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A Recurrent Network that performs a Context-Sensitive Prediction Task
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Indiana University
Bloomington IN 47405
msteyver@indiana.edu

Abstract

We address the problem of processing a context-sensitive lan-
guage with a recurrent neural network (RN). So far, the lan-
guage processing capabilities of RNs have only been investi-
gated for regular and context-free languages. We present an
extremely simple RN with only one parameter z for its two
hidden nodes that can perform a prediction task on sequences
of symbols from the language {(ba*)" | k > 0,n > 0}, alan-
guage that is context-sensitive but not context-free. The input
to the RN consists of any string of the language, one symbol
at a time. The network should then, at all times, predict the
symbol that should follow. This means that the network must
be able to count the number of a’s in the first subsequence and
to retain this number for future use. We present a value for the
parameter z for which our RN can solve the task fork = l up to
k = 120. As we do not give any method to find a good value for
z, this does not say anything about the learning capabilities of
our network. It does, however, show that context-sensitive in-
formation (the count of a’s) can be represented by the network;
we analyse in detail how this is done. Hence our work shows
that, at least from a representational point of view, connection-
ist architectures can handle more complex formal languages
than was previously known.

Introduction

An important issue when modeling grammars and grammat-
ical inference with recurrent neural networks (RNs) is to de-
termine what kind of formal languages a recurrent neural
network can process and generate. In this paper we show that
a very simple recurrent network of a kind that has often been
studied before is able to process a fairly complex language: a
language that is neither regular nor context-free.

Regular languages represent the simplest class of formal
languages in the Chomsky hierarchy (Hopcroft & Ullman,
1979). Regular languages are generated by regular grammars.
Each regular language L has an associated deterministic finite
state automaton (DFA) M and vice versa: M accepis all
correct sentences of L and rejects all incorrect sentences. A
more complex class in the Chomsky hierarchy is that of the
context-free languages; the regular languages are a proper
subset of this class. For each context-free language there is an
associated push-down automaton (and vice versa). An even
more complex language class is that of the context sensitive
languages with the associated linear bounded automata. This
class properly includes all context-free languages.

The theory of these languages and automata from a sym-
bol processing perspective is well established (Hopcroft &
Ullman, 1979). It is not clear however, what kind of automata
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RNs can implement. So far, only performance on regular
and context-free languages has been reported (Cleeremans,
Servan-Schreiber & McClelland, 1989; Giles ez al., 1992; Sun
et al., 1993; Wiles & Elman, 1995). This situation led us to
investigate whether it is possible to go beyond these language
classes; in this paper, we come up with a RN that performs a
prediction task on the symbols of a context-sensitive language
that is not context-free. To the best of our knowledge, this
has never been attempted before — as RNs already have great
difficulties in handling simple context-free languages, we take
our task to be quite challenging for RNs. Our work also has
repercussions for the role of connectionism in psychology. In
our view, in order for connectionism to be a serious paradigm
for psychology, it should be clear what its capabilities are
when dealing with formal languages which lie at the heart of
‘symbol-oriented’ models (Wiles & Elman, 1995).

We will consider a type of recurrent neural network that has
initially been explored by Jordan (1986) and more recently by
Elman (1990) and Pollack (1991). More specifically, we use
a second order recurrent network (Giles et al., 1992; Omlin
& Giles, 1992) simplified to having only one parameter, and
we show by simulation that its nodes can represent the input
to the network in a way that captures the essential structure of
our context sensitive language.

When RNs are applied to processing languages, the solu-
tions provided by the network are often best understood from
a dynamical systems perspective (Omlin & Giles, 1994). This
perspective can sometimes offer new insights and provide new
mechanisms for solving tasks that are usually dealt with from
a more traditional symbolic framework. From this point of
view, the problem we will have to face here is to control the
non-linear dynamics of the network in such a way that the
regions in state space that correspond to the various symbols
to be predicted are linearly separable.

The Task

Consider all sequences of the form:

b(a)*b(a)* ... (1)
In any such sequence symbol b is followed by k symbols a
after which this subsequence repeats itself. Each value of k
defines a unique sequence which we will call the k-sequence.

For example, here are the initial segments of the 1-,2- and
3-sequences:

for integers k > 0

bababababa . .. (k=1)
baabaabaab. .. (k=2)
baaabaaaba . .. (k=3)
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The task we want our network to perform is the following: for
any sequence of the form (1), after having been presented the
first n symbols of the sequence, the network should correctly
predict the n + 1-st symbol of the sequence. The symbols
are presented in order: at time t = 1 the first symbol is
presented, at t = 2 the second and so on. Note that before
the second b has been presented, the next symbol may turn
out to be either a or b as it is not clear yet which sequence
the network is dealing with. But after the second b, there is
only one possible sequence left, and all future symbols are
unambiguously determined. Therefore, if the actual sequence
turns out to be b(a)*b. . . for some particular k, then we want
our network to correctly predict all future symbols at all times
t>k+2.

Complexity of the Task

Consider the language Lcs = {(ba*)" | £ > 0,n > 0}.
Thus for example, bababababa and baaaabaaaa are correct
sentences of the language while babaaa, babab and baaba are
not. It is clear that our task can be reinterpreted as follows:
after having been presented a few initial symbols (the first
‘run’ of a’s) one must correctly predict what the next symbols
in the sequence must be, such that at some point in the future,
the part of the sequence seen until then will be a correct
sentence of the language Lcs.

Now Lcs is a context-sensitive language which, moreover,
is not context-free. This can be proven using standard tech-
niques of formal language theory; an exact proof can be found
in the appendix. Intuitively, one can understand why Lcs is
not context-free if one tries to recognize L¢s using a push-
down automaton. A push-down automaton is roughly just
a non-deterministic finite state automaton with a stack; it is
clear that the only way to count the number of a's that have
been seen already is to use this stack. After the first b symbol,
one can fill the stack with the first k a symbols. Then, after
the second b, one can empty the stack again, to produce the
next k a symbols, but since the contents of the stack are then
empty, the information about k is lost, and further processing
of the sequence is impossible. Therefore, a single stack is not
sufficient to solve this task. What we really need to do is to
implement a counter that counts the number of consecutive a
symbols after which it retains this value to process the next
(more than one!) subsequences of a-symbols.

Just as one cannot use a push-down automaton to recognize
a language that is not context-free, one cannot use it to pre-
dict the consecutive symbols of the correct strings of such a
language either (Hopcroft & Ullman, 1979). Itis in this sense
that the power of a recurrent network that would perform well
on our prediction task goes beyond the power of context-free
grammars or, equivalently, push-down automata,

The Network

We use a second-order recurrent network with two input
nodes, I} and I, two hidden nodes H and H; and an output
unit O. z! denotes the activation of node X; at time t. We
employ a unary encoding of our symbols: a is encoded as
iy = 1landi; = 0,basi; = 0 and 23 = 1. The hidden node
activations hy and h; at time ¢ are mapped into those at time
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t + 1 according to:

htY = f(ith{w +ithSw, + @
ishiws + iihiwg + ws)
bt = f( ihiwe +ifhiw + 3

i;‘htlwg b igh;wg + w“))

where f is the sigmoid discriminant function: f(z) = 1/(1+
e~ %). We simplified this network by removing some of the
recurrent connections: w; = w3y = wy = wg = we = 0, The

substitutions w; = wy = wg = z and ws = wyp = —2z/2,
simplify the network to:
¥t = f(ithtz - 2/2) 4

W= f(ishtz +ithyz - 2/2) ®

The output O is a linear threshold unit that outputs prediction
symbols a and b:

0 _{ a if‘wo]htl +wo1h§+ﬂo <0
T b if wosht + wozh} + 60 20

A single parameter, the weight 2 determines the representation
of the input symbols in hidden state space. The weights
wo1, woz and 8o determine the linear equation’ that divides
the hidden state space in regions where the predicted symbol
isaorb.

With computer studies, we wanted to find a z such that there
is acombination of wo, woz and 8 such that the predictions
of the symbols of the sequences for k = 1 up to a maximum
of m are correct. Therefore, for these sequences, the hidden
node activations corresponding to a processed input sequence
where the next symbol is a a or b should be linearly separable.

For z = 3.9924, we found that the predictions for the first
m = 120 sequences of this task are linearly separable. In
figure 1, the trajectories in hidden node space are shown for
the first 6 sequences. These trajectories go from the left to the
right; the successive points of the maps are connected by lines
(the return trajectories to the left are omitted). The points
indicated by filled circles are the points where k symbols a
are received, so at these points, the output symbol should be
b. The points indicated by open circles are the points where
a symbol a should be predicted. The dashed line shows the
linear equation that separates the a and b prediction symbols.
Figure 2 shows the trajectories for all 120 sequences.

How the Network Does It

The behavior of the network can best be understood from a
dynamical systems viewpoint. As all sequences consist of
perpetually self-repeating subsequences, it is clear that for
each value of k, the network eventually goes into an associ-
ated limit cycle. The real difficulty of our task is to combine

(6)

'Notice that we could just as well have taken the sigmoid dis-
criminant function f again to determine the output activation as
O = f(woihi + wozha + 80). If we then interpreted O < 0.5 as
a and O > 0.5 as b, this would always yield the same predictions as
our threshold unit. For recurrent neural networks, usually this latter
approach is taken (Omlin & Giles, 1994). We have opted for the
equivalent threshold approach in order to clarify the analysis of the
hidden node activation space.
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Figure 1: The trajectories of h and h; in the network with
z = 3.9924 are shown fork = 1 to 6.
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Figure 2: All points of the trajectories in hidden state space
for the sequences k = 1 to 120.
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Figure 3: The map g : = — 1/(1 4+ e~ (*{==1/2))) is shown
for z = 3. This map has only one attractor ¢ = 1/2. Five
iterations on this map are shown starting on ¢ = 0.

the dynamics of every limit cycle in such a way that it is pos-
sible to extract useful information from the cycle trajectories
in hidden node state space. The non-linear nature of limit
cycle trajectories makes it difficult to be combined with the
linear nature of the separation functions provided by thresh-
old output units. Our main idea is to simplify the network by
introducing a reset mechanism for every limit cycle. The end-
points of the trajectories (before reset again) are then linearly
separable from all other points of the different trajectories;
as will be seen below, this is exactly what is needed for our
prediction task. For a more detailed analysis of the network's
performance, we need to look at the following function:

g9(z) = f(z- (= - 1/2)) (7)

Here f is the sigmoid function again. We will write g(®) (z) =
z,9(1)(z) = g(z), 9 (z) = g(g()) etc. For0 < z < 4, g
has only one fixed point: g(1/2) = 1/2 (figure 3). This point
is an attractor?; as n increases, g(™)(z) converges to 1/2 for
all starting values z. Also shown in figure 3 are the iterations
from g(®(0) to g©)(0).

Now let us suppose that we feed our network a sequence
consisting only of a’s (i.e. i} = 1,1 = 0). Then, if we start at
time ¢ and set z equal to h{, we can see from (4) that updating
h; becomes identical to iterating g:

Rt = g0)(z)  foralli > 0 (8)

Exactly the same applies to H;: if we had set z = hf, then h;
would have evolved according to g, as can be seen from (5).

But what happens to h} when a symbol b arrives at time ¢?
(i.e. i = 0,44 = 1). We see that

MY = f(0-h-z-2/2)
= ¢("(0) )

Thus each time a b arrives (in particular, at time t = 1 when
the first one arrives), h{ will be ‘reset’ to g(0). This, together
with (8) implies that if, for any ¢, the previous ¢ + 1 symbols
were of the form ba’, then h! will always be equal to g{*+1)(0).
In what follows, we will write g{*)(0) simply as g(*).

H; is influenced in a different manner when a b arrives. If
a b arrives in a k-sequence at a time ¢ with ¢ > 1 (we will not
consider the first b here), then h$*! is changed as follows:

Il

ht' = F(1-h{-z2+0-hi-z—2/2)
= g(h})
= g(g**+"(0))
= g(k+2) (10)

Here h} is equal to g{*+!) because we are in a k-sequence,
and thus the b that arrives at time ¢ has been preceded by ba*.

In other words, whenever a symbol b is processed at time
t in a k-sequence, the activation of H is reset to g(!), while
H, ‘takes over’ from Hj: hj*! is set to g(**?). Returning
to figure 2, we can see that in between two b’s, node H,
iterates g starting from g{!) to g(¥+1), while Hj iterates g from
g*+? to g(2*+2), Thus the points (h}, k%) in hidden node

One can actually prove this; see the work of Omlin & Giles
(1994) where the same function is used for a different purpose.
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activation space will always be of the form (g{!+%), g(2+k+1))
for some 0 < i < k. Also, the points (g(!+*), g(2+2¥))
coincide exactly with the hidden node activations when all
k a's of the k-sequence have been presented, i.e. when a b
should be predicted. On the other hand, all points at which an
a should be predicted must be of the form (g(!+%), g(2+k+1))
with 1 < k. As _g('J increases with ¢, this means that it
is enough to make sure for all i > 0 that (g{*), g(2) lies
beneath the separating line while (g(*), g{%+1)) lies above it;
see figure 1 and 2 again. As can be seen there, for increasing ,
g goes to 1/2, but (for our choice of z) the points (g(*), (%))
are connected through an almost linear function. This partially
explains why the points (g(*), ) and (g(*), g%+")) are
linearly separable for such a large range of 1.

Related Work

Concerning regular languages, Omlin & Giles (1994) provide
an algorithm that, given any DFA M as input, outputs (a
description of) an equivalent second-order recurrent network
R. Here “equivalent’ means that R outputs a 1 if and only if
its input is a string of the regular language corresponding to
M.

For context-free languages, things get more complicated.
Wiles & Elman (1995) studied the behavior of a RN on the
language a™b" which is context-free but not regular. They
trained a small RN to predict the symbols from strings from
this language with n ranging from 1 to 12. In one of several
training sessions, they found a RN that exhibited generaliza-
tion to n = 18. The similarity to our work consists in the fact
that both a™b™ and L¢g can be processed using only a counter
rather than a complete stack or tape; however, in Elman &
Wiles’ work the trained network turned out to count in a com-
pletely different manner from ours, namely by combining the
dynamics of attractors and repellors that implement count-
ing up and down respectively; like a stack, this mechanism
‘forgets’ the number of a’s after processing the b’s.

Sunetal. (1993)also studied RNs when trained on context-
free languages but their RNs were augmented with a stack.
Here, the task for the RN was to accept or reject a string
as belonging to the trained language. They achieved very
good generalization performance when training their network
with short example strings of some context-free languages
including a™b™. The advantage of providing the RN with a
real stack is that different symbols can be written on the stack
and read off again, while it remains to be seen whether that
can be achieved with techniques like those used by Wiles &
Elman (1995) and us. On the other hand, the stack extension
cannot be of any help in representing languages like L¢g that
are not context-sensitive, and does not show whether RNs by
themselves are more powerful than DFA's.

Discussion and Conclusion

Itis important to realize that we did not use learning algorithms
for the network itself to come up with solutions; instead, we
‘hard-wired' the weights to solve the task. We felt the need
to separate the possibilities of learning a language as difficult
as a context-sensitive one from the possibility of representing
it with a RN. It could turn out that there are weights for the
RN which make for a good representation of the language,
while none of the known learning algorithms for RNs will
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ever find these weights. On the other hand, it could be that the
representational capability of the RN was not powerful enough
to start with. In the words of Minsky & Papert (1988): ‘no
machine can learn to recognize X unless it possesses, at least
potentially, some scheme for representing X'. In this work,
we showed that at least some RNs do have the representational
capabilities to deal with at least some languages that are not
context-free. We certainly do not think that RNs will turn out
to be capable of handling any context-sensitive language; we
do think however that they can provide a new and interesting
manner to process some languages that are rather complex
from the point of view of formal language theory.
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Proof that L¢g Is Not Context-Free

We want to prove the following:

Theorem 1 The language Lcs defined by Les = {(ba*)™ |
k > 0,n > 0} is not context-free.

We will prove this theorem using the pumping lemma for
context-free languages, a standard tool for proving certain
languages not to be context-free (Hopcroft & Ullman, 1979).
Before giving the actual proof, we will first state the pumping
lemma and explain the proof technique used. In the follow-
ing, 1, 7, k, m and n will be variables taking on non-negative
integer values. t,u,v,w,z,y and z will be variables taking
on string values. A string is a concatenation of zero or more
symbols taken from the alphabet £ = {a, b}. For any string
z, |z| denotes the length of (number of symbols appearing in)
string z. zy stands for the concatenation of strings z and y.
We are now ready to state the pumping lemma (for a proof of
the pumping lemma itself and details about the notation, see
for example Hopcroft & Ullman (1979)):

Lemma 1 (Pumping Lemma for Context-Free Languages)
Let L be any context-free language. Then there is a constant
n, depending only on L, such that if z is in L and |z| > n,
then we may write z = uvwzy such that

1. |vz| 2 1,
2. |vwz| £ n, and
3, foralli > 0, wviwz'yisin L.

The general idea behind the proof of theorem 1 is as follows:
we first suppose that L¢s were context-free. Then the pumping
lemma holds, so the constant n mentioned in the pumping
lemma exists. The trick is to cleverly pick a string z in L¢s
with length |z| > n such that any choice of u,v,w,z and
y with z = wvwzy will violate at least one of the three
conditions in the pumping lemma. As the pumping lemma
states that the three conditions hold for any z in L¢g with
length |z| > n, this shows that the pumping lemma does not
hold after all. Thus assuming L¢s is context-free leads to
a contradiction; Lcs is therefore not-context free. We now
proceed to the actual proof:

Proof of Theorem 1: Suppose that Lcs were context-free.
Let n be the constant of the pumping lemma. Consider the
string z = ba"ba"ba™. It is clear that z is in L¢s and that
|z] > n. Write z = uvwzy such that it satisfies the conditions
of the pumping lemma. We must now find out where v and
z, the strings that can get “pumped’, lie in ba™ba"ba”. Since
[vz| € |vwz| < n, vz contains at most one b. We can
distinguish two cases: 1) vz contains no b’s at all ; 2) vz
contains exactly one b.

In case 1), as |[vwz| < n, we must have that |u| + [v] >
2n + 3. This means that either u can be written as u = ba™t
for some t or y can be written as y = tba™ for some t. Now
consider the string uwy (the string uv*wz'y with i = 0). As
|vz| > 1 and vz contains no b’s, the string uwy contains less
than 3n a's but still three b's. However, either u starts with
ba™ or y ends with ba™. So uwy is of the form ba‘ba’ba*,
where either  or k must be equal to n and at least one of ¢, j
and k is less than n. This means that uwy is not of the form
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(ba*" )™, and thus uu? is not in Les. But by the pumping
lemma uwy = uv®wz’ must be in L¢s; a contradiction.

In case 2), the string uwy contains only 2 b’s. Suppose
first that the leftmost b is missing in uwy (Le. u is the empty
string and vz = bt for some string t). Then uwy is of the
form a™ba™ba™. This string can only be in L¢s if m = 0.
But then |vz| = |uvwzy| — |[uwy| = n + 1, while |vz| < n;
a contradiction. So suppose that the middle b is missing; then
uwy is of the form ba™ba™. This string can only be in Lcs
if m = n. Again, it follows that |vz| = n + 1 so once more,
we have arrived at a contradiction. Finally, suppose that the
rightmost b is missing. Again, this wouldlead to [vz| = n+1;
another contradiction.

We thus see that supposing that L¢g is a context-free lan-
guage inevitably leads to a contradiction. Therefore, L¢s is
not a context-free language. O
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