
UC Davis
IDAV Publications

Title
kANN on the GPU with Shifted Sorting

Permalink
https://escholarship.org/uc/item/7h61t57k

Authors
Li, Shengren
Simons, Lance C.
Pakaravoor, Jagaseesh Bhaskar
et al.

Publication Date
2012

DOI
10.2312/EGGH/HPG12/039-047

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7h61t57k
https://escholarship.org/uc/item/7h61t57k#author
https://escholarship.org
http://www.cdlib.org/

High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

kANN on the GPU with Shifted Sorting

Shengren Li Lance Simons Jagadeesh Bhaskar Pakaravoor Fatemeh Abbasinejad John D. Owens Nina Amenta

University of California at Davis

Abstract
We describe the implementation of a simple method for finding k approximate nearest neighbors (ANNs) on the
GPU. While the performance of most ANN algorithms depends heavily on the distributions of the data and query
points, our approach has a very regular data access pattern. It performs as well as state of the art methods on
easy distributions with small values of k, and much more quickly on more difficult problem instances. Irrespective
of the distribution and also roughly of the size of the set of input data points, we can find 50 ANNs for 1M queries
at a rate of about 1200 queries/ms.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Sorting and searching

1. Introduction

Nearest neighbor finding is an important step in many al-
gorithms. High-dimensional nearest neighbors are used in
many machine learning algorithms. Low-dimensional near-
est neighbors are important in point-set processing in com-
puter graphics and geometrical modeling. Two typical exam-
ples are estimating normals for a point-cloud prior to point-
based rendering, and collecting the radiance of photons near
a visible point in photon mapping.

Sequentially, low-dimensional nearest neighbor problems
are usually solved by building a data structure, usually a k-d
tree, on the data points and then using it to find the near-
est neighbors for each query point. This is also a common
approach on the GPU, where the k-d tree may be built ei-
ther sequentially or in parallel, and then multiple queries
are processed in parallel. Our algorithm instead builds on
recent efficient 64-bit sorting on the GPU [MG11] and the
shifted sorting of Liao, Lopez, and Leutenegger [LLL01].
The behavior of this algorithm is very regular with respect
to the data distribution, unlike more traditional tree-search
algorithms, so that it remains fast even on difficult instances
where a k-d tree algorithm does poorly.

This paper has been downloaded from http://idav.ucdavis.edu/.
The definitive version is available at http://diglib.eg.org/.

1.1. Problem definition

In the nearest neighbors problem, we are given a set P of data
points, and another set Q of queries; for each q∈Q, we want
to report its k nearest points in P, where k is a parameter that
depends on the application.

There is no good upper bound on the time required
to answer a nearest neighbors query; bad queries might
have many almost equally close neighbors that need to be
checked. So generally some approximation is allowed in the
result, in the sense that the kth nearest neighbor may be at
distance (1 + ε) times the distance to the true kth nearest
neighbor. The greater the approximation factor ε, the faster
the search can be, but often in practice allowing a large ε

gives a good speed-up while producing results with much
smaller approximation factors. Alternatively, many imple-
mentations find exact nearest neighbors, and this often works
well in practice since bad query cases, which would be very
slow, are rare.

1.2. Our algorithm

Our GPU algorithm builds on the simple and elegant sequen-
tial algorithm of Liao, Lopez, and Leutenegger [LLL01],
which we call shifted sorting. Shifted sorting in turn is based
on a remarkable lemma of Chan (Lemma 3.3 in [Cha97]). In
3D, their data structure consists of five sorted lists of the
data points, in Hilbert code order; the lists differ from each
other because the data points are shifted with respect to the

c© The Eurographics Association 2012.

http://idav.ucdavis.edu/
http://diglib.eg.org/

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

coordinate system by a different amount before computing
the Morton codes for each list. The sequential algorithm for
performing queries is simply to locate a query point in each
list by binary search, and then to consider the k preceding
and k succeeding points; from these 10k points, the k near-
est to the query point are returned. Chan’s Lemma is used
to prove that five specific shifts lead to an algorithm with a
provable approximation factor of ε = 29. While this is ab-
surdly high, and increases with the dimension, Liao, Lopez,
and Leutenegger [LLL01] observed quite good approxima-
tion results in high dimensions. We report similarly positive
results on many distributions in R3, including some arising
in a photon mapping application.

This algorithm is appealing for the GPU since sorting
has been studied extensively in recent years. We use the
recent high-performance 64-bit radix sort implementation
of Merrill and Grimshaw [MG11]. We eliminate the binary
searches by simply sorting the query points along with the
data points. Since sort is so efficient, the majority of the com-
putation time is thus taken by the selection of the lists of k
nearest neighbors for each query. For small k this is easy, but
in graphics applications often values of k = 50 or k = 100 are
required, so that, for example, if we make 1 million queries
on a data set of size 2 million with k = 100, the total size
of the lists of nearest neighbors dwarfs the size of the input,
and this becomes the major performance challenge.

1.3. Contributions

The main contributions we make are:

• The observation that the shifted sorting algorithm pro-
vides a more GPU-friendly basis for ANN searching than
the more well-known k-d tree algorithm,
• The idea of sorting the data and queries together to elimi-

nate searching,
• An efficient GPU algorithm for selecting the best k nearest

neighbors from the 10k candidate points,
• A demonstration that this method performs better than a

state-of-the-art k-d tree based GPU code, especially on
difficult distributions of data and queries, and
• An experimental evaluation of the effective approxima-

tion error.

2. Related work

FLANN [ML09b, ML11b] is a recent nearest neighbor li-
brary, including both CPU and GPU implementations. The
GPU code is designed for dimension three, and implements
the standard k-d tree algorithm, using a priority queue for
each query’s search. In difficult cases the size of the prior-
ity queues can grow quite large. We show comparisons to
FLANN in Section 4.

The k-d tree approach was adapted to the GPU by Zhou
et al. [ZHWG08] so as to avoid the priority queues, by pre-
computing, for each k-d tree cell, the maximum distance to

the kth nearest neighbor, which allowed them to do a stack-
less traversal. Qiu et al. [QMN09] also compute a single
(possibly not nearest) neighbor for 3D registration applica-
tions by precomputing a k-d tree on the CPU and searching
it on the GPU.

More recently, Leite et al. [LTF∗12] compute k nearest
neighbors on the GPU with a 3D voxel grid data structure
using the brute force algorithm. This is very effective when
the query and data distributions are both uniform, either in
space or on the surface of an object, but it degrades rapidly
on difficult inputs.

Higher-dimensional k nearest neighbors is an impor-
tant problem in machine learning, computer vision, and
databases [BDHK06, GDB08, KZ09]. High-dimensional
GPU implementations have focused on the brute-force algo-
rithm; an exception is Pan et al. [PLM10], who use locality-
sensitive hashing. Some techniques use a heap structure in
order to maintain the k nearest neighbors [KH12, BGTP10]
for each query.

Octree search is the basis of the theoretically optimal CPU
algorithm for approximate k nearest neighbors [AMN∗98]
in fixed dimension, with any choice of ε. The algorithm
of Liao, Lopez and Luetenegger [LLL01], on which our
method is based, is related to octree search in that Morton
codes can be seen as labeling the octree cells containing the
points. Octrees have been constructed on the GPU and used
for Poisson surface reconstruction [ZGHG11]. The BVH
structure of Lauterbach et al. [LGS∗09] is closely related to
the construction of an octree by sorting Morton codes.

Photon mapping on the GPU is an area of great recent in-
terest, beginning with Purcell et al. [PDC∗03] and Ma and
McCool [MM02], both of which used forms of spatial hash-
ing, as did a recent speed-up [HJ10] of the progressive pho-
ton mapping algorithm of Hachisuka and Jensen [HJ09].
Spatial hashing is a more space-efficient version of the
voxel-grid approach, in which only occupied voxels are
hashed into a data structure, and again it does not do well
on difficult ANN examples. We use a modified version of a
progressive photon mapping demo using the NVIDIA Optix
Ray-tracing Engine [NVI12] as a platform to test our kANN
algorithm.

More recent global illumination solutions seek to re-
duce or eliminate k nearest neighbor searches. Wang et
al. [WWZ∗09] carefully cluster and average photons to form
a greatly reduced set of irradiance samples. Somewhat sim-
ilarly, McGuire and Luebke [ML09a] improve performance
by scattering irradiance from photons to nearby pixels rather
than gathering it via k nearest neighbors, and Fabianowski
and Dingliana [FD09] calculate a footprint describing the
influence of each photon on its neighbors.

c© The Eurographics Association 2012.

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

21
3 43

1 2
4

Figure 1: We use Morton codes to impose an ordering based
a recursive traversal of octree cells. The most significant bits
of the Morton code are the number of its largest containing
top-level cell (the gray numbers), followed by the number
of its cell at the next level (numbered according to the same
scheme), and so on. Sorting the cells by Morton code orders
them along the pink space-filling curve (left). When the in-
put data is shifted, they appear along the curve in a different
order (right).

3. Algorithm

In this section we explain two main things. The first is how
the shifted sorting algorithm works, and why it is so suit-
able for the GPU; and the second is how the bookkeeping
required to collect the k approximate nearest neighbors can
be done efficiently. Algorithm 1 shows the pseudo-code for
our overall algorithm.

3.1. Data scaling and Morton code computation

Our algorithm is based on sorting together the data and query
points, as represented by their Morton codes. Morton-code
sorting orders the points along the space-filling Z-curve.
Liao et al. [LLL01] ordered points along the Hilbert curve
instead; the analysis of the algorithm is the same in either
case. In practice, we found that the Hilbert curve would im-
prove our approximation quality by a small factor (no more
than 3%), but at the cost of significantly more computation.

There is an implied octree decomposition associated with
the Morton code order: points whose Morton codes share a
prefix of length d× i share an octree cell at level i (where
level 0 has the largest cells). Points that are near each other
in space are not necessarily near each other along the space-
filling curve (see Figure 1, left); this happens when a point
lies near the boundary of its octree cell and a neighbor lies
outside the cell. But if the points are shifted with respect to
the curve, the ordering induced by the curve changes, so that
nearby points in space that were far apart in the old ordering
might be close together in the new one (Figure 1, right); that
is, points that formerly lay in different octree cells might now
be together.

Our implementation of shifted sorting begins by sorting
the data and query points together. Then, each query point

Algorithm 1: Compute k nearest neighbors
Input: Data points and query points, as floating point

x,y,z
Output: For each query point, an array of k nearest data

points, as a list of indices
Scale all points
for j = {0,1,2,3,4} do

Shift all points, data and queries, by j×0.05
Compute Morton codes for all points
mc_all[] = Sort all points, with their original
indices, in Morton code order
mc_data[] = Compact mc_all[] for data points
foreach query point q pardo

iq = Find the index of the nearest data point to
its left in mc_all[]
2k candidates = mc_data[iq− k−1, iq + k]
if j = 0 then

Sort 2k candidates by distance from q
Save the nearest k candidates as the initial
nearest neighbors

else
Merge 2k new candidates into the array of
the current nearest neighbors (this is
described in Algorithm 2)
Sort the updated nearest neighbor array

end
end

end

checks the data points to its right and to its left in the sorted
order for potential approximate nearest neighbors. It then re-
peats this process using several different shifts, always keep-
ing track of the nearest k neighbors seen so far. The theo-
retical results of Liao et al. [LLL01] and Chan [Cha02] es-
tablished that in R3, five specific shifts (described below)
ensure that k approximate nearest neighbors will be found,
for any k, with an approximation factor ε < 29. Recall that
this means that the distance from the query to the kth nearest
neighbor reported is at most 30 times greater than the dis-
tance to the true kth nearest neighbor. While this is a nearly
useless upper bound, we find, as they did, that in practice the
results are invariably much better.

We use 64-bit Morton codes in our implementation, giv-
ing us 21 bits for each of the x,y and z coordinates. The re-
maining least significant bit is used to distinguish between
the Morton code of a query point (1) and a data point (0).
With 21 bits per dimension, we find that every point gets a
unique Morton code in all of our experiments.

The shifts required by the algorithm must be relatively
prime with respect to the spacing of the power-of-two grid
on which the implied octree is constructed. Chan’s lemma
guarantees that for points in the cube [0,1)3, shifting by 0.2
at each iteration will approximate all k nearest neighbors;

c© The Eurographics Association 2012.

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

this requires handling shifted points in the range [0,1.8)3.
Instead, we scale to [0,0.75)3 and shift by 0.05, keeping the
shifted data within [0,1)3. The smaller shifts give us essen-
tially one more bit per dimension in the Morton code, but
we lose the guarantee of being able to find far-off nearest
neighbors, those at a distance > 0.25.

After scaling and shifting, we convert the coordinates to
integers, and then compute Morton codes. This requires in-
terleaving the bits of the twenty-one least-significant bits
of each coordinate (the others are zero) into the most-
significant 63 bits of the Morton code.

3.2. Sorting and candidate identification

After radix-sorting the data and queries together, every query
needs to consider k data points to its left and k data points
to its right. To avoid having to read and skip other query
points, we compact the data, removing the queries, while re-
membering, for each query, the index iq at which q would be
located in the compacted data list. In the following section,
each query will be compared with k points on either side of
iq in this compacted list, for a total of 2k potential neighbors
per query.

3.3. Maintaining nearest neighbors

Since each iteration generates 2k nearest neighbor candi-
dates per query, as k increases, storing all candidates from
the five iterations takes up a great deal of memory. Hence,
we only store the k nearest candidates for each query point
as an array in the first iteration and update these arrays in
the following four iterations. After the final iteration, the re-
maining candidates in the arrays are the result.

Maintaining the arrays of k nearest neighbor candidates,
allNN[], is the main challenge in the implementation of this
algorithm. At each iteration, we may discover new nearest
neighbor candidates that need to be merged into allNN[] and
also duplicate candidates that we have seen in previous it-
erations (note that within the 2k candidates taken from the
data point array in sorted Morton code order in one iteration,
there are no duplicates).

In order to replace current candidates with new, nearer
candidates and detect duplicates efficiently, we store allNN[]
in sorted order based on the distances from the candidate
data points to the query point. We store these candidates as
the concatenation of the distance to the query point with the
index into the data point array. Using the index as the least-
significant bits of the record allows us to sort by distance
while being able to detect and eliminate duplicate candi-
dates.

First iteration: Among the 2k data points per query point
found in the first iteration, we need to keep the k nearest
neighbors as the initial allNN[] array.

We launch a block of k threads per query. First, each

thread is in charge of generating candidate records for two
data points. To reduce memory traffic, we compute the dis-
tance between integer coordinates from which the Morton
code was generated, instead of reading the actual floating
point coordinates from global memory. All 2k candidate
records are stored as an array in shared memory.

Then, the threads within the same block together per-
form a block-wise parallel sort on the array. We use bitonic
sort; we found experimentally that this was more efficient in
shared memory than other parallel sort alternatives such as
odd-even merge sort. Note that, in order to sort 2k elements,
bitonic sort requires k threads.

Finally, we save the smallest k sorted nearest neighbor
candidate records to global memory for each query. We
do this with a coalesced write, producing the result array
allNN[].

We implement these three parts (gathering, sorting, and
saving) within one CUDA kernel. Bitonic sort is the dom-
inant factor, so the kernel runs in O(log2 2k) parallel time
across k threads per query.

Subsequent iterations: In each subsequent iteration, we
may need to merge some of the new candidates that we see
among the 2k neighbors in Morton code order into allNN[].
Again, we do as much of this work in shared memory as
possible in order to reduce global memory traffic.

We launch a block of 2k threads for each query. First,
the block performs a coalesced read and transfers the cur-
rent nearest neighbor array allNN[] from global memory into
currentNN[] in shared memory.

Then, each thread generates a nearest neighbor candidate
record candidateNN using the same routine as in the first
iteration. As currentNN[] is sorted, each thread does a bi-
nary search into this shared array for its candidateNN in par-
allel. The binary search returns the location loc, at which
this record wants to be inserted, i.e., currentNN[loc− 1] ≤
candidateNN < currentNN[loc]. If loc = k, which means
candidateNN cannot be one of the first k nearest neighbors,
we discard it. Also, if candidateNN = currentNN[loc− 1],
which means that candidateNN is a duplicate, we discard it.

Both the k current candidates and at most 2k new candi-
dates may be among the new k nearest neighbor candidates,
so we need to compute their ranks based on the binary search
results. Our approach employs a counter array, the atomic
add operation, and an exclusive prefix sum computation for
the counter array.

We allocate an array counter[] of size 2k in shared mem-
ory. Its odd entries, corresponding to records already in
currentNN[], are initialized to 1, and its even entries, corre-
sponding to new records waiting to be merged in, are initial-
ized to 0. Each thread trying to insert its candidateNN then
atomically adds one to the counter array entry counter[loc×
2] and remembers the previous value of this entry in a

c© The Eurographics Association 2012.

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

0.3 2.3 2.5 5.4 8.5

0 1 0 1 0 1 0 1 0

1.9 5.0 2.0 1.2 3.7 8.49.0 2.58.7 9.3

0 2 10 1 0

0 0 1 4 5 5 6 8 9 10

0.3 2.31.9 1.2 2.0

currentNN

counter

candidateNNs

offsets

counter_scan

updateNN

/ 3 / 2 / 1

✕✕✕✕

1

Figure 2: A graphical representation of Algorithm 2,
with k = 5. Only the distances are shown; we assume that
the index for the candidate with a distance of 2.5 matches
the existing point, and it is eliminated as a duplicate.

variable offset. Next, the entire thread block assigned to a
query performs a block-wise parallel exclusive prefix sum
on counter[], producing counter_scan[]. The odd entries
in counter_scan[] are the ranks of the current candidates.
The even entries are the starting ranks of the segments of
new candidates waiting to be inserted into the same loca-
tion. Each active thread computes the unique rank of its
candidateNN by adding counter_scan[loc×2] and offset.

Any nearest neighbor candidate record, new or old, asso-
ciated with a rank greater than k is discarded. The smallest
k records are saved in an array updatedNN[] in shared mem-
ory. Finally, updatedNN[] is written back to allNN[] in global
memory in a coalesced manner.

Again, all of the above procedures are implemented in one
kernel. Details of this kernel can be seen in Algorithm 2 and
Figure 2, described at the block level. The binary search into
a sorted array with size k takes O(logk) time. If all 2k can-
didates binary search into the same location, the atomic op-
erations will be serialized, resulting in a worst-case time of
O(2k). The exclusive prefix sum for an array with size 2k
runs in O(log2k) time.

Since the new candidates inserted into the same location
are in arbitrary order (there were no comparisons between
them and their ranks are determined by the atomic opera-
tions), allNN[] at this moment is almost but not completely
sorted. Hence, we launch another kernel to sort each array
of k nearest neighbor candidates using a block-wise bitonic
sort in shared memory. This proved to be faster overall than
sorting each small segment separately.

Algorithm 2: Computing and maintaining k nearest
neighbor candidates for a query in subsequent iterations

Input: Sorted array allNN[] of current k nearest
neighbor candidate records for this query in
global memory

Output: Updated array allNN[]
Allocate currentNN[] array of size k in shared memory
currentNN[] = allNN[]
Allocate counter[] array of size 2k in shared memory
foreach counter[i] pardo

if i is odd then
counter[i] = 1

else
counter[i] = 0

end
end
foreach one of the 2k new nearest neighbor candidates
of this query pardo

Compute and create candidateNN
loc = Binary search the location of candidateNN in
currentNN[]
if loc = k OR candidateNN = currentNN[loc−1]
then

Stop processing this candidateNN
else

offset = Save the previous value in
counter[loc×2]
Atomically increment counter[loc×2]

end
end
counter_scan[] = Parallel in-place exclusive prefix sum
on counter[]
Allocate updatedNN[] array of size k in shared memory
foreach current candidate record currentNN[i] pardo

index = counter_scan[i×2+1]
if index < k then

updatedNN[index] = currentNN[i]
end

end
foreach one of the active new candidate records
candidateNN pardo

index = counter_scan[loc×2]+offset
if index < k then

updatedNN[index] = candidateNN
end

end
allNN[] = updatedNN[]

c© The Eurographics Association 2012.

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

Varying input size: Our performance vs. FLANN
(1M query points k=50)(1M query points,k=50)

Bunny into Cluster FLANN‐Bunny into Cluster
Cluster into Bunny FLANN‐Cluster into Bunny
Uniform FLANN‐Uniform

1200

1400

pe
r m

s

Uniform FLANN Uniform
Photon Mapping FLANN‐Photon Mapping

800

1000

qu
er
ie
s p

400

600

m
be

r o
f q

0

200nu
m

0 250 500 750 1000 1250 1500 1750 2000

input data size x1000

Figure 3: Number of queries per millisecond as we vary the
size of the input data; 1M query points with k = 50. Higher
results are better. We compare our results (solid lines) with
that of FLANN (dotted lines) [ML11b].

Varying input size: closeup of our performance
(1M query points k=50)

1240

1260
(1M query points,k=50)

Bunny into Cluster
Cluster into Bunny
U if

1220

1240

pe
r m

s

Uniform
Photon Mapping

1200

qu
er
ie
s p

1160

1180

m
be

r o
f q

1140

1160

nu
m

0 250 500 750 1000 1250 1500 1750 2000

input data size x1000

Figure 4: A closeup of only our performance seen in Fig-
ure 3. With fixed query size and k, our performance is linear
with respect to data size. The only operation involving all of
the data points is the radix sort.

4. Results

We implemented the sorting approximate nearest neighbors
algorithm in CUDA on an NVIDIA GeForce GTX 480 with
1.5 GB of GPU memory.

Data Sets: We constructed synthetic test data sets for
which the two distributions, of queries and data to be
searched, are different; these cases are more difficult for
ANN searching. We put one on a two-dimensional surface
(the Stanford bunny) and the other in 25 tight Gaussian clus-
ters in three-dimensional space. When the queries are clus-
tered and the data is on the surface we called this Cluster
into Bunny, and when the roles of the distributions were re-
versed, we called it Bunny into Cluster. We also considered

Varying query size: Our performance vs. FLANN
(d i k)

1400
(2M data points,k=50)

Bunny into Cluster

1000

1200

r m
s

Cluster into Bunny
Uniform
FLANN‐Bunny into Cluster

800

rie
s
pe

r u y to C uste
FLANN‐Cluster into Bunny
FLANN‐Uniform

600

r o
f q

ue

200

400

nu
m
be

r

0
0 500 1000 1500 2000 25000 500 1000 1500 2000 2500

query size x1000

Figure 5: Number of queries per millisecond as we vary the
size of the query points; querying into 2M data points with
k = 50. Unlike FLANN [ML11b], which demonstrates con-
sistent performance regardless of the number of queries sent,
our approach exhibits significantly better performance with
larger query batches.

the case in which both queries and data are uniform three-
dimensional distributions.

We also generated sets of queries (eye-ray object intersec-
tions) and data (photons distributed on object surfaces) using
the Optix progressive photon mapping demo [NVI12]. Fig-
ure 8 compares images created using the original demo and
images created using a version modified to use our kANN al-
gorithm instead of radius search, with the value of k tuned to
achieve a similar level of brightness. Our experimental data
sets are realistic in the sense that they produce images of
comparable quality to the progressive photon mapping code.

Using these distributions, we compared our running
times against the version of the FLANN [ML11b] approxi-
mate nearest neighbors library designed for low-dimensional
point sets on the GPU [ML09b]. FLANN is a recent, well-
known library for both high- and low-dimensional nearest
neighbors; it has been incorporated into the Point Cloud Li-
brary (PCL) [PCL] and the OpenCV (Open Source Com-
puter Vision) library [Ope]. Its CPU routines tune them-
selves to different data and query distributions, switching
between two different data structures. Its GPU code uses a
k-d tree, computed on the GPU and then searched using the
standard priority search strategy [ML11a]. We compare our
entire running time against only the search time of FLANN.

We find (Figure 3) that our throughput is between two and
five times better, as measured by the number of queries an-
swered per millisecond. While neither program is affected
much by the overall size of the data being searched, the
FLANN k-d tree is quite sensitive to the query and data dis-
tributions, with high throughput on uniform queries into uni-
form data, and less in the more difficult situations.

We also tried keeping the data size fixed at two mil-

c© The Eurographics Association 2012.

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

Varying k: Our performance vs. FLANN

3200
(1M data and query points)

Bunny into Cluster (500K queries)
l

2400

2800

r m
s

Bunny into Cluster
Cluster into Bunny
Uniform

2000

er
ie
s
pe

r

FLANN‐Bunny into Cluster
FLANN‐Cluster into Bunny
FLANN‐Uniform

1200

1600

r o
f q

ue

800

nu
m
be

0

400

0 20 40 60 80 100 120 140 160
k

Figure 6: Number of queries per millisecond as we vary the
size of k; querying 1M points into 1M input data points.
Threads are allocated to queries in powers of two, with a
single block servicing multiple queries. This results in nearly
the same performance for k = 20 and k = 30, as 32 threads
are launched per query in both cases. Similarly, performance
at k = 50 is close to k = 60. We also show our performance
for launching 500K queries into 1M data points (orange line)
as we vary k up to 120. The smaller number of queries opens
up more memory and as a result we can search for more
nearest neighbors.

lion points, and varying the number of queries (Figure 5).
We found that our performance suffered for smaller sets of
queries, while for larger query sets the time required by the
sorts was amortized over many more results. Unfortunately,
we ran out of memory beyond 1.2 million queries (k = 50,
2 million data points). FLANN failed at 800K queries on the
Cluster into Bunny distribution, possibly because the poor
distribution required very large priority queues in the search.

Finally, we considered throughput as a function of k, the
number of nearest neighbors returned (Figure 6). For both
our code and FLANN, this is the factor with the biggest in-
fluence on performance.

4.1. Approximation Factor

We achieve consistent throughput across all data sets at the
cost of a small decrease in the quality of the approximation
on the difficult distributions. On uniform distributions, in-
cluding the distribution produced by the progressive photon
mapping application, the worst query returned a kth nearest
neighbor (for k = 100) which was at most ε = 1.2 times as
far as the true nearest neighbor. Even on the difficult distribu-
tions, the number of queries which have approximation error
ε falls off exponentially with ε, and none of the one million
queries had an approximation error of more than ε = 2.75.

1000000
Bunny into Cluster

100000
Cluster into Bunny
Uniform
Photon Mapping

1000

10000

qu
er
ie
s

100

1000

m
be

r o
f q

10

nu
m

1
1 1.5 2 2.5 3

h(distance to the kth neighbor returned) / (distance to the
exact kth neighbor)

Figure 7: Our approach trades accuracy for speed. These his-
tograms plot the ratio of the distance to the worst neighbor
returned by a query to the actual kth nearest neighbor. Notice
the log-scale on the y-axis. Our approach handles uniform
random data in 3D with very small approximation error, in-
cluding the data from our simple photon mapping scene.
Cluster into Bunny has <3% of items with approximation
error ε > 1.5, while Bunny into Cluster has 0.6%.

4.2. Other published results

The recent work of Leite et al. [LTF∗12] uses a voxel grid,
which is only efficient for uniform query and data distribu-
tions. On uniform data sets, we see that our performance
is not as good at k = 10, but comparable at k = 30, and
the strength of our algorithm is that we also handle very
non-uniform distributions. For example, with data and query
sizes of 50K they find k = 30 nearest neighbors for each
query in 25 ms [LTF∗12], for a throughput of about 2000
queries/ms; ours is about the same, even with 1 million
query and data points (they also work on the GTX 480). The
most natural performance comparison would be the GPU k-
d tree nearest neighbor implementation [ZHWG08], which
achieves real-time rendering of caustics, but it is not clear
from that paper how many nearest-neighbor queries are ac-
tually performed per frame; queries far from the caustic were
eliminated.

5. Discussion & Limitations

Actually returning the list of k nearest neighbors is not nec-
essary for all applications. It would be useful to create a li-
brary function that could accumulate arbitrary functions over
the k nearest neighbors without actually returning the items;
this would save both space and time.

The algorithm of Liao et al. [LLL01] was intended for
queries in high dimensions. As we have worked exclusively
in 3D, we have only needed 64 bits in our Morton codes.
In testing, we never find elements mapping to the same 64-
bit Morton code. However, as the number of dimensions in-

c© The Eurographics Association 2012.

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

Figure 8: 100 iterations (top) and 10 iterations (bottom) of 640K photons per iteration being sent into a typical test scene. We
used k = 100 from the kANN search (right), which is significantly larger than the average of 50 photons collected by each radius
query from the progressive photon mapper (left), the scenes converge to nearly the same image (top). Note the difference in
effective k is visible in the blotches on the far wall, but the caustic effects (particulary the effects on the right wall) show the
same behavior. While we tuned k to produce similar progressive images, the combination of a relatively large k with Optix’s
large memory footprint meant our searches were memory-limited and overall the demo ran at about a third of the rate of the
radius search version.

creases, the number of bits-per-dimension decreases; effec-
tively, this reduces the depth of the octree.

Our algorithm is memory bound. In particular, two arrays
make up a majority of our memory usage. In between itera-
tions, we store 64 bits of data per candidate point per query,
and the final results are 32 bits per result per query; in our
test case for k = 50 with 1M queries, these two arrays to-
talled 600 MB. Luckily, neither of these store the Morton
codes, so an increase in Morton code size (in order to work
in higher dimensions) would not incur a penalty here.

Acknowledgments

We gratefully acknowledge the support of NSF grant IS-
0964357. We would also like to thank Andrew Davidson and
Anjul Patney for their ideas and insight.

References
[AMN∗98] ARYA S., MOUNT D. M., NETANYAHU N. S., SIL-

VERMAN R., WU A. Y.: An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal of the ACM
45 (Nov. 1998), 891–923. doi:10.1145/293347.293348.
2

[BDHK06] BUSTOS B., DEUSSEN O., HILLER S., KEIM D.:

c© The Eurographics Association 2012.

http://dx.doi.org/10.1145/293347.293348

S. Li, L. Simons, et al. / kANN on the GPU with Shifted Sorting

A graphics hardware accelerated algorithm for nearest neigh-
bor search. In Proceedings of the 6th International Conference
on Computational Science, Alexandrov V., van Albada G., Sloot
P., Dongarra J., (Eds.), vol. 3994 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, May 2006, pp. 196–199.
doi:10.1007/11758549_30. 2

[BGTP10] BARRIENTOS R. J., GÓMEZ J. I., TENLLADO C.,
PRIETO M.: Heap based k-nearest neighbor search on GPUs. In
Congreso Espanol de Informática (CEDI) (2010), pp. 559–566.
2

[Cha97] CHAN T. M.: Approximate nearest neighbor queries re-
visited. In Proceedings of the Thirteenth Annual Symposium on
Computational Geometry (New York, NY, USA, 1997), SCG ’97,
ACM, pp. 352–358. doi:10.1145/262839.263001. 1

[Cha02] CHAN T. M.: Closest-point problems simplified on the
RAM. In Proceedings of the Thirteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (2002), SODA ’02, pp. 472–473.
3

[FD09] FABIANOWSKI B., DINGLIANA J.: Interactive global
photon mapping. Computer Graphics Forum 28, 4 (2009), 1151–
1159. doi:10.1111/j.1467-8659.2009.01492.x. 2

[GDB08] GARCIA V., DEBREUVE E., BARLAUD M.: Fast k
nearest neighbor search using GPU. In Proceedings of the CVPR
Workshop on Computer Vision on GPU. IEEE Computer So-
ciety, Los Alamitos, CA, USA, June 2008, pp. 1–6. doi:
10.1109/CVPRW.2008.4563100. 2

[HJ09] HACHISUKA T., JENSEN H. W.: Stochastic progressive
photon mapping. ACM Transactions on Graphics 28, 5 (Dec.
2009), 141:1–141:8. doi:10.1145/1661412.1618487. 2

[HJ10] HACHISUKA T., JENSEN H. W.: Parallel progressive pho-
ton mapping on GPUs. In ACM SIGGRAPH ASIA 2010 Sketches
(New York, NY, USA, Dec. 2010), SA ’10, ACM, p. 54:1. doi:
10.1145/1899950.1900004. 2

[KH12] KATO K., HOSINO T.: Multi-GPU algorithm for k-
nearest neighbor problem. Concurrency and Computation: Prac-
tice and Experience 24, 1 (2012), 45–53. doi:10.1002/cpe.
1718. 2

[KZ09] KUANG Q., ZHAO L.: A practical GPU based KNN algo-
rithm. In Proceedings of the Second Symposium on International
Computer Science and Computational Technology (ISCSCT ’09)
(Dec. 2009), Academy Publisher, pp. 151–155. 2

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH construction on GPUs.
Computer Graphics Forum 28, 2 (2009), 375–384. 2

[LLL01] LIAO S., LOPEZ M. A., LEUTENEGGER S. T.: High
dimensional similarity search with space filling curves. In Pro-
ceedings of the 17th International Conference on Data Engineer-
ing (2001), pp. 615–622. 1, 2, 3, 7

[LTF∗12] LEITE P., TEIXEIRA J., FARIAS T., REIS B., TE-
ICHRIEB V., KELNER J.: Nearest neighbor searches on the GPU.
International Journal of Parallel Programming 40 (2012), 313–
330. doi:10.1007/s10766-011-0184-3. 2, 7

[MG11] MERRILL D., GRIMSHAW A.: High performance
and scalable radix sorting: A case study of implementing dy-
namic parallelism for GPU computing. Parallel Process-
ing Letters 21 (June 2011), 245–272. doi:10.1142/
S0129626411000187. 1, 2

[ML09a] MCGUIRE M., LUEBKE D.: Hardware-accelerated
global illumination by image space photon mapping. In High
Performance Graphics 2009 (New York, NY, USA, Aug. 2009),
ACM, pp. 77–89. doi:10.1145/1572769.1572783. 2

[ML09b] MUJA M., LOWE D. G.: Fast approximate nearest
neighbors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Application
VISSAPP’09) (2009), INSTICC Press, pp. 331–340. 2, 6

[ML11a] MUJA M., LOWE D. G.: FLANN - Fast Library
for Approximate Nearest Neighbors: User Manual. The
University of British Columbia, December 2011. URL:
http://people.cs.ubc.ca/~mariusm/uploads/
FLANN/flann_manual-1.7.1.pdf. 6

[ML11b] MUJA M., LOWE D. G.: FLANN-fast library for ap-
proximate nearest neighbors. http://www.cs.ubc.ca/
~mariusm/index.php/FLANN/FLANN, 2011. [Version
1.7.1]. 2, 6

[MM02] MA V. C. H., MCCOOL M. D.: Low latency photon
mapping using block hashing. In Graphics Hardware (Aire-la-
Ville, Switzerland, Switzerland, Sept. 2002), Eurographics As-
sociation, pp. 89–99. URL: http://portal.acm.org/
citation.cfm?id=569046.569059. 2

[NVI12] NVIDIA: Nvidia OptiX ray tracing en-
gine. http://developer.nvidia.com/
optix-interactive-examples, 2012. [Version 2.1]. 2,
6

[Ope] OPENCV: Open source computer vision library. http:
//opencv.willowgarage.com/wiki/Welcome. 6

[PCL] PCL: The point cloud library. http://pointclouds.
org/documentation/. 6

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO M.,
JENSEN H. W., HANRAHAN P.: Photon mapping on pro-
grammable graphics hardware. In Graphics Hardware 2003 (July
2003), pp. 41–50. 2

[PLM10] PAN J., LAUTERBACH C., MANOCHA D.: Efficient
nearest-neighbor computation for GPU-based motion planning.
In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Oct. 2010), pp. 2243–2248. doi:10.1109/
IROS.2010.5651449. 2

[QMN09] QIU D., MAY S., NÜCHTER A.: GPU-accelerated
nearest neighbor search for 3D registration. In Com-
puter Vision Systems, Fritz M., Schiele B., Piater J., (Eds.),
vol. 5815 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2009, pp. 194–203. doi:10.1007/
978-3-642-04667-4_20. 2

[WWZ∗09] WANG R., WANG R., ZHOU K., PAN M., BAO H.:
An efficient GPU-based approach for interactive global illumina-
tion. ACM Transactions on Graphics 28, 3 (July 2009), 91:1–
91:8. doi:10.1145/1576246.1531397. 2

[ZGHG11] ZHOU K., GONG M., HUANG X., GUO B.: Data-
parallel octrees for surface reconstruction. IEEE Transactions on
Visualization and Computer Graphics 17 (May 2011), 669–681.
doi:10.1109/TVCG.2010.75. 2

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
KD-tree construction on graphics hardware. ACM Transactions
on Graphics 27 (Dec. 2008), 126:1–126:11. doi:10.1145/
1409060.1409079. 2, 7

c© The Eurographics Association 2012.

http://dx.doi.org/10.1007/11758549_30
http://dx.doi.org/10.1145/262839.263001
http://dx.doi.org/10.1111/j.1467-8659.2009.01492.x
http://dx.doi.org/10.1109/CVPRW.2008.4563100
http://dx.doi.org/10.1109/CVPRW.2008.4563100
http://dx.doi.org/10.1145/1661412.1618487
http://dx.doi.org/10.1145/1899950.1900004
http://dx.doi.org/10.1145/1899950.1900004
http://dx.doi.org/10.1002/cpe.1718
http://dx.doi.org/10.1002/cpe.1718
http://dx.doi.org/10.1007/s10766-011-0184-3
http://dx.doi.org/10.1142/S0129626411000187
http://dx.doi.org/10.1142/S0129626411000187
http://dx.doi.org/10.1145/1572769.1572783
http://people.cs.ubc.ca/~mariusm/uploads/FLANN/flann_manual-1.7.1.pdf
http://people.cs.ubc.ca/~mariusm/uploads/FLANN/flann_manual-1.7.1.pdf
http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://portal.acm.org/citation.cfm?id=569046.569059
http://portal.acm.org/citation.cfm?id=569046.569059
http://developer.nvidia.com/optix-interactive-examples
http://developer.nvidia.com/optix-interactive-examples
http://opencv.willowgarage.com/wiki/Welcome
http://opencv.willowgarage.com/wiki/Welcome
http://pointclouds.org/documentation/
http://pointclouds.org/documentation/
http://dx.doi.org/10.1109/IROS.2010.5651449
http://dx.doi.org/10.1109/IROS.2010.5651449
http://dx.doi.org/10.1007/978-3-642-04667-4_20
http://dx.doi.org/10.1007/978-3-642-04667-4_20
http://dx.doi.org/10.1145/1576246.1531397
http://dx.doi.org/10.1109/TVCG.2010.75
http://dx.doi.org/10.1145/1409060.1409079
http://dx.doi.org/10.1145/1409060.1409079

