have lower median household incomes, live at, below, or near the federal poverty line, 

and identify as either Black and African American, American Indian and Native Alaskan, or 

Native Hawaiian and Pacific Islander. While the magnitude of the respective means differ 

slightly, all 12 of social vulnerability variables are also disproportionately located within the 

flood zones of hazardous dams.  
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The similarities of these demographic and socioeconomic factors, regardless of the hazard 

potential of the dam, may be explained in part by the dam inundation maps themselves. There are 

564 total dam inundation zones and 481 HHP dam inundation zones. Comparing the maps of 

these two datasets reveals that the 83 non-HHP flood zones are attached to dams with relatively 

small reservoirs, and thus have smaller inundation coverages. This means that although there is a 

difference in the total inundation area between all and HHP flood zones, it is small. HHP flood 

zones by nature cover the largest areas, as it is one of the factors that determines the hazard 

classification.    

 

By this account, it makes sense that the same social vulnerability characteristics are 

disproportionately located in both all dam flood zones and HHP dam flood zones. This also 

implies that any difference in this pattern is worthy of further examination. Notably, the only 

variable that diverges from this pattern is ethnicity. For example, Hispanic or Latino individuals 

are more likely to live outside all dam flood zones (7.2 percent) but are more likely to live within 

HHP dam flood zones (2 percent). This could be due to spatially concentrated populations of 

Hispanic or Latino individuals within the inundation areas of hazardous dams.  

 

The results of the multiple linear regression models support the explanation that there are smaller 

differences in the inundation extent of the two flood zone maps than expected. Of the 13 social 

vulnerability variables correlated with HHP dam flood zones, 12 are also correlated with all dam 

flood zones. Additionally, the 12 statistically significant independent variables found in both 

regression models have standardized coefficients with comparable magnitudes and signifiers. 
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The only independent variable in the HHP regression model not found in the regression for all 

dam flood zones is Hispanic or Latino. This further supports the explanation that Hispanic and 

Latino populations have a distinct spatial geography, which is significantly correlated with being 

located inside hazardous dam inundation zones.   

 

In both regression outputs, the variables for education (percent with a high school degree) and 

race (percent Asian) have the greatest positive influence on the model, while citizenship (percent 

foreign-born) has the greatest negative influence on the model. This partially supports the 

findings of the independent samples tests which reveal that people with lower levels of 

educational attainment (earning a high school degree) are more likely to be in all- and HHP-dam 

flood zones, and foreign-born individuals are less likely to be in such zones.  

 

Surprisingly, both comparison of means tests show higher proportions of Asian populations 

located outside of dam flood zones, though the regression results indicate that this variable is 

positively correlated with location inside zones. The  multiple regression analysis confirms this is 

a statistically significant predictor of location, but contradicts the directionality of the 

independent samples tests. This contradiction might be explained by the influence of the 

citizenship variable. The variables for foreign-born and Asian individuals have higher population 

proportions located outside all- and HHP-flood zones. Though these variables have opposite 

directionalities in the regression equations, the standardized coefficients show the foreign-born 

variable has more than twice the influence on the model than the variable for Asian populations 

(-0.164 versus 0.074 for all zones, and -0.133 versus 0.062 for HHP zones).  
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If the two variables are correlated, the positive influence of the Asian population variable on the 

regression model could be negated if a significant share of foreign-born individuals are also 

Asian. Indeed, the collinearity matrices show these variables are moderately correlated (0.544 for 

all zones versus 0.500 for HPP zones). Information of the demographic trends of immigration to 

California further supports this explanation. In recent years, Asian immigration to California has 

outpaced Hispanic and Latino immigration (Garofoli 2012, Reese 2015). Census data confirms 

that 39 percent of the foreign-born population are Asian (Census Bureau 2016). 

 

Hazardous Dams, Flood-Risk, and Dimensions of Vulnerability in California 

The final research question comes from a desire to understand how social vulnerability variables 

within High Hazard Potential dam flood zones differ depending on certain physical and 

politically-influenced characteristics of hazardous dams. Since an HHP dam failure would cause 

significant environmental harm, property damage, and loss of human life, the patterns revealed in 

these statistical analyses shed further light on individuals and households that are at higher risk 

for dam-induced flood event.  

 

To examine differences in the proportions of social vulnerability based on the age of the dam, I 

selected an age threshold of 50 years for the independent samples tests. This threshold comes 

from the fact that the average useful life of a dam is just 50 years, after which the deterioration of 

dam components steeply rises and impacts the physical and structural integrity of the dam (Ho et 

al. 2017). Thus, any demographic or socioeconomic variables disproportionately located within 

inundation areas of HHP dams older than 50 years are at a greater risk for dam failure and 

flooding.   
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The social vulnerability categories of automobile ownership, citizenship, education, ethnicity, 

income, race, and housing tenure have statistically significant differences in means by location. 

Specifically, individuals and households are disproportionately located in hazardous dam flood 

zones over 50 years old if they are foreign-born, have higher levels of educational attainment, are 

not Hispanic or Latino, have lower median household incomes, live at, below, or near the federal 

poverty line, are renters, and identify as either Black and African American, American Indian 

and Native Alaskan, or Native Hawaiian and Pacific Islander. 

 

Several of these variables present an interesting avenue for inquiry. Consider that people with at 

least a 2- or 4-year and non-Hispanic or Latino individuals are more likely to live within older 

HHP dam flood zones. Intriguingly, the results of the previous independent samples test for these 

variables shows the opposite trend. In the absence of the dam age grouping variable, people with 

at least a 2- or 4-year degree and non-Hispanic or Latino individuals are less likely to live in 

HHP-dam zones by 12.3 percent and 0.6 percent. The multiple regression model also 

demonstrates that lower educational attainment (percent with a high school degree) and Hispanic 

or Latino ethnicity are statistically significant predictors of residing in HHP-dam flood zones. 

Taken together, the discrepancy in these patterns is explained by the age of the dam (50 or more 

years old).   

 

A possible explanation for this phenomena lies in the history of dam construction and the nature 

of urbanization in the state of California. Spillman et al. explains that many urban dams were 

originally surrounded by undeveloped agricultural land (2017). Over time, populations grew, city 
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limits expanded, suburbs exploded, and land costs and constraints meant that homes, businesses, 

public buildings, roads and critical infrastructures were built up around many dams and 

reservoirs (Spillman et al. 2017). 

 

Through the processes of urbanization, suburbanization, and city sprawl, many reservoirs are 

now surrounded by development. Urban, suburban, and peri-urban dams and reservoirs are often 

viewed as highly desirable environmental amenities rather than environmental hazards or sites of 

flood-risk (SLRC 2017). The collinearity matrices for variables in HHP dam flood zones indicate 

strong correlations between higher educational attainment and income (0.691) and non-Hispanic 

or Latino populations (0.686). Previous social vulnerability research shows that less educated, 

lower-income, and Hispanic or Latino populations face significant barriers to locational choice 

and housing, which is a causal factor of flood-risk (Donner and Rodriguez 2011, Maldonado et 

al. 2015). In the absence of such barriers, these two variables may indicate that highly educated 

and non-Hispanic or Latino individuals choose to live within the inundation zones of older High 

Hazard Potential dams.  

 

The last characteristic of High Hazard Potential dams I was interested in examining is inspection 

compliance. I calculated this variable from information in the National Inventory of Dams, 

including the required inspection frequencies for each dam, the most recent inspection date, and 

the date the inspection was reported to the NID (2016). I was able to determine which dams were 

successfully inspected in the required about of time (usually annually), and which dams had 

failed inspection compliance. Inspections are integral to discovering physical problems and 

structural weaknesses of dams. Failing to inspect dams within the frequency required by the 
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DWR Division of Safety of Dams increases the chance that a serious issue will go unnoticed or 

fixed, which could potentially lead to dam failure. Inspection compliance is highly dependent on 

certain political, economic, and regulatory machinations, including the amount of money the 

state legislature allocates for dam safety, maintenance, and repair programs.  

 

Thus, the patterns revealed in this statistical test can show which social vulnerability factors may 

be disproportionately exposed to a dam-induced flood disaster. The overall social vulnerability 

categories of automobile ownership, citizenship, disability, education, employment, ethnicity, 

gender of the head-householder, income, race, and housing tenure have statistically significant 

differences in means by location.  

 

Specifically, individuals and households are disproportionately located in the flood zones of 

hazardous dams with failed inspection compliance if they do not own a car, are foreign-born, are 

older than the age of 65 and live with a disability, have higher levels of educational attainment, 

are unemployed, are non-Hispanic or Latino, are a female-headed household, have a lower 

medium household income, live at, below, or near the federal poverty line, are renters, and 

identify as either Black and African American, Asian, or Native Hawaiian and Pacific Islander. 

 

The results of the previous multiple regression test establishes that several social vulnerability 

variables are statistically significant predictors of living in the flood zone of a High Hazard 

Potential dam. The regression results and the independent samples test for inspection compliance 

both find unemployed individuals, renters, those who identify as Black and African American or 

Native Hawaiian and Pacific Islander to be more likely to live in a hazardous dam inundation 
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area. This means that individuals and households with these social vulnerability characteristics 

are more likely to be located within an HHP zone, and are more likely live near a hazardous dam 

that has not been inspected within the required frequency.  
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Chapter 8: Why Give a Dam(n)? 

The state of California has 1,585 dams. These infrastructures directly and indirectly influence 

important aspects of everyday life, from storing and supplying the water we drink, to irrigating 

the food we eat, to generating the electricity we use to power our homes. Dams are crucial for 

flood control, fire protection, debris control, and drought resilience. However, dams are also 

significant environmental hazards, and increase the flood-risk for communities and populations 

located within their inundation zones. Recognizing these flood-risks, both the National Inventory 

of Dams and the California Division of Safety of Dams assign a downstream hazard 

classification to each dam in the state. High Hazard Potential dams are those defined as causing 

significant loss of life, property destruction, and environmental damage in an event of dam 

failure (2016, 2016).  

 

California’s dams are aging and lack adequate funding for safety, maintenance, and repair 

programs. In 2015, nearly 44 percent of dams had not been inspected within the required 

timeframe and frequency (Spillman et al. 2017). Furthermore, dams are acutely vulnerable to 

both seismic activity and climate change. As evidenced by the Oroville Dam Spillway Failure in 

February 2017, even dams with satisfactory condition ratings can begin to fail from a 

combination of physical, structural, political, economic, and climatic factors. The events leading 

up to the spillway failure exemplify the current shortfalls in policy, planning, and action for 

managing large-scale water infrastructure and safeguarding the public from avoidable 

environmental hazards. 
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In this context, I am interested in uncovering the answer to the fundamental question – Who is 

the most vulnerable to dam-induced flooding in California? 

 

My research project analyzes variables of social vulnerability for individuals and households 

located in the flood zones of High Hazard Potential dams in California. I perform a series of 

geostatistical analyses, independent samples tests, and multiple linear regressions in pursuance of 

four distinct research questions. The overarching goal is to determine which social vulnerability 

characteristics are disproportionately located within hazardous dam inundation areas, and 

examine whether these demographic and socioeconomic factors are statistically significant 

predictors of location to dam-hazards.  

 

From previous literature analyzing social vulnerability and flood-risk in cases of sea-level rise, 

climate change, high precipitation, and storm events, I identified 11 broad social vulnerability 

categories. Among these categories of age, automobile ownership, citizenship, disability, 

education, employment, ethnicity, head-householder gender, income, race, and housing tenure, I 

selected 30 specific demographic and socioeconomic variables. 

 

Results from independent samples t-tests show that individuals and households are 

disproportionately located within hazardous dam flood zones if they are U.S. Citizens, live with 

a disability, are less educated, are unemployed, are single parents, have lower median household 

incomes, live at, below, or near the federal poverty line, and identify as either Black and African 

American, American Indian and Native Alaskan, or Native Hawaiian and Pacific Islander. 
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Furthermore, people whose highest educational attainment is a high school degree, unemployed 

individuals, those living with disabilities, Hispanic or Latino individuals, female-headed 

households, renters, and people who identify as Black and African American, American Indian 

and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander represent variables of 

social vulnerability that are statistically significant predictors of living within a hazardous dam 

flood zone. 

 

Comparing the means of social vulnerability variables by the grouping factor “Dam Age” reveal 

that people who lack car ownership, foreign-born individuals, people with at least a 2- or 4-year 

degree, non-Hispanic or Latino, female-headed households, living at, below, or near the federal 

poverty threshold, renters, and those who identify as White, as Black and African American, 

American Indian and Native Alaskan, Asian, and Native Hawaiian and Pacific Islander are more 

likely to live in HHP dam flood zones aged 50 years or older. 

 

Finally, the independent samples test for social vulnerability and the grouping factor “Inspection 

Compliance” show that those lacking car ownership, foreign-born individuals, people aged 65 or 

older living with a disability, individuals with at least a 2- or 4-year degree, non-Hispanic or 

Latino, unemployment, living at, below, or near the federal poverty threshold, renters, and those 

who identify as Black and African American, Asian, and Native Hawaiian and Pacific Islander 

are more likely to live in HHP dam flood zones with failed inspection compliance. 

 

Emergency and disaster planners depend on knowledge of socially vulnerable populations to 

ensure sufficient disaster preparedness and response policies in a given place. For example, a 
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community with a high percentage of older adults will require a different type of emergency 

response in terms of warning, evacuation, and assistance. Failing to account for the spatial 

patterns and geographic concentrations of socially vulnerable populations in the planning process 

can have devastating consequences. 

 

This project reveals the spatial and social characteristics of vulnerability to dam-induced flood 

hazards in California. Planners and policymakers can use this information to improve existing 

disaster management and response plans by incorporating targeted and specific strategies to 

reduce the flood-risk of highly vulnerable populations. Furthermore, it provides the information 

necessary for planners and policymakers to address the existing social and spatial inequalities in 

dam inundation zones to create a more environmentally just California.  
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Appendix A: Data Normalization 

 
Normalized Variables for All Dam Flood Zones   
 

Variable 
Data 

Normalizatio
n Method 

Skew and 
Kurtosis 
Before 

Normalization 

Skew and 
Kurtosis 

After 
Normalizatio

n 

Kolmogoro
v-Smirnov 

Statistic 

K-S Test 
Sig. 

Value 

V1Pct_14_65 None 
Skew: 0.221 
Kurtosis: 
3.724 

N/A 0.050 0.000 

V1Pct_14_85 None 
Skew: 0.092 
Kurtosis: 
0.371 

N/A 0.016 0.000 

V2Pct_NoAuto Square root 
Skew: 2.858 
Kurtosis: 
12.723 

Skew: 0.688 
Kurtosis: 
0.467 

0.115 0.000 

V3PctCitizen Arcsin 
Skew: -0.649 
Kurtosis: -
0.102 

Skew: 0.100 
Kurtosis: -
0.582 

0.037 0.000 

V3PctForeignBorn Square root 
Skew: 0.649 
Kurtosis: -
0.102 

Skew: -0.188 
Kurtosis: -
0.595 

0.039 0.000 

V4PctDis Square root 
Skew: 1.084 
Kurtosis: 
2.269 

Skew: 0.088 
Kurtosis: 
0.541 

0.027 0.000 

V4PctDis65 Natural log 
Skew: 0.546 
Kurtosis: 
0.696 

Skew: 0.086 
Kurtosis: 
0.168 

0.031 0.000 

V5Pct_No_HS Square root 
Skew: 1.297 
Kurtosis: 
1.374 

Skew: 0.257 
Kurtosis: -
0.398 

0.053 0.000 

V5Pct_HS_Deg None 
Skew: 0.177 
Kurtosis: -
0.168 

N/A 0.027 0.000 

V5Pct_Abv_HS Square root 
Skew: 0.420 
Kurtosis: -
0.615 

Skew: -0.211 
Kurtosis: -
0.417 

0.032 0.000 

V6PctUNEMP Square root 
Skew: 1.572 
Kurtosis: 
4.437 

Skew: -0.090 
Kurtosis: 
0.764 

0.043 0.000 
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V7PctHISP Square root 
Skew: 0.978 
Kurtosis: 
0.061 

Skew: 0.196 
Kurtosis: -
0.612 

0.051 0.000 

V7PctNotHISP Arcsin 
Skew: -0.978 
Kurtosis: 
0.061 

Skew: -0.344 
Kurtosis: -
0.522 

0.063 0.000 

V8PctFHH Square root 
Skew: 1.247 
Kurtosis: 
2.224 

Skew: -0.144 
Kurtosis: 
0.407 

0.041 0.000 

V8PctMHH Square root 
Skew: 1.409 
Kurtosis: 
3.661 

Skew: -0.102 
Kurtosis: -
0.598 

0.135 0.000 

V9ExtrmLowInc N/A N/A N/A N/A N/A 
V9VeryLowInc N/A N/A N/A N/A N/A 
V9LowInc N/A N/A N/A N/A N/A 

V9MEDHHINC Natural log 
Skew: 1.154 
Kurtosis: 
1.876 

Skew: -0.226 
Kurtosis: -
0.134 

0.032 0.000 

V10PctBlw50 Square root 
Skew: 2.440 
Kurtosis: 
9.180 

Skew: 0.507 
Kurtosis: 
0.606 

0.044 0.000 

V10PctBlw100 Square root 
Skew: 1.283 
Kurtosis: 
1.609 

Skew: 0.240 
Kurtosis: -
0.319 

0.048 0.000 

V10Pctlw150 Square root 
Skew: 0.770 
Kurtosis: -
0.82 

Skew: 0.000 
Kurtosis: -
0.566 

0.032 0.000 

V11PctWhite Arcsin 
Skew: -0.552 
Kurtosis: -
0.533 

Skew: 0.007 
Kurtosis: -
0.647 

0.034 0.000 

V11PctNonWhite Square root 
Skew: -0.816 
Kurtosis: 
0.023 

Skew: -0.137 
Kurtosis: -
0.636 

0.037 0.000 

V11PctBlack Square root 
Skew: 3.180 
Kurtosis: 
14.722 

Skew: 1.002 
Kurtosis: 
0.832 

0.151 0.000 

V11PctIndigenous Square root 
Skew: 12.378 
Kurtosis: 
258.162 

Skew: 2.217 
Kurtosis: 
9.011 

0.322 0.000 

V11PctAsian Square root 
Skew: 2.076 
Kurtosis: 
4.862 

Skew: 0.620 
Kurtosis: -
0.091 

0.095 0.000 

V11PctPacific Square root 
Skew: 6.428 
Kurtosis: 
63.082 

Skew: 2.832 
Kurtosis: 
9.003 

0.460 0.000 
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V12PctRenter Square root 
Skew: 0.496 
Kurtosis: -
0.791 

Skew: -0.120 
Kurtosis: -
0.687 

0.043 0.000 

V12PctOwner Arcsin 
Skew: -0.496 
Kurtosis: -
0.791 

Skew: -0.035 
Kurtosis: -
0.737 

0.048 0.000 

V13MEDINCCNT
Y N/A N/A N/A N/A N/A 
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Histograms for Each Social Vulnerability Variable After Normalization 
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Normalized Variables for HHP Dam Flood Zones 
 

Variable 
Data 

Normalizatio
n Method 

Skew and 
Kurtosis 
Before 

Normalization 

Skew and 
Kurtosis After 
Normalization 

Kolmogorov
-Smirnov 
Statistic 

K-S 
Test 
Sig. 

Value 

V1Pct_14_65 None 
Skew: 0.339 
Kurtosis: 
3.235 

N/A 0.042 0.000 

V1Pct_14_85 None 
Skew: 0.047 
Kurtosis: 
0.137 

N/A 0.013 0.000 

V2Pct_NoAuto Square root 
Skew: 2.848 
Kurtosis: 
13.249 

Skew: 0.622 
Kurtosis: 
0.366 

0.125 0.000 

V3PctCitizen Arcsin 
Skew: -0.595 
Kurtosis: -
0.196 

Skew: 0.155 
Kurtosis: -
0.430 

0.027 0.000 

V3PctForeignBorn Square root 
Skew: 0.595 
Kurtosis: -
0.196 

Skew: -0.249 
Kurtosis: -
0.415 

0.032 0.000 

V4PctDis Square root 
Skew: 1.155 
Kurtosis: 
2.377 

Skew: 0.127 
Kurtosis: 
0.698 

0.027 0.000 

V4PctDis65 Natural log 
Skew: 0.506 
Kurtosis: 
0.565 

Skew: 0.065 
Kurtosis: 
0.099 

0.024 0.000 

V5Pct_No_HS Square root 
Skew: 1.238 
Kurtosis: 
1.083 

Skew: 0.253 
Kurtosis: -
0.474 

0.053 0.000 

V5Pct_HS_Deg None 
Skew: 0.169 
Kurtosis: -
0.307 

N/A 0.023 0.000 

V5Pct_Abv_HS Square root 
Skew: 0.368 
Kurtosis: -
0.709 

Skew: -0.234 
Kurtosis: -
0.513 

0.037 0.000 

V6PctUNEMP Square root 
Skew: 1.579 
Kurtosis: 
4.632 

Skew: -0.111 
Kurtosis: 
0.876 

0.043 0.000 

V7PctHISP Square root 
Skew: 0.880 
Kurtosis: -
0.202 

Skew: 0.165 
Kurtosis: -
0.708 

0.051 0.000 

V7PctNotHISP Arcsin 
Skew: -0.880 
Kurtosis: -
0.202 

Skew: -0.309 
Kurtosis: -
0.637 

0.061 0.000 
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V8PctFHH Square root 
Skew: 1.154 
Kurtosis: 
1.790 

Skew: -0.144 
Kurtosis: 
0.276 

0.035 0.000 

V8PctMHH Square root 
Skew: 1.1439 
Kurtosis: 
2.845 

Skew: -0.064 
Kurtosis: -
0.489 

0.126 0.000 

V9ExtrmLowInc N/A N/A N/A N/A N/A 
V9VeryLowInc N/A N/A N/A N/A N/A 
V9LowInc N/A N/A N/A N/A N/A 

V9MEDHHINC Natural log 
Skew: 1.176 
Kurtosis: 
1.963 

Skew: -0.242 
Kurtosis: 
0.053 

0.026 0.000 

V10PctBlw50 Square root 
Skew: 2.288 
Kurtosis: 
8.042 

Skew: 0.476 
Kurtosis: 
0.450 

0.043 0.000 

V10PctBlw100 Square root 
Skew: 1.426 
Kurtosis: 
2.399 

Skew: 0.289 
Kurtosis: -
0.153 

0.046 0.000 

V10Pctlw150 Square root 
Skew: 0.901 
Kurtosis: 
0.308 

Skew: 0.085 
Kurtosis: -
0.484 

0.032 0.000 

V11PctWhite Arcsin 
Skew: -0.558 
Kurtosis: -
0.509 

Skew: -0.005 
Kurtosis: -
0.604 

0.033 0.000 

V11PctNonWhite Square root 
Skew: 0.558 
Kurtosis: -
0.509 

Skew: -0.129 
Kurtosis: -
0.588 

0.034 0.000 

V11PctBlack Square root 
Skew: 3.407 
Kurtosis: 
16.959 

Skew: 1.044 
Kurtosis: 
1.134 

0.145 0.000 

V11PctIndigenous Square root 
Skew: 13.123 
Kurtosis: 
271.713 

Skew: 2.406 
Kurtosis: 
10.709 

0.332 0.000 

V11PctAsian Square root 
Skew: 2.067 
Kurtosis: 
4.723 

Skew: 0.649 
Kurtosis: 
0.003 

0.086 0.000 

V11PctPacific Square root 
Skew: 7.160 
Kurtosis: 
80.789 

Skew: 3.025 
Kurtosis: 
10.642 

0.465 0.000 

V12PctRenter Square root 
Skew: 0.456 
Kurtosis: -
0.798 

Skew: -0.181 
Kurtosis: -
0.603 

0.043 0.000 

V12PctOwner Arcsin 
Skew: -0.456 
Kurtosis: -
0.798 

Skew: 0.023 
Kurtosis: -
0.678 

0.037 0.000 
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V13MEDINCCNT
Y N/A N/A N/A N/A N/A 
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Histograms for Each Social Vulnerability Variable After Normalization  
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Appendix B: Statistical Analyses for Research Question 1 

 
Independent Samples Tests of Social Vulnerability Variables in All Dam Flood Zones 
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Appendix C: Statistical Analyses for Research Question 2 

 
Independent Samples Tests of Social Vulnerability Variables in HHP Dam Flood Zones 
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Appendix D: Statistical Analyses for Research Question 3 

 
Multiple Linear Regression for Social Vulnerability Variables in All Dam Flood Zones 
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Multiple Linear Regression for Social Vulnerability Variables in HHP Dam Flood Zones 
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Appendix E: Statistical Analyses for Research Question 4 

 
Independent Samples Tests of Social Vulnerability Variables and Age for HHP Dams   
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Independent Samples Tests of Social Vulnerability Variables and Reservoir Size for HHP Dams  
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Independent Samples Tests of Social Vulnerability Variables and Inspection Compliance for 
HHP Dams  
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Appendix E: Inundation Boundary Maps by Dam Name and High 
Hazard Potential 

 
  

  Dam Name (NID 2016) 
HHP Dam 
(CalOES 

2016) 

HHP Dam 
(NID 2002) 

Non-HHP 
Dam 

1)   10 Mg Walteria X     
2)   10th and Western X     
3)   18 Mg Walteria X     
4)   Adobe Creek X     
5)   Agnew Lake X     
6)   Agua Tibia     X 
7)   Alessandro X     
8)   Alisal Creek X     
9)   Almaden X     

10)   Almaden Valley X     
11)   Almond X     
12)   Alta Loma Basin #1 X     
13)   Anderson     X 
14)   Antelope Kern X     
15)   Antelope Plumas     X 
16)   Anthony House     X 
17)   Antioch Res X     
18)   Argyle No 2 X     
19)   Austrian X     
20)   Azalea X     
21)   Balch Afterbay X     
22)   Balch Diversion X     
23)   Balsam Meadow Forebay Main X     
24)   Barrett X     
25)   Bayley Reservoir     X 
26)   Bear Dam   X   
27)   Bear Gulch X     
28)   Bear Valley   X   
29)   Beardsley X     
30)   Bell Canyon X     
31)   Berrenda Mesa X     
32)   Bethany Forebay X     
33)   Bidwell Bar Canyon Saddle     X 
34)   Bidwell Lake X     
35)   Big Canyon X     
36)   Big Creek X     
37)   Big Creek Dam No. 4     X 
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38)   Big Creek Dam No. 5 X     
39)   Big Creek Dam No. 6     X 
40)   Big Creek Dam No. 7 X     
41)   Big Dalton X     
42)   Big Dry Creek   X   
43)   Big Pine Creek X     
44)   Big Sage X     
45)   Big Santa Anita X     
46)   Big Tujunga No. 1 X     
47)   Bishop Creek Intake No. 2 X     
48)   Black Butte Dam   X   
49)   Black Mountain Water Tank X     
50)   Black Rock Creek     X 
51)   Blackburn X     
52)   Blakely     X 
53)   Blossom Valley Reservoir X     
54)   Boca   X   
55)   Bouquet Canyon X     
56)   Bowman Main X     
57)   Box Canyon X     
58)   Boxsprings X     
59)   Boyd No. 1 X     
60)   Boyd No. 2 X     
61)   Bradbury   X   
62)   Brand Park X     
63)   Brea Dam   X   
64)   Bridgeport   X   
65)   Briones X     
66)   Brooktrails 3 North X     
67)   Buchanan Dam   X   
68)   Bucks Lake     X 
69)   Butt Valley X     
70)   C L Tilden Park X     
71)   Calavera X     
72)   Calaveras X     
73)   Calero X     
74)   Camanche Main X     
75)   Cameron Park X     
76)   Camille, Lake     X 
77)   Camp Far West X     
78)   Caples Lake Main   X   
79)   Carbon Canyon Dam   X   
80)   Caribou Lake X     
81)   Casitas   X   
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82)   Castaic X     
83)   Cedar Lake X     
84)   Cedar Springs X     
85)   Central X     
86)   Century X     
87)   Chabot X     
88)   Chabot, Lake X     
89)   Cherry Flat X     
90)   Chet Harritt X     
91)   Chevy Chase 1290 X     
92)   Chili Bar X     
93)   Chollas X     
94)   Chorro Creek X     
95)   Clear Lake   X   
96)   Clifton Court Forebay   X   
97)   Clover Valley     X 
98)   Cogswell X     
99)   Coit     X 

100)   Columbine X     
101)   Combie X     
102)   Conn Creek X     
103)   Contra Loma   X   
104)   Copco No 1 X     
105)   Copper Basin X     
106)   Courtright X     
107)   Coyote X     
108)   Coyote Creek X     
109)   Coyote Percolation X     
110)   Coyote Valley Dam   X   
111)   Crafton Hills X     
112)   Crane Valley X     
113)   Cresta     X 
114)   Crocker   X   
115)   Crocker Diversion     X 
116)   Cucamonga Creek Debris Basin X     
117)   Cull Creek X     
118)   Cuyamaca X     
119)   Cynthia, Lake     X 
120)   Danville X     
121)   De Sabla Forebay     X 
122)   Declez Retention X     
123)   Decoto Reservoir X     
124)   Deer Creek X     
125)   Deer Creek Diversion X     
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126)   Del Valle X     
127)   Delta Pond X     
128)   Devils Gate X     
129)   Diamond Valley Lake X     
130)   Diamond Valley Lake Forebay X     
131)   Diederich Res X     
132)   Diemer No. 8 X     
133)   Diemer Reservoir X     
134)   Dixon X     
135)   Don Pedro Main X     
136)   Donnells X     
137)   Donner Lake X     
138)   Dos Pueblos X     
139)   Drum Forebay   X   
140)   Dry Canyon X     
141)   Dry Creek X     
142)   Dunsmuir Reservoir X     
143)   Dutch Flat Afterbay     X 
144)   Dutch Flat Forebay     X 
145)   Eagle Rock X     
146)   East Glorietta X     
147)   East Park   X   
148)   Eastlake X     
149)   Eaton Wash Debris Basin X     
150)   Echo Lake X     
151)   Ed R Levin X     
152)   El Capitan X     
153)   El Toro Reservoir X     
154)   Eleanor, Lake X     
155)   Elmer J Chesbro X     
156)   Elysian X     
157)   Emerald Lake 1 Lower X     
158)   Emerson X     
159)   Encino X     
160)   Ewing     X 
161)   Exchequer Main   X   
162)   Fairmont     X 
163)   Fancher Creek X     
164)   Farmington Dam     X 
165)   Felt Lake X     
166)   Fern Lake X     
167)   Ferro Debris Basin     X 
168)   Fleming Hill No. 2 X     
169)   Florence Lake X     
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170)   Folsom   X   
171)   Folsom - Mormon Island Auxiliary Dam     X 
172)   Folsom Dike 4   X   
173)   Folsom Dike 5   X   
174)   Folsom Dike 6   X   
175)   Folsom Dike 7   X   
176)   Folsom Dike 8   X   
177)   Folsom Right Wing   X   
178)   Foothill Regulating Park X     
179)   Forbestown Diversion     X 
180)   Forest Lake X     
181)   Foster X     
182)   Fountaingrove X     
183)   Francis, Lake     X 
184)   French Lake   X   
185)   Frenchman X     
186)   Friant   X   
187)   Fullerton Dam   X   
188)   Garvey Reservoir X     
189)   Gastaldi     X 
190)   Gem Lake X     
191)   Gene Wash X     
192)   Gibraltar X     
193)   Giffen Reservoir X     
194)   Glen Anne   X   
195)   Grant Company 2     X 
196)   Grant Lake X     
197)   Green Verdugo X     
198)   Gregory, Lake X     
199)   Greystone Reservoir X     
200)   Grizzly Forebay X     
201)   Grizzly Valley X     
202)   Groveland Wastewater Reclamation #2     X 
203)   Guadalupe X     
204)   Haiwee X     
205)   Halsey Forebay No. 2 X     
206)   Hansen Dam   X   
207)   Harbor View X     
208)   Harold Reservoir X     
209)   Harrison Street X     
210)   Harry L. Englebright Dam     X 
211)   Heenan Lake     X 
212)   Henne X     
213)   Henry J Mills Reservoir X     
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214)   Henshaw X     
215)   Herman, Lake X     
216)   Hernandez X     
217)   Hidden Dam   X   
218)   Highland Creek X     
219)   Hillside X     
220)   Hinkle X     
221)   Hodges, Lake X     
222)   Hume Lake     X 
223)   Ice House Main X     
224)   Independence     X 
225)   Indian Ole X     
226)   Indian Valley X     
227)   Iron Canyon X     
228)   Iron Gate X     
229)   Isabella Dam   X   
230)   J C Jacobsen X     
231)   Jackson Creek X     
232)   Jackson Meadows X     
233)   Jacobs Creek     X 
234)   James H Turner X     
235)   James J. Lenihan X     
236)   Jeff Davis X     
237)   Juncal X     
238)   Jurupa Basin X     
239)   Kelly Cabin Can     X 
240)   Keswick   X   
241)   Kidd Lake Main X     
242)   Kimball Creek X     
243)   Kunkle     X 
244)   La Grange     X 
245)   Lafayette X     
246)   Laguna Regulating Basin     X 
247)   Lagunita Santa Clara X     
248)   Lagunita Sonoma X     
249)   Lake Almanor X     
250)   Lake Alta     X 
251)   Lake Arrowhead     X 
252)   Lake Arthur     X 
253)   Lake Co San Dist X     
254)   Lake Curry X     
255)   Lake Frey X     
256)   Lake Hemet X     
257)   Lake Loveland X     
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258)   Lake Madigan X     
259)   Lake Ranch   X   
260)   Lake Sherwood X     
261)   Lake Theodore     X 
262)   Lang Creek Detention Basin X     
263)   Las Llajas X     
264)   Laurel Creek X     
265)   Lauro   X   
266)   Lee Lake     X 
267)   Leland X     
268)   Lewiston   X   
269)   Little Dalton Debris Basin X     
270)   Little Mountain X     
271)   Little Panoche Detention     X 
272)   Littlerock X     
273)   Live Oak X     
274)   Live Oak Reservoir X     
275)   Log Cabin X     
276)   Loma Rica Airport X     
277)   Long Lake     X 
278)   Long Valley X     
279)   Loon Lake Main X     
280)   Lopez X     
281)   Los Angeles Reservoir     X 
282)   Los Banos Creek Detention   X   
283)   Los Carneros, Lake X     
284)   Los Padres X     
285)   Los Vaqueros X     
286)   Lower Crystal Springs X     
287)   Lower Franklin X     
288)   Lower Howell     X 
289)   Lower Peak Lake Main     X 
290)   Lower San Fernando X     
291)   Lower Stehly X     
292)   Lower Twin Lake X     
293)   Lundy Lake X     
294)   Lytton     X 
295)   Mabey Canyon X     
296)   Macumber X     
297)   Madeline     X 
298)   Maerkle X     
299)   Magalia X     
300)   Magnolia X     
301)   Maloney X     
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302)   Mammoth Pool X     
303)   Mammoth Reservoir X     
304)   Marie, Lake X     
305)   Mariposa Dam   X   
306)   Mark Edson X     
307)   Marsh Creek X     
308)   Martinez   X   
309)   Martis Creek Dam   X   
310)   Mary Street X     
311)   Mary, Lake     X 
312)   Matanzas Creek X     
313)   Mathews X     
314)   Matilija X     
315)   Mccloud X     
316)   Mcswain X     
317)   Meadow Lane     X 
318)   Merced Falls   X   
319)   Middlefield Res X     
320)   Milliken X     
321)   Miner'S Ranch X     
322)   Miramar X     
323)   Moccasin Lower X     
324)   Mockingbird Canyon X     
325)   Modesto Res X     
326)   Mojave Dam   X   
327)   Monticello   X   
328)   Moraga X     
329)   Morena X     
330)   Morning Star     X 
331)   Morris Los Angeles X     
332)   Morris Mendocino X     
333)   Morris S. Jones X     
334)   Mount Stoneman     X 
335)   Mulholland X     
336)   Murphys Wastewater     X 
337)   Murray X     
338)   Murry     X 
339)   Nacimiento X     
340)   Nash X     
341)   Nevada City Raw Water Reservoir     X 
342)   New Bullards Bar X     
343)   New Hogan Dam   X   
344)   New Melones   X   
345)   New Upper San Leandro X     
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346)   Newell X     
347)   Nimbus   X   
348)   North X     
349)   North Battle Creek X     
350)   Notre Dame X     
351)   Novato Creek X     
352)   Olson X     
353)   O'Neill Forebay   X   
354)   Orange County Reservoir X     
355)   Orinda, Lake X     
356)   Oroville X     
357)   Owens Dam   X   
358)   Pacific Grove   X   
359)   Pacoima X     
360)   Palisades Reservoir X     
361)   Palo Verde X     
362)   Palos Verdes Res X     
363)   Paradise X     
364)   Pardee X     
365)   Pardee South Spillway     X 
366)   Patterson X     
367)   Pennsylvania Creek X     
368)   Perris X     
369)   Peters X     
370)   Peters Canyon X     
371)   Philbrook Main     X 
372)   Phoenix X     
373)   Phoenix Lake X     
374)   Piedmont X     
375)   Pigeon Pass X     
376)   Pilarcitos X     
377)   Pine Creek X     
378)   Pine Flat Dam   X   
379)   Pit No. 1 Forebay X     
380)   Pit No. 3 Diversion X     
381)   Pit No. 4 Diversion X     
382)   Pit No. 5 Diversion X     
383)   Pit No. 5 Open Conduit X     
384)   Pit No. 6 Diversion X     
385)   Pit No. 7 Diversion X     
386)   Pleasant Valley X     
387)   Poe     X 
388)   Pond No 2 X     
389)   Ponderosa     X 
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390)   Portola X     
391)   Poway X     
392)   Prado Dam   X   
393)   Prenda X     
394)   Priest X     
395)   Prosser Creek   X   
396)   Puddingstone X     
397)   Puddingstone Diversion X     
398)   Putts Lake     X 
399)   Pyramid X     
400)   Quail Lake X     
401)   Quartz     X 
402)   R. W. Matthews X     
403)   Railroad Canyon X     
404)   Ralphine, Lake X     
405)   Ramona X     
406)   Rancho Del Ciervo X     
407)   Rancho Seco X     
408)   Rattlesnake Canyon X     
409)   Reba X     
410)   Rector Creek X     
411)   Red Mountain Reservoir X     
412)   Redbank X     
413)   Redhawk Lake     X 
414)   Reservoir No 1   X   
415)   Reservoir No 4 X     
416)   Reservoir No 5 X     
417)   Rhinedollar X     
418)   Rickey     X 
419)   Righetti X     
420)   Rinconada Reservoir X     
421)   Riviera Reservoir X     
422)   Robert A Skinner X     
423)   Rock Creek X     
424)   Rollins X     
425)   Ross No 1 X     
426)   Ross No 2 X     
427)   Round Mountain X     
428)   Runkle X     
429)   Rush Meadows X     
430)   Sabrina X     
431)   Saddlebag Lake X     
432)   Salinas Dam   X   
433)   Salinger     X 
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434)   Salt Springs X     
435)   San Andreas X     
436)   San Antonio Los Angeles   X   
437)   San Antonio Monterey X     
438)   San Clemente   X   
439)   San Dieguito X     
440)   San Dimas X     
441)   San Felipe Ranch     X 
442)   San Gabriel X     
443)   San Joaquin Reservoir X     
444)   San Lorenzo Creek X     
445)   San Marcos San Diego X     
446)   San Marcos San Luis Obispo X     
447)   San Pablo X     
448)   San Pablo Clearwell X     
449)   San Sevaine Basin #5 X     
450)   San Vicente X     
451)   Sand Canyon X     
452)   Sand Creek X     
453)   Santa Anita Debris Basin     X 
454)   Santa Fe Dam X     
455)   Santa Felicia X     
456)   Santa Monica Debris Basin X     
457)   Santa Ynez Canyon X     
458)   Santiago Creek X     
459)   Savage X     
460)   Sawpit X     
461)   Sawpit Debris Basin X     
462)   Scott X     
463)   Scotts Flat X     
464)   Scout Lake X     
465)   Searsville X     
466)   Seeger X     
467)   Sempervirens     X 
468)   Seneca     X 
469)   Sepulveda Dam   X   
470)   Sequoia Lake X     
471)   Seven Oaks X     
472)   Shasta   X   
473)   Shasta River X     
474)   Shaver Lake X     
475)   Shiloh Ranch     X 
476)   Sierra Madre X     
477)   Silver Lake X     
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478)   Sinaloa Lake X     
479)   Skinner Clearwell X     
480)   Slab Creek   X   
481)   Sly Park X     
482)   Small Canyon X     
483)   Sobrante Clearwell X     
484)   Soulajule X     
485)   Spenser Lake   X   
486)   Spring Valley X     
487)   St. Helena Lower X     
488)   Stampede   X   
489)   Stanford Heights X     
490)   Stanley A Mahr Reservoir X     
491)   Stevens Creek X     
492)   Stewart Canyon Debris Basin X     
493)   Stockton Creek X     
494)   Stone Canyon X     
495)   Stony Gorge   X   
496)   Success Dam   X   
497)   Sulphur Creek X     
498)   Summit X     
499)   Summit Reservoir X     
500)   Sunset North Basin X     
501)   Sunset South Basin X     
502)   Sutherland X     
503)   Sutro Reservoir X     
504)   Suttenfield X     
505)   Swanzy Lake X     
506)   Sweetwater Main X     
507)   Sycamore X     
508)   Syphon Canyon X     
509)   Tahchevah X     
510)   Temescal, Lake X     
511)   Terminal X     
512)   Terminus Dam   X   
513)   Thermalito Afterbay X     
514)   Thermalito Diversion X     
515)   Thermalito Forebay X     
516)   Thompson     X 
517)   Thompson Creek X     
518)   Tinemaha X     
519)   Tioga Lake Main X     
520)   Trampas Canyon X     
521)   Trinity   X   
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522)   Tulloch X     
523)   Tuolumne Log Pond     X 
524)   Turner   X   
525)   Twitchell   X   
526)   Union Main     X 
527)   Union Valley X     
528)   University Mound North Basin X     
529)   University Mound South Basin X     
530)   Upper Franklin Dam   X   
531)   Upper Howell     X 
532)   Upper Oso X     
533)   Upper Otay     X 
534)   Upper Peak Lake     X 
535)   Upper Stehly X     
536)   Uvas X     
537)   Vail X     
538)   Vasona Percolating X     
539)   Vermilion X     
540)   Villa Park X     
541)   Virginia Ranch X     
542)   Wallace     X 
543)   Walnut Canyon X     
544)   Ward Creek X     
545)   Warm Springs Dam   X   
546)   Wastewater Storage     X 
547)   West Point Regulating     X 
548)   West Valley X     
549)   Westlake Reservoir X     
550)   Weymouth Memorial Reservoir X     
551)   Whale Rock X     
552)   Whiskeytown   X   
553)   White Pines     X 
554)   Whittier Narrows Dam   X   
555)   Whittier Res No 4     X 
556)   Wide Canyon X     
557)   Williams     X 
558)   Wishon Main X     
559)   Wohlford Lake X     
560)   Wood Ranch X     
561)   Woodcrest X     
562)   Wrigley Reservoir X     
563)   Wyandotte, Lake X     
564)   Yosemite, Lake X     
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