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ABSTRACT OF THE DISSERTATION

New Models and Mechanisms for the Planning and Allocation of Online Advertising

by

Seyed Ali Hojjat

Doctor of Philosophy in Management

University of California, Irvine, 2016

Professor John G. Turner, Chair

Motivated by recent trends in online advertising and advancements made by online publishers,

most of this dissertation is devoted to the introduction, modeling, and the design of e�cient

allocation techniques for a new form of online advertising contract, which we refer to as Reach

and Frequency (R&F) contract.

In the �rst chapter, we consider a type of R&F contract which allows online advertisers to

specify the number of unique individuals that should see their ad (reach), and the minimum

number of times each individual should be exposed (frequency) for him/her to be counted

as reached. We develop an optimization framework that aims for minimal under-delivery

and proper spread of each campaign over its targeted demographics. As well, we introduce a

pattern-based delivery mechanism which allows us to integrate a variety of interesting features

into a website's ad allocation optimization problem which are not present in existing models.

For example, our approach allows publishers to implement any desired pacing of ads over

time at the user level or control the number of competing brands seen by each individual. We

develop a two-phase algorithm that employs column generation in a hierarchical scheme with

three parallelizable components. Numerical tests, conducted on real industry data obtained

from Yahoo, show that our algorithm produces high-quality solutions and has promising run-

time and scalability. Several extensions of the model are presented, e.g., to account for

multiple ad positions on the webpage, or randomness in the website visitors' arrival process.

xii



In the second chapter, we consider di�erent variants of R&F contracts in which the

advertiser speci�es frequency using a probability distribution that details what fraction of

users should see the ad how many times. This is a generalization of the R&F contract

modeled in Chapter 1 in which frequency is a unique exposure count that every user should

attain. Depending on whether the frequency of ad exposures to each user is measured over a

�xed timespan (e.g., the number of times each user has seen the ad throughout the campaign's

horizon) or on a rolling basis (e.g., over any randomly-selected 24-hour period), we propose two

Markov chain models for serving ads and investigate how well they perform in maintaining

a desired frequency distribution for an online ad campaign. We show that, when certain

feasibility criteria are met, the publisher's impression assignment rule can be obtained very

e�ciently in linear time in the length of the frequency distribution speci�ed by the advertiser.

The third and last chapter of this dissertation is concerned with the more basic problem

of planning guaranteed targeted display advertising (GTDA), without the complication of

R&F contracts. We examine three distinct lines of research: (1) O�ine deterministic models

that produce a plan based on mean supply forecasts, (2) An o�ine stochastic programming

model which we develop as an intermediary benchmark, and (3) Real-time heuristics based

on variants of online bipartite matching which require no supply forecast.We provide a brief

review of the literature in each category and compare the performance of di�erent approaches

using simulation. We �nd that an online algorithm can outperform o�ine models (determin-

istic or stochastic) when the supply forecasts are even moderately noisy. In our simulations,

we �nd that a speci�c bid-scaling function, not studied in the literature before, consistently

outperforms other (well-studied) scaling functions. Using primal-dual analysis, we derive the

competitive ratio of this scaling function and explain why and when it beats the best known

bound of 1− 1/e ' 0.63.

Each of the three chapters in this dissertation is formatted as a separate research article,

and therefore, bibliography and appendices are provided separately for each chapter.
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CHAPTER 1:

A Uni�ed Framework for the Scheduling of

Guaranteed Targeted Display Advertising un-

der Reach and Frequency Requirements

1.1 Introduction

Since its advent, internet advertising has drawn a lot of attention due to its interactivity, ease

of customization, world-wide reach, and e�ective targeting abilities. This segment has grown

from $9.6 billion in 2004 to $59.6 billion in 2015, exceeding all other forms of advertising

such as broadcast and cable television, radio, newspaper, and consumer magazines (IAB

2016). E�cient serving of advertising is a key problem for online publishers such as Yahoo,

Facebook, and Google. A large publisher may have hundreds of millions of page visits per

day, and tens of thousands of concurrent advertising campaigns to manage, many of which

have been booked and guaranteed well in advance. Each page visit poses a split-second

opportunity to the publisher to choose one or more ads to show to the user. Even a few

percent improvement in drawing the correct ad for each user can improve annual publisher

revenues by tens of millions of dollars1 while enhancing user experience.

In all existing forms of online advertising contracts, campaigns specify an aggregate

impression goal or a budget limit and do not di�erentiate between 2 impressions of the same

ad served to a single user, or 1 impression served to each of 2 distinct users. However, industry

1Facebook, Google, and Yahoo had net U.S. display ad revenues of $5.29, $3.03, and $1.23 billion in 2014
(eMarketer 2015).
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trends show that advertisers are becoming more concerned about who they reach (Warc 2015)

and traditional media measurement metrics of reach (how many unique individuals were

exposed to the ad), frequency (how many times, on average, each individual were exposed to

the ad), and Gross Rating Points (GRP) are increasingly being adopted by online advertisers

(eMarketer 2009). Alongside the tremendous growth of online video streaming sites (such as

YouTube, Net�ix, etc.), video ads have gained much attention and are used to complement TV

ad campaigns, which makes classic reach and frequency metrics, important in designing and

measuring online campaigns (eMarketer 2014). People-based marketing has been a popular

catchphrases in the industry over the past year and advertising companies are exerting major

e�orts to measure and track individuals (c.f.,Kattula et al. 2015). The exponential growth

in the use of portable devices has made mobile advertising the fastest growing segment of

online media (with 100% CAGR), and more advanced identi�er technologies (such as Apple's

IDFA and Google's Advertising ID) have made it easier for publishers to track individuals

over time across multiple devices. Online ads are becoming more relevant and personalized

than ever before, and promotion is shifting toward storytelling where the advertising message

is broken into small bite-sized pieces. The recent case study of Adaptly (2014) on Facebook

shows that creative sequencing of ads on a personal level substantially increases view-through

and subscription rates.

Motivated by these industry trends, in our paper, we consider an entirely new form of ad-

vertising campaign, under what we call a Reach and Frequency (R&F) contract, which allows

campaigns to explicitly specify the viewer demographics eligible to see their ad (targeting), the

number of unique individuals that should see the ad (reach), and a required number of times

that each individual should be exposed to the ad (frequency) for him/her to be considered as

reached. The publisher receives revenue for the number of unique individuals reached at the

speci�ed frequency.

We develop an optimization model for a publisher to optimally plan and serve R&F

2



contracts which maximizes retained revenue (i.e., minimizes under-delivery), and has several

important features for both the advertiser and the publisher. First, our model produces plans

that are well-dispersed within each campaign's targeted demographic (advertisers expect the

publisher to not deliver the campaign to only a small, potentially easy-to-serve, subgroup of

targeted users). Second, our modeling approach explicitly takes into account the user-level

sequence of ads over time. This allows advertisers to implement sequenced (storyboarded) ad

campaigns., as well as to specify their desired rate of re-exposure (i.e., whether impressions

of their ad should be served to a user upon consecutive visits to promote recall, or evenly

paced over time). Third, our model can maximize the diversity of campaigns seen by each

user, or restrict the number of competing brands shown to each user (e.g., Pepsi and Coke).

To the best of our knowledge, none of these user-level features are explicitly considered in the

existing models for planning online advertising.

Our optimization model includes several features which make it attractive for implemen-

tation for publishers. First, it exhibits promising run-time and scales well to industry-size

problems, due to the fact that each component of our model is parallelizable. Second, because

of the combinatorial explosion of targeting dimensions and the long-tailed nature of user

behavior, it is prohibitive for any publisher to produce an ad delivery plan that includes every

possible user type. Using duality theory, we show that a near-optimal allocation rule can be

determined for user types which have never been seen before or not explicitly considered when

the plan was produced.

Our paper contributes to the literature of operations research and online advertising in

a variety of aspects. To the best of our knowledge, our work is the �rst to introduce R&F

contracts and consider the optimal scheduling of online advertising under explicit reach and

frequency speci�cations. As well, our model is the �rst that explicitly incorporates user-

level quality metrics, such as diversity and pacing of ads over time for each user, into the

publisher's ad planning problem. We introduce a new mechanism for ad serving, which we
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call pattern-based as delivery, that pre-generates explicit sequence of ads for each user to

plan his/her serving over time. This mechanism is essential to our ability to plan at the user

level while keeping the dimensionality of the optimization problem manageable. Our novel

pattern-based method, called Hierarchical Column Generation (henceforth Pattern-HCG),

gives rise to a novel and fresh application of column generation in in the form of an iterative

algorithms with two phases and three inter-related components. We conduct a comprehensive

set of tests to evaluate the performance of our methodology on real industry data, obtained

from Yahoo. Since prior work in planning online advertising is impression-based, we propose

two heuristics which serve as benchmarks for our Pattern-HCG algorithm. First, we describe

an adaptation of frequency capping, which is an existing industry practice within the context

of impression-based ad planning and limits the number of times each individual is exposed to

the same ad. Next, we develop a pattern-based greedy heuristic (henceforth Pattern-G) which

avoids some of the computational complexities of Pattern-HCG such as the need for column

generation or additional iterations for parameter-tuning. Our experiments demonstrate that

Pattern-HCG achieves a 10% reduction in under-delivery compared to Pattern-G, and 45%

reduction in under-delivery compared to frequency capping.

This paper is organized as follows. We begin with an overview of the relevant literature

in �1.2. In �1.3, we further elaborate on reach and frequency planning and appropriate

quality metrics. To contrast our work with current practice, we describe an existing model

for the planning of impression-based campaigns with several important features, as well as

the frequency capping heuristic. In �1.4, we formally introduce how patterns can be used to

serve advertising and describe our Pattern-G heuristic. In �1.5, we present our Pattern-HCG

method. As well, we highlight structural similarities and di�erences between our R&F ad

planning problem and the classic cutting stock problem, and point out the shortcomings of

using a direct application of CG without hierarchical decomposition. Finally, we conduct a

thorough set of numerical experiments in �1.6 to demonstrate the performance and robustness
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of our methodology. Concluding remarks, insights and directions for future research appear

in �1.7. Proofs of all theorems along with several extensions of the model and supplementary

discussions are included in the appendices.

1.2 Literature Review

Reach and frequency are well-established marketing metrics for planning and evaluating the

e�ectiveness of advertising campaigns. There is an extensive body of empirical research that

examines the impact of ad repetition on user recall. These studies commonly agree that initial

exposures to a message �rst increase attitude toward the product due to positive habituation

(wear-in e�ect), but too many exposures lead to tedium/boredom and lower attention, and

therefore decrease attitude toward the product (wear-out e�ect). The two e�ects produce an

S-shaped response function, i.e., an inverted-U relationship between the n'th exposure and

incremental message impact (see Campbell and Keller 2003 and references therein). Chandler-

Pepelnjak and Song (2003) demonstrate how historical campaign performance can be used

to determine the most e�cient or most pro�table campaign-speci�c frequency rates. There

is also a rich literature that employs dynamic optimal control to determine the optimal rate

of advertising expenditures over time in order to maximize a single advertiser's net present

pro�t, in a �nite or in�nite horizon setting (see Sethi 1977, and Feichtinger et al. 1994 for

comprehensive reviews). Our model does not recommend appropriate reach and frequency

levels for advertisers. Instead, we take these parameters as given and solve the publisher's

allocation problem which simultaneously seeks to meet all advertisers' reach and frequency

requirements using the available supply of impressions.

Mathematical modeling of the ad allocation problem as a transportation problem, i.e.,

bipartite graph with supply and demand nodes that represent viewer types and ad campaigns,

has been a very useful modeling approach and quite successful in practice. Langheinrich et al.

(1999) is among the �rst to use a linear transportation problem to maximize the total click-
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through rate. Tomlin (2000) suggests using a nonlinear entropy term in the objective to obtain

more dispersed and thus robust solutions. Chickering and Heckerman (2003) use hierarchical

linear programming (LP) to produce a uniformly-spread schedule with maximum overall click-

though and demonstrate the e�ectiveness of this approach through experiments on msn.com.

Nakamura and Abe (2005) propose a number of improvements to the base LP formulation,

including lower bounds for decision variables, importance weights for contracts, using the

Gittins index in place of click-through estimates coupled with an interior-point algorithm to

address the exploration-exploitation tradeo�, and clustering viewer types with similar click-

through rates to increase prediction accuracy and reduce LP dimensionality. More recently,

Turner (2012) uses a quadratic objective to spread impressions across viewer types, which

directly minimizes the variance of the number of impressions served. Bharadwaj et al. (2012)

consider CPM contracts (for which click-through does not play a role) and minimize a weighted

objective composed of linear under-delivery and quadratic spreading metrics. They develop

an e�cient algorithm, called SHALE, to solve their formulation with minimal memory usage

and faster run-time than commercial solvers on industry-size instances.

Column generation (CG) is a classical method for solving mathematical programs with

an exponential number of variables in which the basis is expected to be relatively small. This

method has been used extensively for e�ciently solving the cutting stock problem (see Gilmore

and Gomory 1961), as well as problems in vehicle routing, crew/job/machine scheduling,

multi-commodity �ow problems, tra�c assignment, graph coloring, clustering, and many

others (see Lübbecke and Desrosiers 2005, and Desaulniers et al. 2005 for thorough reviews).

There are a few papers that employ CG in the context of online advertising. Abrams et al.

(2008) develop a column-based formulation for the allocation of sponsored search. In their

model, a column corresponds to an ordered arrangement of ads into webpage slots which

will be shown to a user all at once when the page is loaded. The expected revenue of

showing any particular arrangement is pre-calculated using generalized second price auction
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rules. The optimization problem determines the number of times each arrangement should

be displayed in response to each search query to maximize publisher's revenue, subject to

expected query inventory and the advertisers' budget. Salomatin et al. (2012) combine the

planning of guaranteed and non-guaranteed advertising by allowing the arrangement (column)

to contain both auction-type and guaranteed ads. They maximize total revenue collected

across both types of campaigns minus any under-delivery penalties. Contrary to the above

modeling approaches, columns of our model represent the sequence of ads for each user over

time, allowing us to focus on reach and frequency as measured for each individual user over

a given horizon.

Finally, a number of authors consider the revenue optimization of online advertising

in a variety of settings (e.g., see Roels and Fridgeirsdottir 2009; Mookerjee et al. 2012;

Naja� Asadolahi and Fridgeirsdottir 2014; Balseiro et al. 2014). Although every publisher's

goal is revenue maximization, our focus here is on the allocative e�ciency of guaranteed

campaigns which, when done well, leads to high pro�ts.

1.3 The Ad Allocation Problem

The Reach & Frequency (R&F) ad planning problem we study is an allocation problem in

which ads are assigned to individual users over a �xed time period (e.g., one week). Each

advertiser k speci�es a desired reach of rk unique users, where each user is required to see

the ad fk times (i.e., the ad's frequency). The publisher receives no payment for impressions

shown to any user short of fk. Additional exposures beyond fk also result in no extra payment.

Moreover, each advertiser wants only users from speci�c demographics; this is known as

targeting. Over the planning period, many individuals of each demographic arrive, and each

individual makes one or more visits and can be exposed to multiple impressions from one or

more advertisers. It is a challenge to simultaneously satisfy all of the requirements from all

advertisers; consequently, our goal is to maximize the quality of the ad allocation, which is
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measured at both aggregate and disaggregate levels.

Maximizing aggregate quality is our primary goal, since it is usually tied to contractual

obligations that have direct revenue consequences. For example, it is common for the publisher

to consider revenue from guaranteed ads booked in advance, with any shortfalls in satisfying

the reach targets rk to be credited to the advertiser at the make-good cost rate ck. Thus,

if advertiser k receives uk less than the rk individuals she wishes to reach, the publisher

pays an under-delivery penalty ckuk. Consequently, we can maximize retained revenue by

maximizing the aggregate quality metric −
∑

k ckuk, or equivalently, minimizing the total cost

of under-delivery
∑

k ckuk. This is perhaps the simplest aggregate quality metric possible.

More complex aggregate quality metrics are often used in practice, e.g., to measure whether

exposures are well-spread across di�erent demographics; we will introduce and motivate such

an aggregate quality metric shortly.

To provide users with a high-quality experience, as well as to provide advertisers with

a high quality of ad delivery, the publisher also wishes to maximize the quality of the ad

allocation at a disaggregate, or individual user, level. This can be achieved by, for example,

making sure each individual user sees ads that (i) are either well-paced over time or purposely

delivered successively in a blitz, (ii) are diverse, and/or (iii) do not have competing brands

shown to the same user. Such user-level objectives constitute secondary goals, and the extent

to which these secondary goals are met can be thought of as the ad plan's disaggregate

quality. Although desired, disaggregate quality is typically not explicitly managed by existing

ad serving systems. We will later formalize how we model disaggregate quality, and illustrate

how speci�c user-level goals such as (i), (ii), and (iii) can be implemented.

The R&F ad planning problem thus de�ned has a primary objective that maximizes ag-

gregate quality, and a secondary objective that maximizes disaggregate quality. The primary

(aggregate) objective dominates the secondary (disaggregate) objective; thus, no improvement

in the secondary objective can be made that sacri�ces the value of the primary objective.
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This modeling choice captures the extent to which aggregate quality is more important

than disaggregate quality, and is in line with the spirit of preemptive (lexicographic) goal

programming (see Jones and Tamiz 2010).

The aggregate quality metric we use in our model incorporates not only under-delivery

penalties as we have described above, but also measures how well-spread ads are across

di�erent demographics. As described more fully in Ghosh et al. (2009), advertisers prefer a

representative allocation that shows ads to all demographics the advertiser chooses to target,

yet spreads ads so that larger demographics receive a proportionally larger number of ads

than smaller demographics. By requesting a representative allocation, an advertiser ensures

the publisher does not ful�ll the entire campaign using some obscure, potentially easy-to-serve

subgroup of targeted users. Indeed, if an advertiser targets all users in the USA, they don't

expect to only get users in California. We prefer our aggregate quality metric to include a

quadratic non-representativeness penalty, because in conjunction with the speci�c constraints

in our formulation, it allows us to write the primal solution as a closed-form expression of the

dual solution; this property is known as generalizability (see Vee et al. 2010). Generalizability

is important when there are a large number of demographics, and only the most important

subset of demographics (e.g., those with enough historical data to accurately forecast) are

used to produce the optimal ad allocation. If an arriving user belongs to a demographic that

was not explicitly used to construct the optimal ad allocation, then we still can allocate ads

near-optimally to this user if we have a way to recover the missing part of the primal solution

that corresponds to this user's demographic. When the aggregate quality metric is quadratic,

the dual solution we already have can be used to compute a near-optimal primal solution. On

the other hand, when the aggregate quality metric is linear, this mapping between dual and

primal solutions does not exist, and we say the allocation plan is not generalizable.

In what follows, we develop a model that solves the R&F ad planning problem by pre-

generating explicit sequences of ads, which we call patterns, and then assigns these patterns to
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speci�c users. In this model, aggregate quality is a summary statistic computed from the set

of assigned patterns, and disaggregate quality is the sum total of the quality of ad sequences

in the assigned patterns. Our proposed method, which we name Pattern-based Hierarchical

Column Generation (Pattern-HCG), iterates between three components: (1) An aggregate

reach planning problem which aims to maximize aggregate quality, (2) A pattern assignment

problem that maximizes disaggregate quality by assigning patterns to user types in such a way

that aggregate quality is maintained, and (3) a pattern generation problem which sequences

ads into new patterns for the pattern assignment problem to use.

The aggregate reach planning component of our Pattern-HCG method is modeled after the

formulation of Bharadwaj et al. (2012). Their model involves impression-based campaigns that

do not di�erentiate between 1 person seeing 2 ads vs. 2 people seeing 1 ad each, and therefore

cannot directly plan R&F campaigns. However, their objective function nicely combines a

linear under-delivery penalty with a quadratic measure of non-representativeness, as discussed

above, and is able to produce generalizable plans. As well, by following the structure of their

formulation, we are able to exploit a fast parallelizable primal-dual algorithm developed by

those authors called SHALE, which we have adapted to our model and repeatedly call as a

subroutine throughout our Pattern-HCG method. Because of the structural similarity, we �nd

it convenient and instructive to begin in �1.3.1 by describing their model while introducing our

basic notation. We note that di�erent functional forms for the aggregate quality metric (e.g.,

linear) can be adopted in our framework; however, one would give up both the generalizability

property and the ability to use SHALE as an e�cient method for solving the aggregate reach

planning component of Pattern-HCG. This would be acceptable, for example, if there are only

a small number of demographics, since in that case one need not worry about generalizablity

and the stage-one math program would be small enough to solve using a commercial solver on

a single machine without SHALE. Next, in �1.3.2 we show how a heuristic used in practice,

called frequency capping, may be used to deliver R&F ads in conjunction with an impression-
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based ad planning model such as the one by Bharadwaj et al. (2012), and point out some of

the major di�erences and distinct issues that arise in R&F planning. A list of mathematical

notation is provided in Appendix 1.A for quick reference.

1.3.1 Allocation of Impression-based Ad Campaigns

A typical method used to plan and serve impression-based ads is to solve an optimization

problem that matches forecasted supply with campaigns' demand and produces a short-term

allocation plan (o�ine phase), and then use the resulting policy for assigning user impressions

to di�erent ad campaigns at serving time (online phase). The o�ine optimization problem is

re-solved periodically to update the policy with adjusted supply forecasts and each campaign's

actual progress (see Chen et al. 2012; Yang et al. 2010).

The o�ine planning phase has at its core a bipartite graph. Each advertising campaign

is modeled as a demand node, indexed by k ∈ K, and the publisher's tra�c (measured by

impressions) is partitioned based on user characteristics such as age and gender, geographical

location, and behavioral attributes, into supply nodes, indexed by i ∈ I. Figure 1.1 shows

an example with 2 supply nodes and 3 advertising campaigns. The arcs model the targeting

criteria, i.e., which user types can be served with ads from which campaigns. Letting T ⊆ I×K

denote the set of arcs, we use Γ̂(k) = {i : (i, k) ∈ T } to denote the set of all user types targeted

by (eligible for) campaign k, and Γ̂(i) = {k : (i, k) ∈ T } to denote the set of all campaigns

that target (can be delivered to) type-i users. Each supply node i represents ŝi impressions

and each campaign k demands a total of d̂k impressions. We further de�ne Ŝk =
∑

i∈Γ̂(k) ŝi

as the total volume of impressions that satisfy the targeting criteria of campaign k. The

problem is then to �nd the optimal fraction of impressions from each supply node i that

should be allocated to each campaign k ∈ Γ̂(i), denoted x̂ik, so as to maximize the quality (or

analogously, minimize the cost) of the allocation. Such an optimization problem is known as

a transportation problem in the operations research literature. Throughout the paper we use
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Figure 1.1: Example Bipartite Graph with Impression-based Ad Campaigns

the caret (^) to di�erentiate between quantities that we measure as a number of impressions,

as opposed to their analogs (without caret) which we measure as a number of unique users.

The model of Bharadwaj et al. (2012), shown next, plans impression-based guaranteed

ads using a transportation formulation with a quadratic objective that minimizes both under-

delivery and non-representativeness. We will refer to this as the Impression Allocation (IA)

problem:

(IA): Minimize:
∑

k,i∈Γ̂(k)

ŝi

2θ̂k
ŵk

(
x̂ik − θ̂k

)2

+
∑
k

ĉkûk (1.1a)

s.t.
∑
i∈Γ̂(k)

ŝix̂ik + ûk ≥ d̂k ∀k (1.1b)

∑
k∈Γ̂(i)

x̂ik ≤ 1 ∀i (1.1c)

x̂ik, ûk ≥ 0 ∀i, k (1.1d)

Demand constraint (1.1b) states that the total number of impressions allocated to each

campaign k must either exceed its demand d̂k, or otherwise the slack variables ûk capture the

magnitude of the impression shortfall, called under-delivery. Supply constraint (1.1c) states

we cannot allocate more than 100% of supply from each node i. The objective function (1.1a)

penalizes non-representativeness and under-delivery. Each campaign has an under-delivery

cost of ck per impression, and a weight ŵk for the importance of achieving a representative
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allocation. A perfectly-representative allocation is de�ned as one that distributes the de-

manded impressions of every campaign uniformly across its total eligible supply, i.e., each

campaign k grabs a θ̂k = d̂k
/
Ŝk proportion of each eligible supply pool i ∈ Γ̂(k). This

has the interpretation that every serving opportunity eligible for campaign k is treated the

same way, with campaign k winning the impression with constant probability θ̂k. Since the

perfectly-representative allocation is often infeasible to achieve for all campaigns, deviations

from this ideal are quadratically penalized in the objective. Weighting the terms by ŝi/2θ̂k

is for mathematical convenience and balancing the relative magnitude of the terms in the

objective. Note that
∑

i ŝi−
∑

k(d̂k− ûk) impressions will not be allocated to any guaranteed

campaign. Although not explicitly modeled here, these excess impressions may still get

matched to lower-priced non-guaranteed ads in a secondary channel that operates as a spot

market to clear excess impressions.

At ad-serving time (i.e., online phase), the optimal solution from (IA) is used as follows:

Upon a visit of a type-i user, we randomly draw an eligible ad k ∈ Γ̂(i) with probability x̂∗ik.

For example, Figure 1.1 illustrates a 3-campaign 2-demographic example where the numerical

solution x̂∗ik is shown on the arcs. Upon a visit from a type-1 user, we draw campaign A

(Coca-Cola) with probability x̂∗1A = 0.1, campaign B (Pepsi) with probability x̂∗1B = 0.2, and

campaign C (Subway) with probability x̂∗1C = 0.4. There is a 30% chance we do not draw

any guaranteed campaign, in which case we assume the user is served a non-guaranteed ad.

More ads will be drawn, with the same probabilities, if the webpage has multiple ad slots,

since each ad slot corresponds to one impression. Due to the large tra�c volume most online

publishers have, this random drawing of ads typically achieves the desired proportions x̂∗ik

within a short time, while naturally exposing each user to a variety of ads.

The solution illustrated in Figure 1.1 satis�es all campaign demands with perfect represen-

tativeness. Note campaign B (Pepsi) is uniformly spread over the two targeted demographics

1 and 2 as it grabs 20% of each. This translates into (0.2)(9000) = 1800 impressions of the
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larger demographic 1, and (0.2)(3600) = 720 impressions of the smaller demographic 2. In

other words, campaign B receives 2.5 times more impressions from demographic 1, as it is 2.5

times larger than demographic 2. A total of (0.3)(9000) + (0.8)(3600) = 5580 impressions are

left unallocated as excess.

The structure of (IA) admits the generalizability property, making it possible to optimize

(IA) using only a subset of the largest supply nodes, while still allowing us to recover a near-

optimal value for any decision variable x̂ik corresponding to a supply node i that was not

explicitly present when (IA) was solved. Speci�cally, Bharadwaj et al. (2012) show that the

primal solution to (IA) can be written as a function of the dual variables of the supply (β̂i)

and demand (α̂k) constraints in closed-form: x̂∗ik = max{0, θ̂k(1 + (α̂∗k − β̂∗i )/ŵk)}. Moreover,

the supply duals (β̂∗i ) themselves can be calculated directly from the demand duals {α̂∗k for

k ∈ Γ̂(i)} without referring to the supply forecast ŝi. Therefore, one only needs to have

the vector of optimal demand duals, α̂∗k (i.e., a single value for each campaign) to be able

to reconstruct the optimal primal solution, x̂∗ik, in real-time during the serving period. This

means that if a type-i user arrives and the supply node i was excluded from (IA) when it was

solved, we can use the α̂∗k values of the campaigns that target this type-i user to determine

corresponding near-optimal x̂ik values.

For a major online publisher with many campaigns and user types, (IA) can easily have

hundreds of millions of decision variables. Therefore, using a specialized e�cient algorithm to

solve (IA) can be crucial. Bharadwaj et al. (2012) develop such an algorithm, called SHALE,

that iterates over the dual variables α̂k and β̂i and converges asymptotically to the optimal

dual solution. In �1.5.1, we extend SHALE to solve the aggregate reach planning component

of our R&F allocation problem.
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1.3.2 Frequency Capping

Within the context of delivering impression-based ad campaigns, many publishers use a

concept called frequency capping to limit the number of impressions each individual user sees

of a given ad. The idea is straightforward. Each campaign k is assigned a maximum frequency

fk, and the solution to (IA) is used to serve ads in the same manner as described in the previous

section, with one small modi�cation. Once a user j of type i sees fk impressions of ad k,

then x̂∗ik is treated as if it is zero; i.e., no additional ads of campaign k are shown to this user.

Frequency capping prevents any single user from being dramatically over-exposed to an ad

just because they happen to spend a lot of time on the publisher's website. As well, frequency

caps tend to increase reach, since the publisher must use impressions from a larger group of

individuals to satisfy the impression demands d̂k. Within the ad planning literature, we note

that Chandler-Pepelnjak and Song (2003) discuss how a campaign's historical performance

can be used to �nd the most e�cient or most pro�table frequency cap. As well, Buchbinder

et al. (2011) develop online algorithms for the publisher to serve impression-based campaigns

with minimal under-delivery in the presence of frequency caps.

Because frequency capping is already an existing feature in many impression-based ad-

serving systems, it makes a good benchmark to test whether this level of control is su�cient

to capably deliver R&F campaigns. In essence, we may consider frequency capping the status

quo baseline, with any improvements made in delivering R&F campaigns measured above

this baseline. Delivering R&F campaigns using (IA) and a frequency capping heurisitic

is accomplished by converting the reach and frequency requirements into total impression

demands using d̂k = fkrk, and then treating fk as a frequency cap. The method is formally

de�ned in Algorithm 1.1.

Despite the apparent similarities that frequency capping has to our problem, note that

our frequency requirements, fk, de�ne the minimum number of exposures required for the

publisher to receive payment from an advertiser, whereas a frequency cap, as implemented
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Algorithm 1.1 Frequency Capping Heuristic (FreqCap)

• OFFLINE: Solve the impression allocation problem (IA) using d̂k = fkrk as the demand
parameters.

• ONLINE: Upon a visit from user j from demographic i:

� If it is the �rst visit from user j in the planning period: Initialize qjk = 0 for all k ∈ Γ̂(i), where
qjk counts the number of times user j has been exposed to campaign k.

� Among the campaigns that target this user k ∈ Γ̂(i) and have not reached their target frequency
(qjk < fk): Randomly draw an eligible ad according to implicit probabilities x̂∗ik.

� Increment the frequency counter for the selected campaign k′: qjk′ ← qjk′ + 1.

in current practice, de�nes the maximum number of exposures beyond which the publisher

will no longer receive a payment. Indeed, our numerical experiments in �1.6 show that using

frequency capping for serving R&F campaigns causes a signi�cant portion of tra�c to be

wasted, i.e., assigned to users that do not hit the minimum frequency requirement, in which

case served impressions are non-billable. This not only leads to considerable under-delivery,

but also results in a substantial loss of revenue for the publisher: had the publisher known

that the frequency target would not be attained, s/he would have preferred to serve those

arrivals with non-guaranteed ads or other R&F campaigns that could reach their frequency

target.

We now point out an important distinction between waste and excess. In the allocation of

impression-based ad campaigns, waste does not exist. Each impression is either allocated to

a guaranteed campaign and is billable, or is considered excess and served to a non-guaranteed

campaign. In either case, the impression generates some revenue. But in the case of allocating

R&F campaigns, an impression served to campaign k may either result in a payment (if later

that particular user sees the campaign the required fk times), or is wasted without payment.

When the number of visits made by each user is random, any allocation policy is prone to

some waste. But to allocate R&F ads well, we should expect that a reasonable policy will

need to keep waste in check. As we will see shortly, by clustering users based on their browsing

behavior and explicitly planning the sequence of ads that a user sees on successive arrivals,
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using patterns of a well-chosen length, we can achieve very low waste.

1.4 Serving Ads using Patterns

We de�ne a serving pattern as a sequence of ads arranged over a �xed number of slots, where

each slot corresponds to a single ad shown to a user. A particular campaign may appear in

multiple slots in a pattern, and a pattern may not necessarily contain all campaigns. Any

unassigned slots are treated as excess impressions and may be used to serve non-guaranteed

ads. At serving time, when an individual arrives for the �rst time in the planning period,

s/he is assigned a particular pattern. Upon subsequent visits, the `th arrival of the user

will be served using the ad in the `th slot of his/her assigned pattern. Arrivals of a user

beyond his/her assigned pattern's length are also considered excess and may be served non-

guaranteed ads. For ease of exposition, we assume the publisher's webpage has a single ad

position. That is, the pattern plans for a single impression upon each arrival, and therefore

can be expressed as a one-dimensional array. Such a setup is becoming quite common, e.g.,

in video advertising as well as ads which are �lled as the user scrolls down the webpage. In

Appendix 1.C we discuss many practical use cases for one-dimensional patterns even when

the publisher's page has multiple advertising positions, and we extend our model to handle

the case of two-dimensional patterns which explicitly plan multiple ads for each user visit.

In addition to keeping waste in check and making it easier to control under-delivery and

representativeness of R&F campaigns (i.e., aggregate quality), using explicit patterns also

allows the publisher to control disaggregate quality (i.e., user-level pacing, diversity of ads,

competition constraints). Figure 1.2 illustrates a few examples of patterns composed of three

guaranteed campaigns {A,B,C}. All patterns are of length 8. In the �rst two patterns,

campaign C appears twice as often as campaigns A or B. The �rst pattern illustrates uniform

pacing (assuming arrivals are also uniform over time), whereas the second pattern delivers

campaigns B and C upon successive arrivals, e.g., to strengthen user recall. The last pattern
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Figure 1.2: Examples of patterns with three campaigns {A,B,C}

spreads 2 impressions of each campaign uniformly throughout the �rst 6 slots and leaves the

last two slots as excess.

To serve ads using patterns, the publisher should be able to forecast the number of visits

that they will get from each user, so a pattern of appropriate length can be constructed for

him/her. Assume users are classi�ed according to their browsing behavior, such that all users

of the same visit type, v ∈ V, share a common probability distribution, φv(`), that gives the

probability of such user making exactly ` visits over the serving period. We can then say that

each user of type v will make at least Lv(ε) = Φ−1
v (ε) visits with probability 1− ε, where Φ

denotes the CDF of φ. With a reasonably small ε, we can use the resulting Lv(ε) (henceforth

referred to in short as Lv) as the anticipated number of visits, and thus an appropriate pattern

length, for any user of type v.

Although we take a deterministic modeling approach and henceforth assume that a type-v

user makes exactly Lv visits and sees the entire pattern assigned to him/her, our computa-

tional experiments in �1.6 on real industry data show that our solutions are robust to forecast

errors and randomness in user arrivals when Lv is chosen as described. For completeness,

we present an extension of our model in Appendix 1.E that explicitly takes into account

randomness in user arrivals, i.e., the probability distribution φv(·), when sequencing ads into

patterns. As can be expected, a probabilistic model takes longer to solve than a deterministic

one.

Patterns can either be generated on the �y as-needed, or pre-generated in advance. The

greedy pattern-based method we introduce in the subsequent section shows how we can
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generate patterns on the �y using the solution to a reach-based variant of the Impression

Allocation problem (IA). Afterward, in �1.5 we will show how we pre-generate and then serve

optimal patterns using our Pattern-HCG method.

1.4.1 Reach-and-Frequency Ad Allocation Using Greedily-Constructed Pat-

terns

Recall from �1.3.1 that to plan and serve impression-based ads, we �rst solved a math program

to match the supply of impressions with the demand of impressions (o�ine phase), and then

used the resulting optimal allocation to serve ads to users upon arrival in real-time (online

phase). Our greedy pattern-based method also has o�ine and online phases.

In the o�ine phase, we solve a variation of (IA) which we call the Reach Allocation

problem (RA). The math program (RA) di�ers from (IA) in three main aspects. First, the

ad allocation is represented by unique individuals, rather than impressions. Second, supply

nodes partition users by both demographic and predicted number of visits, rather than only

demographic. Third, the supply constraints become more complex, to model the relationship

between individuals and impressions.

To formally de�ne (RA) we need some additional notation. Noting that campaigns

requiring a frequency of fk can only be assigned to users that visit at least fk times, we

de�ne our eligible matching sets as Γ(k) = {(v, i) : (i, k) ∈ T , Lv ≥ fk} and Γ(v, i) = {k :

(i, k) ∈ T , fk ≤ Lv}. Let svi denote the number of unique users of visit type v within

demographic i that will arrive over the planning horizon, and let Sk =
∑

(v,i)∈Γ(k) svi denote

the total number of unique users that satisfy the targeting criteria of campaign k. For a

perfectly representative allocation, each campaign k should grab a θk = rk/Sk proportion of

type-(v, i) ∈ Γ(k) users. Consequently, ck and wk are the cost per unit of under-delivery and

non-representativeness penalty weight, respectively for campaign k, that apply when under-

delivery and representativeness are measured in individuals rather than impressions. Our

decision variables are now xvik, which measures the proportion of type-(v, i) users that should

be reached by (i.e., exposed to fk impressions of) campaign k; and uk, which measures the
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under-delivery of campaign k (i.e., the shortfall in attaining campaign k's reach target rk).

Our Reach Allocation problem (RA) is as follows:

(RA): Minimize:
∑
k

∑
(v,i)∈Γ(k)

svi
2θk

wk (xvik − θk)
2

+
∑
k

ckuk (1.2a)

s.t.
∑

(v,i)∈Γ(k)

svixvik + uk ≥ rk ∀k (1.2b)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ 1 ∀v, i (1.2c)

0 ≤ xvik ≤ 1 ∀v, i, k ∈ Γ(v, i) (1.2d)

uk ≥ 0 ∀k (1.2e)

Demand constraint (1.2b) requires the total number of unique users reached by each campaign

k to meet or exceed rk, or otherwise the slack variables uk capture the magnitude of under-

delivery.

Supply constraint (1.2c) is structurally di�erent from its counterpart (1.1c) in (IA). A

näıve translation of (1.1c) yields
∑

k∈(v,i) xvik ≤ 1. However, we can immediately see that

such a constraint would be too strict. Indeed, if campaigns A and B each require only one

impression (i.e., fA = fB = 1), and every user of type (v, i) arrives at least twice, then

it is possible to reach each individual by both campaigns, i.e., xviA = xviB = 1, which

violates
∑

k∈(v,i) xvik ≤ 1. Instead, we write the supply constraint in the impression space,

and translate users reached into impressions. By multiplying through by Lvsvi, the supply

constraint (1.2c) is equivalent to
∑

k∈Γ(v,i) fksvixvik ≤ sviLv. In this expanded form, the

left-hand side represents all impressions allocated from supply node (v, i), where each of the

svixvik individuals served campaign k are exposed to fk impressions. The right-hand side

re�ects the total number of impressions from supply node (v, i) that are available for R&F

campaigns, and is computed as the number of individuals svi of type (v, i), multiplied by the

pattern length Lv (measured in impressions) used for this user type. Finally, we note that

since (1.2c) does not imply xvik ≤ 1 as its counterpart (1.1c) in (IA) did, we now explicitly
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enforce the upper-bounds xvik ≤ 1 using constraint (1.2d) to ensure xvik can be interpreted

as a proportion.

Figure 1.3 provides a solution to an instance of (RA), as well as one possible extension

of this solution to speci�c patterns. In this example, the publisher receives visits from s1 =

1500 unique individuals of demographic 1, of which {500, 800, 200} users are classi�ed as

{low,med,high}-visiting, and make {4, 6, 11} page visits, respectively, for a total of ŝ1 = 9000

impressions. All s2 = 600 users of demographic 2 are med-visiting and make exactly 6

visits each, producing a total of ŝ2 = 3600 impressions. Campaigns A, B, and C require

{450, 630, 600} unique users to see {2, 4, 6} impressions, respectively, to be considered reached.

Note that the demands and supplies, when translated into impressions (e.g., using d̂k = fkrk),

match those of our earlier example from Figure 1.1.

In Figure 1.3(a), the values on the arcs show the optimal solution x∗vik obtained by

solving (RA). This solution satis�es all campaigns' reach requirements and achieves perfect

representativeness. Among the s1 = 1500 users of demographic 1, 30% (450 individuals) are

reached by campaign A (i.e., each see fA = 2 impressions of the Coca Cola ad), 30% (450

individuals) are reached by campaign B (i.e., each see fB = 4 impressions of the Pepsi ad),

and 60% of med- and high-visiting users (600 individuals) are reached by campaign C (i.e.,

each see fC = 6 impressions of the Subway ad). Note that low-visiting users arrive only 4

times which is not enough to be allocated to campaign C. Finally, among the s2 = 600 users

of demographic 2, 30% of med-visiting users (180 individuals) are reached by campaign B.

Figure 1.3(b) demonstrates one possible pattern-based assignment corresponding to the

reach fractions x∗vik within demographic 1. For the 500 low-visiting users who make 4 visits

each, we assign 30% (150 individuals) a pattern with only campaign-A impressions, and

another 30% (150 individuals) a pattern with only campaign-B impressions. For the 800

med-visiting users who make 6 page visits each, we assign 30% (240 individuals) a pattern

with impressions from both campaigns A and B, and 60% (480 individuals) a pattern with
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  A: 

  B: 

  C: 

𝑟𝐴 = 450 

𝑓𝐴 = 2 

𝑠1 = [
500
800
200

] 

𝑟𝐵 = 630 

𝑓𝐵 = 4 

𝑟𝐶 = 600 

𝑓𝐶 = 6 

𝑠2 = [
0
600
0
] 

(a) Bipartite graph, supply of users in {low,med,high}-visiting
classes within each demographic, reach and frequency parameters,
and the optimal reach allocations obtained by solving (RA).
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(b) A pattern-based assignment of ads for demographic 1
that match the optimal reach allocations given by (RA).
{Low,Med,High}-visiting users make {4,6,11} visits each,
respectively.

Figure 1.3: Example Bipartite Graph and Pattern-Based Solution of R&F Campaigns
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Algorithm 1.2 Pattern-based Greedy Heuristic (Pattern-G)

• OFFLINE: Solve the reach allocation problem (RA).

• ONLINE: Upon a visit from user j from of type (v, i):

� If it is the �rst visit from user j in the planning period: Initialize an empty pattern, Pj =
{}. Follow a random permutation of eligible campaigns k ∈ Γ(v, i) and conduct a Bernoulli
experiment with success probability x∗vik to determine whether the user should be reached by
each k ∈ Γ(v, i). If campaign k is selected, add fk impressions of k to the pattern Pj . However,
if adding k makes the pattern longer than Lv, instead stop without adding k and store Pj .

� Randomly draw one impression from Pj to show to the user. Remove that impression from Pj .

only campaign-C impressions. For the 200 high-visiting users who make 11 visits each, we

assign 30% (60 individuals) a pattern with campaigns A and C, and 30% (60 individuals) a

pattern with campaigns B and C. Note that whenever campaign k is in a pattern, exactly fk

impressions are allotted to campaign k. Finally, {200, 80, 80} individuals of {low,med,high}-

type are not served any R&F campaign, and all of their page visits are excess impressions.

Similarly, all un�lled slots in the illustrated patterns are excess impressions.

Our greedy heuristic, de�ned in Algorithm 1.2, uses the solution obtained from (RA) and

constructs and assigns a pattern to a user upon his/her �rst visit. It creates a pattern for a

type-(v, i) user by randomly selecting full blocks of fk impressions from campaigns k ∈ Γ(v, i)

according to a Bernoulli process with success probabilities x∗vik, until the Lv slots are full.

If the user sees the full pattern, s/he sees exactly fk impressions required to be counted as

reached, and no impressions are wasted. The greedy heuristic does not explicitly optimize

disaggregate quality metrics such as user-level pacing or diversity. However, we do pay some

attention to disaggregate quality by serving impressions from the pattern in random order;

this spreads out each selected campaign's ads and thus provides some amount of user-level

pacing. Finally, we note that (RA) maintains enough similarity to (IA) that it is generalizable

and we can adapt SHALE to solve it e�ciently; we will discuss this further in �1.5.

Because Pattern-G constructs patterns on-the-�y, its patterns may not make e�cient use

of all Lv impressions from users of type v. Consequently, although Pattern-G aims to meet

the reach fractions x∗vik prescribed by the optimal solution of (RA), it could fall short when
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the combinatorial problem of packing blocks of fk impressions into patterns is di�cult. In

Appendix 1.D we present a more advanced greedy algorithm which simultaneously does a

better job of packing R&F ad impressions into patterns and maintaining the reach fractions

x∗vik. In the following section, we introduce a method which explicitly considers the packing

problem of pattern generation, and pre-generates optimal patterns.

1.5 Pattern-based Hierarchical Column Generation

Column generation as developed by Gilmore and Gomory (1961) was designed to solve a single-

objective optimization problem known as the cutting stock problem. Using notation analogous

to our R&F planning problem, in the cutting stock problem a manufacturer must produce

rk strips of length fk to satisfy the demands of all customers k ∈ K by cutting standard-

sized length-L pieces of stock material (e.g., rolls of metal or paper) into strips of varying

lengths. The objective is either to minimize the number of stock rolls used, or minimize the

amount of material scrapped; when over-production is not an option, these two are equivalent

(see Appendix 1.K). Determining how to cut strips from rolls is in general a combinatorially

challenging problem. For example, given L = 10 with two desired strip lengths fA = 3 and

fB = 4, the only pattern with zero scrap is {3, 3, 4}. Consequently, if demand for 3-unit strips

is exactly double that of 4-unit strips, i.e., rA = 2rB, then we can satisfy the demands without

producing any scrap. However, for any other demand levels, some scrap will be produced,

and we would need to consider using other patterns, such as {3, 3, 3, 1} and {4, 4, 2}. Column

generation is a duality-based technique that tackles the combinatorially challenging problem

of implicitly considering all possible ways that patterns can be constructed to decide which

patterns to use, and how many times to use each pattern. We use the duality-based constructs

from classical column generation to produce patterns for sequencing ads to users. However,

our R&F planning problem is more complex than the classical cutting stock problem, and

consequently our Pattern-HCG method is also substantially more complex.
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We begin this section by highlighting the main structural di�erences between the cutting

stock problem and our R&F ad planning problem. In our context, the set of arrivals from

each unique user constitutes a stock roll. However, rather than there being only one type

of roll as in the cutting stock problem, we have one roll type for each user type (v, i). Roll

length is determined by the anticipated number of visits Lv, while the user's demographic i

can be thought of as providing the roll with some other attribute, e.g., its color. Moreover,

whereas the cutting stock problem assumes an in�nite number of rolls are available, we have

svi forecasted users of type (v, i), which constitutes a �xed capacity for each roll type. Like

the cutting stock problem, we aim to produce rk strips of length fk, so that rk users can be

exposed to fk impressions. However, in our case, since each block of fk impressions assigned

to advertiser k must come from a di�erent user, we can only ever cut a strip of type k once

from the same roll. In contrast, the cutting stock problem allows multiple strips of type k to

be cut from the same roll.

With regards to the objective function, we note that our problem has a primary objective

(maximize aggregate quality) and a secondary objective (maximize disaggregate quality).

Recall that our proposed aggregate quality metric not only minimizes under-delivery, but also

maximizes representativeness. Maximizing representativeness involves spreading impressions

across targeted demographics, and is analogous to not only cutting a total of rk strips of

length fk, but also striving to deliver to the customer a well-balanced mix of di�erent-colored

strips, which to the best of our knowledge, has not been considered in the cutting stock

literature. Furthermore, most disaggregate quality metrics that apply to R&F planning are

di�erent from what is relevant to a cutting stock problem. First, note that what we consider

excess is scrap (or trim loss) within the context of the cutting stock problem and there is no

corresponding concept of waste. Having excess impressions, especially toward the end of a

pattern, can increase the robustness of our solution to uncertainty in the number of arrivals for

a given user, and thus reduce waste. Therefore, minimizing excess (equivalent to minimizing
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scrap or the number of rolls which is the standard goal in cutting stock) is not an ideal

objective for our R&F planning model. A somewhat less popular objective in cutting stock is

to minimize the number of cuts in the patterns. In our case, this corresponds to the number

of campaigns, thus the diversity of ads served to a user which we would prefer to maximize

instead. Finally, some disaggregate quality metrics require us to model each unit of stock as

if they are ordered; for example, to spread impressions to a user over time, we care about the

actual sequence and not just the number of times the user is exposed. In contrast, the cutting

stock problem's stock units are not ordered in any particular manner. Thus, there are several

distinct di�erences between the standard cutting-stock problem and our more involved R&F

ad planning problem.

In Hojjat et al. (2014) we studied a variant of the R&F ad planning problem that is

closer in structure to the classical cutting stock problem. In that conference paper, we also

had ad campaigns that require rk users to see fk impressions, and viewer types (v, i) that

correspond to heterogeneous rolls with di�erent lengths and colors. But in contrast to the

problem studied in this paper which has both primary and secondary objectives, the problem

in Hojjat et al. (2014) had only a single objective, de�ned as the weighted sum of under-

delivery, non-representativeness, and pattern-related costs. For that problem, we proposed a

two-step solution procedure modeled after classical column generation, with a master problem

for pattern assignment and a related pattern-generating subproblem. Although theoretically

correct, the model presented in Hojjat et al. (2014) su�ered a number of practical issues. In

particular, our master problem in that paper did not retain enough of the structure of (RA)

to allow us to uniquely characterize the primal solution as a function of the dual solution

(for details, see Appendix 1.F). As a result, the solution was not generalizable, and second,

we could not use SHALE as a fast algorithm to solve the master problem. Recall that

generalizability is important when dealing with large number of demographics, and so is

having a fast algorithm for solving the large master problem which is solved numerous times
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in our iterative procedure. Third, the emphasis on a single objective function in Hojjat et al.

(2014) meant that every iteration of column generation was focused on improving disaggregate

pattern quality, which was computationally expensive. In contrast, by focusing on the

aggregate and disaggregate pattern quality objectives at di�erent stages, our Pattern-HCG

method spends several iterations �rst in a faster feasibility-seeking phase, before �nishing with

an optimality-seeking phase where disaggregate pattern quality is addressed in a distributed

parallelizable fashion. Fourth, and lastly, including the disaggregate pattern quality terms in

the composite objective of Hojjat et al. (2014) led to a di�cult-to-resolve scaling issue. From

our experience, applying a low weight to pattern quality resulted in low-quality patterns which

did not justify the high computational e�ort in generating them. And applying a high weight

to pattern quality induced high under-delivery and low representativeness, which have a direct

revenue consequence for the publisher. Re-casting the problem as one with primary aggregate

quality and secondary disaggregate quality objectives alleviates the need to �gure out what

the appropriate scaling factor is that balances these two competing objectives.

In the following, we introduce our new approach which retains the bene�t of generating

patterns using column generation, but does not su�er from the four issues just mentioned. We

begin by describing the three distinct components of Pattern-HCG: reach allocation, pattern

generation, and pattern assignment. Then, we describe how we coordinate these components

in an iterative fashion.

1.5.1 Reach Allocation

The reach allocation component of Pattern-HCG chooses the proportion of users xvik of each

type (v, i) to assign to each campaign k so as to maximize aggregate quality (i.e., minimize

non-representativeness and under-delivery). It is modeled by the following quadratic program,

27



which has decision variables xvik and uk:

(RA-δ): Minimize
∑
k

∑
(v,i)∈Γ(k)

svi
2θk

wk (xvik − θk)
2

+
∑
k

ckuk Duals (All ≥ 0) (1.3a)

s.t.
∑

(v,i)∈Γ(k)

svixvik + uk ≥ rk ∀k αk (1.3b)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ δvi ∀v, i βvi (1.3c)

0 ≤ xvik ≤ 1 ∀v, i, k ∈ Γ(v, i) γLvik, γ
U
vik (1.3d)

uk ≥ 0 ∀k ϕk (1.3e)

This formulation improves upon our earlier reach allocation problem (RA) by introducing

impression utilization factors δvi ∈ [0, 1] for each supply constraint (v, i). Note that the

supply constraint (1.3c) is a generalization of our earlier supply constraint (1.2c) from (RA)

which assumed δvi = 1. When δvi = 1, all sviLv impressions of supply node (v, i) are eligible

to be assigned to R&F campaigns. But, more generally, (1 − δvi)% of the impressions from

supply node (v, i) are set aside as excess, leaving δvi(sviLv) eligible for R&F campaigns. As

we will see in �1.5.4, due to the combinatorial di�culty of packing groups of ad exposures

into patterns, the patterns we construct often have some inevitable amount of excess (i.e.,

slots not assigned to any R&F campaign). This corresponds to trim loss or scrap in the

cutting stock problem which cannot be avoided unless the size and length of orders allow for

a perfect cut from stock rolls. Consequently, the impression utilization factors δvi are used

by our method to control how optimistic or pessimistic (RA-δ) should be in apportioning

impressions to campaigns.

We now establish the relationship between the optimal primal and dual solutions of (RA-δ).

The proof of the following theorem is based on the Karush-Kuhn-Tucker (KKT) conditions,

and is provided in Appendix 1.G.

Theorem 1. The optimal primal and dual solutions of (RA-δ) satisfy the following relation-
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ships:

1. The optimal primal solution x∗vik can be computed from the optimal dual solution {α∗k, β∗vi},

and is given by: x∗vik = gvik(α
∗
k, β
∗
vi) ≡ min

[
1,max

[
0, θk + θk

wk

(
α∗k −

fk
Lv
β∗vi
)]]

.

2. For each campaign k, we have α∗k ∈ [0, ck]. Furthermore, either α∗k = ck, or the demand

constraint binds with no under-delivery, i.e.,
∑

(v,i)∈Γ(k) svix
∗
vik = rk. The optimal solution

never over-delivers a campaign.

3. For each supply node (v, i), we have β∗vi ∈
[
0, maxk∈Γ(v,i)

wk+α∗k
fk

Lv

]
. Furthermore, either

β∗vi = 0 or the supply constraint binds, i.e.,
∑

k∈Γ(v,i)
fk
Lv
x∗vik = δvi.

4. The optimal solution to (RA-δ) is unique.

In Algorithm 1.3, we generalize the SHALE algorithm of Bharadwaj et al. (2012) and use

it to e�ciently solve (RA-δ). The algorithm iterates through the dual space, and converges to

the solution to the KKT system of (RA-δ). Step 1 attempts to improve βvi, and invokes parts

1 and 3 from the theorem to �nd the unique value of βvi which satis�es the KKT conditions

under the assumption that all αk's are optimal. Similarly, Step 2 attempts to improve αk, and

invokes parts 1 and 2 of the theorem to �nd the unique value of αk which satis�es the KKT

conditions under the assumption that all βvi's are optimal. Overall, SHALE can be viewed as

an algorithm which maintains stationarity and dual feasibility throughout, while striving for

primal feasibility and complementary slackness. More speci�cally, primal feasibility always

holds immediately following Step 1. If at that point complementary slackness is also attained,

then optimality is achieved and the algorithm terminates.

Bharadwaj et al. (2012) provide a proof of convergence for SHALE, and show that the

algorithm makes smooth progress towards bucketing campaigns into two groups: those with

either zero or non-zero under-delivery at the optimal solution. Speci�cally, they show that

after 1
ε |K|maxk{ck/wk} iterations, SHALE produces a primal solution that, for each campaign

k, either αk = ck (under-delivery is being priced in), or at least (1− ε)% of the demand (i.e.,
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Algorithm 1.3 The Modi�ed SHALE Algorithm

• INITIALIZE: Set all αk = 0 (or any other value in [0, ck] that satis�es the assumptions in
Theorem 2).

• REPEAT:

� STEP 1: (Parallelize) For each (v, i), �nd βvi such that:
∑
k∈Γ(v,i)

fk
Lv
gvik(αk, βvi) = δvi.

Binary search over interval
[
0, maxk∈Γ(v,i)

wk+αk

fk
Lv

]
. If no solution exists, set βvi = 0.

� CHECK: If suitable optimality gap, iteration or time limit is attained, terminate.

� STEP 2: (Parallelize) For each k, �nd αk such that:
∑

(v,i)∈Γ(k) svigvik(αk, βvi) = rk.

Binary search over interval [0, ck]. If no solution exists, set αk = ck.

reach) rk is satis�ed. We provide a generalized proof of convergence in Appendix 1.I which

does not rely on all αk values being initialized at zero at the start of the algorithm, as in

Bharadwaj et al. (2012). This is important for us, since Pattern-HCG solves (RA-δ) multiple

times with δvi values monotonically decreasing at each iteration. Warm-starting using the

optimal αk values from the previous iteration provides signi�cantly faster convergence.

Theorem 2 (Convergence of Modi�ed SHALE). Given a vector of impression utilization

factors δ, the Modi�ed SHALE Algorithm converges to the optimal dual solution for (RA-δ)

as long as either (i) all αk values are initialized to zero, or (ii) we initialize αk = α′k, ∀k ∈ K

where α′ is the optimal dual solution to (RA-δ′) for which δ′ ≥ δ componentwise.

Finally, we state how we use Theorem 1 to produce a near-optimal primal solution xv′i′k

for a user of type (v′, i′) which was not explicitly considered as a supply node when (RA-δ)

was solved.

Corollary 1 (Generalizability). For any unexpected user visit of type (v′, i′), we can identify

the set of targeted campaigns Γ(v′, i′) and use the corresponding α∗k ∈ Γ(v′, i′) to estimate β∗v′i′

using Step 1 of the Modi�ed SHALE Algorithm2. From part 1 of Theorem 1, a corresponding

primal solution is xv′i′k = gv′i′k(α
∗
k, β
∗
v′i′). Moreover, by construction, the supply constraint is

satis�ed, hence {xv′i′k : k ∈ Γ(v′, i′)} is feasible.
2We also need an estimate for δv′i′ to compute βv′i′ . Any value within the bounds de�ned in Remark 5 of

Section 5.4 would be reasonable. Our numerical experiments show that picking δv′i′ = δmax
v′i′ and then applying

Pattern-G produces a good solution.
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Assuming generalized arrivals do not account for a signi�cant portion of the publisher's

tra�c, the dual solution α∗k obtained by solving (RA-δ) will be close to the true optimum

(i.e., that of (RA-δ) with supply nodes for all generalized arrivals). Therefore, the generalized

solution proposed in Corollary 1 is near optimal.

1.5.2 Pattern Assignment

The pattern assignment component of Pattern-HCG determines how patterns should be

assigned to users of each demographic and visit-type to maximize disaggregate quality while

ensuring that the pattern assignment is consistent with the reach allocation from (RA-δ). Let

Pvi denote the set of all patterns that can be assigned to users of type (v, i). It su�ces to

initially assume that Pvi contains all patterns of length Lv that can be constructed by picking

a subset of campaigns K′ ⊆ Γ(v, i) that �t within the pattern (i.e., K′ satis�es
∑

k∈K′ fk ≤ Lv),

and then permuting the
∑

k∈K′ fk impressions from the chosen campaigns into the Lv slots

of the pattern. Let πvip be the cost (i.e., lack of disaggregate quality) of pattern p ∈ Pvi,

and bkp be a binary parameter that indicates whether or not fk impressions of campaign k

are in pattern p. The following linear program determines the optimal number of times each

pattern p should be assigned to type-(v, i) users, denoted yvip, in order to minimize pattern

assignment cost (i.e., maximize disaggregate quality):

(PA): Ψvi := Minimize
∑
p∈Pvi

πvipyvip Duals: (1.4a)

∑
p∈Pvi

bkpyvip = svix
∗
vik ∀k ∈ Γ(v, i) ᾱvik (free) (1.4b)

∑
p∈Pvi

yvip ≤ svi β̄vi ≥ 0 (1.4c)

yvip ≥ 0 ∀p ∈ Pvi − (1.4d)

Constraint (1.4b) ensures the number of type-(v, i) users reached by campaign k equals the

number (RA-δ) determined should be reached by campaign k. Since the optimal solution to

(RA-δ) is unique (part 4 of Theorem 1), maintaining the aggregate quality attained by (RA-δ)
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is equivalent to matching each and every variable x∗vik. Constraint (1.4c) ensures we do not

assign more patterns than there are users available (as each user can be assigned at most one

pattern). Producing a pattern assignment involves solving one such linear program for each

user type (v, i) which can be done in parallel.

The set of all possible patterns for any given user type (v, i) can be exponentially large;

thus, solving (PA) involves considering a linear program with an exponential number of

variables. The column generation technique allows us to implicitly, rather than explicitly,

consider all possible patterns. The idea stems from the fact that most patterns will not be

part of the optimal pattern assignment. For any such pattern p′ where y∗vip′ = 0, we can

exclude p′ from Pvi and still obtain the same optimal solution. Consequently, we can solve

(PA) to optimality by explicitly considering only a small subset of patterns in the pattern pool

Pvi, as long as the pool contains all patterns that are part of the optimal pattern assignment.

Although it would seem like an insurmountable problem to determine a small yet su�cient

set of patterns, column generation is an iterative technique that does just that. It begins

by initializing the pattern pool Pvi with a small set of patterns that can produce a feasible

solution to (PA). Then, at each iteration, a pattern generation problem is solved to identify

the patterns which, at the margin, improve the value of the solution; these patterns are added

to the pattern pool. This is repeated until no improving pattern exists, at which point (PA) is

solved to optimality while the pattern pool Pvi contains many fewer patterns than the explicit

set of patterns represented by all combinations of campaigns that �t within a pattern and all

permutations of their impressions.

1.5.3 Pattern Generation

The pattern generation component of HCG is used to produce new patterns. It uses the dual

solution from the current pattern assignment to determine, at the margin, what pattern would

be most bene�cial to add to each pattern pool Pvi. The reduced cost of the yvip variable in

(PA) is given by πvip −
∑

k∈Γ(v,i) ᾱ
∗
vikbkp + β̄∗vi. Therefore, the pattern generation problem,
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which constructs a new pattern for user type (v, i), has the following form:

(PG): ψvi := Minimize π(b) −
∑

k∈Γ(v,i)

ᾱ∗vikbk (1.5a)

s.t.
∑

k∈Γ(v,i)

fkbk ≤ Lv (1.5b)

bk ∈ {0, 1}, ∀k ∈ Γ(v, i) (1.5c)

The binary variables bk, k ∈ Γ(v, i), determine whether or not campaign k is included in the

new pattern. Since including k requires fk slots of the pattern, constraint (1.5b) ensures the

total number of slots used is within the pattern length Lv. For any �xed vector of decisions

b = (bk)k∈Γ(v,i), the function π(b) determines the cost (i.e., lack of disaggregate quality) of

the new pattern. The second part of the objective,
∑

k∈Γ(v,i) ᾱ
∗
vikbk, is linear in the decision

variables bk. Dual values ᾱ∗vik computed previously by (PA) are constants here, and measure

how important it is to select each campaign k ∈ Γ(v, i) in order to achieve the reach allocation

x∗vik of (RA-δ).

The complexity of (PG) depends on the choice of function π(b). For any π(b) which is

linear in the bk variables, (PG) can be formulated as a binary knapsack problem, which is

theoretically NP-hard but admits a Fully Polynomial-Time Approximation Scheme (FPTAS)

and can be solved very quickly using dynamic programming in O(|Γ(v, i)|L2
v) time (see

Martello and Toth, 1990, Ch.2). Some examples of disaggregate quality metrics that can be

implemented using a linear π(b) include maximizing the diversity of ads and/or the number

of excess slots within a pattern. Using a linear π(b) metric, we are able to solve more than

1000 such knapsack problems3 per second on a single 2.4GHz CPU.

Another useful disaggregate quality metric is user-level pacing, i.e., how well-spread im-

pressions of the same campaign are over time. But since pacing is a metric that not only

depends on the set of campaigns within the pattern, but also on how impressions are sequenced

3This runtime corresponds to the problem instances we study in �1.6, which have |Γ(v, i)| between 1 and
442 with an average connectivity of 36 campaigns per viewer type, and three pattern lengths Lv ∈ {10, 19, 56}.
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within the pattern, it cannot be implemented using a linear π(b). Such a pacing metric π(b)

involves an inner-optimization problem to uniformly arrange impressions over pattern slots

given the set of chosen campaigns b. Using CPLEX, solving an instance of an extended

formulation of (PG) that has additional binary variables and constraints to keep track of the

speci�c sequence of impressions within the pattern could take tens of seconds. This is an

order of magnitude slower than solving a binary knapsack problem via dynamic programming

as we do when π(b) is linear, but it is important to note that (PA) and (PG) are solved

independently for each supply node (v, i), and thus can be run in parallel across many

machines. This slower runtime for each instance of (PG) is still within practical limits given

that large publishers in industry have thousands of parallel computing nodes at their disposal.

For the explicit functional forms of π(b) and the corresponding models for the disaggregate

quality metrics concerning (i) diversity of ads served to each user, (ii) optimal amount of

excess in the patterns, and (iii) user-level pacing of ads over time, please see Appendix 1.B.

1.5.4 The Pattern-HCG Algorithm

Pattern-HCG combines the three components of the preceding subsections (reach allocation,

pattern assignment, and pattern generation) in an integrated, iterative fashion. At a high

level, the idea is to �rst solve (RA-δ) to produce an aggregate reach allocation with maximum

aggregate quality, and then use column generation to generate and assign patterns to maximize

disaggregate quality while maintaining the aggregate quality attained by (RA-δ). In the

process, there are two substantial challenges that must be overcome. First, we need a

way to construct an initial set of patterns so we can start with a feasible solution to (PA).

Second, while searching for feasible patterns we may learn that (PA) is infeasible for some

user types (v, i). When that happens, we re-solve (RA-δ) with a lower δvi, and iterate.

Consequently, the full Pattern-HCG algorithm has two phases: (1) a feasibility phase in

which the focus is on aggregate quality and δvi values are iteratively tuned to ensure that
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the solution to (RA-δ) can be translated into a pattern assignment by (PA) for every user

type, and (2) a pattern improvement phase which focuses exclusively on optimizing the

secondary, disaggregate quality objective without sacri�cing the value we obtained for the

primary, aggregate quality objective at the end of the feasibility phase.

The feasibility phase begins by initializing the impression utilization factors δvi to 1 for

all user types (v, i). We construct a reach allocation by solving (RA-δ), and then we solve a

modi�ed version of the pattern assignment problem (PA) for each user type (v, i):

(PA-F): Ψ
(F )
vi := Minimize

∑
p∈Pvi

yvip Duals: (1.6a)

∑
p∈Pvi

bkpyvip = svix
∗
vik ∀k ∈ Γ(v, i) ᾱ

(F )
vik (free) (1.6b)

yvip ≥ 0 ∀p ∈ Pvi − (1.6c)

Since we ignore disaggregate pattern quality in the feasibility phase, the pattern costs πvip

of (PA) do not factor into the objective. Instead, we relax the supply constraint (1.4c) and

minimize its left-hand side, i.e., the number of users allocated by this pattern assignment,∑
p∈Pvi

yvip. Unlike (PA) which has a supply constraint, (PA-F) is always feasible, as we

now show. For each campaign k ∈ Γ(v, i) we can create a pattern p(k) containing exactly

fk impressions of campaign k and no other campaigns; that is, bk,p(k) = 1 and bk′,p(k) = 0

for all k′ 6= k. Using only such single-campaign patterns, (PA-F) has a trivial solution

y∗v,i,p(k) = svix
∗
vik with dual values ᾱ∗(F )

vik = 1, ∀k ∈ Γ(v, i). We initialize the pattern pool Pvi

with only these single-campaign patterns, and from this initial solution, continue to solve (PA-

F) using column generation. The corresponding pattern generating problem is the following

binary knapsack problem with |Γ(v, i)| items, which can be solved very quickly and e�ciently

via dynamic programming:

(PG-F): ψ
(F )
vi := 1−max

{ ∑
k∈Γ(v,i)

ᾱ
∗(F )
vik bk

∣∣∣ ∑
k∈Γ(v,i)

fkbk ≤ Lv, bk ∈ {0, 1}, ∀k ∈ Γ(v, i)
}

If (PG-F) concludes with ψ∗(F )
vi < 0, the resulting pattern improves (PA-F); we add it to Pvi
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and re-solve (PA-F). Otherwise, we found the optimal solution to (PA-F), and have two cases

to consider.

If (PA-F) converges to optimality with Ψ
∗(F )
vi > svi, we know the corresponding pattern

assignment problem (PA) is infeasible; i.e., it is impossible to implement the solution x∗vik from

(RA-δ) using svi users. In this case, δvi over-estimates the attainable impression utilization,

i.e., 1−δvi under-estimates the fraction of impressions that must remain as excess. In this case,

we decrease δvi, re-solve (RA-δ) to produce a new reach allocation x∗vik, and resume solving

(PA-F) and (PG-F). To derive a good updating rule for δvi, note that the total number of

impressions used (i.e., assigned to R&F ads) in pattern p is given by
∑

k fkbkp. Therefore,

the total number of impressions used in (PA-F) at optimality is given by:

∑
p∈Pvi

 ∑
k∈Γ(v,i)

fkbkp

 y∗vip =
∑

k∈Γ(v,i)

fk

 ∑
p∈Pvi

bkpy
∗
vip

 =(1.6b)=
∑

k∈Γ(v,i)

fksvix
∗
vik.

Not surprisingly, this impression count is closely tied to the solution from (RA-δ) and is known

before solving (PA-F). Given that each of the Ψ
∗(F )
vi users provides Lv impressions, the e�ective

impression utilization rate at the optimal solution to (PA-F) is given by
∑

k∈Γ(v,i)
fksvix

∗
vik

LvΨ
∗(F )
vi

.

Based on this analysis, we suggest the following update rule:

δvi ← sviX
∗
vi/Ψ

∗(F )
vi − ε, (1.7)

where X∗vi =
∑

k∈Γ(v,i)
fk
Lv
x∗vik is the left-hand side of constraint (1.3c) at optimality, and ε > 0

is used to accelerate convergence.

On the other hand, if for all user types (v, i), (PA-F) converges to optimality with Ψ
∗(F )
vi ≤

svi, we have a feasible solution to all corresponding (PA) problems, and we switch to the

pattern improvement phase. In this phase, for each user type (v, i), we solve (PA) and collect

the optimal dual values ᾱ∗vik and β̄
∗
vi. Then we solve (PG) to construct a pattern with minimal

reduced cost. If ψ∗vi + β̄∗vi < 0, the resulting pattern is bene�cial; we add it to Pvi (with

parameters bkp = b∗k and πvip = π(b∗)) and re-solve (PA). On the other hand, if ψ∗vi+ β̄∗vi ≥ 0,

the current solution to (PA) is optimal and we stop. Note that solving (PG) is harder than
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(PG-F) if π(·) is not linear, however, in the pattern improvement phase we no longer solve

the large-scale math program (RA-δ). Again, we remind the reader that iterations between

(PA-F) and (PG-F), or (PA) and (PG), can be conducted in parallel across user types (v, i).

Finally, at ad serving time, when a type-(v, i) user arrives for the �rst time, s/he is assigned

pattern p ∈ Pvi with probability y∗vip/svi. Subsequent visits of the same user are served the

sequence of ads in his/her assigned pattern. If an unexpected user type (v′, i′) arrives, a

near-optimal reach allocation xv′i′k is computed using Corollary 1, and a pattern is generated

using the online part of Pattern-G algorithm. The full Pattern-HCG method is presented in

Algorithm 1.4.

Remark 1: The value of δvi always decreases following update rule (1.7). This follows since

X∗vi ≤ δvi due to constraint (1.3c), and Ψ
∗(F )
vi > svi whenever δvi is updated. Further, note

that a decrease in impression supply at some supply node can only increase the demand

burden of other supply nodes. As a result, we may need to solve (RA-δ) and update the δvi

values several times before we converge.

Remark 2: A decrease in δvi implies forcing additional excess in supply node (v, i). If

additional supply is not available in other supply nodes or using supply from other nodes

would have a signi�cant impact on representativeness, a δ update may cause under-delivery

to increase for some campaigns. In this case, the total volume of the publisher's tra�c left as

excess (i.e., left for non-R&F ads) increases. However, it is also possible that after re-solving

(RA-δ) with a lower δ, total under-delivery is maintained by shifting excess supply from one

node to another.

Remark 3: (PA-F), which minimizes the number of users, also minimizes total excess, and

thus attains the maximum impression utilization rate possible. Therefore, our update rule is

conservative. See Appendix 1.K for a proof of this behavior in the more general case of the

cutting stock problem.
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Algorithm 1.4 Hierarchical Column Generation (Pattern-HCG)

• OFFLINE:

FEASIBILITY PHASE:

� Initialize: δvi ← 1 for all user types (v, i).

� [1]: Solve the Reach Allocation problem (RA-δ) using Modi�ed SHALE (Algorithm 1.3)

� Parallelize: For each user type (v, i):

∗ [2F]: Solve the Pattern Assignment problem (PA-F) and obtain the optimal dual values

ᾱ
∗(F )
vik .

∗ [3F]: Solve the Pattern Generation problem (PG-F). If ψ
∗(F )
vi < 0, add the generated pattern

to Pvi and go to [2F]. Otherwise, continue.

∗ If Ψ
∗(F )
vi > svi, decrease δvi according to update rule (1.7).

� If δvi was decreased for any user type (v, i), go to [1]. Otherwise, continue.

PATTERN IMPROVEMENT PHASE:

� Parallelize: For each user type (v, i):

∗ [2]: Solve the Pattern Assignment problem (PA) and obtain the optimal dual values ᾱ∗vik,
β̄∗vi.

∗ [3]: Solve the Pattern Generation problem (PG). If ψ∗vi+ β̄
∗
vi < 0, add the generated pattern

to Pvi and go to [2]. Otherwise, stop.

• ONLINE: Upon a visit from user j of type (v, i):

� If it is the �rst visit from user j in the planning period:

∗ Set the number of arrivals qj ← 1.

∗ If user type (v, i) was explicitly considered as a supply node in the o�ine phase: Randomly
draw a pattern p from the pattern pool Pvi with probability y∗vip/svi, and denote the chosen
pattern as pj . Otherwise, construct a generalized solution xvik using Corollary 1, and use
the online portion of Pattern-G (Algorithm 1.2) to generate a corresponding pattern pj .

� Display the qj'th ad in pattern pj to user j. Set qj ← qj + 1.

Remark 4: Re-solving (RA-δ) after a δ-update is quite fast, since we can warm-start SHALE

using the solution from the last time we solved (RA-δ). See Theorem 2 for details.

Remark 5: We can construct bounds for the impression utilization factors δvi. Let δmin
vi =

mink∈Γ(v,i){fk}/Lv, which is derived from the pattern consisting of only the campaign with

the smallest fk, and let δmax
vi = maxbk∈{0,1}{

∑
k∈Γ(v,i)

fk
Lv
bk :

∑
k∈Γ(v,i) fkbk ≤ Lv}, which

can be computed by solving a binary knapsack problem with |Γ(v, i)| variables. A geometric

illustration of the range [δmin
vi , δmax

vi ] and how the δvi values a�ect the feasibility of (PA) is
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provided in Appendix 1.J.

Remark 6: We expect over time, a publisher may learn appropriate δvi values, and initialize

with δvi < 1 to speed up convergence. Nevertheless, among our numerous synthetic test cases

and real industry data, we never encountered a case where it takes beyond 10 (mostly 4-6)

rounds of adjustments before the reach allocation from (RA-δ) is attainable at 95% of the

supply nodes.

1.6 Computational Experiments

Prior work in planning guaranteed targeted display advertising is impression-based; that

is, it assumes publishers do not di�erentiate between serving 2 impressions to 1 person, or

1 impression each to 2 people. Consequently, there are no established benchmarks in the

literature for comparing the performance of our methodology. In what follows, we compare

Pattern-HCG with the frequency capping heuristic (FreqCap) of �1.3.2, which can be viewed

as a reasonable proxy for how an existing impression-based ad serving system would deliver

R&F campaigns, as well as with our Pattern-G heuristic from �1.4.1, which also serves ads

using patterns but constructs patterns greedily on-the-�y rather than optimally in advance.

We compare FreqCap, Pattern-G, and Pattern-HCG under di�erent levels of sellthrough, i.e.,

the ratio of aggregate demand to aggregate supply (Test 1), di�erent degrees of forecast error

(Test 2), and di�erent levels of generalized arrivals (Test 3). We also perform an out-of-sample

test (Test 4) by isolating the data of a particular time period for estimation and optimization,

and use other cross-sections of data for evaluating performance. We show that Pattern-

HCG consistently produces 10% lower under-delivery than Pattern-G, and more than 45%

lower under-delivery than FreqCap. With regard to non-representativeness, Pattern-HCG

marginally outperforms Pattern-G, but both pattern-based methods outperform FreqCap by

40%.
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1.6.1 Data

Our dataset was taken from a single major vertical of Yahoo.com (e.g., Yahoo Mail, Yahoo

News, or Yahoo Finance) and contains the following:

• The graph structure, composed of 3,844 user demographics and 925 campaigns, with

122,767 arcs (targeting speci�cation). On average, each viewer type is targeted by 36

campaigns and each campaign targets 122 viewer types.

• The user visit history of the webpage over a period of 6 weeks. The data provides the

number of page visits from each unique individual (14.7 million users), in each week,

along with the exact timestamp of all visits and the demographic of each user.

Per Yahoo's recommendation, we eliminated all users that made more than 3500 visits per

week. Such users are likely to be web robots (i.e., software imitating a user) or computers

shared among many individuals, and thus are not appropriate for serving R&F campaigns.

This eliminated 0.1% of users and accounted for 10% of the impression tra�c. We classi�ed

the remaining users into three groups V = {low,med,high}-visiting using k-means clustering

on the average number of page visits across the 6-week period. Users with average visit count

below 15 (55% of users) were considered low-, those with average visit count between 15-35

(25% of users) were considered med-, and those with average visit count above 35 (20% of

users) were considered high-visiting. Then, for users of each type v ∈ {low,med, high}, we

used the 40th percentile of the page visit distribution (i.e., the threshold that is exceeded 60%

of the time by users within the cluster) as the anticipated number of visits for each type-v

user, and found appropriate pattern lengths of Lv = {10, 19, 56} for the three visit types,

respectively. Note that using the 40th percentile for pattern lengths implies a 60% chance

that each user will see all pattern slots and no ad impression planned for that user will end

up as waste. Although we could chose lower percentiles to increase the probability of pattern

completion, we have found lower percentiles to be overly conservative, in part due to the fact
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that patterns generally have some excess slots at the end anyway. We then calculated the

user supply parameters svi by counting the number of users from each supply node i with

visit type v that appeared in a particular week4, and the impression supply parameters ŝvi by

counting the total number of arrivals that these svi users made. For the FreqCap algorithm,

we set ŝi =
∑

v ŝvi.

Since we are only now proposing R&F campaigns, the dataset does not include relevant

demand-side data. To create the demand parameters rk, we examined existing impression-

based campaign data at Yahoo and the distribution of θk parameters. From this distribution

we randomly drew a θk value for each demand node. Then, in no particular order, we iterated

through the demand nodes and assigned to each node k a θk-fraction of the remaining supply

from each node (v, i) ∈ Γ(k) to produce an initial estimate for rk; such a construction parallels

the so-called High Water Mark algorithm discussed in Bharadwaj et al. (2012). Finally, we

scaled and rounded the rk values to yield a sellthrough of approximately 88%. We generated

frequency targets fk independently at random between 1 and 25, with larger numbers given

lower weights. In all tests, we used penalty weights wk = 1 and ck = 3 for all campaigns, as

per Yahoo's suggestion, avoiding under-delivery (which has a direct revenue consequence) is

more important than maximizing representativeness.

1.6.2 Results

All algorithms were implemented in Matlab R© and run in a parallelized environment with 32

cores at 2.3GHz each. The runtimes observed under Pattern-HCG are as follows. Each round

of solving the reach allocation problem (RA-δ) using Modi�ed SHALE took 30-60 seconds,

and each round of pattern generation and assignment took about 25 minutes (about 4 seconds

per supply node (v, i), though 54% of nodes completed their CG within 1 second). Typically,

it took only 4-6 iterations of the feasibility phase to produce patterns that attained the reach

4We use week 4 as it gave us a slightly higher number of supply nodes with svi > 0, i.e., a more complete
graph, compared to other weeks.
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assignment from (RA-δ) at 95% of the supply nodes. Therefore, on average, each run of

Pattern-HCG took about two hours. In the �nal solution, we observe close to 130,000 unique

patterns, ranging from 1 to 121 with an average of 12 patterns for each user type (v, i). More

details about each test and the results appears below.

Test 1: Performance at Di�erent Sellthrough Levels

Sellthrough, de�ned as the ratio of aggregate demand to aggregate supply, is a well-known

performance metric in marketing and retail operations. It measures supply scarcity, and how

hard it is to satisfy demand. We consider two sellthrough measures, STot =
∑

k fkrk
/∑

v,i ŝvi,

which is measured in terms of the total impression tra�c, and SR&F =
∑

k fkrk
/∑

v,i Lvsvi

which is measured in terms of the proportion of impression tra�c that is eligible for R&F

campaigns. In our dataset,
∑

v,i Lvsvi
/∑

v,i ŝvi ' 0.43; therefore, the two measures are

related via SR&F = 0.43STot. To vary sellthrough, we scale all rk values by a constant

factor. In this section, we assume perfect supply forecasts to isolate the e�ect of a change in

sellthrough.

Figure 1.4 compares the non-representativeness and under-delivery we observed for each

method at di�erent levels of sellthrough SR&F . As expected, performance generally declines

as sellthrough increases and the instance becomes more constrained. Note that with ample

supply (very low sellthrough), Pattern-HCG (solid black line) has only marginally better

under-delivery than Pattern-G (dashed red line); however, the performance gap widens at

higher sellthrough levels. Indeed, for SR&F ≥ 0.4 Pattern-HCG produces 10% less under-

delivery than Pattern-G, which at SR&F = 0.7 constitutes a reduction in under-delivery by

nearly half and at SR&F = 0.88 constitutes a reduction of nearly one-third. Beyond a certain

sellthrough level (about 55%), additional reach cannot be packed into the limited pattern

space, and therefore, under-delivery of both pattern-based methods increase linearly, with a

mild slope. In contrast, the performance of FreqCap is clearly inferior to both Pattern-G

42



(a) Non-representativeness Penalty (b) Under-delivery Fraction
∑

k uk

/∑
k rk

Figure 1.4: Performance of our three methods at di�erent levels of sellthrough SR&F .

and Pattern-HCG, but somewhat paradoxically its under-delivery improves as sellthrough

increases. This is due to the fact that higher sellthrough requires a higher proportion of

supply to be allocated, thereby increasing the probabilities xik that any campaign k is drawn

upon a user visit. This increases the probability that all fk impressions of campaign k are

successfully delivered to the user.

Figure 1.5 demonstrates the proportion of impressions, out of the full supply
∑

v,i ŝvi

served to R&F campaigns (lower region), impressions wasted due to R&F campaigns not

reaching their target frequency (middle region), and impressions left as excess for non-R&F

planning (top region), at each sellthrough level. We use STot for measuring sellthrough here

as it makes the plots easier to interpret: The total impression demand increases along the

45-degree line, starting from the origin. The union of the two green and red areas show

the fraction of R&F impression demand,
∑

k fkrk, allocated by (IA), (RA), and (RA-δ),

respectively in sub�gures (a), (b), and (c). The deviation below the 45-degree line can be

interpreted as planned under-delivery,
∑

k fkuk, measured in impressions.

Figure 1.5(a) shows that FreqCap allocates the most number of impressions to R&F

campaigns, but nearly 2/3 of these impressions fall short of the target frequency at the
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user level, and therefore end up as waste. Figure 1.5(b) shows that Pattern-G, which uses a

pattern-based allocation mechanism, does a much better job of reducing waste than FreqCap,

with waste below 3% at all levels of sellthrough. Finally, Figure 1.5(c) shows that Pattern-

HCG is able to keep waste low while additionally increasing the proportion of impressions

successfully served to R&F campaigns (the green region is larger). Although from this �gure

it does not seem like there is a large di�erence between how Pattern-HCG and Pattern-G

deliver R&F impressions, the di�erence is enough for Pattern-HCG to achieve substantially

less reach under-delivery than Pattern-G (recall Figure 1.4).

Test 2: Robustness to Forecast Errors

Our o�ine optimization methodology produces a serving plan according to the forecasted

supply of users, svi. The actual number of users that visit the publisher's website, denoted

s
(a)
vi , is uncertain and may di�er from the forecast. Therefore, it is important to check the

robustness of our solutions to forecast error. In this test, we use the actual observed tra�c

svi and ŝi to produce a plan under our three algorithms. Then, we evaluate the performance

of these solutions under random arrival streams that are created in the following way. First,

we add Gaussian noise to every supply node's forecast, i.e., s(a)
vi ← (1 + c · εvi)svi where εvi

is a standard normal random variable (with a mean of zero and a standard deviation of one),

and c is the desired coe�cient of variation (CV) of the Gaussian noise, which we take to

be identical for all supply nodes. We vary c to produce arrival streams that have di�erent

degrees of forecast error. Negative supply values, if produced, are truncated to zero and then

we normalize the arrival stream5 to keep the aggregate level of tra�c invariant. This way,

we isolate e�ect of variability in the sizes of supply nodes from changes in sellthrough, which

we tested separately in Test 1. Finally, we probabilistically round each generated user count

s
(a)
vi to a neighboring integer (e.g., 5.3 is rounded to 5 with probability 0.7, and to 6 with

probability 0.3), to yield integer s(a)
vi values while keeping the aggregate supply stable. We

generate the number of visits for each user using the empirical probability distributions φv(·)
5That is, we set s

(a)
vi ← s

(a)
vi

(∑
v′,i′ sv′i′

)/(∑
v′,i′ s

(a)

v′i′
)
.

44



(a) FreqCap (b) Pattern-G

(c) Pattern-HCG

Figure 1.5: Comparing the ratio of wasted tra�c across di�erent solution algorithms
At di�erent levels of sellthrough STot (horizontal axis), we show the proportion of impressions
assigned to Non-R&F campaigns (yellow), assigned to R&F campaigns that were wasted (red),
and assigned to R&F campaigns that were billable (green). Dotted lines show the boundaries
of regions in the sub�gures to the left, allowing easy comparisons left-to-right.
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(a) Non-representativeness Penalty (b) Under-delivery Fraction
∑

k uk

/∑
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Figure 1.6: Performance under noisy forecasts, as a function of mean absolute percentage
error (MAPE).

Each dot corresponds to a di�erent random arrival stream.

obtained from the dataset after clustering user visit types. This is our only computational test

in which we do not use the observed arrival stream from the data to evaluate the performance

of our solution. Note that following the truncation and normalization steps, the CV parameter

c is no longer a reliable measure of forecast noise. Instead, we use Mean Absolute Percentage

Error (MAPE) to measure how the random arrival stream s
(a)
vi di�ers from the forecast svi:

MAPE =
1

|I||V|
∑
(v,i)

|svi − s(a)
vi |

svi
.

Figure 1.6 shows the performance of each method in terms of non-representativeness and

under-delivery, under di�erent degrees of forecast error. Forecast MAPE, along the horizontal

axis, ranges from 0 to about 1.3. Note that a MAPE of 1 indicates that on average, the actual

number of users observed in each supply node di�ered by 100% from its forecast. Each dot

corresponds to a di�erent random instance of the arrival stream6. The curves are basic moving

averages which illustrate the overall trend.

6The assignment of patterns to users is a random process (pattern p is chosen for a user of type (v, i) with
probability y∗vip/svi) and di�ers in each run of the simulation, which has a slight impact on the performance.
For each arrival stream, the solution was simulated multiple times to accurately report the performance.
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At our baseline sellthrough of 88%, we �nd that the average under-delivery of Pattern-

HCG (solid black line) is consistently half that of Pattern-G (dashed red line), and one-�fth

that of FreqCap (solid blue line), and that this relationship roughly holds at all all degrees of

forecast MAPE. The non-representativeness penalty obtained by Pattern-G is comparable to

that of Pattern-HCG; both outperform FreqCap by a consistent 30% at all levels of forecast

noise. Our experiments show that the under-delivery and non-representativeness performance

of all algorithms is quite robust to forecast error.

Test 3: Robustness to Graph Sampling & Generalizability

As described in �1.3, generalizability is important when there are a large number of de-

mographics, and only the most important subset of demographics (e.g., those with enough

historical data to accurately forecast) are used to produce the optimal ad allocation. If

an arriving user belongs to a demographic that was not explicitly used to construct the

optimal ad allocation, we use Corollary 1 to produce a near-optimal solution and serve ads

accordingly. Figure 1.7 plots the under-delivery and non-representativeness performance of

FreqCap, Pattern-G, and Pattern-HCG under di�erent levels of generalized arrivals. The

horizontal axis shows the proportion of supply nodes we omitted uniformly at random from

the original graph when solving our o�ine plans. In each case, we scale the supply of remaining

nodes up to keep the sellthrough level constant at 88% which allows us to isolate the e�ect

of generalizability. We then test the performance of the obtained solution on the full arrival

stream observed in the data (i.e., there is no forecast error, s(a)
vi = svi).

With regard to under-delivery, Pattern-HCG (solid black line) outperforms Pattern-G

(dashed red line) by 10% when no generalized arrivals occur. This performance gap decreases

as the proportion of generalized arrivals increases, and is minimal once the proportion of

generalized arrivals reaches 90%, i.e., only 10% of the full graph is represented by the sample

used at planning/optimization time. Again, FreqCap exhibits subpar performance with
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Figure 1.7: Performance in the presence of generalized arrivals.
The horizontal axis shows the fraction of supply nodes omitted from the graph at

optimization/planning time.

5 times higher under-delivery than Pattern-HCG. With regard to non-representativeness,

Pattern-HCG outperforms Pattern-G by 10-30% and FreqCap by 30-50%.

Test 4: Out of Sample Testing

In practice, there are several sources of uncertainty at the planning stage. These include the

number of users svi of each type (v, i), the number of visits that each individual user makes,

as well as the aggregate volume of users and impressions across all user types, which a�ects

sellthrough. For this test, we split our dataset by weeks, numbered 1 through 6. We then use

the data from week 4 to estimate parameters and obtain the optimal solutions using FreqCap,

Pattern-G, and Pattern-HCG. Then we apply the week-4 solutions to the arrival streams from

each of the other weeks {1,2,3,5,6}. This provides us with 5 out-of-sample instances of s(a)
vi

along with a number of visits per each user to test our solutions from week 4. Results are

shown in Figure 1.8. This test can be thought of as a robustness check to con�rm the viability

of our approach in practice. It assumes that the most naïve forecasting system is employed by

the publisher, i.e., one that uses a historical observation from another period as its forecast.
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(a) Non-representativeness Penalty (b) Under-delivery Fraction
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Figure 1.8: Out of sample testing
Performance measured in weeks 1-6, using data from week 4 for parameter estimation and

optimization.

We observe that the relative performance gaps are consistent among the three methods across

all 6 weeks, with Pattern-HCG consistently performing best.

In fact, the results in Figure 1.8 match our �ndings in Tests 1 and 2. We found that the

MAPE measure between the svi of week 4 and any of the other 5 weeks is consistently close

to 37%. From Figure 1.6(b), we expect the e�ect of forecast noise to be negligible at a MAPE

of 37%. However, we �nd the aggregate supply of users to �uctuate across the 6 weeks, with

SR&F = {1.01, 0.94, 0.87, 0.87, 0.91, 0.94}, respectively. It is easy to see that the direction and

magnitude of changes in under-delivery levels in Figure 1.8(b) is closely related to the change

in sellthrough level SR&F . We should expect this behavior due to the linear relationship

observed in Figure 1.4(b) in the high-sellthrough domain. It is harder to comment on changes

in non-representativeness penalty. At a MAPE of 37%, we know from Figure 1.8(a) that

non-representativeness can show moderate variation depending on the random instance of

s
(a)
vi . The most assuring observation in Figure 1.8 should be the consistency among relative

performance of the three methods across isolated real-life instances of the user arrival stream.
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1.7 Conclusions

In line with recent industry trends and growing attention to reach, personalized marketing,

and storyboarding, we introduced and modeled, for the the �rst time, guaranteed reach and fre-

quency contracts for online targeted display advertising, and proposed a novel mechanism for

ad planning and delivery that employs pre-generated patterns to schedule the exact sequence

of ads for each individual user. We showed that our model can be implemented e�ciently

using a two-phase algorithm that employs column generation in a hierarchical scheme with

three parallelizable components. Our optimization framework strives for aggregate quality

of ad delivery (i.e., retained revenue and uniform spread of campaigns among their target

audience) as a primary objective, as well as disaggregate quality (e.g., diversity and pacing of

ads over time as delivered to each individual) as a secondary objective. Exponential growth of

mobile device usage and new identi�er technologies that allow publishers to accurately track

individuals over time contribute to making our modeling approach relevant and practical.

Based on our computational testing on real industry data, we conclude that our use

of column generation for constructing patterns together with our mechanism for tuning

impression utilization factors results in signi�cantly better performance (10% and 45% less

under-delivery and better representativeness compared to our pattern-based greedy heuristic

and frequency capping, respectively). In practice, if time is limited, one may employ the

feasibility phase of our Pattern-HCG method and make a limited number of δ-adjustments,

and then jump to a reasonable solution using Pattern-G. Nevertheless, we expect that the

runtime of Pattern-HCG is within practical applicability for o�ine planning in the industry,

assuming proper parallelization and specialized coding for large instances. Even though our

main model is deterministic, our computational tests show that our solution is indeed robust

to forecast error and randomness in user arrivals. Our probabilistic model, presented in

Appendix 1.E, that explicitly models the randomness of user arrivals in the pattern generation
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process, can create more robust solutions with longer, less conservative, pattern lengths at

the expense of additional computation times.

Finally, we note that our pattern-based approach for serving web advertisements can also

be applied to other forms of technology-enabled advertising, including digital TV, online

videos, and in-game advertising.
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Appendices

1.A Table of Notation

Sets and Indices:

k ∈ K Advertising campaigns.

i ∈ I User demographics, based on targeting attributes.

v ∈ V User visit-types, based on the minimal number of visits expected from the user (see: Lv).

p ∈ Pvi Patterns created for users of visit-type v and demographic i.

` ∈ {1, ..., Lv} Slots in the pattern (resp., number of visits made by a user of visit-type v).

T Targeting: (i, k) ∈ T implies user demographic i meets the targeting criteria of campaign k.

Γ̂(i) = {k | (i, k) ∈ T } Set of campaigns that target user demographic i.

Γ̂(k) = {i | (i, k) ∈ T } Set of user demographics that meet the targeting criteria of campaign k.

Γ(v,i) = {k | (i, k) ∈ T , fk ≤ Lv} Set of campaigns eligible for type-(v, i) user, i.e., demographic i

is targeted and the frequency fk is within the number of visits, Lv, anticipated from this user.

Γ(k) = {(v, i) | (i, k) ∈ T , Lv ≥ fk} Set of user types (v, i) targeted by campaign k and

anticipated (with high probability) to make more visits than the frequency requirement fk.
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Parameters:

d̂k Demand: Number of impressions desired by campaign k (impression-based contract).

rk Reach: Number of unique users desired to be reached by campaign k (R&F contract).

fk Frequency: Number of times a user must see campaign k's ad to be counted as reached.

ck(ĉk) Cost per unit of under-delivery for campaign k measured in users (impressions).

wk(ŵk) Penalty weight for non-representativeness of campaign k measured in users (impressions).

ŝi Supply of impressions from users of demographic i.

svi Supply of unique users of demographic i with visit-type v.

Ŝk =
∑

i∈Γ(k) ŝi Total impression tra�c eligible for campaign k.

Sk =
∑

(v,i)∈Γ(k) svi Total user tra�c eligible for campaign k.

θ̂k = d̂k/Ŝk Ideal representative fraction of impressions i ∈ Γ(k) for campaign k.

θk = rk/Sk Ideal representative fraction of users (v, i) ∈ Γ(k) for campaign k.

φ
(`)
v Probability that a type-v user will make exactly ` ∈ {1, ..., L̄v} visits.

Φv(`) =
∑`

`′=0 φ
(`′)
v is the CDF of φ

(`)
v .

Lv = Φ−1
v (ε) (integer): Appropriate pattern length for a user with visit-type v. Users of

visit-type v will visit at least Lv times and see the entire pattern with a high probability 1− ε.

We also refer to Lv as the anticipated number of visits from a user with visit-type v.

bkp (binary): 1 if fk impressions of campaign k are included in pattern p, and 0 otherwise.

We use b to denote the entire decision vector
(
bk
)
k∈Γ(v,i)

in a sub-problem (v, i).

πvip Unit cost of using pattern p ∈ Pvi (captures poor pacing, lack of diversity, and/or excess).

This is measured using a function π(b) described in Appendix B.

δvi Proportion of type-(v, i) impressions usable when serving with patterns (considering trim loss).

δmin
vi and δmax

vi give a priori lower- and upper-bounds on the value of δvi.

The values of the δvi parameters are tuned within our algorithm.

Decision Variables:

Impression Allocation (IA)

x̂ik Proportion of impressions of demographic i allocated to campaign k.

ûk Under-delivery of campaign k (number of impressions assigned to k short of its demand d̂k).

Reach Allocation (RA)

xvik Proportion of users of type (v, i) to be reached by campaign k.

uk Under-delivery of campaign k (number of unique users assigned to k short of its reach target rk).

Pattern Assignment (PA)

yvip Number of users of type (v, i) served using pattern p ∈ Pvi.

Pattern Generation (PG)

bk (binary): 1 if we include (fk impressions of) campaign k in this pattern, and 0 otherwise.

Becomes the parameter bkp once the generated pattern is stored (with index p).
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1.B Pattern Quality Metrics

In this section we elaborate on possible choices for the cost measure π(b) and their impact on

the complexity of solving the pattern generation problem (PG). For example, we can de�ne

π(b) to produce patterns that: 1) are diverse, to expose the user to a large variety of ads; 2)

have some amount of excess, making the plan robust to uncertainty in the number of visits

from each user, or 3) are well-paced, that is, if campaign k is included in the pattern, then

its fk impressions should be uniformly spread across the pattern's Lv slots. Additionally, we

show how to ensure campaigns from competing brands do not appear in the same pattern.

1. Maximizing diversity

Diversity is measured as the number of campaigns in the pattern. The following linear cost

measure penalizes lack of diversity:

πdiversity(b) = −
∑

k∈Γ(v,i)

bk

As discussed in �1.5.3, (PG) is e�ciently solvable when π(b) is linear.

2. Maximizing or minimizing excess

The following linear cost measure penalizes the slack of capacity constraint (1.5b), and thus

the amount of excess in the pattern:

πexcess(b) =

Lv − ∑
k∈Γ(v,i)

fkbk

 c̄vi

The parameter c̄vi captures the opportunity cost of replacing a more expensive guaranteed

R&F ad with a non-guaranteed ad for a user of type (v, i).

During Pattern-HCG's pattern improvement phase, the total amount of excess at each

supply node (v, i) stays �xed at Lvsvi−
∑

k∈Γ(v,i) fksvix
∗
vik. However, optimizing the number
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of excess slots within patterns a�ects both the number of unique patterns in each supply pool

Pvi, as well as the number of times each pattern is used. Speci�cally:

• Maximizing excess creates patterns that are less likely to waste impressions. Excess provides

a bu�er that makes the pattern robust to uncertainty in the number of visits made by each

user. As well, although in expectation non-guaranteed ads have lower value than R&F,

it could happen that due to a particular user's recent browsing behavior (e.g., shopping

for a particular item), this user's impressions become very valuable in the non-guaranteed

marketplace. To hedge against such opportunities, the publisher may wish to reserve excess

impressions for each user.

• Minimizing excess creates patterns that are better-packed with R&F campaigns. As a

result, we tend to use fewer patterns, i.e., pattern pools are smaller, reducing the memory

load on the ad server. As well, we need fewer unique users to deliver the reach allocation

x∗vik, making the plan more robust to uncertainty in the supply of unique users, svi.

So there are pros and cons to having excess and the choice of maximizing or minimizing

excess should depend on the solution structure desired by the publisher, and the stability

of user tra�c and number of visits per user. We expect this to vary from one publisher to

another. In both cases, πexcess is a linear function of the decision variables bk and thus (PG)

is e�ciently solvable. That said, we expect that a probabilistic model, such as the one we

propose in Appendix 1.E which explicitly takes into account the randomness of user arrivals

when generating patterns, would eliminate the need for considering either minimization or

maximization of excess as a pattern quality metric.

3. User-level pacing of ads

The existing research that explicitly considers smooth/uniform delivery of campaigns focuses

on the cumulative impressions received by each campaign in aggregate (Araman and Fridgeirs-

dottir 2010), budget depletion, or �nancial milestones (Besbes and Maglaras 2012) and is not
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at the individual user level. We now discuss several approaches for measuring and optimizing

the extent to which impressions of a campaign are well-spread at individual user level. This

is accomplished by measuring and optimizing the spread of a campaign over the slots of

a pattern. The function πpacing(b) which penalizes deviations from a uniform spread, by

itself involves solving an inner optimization problem to sequence the fk impressions of the

campaigns in the pattern (i.e., campaigns with bk = 1). This inner optimization problem

has been studied in two streams of papers which we now review. These two approaches di�er

based on how they de�ne uniformity and how they measure and penalize non-uniformity of the

arrangement, which leads to di�erences in solution structure and computational complexity.

For convenience, we use our notation to describe their models.

Kubiak and Sethi (1991) consider the optimal scheduling of a multi-product assembly

line in which each product k has a �xed known demand fk and is expected to be produced

at a constant rate fk/Lv throughout the production horizon Lv. Within the context of

our problem, let zk` ∈ {0, 1} be a decision variable that indicates whether an impression

from campaign k ∈ Γ(v, i) is put in pattern slot ` ∈ {1...Lv}, and let z̄k` =
∑`

`′=1 zk`′ be

the cumulative number of times that campaign k appears in the �rst ` slots. For the fk

impressions of campaign k to be spread exactly uniformly the across Lv slots, we need the

cumulative count z̄k` to grow at a constant rate fk/Lv, i.e., by the time we reach slot ` of

the pattern, z̄k` should equal the target cumulative count T` = fk
Lv
`. Kubiak and Sethi (1991)

quadratically penalize the deviation between z̄k` and the target cumulative count T`. For any

�xed b, the following math program, with decision variables zk`, produces a maximally-paced
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pattern by minimizing non-uniformity as measured by Kubiak and Sethi:

πpacing(b) = Minimize
∑

k∈Γ(v,i)

Lv∑
`=1

(∑̀
`′=1

zk`′ − bkT`

)2

(1.8a)

Lv∑
`=1

zk` = bkfk ∀k ∈ Γ(v, i) (1.8b)

∑
k∈Γ(v,i)

zk` ≤ 1 ∀` = 1, ..., Lv (1.8c)

zk` ∈ {0, 1} (1.8d)

Constraint (1.8b) ensures we include exactly fk impressions of campaign k if campaign k

is supposed to be in the pattern (i.e., bk = 1), and zero impressions otherwise. Constraint

(1.8c) ensures that each slot in the pattern is occupied by at most one campaign. The target

cumulative count T` in the objective is multiplied by bk to ensure we only penalize non-

uniform pacing for campaigns that are in the pattern (when bk = 0, all zk`'s are zero thanks

to constraint (1.8b)).

Kubiak and Sethi (1994) show that this quadratic program can be transformed in polyno-

mial time into an assignment problem, i.e., a weighted bipartite matching, with
∑

k∈Γ(v,i) fk

supply nodes and Lv demand nodes. Assignment problems are fundamental to combinatorial

optimization and network �ow theory for which many e�cient solution techniques are avail-

able, e.g., the best implementation of the Hungarian Algorithms hasO
(
L3
v

)
runtime (see Ahuja

et al., 1993, Ch.12). However, in our case, we are not interested in solving (1.8) in isolation

but rather we wish to solve (1.8) as an inner-optimization within (PG). Unfortunately, we

cannot transform (1.8) into an assignment problem when the b vector is also a decision

variable. Instead, to integrate (1.8) into (PG), we use (1.8a) as the objective and include the

constraints (1.8b,c,d) in (PG). This adds O(Lv|Γ(v, i)|) binary variables and O(Lv + |Γ(v, i)|)

constraints to (PG). Using CPLEX, solving each instance of this extended formulation, which

is a quadratic mixed integer program, takes only a few seconds. This is slower than solving a
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binary knapsack problem via dynamic programming (as we do when π(b) is linear), but it is

important to note that (PA) and (PG) are solved independently for each supply node (v, i),

and can be run in parallel across many machines. So, the additional runtime of (PG) can

be compensated for by using more parallel computing nodes. The runtime of a few seconds

for (PG) is within practical limits given that large publishers in industry have thousands of

computing nodes at their disposal.

One possible limitation to Kubiak's model (1.8) is that the target cumulative curve for

each and every campaign, T` = fk
Lv
`, starts from time zero (i.e., the �rst slot in the pattern).

One could modify the model by introducing additional variables, Ik, which allow the math

program to decide from which slot the target cumulative curve starts, making the target curve

T` =
( fk
Lv
` − Ik

)+
. Alternatively, the publisher can �x the starting points Ik as parameters

using historical exposure time, to provide continuity of pacing from one planning period to

the next. In either case, the runtime of (PG) in extended form is not appreciably a�ected

by these modi�cations. In fact, the target cumulative count T` can be de�ned as any general

function of ` to achieve any desired pacing pattern. Another useful case is T` = fk
Lv
t`, where

the parameter t` is the anticipated arrival time of the user's `th visit. If the approximate

timing of user visits can be forecasted by the publisher, then we can construct patterns that

deliver ads uniformly across time, as opposed to across serving opportunities.

A more recent, but more complex, model is due to Bollapragada et al. (2004) who consider

the problem of uniformly arranging TV advertisements across commercial breaks. They

formalize the problem as arranging fk balls of di�erent colors, indexed by k, into Lv slots

(
∑

k fk ≤ Lv) such that balls of the same color are as evenly spaced as possible. In their

model, the space between any two consecutive balls of the same color k is expected to be

Lv/fk. Any deviation from this distance is penalized linearly in the objective. Let the

binary variable zjk` model whether the jth impression of campaign k is placed in slot ` of the

pattern, and let Zjk =
∑Lv

`=1 `zjk` be the slot number in which the jth impression of campaign
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k appears. Using Bollapragada's model, our inner optimization problem is de�ned as:

πpacing(b) = Minimize
∑
k

fk∑
jk=2

∣∣∣∣Zjk − Z(j−1)k −
Lv
fk
bk

∣∣∣∣ (1.9a)

fk∑
jk=1

Lv∑
`=1

zjk` = fkbk ∀k (1.9b)

∑
k

fk∑
jk=1

zjk` ≤ 1 ∀` = 1, ..., Lv (1.9c)

Zjk =

Lv∑
`=1

`zjk` ∀k, jk = 1, ..., fk (1.9d)

Zjk ≥ Z(j−1)k + 1 ∀k, jk = 2, ..., fk (1.9e)

zjk` ∈ {0, 1}, Zjk : Integers (1.9f)

Constraints (1.9b) and (1.9c) perform the same function as (1.8b) and (1.8c). Constraint

(1.9d) establishes the relationship between variables zjk` and Zjk , and constraint (1.9e) ensures

that the jth impression of campaign k is placed after the (j − 1)th impression. Bollapragada

et al. (2004) show that this problem can be cast as a minimum-cost network �ow problem

which is somewhat faster to solve than the integer program (1.9), but not appreciably faster

due to the exponential number of arcs in the resulting network graph. The authors then

develop a customized branch-and-bound algorithm and propose many heuristics for obtaining

good solutions in reasonable time. In a subsequent paper, Brusco (2008) develops an enhanced

branch-and-bound algorithm for (1.9) as well a simulated annealing heuristic that also handles

more general Lp-norm penalty functions.

In the extended formulation of subproblem (PG) which incorporates Bollapragada's (1.9a)

as the objective and (1.9b-f) as constraints, there are O(Lv
∑

k∈Γ(v,i) fk) additional binary

variables and O(Lv +
∑

k∈Γ(v,i) fk) additional constraints. From our experience, Bollapra-

gada's model results in much slower (and less predictable) runtimes than Kubiak's. Qual-

itatively speaking, the uniformity of patterns produced by one model does not exhibit any

obvious visual advantage over the other. This suggests that for the goal of maximally pacing
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ads, one should prefer to extend (PG) using (1.8) rather than (1.9).

4. Competing campaigns

Campaigns of competing brands may target similar user demographic,s, and such advertisers

may wish to stop their audience from being exposed to their competition's ads. For any set of

competing campaigns C ⊆ K, the publisher can include a constraint of the form
∑

k∈C bk ≤ 1

in (PG) so at most one of the competing campaigns is included in the pattern. Such constraints

are well-known in the integer programming literature as SOS1 constraints, for which e�ective

methods are known and embedded into integer programming solvers.

Alternatively, let Ck ⊆ K\{k} denote the set of competing campaigns speci�ed by adver-

tiser k. Including a constraint for the form
∑

k′∈Ck
bk′ ≤ |Ck|(1 − bk) in (PG) ensures that

once campaign k is included in the pattern (bk = 1), then no competing brand is included

(
∑

k′∈Ck
bk′ = 0).

Final Remarks

One may also consider a weighted combination of multiple measures:

π(b) = λ1πpacing(b) + λ2πdiversity(b) + λ3πexcess(b).

Furthermore, to maintain linearity of π(b) which speeds up the solution time of (PG), the

publisher may exclude the pacing term from π(b) to maintain the knapsack structure of (PG),

and instead use one of the quick greedy heuristics proposed by Bollapragada et al. (2004) as

a post-processing step to rearrange the impressions within the generated patterns.
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1.C Multiple Ad Positions and Two-dimensional Patterns

Throughout the paper we assume the publisher's webpage has a single advertising position,

where an ad can be shown. Therefore, our patterns are designed to deliver a single ad

impression upon each user visit. In this section we discuss the changes to our model that apply

when the publisher's page has multiple ad positions. This involves creating patterns that are

two-dimensional. Each column in the pattern holds the ads that are shown simultaneously to

a user upon a single visit. For instance, Figure 1.2 can be viewed as a 3× 8 pattern. On the

�rst visit, campaign A is shown in all three ad positions of the webpage; for the second visit,

the user is shown campaign C in position 1, and campaign B in both positions 2 and 3; and

so on.

Before we discuss how two-dimensional patterns can be constructed, we would like to point

out many practical cases in which one-dimensional patterns are still appropriate even when

the webpage has multiple ad positions. We use h = 1, ...,H to index the ad positions.

1. When ad positions are di�erent and sold separately to advertisers: For example, each

ad campaign uses a speci�c size of graphic that is designed for a speci�c position on the

page which the advertiser has booked (e.g., the wide banner ad on the top, or the tall

skyscraper ad on the right side of the page). In this case, the publisher's ad allocation

problem decomposes by ad position. The publisher needs to solve H separate problems

and maintain a separate pattern pool Pvih for each user type (v, i) and each ad position

h. Upon a user's �rst visit, s/he is assigned to H patterns, independently sampled from

the optimal solutions obtained for each ad position.7

2. When advertisers do not strictly require the frequency to be delivered across separate

user visits: In this case, showing multiple instances of the same campaign in di�erent ad
7Decision variables in (PA) need to be updated accordingly to yvihp to denote the number of times a pattern

p ∈ Pvih should be assigned to users of type (v, i) in position h. The left-hand side of constraint (??c) should
be further divided by H, due to the fact that the impression supply of user type (v, i) is now HLvsvi rather
than Lvsvi. The rest of the model remains unchanged.
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positions upon a single visit will count toward the frequency requirement. To model this

case, we simply create one-dimensional patterns of lengthHLv and useH impressions at

a time, upon each user visit. Note that if the pattern quality measure includes a pacing

cost function (πpacing), impressions of the same campaign will be well-spread throughout

the pattern, making it unlikely for the same ad to appear in multiple positions on the

page (see Appendix 1.B for a discussion of how we implement πpacing). The pacing

model of Bollapragada et al. (2004) will try to arrange a campaign so that consecutive

impressions are HLv/fk > H slots apart. In the pacing model of Kubiak and Sethi

(1991), as discussed in Appendix 1.B, we can assign arrival times t` to pattern slots

such that the �rst H slots in the pattern are assigned t` = 1, the following H slots are

all assigned t` = 2, and so on. This will more signi�cantly discourage multiple instances

of the same campaign from appearing in multiple ad positions on the page.

We should also point out that if re-exposing the user to the same ad is meant to increase

brand awareness or entice a click, then it is not clear whether delivering impressions upon

separate visits will be any more e�ective than showing multiple instances upon a single

visit. For example, multiple instances of the same ad that turn around the regular

coloring of a familiar page could draw a user's attention to a higher degree as opposed

to showing one instance of the ad in the same position upon separate visits. Further

empirical studies in this regard can provide useful insight as to whether it is justi�ed

for advertisers to explicitly require the frequency to be delivered across separate visits.

3. Newsfeed ads, video ads, and dynamic webpages: Many of modern webpages are designed

in a dynamic fashion so that the delineation of when a page loads, or when a user

navigates from one page to another is less clear. For instance, the banner ad in Yahoo

Mail is reloaded with a new ad every time the user scrolls down for at least 1 page

through the email list. Similarly, ads on Facebook (and many websites with native

advertising) load within the news feed as the user scrolls down the page. Video ads,

65



which are the fastest growing segment of online advertising, also demonstrate the same

behavior. A sequence of video ads can be shown to the user during a long movie (similar

to commercial breaks on TV), or multiple banner ads can be overlaid on a video clip

at di�erent points in time (common practice on YouTube). Finally, most ads served

through Google AdSense are automatically reloaded with new advertising every 20-30

seconds. In all these cases, a one-dimensional pattern is appropriate for serving ads,

especially since the number of ads required is not known beforehand and depends on

the amount of user interaction (scrolling action or time spent on the page).

If none of the above conditions are met, we propose the use of two-dimensional patterns. The

only changes to our mathematical framework will be a division by H in the left-hand side of

constraint (1.3c), and a reformulation of (PG) so it constructs two-dimensional patterns. As

before, assume the pattern has length Lv with columns indexed by ` which correspond to the

number of visits made by a type-v user. The pattern also has a height H with rows indexed

by h, which correspond to the number of positions on the webpage. Upon the user's `th visit,

all H slots in the `th column of the pattern appear in the corresponding H ad positions on

the webpage, and therefore, are seen by the user at the same time.

Let the binary variable bkh denote whether campaign k is included in row h of the pattern.

Note that bkh = 1 implies all fk impressions of k appear in ad position h on the webpage.

However, once a solution b∗kh is found, the publisher can shu�e the ads within the pattern

column (i.e., across ad positions on the page) without a�ecting any of the pattern quality
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metrics discussed in Appendix 1.B. Sub-problem (PG) can be cast as:

Minimize π(b) −
∑

k∈Γ(v,i)

ᾱ∗vikbk (1.10a)

s.t.
∑

k∈Γ(v,i)

fkbkh ≤ Lv ∀h = 1, ...,H (1.10b)

bk ≡
H∑
h=1

bkh ≤ 1 ∀k ∈ Γ(v, i) (1.10c)

bkh ∈ {0, 1}, ∀k ∈ Γ(v, i), ∀h = 1, ...,H (1.10d)

Constraint (1.10b) is analogous to (1.5b) and ensures each row of the pattern is �lled with at

most Lv impressions. As we discussed above, the publisher would only use two-dimensional

patterns when showing multiple impressions of the same ad upon a single visit does not count

toward the frequency requirement of the campaign. Constraint (1.10c) serves to ensure that

a campaign is not assigned to more than one ad position. It also implies that the campaign

does not appear more than once throughout the pattern.

It is straightforward to see how the cost functions from Appendix 1.B can be adapted

to two-dimensional patterns. We would use πexcess(b) = (HLv −
∑

k fkbk)p̄vi. The

diversity cost measure πdiversity(b) stays unchanged, and the pacing cost function πpacing(b)

decomposes into separate inner-optimization problems for each row of the pattern (i.e., each

ad position on the page).

If the cost function π(b) is linear in bk (as it is, when pattern quality is measured by excess

and/or diversity), then (1.10) becomes an instance of a binary multiple knapsack problem.

This problem is known to be NP-hard for which dynamic programming is no longer an

e�cient pseudo-polynomial solution technique. Appropriate algorithms for multiple knapsack

problems are discussed in Martello and Toth (1990, Ch.6).
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1.D An Improved Greedy Algorithm for Pattern Generation

Here we provide a more advanced greedy algorithm for pattern generating. The goal is to

improve upon the packing of R&F ad impressions into patterns, while maintaining the optimal

reach fractions x∗vik. Similar to the Pattern-G algorithm introduce in �1.4.1, we start by solving

the Reach Allocation (RA) problem. The di�erence lies in how we sample impressions. In

the improved greedy heuristic, henceforth Pattern-G+, we employ a �uid sampling of one

impression at a time, together with a queue (or stack) that holds all unused impressions

sampled for a supply node.

Note that when a xvik fraction of user -supply should be reached by campaign k, then a

fk
Lv
xvik fraction of impression-supply should be allocated to each campaign k (see constraint

(1.2c)), and a 1 −
∑

k∈Γ(v,i)
fk
Lv
xvik proportion of impression-supply should be allocated to

excess. Therefore, to construct patterns for users of class (v, i), we randomly draw impres-

sions of R&F contracts k ∈ Γ(v, i) according to weights fk
Lv
xvik and we include excess as

an additional campaign with sampling weight 1 −
∑

k∈Γ(v,i)
fk
Lv
xvik. We store the sampled

impressions in a queue list Qvi in preserved order. Then we construct a pattern using R&F

campaigns which have attained (at least) fk impressions in the queue. Excess impressions in

the queue are used in two ways: 1) to �ll-in the slack when a pattern is closed, and 2) to

construct a fully-blank pattern (when we can �nd Lv excess impressions in the queue). The

former is important to maintain the allocation of impression supply determined by (1.2c), and

the latter mimics
∑

p yvip ≤ svi in the corresponding CG solution (i.e., allows some users to

not be reached by any campaign at all).

A crucial part of this heuristic which determines its runtime and stability and is to employ

the least amount of sampling so the impression queue Qwi does not grow inde�nitely and is

used at about the same rate as new impressions are sampled. In our numerical experiments,

we did not observe a case where the Qwi would grow inde�nitely. Figure 1.9 illustrates the
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Algorithm 1.5 Improved Pattern-based Greedy Heuristic (Pattern-G+)

• OFFLINE:

� Solve the reach allocation problem (RA).

� For each supply node (v, i): Set Qvi = {} (impression queue), Nvi = 0 (number of patterns),
L̂vi = Lv (remaining slots from the open pattern being constructed). bk = 0, ∀k ∈ Γ(v, i) (no
campaign included in the open pattern yet).

• ONLINE: Upon the �rst visit from user j from of type (v, i):

� If Qvi is empty: Sample one random impression among contracts k ∈ Γ(v, i) according to weights
fkx
∗
vik or an excess impression according to weight Lv −

∑
k∈Γ(v,i) fkx

∗
vik, and append to the

queue Qvi.
� PICK: Set k∗= index of the contract whose impression is at the head of the queue. (This contract

should now be packed in the pattern). If k∗ is an excess impression, set qk∗ = Lv.

� CHECK FIT:

IF fk∗ ≤ L̂vi (k∗ �ts in the remaining slots of the pattern) and bk∗ = 0 (k∗ is not already added
to the pattern):

∗ SAMPLE: If there are less than fk∗ impressions of k∗ in Qvi:, sample random impressions
(of contracts k ∈ Γ(v, i) or excess, as described before) and append to Qvi until exactly fk∗
impressions of k∗ are in the queue.

∗ ADD TO PATTERN:
Move the �rst fk∗ impressions of k∗ from Qvi into the pattern.
Set bk∗ = 1. Update L̂vi ← L̂vi − fk∗ .

ELSE:

∗ CLOSE PATTERN:
Move L̂vi excess impressions from Qvi to complete the pattern
(if not available, SAMPLE more impressions at random until L̂vi excess impressions are
present).
Store pattern info in Pj and assign to user. Upon subsequent visits from a user: Randomly
draw one impression from Pj to show to the user. Remove that impression from Pj .

∗ START A FRESH PATTERN: Set L̂vi = Lv and all bk = 0, ∀k ∈ Γ(v, i).
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Q = {}, Open Pattern: [], Slack = 10

Q is empty, sampling 1 impression ...

Q = {C}, Open Pattern: [], Slack = 10

Picked contract "C" from Q. Needs 5 impressions to be reached.

Not enough impressions in Q. More sampling until achieved ...

Q = {CBA-B---CCAAACBC}, Open Pattern: [], Slack = 10

Moving 5 impressions of "C" into the current pattern.

Q = {BA-B---AAAB}, Open Pattern: [C], Slack = 5

Picked contract "B" from Q. Needs 2 impressions to be reached.

Moving 2 impressions of "B" into the current pattern.

Q = {A----AAAB}, Open Pattern: [BC], Slack = 3

Picked contract "A" from Q. Needs 7 impressions to be reached.

Not enough impressions in Q. More sampling until achieved ...

Q = {A----AAABCB---AACC-A}, Open Pattern: [BC], Slack = 3

Already exists in the open pattern or doesn't fit. Close the pattern: [BC]

Disposing 3 Blank impressions into the closed pattern to fill up slack.

Q = {A-AAABCB---AACC-A}, Open Pattern: [], Slack = 10

Picked contract "A" from Q. Needs 7 impressions to be reached.

Moving 7 impressions of "A" into the current pattern.

Q = {-BCB---CC-}, Open Pattern: [A], Slack = 3

...

After 99 Patterns are Generated: (Note that queue length remains stable)

...

Q = {CCCAAACA-CAAA--AAA--C-CC---}, Open Pattern: [], Slack = 10

Picked contract "C" from Q. Needs 5 impressions to be reached.

Moving 5 impressions of "C" into the current pattern.

Q = {AAAA-AAA--AAA--C-CC---}, Open Pattern: [C], Slack = 5

Picked contract "A" from Q. Needs 7 impressions to be reached.

Already exists in the open pattern or doesn't fit. Close the pattern: [C]

Disposing 5 Blank impressions into the closed pattern to fill up slack.

Q = {AAAAAAAAAAC-CC---}, Open Pattern: [], Slack = 10

Figure 1.9: Step-by-step demonstration of the Pattern-G+ heuristic.

step-by-step progress of our heuristic for a particular supply node with svi = 100, Lv = 10,

k ∈ {A,B,C}, qk ∈ {7, 2, 5}, x∗viA = 0.4, x∗viB = 0.7, x∗viC = 0.5. The optimal solution

obtained by column generation is: 40[AB] + 30[BC] + 20[C] + 10[ ]. The improved greedy

heuristic produces the solution: 32[AB] + 32[BC] + 17[C] + 8[A] + 8[B] + 3[ ] which gives the

reach fractions {.40, .72, .49} which are quite close to x∗vik.

Note that our heuristic can also be used as an o�ine method for solving the general

cutting stock problem. To this end, we would ask the algorithm to produce a large number of

patterns; then we group identical patterns and produce a {pattern, usage frequency} solution,

similar to the output obtained from CG. For generalized user arrivals in our online advertising
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application, one may only ask for a single pattern from the heuristic and discard the Qwi, or

construct and store a full (o�ine) solution when a new user type is observed for the �rst time.

1.E Modeling Random Arrivals

A core assumption in our methodology of serving ads using prede�ned patterns that span

across time is that each user visits the publisher's website at least as many times as the number

of slots in his/her assigned pattern. Otherwise, the pattern will not be delivered completely

and the campaigns which do not hit their target frequency will not �reach� that user as planned

in the optimization model. We suggested earlier in �1.4 that the publisher may cluster users

based on browsing behavior, such that all users of the same visit type v have the same

probability distribution φv(·) for the number of visits over the planning period. Recall that

we de�ned pattern lengths as Lv = Φ−1
v (ε), where 1− ε was the desired minimum probability

that the user of type v makes at least Lv visits and views the whole pattern. However, this

approach may be overly conservative and exclude a signi�cant portion of the publisher's tra�c

from being used for R&F campaigns. For instance, if the number of visits from a particular

user type follows a Poisson distribution with rate parameter 30 (over the planning horizon), we

can only plan for 20 visits from the user if we aim for 95% assurance that the user fully sees the

pattern. Therefore, on average 10 visits (1/3 of the impression tra�c from this user type) is

not considered for R&F planning (when X ∼ Poiss(30), E[max(0, X−20)] = 10.049). In this

section we develop a probabilistic pattern generation mechanism that explicitly incorporates

the visit frequency distribution of users. We follow with numerical experiments that illustrate

the signi�cant improvement in the utilization of supply and reducing under-delivery when our

probabilistic model is employed. This comes at a price, however, since the pattern-generating

sub-problem becomes more complex and thus harder to solve.

Let φ(`)
v denote the probability that a user in browsing-behavioral class w makes exactly

` ∈ {1, . . . , L̄v} visits. Parameter L̄v models the maximum number of visits ever expected
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from a type-v user and is greater than the anticipated number of visits, Lv, which occurs

with a high probability 1 − ε. To prepare for all possible number of visits from the user, we

now consider designing patterns of the full length L̄v. As before, we use the binary variables

bk to denote whether campaign k is included in the pattern. For each slot ` = {1, . . . , L̄v}

in the pattern, let zk` ∈ {0, 1} denote whether the slot is occupied by campaign k, and let

z̄k` =
∑`

`′=1 zk`′ denote the cumulative number of times campaign k appears in the �rst `

slots. Binary indicator variable Ik` measures whether or not all fk impressions of campaign k

are positioned in the �rst ` slots. That is, Ik` = 0 if z̄k` < fk and Ik` = 1 as soon as z̄k` = fk.

Note that b̄kp =
∑L̄v

k=1 φ
(`)
v Ik` gives the probability that campaign k will �reach� its

frequency requirement fk on a user of type v, should s/he be assigned pattern p. For each

campaign k, we have a binomial process, where we make yvip trials (user assignments of the

pattern), each having a success (reach) probability of b̄kp. Thus,
∑

n b̄kpyvip gives the expected

number of times that k is reached within user class (v, i). The pattern assignment problem

(PA) becomes:

(PA-R): Ψ
(R)
vi := Minimize

∑
p∈Pvi

πvipyvip Duals: (1.11a)

∑
p∈Pvi

b̄kpyvip = svix
∗
vik ∀k ∈ Γ(v, i) ᾱ

(R)
vik (free) (1.11b)

∑
p∈Pvi

yvip ≤ svi β̄
(R)
vi ≥ 0 (1.11c)

yvip ≥ 0 ∀p ∈ Pvi − (1.11d)

where the optimal reach proportions x∗vik from (RA-δ) are sought in expectation. The only

change from (PA) in (PA) is the substitution of bkp with b̄kp in (1.4b). The pattern generating

subproblem takes the following form:
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(PG-R): ψ
(R)
vi := Maximize

∑
k∈Γ(v,i)

ᾱ
∗(R)
vik

( L̄v∑
k=1

φ(`)
v Ik`

)
︸ ︷︷ ︸

b̄k

− π(b) (1.12a)

∑
k∈Γ(v,i)

zk` ≤ 1 ` = 1, ..., L̄v (1.12b)

L̄v∑
`=1

zk` = fkbk ∀k ∈ Γ(v, i) (1.12c)

k∑
`′=1

zk`′ ≤ fk − 1 + Ik` ∀k ∈ Γ(v, i), ` = 1, ..., L̄v (1.12d)

k∑
`′=1

zk`′ ≥ fkIk` ∀k ∈ Γ(v, i), ` = 1, ..., L̄v (1.12e)

bk, zk`, Ik` ∈ {0, 1} (1.12f)

The �rst set of constraints (1.12b) ensure that at most one campaign occupies each slot.

The second set of constraints (1.12c) require each campaign k to appear exactly fk times

throughout the pattern if we choose to include k in the pattern (bk = 1), and zero otherwise

(if bk = 0). The left-hand side in (1.12d) and (1.12e) are the cumulative impression counts z̄k`.

Constraints (1.12d) enforce Ik` = 1 when z̄k` = fk, whereas constraints (1.12e) enforce Ik` = 0

if z̄k` < fk. The above binary program has O(L̄v|Γ(v, i)|) variables and constraints. As soon

as ψ∗(R)
vi + β̄

∗(R)
vi ≥ 0, the optimal solution to (PA-R) has been found. Otherwise, we add the

pattern constructed by (PG-R) to Pvi with reach probability parameters b̄kp =
∑L̄v

k=1 φ
(`)
v Ik`

and re-solve (PA-R) to obtain new dual values ᾱ∗(R)
vik and β̄∗(R)

vi . Again, for possible functional

choices for π(b), we refer the reader to Appendix 1.B.

When no pattern quality measure is used, or during feasibility phase of Pattern-HCG

when π(b) is non-existent, it is easy to show that the optimal solution always places all fk

impressions of each campaign in successive slots. This is due to the fact that every deviation

from such structure will only decrease the chance of (at least) one campaign from being fully

observed by the user, b̄k, and therefore worsens the objective value (1.12a).
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Computational Experiments:

In all of our computational tests in �1.6, we assumed that each user of visit type v visited the

publisher's website a deterministic Lv number of times. This ensured that every pattern was

delivered completely to each arriving user. However, in practice the number of visits from

each user is never precisely known. In this section, we examine how e�ciently the random

supply of impressions (coming from a random number of arrivals per user) can be allocated

using our probabilistic model, compared to our deterministic model of �1.5, and how this

a�ects under-delivery and non-representativeness.

For e�ciently solving the binary integer subproblem (PA-R), we used CPLEX 12.6 API for

Matlab R© and due to compatibility issues we could no longer take advantage of parallelization

and so conducting the test on Yahoo data was impractical. Instead, we created a small

synthetic graph with roughly 30 demand nodes and 500 supply nodes. In each supply node,

we assumed three user visit-types whose number of visits follows a Poisson distribution at

di�erent rates, speci�ed by the vector λ = {λ1, λ2, λ3}. Deterministic pattern lengths, L =

{L1, L2, L3}, employed by our model are �xed8 at {10, 20, 30} and we vary the arrival rate

parameters λv so that the probability of each type-v user visiting at least Lv times is set close

to a desired threshold (see the third column in Table 1.1). For example, Poisson random

variables with mean parameters λ = {8.7, 18, 27} all have about a 25% chance of exceeding

{10, 20, 30}, respectively. The pattern lengths for the random arrival model, L̄v (second

column in Table 1.1) are chosen to cover at least 99% of the support of the corresponding

Poisson distribution (e.g., looking at the �rst row in Table 1.1, Poisson random variables with

rates λ = {8.7, 18, 27} have only a 0.001 chance of exceeding L̄ = {20, 35, 45}, respectively).

We speci�cally generated our synthetic instance such that the supply of users is enough to

satisfy the reach requirements from all campaigns. Therefore, the only factor that may cause

8Note that varying Lv parameters will a�ect Γ(v, i), i.e., the connectivity of the graph, and this structural
change may a�ect the under-delivery performance of the deterministic model irrespective of randomness in
number of visits from users. Therefore, we did not change Lv parameters and varied the arrival rates.
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Visiting Rates Random Arrival Deterministic Pattern Under-delivery Non-representat.

(Poisson) Pattern Lengths Finish Prob. (1− ε) Det. Rand. Det. Rand.

λ = {8.7, 18, 27} L̄ = {20, 35, 45} 25% 0.255 0.085 245.9 305.1

λ = {11, 21, 31} L̄ = {25, 40, 50} 50% 0.174 0.043 259.6 189.8

λ = {14, 25, 36} L̄ = {30, 45, 55} 80% 0.138 0.034 271.8 125.4

λ = {16, 28, 39} L̄ = {35, 45, 60} 90% 0.123 0.032 266.8 116.3

λ = {17, 30, 41} L̄ = {35, 50, 65} 95% 0.113 0.030 276.2 111.9

Table 1.1: Test cases and results under random arrival scenario.
Deterministic pattern lengths are set to L = {10, 20, 30} in all cases.

under-delivery is whether or not users make enough visits for the frequency requirements to

be met. The quality of the solution depends highly on how well the fk impressions of each

campaign are arranged into the slots of a pattern so the solution is robust to truncation

(if a user does not complete the pattern). Our probabilistic model explicitly takes into

account the user visit distribution φv(·) when constructing patterns. For our comparison

to be conservative, in our deterministic solution, we moved any empty slots to the ends of

patterns, and positioned all impressions of the same campaign sequentially. The orders of

di�erent campaigns in the patterns were selected purely at random.

Our experiments, shown in Table 1.1, demonstrate a signi�cant improvement in perfor-

mance when our probabilistic model is employed. Note that the random arrival model also

provides a structural advantage over the deterministic model: Since pattern lengths L̄v are

higher than that of Lv, campaigns with high fk may �t into L̄v but not Lv for low-visiting

types w. Therefore, the connectivity of each supply node |Γ(v, i)| is larger in the probabilistic

model. Note that when users of all visit types are expected to complete Lv visits with

95% chance (last row in Table 1.1), we observe almost no under-delivery (3%) using our

probabilistic solution, whereas the deterministic solution yields 11% under-delivery due to

under-utilizing the (quite ample) impression supply. Note that in this case, low-visiting users

have an average visit frequency of λ1 = 17 while our deterministic and random arrival models

use pattern lengths of L1 = 10 (too low) and L̄1 = 35, respectively.
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1.F Monolithic Formulation of the Pattern-based R&F Plan-

ning Problem

Writing the master problem of Hojjat et al. (2014) in our notation and simplifying yields the

following math program, which was used in that paper as a combined reach allocation and

pattern assignment step:

Minimize
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

(xvik − θk)
2

+
∑
k

ckuk +
∑
v,i

∑
p∈Pvi

πvipyvip (1.13a)

s.t. xvik =
1

svi

∑
p∈Pvi

bkpyvip ∀v, i, k ∈ Γ(v, i) (1.13b)

∑
(v,i)∈Γ(k)

svixvik + uk ≥ rk ∀k (1.13c)

∑
p∈Pvi

yvip ≤ svi ∀v, i (1.13d)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ 1 ∀v, i (1.13e)

0 ≤ xvik ≤ 1 (1.13f)

yvip ≥ 0, uk ≥ 0 (1.13g)

The cost parameters πvip explicitly penalize non-smooth and/or non-diverse delivery at the

user level in the objective function. Representativeness is rede�ned at the user level as

follows: We would ideally like to spread the reach of campaign k, rk, uniformly across the

eligible number of users sk =
∑

(v,i)∈Γ(k) svi; that is, at the rate θk = rk/sk. Variable yvip

denotes the number of time pattern p ∈ Pvi should be used for type-(v, i) users. The binary

indicator parameter bkp denotes whether campaign k is included in pattern p (at the correct

frequenct fk). Constraint (1.13b) captures the variable xvik as a summary statistic of pattern

assignment which indicates what proportion of type-(v, i) users are reached by campaign k.

This constraint, and variables xvik, can be eliminated by substitution. Constraint (1.13c)

is the reach and frequency constraint that replaces the impression-based demand constraint

(1.2b). It ensures that campaign k is reached by at least rk unique users (each viewing the
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ad least fk times) or otherwise uk counts the shortfall of users. The user-supply constraint

(1.13d) ensures that the total number of patterns assigned to (v, i) cannot exceed the number

of unique users available (since each user is assigned a single pattern). Constraint (1.13e) is

the impression-supply constraint that ensures the total impressions needed to reach a xvik

proportion of svi users by campaigns k ∈ Γ(v, i) (given by
∑

k∈Γ(v,i) fksvixvik) does not

exceed the total number of guaranteed impressions available (Lvsvi). We can show that this

constraint is in fact redundant and dominated by (1.13d), because for any given (v, i):

∑
k∈Γ(v,i)

fk
Lv
xvik =

∑
k∈Γ(v,i)

fk
Lv

 ∑
p∈Pvi

bkp
svi

yvip

 =
∑
p∈Pvi

(∑
k∈Γ(v,i) fkbkp

Lv

)
yvip
svi
≤
∑
p∈Pvi

yvip
svi
≤ 1

The �rst equality is given by de�nition (1.13b). The second equality is a simple rearrangement

of terms. The next inequality follows because of the fact that in any pattern it must hold∑
k∈Γ(v,i) fkbkp ≤ Lv. This is due to fact that we cannot use more than Lv slots in the

pattern, and reaching each campaign k occupies fk slots. The last inequality follows from

the user-based supply constraint (1.13d). This shows that the user-based supply constraint

is always tighter than the impression-based constraint.

Although xvik represents a proportion, we should point out once more that we do not need

constraints of the form
∑

k∈Γ(v,i) xvik ≤ 1. This is because a user can be reached by more than

one campaign as long as Lv is su�ciently large. Each variable xvik however should be kept

between 0 and 1. The upper bound in constraint (1.13f), however, is naturally maintained by

constraints (1.13b) and (1.13d).

After eliminating xvik by substitution and removing the redundant constraints (1.13e) and
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(1.13e), the formulation simpli�es to:

(FP): Ψ:=Minimize
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

 ∑
p∈Pvi

bkp
svi

yvip − θk

2

Duals(All ≥ 0)

+
∑
k

ckuk +
∑
v,i

∑
p∈Pvi

πvipyvip

∑
(v,i)∈Γ(k)

∑
p∈Pvi

bkpyvip + uk ≥ rk ∀k αk

∑
p∈Pvi

yvip ≤ svi ∀v, i βvi

yvip ≥ 0, uk ≥ 0 γwin, ϕk

In the following section we show the derivation of the column generation subproblem. At a

high level, the idea is to start with a small pool of patterns, solve the assignment problem

(1.13), and then use the current optimal primal/dual solution as feedback to construct new

patterns which can improve the current solution. We then add these improving patterns to

our collections Pvi and solve the assignment problem again. We repeat this procedure until no

improving pattern can be constructed (i.e., full convergence to the optimal solution), or the

improvement in the objective function seems negligible. The improvement achieved following

each iteration of column generation is not monotonically decreasing; thus, a termination

criteria based on absolute or relative improvement in the optimal objective value should be

used with caution.
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Derivation of Column Generation Subproblem for (FP)

The Lagrangean to problem (FP) is:

L =
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

 ∑
p∈Pvi

bkp
svi

yvip − θk

2

+
∑
k

ckuk +
∑
v,i

∑
p∈Pvi

πvipyvip

+
∑
k

αk

rk − ∑
(v,i)∈Γ(k)

∑
p∈Pvi

bkpyvip + uk

+
∑
v,i

βvi

 ∑
p∈Pvi

yvip − svi


−
∑
v,i

∑
p∈Pvi

γvipyvip −
∑
k

ϕkuk

The stationarity condition with respect to variables yvip gives the reduced cost function:

∂L
∂yvip

= 0 ⇒ γvip =
∑

k∈Γ(v,i)

 wk
θksvi

∑
p∈Pvi

bkpyvip − wk − αk

 bkp + πvip + βvi

An immediate and important observation is that the stationarity condition does not establish

a unique relationship between a primal variable, yvip, and the dual variables αk and βvi.

Therefore, the solution obtained from the monolithic math program (FP), unlike the one

obtained from (RA) or (RA-δ) is not generalizable. This limitation, greatly diminishes the

attractiveness of monolithic modeling approach, i.e., the standard implementation of column

generation, in practice.

The column generation subproblem tries to construct a pattern with minimum (negative)

reduced cost:

(FPS) ψvi := Minimize π(b) +
∑

k∈Γ(v,i)

 wk
θksvi

∑
p∈Pvi

bkpyvip − wk − α∗k

 bk

s.t.
∑

k∈Γ(v,i)

fkbk ≤ Lv

bk ∈ {0, 1}, ∀k ∈ Γ(v, i)

Note that we are solving a separate subproblem for each supply node (v, i). These problems

can be solved in parallel. If ψ∗vi +β∗vi < 0 for any supply node (v, i), it is bene�cial to add the
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pattern to Pvi, with bkp = b∗k and πvip = π(b∗), and the solution to (FP) will be improved.

Patterns that are unused in the current solution can be deleted for memory e�ciency (even

though they may return in following iterations). If ψ∗vi + β∗vi ≥ 0 for all (v, i), the solution

to (FP) is optimal. The cost function π(b) was introduced in Appendix 1.B. To initialize

the pattern pools Pvi, one can solve subproblems with αk = βvi = xvik = 0 (which are

primal/dual feasible).

Numerical Experiment

In Hojjat et al. (2014), we tested the monolithic formulation of reach and frequency problem on

randomly-generated graphs that we constructed in such a fashion to resemble appropriately-

scaled versions of real-world instances. For example, Figure 1.10 demonstrates the progress

of the algorithm on a small graph with 40 demand nodes and 300 supply nodes. Each supply

node was further partitioned into 3 visit types with guaranteed visit lengths of {10, 20, 30}

impressions. There were approximately 4600 arcs in the graph (40% of the total possible

connections). The horizontal axis shows time (in seconds). Each vertical dashed line shows an

epoch where the master problem is solved, and the thick black curve tracks the optimal value

of the master problem, denoted Ψ∗. In between the epochs, we solved the subproblems until

(at most) 20 improving patterns were found. The red curves show the cumulative number

of new patterns found during each epoch, and the green curve shows the total number of

patterns existing in the master problem. Throughout the process, we deleted old unused

patterns to keep the total number of available patterns at each point in time from growing

too quickly. We solved the subproblems in an ad-hoc (essentially random) supply node order.

We used only a diversity-seeking metric for pattern quality. We used the AMPL modeling

language with CPLEX solver on a dual core i5 2.5GHz CPU with 8GB of RAM to carry out

the experiment.

The master problem fully converged to the optimal solution after 10 iterations (6 minutes),
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Figure 1.10: Performance of the Monolithic CG Model on a Sample Graph
(40 contracts, 300 supply pools, 3 user visiting types, 40% graph connectivity)

at which point we solved all 300× 3 = 900 subproblems to verify that no improving pattern

existed. As we can see in Figure 1.10, the optimal value Ψ∗ initially improves quickly, but the

rate of improvement tapers o�, becoming negligible beyond iteration 6 (2.5 minutes). Note

that the subproblems are not being solved in parallel in our numerical experiment. With full

parallelization, the full convergence could be attained in less than 1 minute. Moreover, there

is a tradeo� between the number of iterations it takes for the master problem to converge

and the maximum number of new patterns we aim for during each epoch. With no limit on

the number of new patterns, the above example would converge in 4 iterations; however, 900

subproblems need to be solved in each iteration, and the total run time happens to be worse

than 6 minutes.

Note that among the possible O
(
1019

)
patterns that can be constructed for this small

instance9, only 111 are used in the �nal solution.

Finally, we would like to point out that the improvement in the optimal value of the master

problem is not guaranteed to be monotonically decreasing. For instance, the improvement

in Ψ∗ in iterations 3 and 5 was very low, whereas a number of patterns were found during

iteration 4 which drastically improved the solution. Therefore, a termination criteria based

9If we di�erentiate patterns based on the exact arrangement of ads within the pattern, we can construct∑
L 40L = 1.15× 1048 patterns, given L ∈ {10, 20, 30}. If we di�erentiate only based on the number of times

each campaign appears in the pattern, we can construct
∑

L

∑L
c=1

(
40
c

)(
L− 1
c− 1

)
≈ 31.63× 1018 patterns.
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on the absolute or relative improvement in Ψ∗ should be used with great caution.

1.G Proof of Theorem 1 (Generalizability of RA-δ)

Theorem. The optimal primal and dual solutions of (RA-δ) satisfy the following relation-

ships:

1. The optimal primal solution x∗vik can be computed from the optimal dual solution {α∗k, β∗vi},

and is given by: x∗vik = gvik(α
∗
k, β
∗
vi) ≡ min

[
1,max

[
0, θk + θk

wk

(
α∗k −

fk
Lv
β∗vi
)]]

.

2. For each campaign k, we have α∗k ∈ [0, ck]. Furthermore, either α∗k = ck, or the demand

constraint binds with no under-delivery, i.e.,
∑

(v,i)∈Γ(k) svix
∗
vik = rk. The optimal solution

never over-delivers a campaign.

3. For each supply node (v, i), we have β∗vi ∈
[
0, maxk∈Γ(v,i)

wk+α∗k
fk

Lv

]
. Furthermore, either

β∗vi = 0 or the supply constraint binds, i.e.,
∑

k∈Γ(v,i)
fk
Lv
x∗vik = δvi.

4. The optimal solution to (RA-δ) is unique.

Proof. We use the Karush-Kuhn-Tucker conditions to derive the results. Without loss of

generality, we assume δvi > 0 for all supply nodes (v, i); if δvi = 0 we simply delete supply

node (v, i), which would have an e�ective supply of 0, as a preprocessing step. The full

Lagrangian of (RA-δ) is given by:

L(x, u;α, β, γ, ϕ) =
∑
k

∑
(v,i)∈Γ(k)

sviwk
2θk

(xvik − θk)
2

+
∑
k

ckuk +
∑
k

αk

(
rk −

∑
(v,i)∈Γ(k)

svixvik − uk
)

+
∑
v,i

βvisvi

( ∑
k∈Γ(v,i)

fk
Lv
xvik − δvi

)
+
∑
v,i

∑
k∈Γ(v,i)

(
(γUvik − γLvik)xvik − γUvik

)
−
∑
k

ϕkuk

=
∑
v,i

∑
k∈Γ(v,i)

(
sviwk
2θk

(xvik − θk)
2 −

(
sviαk −

fk
Lv
sviβvi + γLvik − γUvik

)
xvik − γUvik

)

+
∑
k

(
(ck − αk − ϕk)uk + rkαk

)
−
∑
v,i

sviδviβvi.

Dual Feasiblity:

• αk, βvi, γUvik, γLvik, ϕk ≥ 0.
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Stationarity:

• (ST1): ∂L
∂xvik

= sviwk
θk

(xvik − θk) + svi
fk
Lv
βvi − sviαk + γUvik − γLvik = 0

→ x∗vik = θk + θk
wk

(
α∗k −

fk
Lv
β∗vi +

γL∗vik−γ
U∗
vik

svi

)
.

• (ST2): ∂L
∂uk

= ck − αk − ϕk = 0 → α∗k = ck − ϕ∗k.

Complementary Slackness:

• (CS1): Either γU∗vik = 0 or x∗vik = 1, and either γL∗vik = 0 or x∗vik = 0.

• (CS2): Either ϕ∗k = 0 or u∗k = 0.

• (CS3): Either α∗k = 0 or the demand constraint is binding:
∑

(v,i)∈Γ(k) svix
∗
vik+u∗k = rk.

• (CS4): Either β∗vi = 0 or the supply constraint is binding, i.e.,
∑

k∈Γ(v,i)
fk
Lv
x∗vik = δvi.

Proof of Part 1. Conditions (ST1) and (CS1) together imply that x∗vik = θk + θk
wk

(
α∗k−

fk
Lv
β∗vi
)

whenever this quantity falls within (0, 1), because the variable x∗vik is not at its lower or

upper bound and γL∗vik = γU∗vik = 0. If this quantity is negative, then γU∗vik = 0 and γL∗vik

will be just high enough to make x∗vik = 0. Similarly, if this quantity is greater than 1,

then γL∗vik = 0 and γU∗vik will be just high enough to reduce its value to exactly 1. Therefore:

x∗vik ≡ gvik(α∗k, β∗vi) = min
[
1,max

[
0, θk + θk

wk

(
α∗k−

fk
Lv
β∗vi
)]]
≡ sat

[
0, 1, θk + θk

wk

(
α∗k−

fk
Lv
β∗vi
)]
.

The �sat� function notation is common in optimal control theory.

Proof of Part 2. Condition (ST2) together with dual feasibility implies that α∗k ∈ [0, ck].

Under-delivery can only occur when uk > 0 which by (CS2) requires ϕ∗k = 0, which from

(ST2) implies α∗k = ck. If 0 < α∗k < ck, then ϕ∗k > 0 per (ST2), and u∗k = 0 per (CS2), and

from (CS3) we can conclude that the demand constraint is binding with no under-delivery:∑
(v,i)∈Γ(k) svix

∗
vik = rk. For the case of α∗k = 0, we know from (CS2) that u∗k = 0 but

(CS3) implies
∑

(v,i)∈Γ(k) svix
∗
vik ≥ rk which suggests that the demand constraint may not be

binding. However we can show that over-delivery will never occur and the constraint is in fact
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binding at α∗k = 0. For that, we establish also that
∑

(v,i)∈Γ(k) svix
∗
vik ≤ rk when α∗k = 0:

∑
(v,i)∈Γ(k)

svix
∗
vik =

∑
(v,i)∈Γ(k)

svigvik(0, β∗vi)

=
∑

(v,i)∈Γ(k)

svi min

[
1,max

[
0, θk

(
1− 1

wk

fk
Lv
β∗vi

)]]

≤
∑

(v,i)∈Γ(k)

svi max

[
0, θk

(
1− 1

wk

fk
Lv
β∗vi

)]

=
∑

(v,i)∈Γ(k)

sviθk max

[
0, 1− 1

wk

fk
Lv
β∗vi

]

≤
∑

(v,i)∈Γ(k)

sviθk = rk. (1.14)

The �rst inequality follows from the de�nition of min[·], and the second inequality is due

to the fact that max
[
0, 1− 1

wk

fk
Lv
β∗vi

]
is a quantity between 0 and 1. The last equality

is due to the de�nition of θk = rk/
∑

(v,i)∈Γ(k) svi. Note that in case of truncation θk =

min
[
1, rk/

∑
(v,i)∈Γ(k) svi

]
, we still have

∑
(v,i)∈Γ(k) sviθk ≤ rk which is the desired result.

Proof of Part 3. It is clear that x∗vik = gvik(α
∗
k, β
∗
vi) = 0 if β∗vi ≥

wk+α∗k
fk

Lv. Therefore, if

β∗vi ≥ maxk∈Γ(v,i)
wk+α∗k
fk

Lv (a strictly positive quantity), then
∑

k∈Γ(v,i)
fk
Lv
x∗vik = 0 < δvi,

which implies that the supply constraint does not bind and a strictly positive β∗vi value is

invalid. Therefore, it should always be that β∗vi ≤ maxk∈Γ(v,i)
wk+α∗k
fk

Lv. The second statement

in part 3 is due to condition (CS4).

Proof of Part 4. We showed in part 2 of the theorem that over-delivery never occurs.

Therefore, we can eliminate uk variables from (RA-δ) by replacing uk = rk−
∑

(v,i)∈Γ(k)svixvik.
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(RA-δ) ≡ Minimize
∑
k

∑
(v,i)∈Γ(k)

svi
2θk

wk (xvik − θk)
2

+
∑
k

ck
(
rk −

∑
(v,i)∈Γ(k)

svixvik
)

(1.15a)

s.t.
∑

(v,i)∈Γ(k)

svixvik ≤ rk ∀k (1.15b)

∑
k∈Γ(v,i)

fk
Lv
xvik ≤ δvi ∀v, i (1.15c)

0 ≤ xvik ≤ 1 ∀v, i, k ∈ Γ(v, i) (1.15d)

The constraint (1.15b) is corresponding to uk ≥ 0. It is easy in this form to see that the

objective function is strictly convex: The Hessian matrix is diagonal with elements sviwk/θk >

0 which make it strictly positive de�nite. The constraints are linear and therefore de�ne a

convex feasible set. A strictly convex function has a unique global minimum over a convex

set.

1.H Derivation of the Dual Problem for (RA-δ):

The Lagrangean dual function is given by: L(α, β, γ, ϕ) = minx,u L(x, u;α, β, γ, ϕ).

Substituting x∗vik = θk+ θk
sviwk

(
sviαk− fk

Lv
sviβvi+γ

L
vik−γUvik

)
from stationarity condition (ST1)

from previous section into the Lagrangean function L(x, u;α, β, γ, ϕ), and realizing that the

coe�cient of uk in the Lagrangean function is zero per (ST2), i.e., ck − αk − ϕk = 0, we can

write the Lagrangean dual function as:

L(α, β, γ, ϕ) =
∑
k

rkαk −
∑
v,i

sviδviβvi −
∑
v,i

∑
k∈Γ(v,i)

{

θk
2sviwk

(
sviαk −

fk
Lv
sviβvi + γLvik − γUvik + sviwk

)2

+ γUvik −
sviwkθk

2

}

The dual program to (RA-δ) is therefore a convex quadratic program with non-negative
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variables and linear constraints:

(RA-δD): Maximize L(α, β, γ, ϕ)

s.t. αk + ϕk = ck ∀k

αk, βvi, γ
U
vik, γ

L
vik, ϕk ≥ 0

1.I Proof of Theorem 2 (Convergence and Optimality of Mod-

i�ed SHALE)

Theorem. Given a vector of impression utilization factors δ, the Modi�ed SHALE Algorithm

converges to the optimal dual solution for (RA-δ) as long as either (i) all αk values are

initialized to zero, or (ii) we initialize αk = α′k,∀k ∈ K where α′ is the optimal dual solution

to (RA-δ′) for which δ′ ≥ δ componentwise.

Proof. The idea is to show that, when initialized properly, the αk values strictly increase

following each Step-2 update (unless the value is maxed-out at ck). Since each αk is bounded

above by ck, the algorithm must converge. We then show that the resulting solution satis�es

all KKT conditions and since the problem (RA-δ) is convex, the obtained solution must be

optimal.

Convergence:

Let αtk and βtvi denote the dual values computed in iteration t of SHALE. Let rk(αk,β) =∑
(v,i)∈Γ(k) svixvik =

∑
(v,i)∈Γ(k) svigvik(αk, βvi) denote the volume of satis�ed demand (reach)

for campaign k given the current dual vectors αt and βt in iteration t. Therefore, rk(α
t−1
k ,βt)

gives the satis�ed demand following the β updates in Step-1 of iteration t, and rk(αtk,β
t) shows
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this quantity following the α updates in Step-2. We have:

∣∣∣rk(αtk,β
t)−rk(αt−1

k ,βt)
∣∣∣ =

∣∣∣∣∣ ∑
(v,i)∈Γ(k)

svigvik(αtk, β
t
vi)− svigvik(αtk, β

t
vi)

∣∣∣∣∣
≤

∑
(v,i)∈Γ(k)

svi

∣∣∣∣∣gvik(αtk, β
t
vi)− gvik(αtk, β

t
vi)

∣∣∣∣∣
=

∑
(v,i)∈Γ(k)

svi

∣∣∣∣∣ sat[0, 1, θk +
θk
wk

(
αtk −

fk
Lv
βtvi

)]
− sat

[
0, 1, θk +

θk
wk

(
αt−1
k − fk

Lv
βtvi

)]∣∣∣∣∣
≤

∑
(v,i)∈Γ(k)

svi

∣∣∣∣∣ θkwk
(
αtk − αt−1

k

)∣∣∣∣∣
=

rk
wk

∣∣∣αtk − αt−1
k

∣∣∣ (1.16)

where the �rst inequality is due to the triangle inequality, and the second inequality follows

from the fact that for any two numbers a and b,
∣∣min

[
1,max[0, a]

]
− min

[
1,max[0, b]

]∣∣ ≤
|a−b|. (Equality occurs when both a and b are within [0, 1], and in all other cases the length of

interval [a, b] is being truncated by the min[1,max[0, ·]] operation, either from above (at 1) or

below (at 0), or both). The last equality follows from the de�nition of θk = rk/
∑

(v,i)∈Γ(k) svi.

Condition 1 (Su�cient Condition for Convergence): There exists an iteration t0, such that

following the Step-1 (β updates) we observe rk(α
t0−1
k ,βt0) ≤ rk for all k ∈ K. That is, no

campaign is over-delivered.

In the Step-2 (α updates) we either set αtk = ck (the value of αk is maxed-out and campaign

k will face under-delivery), or whenever possible, we set αtk such that rk(αtk,β
t) = rk. In the

latter case, if Condition 1 holds at iteration t0, then (1.16) suggests:

rk(α
t
k,β

t)− rk(αt−1
k ,βt) = rk − rk(αt−1

k ,βt) ≤ rk
wk

(αt0k − α
t0−1
k )
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⇒ αt0k ≥ αt0−1
k + wk

(
1−

rk(αt0−1
k ,βt0)

rk

)
≥ αt0−1

k (1.17)

That is, no αk value will decrease in the Step-2 update, when Condition 1 holds. Note that

every gvik(·) term and therefore rk(·) is non-decreasing in αk. Therefore, αtk ≥ αt−1
k implies

rk(α
t
k,β

t) ≥ rk(αt−1
k ,βt) and vice versa. Hence, we can remove the absolute values from both

sides of (1.16) when rk(αtk,β
t) = rk ≥ rk(αt−1

k ,βt) which is assumed to hold by Condition 1.

We now show that following the β update in Step-1 of iteration t0 + 1, Condition 1 will

hold for iteration t0 + 1 as well, proving that αk values will again strictly increase or max-out

at ck in t0 + 1 and all subsequent iterations. Note that every gvik(·) term and therefore rk(·)

is non-increasing in β. At the beginning of Step-1 of iteration t0 +1 one of the following could

happen for each supply node (v, i):

1. The supply constraint is binding:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0
k , β

t0
vi) = δvi. This happens if no

αk from campaigns k ∈ Γ(v, i) that target (v, i) has been changed in the past iteration.

In this case, no update to βvi value is necessary: β
t0+1
vi = βtvi ≥ 0.

2. The supply constraint is non-binding and not violated:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0
k , β

t0
vi) < δvi.

We know from (1.17) that all αt0k ≥ αt0−1
k and that gvik(·) is non-decreasing in αk.

Therefore, it must have been that
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0−1
k , βt0vi) < δvi, i.e., the supply

constraint was not binding following the Step-1 update of iteration t0 and βt0vi = 0. To

make the supply constraint bind, we need to decrease the βvi value even further, which

is not possible since negative values are not allowed for βvi. Therefore, the βvi value

remains at zero with no change: βt0+1
vi = βt0vi = 0, and the supply constraint remains

non-binding.

3. The supply constraint is violated:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0
k , β

t0
vi) > δvi. This is the most

likely situation for any supply constraint that was binding after Step-1 in iteration t0.

In this case, we can always increase βvi as much as necessary to decrease the left-hand
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side until
∑

k∈Γ(v,i)
fk
Lv
gvik(α

t0
k , β

t0+1
vi ) = δvi. In this case we will have βt0+1

vi > βt0vi . We

should point out that the upper-bound for βvi suggested in Part 3 of Theorem 1 is the

threshold beyond which the left-hand side of the supply constraint (v, i) becomes zero,

which ensures feasibility for any δvi > 0. Therefore, it is not restrictive and is only

deduced to eliminate unin�uential βvi values from the search space.

Overall, we observe that no βvi value will decrease in the Step-1 update. Therefore:

rk(αt0k ,β
t0+1) =

∑
(v,i)∈Γ(k)

svigvik(αt0k , β
t0+1
vi ) ≤

∑
(v,i)∈Γ(k)

svigvik(αt0k , β
t0
vi) = rk(αt0k ,β

t0) ≤ rk (1.18)

which is the Condition 1 for Iteration t0 + 1. This implies that all αt0+1
k ≥ αt0k in Step-2 of

iteration t0 + 1, per (1.17), and therefore all α and β values will monotonically increase in all

iterations t ≥ t0, and Condition 1 will be maintained throughout. Since αk is bounded above

by ck, the algorithm must converge.

Intuitively, Condition 1 requires that no campaign is over-delivered. Then we could

imagine that in each αk update, we seek to eliminate under-delivery for campaign k by

increasing αk as much as possible (and αk maxed-out at ck implies we could not fully

eliminate under-delivery and uk > 0). As a result of increasing αk value, we increase xvik

for all (v, i) ∈ Γ(k) which may violate the supply constraint for those viewer types. In the

subsequent βvi update, we increase βvi (decrease xvik for all k ∈ Γ(v, i)) to recover feasibility

at those nodes. If the supply constraint has leftover excess and βvi > 0 (obviously violating

complementary slackness), instead, we decrease βvi (increase xvik for all k ∈ Γ(v, i)) as much

as possible (considering non-negativity) and try to allocate as much supply as available. We

showed that once Condition 1 holds, and at least one pass of β updates has been performed

to correct complementary slackness, then we never need to decrease βvi values as they will

take their lower-bound of 0 when non-binding.
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Initialization (Satisfying Condition 1):

Now we show that with proper initialization of αk values, we can make Condition 1 hold

from the �rst iteration. This is trivial when all α0
k = 0. The maximum rk(α

0
k,β

1) is attained

when all β1
vi = 0, therefore rk(α0

k,β
1) ≤

∑
(v,i)∈Γ(k) svigvik(0, 0) =

∑
(v,i)∈Γ(k) sviθk = rk. The

original proof of convergence for the SHALE algorithm, provided in Bharadwaj et al. (2012),

only explores the initialization of α0
k = 0, which is assuming the worst case values for βvi, i.e.,

when they are all set to zero.

In our framework, we claim that to solve (RA-δ) following an adjustment (reduction) in

δvi values, we can initialize our modi�ed SHALE algorithm using the current optimal α values

prior to adjustment. To see this, assume that the current optimal dual solution to (RA-δ′)

is α∗k(δ
′) and β∗vi(δ

′). Clearly, rk(α∗k(δ
′),β∗(δ′)) ≤ rk (see (1.14) in Appendix 1.G that shows

over-delivery never occurs in the optimal solution). Assume we need to solve a new instance

(RA-δ) in which δvi ≤ δ′vi for all (v, i). Initializing α0
k = α∗k(δ

′), note that if at any node

(v, i) we happen to have
∑

k∈Γ(v,i)
fk
Lv
gvik(α

0
k, β
∗
vi(δ

′)) ≤ δvi ≤ δ′vi, then we naturally obtain

β1
vi = β∗vi(δ

′). In the case of
∑

k∈Γ(v,i)
fk
Lv
gvik(α

0
k, β
∗
vi(δ

′)) > δvi we need to increase the βvi

value to decrease the left-hand until the constraint binds:
∑

k∈Γ(v,i)
fk
Lv
gvik(α

0
k, β

1
vi) = δvi. In

this case, we have β1
vi > β∗vi(δ). Overall, we can conclude that β1

vi ≥ β∗vi(δ) for every (v, i).

From (1.18) we obtain that rk(α0
k, β

1) ≤ rk(α
∗
k(δ), β

∗(δ)) ≤ rk which meets Condition 1 for

iteration t0 = 1.

Optimality:

We now show that the solution obtained from Modi�ed SHALE satis�es all KKT conditions

for the problem (RA-δ). Since (RA-δ) is a convex problem, the solution must be optimal.

Dual feasibility is always maintained by limiting the search space for αk and βvi to non-

negative values. The stationarity condition (ST1) for variable xvik together with complemen-

tary slackness conditions (CS1) for the basic bounds 0 ≤ xvik ≤ 1 are also maintained in
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every step by the virtue of setting xvik = gvik(αk, βvi). The stationarity condition (ST2) for

slack variables uk, and the complementary slackness conditions (CS2) for uk ≥ 0 and (CS3)

for the demand constraint of campaign k are all achieved following the αk update in Step-1

of the algorithm. The complementary slackness condition (CS4) for the supply constraint for

the viewer type (v, i) is achieved following the βvi updates in Step-2 of the algorithm.

As a part of proving the convergence of the algorithm, we showed that no campaign will

experience over-delivery in any iteration subsequent to meeting Condition 1. We also showed

that the primal solution always satis�es the supply constraints after the Step-1 β updates. So,

after the α values converge, the �nal adjustment of β's will ensure complete primal feasibility,

dual feasibility, complementary slackness, and stationarity.

Performance Gap:

The optimality bound, due to Bharadwaj et al. (2012), is based on the argument that for

any t ≥ t0, if for some k with αtk 6= ck we have rk(α
t−1
k , βt) ≤ (1 − ε)rk, then (1.17) implies

αtk ≥ αt0−1
k + wkε. That is, αk increases by at least wkε. If α0

k = 0, then at most ck/(wkε)

of such adjustments will be made on αk. This suggests that after a worst-case scenario of

t ≥ |K| ·maxk{ck/(wkε)} iterations, all campaigns for which αk is not maxed-out at ck (i.e.,

are chosen be delivered fully in the optimal solution) should be delivered within an ε-fraction

of their rk.

1.J Geometric Illustration of δ Updates

In solving the (PA) we take the approach of relaxing the user-supply constraint (1.4c) so

a feasible solution is guaranteed and easy to construct to initialize our column generation

procedure. However, note that the constraint set (1.4b) together with the impression-supply

91



 

𝑦1 

𝑦2 

(𝑖𝑖) (𝑖) 

𝑠 

𝑠 

𝑠 /𝜌1 

𝑠 /𝜌2 

(a) Dashed lines (i) and (ii) illustrate the translated
impression supply constraint if δ is set to δmax and
δmin, respectively. It is never bene�cial to set δ
outside this range.

 

𝑦1 

𝑦2 
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(b) Current optimal solution (star symbol), the
implied constraint following the δ update (dashed
red line), and the area which is cut o� from the
feasible region (hatched).

Figure 1.11: Geometric illustration of user supply constraint (solid black line) vs. the
translated impression supply constraint adjusted by δ (red lines).

The solid red line illustrates the case of δ = 1.

constraints (1.3c) from (RA-δ), imply:

∑
k∈Γ(v,i)

fk
Lv
xvik =

∑
k∈Γ(v,i)

fk
Lv

( 1

svi

∑
p∈Pvi

bkpyvip

)
=

1

svi

∑
p∈Pvi

(∑
k∈Γ(v,i) fkbkp

Lv

)
yvip

=
1

svi

∑
p∈Pvi

ρvipyvip ≤ δvi

where ρvip =
∑

k∈Γ(v,i) fkbkp/Lv is the utilization ratio of pattern p ∈ Pvi and is less than

one (as per (1.5b)). Figure 1.11 illustrates the implied constraint
∑

p∈Pvi
ρvipyvip ≤ sviδvi

(red lines), against the original symmetric constraint
∑

p∈Pvi
yvip ≤ svi (solid black line),

for a particular supply node with two possible patterns (we suppress the (v, i) subscripts for

readability).

Let δmin
vi and δmax

vi respectively denote the minimum (non-empty) and maximum impression

utilization rates possible for supply node (v, i). Obviously, δmin
vi = mink∈Γ(v,i){fk}/Lv, i.e.,

the pattern consisting of only the campaign with smallest fk; and δmax
vi can be determined by

solving a binary knapsack problem maxbk∈{0,1}{
∑

k∈Γ(v,i)
fk
Lv
bk :

∑
k∈Γ(v,i) fkbk ≤ Lv} which

�nds the best packing of campaigns k ∈ Γ(v, i) possible over Lv slots. The parameter δvi which
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shows the achieved average level of impression utilization in node (v, i) should therefore fall

within the range [δmin
vi , δmax

vi ]. The two red dashed lines on Figure 1.11(a) illustrate the implied

constraint
∑

p∈Pvi
ρvipyvip ≤ sviδvi when δvi is exactly at δmin

vi or δmax
vi .

In the absence of the user-supply constraint (1.4c), i.e., the solid black line, our approach

is to adjust the δvi values until the implied constraints
∑

p∈Pvi
ρvipyvip ≤ sviδvi push the

optimal solution of (PA) to satisfy
∑

p∈Pvi
yvip ≤ svi. Considering the slope di�erences

between these two types of constraints, Figure 1.11(b) shows that, a certain portion of the

feasible region (hatched in blue) may be cut o�. This causes the solution produced by our

hierarchical formulation to be suboptimal to that of our monolithic formulation (1.13). The

degree of this suboptimality depends on the relative values of ρvip across all nodes and cannot

be characterized in closed-form. Setting δvi = δmin
vi at all nodes of (RA-δ) causes all (PA)

problems to be feasible (i.e., the δ-adjusted impression supply constraints dominate all user

supply constraints) and the resulting solution provides the worst-case suboptimality of our

approach. Our numerical tests on realistic instances that match industry data reveal that the

degree of suboptimality of our hierarchical formulation relative to our monolithic formulation

is within 1-3 percent, depending on the instance. Overall, we feel this is reasonable given

the other advantages that our hierarchical formulation has over our monolithic formulation

as described in �1.4.

Moreover, we note that in �1.5.4 we adopted the simplest update rule for δ values, and

that more advanced update rules may reduce this gap. For instance, we noticed if we update

only a fraction (and not all) of the δvi values in each iteration (especially, if chosen based on

the smallest βvi value, i.e., the least impact on the objective of (RA-δ)), the optimality gap

can be further reduced in most instances.
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1.K Equivalence of Scrap- and Roll-minimizing Cutting stock

Problems

Consider the classic cutting stock problem where a manufacturer has an in�nite stock of

metal rolls (or rods) of �xed length L, and there is a demand rk for pieces of length fk < L.

The manufacturer may minimize scrap (pieces of roll that are not of usable length and must

be scrapped) by generating a number of cutting patterns, and determining the number of

times to use (i.e., cut stock from) each pattern. Using akp to denote the number of times

piece k (of length fk) is cut from a roll when pattern p is used, πp = L −
∑

k akpfk to

denote the amount of scrap produced from each roll cut using pattern p, and variables yp

to denote how many rolls are cut using pattern p, the pattern assignment math program is:

min
{∑

p πpyp |
∑

p akpyp ≥ rk, yp ≥ 0
}
.

Substituting the de�nition of πp into the objective function, we get:

∑
p

πpyp =
∑
p

(
L−

∑
k

akpfk

)
yp =

∑
p

Lyp −
∑
p

(∑
k

fkakp

)
yp

≡ L

(∑
p

yp

)
−
∑
k

fk

(∑
p

akpyp − rk

)
(di�ers only by a constant,

∑
k fkrk)

Therefore, if the demand constraints are expressed as equality constraints and do not allow

for over-production (as is the case in our Pattern Assignment problem), the scrap-minimizing

objective
∑

p πpyp is equivalent to the objective that minimizes the number of raw rolls
∑

p yp

(in our case, the number of unique users) used, and vice versa.

However, when the demand constraints are written in inequality form (allowing demand

to be exceeded) the scrap-minimizing problem, as written above, may use more raw rolls to

improve the packing at the expense of over-producing some of the �nal goods. For example,

consider four products of lengths fA = 4, fB = fC = fD = 1 that each have a single unit of

demand rk = 1. With raw rolls of length L = 5, Figure 1.12 shows that the scrap-minimizing
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(a) Waste-Minimizing Solution

𝑝 = 1 
𝑦1
∗ = 1 A  

      

𝑝 = 2 
𝑦2
∗ = 1 B C D  

 

(b) Roll-minimizing Solution

Figure 1.12: Comparison of optimal solutions to a cutting stock problem when demand
constraints are expressed as inequalities (i.e., over-production is allowed)

solution may use each of the following three patterns {AB,AC,AD} once. Three rolls are

used to achieve zero scrap, but 2 units of product A are produced in excess of the amount

demanded. In contrast, the roll-minimizing solution may use each of the following two patterns

{A,BCD} once, scrapping 3 units of raw material, but only 2 rolls are used rather than 3

(Note that neither problem has a unique solution; the solutions illustrated here are among

the possible optimal solutions which we may get following a column generation procedure).

Finally, we note that if the over-production of goods is undesired (e.g., cannot be sold),

the scrap-minimizing objective should be de�ned as
∑

p πpyp+
∑

k fk

(∑
p akpyp − rk

)
, which

also counts over-production as scrap. With this objective, the scrap-minimizing problem is

again equivalent to the roll-minimizing problem. Now, the roll-minimizing solution {A,BCD}

which scraps 3 units is cheaper than the solution {AB,AC,AD} which over-produces product

A by 2 units and thus creates 8 units of scrap.
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CHAPTER 2:

Controlling the Exposure Frequency Distribu-

tion of Online Advertising with Markov Chains

2.1 Introduction

Online advertising has become the largest section of the advertising market with an annual

revenue of $49.5 billion (IAB 2016). Online platforms are interactive, easily customizable, and

provide world-wide reach and great control over targeting. Latest industry trends show that

people-based marketing has become a particularly popular catchphrase in the online adver-

tising industry and major e�orts are being exerted by online publishers to track individuals

(Kattula et al. 2015). In the meantime, the exponential growth in the use of portable devices

and more advanced identi�er technologies (such as Apple's IDFA and Google's Advertising

ID) have made it easier for publishers to track individuals over time and across multiple

devices. However, the existing forms of advertising campaigns, and respectively, the ad

serving mechanisms employed by online publishers, do not utilize the capabilities of the online

platform to the fullest potential. In particular, most existing forms of online ad campaigns

simply specify an aggregate impression goal or a budget limit and do not di�erentiate between

2 impressions of the same ad served to a single user, or 1 impression served to each of 2 distinct

users. While metrics of reach (how many unique individuals are exposed to the ad) and

frequency (how many times each individual is exposed to the ad) have been an indispensable

part of marketing literature and always an integral part of designing and measuring classical

advertising campaigns, they are not being incorporated into how online ad campaigns are
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contractually de�ned. There is evidence that online advertisers are becoming more concerned

about who they reach (Warc 2015) and reach and frequency metrics such as Gross Rating

Points (GRP) are on demand by online advertisers (eMarketer 2009). Furthermore, recent

studies show that breaking the advertising message into multiple bite-size pieces along with

a creative sequencing of those pieces (e.g., to convey a story about the product or service)

could drastically increase click-through and subscription rates (Adaptly 2014). Therefore,

there is great bene�t in having an ad campaign which contractually obligates the publishers

to provide a speci�c reach and frequency.

In this paper, we introduce and study a new form of reach and frequency (R&F) contract

in which an advertiser speci�es the fraction of users from a desired target audience she would

like to reach (by at least 1 impression) as well as a frequency distribution which speci�es what

proportion of users should see the ad how many times. For instance, the advertiser might

want to reach 1000 unique individuals, and in particular, want 25% to be exposed twice,

50% to see the ad 3 times, and 25% to see it 4 times. This is a generalization of the �rst

type of R&F contract proposed by Hojjat et al. (2014) in which the frequency is de�ned as

a single exposure count that every individual is supposed to meet in order to be considered

as reached. In fact, the R&F contract proposed by Hojjat et al. (2014) is equivalent to a

frequency distribution in which the mass of audience the advertiser wishes to reach is placed

entirely on a single frequency number.

The number of visits made by each user throughout a campaign's horizon is not deter-

ministic. Therefore, it is a challenge for the publisher to deliver reach and frequency as

requested by the advertiser. Upon each user visit, the publisher has a split-second time to

decide whether or not an impression of the ad should be shown. This paper shows that we

can always either solve the publisher's decision problem and determine the allocation rule, or

show that the advertiser's reach and frequency speci�cation is infeasible to implement for the

arrival process to publisher's website.
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Our manuscript is organized as follows: In �2.2 we provide an overview of relevant

literature. In �2.3 we solve the publisher's problem assuming that the frequencies are counted

throughout the campaign's horizon, or non-overlapping sub-intervals of the horizon of certain

length (e.g., each calendar week). In �2.3.1 we develop a Markov chain model for this problem.

�2.3.2 is devoted to characterizing the assignment rule for the publisher. We develope a

math programming formulation (�2.3.2.1) and then discuss a simpli�ed Markov chain model

(�2.3.2.2) which can be solved in closed form and helps us characterize the necessary and

su�cient condition for feasibility. We present a numerical example in �2.3.3 and then consider

extensions of our basic model in �2.3.4. In particular, we discuss how our model can be

generalized to plan multiple ad campaigns (�2.3.4.1), and how the publisher may distribute the

frequency distribution among multiple classes of users with di�erent visit patterns (�2.3.4.2).

One of our �ndings with �xed-horizon R&F contracts is that simplistic solutions which are

easy to obtain may result in poor spreading of campaigns over time. To alleviate this issue,

in �2.4, we consider an alternative interpretation of our R&F contract in which frequencies

are counted on a rolling basis. For example, the advertiser may monitor the number of

exposures delivered to individuals by sampling arbitrarily-chosen 24-hour periods throughout

the campaign's horizon and expect each user to have seen the ad {0, 1, 2, 3} times with a

sample probability of {5, 10, 25, 60}%, respectively. For this variant of the R&F contract,

we develop a birth-and-death Markov chain model for this problem in discrete (�2.4.1) and

continuous (�2.4.2) time, and for each model we derive the exposure rates publisher should use,

and characterize the feasibility conditions. Illustrative examples for this type of contract are

provided in �2.4.3. It is observed that when the advertiser's speci�ed frequency distribution

has a low variance, the rolling horizon approach naturally attains uniform spread of campaigns

over their horizon.

For each of the �xed- and rolling-horizon models we consider in this paper, we �nd that the

feasibility criteria are easy to check, and once those criteria are met, obtaining the publisher's
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assignment rule can be done very quickly and e�ciently in linear time in the length of the

frequency distribution speci�ed by the advertiser. We believe our modeling and solution

approach can be useful in practice, and certainly help toward a deeper understanding of

serving reach and frequency contracts in online media. Our concluding remarks and directions

for future work appear in �2.5.

2.2 Literature Review

The marketing literature on the impact of ad repetition on user brand recall and conversion

is quite rich. These studies commonly agree that the marginal bene�t of additional exposures

is increasing at initial exposures (wearin e�ect) and starts to decline beyond some threshold

(wearout e�ect) where too much exposure creates tedium/boredom (Campbell and Keller

2003; Yaveroglu and Donthu 2008). Therefore, there exists an optimal level of exposure that

maximizes advertising e�ectiveness and conversion rate. Chandler-Pepelnjak and Song (2003)

show how the most e�cient or most pro�table frequency rates for an online campaign can be

determined from historical performance. In general, one can classify most ad campaign in two

groups: Those that aim for brand awareness, and those announcing a speci�c promotion. The

former typically requires high reach and low frequency, whereas the latter is expected to require

higher frequency to induce a conversion/purchase with little attention to reach (as long as a

desired number of conversions is attained). Our model does not recommend appropriate reach

and frequency levels for advertisers. Instead, we take them as parameters and recommend an

impression allocation rule for the publisher to meet these reach and frequency requirements

when user visits are non-deterministic.

The problem of optimally allocating the supply of impressions to advertising campaigns

has also been studies quite extensively in the literature using a variety of modeling and

solution techniques, such as Linear Programming (Chickering and Heckerman 2003; Nakamura

and Abe 2005), Quadratic Programming (Turner 2012; Bharadwaj et al. 2012), competitive
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primal-dual algorithms (Mehta 2012), queuing theory (Naja� Asadolahi and Fridgeirsdottir

2014), and revenue optimization (Roels and Fridgeirsdottir 2009; Balseiro et al. 2014).

Hojjat et al. (2014) was the �rst to introduce reach and frequency contracts and develop

an optimization framework for simultaneous planning of R&F campaigns. In their de�nition

of R&F contract, each campaign de�nes a required number of times (i.e., the frequency) that

each individual should be exposed to the ad for him/her to be considered as reached. This

implies that the publisher receives no revenue for any impression delivered in excess of the

speci�ed frequency, or all impressions delivered to a user if their total count does not meet

the frequency requirement. Several issues can be pointed out with regards to this notion of

R&F. First, the research shows that all exposures to display ads, regardless of whether they

have been clicked on or even directly looked at, do get processed by users at a pre-attentive

level which does impact brand awareness (Briggs and Hollis, 1997; Dreze and Hussherr, 2003).

Therefore, impressions of ads in less/excess of the most e�cient/pro�table frequency should

still be of some value to advertisers. Second, and as evidenced in the computational studies of

Hojjat et al. (2016), a major challenge in planning such R&F campaigns is to maintain waste,

i.e., impressions which are served but not billable because the failed to meet or exceeded the

target frequency requirements, at minimum. Waste is a natural consequence of randomness

in the number of visits made by each user throughout the campaign's horizon. For example,

suppose an advertiser wishes to reach every individual within a certain demographic at a

frequency of 3. This implies that the publisher must serve all users with 3 impressions of this

campaign. If only 70% of users make more than 2 visits, then 30% of the target audience

can never be reached by this campaign and any impression served to them upon the �rst and

second visits will be wasted. Given that waste is virtually unavoidable and the publisher is

only paid by the number of individuals reached at the correct frequency, the advertiser never

observes the true frequency distribution which was served in the target audience. As well, the

publisher's estimate of the average waste would appear as a hidden cost in the pricing of R&F
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campaign. We believe our new de�nition of R&F contract eliminates this untruthfulness and

allows the publisher to be paid for every impression served, as long as the aggregate frequency

distribution meets the advertiser's speci�cation.

There are existing models that cast the publisher's revenue optimization as a Markov

decision process (e.g., Archak et al. 2010; Truzzi et al. 2012). In these models, ad impressions

must be served to a stochastic stream of arrivals, one at a time. Each impression contributes

a revenue (or consumes certain budget) and the objective is to maximize the expected total

revenue throughout the planning period. Our modeling approach using Markov chains,

however, is quite di�erent and can be considered new in the context of online advertising.

We do not model revenue explicitly, but aim to implement advertiser's reach and frequency

requests perfectly, in expectation. Therefore, our decisions (i.e., ad exposure rates) do not

contribute a direct reward to an objective function. Instead, they in�uence the transition

probabilities of a user's state (i.e., the current frequency count). The goal is to �nd a set

of exposure rates such that the steady-state distribution of the Markov chain matches the

frequency distribution speci�ed by the advertiser. Therefore, we contribute to the literature

on the inverse problem of Markov chain which surprisingly has not received much attention.

Existing literature (e.g., Ray and Margo 1976; Morimura et al. 2013) is fairly limited and does

not generalize to our particular application.

2.3 Fixed-Horizon Frequency Speci�cation

In our �rst modeling approach, we assume that a single advertiser wishes to achieve the

frequency distribution π = (π0, π1, ..., πF ), where πk denotes the proportion of users that see

their ad k times over a �xed planning period. The planning period could be the campaign's

full horizon H, or we could consider subdividing the full horizon into a number of non-

overlapping time intervals of length T (e.g., a calendar week). In the latter case, we assume

that all frequency counts are reset to zero at the start of each T interval. The distribution
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π also implies that the advertiser wishes to reach a θ = 1 − π0 =
∑F

k=1 πk proportion of

users at least once. In practice, it is more likely that the advertiser would directly specify

the reach fraction, θ, along with a frequency distribution π′ = (π′1, ..., π
′
F ) which applies only

to users who are to be reached. In this case, the advertiser's speci�cations translate into

π0 = 1 − θ and πk = θπ′k for k = 1, . . . , F in our model. Note that specifying reach as a

percentage of audience size is a common practice and such campaigns are known as share-of-

voice campaigns. Gross Rating Points (GRPs), de�ned as percent reach multiplied by average

frequency, are arguably the most common way that existing campaigns are de�ned/measured

which also use reach as a proportion of audience size. We use Πk =
∑k

k′=0 πk′ to represent

the cumulative distribution of π.

We further assume that the number of page visits from users throughout the planning

period are independent and follow the same probability distribution φ = (φ0, φ1, ..., φL).

That is, each user makes exactly t visits with probability φt. We use Φt =
∑t

t′=0 φt′ to

denote the cumulative distribution of φ. Later in �2.3.4 we demonstrate how our model can

be extended to the case of multiple user classes with di�erent visit probability distributions.

Without loss of generality, we assume L ≥ F , i.e., the maximum number of visits expected

from a user is no less than the maximum frequency requested; otherwise, the problem is

trivially infeasible. Note that in practice, φ would be derived from historical visit patterns.

Therefore, it is practical to assume that a non-zero (φ0) proportion of identi�ed users will not

make a visit throughout a planning period in the future.

Upon each user visit, the publisher needs to make a decision as to whether or not he

should expose the user to the ad, given the number of times the user has visited the website

so far, how many times she has already been exposed to the ad, and the expected probability

of future visits. In this section we characterize the feasibility criteria of such a decision and

the publisher's decision rule when those feasibility criteria are met.
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2.3.1 Markov Chain Model

Upon the t'th visit from a user, we denote the user's state by a tuple (t, k) where k < t is the

number of times the user has been exposed to the ad over the past t − 1 visits. A user who

has seen the ad k times but will never make another visit to the publisher's website is de�ned

to be in an absorbent state [k].

Let xt,k denote the probability that the publisher shows the ad to a user in state (t, k).

Given that the user has made t visits, there is a φt/(1−Φt−1) probability that this t'th visit will

be her last and the user will never visit again. Therefore, with probability xt,kφt/(1− Φt−1)

the user will be absorbed in state [k+ 1] and with probability (1−xt,k)φt/(1−Φt−1) she will

move to the absorbent state [k]. Similarly, there is a (1−Φt)/(1−Φt−1) probability that the

user will make at least one more visit. Therefore, with probability xt,k(1 − Φt)/(1 − Φt−1)

the user revisits in state (t+ 1, k+ 1), and with probability (1− xt,k)(1−Φt)/(1−Φt−1) she

returns in state (t+1, k). The transition diagram and probabilities are depicted in Figure 2.1.

Absorbent states are depicted as vertical bars. Note that all users start from state (0, 0) where

they have never arrived and have not seen any ads yet. As we can see, a φ0-proportion of

users never arrive throughout the planning period. The remaining (1−φ0) fraction make their

�rst visit in state (1, 0) at which point the publisher gets to make an assignment decision.

2.3.2 Derivation of Exposure Probabilities

The publisher's problem is to �nd the exposure rates xt,k for each k ∈ {0, . . . , F} and t ∈

{k+ 1, . . . , L} such that the total fraction of tra�c absorbed in each state [k] equals πk. The

following theorem provides a necessary condition for feasibility:

Theorem 3 (Necessary Condition for Feasibility). For the publisher to be able to implement

the frequency distribution π = (π0, π1, ..., πF ), it must be that Πk ≥ Φk for every k ∈ {0, ..., F}.

That is, the number of user visits must �rst-order stochastically dominate the advertiser's
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Figure 2.1: States and Transition Probabilities in the Fixed-Horizon Markov Chain Model
(Assuming F = 3 and V = 7)

requested frequency.

Proof. For a user to see the ad k times, she should make at least k visits. For every k ∈

{1, ..., F}, the proportion of users who should be exposed to the ad at least k times (i.e.,

1− Πk−1) cannot exceed the proportion of users who make k or more visits (i.e., 1− Φk−1).

Therefore, we must have 1−Πk−1 ≤ 1− Φk−1, or Πk−1 ≥ Φk−1.

We now explore two approaches in solving this problem. First we show that the problem

can be cast as a network �ow problem. Then we derive a closed-form solution for a restricted

version of the problem which results in a simpli�ed Markov Chain. We use this closed-form

solution to characterize the su�cient condition for feasibility.

2.3.2.1 Solving for Exposure Rates

The problem of �nding exposure rates xt,k to direct a πk-fraction of users to each absorbent

state [k] involves solving a system of equations which result from the balance equations of
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the Markov chain model. Let fS1,S2 denote the fraction of tra�c from state S1 directed

to state S2. For instance, f(4,1),[2] is the fraction of tra�c at state (4, 1) that is directed

to the absorbent state [2]. We know from the transition probabilities of the Markov chain

that this �ow corresponds to a x4,1φ4/(1 − Φ3) fraction of the input �ow into state (4, 1)

which is f(3,0),(4,1) + f(3,1),(4,1). Therefore, we can compute the exposure rate as x4,1 = (1 −

Φ3)f(4,1),[2]

/(
φ4(f(3,0),(4,1) + f(3,1),(4,1))

)
. In general, once all the �ows fS1,S2 are found, the

exposure probabilities are given by:

xt,k =
1− Φt−1

φt

f(t,k),[k+1]

f(t,k),[k] + f(t,k),[k+1] + f(t,k),(t+1,k) + f(t,k),(t+1,k+1)

∀k ∈ {1, ..., F},

∀t ∈ {k + 1, ..., L}
(2.1)

The �ows fS1,S2 must satisfy the following �ow balance constraints which ensure that the

out�ow from each node equals the in�ow into that node:

f(0,0),[0] = φ0, f(0,0),(1,0) = 1− φ0 (2.2)

∀t ∈ {1, ..., T} : f(t,0),[0] + f(t,0),[1] + f(t,0),(t+1,0) + f(t,0),(t+1,1) = f(t−1,0),(t,0) (2.3)

∀k ∈ {1, ..., F} : f(k+1,k),[k] + f(k+1,k),[k+1] + f(k+1,k),(t+1,k) + f(k+1,k),(t+1,k+1) = f(k,k−1),(t,k)

(2.4)

∀k ∈ {1, ..., F}

∀t ∈ {k + 2, ..., L}
:

f(t,k),[k] + f(t,k),[k+1] + f(t,k),(t+1,k) + f(t,k),(t+1,k+1)

= f(t−1,k),(t,k) + f(t−1,k−1),(t,k)

(2.5)

Furthermore, note that the publisher has only one degree of freedom at every node in splitting

the �ow (i.e., the exposure rate xt,k). The outgoing �ows from every node (t, k) with k ∈

{0, ..., F} and t ∈ {k + 1, ..., L} must satisfy the following relationships:

f(t,k),[k] =
φt

1− Φt
f(t,k),(t+1,k) (2.6)

f(t,k),[k+1] =
φt

1− Φt
f(t,k),(t+1,k+1) (2.7)

f(t,k),[k] + f(t,k),[k+1] =
φt

1− Φt−1

(
f(t,k),[k] + f(t,k),[k+1] + f(t,k),(t+1,k) + f(t,k),(t+1,k+1)

)
(2.8)
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A total �ow of πk should be directed to each absorbent state [k], that is:

k = 0 :

L∑
t=0

f(t,0),[0] = π0 (2.9)

∀k ∈ {1, ..., F} :

L∑
t=k

f(t,k−1),[k] +

L∑
t=k+1

f(t,k),[k] = πk (2.10)

and �nally, all �ows fS1,S2 must be non-negative:

fS1,S2 ≥ 0
∀k ∈ {0, ..., F}, t ∈ {k + 1, ..., L}

S1 ∈ (t, k), S2 ∈ {(t+ 1, k) ∪ (t+ 1, k + 1) ∪ [k] ∪ [k + 1]}.
(2.11)

One could employ a variety of standard techniques to �nd a feasible solution to (or detect

infeasibility of) the above set of linear equations and inequalities (2.2)�(2.11). For instance,

one could use an LP-solver.

We should point out that when the problem is feasible, it is often the case that the solution

is not unique. By using a quadratic objective which minimizes the variance of �ows across all

links in the network (e.g., minimizing the sum of squared �ow values) along with constraints

(2.2)�(2.11), the publisher can produce a more well-spread solution.

In the case of infeasibility, the publisher can relax constraints (2.9) and (2.10) and invoke

a Quadratic Programming (QP) solver to �nd a solution which minimizes the deviations from

the desired distribution as follows:

Minimize :
( L∑
t=0

f(t,0),[0] − π0

)2

+

F∑
k=1

( L∑
t=k

f(t,k−1),[k] +

L∑
t=k+1

f(t,k),[k] − πk
)2

(2.12)

This will attain a well-spread solution which is as close to the advertiser's ideal π as possible.

2.3.2.2 Simpli�ed Markov Chain for the Restricted Problem

Consider a modi�ed version of the problem as depicted in Figure 2.2. This is a restriction

of the original problem from Figure 2.1 in which all exposure rates xt,k for t ≥ k + 2 are

restricted to be zero. Essentially, upon the user's k'th visit, we decide on the probability of
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Figure 2.2: Restricted Markov Chain for the Fixed-Horizon Model

continuing to show an ad to the user. If so, the user either transitions from state (k, k− 1) to

(k + 1, k) upon the subsequent visit or she might be be absorbed in state [k] with no future

visits. On the other hand, if we choose not to show the ad to the user, we commit to not

showing the ad to that user upon any subsequent visit. In other words, 1 − xk,k−1 gives the

stopping probability for ad exposure upon k'th arrival.

Theorem 4 (Feasibility Equivalence). If the original problem has a feasible solution, then so

does the restricted problem, and vice versa.

Proof. Assume that a feasible solution to the original problem (Figure 2.1) is given. Focusing

on all states (t, 0), we must have
∑T

t=1 f(t,1),[0] = π0 − φ0 (i.e., a total �ow of π0 is directed

to [0]) and inevitably
∑T

t=1 f(t,0),[1] + f(t,0),(t+1,1) = 1− π0 (the rest is directed toward [1] and

(t, 1) states). Due to �ow conservation, we have (π0 − φ0) + (1 − π0) = 1 − φ0, i.e., total

out�ow from (1, 0) equals the in�ow. Therefore, there must exist a rationing of the �ow 1−φ0

in the restricted problem (Figure 2.2) such that π0 − φ0 is directed toward [0] and the rest,

inevitably 1− π0, is directed toward [1] and (2, 1). Now, for any k ≥ 1: the total in�ow into

[k] and states (t, k), ∀t > k in the existing feasible solution must be 1 − Πk−1, and the total
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out�ow from states (t, k) on to [k+1] and (t+1, k+1) must be 1−Πk. If the same amount of

�ow (1−Πk−1) is transferred in two streams instead (as in the restricted problem), i.e., from

(k, k − 1) to [k] and (k + 1, k), the �ow conservation ensures that the in�ow into (k + 1, k) is

just enough to pass 1 − Πk onward while depositing just enough �ow into [k] to satisfy the

required πk. Therefore, any available solution to the original problem must be translatable

to a solution for the restricted problem by a simple redistribution of �ows.

Essentially, Theorem 4 states that for any feasible solution that serves a user k impressions

over t ≥ k visits, there must exist an alternative solution in which all k impressions are served

upon the �rst k visits. Note that this structure in the solution produced by the restricted

model implies that the resulting serving mechanism does not spread impressions served to

a user uniformly throughout the serving period; a property which is typically desired by

advertisers. Hojjat et al. (2016) develop a probabilistic model (see Appendix D of Chapter 1)

that serves R&F contracts using patterns and show that in the absence of a pacing metric,

a probabilistic model will arrange all impressions of the same ad in sequential slots of the

pattern with no spreading. This conservative solution structure, which will be the most robust

to randomness in user arrivals, is exactly what is produced here by our restricted version of

the problem. Later in this section, we will discuss that the restricted model can also be much

more easily extended to plan and serve multiple ad campaigns since the distribution of leftover

user impressions are easy to characterize.

Theorem 4 is very important, because it establishes that a necessary and su�cient feasibil-

ity condition for the restricted problem is also a necessary and su�cient feasibility condition

for the original problem. The restricted problem can be represented in a very compact form

illustrated in Figure 2.3. In this representation, upon the k'th visit, an active user is in state

(k, k−1) and has been exposed to the ad k−1 times. With probability 1−xk,k−1, the publisher

will not serve the user and marks him/her as inactive for all subsequent arrivals, causing the

user to eventually be absorbed in state [k − 1]. On the other hand, with probability xk,k−1,
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Figure 2.3: Simpli�ed Markov Chain for the Fixed-Horizon Model

the publisher does serve the ad and the user remains active. Given that the user has made

k visits, there is a φk/(1 − Φk−1) chance that the user will never return and is absorbed in

state [k]. Otherwise, with (1−Φk)/(1−Φk−1) probability, the active user will return in state

(k + 1, k). This simpli�ed Markov chain can be solved in closed form as follows.

• In state (1, 0), we need to have:

φ0 + (1− φ0)(1− x1,0) = π0 → x1,0 =
1− π0

1− φ0
(2.13)

• In each state (k + 1, k), k ≥ 1, assuming all preceding exposure rates are set correctly,

there must be a total �ow of 1−Πk−1 from (k, k−1) which is split between (k+1, k) and

[k] according to ratios (1− Φk)/(1− Φk−1) and φk/(1− Φk−1), respectively. Similarly,

we want the total out�ow from (k+ 1, k) toward (k+ 2, k+ 1) and [k+ 1] to be 1−Πk.

This out�ow is simply the xk+1,k proportion of in�ow into (k + 1, k). Therefore:

( 1− Φk
1− Φk−1

(
1−Πk−1

))
xk+1,k = 1−Πk → xk+1,k =

1−Πk

1−Πk−1
.
1− Φk−1

1− Φk
; ∀k ≥ 1 (2.14)

• It is trivial that xk+1,k = 0 for all k ≥ F , since the advertiser never wishes to have more

than F impressions served to a user.

We can now characterize the necessary and su�cient condition for feasibility:

Theorem 5 (Necessary and Su�cient Condition for Feasibility). For the publisher to be able

to implement the frequency distribution π = (π0, π1, ..., πF ), it is su�cient and necessary to
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have: π0 ≥ φ0, and

∀k ∈ {1, ..., F} :
πk

1−Πk−1
≥ φk

1− Φk−1
(2.15)

That is, the advertiser's requested frequency must be smaller than the number of user visits in

the hazard rate order.

Proof. The feasibility condition is derived by simply imposing the probability rule xk+1,k ≤ 1

to equations (2.13) and (2.14).

Hazard rate order implies �rst-order stochastic dominance. Note that π0 ≥ φ0 is estab-

lished by the theorem. For every k ≥ 1 we can show by induction that Πk−1 ≥ Φk−1 together

with (2.15) implies Πk ≥ Φk:

If Πk−1 ≥ Φk−1 : → φk + Πk−1(1− Φk−1 − φk) ≥ φk + Φk−1(1− Φk−1 − φk)

→ φk(1−Πk−1) ≥ (1− Φk−1)(Φk−1 + φk −Πk−1)

→ 1−Πk−1

1− Φk−1
φk ≥ Φk−1 + φk −Πk−1

(2.15) : → πk ≥
1−Πk−1

1− Φk−1
φk ≥ Φk−1 + φk −Πk−1

→ Πk−1 + πk ≥ Φk−1 + φk

→ Πk ≥ Φk.

Therefore, the necessary and su�ciency condition in Theorem 5 naturally implies the nec-

essary condition previously established by Theorem 3. Note that each πk requires users

who visit k or more times. Theorem 5 states that upon each k'th visit, the advertiser's

frequency distribution should be demanding a higher conditional no-return probability (resp.,

lower conditional return probability) compared to what is actually dictated by the user visit

process. This is a stronger condition than �rst-order stochastic dominance.
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2.3.3 Illustrative Examples

Assume that the advertiser wishes to reach 50% of the publisher's user tra�c, of which π′1 =

0.3 should be exposed once, π′2 = 0.6 should be exposed twice, and π′3 = 0.1 should be exposed

three times to the ad by the end of the horizon. This translates into a frequency distribution

π = (1−0.5, 0.3(0.5), 0.6(0.5), 0.(0.5)) = (0.5, 0.15, 0.3, 0.05), Π = (0.5, 0.65, 0.95, 1). Further

assume that the publisher expects each user to make any number from zero to four visits

throughout the campaign's horizon with uniform probabilities: φ = (0.2, 0.2, 0.2, 0.2, 0.2),

Φ = (0.2, 0.4, 0.6, 0.8, 1).

Once can easily verify that the necessary and su�cient conditions stated in Theorem 5 are

satis�ed. Using equations (2.13) and (2.14) we obtain: x1,0 = 5/8, x2,1 = 14/15, x3,2 = 3/14,

x4,3 = 0. That is, upon the �rst arrival we mark 3/8 of users as inactive and never serve

them with an ad. We know that 80% of users actually make any �rst visit, 3/8 of which

corresponds to 30% of the overall tra�c. Together with the 20% who never make any visit,

we keep a total of π0 = 50% of users in state [0]. Among those who make a �rst visit,

φ1/(1 − Φ0) = 0.25 never make a second visit. Therefore, by serving ad to 5/8, i.e., 50% of

the tra�c, (0.25)(50%) = 12.5% directly get absorbed in state [1], and the remaining 37.5%

make a second visit as active users. Of these, we mark 1/15 (i.e., 2.5%) as inactive which

will complete the π2 = 15% of users who should be kept in state [1]. Of the remaining

14/15 × 37.5% = 35% portion of user tra�c to which we show the ad and keep as active,

φ2/(1 − Φ1) = 1/3 never make a third visit. Therefore, 11.67% get absorbed in state [2].

Among the remaining 23.33% who make a third visit, (11/14)(23.33) = 18.33% will be marked

as inactive and kept in state [2] which will complete a total of π2 = 30%. Finally, the remaining

(3/14)(23.33) = 5% who will be served an ad will all end up in absorbent state [4], either

directly by making no additional visits, or by visiting a fourth time but not being served any

further impressions. The �ow diagram for this example is presented in Figure 2.4.

When Theorem 5 holds, a feasible solution to the problem exists and one such solution
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Figure 2.4: Illustrative Example for the Simpli�ed Fixed-Horizon Markov Chain
π = (0.5, 0.15, 0.3, 0.05), φ = (0.2, 0.2, 0.2, 0.2, 0.2).

Table 2.1: Alternative Solution to the Example using the Complete Markov Chain
xt,k k = 0 1 2 3

t = 1 .4674 � � �
2 .3822 .8520 � �
3 .0301 1 .2198 �
4 0 1 .1284 0

comes from (2.13) and (2.14). However, this solution is often unique. Using the the math

program de�ned in �2.3.2.1, we could search for other solutions. For instance, using an

objective which minimizes the sum of squared �ows, e.g., to encourage some spread among

impressions served to each user across time, we instead obtain the solution shown in Table 2.1.

Now consider the case in which the advertiser wishes to have π = (0.5, 0.05, 0.3, 0.15),

in which π1 and π3 values are swapped. Even though the cumulative distribution Π =

(0.5, 0.55, 0.85, 1) satis�es the �rst-order stochastic dominance condition from Theorem 3, it

does not satisfy the su�cient condition of Theorem 5. In particular, π2/(1 − Π1) = 0.1 is

less than φ2/(1− Φ1) = 0.25. Therefore, the problem is infeasible. One could verify, e.g., by

solving the math program from �2.3.2.1, that the original problem is also infeasible in this

case.

2.3.4 Model Extensions

We now investigate two useful extensions of the model. First, we show that under the

restricted model, it is easy to serve additional ad campaigns in a priority order. Then we
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discuss the case in which publisher's tra�c is composed to di�erent user classes, each of

which follow a di�erent visit probability distribution.

2.3.4.1 Multiple Ad Campaigns

Simultaneous planning of multiple campaigns using the Markov Chain approach su�ers from

the curse of dimensionality. However, in practice, one can imagine that requests for advertising

campaigns arrive sequentially, and the publisher evaluates the feasibility of serving each new

campaign given the set of existing campaigns. The solution structure that is derived from

the simpli�ed Markov Chain makes it very easy to characterize the visit distribution of excess

tra�c once an existing campaign is served. Let φ̃ = (φ̃0, ..., φ̃L) denote this distribution. It is

convenient to de�ne φ̃+ = (φ̃1, ..., φ̃L) to denote the portion of this distribution corresponding

to non-zero arrivals.

Assume the publisher is serving a �rst-priority campaign with a desired frequency distri-

bution π = (π0, ..., πF ) which satis�es the su�cient feasibility conditions of Theorem 5. It is

easy to see in Figure 2.3 that:

• Upon the �rst visit, a π0− φ0 proportion of users are marked inactive and never served

to the incumbent campaign. Therefore, their �rst and all subsequent arrivals can be

allocated to a second campaign. These arrivals will follow the conditional distribution:

φ̃1+ =

(
φ1

1− Φ0
, ... ,

φL
1− Φ0

)

• For each k ∈ {2, ..., F + 1}, a πk−1 − φk−1

1−Φk−2
(1−Πk−2) proportion of users are marked

as inactive upon their k'th visit, and therefore their k'th and subsequent arrivals can be

allocated to a second campaign. These arrivals will follow the conditional distribution:

φ̃k+ =

 φk
1− Φk−1

, ... ,
φL

1− Φk−1
,

k−1︷ ︸︸ ︷
0, ... , 0

 (2.16)
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• The compound distribution of leftover tra�c is therefore:

φ̃+ = (π0 − φ0)φ̃1+ +

F+1∑
k=2

(
πk−1 −

φk−1

1− Φk−2
(1−Πk−2)

)
φ̃k+ (2.17)

• To complete the distribution φ̃, it is enough to set φ̃0 such that the summation of

probabilities in φ̃ adds up to 1.

Once φ̃ is found, the publisher may investigate whether the (reach adjusted) frequency

distribution of a second campaign satis�es the su�ciency condition of Theorem 5 with respect

to the leftover tra�c distribution φ̃. If so, the exposure rates for the second campaign would

be calculated using (2.13) and (2.14). Once a user is marked inactive for the incumbent

campaign, he/she will immediately be marked active in state (1, 0) for the second campaign.

The exact same calculation in (2.17) can be used to derive the leftover visit distribution for

a possibility of serving a third campaign, and so on.

Example: In the example of Figure 2.4, the visit distribution of leftover tra�c is given by:

φ̃+ = 0.3×
(1

4
,

1

4
,

1

4
,

1

4

)
+ 0.025×

(1

3
,

1

3
,

1

3
, 0
)

+ 0.1833×
(1

2
,

1

2
, 0, 0

)
+ 0.025×

(
1, 0, 0, 0

)
=
(
0.2, 0.1750, 0.0833, 0.0750

)
⇒ φ̃ =

(
0.4667, 0.2, 0.1750, 0.0833, 0.0750

)

In this case, a second campaign with frequency distribution π′ = (0.5, 0.25, 0.25) satis�es the

feasibility conditions of Theorem 5 and can be implemented. Such campaign is also aiming to

reach 50% of publisher's user tra�c, with equal proportions exposed to 1 and 2 ad impressions.

The exposure rates for the second campaign using the simpli�ed Markov Chain structure will

be: x′1,0 = 0.9375, x′2,1 = 0.8, x′3,2 = 0, per equations (2.13) and (2.14). The leftover visit

distribution will be φ̃′ = (0.7854, 0.1078, 0.0828, 0.0193, 0.0047) per equation (2.17). We

can then implement a third campaign with π′′ = (0.8, 0.15, 0.05), which reaches 20% of user
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tra�c with 2/3 seeing the ad once, and 1/3 seeing it twice. We will have x′′1,0 = 0.932,

x′′2,1 = 0.5024, x′′3,2 = 0. Note that 95% of publisher's impression tra�c is captured by the

above three campaigns.

Interestingly, the order in which ad campaigns are prioritized a�ects the feasibility of

implementation. In the example above, if we reverse the order of implementation for the above

three campaigns, we will �nd that the leftover visit distribution following the implementation

of π′′ and π′ is not good enough to allow for an implementation of π. Therefore, if multiple

campaign requests arrive simultaneously, the publisher may want to investigate all possible

orderings of their implementation to (hopefully) arrive at a feasible solution.

Finally, we should point out that the leftover visit distribution φ̃ characterized by (2.17)

is speci�c to the restricted Markov model. It is quite hard to derive such distribution for the

general model presented in �2.3.1. Indeed, when x is speci�ed by a math program solution

rather than (2.13) and (2.14), φ̃ no longer solely depends onφ and π and is tied to the

exposure rates used throughout the chain to implement π. For example, one could verify by

simulation that the alternative solution to the example provided earlier in Table 2.1 leads to

a leftover tra�c that follows φ̃ = (0.3905, 0.3109, 0.1712, 0.0638, 0.0636) which is di�erent

from what we derived above for the restricted Markov chain. In fact, the leftover tra�c from

this alternative solution is unable to accommodate the second campaign π′ in our example.

By creating an allocation plan in which each frequency k is served using the �rst k visits from

each user (i.e., the least number of visits possible), the solution to the restricted chain is not

only the most robust to misspeci�cation of the arrival distribution, but also leaves the most

predictable and stable leftover tra�c to be allocated to lower-priority campaigns.

In the general Markov chain model, a user may always remain active with respect to the

incumbent campaign. A decision of not showing the ad upon a visit provides an opportunity

for serving other campaigns but gives little clue as to how subsequent visits from the user

may become available to a secondary campaign as there remain numerous possibilities for the
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future sample path of that user within the chain. We leave further exploration of this case to

future research.

2.3.4.2 Multiple User Types

We now address the case in which the publisher's tra�c is non-homogeneous. In particular,

we assume that users can be clustered in V groups. The number of visits from users in group

v = {1, ..., V } are i.i.d. and follow the distribution φ(v) =
(
φ

(v)
0 , φ

(v)
1 , ..., φ

(v)
L

)
. We assume the

publisher can identify these distributions and as well identify the cluster to which each user

belongs. Furthermore, it is known that an αv proportion of users belong to cluster v. Indeed,

we must have
∑V

v=1 αv = 1, and
∑L

t=0 φ
(v)
t = 1 for each v ∈ {1, ..., V }.

Clearly, the publisher has the option of ignoring this information and modeling user visits

as i.i.d. from the aggregate/compound distribution φ̄ =
∑

v αvφ
(v). If this distribution

satis�es the su�ciency conditions of Theorem 5 with respect to an advertiser's requested

frequency distribution π, the publisher can proceed by treating all users equally and obtain

the appropriate exposure rates using (2.13) and (2.14).

An interesting problem arises when the compound distribution φ̄ does not meet the

su�ciency conditions of Theorem 5 with respect to π. The question is whether the publisher

could bene�t from treating users of each class v di�erently, i.e., by solving a separate restricted

Markov chain model for each user class, so that a frequency distribution π is attained in

aggregate. To this end, the publisher needs to break down the frequency distribution π into

multiple frequency distributions, π(v), one for each user class, such that:

• Each π(v) is a probability distribution:

F∑
k=0

π
(v)
k = 1, ∀v (2.18)

π
(v)
k ≥ 0, ∀k, v (2.19)

116



• The frequency distribution π(v) assigned to each user class v meets the su�ciency

conditions of Theorem 5:

π
(v)
0 ≥ φ

(v)
0 ∀v (2.20)

π
(v)
k ≥

φ
(v)
k

1− Φ
(v)
k

( F∑
k′=k

π
(v)
k′

)
∀v, k ∈ {1, ..., F} (2.21)

• The aggregate/compound frequency distribution should match the advertiser's speci�-

cation: ∑
v

αvπ
(v)
k = πk ∀k (2.22)

If a set of π(v)
k values exist that satisfy the set of linear inequalities (2.18)�(2.22), the publisher

can bene�t from his knowledge of user classes and implement π by treating each user class

di�erently. Since we typically do not expect too many user classes (V ) or very high frequency

requirements (F ), solving the above system of O(V F ) equations can be done very quickly

using any standard math programming software.

Example: Continuing the example of �2.3.3, assume that the advertiser wishes to have

a frequency distribution π = (0.5, 0.15, 0.3, 0.05). This time suppose that the user tra�c

is clustered in two groups: φ(1) = (0.4, 0.3, 0.2, 0.1, 0) who are relatively low-visiting, and

φ(2) = (0, 0.1, 0.2, 0.3, 0.4) who can be considered as high visiting. If the tra�c was split evenly

between the two clusters, i.e., α1 = α2 = 0.5, the aggregate/compound visit distribution

φ̄ = (0.2, 0.2, 0.2, 0.2, 0.2), as shown previously, would satisfy the su�ciency conditions of

Theorem 5. Hence, the publisher could apply the same solution from �2.3.3 to all users

homogeneously, regardless of their type, in order to implement π.

However, suppose α1 = 0.7 and α2 = 0.3. That is, a higher proportion of users are low-

visiting. In this case, the compound distribution φ̄ = (0.28, 0.24, 0.20, 0.16, 0.12) does not

meet the su�ciency conditions of Theorem 5. In particular, π1/(1 − Π0) = 0.3 is less than
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φ̄1/(1− Φ̄0) = 1/3. Therefore, the publisher cannot implement π by treating all users equally.

However, there exists a disaggregation of π among user classes which makes this possible.

Using an LP-solver, we obtain π(1) = (0.71, 0.15, 0.12, 0.02) and π(2) = (0.01, 0.15, 0.72, 0.12).

It is easy to verify that each of the two pairs π(v) and φ(v) satis�es the su�ciency conditions

and α1π
(1) + α2π

(2) = π. The exposure rates for the restricted Markov model are given

by x(1) = (0.4833, 0.9655, 0.4286, 0) and x(2) = (0.99, 0.9428, 0.1837, 0), elements respectively

showing the ad display probability upon the �rst four arrivals.

It is easy to show that with higher ratio of low-visiting users, e.g., α1 = 0.8 and α2 = 0.2,

the set of linear inequalities (2.18)�(2.22) has no feasible solution and user discrimination

cannot bene�t the publisher in implementing π.

2.4 Rolling-Horizon Frequency Speci�cation

In our �xed-horizon model, we showed that the publisher may employ a simple Markov chain

model to serve advertising such that the proportion of viewers who are exposed to the ad a

certain number of times throughout the campaign's horizon follows a particular distribution

speci�ed by the advertiser. The mechanism implemented by the simpli�ed �xed-horizon model

has the property that it serves all impressions of the same ad to each viewer upon successive

visits. Hence, it does not provide a smooth delivery of campaigns over time, unless the arrival

process to publisher's website is such that initial visits from di�erent users are naturally

spread uniformly throughout the campaign's horizon � a condition which may not hold in

practice.

In this section, we introduce and study a di�erent format in which an advertiser may

wish to specify exposure frequency. Instead of counting the number of ad exposures to each

customer over the entire campaign's horizon or non-overlapping �xed-length time intervals

that span throughout the campaign's horizon (e.g., each calendar week), we could measure

the number of ad exposures to each customer on a rolling basis, i.e., throughout a timespan
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T (e.g., 24 hours) immediately preceding the current time, which we henceforth refer to as

the frame. In other words, instead of resetting exposure counts to zero at the start of every

T interval, we gradually erase the record of impressions that occurred outside the frame, i.e.,

more than T time units in the past.

In this new form of reach and frequency contract, the frequency distribution π = (π0, ..., πF )

speci�ed by the advertiser can be interpreted in two ways: 1) A πk-proportion of users should

be exposed to the ad k times in any randomly-selected time interval of length T ; and 2) For

a πk-fraction of the time, we should observe each user (who is to be reached) to have seen the

ad k times in the past T units of time.

In our �xed-horizon model, the frequencies were being counted over a static time interval

and hence we could work with a probability distribution φ = (φ0, φ1, ..., φL) that described

the number of page visits from users within that time. For our rolling horizon model, we need

a more detailed characterization of the arrival process which further describes how/when user

visits occur throughout the campaign's horizon. We assume that user visits are independent

and identically distributed, following a Poisson distribution with constant exogenous rate λ

per unit time.

Again, upon each user visit the publisher must decide whether or not to show an ad so that

the reach and frequency requirements are met. In the remainder of this section we provide a

solution to publisher's problem using a birth-and-death Markov chain model and characterize

the feasibility criteria.

2.4.1 Discrete Time Markov Model

The frequency of exposures to each individual at any time t0 is measured as the number of

exposures delivered within a timespan of length T preceding t0, i.e. within [t0 − T, t0], which

we refer to as the frame.

We partition the frame into n equal time periods of length δt = T/n. Denoting the
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        Probability State Change 
 

  …   X Unserved or no visit or in 𝑡−𝑛.  

User visited in 𝑡0 and was served. 

(1 − 𝑞𝑘) 
𝑝𝑥𝑘 

𝑘 → 𝑘 + 1 
 

             

X   …   
 User visited in 𝑡−𝑛 and was served. 

Unserved or no visit in 𝑡0. 
𝑞𝑘 

(𝑝(1 − 𝑥𝑘) + (1 − 𝑝)) 
𝑘 → 𝑘 − 1 

 

             

𝑡0 − 𝑇 𝑡0 
𝑡−1 𝑡−2 𝑡−𝑛+1 

a) 

b) 

Figure 2.5: Frame, Time Periods, and State Transitions in the Rolling Horizon Markov Model

start of the current time period as t0, we use t−i to index the time period that starts at time

t0−(i)(δt). Therefore, t−1 is the most recent period [t0−δt, t0) and t−n is the oldest period in

the frame [t0−T, t0−T + δt) for which we keep track of exposure frequencies. See Figure 2.5.

We assume n is large enough (resp., δt is small enough) that the probability of two or

more visits in each period is negligible. Such discritization is a common approach in modeling

dynamic allocation problems such as dynamic revenue optimization (e.g., see Lautenbacher

and Stidham Jr 1999, as well as Talluri and Van Ryzin 2006, p.58). Essentially, the Poisson

arrival process is approximated by a binomial process with a visit probability p = λδt, which

is constant across time and independent from one period to another. Clearly, np = λT which

is constant. When n → ∞ (resp., δt → 0) this binomial process converges to the original

Poisson process with rate λ.

The state of an individual at the beginning of t0 can be indexed by k ∈ {0, 1, ..., n} which

shows the number of times the user has seen the ad over the past n time periods, i.e., in the

current frame [t0− T, t0]. Let I(t−i) = 1 if an ad has been served in time period t−i and zero

otherwise. Then the state of a user at t0 can be written as S(t0) =
∑n

i=1 I(t−i).

Upon any user visit, the publisher will display the ad to the user with probability xk ∈ [0, 1]

if the individual is in state k. WLOG, we assume n is large enough that the advertiser never

wants a frequency more than n. More precisely, we assume that the adviser has a frequency

cap F < n, and therefore xk = 0 for all k ≥ F .

Each δt, the frame moves one time period forward. If an impression is served in t0 it
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will be added to the state S(t0) and if an impression has been served in t−n it will exit the

frame and will be subtracted from S(t0). That is, the state will be updated as S(t0) ←

S(t0) + I(t0)− I(t−n). In order to perfectly track the state of the user note that the publisher

would need to keep a record of the exact timestamps at which each user has arrived and been

served an ad. For a large publisher with millions of user visits per hour, we expect the storing

of information at such detail to be prohibitive. Therefore, we propose an alternative counting

mechanism which proves to work quite e�ectively in our numerical experiments. Assume that

the publisher does not maintain an exact record of times that ads have been served. Given that

the current state is k, the publisher can use an estimate of the probability that an impression

has been served at the beginning of the frame, denoted qk = P (I(t−n) = 1|S(t0) = k), to

subtract the frequency count probabilistically. Obviously, we should have q0 = 0 (when the

frame is empty) and qn = 1 (when every time period in the frame contains an ad). Suppose

there are k impressions in the frame. Regardless of how those k impressions are spread over

the n slots of the frame, it is clear that if the publisher serves no further ads to the user, the

frame should clear and the user's state should return to zero after n time periods (i.e., when

T time is passed). By clearing the state at a rate qk = k/n we ensure that this happens. This

is equivalent to de�ning a lifetime of T with uniform decay rate of 1/n for each impression

served.

Note that the publisher need not update the state after every δt. Updating the state

occurs only at points in time where the user makes an arrival. The publisher only needs to

know (i.e., store) the timestamp of the previous arrival along with the updated state at that

time. The publisher can then simulate the decay process since the last user visit to arrive at

an estimate for the current state. If the user was last seen in t−i, i.e., (i)(δt) time ago and

left in (post-exposure) state S̄(t−i) + I(t−i) = k, the new estimated state state will be given

by S̄(t0) = (k −D)+ in which D ∼ Binom(i, qk) is a binomial random variable with i trials

and success probability qk. Following the publisher's exposure decision, the user will be left
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Figure 2.6: States and Transition Probabilities in the Rolling-Horizon Markov Chain

in state S̄(t0) + I(t0) until next arrival.

We now characterize the state transition probabilities. Three events should occur for a

user to switch state from k to k+1: The user should make a visit (p probability), the publisher

should choose to display the ad upon that visit (xk probability), and it must be that there

was no ad shown to the user at t−n (1 − qk probability); See Figure 2.5(a). Similarly, for a

user to transition from state k to k − 1 it must be that the publisher showed an ad at t−n

(qk probability) and no ad is shown at the current time period, either because of no visit

from the user (1 − p probability) or a visit upon which the publisher chose not to serve an

ad (p(1 − xk) probability); See Figure 2.5(b). Therefore, if P denotes the transition matrix:

Pk,k+1 = pxk(1− qk) and Pk,k−1 = qk(1− p+ p(1− xk)) = qk(1− pxk). The user will remain

at state k with probability Pk,k = 1− Pk,k+1 − Pk,k−1.

User states and transition probabilities are shown in Figure 2.6. It is clear and rather

expected that the Markov chain of the rolling-horizon reach and frequency problem models a

birth and death process. Detailed balance equations are as follows:

qk(1− pxk)πk = pxk−1(1− qk−1)πk−1 ∀k = 1, . . . , F (2.23)

Recall that q0 = 0, qn = 1, F < n and xk = 0 for all k ≥ F . To further justify the choice of

qk = k/n, note that we can rearrange the detailed balance equations as:

p(1− qk−1) xk−1πk−1 + pqk xkπk = qkπk.
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Taking the summation of both sides over k ∈ {1, ..., F}, we obtain:

F∑
k=0

pxkπk =

F∑
k=0

qkπk, (2.24)

which indicates that the average serving rate should equal the average exit rate. This is

intuitive, because impressions that enter and exit the frame follow the exact same pattern,

with a lag of n time periods. Now note that per the advertiser's request, the user is expected

to be in state k with probability πk. Therefore,
∑F

k=0 kπk (the mean of the π distribution)

gives the average number of impressions we should expect to observe in any randomly-chosen

frame. On the other hand, when n is large, each randomly-selected frame by itself constitutes

a large-enough sample so that we can expect the user to be in state k in nπk time periods

of the frame. That is, we should expect the user to be served at the rate pxk in nπk time

periods of any randomly-selected frame. Therefore,
∑F

k=0(nπk)(pxk) also gives the average

number of impressions expected in such frame. Hence, we must have:

n

F∑
k=0

pxkπk =

F∑
k=0

kπk. (2.25)

From (2.24) and (2.25) we obtain:

F∑
k=0

qkπk =

F∑
k=0

k

n
πk. (2.26)

Even though (2.26) does not uniquely de�ne each qk, it suggests that qk = k/n is a valid

candidate.

Given p, n, and ad serving probabilities xk, we can �nd the stationary frequency distri-

bution π = (π0, ..., πF ) as follows: Pick an initial value for π0 (strictly above zero). Calculate

π1 through πF recursively, using:

πk =

(
n+ 1

k
− 1

)
pxk−1

1− pxk
πk−1 ∀k = 1, . . . , F (2.27)

which is obtained by replacing qk = k/n in (2.23) and simple rearrangement. To enforce
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∑F
k=0 πk = 1, divide each value by the current total summation of πk. This normalization

step is correct because (2.27) can be expanded to write each πk as Ckπ0; hence,
∑

k πk =

(
∑

k Ck)π0. Therefore, any scaling applied to π0, will directly impact all other πk and the

total sum
∑

k πk by the same factor.

The publisher's decision is to �nd the ad serving probabilities xk given p, n, and a desired

stationary frequency distribution π = (π0, ..., πn). To this end, set xF = 0. Then calculate

xF−1 through x0 recursively (backwards), using:

xk =
k + 1

n− k
πk+1

πk

(
1

p
− xk+1

)
∀k = 0, . . . , F − 1 (2.28)

which is obtained by a simple rearrangement of (2.27). If any xk turns out to be outside [0, 1],

we conclude that the stationary distribution πk cannot be achieved with the given arrival rate

and frame size. Since the feasibility condition for xk depends on the value of xk+1, assessing

whether a desired distribution π can be implemented is equivalent to attempting to solve for

serving probabilities using the recursive equations (2.28), which can be done in O(F ) time.

Theorem 6 (Su�cient Condition for Feasibility). For the publisher to be able to implement

the rolling-horizon frequency distribution π = (π0, π1, ..., πF ), it is su�cient to have:

(k + 1)
πk+1

πk
≤ λT

(
1− k

n

)
∀k = 0, . . . , F − 1. (2.29)

Proof. The condition is obtained by substituting (2.28) into the feasibility condition xk ≤ 1:

k + 1

n− k
πk+1

πk

(
1

p
− xk+1

)
≤ k + 1

n− k
πk+1

πk

1

p
≤ 1 ∀k = 0, . . . , F − 1

Rearranging terms, and noting that p = λδt = λT/n will give (2.29). Note that with p ≤ 1,

(2.29) implies:

(k + 1)
πk+1

πk
≤ n− k → k + 1

n− k
πk+1

πk
≤ 1 → xk =

k + 1

n− k
πk+1

πk

(
1

p
− xk+1

)
≤ 1

p
− xk+1 ≤

1

p
,

which ensures non-negativity of xk−1.
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2.4.2 Continuous Time Markov Model

If we consider in�nitely small divisions of time, i.e., take the limit δt→ 0, (resp., n→∞), we

know that the binomial arrival process de�ned in �2.4.1 converges to a Poisson process with

constant rate λ per unit time. The quantity np = λT remains constant, while p→ 0. In this

case, (2.28) converges to:

lim
δt→0

xk = x̃k =
k + 1

λT

πk+1

πk
∀k = 0, . . . , F − 1, (2.30)

where λT is the expected number of arrivals from the user over the timespan of the frame.

To see the error of approximating xk with x̄k, note that (2.28) can be written as:

xk =

(
1− pxk+1

1− k/n

)
x̃k =

(
n− λTxk+1

n− k

)
x̃k ∀k = 0, . . . , F − 1. (2.31)

The ratio 1−pxk+1

1−k/n varies between 1− p (when k = 0 and xk+1 = 1) to 1 + F
n−F (when k = F

and xk+1 = 0). Therefore,

∣∣xk − x̃k∣∣ ≤ max

{
p,

F

n− F

}
x̃k. (2.32)

This also implies that the approximation must be accurate when F � n.

The feasibility condition xk ≤ 1 simpli�es to:

(k + 1)
πk+1

πk
≤ λT ∀k = 0, . . . , F − 1, (2.33)

which can be interpreted as a lower-bound requirement on the arrival rate λ.

Theorem 7 (Necessary Condition for Feasibility). For the publisher to be able to implement
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the rolling-horizon frequency distribution π = (π0, π1, ..., πF ), it must be that:

π0 ≥
φλT (0)

ΦλT (f̄)
&

πk
π0
≤ φλT (k)

φλT (0)
∀k = 1, . . . , F, (2.34)

where φλT (k) and ΦλT (k) are the Poisson PDF and CDF of observing k visits from the user

over the timespan of the frame. Essentially, the probability ratio πk/π0 should not exceed the

corresponding ratio in the (Poisson) distribution that describes the number of arrivals over

the frame's timespan T .

Proof. Since both sides of all inequalities in (2.33) are strictly positive, we can multiply the

�rst k inequalities:

(2.33) ⇒ π1

π0

2π2

π1
· · · kπk

πk−1
= (k!)

πk
π0
≤ (λT )k ∀k = 1, . . . , F

Moving (k!) to the right hand side, and multiplying both sides by the constant φλT (0) = e−λT ,

we obtain:

e−λT

π0
πk ≤

e−λT (λT )k

k!
= φλT (k) → πk

π0
≤ φλT (k)

φλT (0)
∀k = 1, . . . , F

If the above holds, we must have:

F∑
k=0

πk
π0
≤

F∑
k=0

φλT (k)

φλT (0)
→ 1

π0
≤ ΦλT (F )

φλT (0)
→ π0 ≥

φλT (0)

ΦλT (F )
,

which gives a necessary condition for π0 so (2.34) holds.

2.4.3 Illustrative Examples

Assume that the frame is de�ned as a 24-hour period, and users visit publisher's website ac-

cording to a Poisson process with mean λT = 20. Suppose that the advertiser wishes to reach

θ = 0.5 of users with a rolling frequency distribution of π = (0.01, 0.09, 0.2, 0.5, 0.2). That is,
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Table 2.2: Solution to the Rolling-horizon Example at Di�erent Levels of Discritization
λT = 20, π = (0.01, 0.09, 0.2, 0.5, 0.2)

n p x0 x1 x2 x3 xk≥4

200 .10 .4403 .2149 .3757 .0812 0
500 .04 .4461 .2193 .3753 .0805 0
1000 .02 .4480 .2208 .3751 .0802 0
5000 .004 .4496 .2219 .3750 .0800 0
∞ − .4500 .2222 .3750 .0800 0

among randomly selected 24-hour periods throughout the campaign's horizon, {1, 9, 20, 50, 20}%

of the time each user who is to be reached should be observed to have seen the ad {0, 1, 2, 3, 4, 5}

times, respectively. Using (2.28) and (2.30), we obtain the solutions presented in Table 2.2

for di�erent levels of discritization, n ∈ {200, 500, 1000, 5000,∞}. The example shows that

the error of approximating a discrete-time solution with the continuous time solution can be

quite small.

Figure 2.7 shows the performance of the solution obtained for n = 1000 which we sim-

ulated over a 10-day period (total duration of 10T ) for a single user. Figure 2.7(a) shows

the progression of user's state (rolling-horizon frequency count) throughout the campaign's

horizon. Figure 2.7(b) summarizes the empirical distribution of user frequency which is very

close to the advertiser's requested π distribution.

Figure 2.7(c) shows the cumulative count of impressions served to the user over time. It

is clear that the cumulative count is very close to the ideal target which grows uniformly over

time at the average frequency rate
∑

k kπk. This shows that the rolling-horizon model can

provide an ad delivery mechanism which naturally enforces uniform delivery of a campaign

over its horizon. Indeed, if n is large and the variance of the frequency distribution π is small,

we should expect the rolling horizon model to deliver ads at a rate close to the mean
∑

k kπk

as it reaches the steady state. However, if the variance of π is large, the ad delivery may not

be smooth over time.

For an alternative example, assume λT = 20 and n = 1000 and π = (0.4, 0.09, 0.02, 0.09, 0.4).
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(a) User's state progression over time (b) Empirical frequency distribution attained at the
end of campaign's horizon

(c) Cumulative count of impressions served over time

Figure 2.7: Simulation of the Rolling-horizon Markov Chain Model for a Single User
λT = 20, n = 1000, π = (.01, .09, .2, .5, .2), Campaign horizon = 10T .
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Such frequency distribution traps users in either state 0 or F = 4 for most of the horizon.

Therefore, it is natural to expect a non-smooth delivery over time. The solution x =

(0.0112, 0.0219, 0.6643, 0.8915) is such that a user in state k ≥ 2 is quickly pushed to F = 4

by high exposure rates upon any visit, whereas a user in state k ≤ 1 is pushed toward state

0 by using very low exposure rates. Figure 2.8 shows the result of simulating this solution

over a horizon of 40T . As expected the delivery is not smooth (Figure 2.8a), but note that

the above choice of π has e�ectively implemented the commonly used pulsing strategy in

advertising (see Naik et al. 1998).

Note that the variance (or standard deviation) of π provides a measure of the degree

to which the actual exposure rate, at any point in time, may di�er from the ideal average∑
k kπk. It is hard to mathematically quantify the smoothness of delivery, e.g., as a sum of

squared deviations between the sample path of the cumulative sum of impressions delivered

over time and the ideal path with constant slope
∑

k kπk. Measuring these deviations involves

evaluating a nonlinear integral of the sample path of the Markov chain. The reader may refer

to Puri (1966), McNeil (1970), and Pollett (2003) for examples of such derivations for basic

integrals of birth and death processes and their properties. We leave the adaptation of such

techniques for measuring non-smoothness of ad delivery to future research.

2.5 Conclusions

In this paper we introduced and studied two new variants of reach and frequency (R&F)

contracts for online advertising in which the advertiser speci�es the fraction of publisher's

user tra�c she wishes to reach (by at least 1 impression) and a frequency distribution

which speci�es what proportion of individuals should be exposed at what frequency. In our

�xed-horizon variant, we assumed that frequencies are either counted throughout the entire

campaign's horizon or the counts are reset after certain time units (e.g., at the start of every

calendar week). In our rolling-horizon variant, we assumed that frequencies are measured on
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(a) User's state progression over time (b) Empirical frequency distribution attained at the
end of campaign's horizon

(c) Cumulative count of impressions served over time

Figure 2.8: Simulation of the Rolling-horizon Markov Chain Model for a Single User
Alternative Example: λT = 20, n = 1000, π = (.4, .09, .02, .09, .4), Campaign horizon

= 40T .
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a rolling basis, e.g., over any randomly-selected 24-hour intervals throughout the campaign's

horizon.

For each of the two variants, we developed a Markov chain model, characterized the

feasibility criteria, and derived a state-dependent impression assignment rule for the publisher

to satisfy R&F contract when the feasibility criteria are met. In particular, we developed

a simpli�ed Markov chain for the �xed-horizon contract for which the publisher's decision

could be written in closed-form. This simpli�ed model also allowed us to extend our approach

to planning multiple ad campaigns or multiple user types with di�erent arrival processes.

Similarly, we developed a continuous-time Markov chain model for the rolling-horizon contract

which allowed for obtaining a closed-form solution. We showed that in both models, obtaining

the publisher's assignment rule can be done very e�ciently in linear time in the length of the

frequency distribution speci�ed by the advertiser.

Finally, we discussed that the �xed horizon contract may lead to poor spreading of

campaigns throughout their horizon whereas the rolling-horizon variant naturally attains

uniform spearing of a campaign if the variance of the frequency distribution is relatively

low.

We left several interesting directions to future research. For instance, in the �xed-horizon

model, we showed that when multiple campaigns are implemented in a priority order, the

feasibility of implementing R&F speci�cations of all campaigns may depend on the order in

which campaigns are considered. However we did not characterize this order or possibly a more

advanced Markov chain model which simultaneously plans multiple campaigns. Furthermore,

we showed that the uniform spreading of campaigns in the rolling-horizon model is related

to the variance of the frequency distribution speci�ed by the publisher. However, we did

not formalize this relationship. Finally, extensions of the rolling-horizon model to multiple

campaigns and user visit types could be of interest to future research.

Reach and frequency contracts are becoming of increasing value to online advertisers and
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we believe our modeling and solution approach can be quite useful in practice, and help toward

a deeper understanding of the serving reach and frequency contracts.
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CHAPTER 3:

Competitive Real-Time Policies for the Allo-

cation of Online Guaranteed Targeted Display

Advertising

3.1 Introduction

In this paper we turn our focus to the planning of online guaranteed targeted display advertis-

ing. A guaranteed contract typically reserves in advance a certain number of ad impressions

to be shown in certain slots on speci�c pages of the publisher's website over a certain time

period. A targeted campaign further requires the ad to be shown only to users of certain

demographic groups (e.g. age, gender, income level, location) and/or behavioral attributes

(e.g. shopping).The publisher is paid either based on impressions delivered (CPM), number

of clicks (CPC), or a conversion/purchase on advertiser's website (CPA). User arrivals, in

aggregate, follow certain patterns which enables the publisher to forecast the supply of

impressions and sell guaranteed advertising campaigns well in advance. Over short time

intervals, however, the arrival of each user type is a lot less predictable. Given the multi-

billion dollar revenue that large publishers such as Google and Facebook earn annually, a

few percent improvement in drawing the correct ad for each slot on the web page that each

user sees can improve publisher revenues by tens of millions of dollars, increase advertising

e�ciency and return on investment for advertisers, and enhance user experience.

We attempt to compare the performance of o�ine solution techniques against online
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policies for the allocation of guaranteed display advertising in online media. We test a variety

of scaling functions to �nd the best online policy. We show that a policy that assigns each

impression to the open campaign with highest scaled penalty cke−d̃k , in which d̃k denotes the

fraction of the campaign k served thus far, happens to have a worst-case competitive ratio

of 50% with a potential of improving to near 80% as the campaigns get close to being fully

served.

We consider two benchmark o�ine models: (1) a linear program that minimizes under-

delivery penalty, and (2) a stochastic program with chance constraints that maximizes the

(weighted) probability that campaigns are fully satis�ed. Stochastic programming formulation

of the online ad planning problem is also new to the literature and is developed in this paper

for the sake of having a non�deterministic yet o�ine planning model for benchmark. Our

results show that even with moderately noisy supply forecasts (MAPE of 25%), the online

policy can outperform an o�ine linear programming solution. Moreover, the simple online

policy can outperform solutions obtained using o�ine stochastic programming, even when the

supply realizations are drawn from the same distribution modeled in the stochastic program.

The rest of the paper is organized as follows: In �3.2, we provide a review of existing

literature, classi�ed into deterministic models (�3.2.1), stochastic models (�3.2.2), and online

matching algorithms (�3.2.3). Then we provide our numerical experiments in �3.3. Concluding

remarks appear in the �nal �3.4.

3.2 Review of Existing Literature

Modeling of the ad allocation problem as a transportation problem (i.e., bipartite graph),

with supply and demand nodes that respectively represent viewer types (user demographics)

and ad campaigns (contracts), has been a very common and useful modeling approach and

quite successful in practice. This representation was discussed in much detail in Chapter 1

(see �1.3.1). Each partition of user impressions (e.g. based on website, position of ad on the
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webpage, user demographics and behavioral attributes) is modeled as a supply node, indexed

by i ∈ I ≡ {1, . . . ,M}, and each ad campaign/contract is modeled as a demand node, indexed

by k ∈ K ≡ {1, . . . , N} on the right. The arcs (i, k) ∈ T represent the targeting criteria of the

campaigns, i.e., which impressions are eligible to be served with ads from which campaigns.

We use Γ(·) notation for node adjacency list on the graph. That is, Γ(k) = {i : (i, k) ∈ T }

denotes the set of all impressions i eligible for contract k, and Γ(i) = {j : (i, k) ∈ T } denotes

the set of all eligible contracts k that can be delivered to an impression of type i. Let si denote

the expected supply of impressions from each supply node (user partition) i over the planning

horizon, let dk denote the total number of impressions that are reserved by (guaranteed to)

campaign j across users of type Γ(k).

The publisher's problem is to �nd the optimal fraction of impressions i that should be

allocated to each contract k, denoted xik, so as to maximize/minimize a particular objective

function. Given the supply forecasts si, a large-scale math program is solved by the publisher

to determine the best allocation plan, x∗ik, over some time horizon in near future. This is

referred to as o�ine planning. A typical real-life graph can have millions of supply nodes and

hundreds of thousands of demand nodes. Therefore, even if the math program is formulated

as a linear program (LP), it often requires special algorithmic treatment to be solved within

time and memory limitations. During the serving horizon, as users make visits to publisher's

webpage, the optimal fractional solution x∗ik is treated as the probability that each campaign

k ∈ Γ(i) should be (randomly) drawn for a type-i user.

In the following two sections we review two o�ine planning approaches: one that uses

expected (deterministic) supply forecasts (�3.2.1), and one that employs (stochastic) distri-

butional forecasts (�3.2.2). Then, in �3.2.3, we turn to a separate line of research that employs

online matching heuristics and requires no supply forecast and no o�ine planning problem to

be solved.
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3.2.1 Deterministic O�ine Models

Deterministic mathematical models for allocation of impression-based campaigns were re-

viewed in Chapter 1 (see �1.2). For Cost-per-Click (CPC) advertising, the common objective

is to maximize the total click-through rate:
∑

(i,k)∈T ciksixik or the publisher's expected

revenue:
∑

(i,k)∈T rikciksixik, where cik denotes the probability that a viewer of type i

would click on ad k, and rik is the transaction revenue for publisher if a click occurs. For

Cost-per-Impression (CPM) guaranteed advertising, a typical objective function includes an

under-delivery penalty, as well as a representativeness (fairness) measure which captures how

uniformly the delivery of each campaign is spread across its eligible supply Γ(i). This prevents

the publisher from satisfying a campaign using only a small subset of targeted demographics.

Of these models, Bharadwaj et al. (2012) was thoroughly analyzed in Chapter 1 (see �1.3.1).

Without a representativeness metric, the math program takes the form of a linear program:

Minimize:
∑
k

ckuk (3.1a)

s.t.
∑
i∈Γ(k)

sixik + uk ≥ dk ∀k (3.1b)

∑
k∈Γ(i)

xik ≤ 1 ∀i (3.1c)

xik, uk ≥ 0 ∀i, k (3.1d)

Demand constraint (3.1b) requires the total number of impressions allocated to each contract

k to exceed its demand dk, or otherwise we have an under-delivery of uk impressions. Supply

constraint (3.1c) implies that we cannot allocate more than 100% of supply from each node

i. The objective function (3.1a) penalizes under-delivery where each contract has an under-

delivery penalty ck per impression. After a substitution uk = dk−
∑

i∈Γ(k) sixik and removing

the resulting constant
∑

k ckdk from the objective function, the above math program can be
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writtes as:

(LP) Maximize:
∑

(i,k)∈T

cksixik Duals: (3.2a)

s.t.
∑
i∈Γ(k)

sixik ≤ dk ∀k αk (3.2b)

∑
k∈Γ(i)

xik ≤ 1 ∀i βi (3.2c)

xik ≥ 0 ∀i, k (3.2d)

which is a (weighted) maximum �ow problem on a bipartite graph. The new constraint (3.2b)

corresponds to uk ≥ 0 in (3.1) and resembles a budget constraint, as opposed to a demand

constraint.

3.2.2 Stochastic O�ine Models

Cholette et al. (2012) studies the planing of non-guaranteed (auction-type) advertising under

probabilistic budget constraints. To the best of my knowledge, there is no paper that considers

the planning of guaranteed display ads (i.e., one that incorporates demand constraints and

aims for minimal under-delivery and/or maximal representativeness) with chance constraints

or recourse decisions. To serve as a benchmark, in this section we develop an o�ine model

which produces an impression allocation plan using probabilistic/distributional information

on the supply of di�erent demographics.

In the context of GTDA planning, the demand parameters dk are deterministic and given.

The realized supply vector si, however, is random and in deterministic formulations such as

(3.2) is replaced by its expected value (forecast). The fractional decision variables, x∗ik, ensure

that the supply constraint is never violated, because allocation of the supply of each user-type

i is determined as fractions of the to-be-realized supply, and (3.2s) ensures we do not allocate

more than 100%. However, the actual volume of impressions delivered to each campaign k,

i.e.,
∑

i∈Γ(k) sixik, does depend on the realization of si values.
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Assume each si is a random variable with mean µi and variance σ2
i , and let σii′ denote

the covariance between each pair of supply nodes i and i′. We consider the following chance-

constrained program:

Maximize:
∏
j

(ηk)ck ≡
∑
k

ck log ηk (3.3a)

s.t. P
( ∑
i∈Γ(k)

sixik ≥ dk
)
≥ ηk ∀j (3.3b)

∑
k∈Γ(i)

xik ≤ 1 ∀i (3.3c)

0 ≤ ηk ≤ 1 ∀j (3.3d)

xik ≥ 0 ∀(i, k) ∈ T (3.3e)

Demand constraints (3.3b) require each campaign k to be fully satis�ed with a probability

of at least ηk, which is also formulated as a decision variable. The objective is to maximize

the satis�ability probabilities ηk in a weighted scheme which resembles a maximum likelihood

metric1.

The volume of supply delivered to each campaign k will be a random variable ξ̄k =∑
i∈Γ(k) sixik with mean µ̄k =

∑
i∈Γ(k) xikµi and variance σ̄2

k =
∑

i,i′∈Γ(k) xikxi′kσii′ . Let

ξk = (ξ̄k − µ̄k)/σ̄k denote the corresponding standardized random variable with a mean of

zero and a standard deviation of 1. Let F−1
ξk (ηk) denote the inverse cumulative probability

function of ξk. Following a change of variable η̂k = − log ηk, derived in Appendix 3.A, we can

1After a number of numerical tests, we found that other reasonable, yet simple, objective functions
such as Maximizing

∑
k ckηk or Minimizing

∑
k ηk/ck result in poor convergence, when the corresponding

deterministic-equivalent math program is solved using IPOPT solver in AMPL. At the same time, these
alternatives performed no better than (3.3a) on most test instances.
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transform (3.3) into a convex deterministic-equivalent form:

(SP) Minimize:
∑
k

ckη̂k (3.4a)

s.t.
∑
i∈Γ(k)

µixik + F−1
ξk

(
1− e−η̂j

)
yk ≥ dk ∀k (3.4b)

y2
k =

∑
i,i′∈Γ(k)

σii′xikxi′k ∀k (3.4c)

∑
k∈Γ(i)

xik ≤ 1 ∀i (3.4d)

xik ≥ 0, yk ≥ 0, η̂k ≥ 0 ∀(i, k) ∈ T (3.4e)

which has a linear objective function, a set of non-linear constraints (3.4b), conic constraints

(3.4c), and linear constraints (3.4d)2. Without any algorithmic / large-scale treatment of

this formulation, we use the general interior-point solver IPOPT for AMPL to solve (3.4).

We assume ξk are standard normal random variables, i.e., F−1(·) is the inverse cumula-

tive distribution function of a standard normal random variable, which was accessible as

�gsl_cdf_ugaussian_Pinv(p)� through AMPL's GNU Scienti�c Library3.

3.2.3 Online Algorithms

In all modeling approaches presented in the previous sections, the publisher needs to: (1)

create a supply forecast for a certain horizon in future, (2) solve a large-scale optimization

problem prior to the serving period (o�ine phase), and (3) use the static optimal solution,

treated as ad serving probabilities, to assign ad impressions to contracts upon each arrival

throughout the serving horizon (online phase). This approach requires the publisher to solve

a large-scale optimization problem frequently throughout the day so the solution is adapted

to the most recent supply forecasts and the campaigns' progress status. Even by employing

specialized optimization algorithms, such as the SHALE by Bharadwaj et al. (2012), it can

2The reader may refer to Prékopa (2013) for standard techniques in translating stochastic programs with
chance constraints into equivalent deterministic form.

3Available for download at: http://ampl.com/resources/extended-function-library/
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take multiple hours to solve the o�ine math program, and the resulting policy is prone to

mistakes since the solution remains stationary until the next re-solving period.

There is a separate stream of research that eliminates both the need for supply forecasting

and the need for solving an o�ine planning problem. These approximate/myopic heuristics

use minimal (simplest) state information (such as campaigns' progress status) to select an

eligible ad upon each user visit. Mehta (2012) provides the most extensive review of this

literature. We provide a short excerpt below for quick reference. Buchbinder and Naor (2009)

also provides a very instructive chapter on how a primal-dual analysis can be used for designing

online algorithms in a variety of problem settings such as set covering, load balancing, routing,

ad auction revenue, etc.

Online algorithms are designed to deal with online input, which is unknown in advance

and revealed incrementally at the same time that the algorithm has to make decisions. I limit

the scope of this study to the case of adversarial input. That is, there is absolutely no prior

knowledge on the size (supply forecast) or type (graph connectivity) of the input. Therefore,

a bound on the performance of the online algorithm should consider the worst-case input.

Five classes of problems have been studies for the allocation of online advertising:

1. Online bipartite matching: There is a graph G(I,K, T ), of which one side, K

(campaign list), is known in advance, and the other side, I (user types) along with

connectivity T arrives online (one impression at a time). The goal is to maximize the

number of matchings.

Maximize

{∑
i,k

xik

∣∣∣∣ ∑
i

xik ≤ 1, ∀k,
∑
k

xik ≤ 1, ∀i, xik ∈ {0, 1}
}

This problem, along with the optimal online policy, has been proposed by Karp et al.

(1990). It is optimal to create a random permutation of the known vertices K before-

hand, and then match each arriving node i ∈ I with the �rst available node k ∈ Γ(i)

in the permutation. In the worst case, this policy performs within 1 − 1/e ' 0.63 of
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optimality (if we knew the entire graph beforehand). Interestingly, this approach (of

randomly sorting nodes only once beforehand) di�ers from a policy that matches each

vertex i ∈ I to one of the available k ∈ Γ(i) at random (i.e., a random number is drawn

upon each arrival). This latter has a competitive ratio of 0.5. A deterministic algorithm

that matches an arrival to any available campaign also has a competitive ratio of 0.5

(see Mehta 2012, p.287).

2. Online vertex-weighted bipartite matching: A generalization of online bipartite

matching in which each vertex (campaign) k ∈ K has a non-negative weight ck, and the

goal is to maximize the sum of weight of vertices in J that are matched.

Maximize

{∑
i,k

ckxik

∣∣∣∣ ∑
i

xik ≤ 1, ∀k,
∑
k

xik ≤ 1, ∀i, xik ∈ {0, 1}
}

The optimal online policy, due to Aggarwal et al. (2011), is to create for each (known)

vertex k ∈ K an adjusted weight ĉk = ck(1 − erk−1) prior to the serving time, where

rk ∼ U [0, 1] is a uniform random variable. Then we match each arrival i ∈ I to the

available k ∈ Γ(i) with maximum ĉk. The worst-case performance is 1 − 1/e ' 0.63 of

optimality.

3. Adwords problem: Each vertex (campaign) k ∈ K has a budget Bk, and edges

e ∈ (i, k) have bids bik (denoting how much advertiser k values a user type i). When we

match an arriving vertex i ∈ I to a neighbor k ∈ Γ(i), the budget Bk depletes by bik.

When a vertex (campaign) depletes its entire budget, then it becomes unavailable. The

goal is to maximize the total budget spent (revenue of the publisher). This is exactly

the problem setting for auction-based non-guaranteed ad planning.

Maximize

{∑
i,k

bikxik

∣∣∣∣ ∑
i

bikxik ≤ Bk, ∀k,
∑
k

xik ≤ 1, ∀i, xik ∈ {0, 1}
}

The best known online policy, which has a competitive ratio of 1− 1/e ' 0.63, is due to

Mehta et al. (2007). The idea is to match each arrival i ∈ I to the available k ∈ Γ(i) with
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maximum scaled bid b̂ik = bik
(

1−eB̃k−1

1−e−1

)
where B̃k is the fraction of the budget spent

so far. Note that b̂ik decreases from bik to 0 as the budget depletes (B̃k approaches 0).

Buchbinder et al. (2007) provide a clever proof of this bound using primal-dual analysis

and develop some extensions. These bounds, however, assume that the bid-to-budget

ratio tends to zero.

4. Display Advertising: Each vertex (campaign) k ∈ K has an integral capacity dk

(demand), which is an upper bound on how many vertices (impressions) i ∈ I can

be matched to k. Each edges (i, k) ∈ T has a weight cik (the quality of user i for

advertiser k) . The goal is to maximize the total weight of edges matched (total quality

of serving).

Maximize

{∑
i,k

cikxik

∣∣∣∣ ∑
i

xik ≤ dk, ∀k,
∑
k

xik ≤ 1, ∀i, xik ∈ {0, 1}
}

Note that when cik = ck for all k, i.e., the weights do not depend on i, the problem

becomes an instance of the Adwords problem (to see this, multiply both sides of each

demand constraint by ck, and de�ned budget as Bk = ckdk). However, for the general

case of cik weights, it is not possible to derive any non-trivial competitive ratio: If the

input is adversarial, the adversary can sort arrivals so that we observe smallest cik until

budgets are depleted, and then we observe arrivals with in�nitely large cik. A side-step

(which makes the setting less applicable to the practice of online advertising) has been

to assume a free disposal property: a vertex (campaign) k ∈ K is allowed to be matched

more times than its capacity dk, but the gain is evaluated based on the dk highest weight

edges matched. With this assumption, Feldman et al. (2009) design an online algorithm

which uses bid-scaling and achieves a competitive ratio of 1 − 1/e ' 0.63 as capacities

dk →∞.

5. Generalized Assignment Problem (GAP): This is a generalization of all the prob-

lems above. Each vertex (campaign) k ∈ K has a budget, each matching (i, k) ∈ T
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involves a bid bik that depletes the budget Bk, and it provides a certain matching

quality cik which is being maximized:

Maximize

{∑
i,k

cikxik

∣∣∣∣ ∑
i

bikxik ≤ Bk, ∀k,
∑
k

xik ≤ 1, ∀i, xik ∈ {0, 1}
}

The approximability of this problem has been studied by Chakrabarty and Goel (2010),

and is beyond the scope of this paper.

3.3 Numerical Experiments

The worst-case performance of online algorithms usually arises in graphs with few nodes,

limited connectivity, and more importantly, small budget or capacity (which translates each

�mistake� into a sizable loss of optimality). In real-life instances of graphs that arise in online

advertising, especially in the planning of guaranteed display ads, the si and dk values are very

large (hundreds of thousands or millions). Therefore, the combinatorial di�culty of the online

allocation is not extreme. Therefore, such simple algorithms can performs quite acceptably.

The question we follow in the rest of this paper is whether (and when) online algorithms can

outperform o�ine linear or stochastic programming models, presented in �3.2.1 and �3.2.2.

We start by examining a few bid-scaling functions for the online heuristic in �3.3.1. It

happens that a particular functional choice, not examined in the literature before, outperforms

others on our randomly constructed instances. We derive a competitive ratio for the perfor-

mance of this scaling function. Then, in �3.3.2 we test how much forecast noise is enough to

make the o�ine (LP) from �3.2.1 worse than the simple online heuristic. Finally, in �3.3.3 we

compare the performance of our o�ine stochastic program (SP) from �3.2.2 against the (LP)

and the online algorithms when the supply is drawn from a known (joint) distribution.

In all our numerical tests that follow, we synthetically generate instances of the bipartite

graph under the following considerations to ensure that the graph structure and parameters
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are reasonable:

Graph Structure: All graphs contain 50 supply nodes and 20 demand nodes. Each campaign

is connected to a certain number of supply nodes, chosen uniformly at random. At random,

about 20% of demand nodes are high-targeting (connected to ∼ 50% of supply nodes at

random), 30% are moderately targeting (connected to ∼ 15% of supply nodes), and the other

50% are low-targeting (connected to ∼ 5% of supply nodes).

Supply Mean and Covariance: The mean value of each supply node, µi, is drawn randomly

from an exponential distribution with mean parameter 1000. Then, each supply node is

assigned a coe�cient of variation, Ci, drawn uniformly from the interval [0.2, 1.0]. The

standard deviations are then given by σi = Ciµi. The coe�cient of correlation between each

pair of supply ρii′ is taken from the interval [−0.5, 1] proportional to the cardinality of the set

Γ(i)∩Γ(i′), i.e., the number of campaigns that target both i and i′. Sharing too many (resp.,

too few) campaigns suggests that the two supply nodes share many (resp., very few) common

attributes and therefore their supply should be positively (resp., negatively) correlated. The

covariance matrix is then given by σii′ = ρii′σiσi′ . To induce positive-de�niteness, an existing

Matlab code4 was run to �nd the nearest positive semi-de�nite matrix to the one produced

with the above approach.

Demand Parameters: The demand for each campaign was assigned by applying a similar

algorithm to the high water mark (HWM) method, proposed by Bharadwaj et al. (2012). A

value of θk ∈ [0.1, 0.5] was assigned to each demand node uniformly at random. Then, in a

random order, each campaign was assigned a θk proportion (or whatever leftover, if less than

θk) from all supply nodes i ∈ Γ(k). The �nal allocation was then scaled so that the network

sellthrough (de�ned as ratio between aggregate demand to aggregate supply:
∑

k dk
/∑

i si)

was set close to 100%. My observation was tat a low sellthrough makes the problem too easy

for the online algorithm (so all o�ine and online algorithms perform optimality). Also, with

4nearestSPD(.) by John D'Errico, which follows the derivation of Higham (1988).
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a sellthroughs much higher than 100% a signi�cant under-delivery is unavoidable, and again

all o�ine and online algorithms perform similarly. A sellthrough near 100% seemed to bring

out the most contrast among the performances of di�erent algorithms.

Penalty Weights: The under-delivery weights ck were assigned randomly from integer

between 1�4.

3.3.1 Choice of Scaling Function for Online Algorithm

We consider the following problem for our online algorithm, involving only under-delivery

penalty:

(OP) Maximize:
∑
i,j

ckxik Duals: (3.5a)

s.t.
∑
i

xik ≤ dk ∀k αk (3.5b)

∑
k∈Γ(i)

xik ≤ 1 ∀i βi (3.5c)

xik ∈ {0, 1} ∀(i, k) (3.5d)

Note that (OP) is quite similar to the (LP) formulation (3.2) except we do not use any supply

forecast si. Instead, each supply node i represents a single impression. Note that we cannot

solve (OP) and obtain an o�ine solution beforehand since we do not have any information

about the arrivals or the connectivity in the graph prior to actually observing them. We use

(OP) only to derive an online policy (using duality theory) and to test the performance of

the online heuristic after all supply is realized (ex-post optimal solution). The dual problem

to the LP-relaxation of (OP) is given by:

(OD) Minimize:
∑
k

dkαk +
∑
i

βi Duals: (3.6a)

s.t. αk + βi ≥ ck ∀(i, k) xik (3.6b)

αk ≥ 0, βi ≥ 0 (3.6c)
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The following observations can be made:

1. Constraints (3.6b) can be rearranged as: βi ≥ ck−αk, ∀k ∈ Γ(i). Since βi are minimized

in the objective, we should have: β∗i = maxk∈Γ(i){ck − α∗k}, i.e., if we knew the optimal

α∗k, the optimal β∗i could be found as such.

2. Complementary slackness condition for (3.6b) implies that x∗ik = 0 for any (i, k) for

which is (3.6b) is non-binding. That is, only k∗ = arg maxk∈Γ(i){ck −αk}, which makes

(3.6b) bind, allows xik∗ = 1. Therefore, the i'th page visit should be served to k∗ derived

above.

3. Complementary slackness condition for (3.5b) implies αk0 = 0 for any campaign k0:∑
i xik0 < dk0 (non-binding).

4. The non-negativity constraint βi ≥ 0 together with (3.6b) implies that αk ∈ [0, ck].

5. After t arrivals, if some campaign is fully satis�ed,
∑

i≤t xik0 = dk0 , then we should no

longer serve to k0. That is, we should set: αk0 = ck0 .

In summary, upon each arrival, we should serve the user i using the campaign with maximum

ck − αk. The value of αk should start from zero and reach ck as soon as the campaign k is

fully satis�ed.

Let d̃k ∈ [0, 1] denote the fraction of the campaign demand dk which is served so far. Let

αk = ckφ(d̃k) where φ(·) is a monotonic/increasing function over [0, 1]→ [0, 1]. The following

six functional forms all have the correct property of leading αk from zero to ck as d̃k goes

from zero to one:

(0) Greedy: φ0(d̃k) = bd̃kc,

(1) φ1(d̃k) = d̃k,

(2) φ2(d̃k) = 1− e−d̃k ,

(3) φ3(d̃k) = 1−e−d̃k

1−e−1 ,
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Figure 3.1: Scaling Functions φ(d̃k) Tested for the Online Algorithm

Figure 3.2: Performance of Di�erence Scaling Functions φ(d̃k).

(4) φ4(d̃k) = ed̃k−1
e−1 ,

(5) φ5(d̃k) = ed̃k−1.

The above functions are plotted on Figure 3.1. Note that the choice of φ4(d̃k) results in

the policy that was studied by Mehta et al. (2007) with a competitive ratio of 1− 1/e.

We tested the performance of the online algorithm, using each of the above scaling

functions over 200 randomly-generated graphs. Figure 3.2 shows the histogram of results

for each scaling function. The horizontal axis shows the optimal value in relation to the ex-

post optimal (where 1 means the online algorithm attained the ex-post optimal value). The

vertical axis shows the frequency of instances that resulted in a speci�c performance.

The results suggest that the functional choice φ2(d̃k) = 1−e−d̃k provides the best solution

most often, followed by the greedy choice of φ0(d̃k) = bd̃kc. Note that φ0(·) results in a policy

that simply gives each impression i to the open campaign k ∈ Γ(i) with the highest penalty
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ck. It is shown that the greedy serving policy has a competitive ratio of 0.5 (Mehta 2012,

p.323). We use a similar technique to obtain the competitive ratio of φ2(·) which assigns the

impression to the open campaign with highest scaled penalty cke−d̃k .

The idea of the proof is showing that, regardless of the arrival stream, the primal objective

value (3.5a) produce by the online policy is greater than a ρ-fraction of the dual objective

value (3.6a). Then, we have:

(OP )ALG ≥ ρ(OD)ALG ≥ ρ(OD)∗ ≥ ρ(OP )∗LP ≥ ρ(OP )∗BIN ⇒ (OP )∗ALG
(OP )∗BIN

≥ ρ (3.7)

The �rst inequality is derived by observing and tracking the increments in each of the two objective

as a result of online policy, and is speci�c to the problem and the online allocation rule. The second

inequality follows from the fact that the algorithm produces only a feasible (i.e., sub-optimal) solution

to (OD), which is a minimization problem. Therefore, (OD)∗ ≤ (OD)ALG. The third inequality results

from weak duality. For any maximization program (OP), the optimal value of the (minimization) dual

program gives a upper-bound on the optimal value of the primal math program. The last inequality

follows from the fact that an LP-relaxation of (OP) can produce a higher objective value than (OP)

when the variables are restricted to {0, 1} values. These comparisons show that ρ is a guaranteed

performance ratio for any instance of the problem.

Theorem 8. The scaled online algorithm that uses φ2 has a competitive ratio between 1/2

and 1/(2− 1/e) under large demand assumption dk →∞.

Proof. It is clear that, by construction, primal and dual feasibility are never violated by

the online algorithm. Suppose a d̃k fraction of campaign k (i.e., d̃kdk impressions) has been

delivered by the end of the arrival process. The primal objective in (P) must have increased by

exactly ∆k(OP ) = d̃kdkck and the dual objective in (OD) must have changed by: ∆k(OD) =

dkαk +
∑d̃kdk

i=1 βi.
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(1) If d̃k < 1:

∆k(OD) = dkck(1− e−d̃k) +

d̃kdk∑
t=1

cke
−t/dk ' dkck(1− e−d̃k) +

∫ d̃k

t=0

cke
−tdt = 2dkck(1− e−d̃k)

⇒ ∆k(P )ALG
∆k(D)ALG

=
d̃k

2(1− e−d̃k)


limd̃k→0 : 0.5

limd̃k→1 : 1
2(1−e−1) ' 0.7909

Note that we used the large demand assumption to convert the summation into an integral.

(2) If d̃k = 1, then we manually set αk = ck so the campaign is no longer selected:

∆k(D) = dkck +

dk∑
t=1

cke
−k/dk ' dkck +

∫ 1

t=0

cke
−tdt = dkck + dkck(1− e−1) = dkck(2− e−1)

⇒ ∆k(P )ALG
∆k(D)ALG

=
1

2− 1/e
' 0.6127

Using (3.7), the above suggest that the worst-case bound of the online policy that uses φ2(·)

is at 0.5 and no better than the greedy policy. However, as more campaigns get closer to

being fully satis�ed, the bound improves to near 80% which is better than the best-known

bound of 1− 1/e ' 0.63.

As we found, numerically, that the choice of φ2(d̃k) and online policy: k∗ = arg maxk∈Γ(i){cke−d̃k}

outperforms others, we will use this scaling function throughout the rest of this paper.

3.3.2 Competency of O�ine Models with Noisy Forecast

On a particular instance of the graph, we solve the (LP) problem from �3.2.1 using the supply

forecast si which is based on the mean supply expected in each node. We then compare the

performance of the resulting o�ine static solution x∗ik against that of the online algorithm

when the actual number of impressions s(a)
i in each node is drawn randomly, from a log-normal

distribution5 with mean si. We vary the coe�cient of variation of the log-normal distribution

5Appendix 3.B describes how standard normal random numbers can be transformed into log-normal with
desired mean and standard deviation / covariance matrix.
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Figure 3.3: Performance of Online Policy against the (LP) under Noisy Forecast.

to change the (theoretical) degree of forecast noise. For each instance, the empirical degree

of forecast noise is measured using Mean Absolute Percent Deviation (MAPD) measure:

MAPD =
1

M

M∑
i=1

|si − s(a)
i |

si

Figure 3.3 shows that for any MAPD greater than 25% (i.e., when the forecast in every supply

node is beyond 25% o� from the actual arrivals), the online algorithm outperforms the o�ine

(LP) solution. Note that the online algorithm does not require or use any forecast, and its

performance remains at 97% of optimality, regardless of the degree of forecast noise. This

shows the importance and power of online heuristics.

3.3.3 Online Algorithm vs. O�ine Stochastic Solution

Finally, we compare the performance of our online algorithm against the stochastic program

(SP) introduced in �3.2.2. For this test, we created graphs with low (0.77) and high (1.52)

sellthrough levels. For each graph, we sampled 150 instances of the supply vector s(a)
i . The

mean was set to the value used in (LP) and (SP), and the covariance matrix was the same

as the one used in the (SP) model. Figure 3.4 shows the performance of di�erent methods

with regards to under-delivery penalty. The ex-post optimal solution was obtained by solving
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(a) Low Sellthrough (0.77)

(b) High Sellthrough (1.52)

Figure 3.4: Underdelivery Penalty Performance the Online Policy vs. (LP) and (SP).

(LP) on the actual arrivals s(a)
i . We observe that the online algorithm outperforms both

o�ine solution, regardless of the sellthrough level. On the low-sellthrough (easy) instance,

the (SP) solution outperforms the (LP) solution as it uses the supply more conservatively,

with a proper anticipation of randomness in the arrivals. On the high-sellthough (di�cult)

instance, however, the (LP) solution performs better than (SP). This can be attributed the

objective function of (SP) which aims for maximizing the probability that campaign are fully

satis�ed. When the supply is extremely short, the probability that any campaign is fully

satis�ed could tend to zero. In this case, the (SP) solution no longer recognizes / properly

di�erentiates the campaigns based on under-delivery penalty. Therefore, (SP) solution tends

to perform poorly.

To be more fair to the (SP) solution, we also measured the performance of the three

algorithms on another dimension: The fraction of campaigns fully satis�ed at the end of

the horizon. Figure 3.5 shows these results. In all cases, we can see that the performance
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(a) Low Sellthrough (0.77)

(b) High Sellthrough (1.52)

Figure 3.5: Fraction of Fully-satis�ed Campaigns under the Online Policy vs. (LP) and (SP).

histogram is more inclined to the right under the (SP) solution. That is, the (SP) solution

performs best in terms of ensuring that the highest number of campaigns are fully satis�ed

by the end of the horizon. This is more in line the objective function (3.4a) used in (SP).

3.4 Concluding Remarks

This paper was an attempt in comparing the performance of o�ine solution techniques against

simple online policies for the allocation of guaranteed display advertising in online media. In

particular, we considered two o�ine models: (1) a linear programming formulation that

minimized under-delivery penalty, and (2) an o�ine stochastic programming formulation

with chance constraints that maximized the (weighted) probability that campaigns are fully

satis�ed. Then we tested a variety of scaling functions to �nd the best online policy. We

showed that a policy which assigns each impression to an un�nished campaign with highest

scaled penalty cke−d̃k (in which d̃k denotes the fraction of the campaign which has been served
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thus far) can potentially have a competitive ratio of 1/2(1− 1/e) ' 0.79 which is better then

the best known algorithm with competitive ratio 1− 1/e ' 0.63. Our results further showed

that even with moderately noisy supply forecasts (MAPE of 25%), the online policy can

outperform an o�ine (LP) solution. Moreover, that the simple online policy can outperform

solutions obtained using o�ine stochastic programming, even when the supply realizations

match their distributional forecast.
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Appendices

3.A Maximizing the Probability that a Chance Constraint Holds

Consider the (univariate) random variable ξ with cumulative distribution F (x) = P (ξ ≤ x).

Now consider the probabilistic constraint:

P (ξ ≤ x) ≥ p ≡ F (x) ≥ p (3.8)

If only x is a decision variable, then for any �xed parameter p ∈ [0, 1], the constraint (3.8)

is equivalent to x ≥ F−1(p) which de�nes a convex feasible set for x. Similarly, if only p

is a decision variable, then for any x the constraint (3.8) simply enforces an upper-bound

p ≤ F (x). Now consider the problem in which both x and p are decision variables. The

shaded area on Figure 3.6(a) shows the set of feasible (x, p) pairs that are feasible in (3.8)

when ξ is a standard normal random variable. Note that this area in not convex. Therefore,

the following optimization program is not convex:

Maximize p

s.t. F (x) ≥ p ≡ x ≥ F−1(p)

x ∈ X , p ∈ [0, 1]

For the case of normally-distributed ξ, note that the area in Figure 3.6(a) is convex if we

further require p ≥ 0.5 (see also Prékopa 2003, p.284). But in our particular application,

this might be too restrictive and under short supply could render the problem infeasible. We

show that when F (·) is log-concave, we can transform the constraint into a convex form for

all p ∈ [0, 1] following a simple change of variable.

If the CDF F (·) is log-concave, then logF (x) is a concave function of x. Therefore,
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(a) F (x) ≥ p (b) logF (x) ≥ p̂ = log p

Figure 3.6: Convexity of the probabilistic constraint when satis�ability probability is also a
decision variable

logF (x) ≥ p̂, i.e., super-level set of a concave function, de�nes a jointly convex feasible set over

(x, p), as shown in Figure 3.6(b). Note that the monotonicity of the log(·) function implies

that constraint (3.8) is equivalent to logF (x) ≥ log p, and maximizing p is equivalent to

maximizing log p. A change of variable p̂ = − log p, therefore, produces the convex-equivalent

program:

Minimize p̂

s.t. logF (x) ≥ −p̂ ≡ F (x) ≥ e−p̂ ≡ x ≥ F−1(e−p̂)

x ∈ X , p̂ ≥ 0

More rigorously, we can show the convex transformation as follows:

Maximize

n∏
i=1

P (ξi ≤ xi), s.t. x ∈ X

≡ Maximize

n∏
i=1

Fi(xi), s.t. x ∈ X

≡ Maximize

n∑
i=1

logFi(xi), s.t. x ∈ X : due to monotonicity of log(·)
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If all Fi(·) are log-concave, then the objective function is concave (convex problem). Writing

in epigraph form, and observing that F (·) ∈ [0, 1]⇒ logF (·) ≤ 0:

≡ Maximize

n∑
i=1

p̂i, s.t. p̂i ≤ logFi(xi) ∀i, x ∈ X , p̂i ≤ 0 ∀i

Switching variables: p̂i ← −p̂i:

≡ Minimize

n∑
i=1

p̂i, s.t. − p̂i ≤ logFi(xi) ∀i, x ∈ X , p̂i ≥ 0 ∀i

≡ Minimize

n∑
i=1

p̂i, s.t. Fi(xi) ≥ e−p̂i ∀i, x ∈ X , p̂i ≥ 0 ∀i

which implies pi := P (ξi ≤ xi) = Fi(xi) is lower-bounded by e−p̂i , i.e., p̂i = − log pi.

≡ Minimize

n∑
i=1

p̂i, s.t. xi ≥ F−1
i (e−p̂i) ∀i, x ∈ X , p̂i ≥ 0 ∀i

For numerical stability, it is useful to require lower- and upper-bounds on p̂i variables, such

as:

− log(1− ε) ≤ p̂i ≤ − log(ε)

which implies p ∈ [ε, 1 − ε]. Otherwise, note that as if the X allows p̂i to approach 0

(corresponding to pi → 1), or if the solver initializes the algorithm as so, then the quantile

F−1(e−p̂i)→ F−1(1)→∞, if the support for ξ is not compact (e.g., with normal distribution).

Similarly, if X is too restrictive and a constraint i can be satis�ed with pi → 0 probability,

then p̂ → ∞ which makes the objective value unbounded (or the problem poorly scaled).

As an example, ε = 10−6 would imply p̂ ∈ [10−6, 13.82] which keeps the search-space very

compact, yet allows p ∈ [.000001, .999999] ' [0, 1].

3.B Log-Normal Random Variables

In this section we summarize a few properties of the log-normal random variable which have

been useful in the implementation of our numerical analysis. The log-normal PDF is not log-

concave, but its CDF, which is of interest to convexity property of our optimization problem,
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is log-concave (see Bagnoli and Bergstrom 2005).

Univariate distribution:

If X ∼ logN (µ, σ), then the random variable Y = logX will be normally distributed with

mean µ and standard deviation σ.

If Y ∼ N (µ, σ), then X = eY will have a log-normal distribution with:

Mean: m = eµ+σ2/2

Variance: s2 = (eσ
2 − 1)m2

The above imply that to generate random instances of Y with a particular mean and stan-

dard deviation (m, s), we can generate normally-distributed random numbers Y with (µ, σ)

determined as follows:

σ2 = log
( s2

m2
+ 1
)
, µ = log(m)− σ2

2

The exponentials of Y ∼ N (µ, σ) will have the desired log-normal distribution.

Multivariate (correlated) distribution:

If Y = (Y1, . . . , Yn) ∼ N (µ,Σ) is a multivariate normal distribution, then X = (eY1 , . . . , eYn)

has a multivariate log-normal distribution with:

Mean: mi = E[Xi] = eµi+σii/2

Covariance: Sij = Cov[Xi, Xj ] = (eσij − 1)mimj

Therefore, to generate random instances of a multivariate log-normal distribution with a

particular mean and covariance (m,S), we can generate multivariate normal random variables

with parameters (µ,Σ) determined as follows:

σij = log
( Sij
mimj

+ 1
)
, µi = log(mi)−

σii
2

or in matrix form:

Σ = log
( S

mm>
+ 1
)
, µ = log(m)− diag(Σ)/2
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where all operations are conducted element-wise. Taking the element-wise exponentials of

Y ∼ N (µ,Σ) will produce the desired correlated log-normal vectors.

This is particularly useful to our simulation study, since MATLAB does not have a direct

function for generating correlated multivariate log-normal random numbers. Note that it

is not clear whether the Σ calculated from the above is positive (semi)de�nite, which is a

property of multivariate normal distribution. It is straightforward to show that the matrix

inside the log(·) is positive semi-de�nite when S is as such. However, I could not �nd/prove

that element-wise logarithm preserves positive de�niteness. That said, I never encountered

any issue with positive-de�niteness of Σ in my test cases.
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