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ABSTRACT OF THE DISSERTATION

Innovations in ocean biogeochemical instrumentation and monitoring

by

Taylor Wirth

Doctor of Philosophy in Oceanography
University of California San Diego, 2024

Professor Todd Martz, Chair

Anthropogenic activities are driving changes in ocean biogeochemistry, which can be
monitored through instruments and sensors deployed across diverse platforms in even the
harshest marine environments. Continued monitoring of these changes demands innovations in
instrumentation, calibration and quality control to effectively capture dynamic signals and ensure
comprehensive ocean coverage. This dissertation focuses on advancements in oceanographic
pH sensors, starting with the longest near-continuous ocean pH dataset collected using ion-
sensitive field effect transistor (ISFET) technology at Scripps Pier. A new in situ calibration

approach, based on direct tris buffer injection, was compared to the traditional bottle collection

Xiv



method, yielding a fourfold improvement in repeatability with an uncertainty of 0.006 pH.
Additionally, an automated calibration system integrated into the sensor package was
evaluated, offering near real-time, self-calibrating capability for ocean acidification and
biogeochemical monitoring programs. To continue the discourse of pH sensor technology in the
second section of this dissertation, a novel optical pH sensor was evaluated in laboratory
settings to establish its accuracy and precision, response time, temperature and pressure
sensitivity, and calibration techniques which improved accuracy over factory methods. Field
tests of the optical pH sensor across diverse marine environments—deep ocean, dynamic
nearshore, and open ocean profiling—provided guidelines for field calibration, correction and
optimal field use. In a scaled-up sense, the final section of this dissertation leveraged pH and
other biogeochemical sensors on BGC-Argo profiling floats to explore biogeochemical variability
in the equatorial Pacific from 2019 to 2024. While the region has extensive physical data,
subsurface biogeochemical observations and their links to El Nifio and La Nifia cycles are
sparse. These floats revealed distinct biogeochemical patterns driven by vertical movement of
the mixed layer depth, meridional subtropical water transport and primary production shifts
associated with ENSO phases. Overall, this work combines new sensor technologies and
analytical methods to provide essential data, instrument guidelines and reveal insights into
ocean biogeochemical phenomena. Ongoing instrumentation development and monitoring will
be critical to expand and deepen our understanding of how human-driven impacts are

transforming our oceans.
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Introduction
A changing ocean climate

The ocean is undergoing profound changes driven by human activities that are
reshaping Earth's climate and ecosystems. The burning of fossil fuels, deforestation, and land-
use modifications have had far-reaching impacts on both terrestrial and marine environments.
Rising ocean temperatures have intensified El Nifio events (Trenberth & Hoar 1997; Yeh et al.
2009; Shin et al. 2022), altered precipitation patterns and salinity (Durack et al. 2012; Konapala
et al. 2020), and increased the frequency and strength of winds and storms (Sydeman et al.
2014; Kossin et al. 2020). These are just a few examples of the physical impacts affecting the
ocean. However, intertwined with these physical changes, the ocean's biogeochemistry is also
being altered.

Global ocean biogeochemical effects due to climate change, such as ocean
deoxygenation (Keeling et al. 2010), disruptions to nutrient cycling and primary production
(Marinov et al. 2010; Kwiatkowski et al. 2020), and transformations in the carbon cycle
(Sarmiento et al. 1998; Doney et al. 2014), are all underway. A crucial aspect of ocean
biogeochemistry is the carbon cycle and how the ocean's absorption of roughly one-third of
atmospheric CO, (Sabine et al. 2004; Le Quéré et al. 2016) has led to a reduction in ocean pH,
a process known as ocean acidification (Doney et al. 2009). Monitoring and understanding
these biogeochemical changes have become increasingly dependent on advancements in
sensor technologies. In particular, measuring the inorganic carbonate system, comprising pH,
total alkalinity, dissolved inorganic carbon, and partial pressure of CO,, is essential for tracking
ocean acidification and broader changes in global carbon cycling (Byrne 2014 ; Wang et al.
2019). Among these variables, pH is the most accessible for measuring CO, changes in the
ocean, thanks to recent innovations in sensor technology (Martz et al. 2015; Bushinksy et al.

2019).



Ocean pH instrumentation
Ocean pH instrumentation has evolved to include various types, yet this dissertation

focuses on two critical pH sensing technologies in use today: the potentiometric ion-sensitive
field effect transistor (ISFET), specifically the Durafet model from Honeywell, and the optical
Pico-pH-SUB (Pico optode) from PyroScience GmbH (Martz et al. 2010; Johnson et al. 2016;
Staudinger et al. 2018; Staudinger et al. 2019). These two sensors stand out as the only solid-
state, scalable carbonate system sensors currently available. Their small size, pressure
tolerance, low power consumption, and lack of moving parts or fluidics make them ideally suited
for integration across a wide range of ocean observation platforms.

The Durafet has become central to global ocean pH monitoring programs, serving as the
backbone for numerous long-term datasets (Rivest et al. 2016; Johnson et al. 2017; Claustre et
al. 2020). However, in 2022, Honeywell discontinued the Durafet, creating a significant gap for
the carbon observing community which relies on this technology for widespread monitoring. The
Pico optode emerged as a promising alternative, offering a new approach to pH measurement
but still required thorough assessment for oceanographic use.

Despite the advancements offered by new sensor technologies like the Pico optode,
significant challenges remain in the validation and calibration of sensors in situ. Currently, the
best practice for in-the-field calibration involves collecting seawater samples in bottles followed
by laboratory-based pH analysis (Bresnahan et al. 2014). This approach, however, leaves room
for improvement regarding the following:

¢ Spatiotemporal mismatch: Collecting the exact water measured by the sensor in
dynamic ocean environments can be difficult, producing large errors between sensor

and bottle sample (Hofmann et al. 2013; Bresnahan et al. 2021).

¢ Uncertainties in sample analysis: Recent work has shed light on global ship-based

seawater carbonate measurement uncertainties, with more complications for coastal



environments showing that there is still work to be done to quantify and reduce bottle
analysis uncertainties (Carter et al. 2023; Carter et al. 2024).

e Variability in user expertise: The accuracy of bottle measurements can vary depending
on the experience and skill of the personnel involved, with larger errors due to more
inexperienced users (McLaughlin et al. 2017).

e Resource intensity: Collecting and processing bottle data requires extensive personnel
time, financial resources and specialty equipment, which many labs do not have (Martz
et al. 2015).

e Time lag: Delays in obtaining and applying bottle calibration data can result in outdated
calibration adjustments. For example, a month-long sensor deployment may not be
corrected until bottle data is returned, sometimes many more months or years after the
deployment.

Given these limitations, continued development in sensor technology, calibration techniques,
and new methodologies is essential and further examined in this dissertation. Innovations will
not only enhance sensor accuracy and reliability but also improve accessibility, ultimately

ensuring the continued expansion of robust ocean pH and carbon monitoring.

Biogeochemical monitoring

The pH sensors previously mentioned are just one of many biogeochemical instruments
used in ocean monitoring programs worldwide. Working alongside sensors capable of
measuring oxygen, nutrients, chlorophyll, and particles, they collectively provide insights into the
ocean’s biogeochemical cycles (Gruber et al. 2009; Wang et al. 2019).

A flagship example of these technologies in concert is the Biogeochemical Argo (BGC-
Argo program, a global initiative deploying biogeochemical sensors on an array of 1,000
profiling floats across the world’s oceans (Johnson et al. 2009; Johnson & Claustre 2016; Chai

et al. 2020). These profiling floats are autonomous platforms that sample the upper 2,000



meters of the ocean, transmitting their data back via satellite every 10 days, with each float
designed to operate for around five years providing real-time data available for public use.

Through profiling floats, scientists have gained unprecedented insights into global ocean
warming, shifts in the hydrological cycle, deoxygenation, and ocean acidification (Riser et al.
2016; Hosoda et al. 2009; Sharp et al. 2023; Mazloff et al. 2023). The ability to infer these global
changes is directly tied to the efforts in developing these sophisticated sensors and the rigorous
work required to ensure their performance and quality control (Bittig et al. 2019).

The ocean’s cycles of nutrients and elements play a crucial role in regulating Earth’s
climate, ecosystems, and ocean chemistry (Falkowski et al. 2008, Gruber & Galloway 2008).
Although significant research has advanced our understanding of these cycles, the complexity
and variability of biogeochemical processes make them challenging to measure and model
accurately. Ongoing biogeochemical monitoring and innovations in instrumentation will reinforce
each other, enabling deeper exploration of hard-to-reach regions and continuous discoveries

within the ocean’s vast systems.
Dissertation outline

Chapter 1, in preparation and formatted for submission to Nature: Science Data,
presents a decade-long time-series of ocean pH measurements at Scripps Pier from the Scripps
Ocean Acidification Real-time (SOAR) Monitoring Program. To process the high frequency pH
measurements, the chapter focuses on the evaluation of a novel alternative in situ calibration
method, along with new tools and routines applicable to the wider pH sensor user community.
The data set, currently the longest near-continuous time-series using an ISFET-based pH
sensor, was rigorously quality-controlled and made available for public use for the first time
since data collection began in 2014.

Chapter 2, published in Limnology and Oceanography: Methods, evaluates a new

commercially available optical pH sensor by investigating its dependencies on temperature,



salinity, pressure, and characterizing response time, leading to the development of improved
calibration procedures. Extensive field testing across multiple platforms enabled a thorough
assessment of its performance in diverse ocean environments. Based on these results, new
recommendations for sensor use were provided to the community which did not exist previously.
Chapter 3, in preparation and formatted for submission to Geophysical Research
Letters, investigates subsurface biogeochemical variability in the remote equatorial Pacific
Ocean using data collected by BGC-Argo profiling floats. It explores potential drivers of
biogeochemical variability and examines the influence from the historic La Nifia/El Nifio cycles

of 2019-2024.
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Abstract

Monitoring and assessing long-term trends in coastal near-shore environments pose
distinct challenges due to greater variability relative to the open ocean. The Scripps Ocean
Acidification Real-time (SOAR) Monitoring Program has addressed these by collecting over a
decade of high-frequency sensor pH measurements at the Ellen Browning Scripps Memorial
Pier. This rigorously quality-controlled dataset incorporates calibration via both traditional bottle
sampling methods and a novel approach using direct in situ injections of tris buffer in synthetic
seawater, a traceable pH standard. The updated calibration procedures and methodology are
further detailed, with the in situ tris buffer injection method achieving an accuracy of 0.006 pH.
This near-continuous, high-quality pH time series offers a valuable resource for studying long-
term trends and variability in the near-shore inorganic carbon system, contributing to ongoing
ocean acidification monitoring efforts.

Background & Summary

Monitoring the ocean's inorganic carbon system is essential for understanding
biogeochemical processes and assessing ocean health (Tanhua et al. 2019; Wanninkhof et al.
2021). The inorganic carbon system is typically characterized by four measurable parameters:
pH, dissolved inorganic carbon (DIC), total alkalinity (TA), and the partial pressure of CO,

(Dickson et al. 2007; Wang et al. 2019). Among these, pH has become a key focus of
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measurement due to the availability of robust, efficient sensors that can be deployed across a
wide range of oceanographic environments (Martz et al. 2015; Bushinsky et al. 2019).

Recent advancements in pH sensors, especially those based on ion-sensitive field-effect
transistor (ISFET) technology (Martz et al. 2010; Bresnahan et al. 2014; Takeshita et al. 2014;
Johnson et al. 2016), have enabled continuous, large-scale monitoring of the ocean's inorganic
carbon system. These sensors are widely employed in regional to global monitoring networks
such as the Global Ocean Acidification Observing Network (GOA-ON, Rivest et al. 2016) and
the Biogeochemical Argo array (BGC-Argo, Claustre et al. 2020). However, despite
technological progress, the calibration or remote delayed-mode quality control of sensors in situ
remains a significant challenge (Carter et al. 2023, Wimart-Rousseau et al. 2024), and is the
limiting factor in the reported accuracy of all autonomous datasets. Traditionally, ISFET pH
sensors are calibrated using discrete bottle samples (Breshahan et al. 2014), which introduces
uncertainties due to potential spatio-temporal mismatches, sampling methods, and the inherent
complexities of the inorganic carbon system (Hofmann et al. 2001; McLaughlin et al. 2017).
Additionally, the time and cost required for laboratory analyses delay the ability to quality-control
real-time data.

To address these limitations, use of tris buffer in synthetic seawater as a known pH
reference, has been proposed as an alternative for in situ validation of ISFET-based pH
sensors. This method involves directly injecting the buffer solution across the pH sensing
surfaces within an enclosed flow cell. Tris buffer in synthetic seawater is widely used as a
primary standard for oceanic pH measurements and has been extensively characterized across
a range of temperatures, pressures, and salinity compositions (DelValls and Dickson, 1998;
Rodriguez et al. 2015; Takeshita et al. 2017; Mller et al. 2018). Initially demonstrated on a
short-term deployment (2 weeks) where the tris buffer injections (n=15) outperformed a rigorous

bottle sampling campaign (n>100, Bresnahan et al. 2021), tris buffer offers a streamlined and

11



more consistent in situ calibration method, potentially reducing dependence on discrete bottle
sample collection and the associated laboratory analysis.

In this study, we present a ten-year dataset of high-frequency pH measurements (~10-
minute intervals) collected using a custom SeaFET sensor package deployed at Scripps Pier,
La Jolla, CA, USA. The dataset, provided here, following rigorous quality control protocols,
represents the first time these procedures have been fully developed and documented. We
leverage the ~monthly concurrent collection of bottle samples and tris buffer injections to
evaluate the long-term performance of in situ tris buffer calibration. Specifically, we compare
tris-calibrated and bottle-calibrated SeaFET pH sensor data over an extended time-series,
aiming to demonstrate that tris buffer calibration provides a more reliable and consistent method
for sensor validation, particularly for real-time monitoring applications. A simultaneous goal of
this research is to establish in situ tris buffer calibration as a scalable solution for high-
frequency, continuous pH monitoring, which is essential for improving ocean carbon
observations and supporting future marine carbon dioxide removal (MCDR) initiatives. By
enhancing sensor accuracy and operational efficiency, this method can reduce the need for
human intervention and workload, providing a robust framework for continued monitoring of
ocean health in a changing climate.

The dataset offers a wide range of applications. It can be utilized to assess long-term
ocean acidification trends, shedding light on how coastal regions are responding to global
changes in atmospheric CO, levels (Duarte et al. 2013). Additionally, it allows for the
investigation of dynamic processes such as upwelling and internal tides, which influence the
local inorganic carbon system (Ribas-Ribas et al. 2001). The dataset also provides a valuable
resource for times-series analysis of coastal carbon dioxide fluxes (Evans et al. 2022), and for
exploring the impacts of climate variability, such as El Nifio and La Nifia cycles, on coastal
carbon chemistry (Chavez et al. 2002; Lilly et al. 2019). The dataset also offers the opportunity

to study the occurrence of harmful algal blooms (HABS) and red tides, events that can
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significantly alter ocean biogeochemistry by impacting oxygen levels, and the local carbon
system (Skelton et al. 2024). Understanding how these phenomena relate to pH variability and
other environmental factors could provide insights into their drivers and potential links to broader

climate patterns.
Methods

Sensor Operation

A custom SeaFET pH sensor package (SF, Bresnahan et al., 2014) used in this study
(Figure 1.1). The sensor was mounted on a pier piling approximately 4 meters deep on the
southeastern side of the Ellen Browning Scripps Pier in La Jolla, CA, USA (32° 52’ 1.5" N, 117°
15’ 26.5” W). The SF was deployed as part of the Scripps Ocean Acidification Real-time
(SOAR) Monitoring Program from December 2013 to April 2024, comprised of 31 distinct
deployments. The SF was relocated in July 2021 to a different piling approximately 20 meters

away, at the same depth.

W
Figure 1.1: SeaFET deployed at Scripps Pier, with conical flow cell attached used for manual tris buffer

injection.
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The SF measured pH potentiometrically using the Honeywell DuraFET Il combination
electrode providing an “internal” reference and an Orion chloride ion-selective electrode (CI-ISE)
providing an “external” reference (Martz et al. 2010; Bresnahan et al. 2014 ; Takeshita et al.
2014). This arrangement provides two reference-source voltages and thus two pH values. We
adopt the terminology used by Johnson et al. 2016 utilizing where the sensor calibration
coefficients are referred to as “k0” and its temperature dependence “k2” (Johnson et al. 2018;
Bresnahan et al. 2021). The SF’s reported pH in this study comes from the DuraFET internal
reference with temperature from the DuraFET thermistor.

In situ calibration data

Two methods were used for in situ calibration to discrete samples of known pH: the
traditional collection of seawater bottle samples and the injection of tris buffer into the flow cell
of the pH sensors both manually and autonomously.

Seawater was collected using a clear, 2-liter diver-deployed Niskin bottle, transferred to
a 500 mL borosilicate bottle using silicone tubing, and poisoned with 240 pL of saturated
mercuric chloride within one hour of collection (n = 102; Dickson et al. 2007). The bottle
samples were sent to three different laboratories for analysis during the study, depending on
availability. Spectrophotometric measurements using m-cresol purple (mCP) were conducted,
where two labs used purified mCP and the third used impure dye with a dye impurity correction
applied (Carter et al. 2013; Takeshita et al. 2021). Some bottles were concurrently measured for
total alkalinity (Ar) and total dissolved inorganic carbon (C+). Ar was determined via open-cell
titration following standard protocols (Dickson et al. 2003). Ct was determined either by
coulometric titration® (Dickson et al. 2007) or by infrared detection after acidification and CO»
stripping (Goyet and Snover, 1993; O’Sullivan and Millero, 1998).

For the tris buffer injections, 120 mL of tris buffer was manually injected into a custom
conical 25-mL flow manifold installed by scuba divers at time of calibration. The injection was

performed using two 60-mL syringes, with a check valve on the outlet to prevent any mixing with
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ambient seawater during the measurement process. Both certified tris buffer from the lab of
Andrew Dickson at Scripps Institution of Oceanography and self-made tris buffer (Paulsen &
Dickson 2020) were utilized.

Calibration procedure

Two methods were used to calibrate sensor pH to the in situ discrete samples: a single-
point or mean kO value or a linearly fitted kO value. Both methods require calculating kO using
known in situ pH values from the discrete sample data (bottle and tris), internal reference
voltage, and temperature at the time of discrete sample collection.

Bottle pH was converted to in situ pH using CO2SYS V3 (Lewis & Wallace 1998; Sharp
et al. 2023), with spectrophotometric pH and A+ as input parameters. Bottle salinity was
determined by a salinometer and in situ temperature was determined from the SF at time of
seawater collection. Nutrient concentrations were set to zero, with K1 and K2 dissociation
constants from Lueker et al. 2000, KSO4 dissociation constant from Dickson 1990, KHF
dissociation constant from Perez & Fraga 1987, and the boron-salinity ratio from Lee et al. 2010
as recommended for best practice (Orr et al. 2018; Jiang et al. 2022). If bottle At was
unavailable, Ar was estimated using a linear salinity-Ar regression determined from the bottle
samples in this study.

Tris buffer in situ pH was calculated from DuraFET temperature at the time of injection,
and a practical salinity of 35 using Eg. 18 from DelValls & Dickson 1998.

During most deployments, multiple bottles were collected and tris buffer injections
performed (~monthly), providing 4 choices for in situ sensor calibration: mean bottle kO, mean
tris kO, linear bottle kO, or linear tris kO. The rationale for the chosen calibration method is
discussed below (Figure 1.2, and in the section below). All deployments were individually

processed, using a customized graphical user interface (GUI) developed for this dataset.
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Figure 1.2: Decision tree for selecting the in situ sensor calibration method based on bottle samples and
tris buffer injections. The number of tris buffer injections (N) and the standard deviation (o) of the
calibration coefficient (kO) warrant either a single kO or linear kO to be applied to the deployment.

Calibration example

Regarding bottle samples for calibration use, we keep with the best practices of using a
mean (single) kO value, regardless of quantity of bottles collected during the deployment
(Bresnahan et al. 2014; 2021). For the remainder of this study, we focus on the tris buffer
injection calibration method. A mean kO value was also used for tris buffer injections if:

1) 2 orless tris injections were performed.

2) Or the standard deviation of the kO values was less than 300 pV. This standard deviation
value was chosen as it equates to ~0.006 pH, which is the reported uncertainty of the
self-made tris buffer (Paulsen & Dickson 2020) and was the standard deviation seen
during the study by Bresnahan et al. 2021 for the DuraFET internal reference calibrated
to tris buffer.

Figure 1.3a illustrates an example stable deployment that justifies the use of a mean tris buffer
kO as all kO values (o = 130 pV) fell within the 300 pV standard deviation threshold. Typically,

tris injections for most deployments exhibited standard deviations well within this threshold,
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supporting the use of a mean kO (N = 21). However, in some cases (N = 10), standard
deviations exceeded 300 pV, with a visible linear drift that aligned with the trend observed in

bottle samples.
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Figure 1.3: Examples of kO values from bottles (purple diamonds) and tris buffer injections (green
triangles) from two deployments: (a) Stable deployment with mean kO + 300 uV (black line with tan
shaded region) shown for both bottles and tris buffer. Tris buffer kO values are within £ 300 uV suggesting
the use of a mean tris buffer kO value for this deployment. (b) Drifting deployment with robust linear
regression and 95% confidence interval (Cl; green line with green shaded region) fit to tris buffer
injections including the outlier. Note the narrow mean x 300 pV (black line with tan shaded region) for this
deployment, calculated for tris buffer only. (c) Same as (b) but with normal linear regression fit to tris
buffer injections excluding the outlier.

Here we outline the steps used to apply a linear kO correction for sensor drift, as has
been previously demonstrated for BGC-Argo floats (Johnson et al. 2018). This correction was
applied exclusively to tris buffer injections, which provide a direct measure of a known pH
without the risk of spatio-temporal mismatch, offering improved consistency over bottle
measurements (Bresnahan et al. 2021).

If the standard deviation of tris measurements exceeded 300 uV, kO and thus sensor
drift was likely (Figure 1.3b). To perform a linear regression, at least three tris buffer injections
were required during a deployment. This allowed for the calculation of goodness-of-fit statistics,

the identification of potential outliers, and the confirmation that multiple injections exhibited the
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same drift direction, ruling out faulty injections. The following steps were taken to apply a linear
kO calibration for this example (Figure 1.3b):

1) Calculated kO values for the tris buffer injections (N = 6; ¢ = 7.2 mV). Standard deviation
was well outside the 300 uV threshold.

2) Visually confirmed if there was a trend in kO values and its consistency to the bottle
samples.

3) Fitted a robust linear regression (Figure 1.3b). R? = 0.745 and 95% confidence interval =
8.0 mV (ClI).

4) Identified and removed outliers greater than 2 standard deviations or outside the 95%
Cl.

5) Refitted a normal linear regression (Figure 1.3c). R? = 0.996 and 95% CI = 860 uV.

6) Noted improvement in R? value and reduction in the 95% ClI, indicating significance of
the outlier.

7) Applied this linear kO over the duration of the deployment (V/time). To compare to our
300 uV standard deviation threshold for mean kO deployments, the RMSE for this
example was 430 uV.

Using the outlined methodology, we present two example deployments demonstrating the
application of a mean and linear kO derived from tris buffer injections. Bottle samples are
included to validate the alignment between sensor and bottle data following calibration to the tris
buffer.

In the stable deployment example (Figure 1.4a), residuals for the mean kO of the tris
injections remained near zero with a standard deviation of 128 pyV (~0.002 pH). Residuals
relative to the bottle samples showed an offset of 0.027 = 0.007 pH. The SF data exhibited a
maximum difference of 0.003 pH whether the mean or linear kO was used for calibration (Figure
1.4b). This negligible difference, within the uncertainty of tris buffer preparation (<0.006 pH),

suggests that using a mean kO was appropriate for this deployment.
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Figure 1.4: Example deployments showing the use of a mean or linear kO. (a) SeaFET (SF) data from a
stable deployment calibrated to tris buffer injections using a mean kO (orange line) and a linear kO (blue
dashed line). In situ tris buffer pH (green triangles) and bottle sample pH (purple diamonds) also shown.
(b) Residuals between the SF using both kO values and the tris buffer injections (triangles), difference
between SF data calibrated to mean and linear kO (black line), and residuals between SF calibrated to the
mean kO and bottle samples (purple triangles). The dashed line and tan shaded region represent a
difference of 0 + 0.006 pH corresponding to the kO standard deviation threshold of 300 pV. (c) Same as
(a) but for a drifting deployment warranting the use of a linear k0O value. (d) Same as (b) for the drifting
deployment shown in (c) but the residuals between the SF calibrated to the linear kO and bottle samples
are shown.

In the drifting deployment example (Figure 1.4c), calibration of the SF using a mean kO
revealed significant drift, as residuals between the SF and in situ tris buffer pH exhibited a clear,
linearly increasing trend (Figure 1.4d). A similar trend was observed in the residuals for the in
situ bottle sample pH, with a maximum deviation up to 0.15 pH. In contrast, when the SF time
series was calibrated using a linear kO to adjust to the in situ tris buffer pH, it also showed much
closer alignment with the bottle samples. Residuals between the SF (calibrated with a linear k0)
and tris buffer were 0.000 + 0.007 pH, while residuals for the bottle samples displayed the same
offset observed previously, at 0.028 + 0.017 pH.

The contrast between calibrating with a mean versus linear kO underscores the

importance of selecting an appropriate calibration method, as the goal is to maintain sensor
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consistency across both tris buffer and bottle sample comparisons. This example highlights the

efficacy of the linear kO to correct for sensor drift, ensuring sensor data reliability over time.
Data records

SOAR pH time-series
The decade-long (Dec 13, 2013 — April 17, 2024) data set of sensor pH is archived by

the University of California San Diego Library. The data set provides comma-separated values
(.csv) and MATLAB MAT-file (.mat) of sensor pH data corrected to the in situ tris buffer
injections according to our methodology outlined above, as well as secondary pH data corrected
to the bottle data. Datetime data is provided in Coordinated Universal Time. Raw sensor voltage
and temperature is also provided to allow recalculation of sensor pH data using the in situ
calibration data of choice. The calibration coefficients used, and calculated for all four
methodologies is also provided. Quality-control (QC) flags for the sensor pH data corrected to
the tris buffer injections are provided as follows:

e 1 =good data

e 2 = bottle sample collected during this measurement

e 3 =tris buffer injected during this measurement

e 4 =Dad data.
The time series of SeaFET pH data corrected to the tris buffer injections, using QC flags of 1

and 2, is shown in Figure 1.5.
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Figure 1.5: Scripps Ocean Acidification Real-time (SOAR) Monitoring Program time-series of SeaFET pH
calibrated to in situ tris buffer injections. Light blue line represents high-frequency data, bold blue line is
the daily average. Bottle samples (purple diamonds) are also shown.

Bottle sample data

Bottle data is archived by the University of California San Diego Library. The data set
provides comma-separated values (.csv) and MATLAB MAT-file (.mat) of the
spectrophotometric pH, temperature (°C) from the spectrophotometric analysis, salinity (PSU),
At (umol kg1), Cr(umol kgt), and calculated in situ pH. Datetime data is provided in
Coordinated Universal Time.
Tris buffer metadata

Tris buffer injection data is archived by the University of California San Diego Library.
The data set provides comma-separated values (.csv) and MATLAB MAT-file (.mat) of the
datetime of tris buffer injection, in Coordinated Universal Time, temperature (°C), and calculated
in situ pH of the tris buffer. Raw sensor voltage (Vint, volts) used in this data set to calculate the
calibration coefficients is also included.
Technical validation
Tris buffer vs bottle sample bias

The data set provided an unprecedented opportunity to compare tris buffer injections
with the traditional bottle sample calibration method for calibrating ISFET pH measurements.

Generally, the sensor pH data tracked well with the bottle samples, indicating that correcting
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sensor pH to the tris buffer injections was a valid calibration method. However, a consistent
offset of 0.026 pH units was observed between sensor data when corrected to the tris buffer
and the bottle pH, suggesting that the bottle pH was consistently lower than expected compared

to in situ pH values from the tris buffer (Figure 1.6a).
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Figure 1.6: (a) Residuals (mean + 10) between the SeaFET (SF, calibrated to tris buffer) and the in situ
tris buffer pH (green triangles) and bottle sample in situ pH values from spectrophotometric analysis
(purple diamonds).(b) Property-property plot of bottle sample in situ pH calculated from total alkalinity (At)
and total dissolved inorganic carbon (Cr) vs in situ spectrophotometric pH. Dashed line is 1:1.

This offset persisted throughout the entire decade-long time series, with no observed
differences across tris buffer batches, laboratories performing spectrophotometric analysis,
sample collectors, or bottle shelf life, which ranged from six months to two years. This bias is
equivalent to residuals seen in several studies: ~0.03 pH from Bresnahan et al. 2014 and Velo
& Padin et al. 2022, 0.04 pH from Gonski et al. 2018, and better than the residuals seen in
these studies: 0.08 from McLaughlin et al. 2017, up to 0.1 from Miller et al. 2018. In contrast, the
bias seen from the only previous study using in situ tris buffer injections was 0.008 pH at Lizard
Island, Australia (Bresnahan et al. 2021).

Furthermore, the standard deviation of the residuals of the tris buffer injections (0.004
pH) compared to the bottle samples (0.015 pH) demonstrated approximately a fourfold
improvement in calibration precision, on par with those seen previously (Bresnahan et al. 2021).
Based on the uncertainty of tris buffer preparation (0.006 pH, Paulsen and Dickson 2020) and

the standard deviation of SF-tris buffer residuals (0.004 pH), the accuracy of the data set is
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reported as 0.006 pH units. Overall, the observed offset between tris and spectrophotometric pH
corrected sensor data may be location-dependent, with uncertainties in the spectrophotometric
analysis and CO2SYS calculations likely playing a major role in attributing to the 0.026 offset.

A persistent discrepancy of ~0.01 pH was observed in the bottle samples when
comparing in situ pH determined spectrophotometrically with that calculated from At and Cr
(Figure 1.6Db). This discrepancy aligns with those from global shipboard measurements (Carter
et al. 2023), although those were conducted in the open ocean. Given the greater variability in
coastal carbonate chemistry, this suggests that uncertainties related to unidentified Ar sources
in coastal environments may contribute to the discrepancy, requiring further research for
characterization and determination (Carter et al. 2024).

Calibration coefficient kO variability

Across the 31 deployments, 9 DuraFET sensors were deployed, yielding a mean kO
value of -0.3712 + 0.0111 V based on tris buffer calibrations for the time series (Figure 1.7a). In
the 10 deployments using a linear kO, drift rates ranged from 8 to 329 pyV/day (Figure 1.7b).
Excluding the highest outlier, the average drift rate was 30 pV/day, suggesting that it would take
approximately 10 days to exceed the 300 pV standard deviation threshold (~0.006 pH) to
support using a linear kO.

Two deployments exhibited negative drift, but these also had some of the lowest drift
rates and mean kO standard deviation. For these cases, it would take roughly 30 days to
surpass the 300 pV threshold. Overall, for the deployments with linear kO corrections, the root
mean square error (RMSE) for sensor data compared to tris buffer in situ pH was 0.006 pH. In
contrast, using a mean kO for the drifting deployments resulted in a kO standard deviation of

0.0011 V, increasing the sensor-tris buffer RMSE to ~0.018 pH. This indicates that while most
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the deployments that experienced drift were significant, they were robustly correctable to

maintain the reported accuracy of the tris buffer injection calibration method of 0.006 pH.

-0.34r1 0.025 T T T 0.430
a b — = BT2 W
= 3303 pV
-035} 0.02} o 4 0344
= 838 ¥
036} J —epe 4ol
0.015} i {0258
_ I S a= . = g;u{tfv
0.37 > —_— I
= ay N 0+ 0,006 pH T
g o 001 10172 =
2 0.38 £ i _ﬁ <
-
039} é y 0.005F 83 ;Viday 35 pViday 1 0.086
0.000023 Vidayg \visay
o4l 2= 0 ] 0.000
' 4 mean k0
F 3 A linear ki
-0.41 L -0.005 L . ! -0.086

B b o A D 9 DN A ok 0 50 100 150
M M N N N S
S S S B S S S S Elapsed days

Figure 1.7: (a) Calibration coefficient kO for tris buffer injections used throughout the time-series. Orange
triangles represent when a mean kO value was used (n=21) and blue triangles represent when a linear kO
was used (n=10). The multi-color lines represent the drift rates for the linear kO deployments. (b) Drift
rates of k0. Line color corresponds to deployments in in (a). Legend shows standard deviation of kO
values of the tris buffer injections before linear correction applied (i.e. > 300 yV threshold).

Using the outlined methodology with a linear kO approach, it is important to note that
deployments should exceed 30 days to confidently determine if the sensor is drifting, and
whether the drift is occurring at a consistent rate and in the same direction across three or more
tris buffer injections. Nonlinear drift, or piece-wise drift, as observed in profiling applications
(Johnson et al. 2018; Maurer et al. 2021), was not present in any of the deployments used to
generate this dataset. Due to the constant pressure experienced by the sensor in fixed or
moored applications, it is expected to only experience linear drift on occasion.

Comparison to Self-Calibrating SeapHOXx

The Self-Calibrating SeapHOXx (SCS), first described and tested by Bresnahan et al.
2021, is identical to the SF but includes an oxygen optode (Aanderaa 5730) and conductivity
sensor (Seabird SBE37SI). The SCS was also mounted on a nearby pier piling, at four meters
depth. The SCS, deployed from February 2022 to October 2023, comprised of four distinct
deployments. Additionally, the SCS uses a pump (Seabird 5P) for active flushing to limit

biofouling and has the unique capability to collect fully automated in situ calibration
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measurements. For intercomparison and consistency, we also report the SCS’s pH from its
internal reference using the temperature measurement from the collocated oxygen optode.

The SCS automates the injection of tris buffer from a flexible gas-permeable bag (Wolfe
et al. 2021), eliminating the need for human intervention (Bresnahan et al. 2021). This system
incorporates a pressure equilibrated 3-way valve to seamlessly and programmatically switch
between seawater and tris buffer measurements. The SCS used self-made tris buffer, which
was subjected to spectrophotometric testing for quality assurance. This testing confirmed that
the pH of the self-made buffer was within 0.006 pH units of the spectrophotometric value
(Paulsen & Dickson, 2020).

When deployed alongside for ~1.5 years, the pH data from the two sensors closely
matched, despite utilizing separate systems for tris buffer injection (Figure 1.8a). The residuals
between the sensors were 0.005 pH units, within the reported accuracy of the tris buffer
injection method. The largest discrepancy occurred during the April 2023 red tide event, likely
due to differences in flushing mechanisms. The passive system of the SF may have trapped

phytoplankton during the bloom, amplifying the high pH signal during a time of high productivity.
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Figure 1.8: (a) Time-series of the SOAR SeaFET data (SF, blue line) and the Self-Calibrating SeapHOXx
(SCS, gold line), both corrected to their respective in situ tris buffer injections. Bottle samples (purple
diamonds) are shown. (b) Residuals between the SF and SCS (black line), SF and bottle (blue
diamonds), SCS and bottle (gold diamonds). Legend shows the mean + 10 of each residual.

Residuals between both sensors and bottle samples were similarly consistent, 0.036 for
the SF compared to 0.040 for the SCS during this period, confirming that the tris buffer
calibration method is robust and repeatable across different sensor packages and injection
systems (Figure 1.8b). It is important to note that this offset is larger than that seen for the entire
dataset, which was 0.026 pH, revealing a potential increasing trend over the time of the bias
between tris buffer and bottles. The injection of tris buffer for the SeaFET highlighted the
effectiveness of this calibration technique, though it demands considerable human involvement,
including scuba diving, the installation of a specialized flow cell, and manual injection via

syringe. In contrast, the SCS’s automated injection system removes the necessity for manual
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handling, providing high-quality in situ calibration data directly when utilized in a real-time
monitoring system.
Ocean acidification trend

To further validate the time-series dataset, ocean acidification trends were estimated for
the three time-series available: (1) SeaFET sensor pH data corrected using tris buffer injections,
(2) SeaFET pH data corrected to bottle samples, and (3) the in situ pH of bottle samples (Figure
1.9). No detrending was performed, in accordance with best practices for estimating ocean
acidification trends (Sutton et al. 2022). This evaluation was conducted solely to demonstrate
that the relative accuracy of our methods was consistent, and that all methods captured the
same variability and trend in the in situ data.

The linear trends for all three time-series were comparable. The tris-corrected SeaFET
data showed a trend of -0.0023 pH year™, while the bottle-corrected SeaFET data indicated a
trend of -0.0027 pH year™. The trend for the bottle samples alone was identical to that of the
SeaFET data corrected to bottle samples, which is expected, as the sensor data was calibrated

to the bottle data.
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(blue dots).
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These trends are consistent with those observed in other long-term monitoring programs
around the world (Doney et al. 2009; Bates et al. 2014; Ishida et al. 2021; Ma et al. 2023; Wolfe
et al. 2023). The y-intercept offset, or bias, between the two SeaFET time-series differed by
0.024, which was equivalent to the bias between the sensor pH data corrected to tris buffer
injections and the in situ pH from bottle samples seen in the above sections.

To reiterate, these results indicate that regardless of the absolute accuracy of the
calibration method—whether corrected using tris buffer injections or bottle samples—the

observed variability and long-term trend remained consistent.
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Conclusion

This study provides a decade-long dataset of sensor pH measurements from the Scripps
Ocean Acidification Real-time (SOAR) Monitoring Program with concurrent bottle sample data
and tris buffer injection metadata. The archived data, covering the period from December 13,
2013, to April 17, 2024, is accessible through the University of California San Diego Library. The
dataset highlights sensor pH data corrected using in situ tris buffer injections, with a reported
accuracy of 0.006 pH. Quality control (QC) flags ensure data integrity, providing clear
classifications for data quality.

The technical validation of the sensor pH data when calibrated to the tris buffer injections
revealed a consistent offset of 0.026 pH when compared to the bottle samples. The magnitude
of this offset is in line with previous studies, indicating that the tris buffer calibration approach
provides consistent and reliable results. The offset is of concern, as proving the efficacy of the
tris buffer injection calibration method relies on obtaining equal accuracy proven by best
practices of comparing in situ sensor pH to spectrophotometric values (Martz et al. 2010;
Bresnahan et al. 2014; Takeshita et al. 2014). Further research is required to determine the
source of this offset, including the discrepancy of the near-shore relationship between Ar and Cr
in the determination of in situ pH (Carter et al. 2024).

The comparative time-series from the Self-Calibrating SeapHOx showcased the
reliability and consistency of the tris buffer calibration across separate sensor packages,
underscoring the advancements in the automated calibration system. The closely aligned pH
readings from both sensors, along with equivalent residuals to bottle samples, confirm that there
is no significant difference between the tris injection methods. The continued use of the Self-
Calibrating SeapHOX is an obvious choice, as it eliminates the need for manual intervention
while ensuring the highest-quality in situ calibration for ISFET-based pH sensors, making it

indispensable for non-expert users and long-term monitoring programs.
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Additionally, the brief evaluation of ocean acidification trends showed a decrease of -
0.0023 pH year™, utilizing the tris buffer-corrected SeaFET data. This trend was comparable to
that observed in the bottle-corrected SeaFET data, and the bottle samples alone. This
consistency across the multiple datasets emphasizes the reliability of both calibration methods
in capturing the same long-term trend.

Overall, the dataset contributes to a deeper understanding of ocean biogeochemistry
and highlights the significance of high-quality pH measurements in monitoring ocean
acidification. Further refinement is needed to confidently claim the “climate” quality uncertainty
goal of 0.003 pH uncertainty for a long-term sensor dataset such as this (Newton et al. 2015). In
the end, the accessibility of this comprehensive dataset supports ongoing research efforts and
underscores the importance of innovative calibration techniques in enhancing the quality of
ocean monitoring programs.

Code availability
Code and the graphical user interface (GUI) application used to process individual

deployment files that make up the entirety of this dataset are freely available on GitHub

(https://github.com/taylorwirth4/ISFET APP). The GUI reads in the sensor data file, a file for tris

injection meta data, and separate bottle sample data file. Example files with required formats
are given. The GUI outputs calibrated pH, corrected to either the bottles and/or tris buffer
depending on user preference, along with a pdf summary of the procedure for documentation
and note keeping. The GUI can be used for bottle or tris injections separately, requiring the user
to specify calling the “null” data file provided for the respective calibration data they do not have

or wish to use.
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Abstract

As global ocean monitoring programs and marine carbon dioxide removal methods expand, so does the need
for scalable biogeochemical sensors. Currently, pH sensors are widely used to measure the ocean carbonate
system on a variety of autonomous platforms. This paper assesses a commercially available optical pH sensor
(optode) distributed by PyroScience GmbH for oceanographic applications. Results from this study show that
the small, solid-state pH optode demonstrates a precision of 0.001 pH and relative accuracy of 0.01 pH using an
improved calibration routine outlined in the manuscript. A consistent pressure coeffident of 0.029
pH/1000 dbar is observed across multiple pH optodes tested in this study. The response time is investigated for
standard and fast-response versions over a range of temperatures and flow rates. Field deployments include
direct comparison to ISFET-based pH sensor packages for both moored and profiling platforms where the pH
optodes experience sensor-specific drift rates up to 0.006 pH d~'. In its current state, the pH optode potentially
offers a viable and scalable option for short-term field deployments and laboratory mesocosm studies, but not

for long term deployments with no possibility for recalibration like on profiling floats.

The existing suite of commercially available oceanographic
sensors for measuring the inorganic carbonate system is
limited (Martz et al. 2015; Bushinsky et al. 2019). Commer-
cially available pH sensors have grown in number and
diversity of methodology, with current options based on elec-
trochemical, spectrophotometric, potentiometric, and optical
technology (IOCCP 2024). Glass pH electrodes have been used
for decades to measure seawater pH on the benchtop. In situ
glass pH eclectrode sensors (e.g., Idronaut, Sea-Bird Scientific
SBE27, YSI EXO) are small and easily integrated into sensor
packages and platforms, but suffer from reduced accuracy of
= 0.1 pH (Johengen et al. 2015) and sensor drift requiring fre-
quent calibration (Martz et al. 2010; Rérolle et al. 2012).

In contrast, spectrophotometric-based instruments
(e.g., Sunburst Sensors SAMI-pH, Clearwater Sensors lab on chip)
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have proven to be accurate to ~ 0.005 pH for long durations
with low drift rates (Mowlem et al. 2021). However, their large
size and long measurement intervals due to the microfluidics
complexities (valves, pumps) pose challenges for fast profiling
and platform integration (Yin et al. 2021).

Potentiometric pH sensors based on the Honeywell lon
Sensitive Field Effect Transistor (ISFET; Martz et al. 2010) have
been successfully deployed on a wide variety of autonomous
platforms and vehicles such as profiling floats (Johnson
et al. 2016), underwater gliders (Saba et al. 2019; Takeshita
et al. 2021a), moorings (Lilly et al. 2019), and autonomous
surface vehicles (Chavez et al. 2018). They have been used to
quantify natural variability across a wide range of marine
ecosystems (Hofmann et al. 2011), estimate carbon dioxide
(CO») fluxes (Gray et al. 2018), investigate the potential for
seagrass meadows to locally ameliorate impacts of ocean
acidification (Ricart et al. 2021), examine feedbacks between
physical and biological forcings on scawater chemistry
(Cyronak et al. 2020), quantify benthic net community produc-
tion and calcification rates on coral reefs (Takeshita et al. 2018),
and used as feedback control in ocean acidification mesocosm
studies (Hughes et al. 2018; Donham et al. 2023). In summary,
the ISFET has become a cornerstone of global ocean carbon
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observing, through many observational networks worldwide
such as the Integrated Ocean Observing System (I00S, US
100S 2021), Global Ocean Acidification Observing Network
(GOA-ON, Rivest et al. 2016), and Biogeochemical Argo
(Johnson et al. 2017; Claustre et al. 2020; Maurer et al. 2021).

Despite the wide breadth and usage, Honeywell, the
sole producer of ISFETs widely used in DuraFET and
Deep-Sea-DuraFET pH sensors, announced a halt in produc-
tion in June 2022, leaving a void in the availability of scalable
pH sensors for oceanographic applications. Production has
since been restarted, but the potential cease in ISFET availabil-
ity would have significantly hindered the ability to effectively
observe the ocean carbon cycle.

Motivated to address this sole-source vulnerability in global
ocean carbon observing, this study aims to contribute to the
ongoing discourse on pH instrumentation by assessing a com-
mercially available optical pH sensor, the Pico-pH-SUB pH
optode, distributed by PyroScience GmbH. This optical technol-
ogy, similar in design to the very popular oxygen optodes cur-
rently deployed on profiling floats and various platforms, holds
promise as oxygen optode sensors have proven to be extremely
robust (Tengberg et al. 2006; Bittig et al. 2018) and are indeed
the most widely deployed type of chemical sensor in the ocean.

The performance of the pH optodes has been characterized
in the laboratory, briefly in the field and shows promise
(Fritzsche et al. 2018; Staudinger et al. 2018; Staudinger
et al. 2019; Monk et al. 2021). However, further characteriza-
tion focused specifically on oceanographic applications is nec-
essary preceding widescale use of this sensor in the ocean. The
objectives of this study include assessing the performance of
the factory-recommended calibration procedure, developing
an improved calibration method, verifying temperature
response on the various calibration coefficients, quantifying
response time and pressure coefficients, and assessing sensor
performance and stability in different ocean environments.

This study involves deploying the pH optode on fixed plat-
forms in the deep ocean and a highly dynamic coastal environ-
ment. Sensor drift and a proposed correction method are
rigorously evaluated in these two diverse settings. In addition,
the pH optode is deployed on a Spray underwater glider to assess
its performance for profiling applications. Through these com-
prehensive analyses, a thorough assessment of the Pico-pH-SUB
in multiple ocean environments is provided. The assessment
generated from this study is intended to offer insights and rec-
ommendations to the broader oceanographic community. The
findings contribute to advancing the understanding of pH mea-
surement technologies, ensuring continued progress in monitor-
ing and managing the health of marine ecosystems.

Materials and procedures
Sensor description and operating principles

We used the Pico-pH-SUB model manufactured by
PyroScience GmbH (Aachen, Germany) for this study. This
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OEM sensor (~ 2k USD) is pressure rated to 4000 dbar and has
a low power draw of 50 mW during operation (< 500 W dur-
ing sleep). Operating at a maximum sampling rate of 20 Hz, it
communicates via UART protocol. The pH optode can be fully
powered off in between measurements without compromising
performance. For an accurate calculation of pH from the
Pico-pH-SUB, a concurrent temperature measurement is
required. A PT100 resistance temperature detector can be
soldered directly to the Pico-pH-SUB as recommended from
PyroScience GmbH, or the temperature correction can be
applied post processing using an external temperature sensor,
as done in this study. The performance of the Pico-pH-SUB
should be identical to the other pH optodes in the PyroScience
GmbH product line, such as the AquapHOx, and when inte-
grated into a custom logger (5k-11k USD).

The pH sensitive material or “foil” is contained in the “sen-
sor tip” which is secured by the “sensor cap” (Fig. 1a). The sen-
sor cap also acts as a guard to protect the sensor tip. The
sensor tip and cap are sold as a single assembly, separate from
the optoelectronics, and installed by the user. In this study,
we used both the commercially available sensor cap, and
designed our own custom sensor cap to secure the sensor tip
to the Pico-pH-SUB.

The pH optode’s operational principle is based on the Dual
Lifetime Referencing scheme (Klimant et al. 2001). The foil is
comprised of an immobilized fluorescent indicator (an aza-
BODIPY dye synthesized by PyroScience GmbH) and phos-
phorescent reference (Egyptian blue) on a support material
(a PET thermoplastic). An additional outermost protective
layer is equipped for optical isolation to minimize effects from
direct sunlight such as oversaturation of the photodiode and
bleaching of the indicator (Clarke et al. 201S; Staudinger
et al. 2019). The optoelectronics utilize a 625 nm LED for exci-
tation and a photodetector in combination with a long-pass
emission filter are used to measure the luminescence intensity
ratio between the pH sensitive indicator and the reference
dye. The pH optode sensor signal (R) is the ratio between the
indicator fluorescence intensity and reference phosphores-
cence intensity (Staudinger et al. 2019). This analog signal is
compensated for device effects such as sensor internal temper-
ature and signal intensity. The response of the pH optode can
be described by a Boltzmann sigmoid in relation to pH
(Fig. 1b and Eq. 1):

R1'—R2'

f— 3 ! — —
pH = pKda' + slope xlog( R—RY

- 1) +cal_offset (1)

where R1' and R2’ are the top and bottom asymptote terms,
respectively, pKa' represents the point of inflection, slope’ is
the slope at the point of inflection. The cal_offset term refers
to an empirical pH offset determined during calibration
and/or deployment. The prime symbol indicates the terms are
at in situ temperature, and all terms expand to include the
coefficient at a reference temperature of 20°C (e.g., R1), and a
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Fig. 1. (a) The Pico-pH-SUB sensor with and without PHCAP-PK8T-SUB sensor cap and tip installed. (b) Boltzmann sigmoid sensor signal R vs. pH. Nominal
values of 1.4 for R1, 0.05 for R2, 8.0 for pKe, and 1.0 for slope were used. The shaded region indicates the functional pH measurement range of 7-9.

linear temperature coefficient (e.g., R1y) (Egs. 2-5). Additional
salinity coefficients, pKaj, and pKa,, are applied to pKa only:

RY' =R1 x (1+R1y x (T, —20)) (2)
R2' =R2 x (1+R2y x (T —20)) (3)
slopd = slope x (1+slope; x (T —20)) (4)

PKa' =pKa+ pKay x (Tc —20) 0.5 x pKay,

28
x [ X —0.2791745 — pKa,, x

20x 8
—0.1
1+ /208 ( 2 5)
V 1000

1000
(5)

where T¢ is the temperature in °C, § is practical salinity.

The PHCAP-PK8T-SUB sensor cap from PyroScience GmbH,
designed to measure seawater pH on the total scale, was
employed for all tests. The pH indicator material has a pKa of
around 8, which aligns closely with the nominal ocean pH
value. The sensor responds to changes in pH between 7 and
9, allowing coverage of the full range of ocean pH except in
rare extreme environments. In addition, a fast-response ver-
sion of this sensor tip was tested, which was custom devel-
oped for this project. The fast-response sensor tip is identical
in makeup using the same pH sensitive material, but with the
outermost optical protective layer removed to reduce the dis-
tance of diffusion between sample and the immobilized indi-
cator in the foil. All laboratory tests and field deployments
performed in this study were either indoors, with opaque flow
manifolds or in the deep sea eliminating any negative effects
due to direct sunlight.

Laboratory calibration and characterization
In the laboratory, the accuracy and assumptions associated
with the manufacturer recommended calibration protocol
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were assessed (Three-point and temperature cycle calibration);
an improved (but more time and labor intensive) calibration
protocol was developed (Seawater multipoint calibration), and
the pressure response (Pressure response) and the response
time were quantified (Response time). Three Pico-pH-SUB
units were used for sections Three-point and temperature cycle
calibration and Seawater multipoint calibration. The same
batch of sensor cap, thus the same batch of sensor tip and
sensing material, was installed on each Pico-pH-SUB. Each
sensor cap, with installed sensor tip, comes with pre-
determined factory coefficients from PyroScience GmbH,
which are applied to the entire production batch. Three differ-
ent Pico-pH-SUB units were used for section Pressure response,
and two different Pico-pH-SUB units were used for
section Response time. Sensor caps from the same batch were
used in each section, except Pressure response, with different
batches used across sections.

Three-point and temperature cycle calibration

PyroScience GmbH advises the user to conduct a 1- or
2-point calibration before initiating measurements. The first
calibration point quantifies R1 by immersing the Pico-pH-SUB
in an acidic solution of pH < 4, and the second quantifies R2
in a basic solution of pH > 10. An optional third point quan-
tifies cal_offset using a solution with known pH. The determi-
nation of these three coefficients allows for the definition and
adjustment of the sigmoid response curve, assuming the pKa
and slope remain unchanged from the factory values. Among
these coefficients, R1 and R2 have a nonlinear impact and can
have an outsized effect on the calculated pH values (Fig. 2),
underscoring the critical importance of their characterization.

For the first two calibration points, an acidic solution of pH
~ 2 was prepared using 0.08 mol L™! citric acid, and a basic
solution of pH ~ 11 was prepared using 0.1 mol L~* sodium
carbonate. Both solutions were prepared with and without a
0.7mol L' sodium chloride (NaCl) background to compare
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Flg. 2. The difference in calculated pH from the Pico-pH-SUB if the following sigmoid coefficient is varied by + 0.01: (a) R1, (b) R2, (c) pKa, (d) slope.

Nominal values for R1 = 1.5, R2 = 0.05, pKa — 8.0, slope — 1.0 were used.

results if a natural seawater ionic was used. PyroScience GmbH
provides these solutions in small volumes to be prepared in
deionized water, which posed challenges for temperature regu-
lation and multi-day tests. Therefore, larger volume solutions
were prepared for this study with separately sourced
chemicals. To ensure stable readings in each solution, the
Pico-pH-SUB was immersed in seawater for at least 24 h pre-
ceding the three-point calibration. Hydration of the sensing
material reduced conditioning observed when a dry sensor
was immersed in the acidic solution. During calibration, each
solution was continuously stirred, and temperature was mea-
sured in all three solutions with a QTI DirecTemp USB ther-
mometer (DTU6028-002), which is accurate to 0.1°C (with
resolution of 0.01°C). The sensor signal, R, was recorded for
1 h at 1 Hz in the acidic and basic calibration solutions. R1
and R2 were calculated as the average of the final 15 readings
in each solution.

The cal_offset was then determined by immersing the sensor
in seawater with salinity of 33.5 and at 20°C, while solution pH
was measured spectrophotometrically using an automated sys-
tem with meta-cresol purple (mCP) indicator dye (Clayton and
Byrne 1993; Carter et al. 2013). The biases from impurities in
the mCP dye were corrected through direct comparisons with
purified mCP obtained from the laboratory of R. Byme, as
described in Takeshita et al. (2021b). The cal_offSet was defined
as the difference between spectrophotometric pH and pH calcu-
lated from the Pico-pH-SUB, and then applied for all subsequent
measurements following the calibration process.

To verify manufacturer-provided temperature coefficients
(R1y and R2y), the Pico-pH-SUB was operated in the acidic and
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basic solutions, respectively, between 5°C and 25°C, spaced at
5" intervals. Each discrete temperature step was held for a
duration exceeding 2 h to allow the system and sensors to sta-
bilize. Subsequently, the final 8 data points (spanning 2 min)
for each temperature step were averaged, and a least squares
linear regression was fitted. The slope of the linear regression
represents the temperature coefficient.

Seawater multipoint calibration

The manufacturer recommended three-point calibration
method described above assumes that the pKae and slope remain
unchanged from the factory characterization. Furthermore, the
R1 and R2 characterization occurs in non-seawater media, thus,
matrix effects could add uncertainty to this calibration. To
address these issues, we developed an automated calibration
method using natural seawater that is directly traceable to spec-
trophotometric pH measurements, which from here on will be
referred to as the “Seawater multipoint calibration.” Multiple dis-
crete spectrophotometric pH measurements were made within
the functional range of the sensor (pH 7-9), and the four coeffi-
cients R1, R2, pKa, and slope were simultaneously fitted to
Egs. 1-5. This approach was conducted at a single temperature
(typically 20°C) and assumed that the temperature coefficients
previously determined for each sensor remain unchanged. When
performed at 20°C, all the temperature dependencies in Eqgs. 2-5
are minimized or zero, so no errors would propagate due to tem-
perature coefficient uncertainty. Manufacturer values for pKar,
sloper, pKay,, and pKay, were used.

A minimum of four discrete pH points within the func-
tional range are required to properly constrain the
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multivariate optimization solver of the four sigmoid coeffi-
cients. Seawater pH was cycled between 7.4 and 8.2, at incre-
ments of 0.1 pH, resulting in nine points. This pH range was
chosen to encompass the expected pH range for the field
deployments in this study. Each pH increment was held for a
minimum of 2 h. At the end of each pH increment, an auto-
mated spectrophotometric pH measurement was made. The
seawater multipoint routine was performed three times for the
three Pico-pH-SUB units to assess reproducibility and
accuracy.

To conduct the seawater multipoint calibration, a custom-
ized high-precision pH and temperature control system was
developed, hereafter referred to as the “pHstat system.” The
pHstat system utilized a 4-liter jacketed beaker connected to a
recirculating temperature-controlled bath (Fisher Scientific
Isotemp 4100) for maintaining temperature at specified levels.
A custom cap, sealed with an O-ring, housed the sensors and
tubing. The pH of the solution was controlled through a PID
feedback loop that adjusted the proportion of CO,-free gas
(either pure nitrogen (N,) or compressed air with an Ascarite 11
scrubber) and a 5% COj-air mixture that was bubbled into
solution. The two gasses were mixed before delivery into the
beaker, and the proportion was controlled by adjusting
the flow rates of the two gasses using mass flow controllers
with a range of 0-1 SLPM for the CO,-free gas and 0-14 SCCM
for the CO; blend (Sierra Instruments SmartTrak 50). A Hon-
eywell DuralFET III pH sensor (51453503-501) was used as the
feedback sensor for the PID control and was regularly cali-
brated to spectrophotometric samples. The DuraFET was cho-
sen as it has a short-term precision of 0.0005 (Martz
et al. 2010) and has a Nernstian response over a large pH
range (Takeshita et al. 2014). The same spectrophotometric
pH system described in section Three-point and temperature
cycle calibration was integrated into the pHstat system, oper-
ating asynchronously to automatically draw samples from the
jacketed beaker. The pHstat system demonstrated remarkable
pH and temperature control precision, with a standard devia-
tion of < 0.001 pH across a pH range of 7-8.5 and 0.01°C of
temperature across a range of 5-30°C.

Pressure response

To determine the unknown pressure response of the Pico-
pH-SUB, the sensor response was measured over a range of tem-
peratures and pressures in a solution of known pH. For this, an
equimolar tris buffer prepared in artificial seawater was utilized,
as this is a standard solution for pH measurements in seawater,
and its pH can be calculated over a range of temperatures and
pressures (DelValls and Dickson 1998; Rodriguez et al. 2015;
Takeshita et al. 2017; Miiller et al. 2018). A custom pressure and
temperature control (PTC) system at the Monterey Bay Aquar-
ium Research Institute was used for this experiment. This sys-
tem has been used for establishing the pressure coefficients of
hundreds of Deep-Sea-DuraFET pH sensors (Johnson et al. 2016;
Johnson et al. 2017).

41

Assessment of a pH optode for ocean applications

The temperature was cycled between 5°C and 25°C at 5°C
intervals. At each temperature step, pressure was cycled from
0 to 2000 dbar over an 8-h period. Temperature, pressure, and
outputs from the Pico-pH-SUB were recorded at 30-s intervals.
The calculated pH of tris buffer was compared against
the pH output from the Pico-pH-SUB units at each tempera-
ture and pressure combination to determine the pressure
response. The pressure response was characterized for three
Pico-pH-SUB units, each equipped with different sensor
caps for comparison across sensor material batches. Further-
more, one Pico-pH-SUB unit underwent a duplicate test to
assess repeatability.

Response time

The response time for the Pico-pH-SUB was assessed for the
standard-response sensor tip and a fast-response sensor tip,
using two different protocols. The response time for the
standard-response tip was rigorously tested in a flume with
known flow velocities, whereas the response time for the fast-
response tip was tested in a stirred beaker because it was not
available when the flume experiments were being conducted.
The results for the fast-response tip, while less quantitative
regarding test controls (flow rate and temperatures), serve to
demonstrate the substantial improvement in response time.

The response time of two Pico-pH-SUB units equipped with
the standard-response tip was assessed within the seawater
Aquatron Flume tank at Dalhousie University. Tests were per-
formed at low and high temperatures (~ 7°C and 17°C) over a
range of flow velocities from S to 25 cms L at ~5cms™!
increments, for both rising and falling pH step changes. The
Pico-pH-SUB was first immersed in a separate temperature-
controlled bath for 20 min, set to match the flume tempera-
ture. The pH of the bath was adjusted from 8.0, which was the
approximate flume pH, by ~ 0.5 pH units upward or down-
ward using sodium hydroxide or hydrochloric acid, respec-
tively. After the 20-min conditioning period, a custom
sensor cover was affixed over the Pico-pH-SUB sensor cap
to trap the high or low pH solution, and the sensors were
transferred to the flume. Once steady flow resumed in the
flume, the sensor covers were quickly removed to produce a
step change of pH. The Pico-pH-SUB measurements were
recorded at 1 Hz for 20 min. Throughout all tests, the ori-
entation of the Pico-pH-SUB remained uniform, with the
sensor tip (foil surface) positioned perpendicular to the
flow. This approach ensured a systematic evaluation of
response times under varied conditions within the flume
environment.

The response time of two Pico-pH-SUB units equipped with
fast-response tips were measured by switching between two
stirred seawater solutions at pH ~ 7.1 and pH ~ 8.5. Stirring
speed was constant for all tests. Seawater pH was adjusted by bub-
bling N, and CO, gas. The temperature of both solutions was
controlled at 6°C, using a 250 mL jacketed beaker. Sensors were
switched between the solutions three times to assess repeatability.

sop oo Aajum g uo sqndogse; s Wl PIPEOIUMOQ ‘0 “9SESTES |

sehi) SUDHIPUY.) PUT suag 3 05 “|HT02605Z] 10 Amigr] AU S 94901 EWOLT

o Kanig

SSUAN] SUOIED) A8 AqEadE S g PRLIAGR B ST YO ST F0 S Sy Asmagr] AEE AL


https://doi.org/10.1002/lom3.10646

Wirth et al.

Response time is reported as the time constant (63.2% or
e-folding time), 7, of the exponential step response. The Pico-
pH-SUB units with the standard-response sensor tips had a
previous firmware version which did not utilize the R output
but the phase shift value dPhi (Staudinger et al. 2018). The
sensor signal (R) or cot(dPhi) measured by the Pico-pH-SUB
was fit to quantify the response time. The response was
initially fitted to the model:

y=Ax(1—e3)+b (6)
where A is the amplitude of the pH step change, x is the
elapsed time starting from when the sensor cover was
removed or beaker was switched, and b is the offset. A and b
were then used to normalize the data, and the slope of the lin-
earized Eq. 6 (outlined in Bittig et al. 2014) was used to deter-
mine the response time

Ynorm = 1-e* (7)
Field deployments

The in situ performance of the pH optode was assessed
through three field deployments: a nearly yearlong deploy-
ment at 4000 m depth off the coast of California, a 2.5-month
deployment in a shallow, dynamic coastal environment in
Southern California, and on a Spray underwater glider that
profiled to 1000 m off the Central California Coast.

Station M

Two AquapHOx-LX were deployed at 4000 m depth on a
benthic lander at Station M (34.5°N, 123°W; Smith et al. 1983)
off the coast of California for approximately 1 yr (09 October
2021-29 September 2022). One unit was secured just above the
seafloor or benthic boundary layer (labeled as “BBL"), and the
other 1 m above the seafloor (labeled as “1m”; Fig. 3a). The
AquapHOx-LX is a data logger distributed by PyroScience
GmbH that houses the Pico-pH-SUB using the standard-
response sensor tip and an integrated thermistor. Measurement
interval was set to 10 min. The Pico-pH-SUB units were cali-
brated using the three-point method before deployment. These
Pico-pH-SUB units also had a previous firmware version which
reported dPhi instead of R, but performance is comparable
between versions as hardware characteristics of the sensor did
not change between versions. Even though these units do not
provide a direct comparison with the current firmware versions
used throughout this study, the year-long deployment provides
insights into long-term drift in a deep, cold, and stable environ-
ment. The measured pH was compared against pH estimated
using an empirical algorithm (ESPER-LIR, Carter et al. 2021).
ESPER-LIR inputs included temperature measured by the
AquapHOx-LX, estimated oxygen of 133 pmol/kg and salin-
ity (PSS-78) of 34.68 (Smith et al. 2022), and estimated
nitrate of 37 umolkg ' derived from GLODAP V2.2022
(Lauvset et al. 2022), location and date. The uncertainty of
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the ESPER-LIR input oxygen is 1%, consistent with the his-
toric variability at Station M from weekly oxygen measure-
ments between 2015 and 2020 using a benthic rover
(Supporting Information Fig. Sla; Smith et al. 2021). The
remaining ESPER input uncertainties were set to 0.003 for
temperature and salinity and 2% for nitrate.

Scripps pier

The Pico-pH-SUB was deployed alongside a Self-Calibrating
SeapHOx (SCS) at Scripps Pier in La Jolla, CA for ~ 2.5 months
(18 July-05 October 2023). The SCS is a sensor package con-
taining a DuraFET pH sensor and is capable of autonomous in
situ calibration with tris buffer prepared in artificial seawater
(Bresnahan et al. 2021). Deployment depth was approximately
4 m, fixed to a pier piling. The nearshore environment experi-
ences seasonal wind-driven upwelling, where pH and tempera-
ture can be as low as ~ 7.7 and 10.5°C, respectively, even at
shallow depths (Kekuewa et al. 2022). The Pico-pH-SUB was
integrated into its own housing with a custom controller to
poll and record the measurements at 10-min intervals. A cus-
tom sensor cap was developed to house the standard-response
sensor tip, which included an O-ring seal and separate flow
manifold (Fig. 3b). The outflow of the SCS was directly
plumbed to the flow manifold of the Pico-pH-SUB, which
ensured a pumped flow stream to the sensor tip and allowed
for a direct comparison of the measurements. In addition, two
automated tris buffer injections of the SCS flowed through the
Pico-pH-SUB manifold to provide high quality validation
samples.

Prior to deployment, the Pico-pH-SUB was calibrated using
(1) the three-point calibration with factory temperature coeffi-
cients, (2) the three-point calibration with sensor-specific
re-determined temperature coefficients, and (3) the multipoint
calibration with re-determined temperature coefficients.
Calibration methods 1 and 2 were highly similar, resulting in
exclusion of method 2 from the discussion below. The pH
reported by the SCS was calibrated to the automated tris buffer
injections performed during the deployment, following the
methodology outlined in Bresnahan et al. (2021). Two discrete
bottle samples were collected, poisoned, and analyzed on a
spectrophotometric system using purified mCP.

Using the two automated tris buffer injections, an in situ
adjustment to cal_offset and drift correction method is
explored. To determine the optimal number of validation sam-
ples required, an analysis involving the hypothetical collec-
tion of 2-10 validation samples uniformly spaced between the
deployment’s start and end dates was conducted.

Spray glider

The Pico-pH-SUB was integrated onto a Spray underwater
glider (Sherman et al. 2001) to evaluate the sensor perfor-
mance on profiling platforms. The Spray glider was also
equipped with a Deep-Sea-DuraFET (DSD) pH sensor (Johnson
et al. 2016; Takeshita et al. 2021a), allowing for a direct com-
parison between the two pH sensors. A custom housing with a
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Fig. 3. (a) Two Pico-pH-SUB loggers (AquapHOx-LX, red arrows) mounted on a benthic lander. (b) The Self-Calibrating SeapHOx (SCS) pictured with
the Pico-pH-SUB (blue arrow) housing. (c) The Pico-pH-SUB housing with SubConn connector used to integrate into the Spray glider. Flow manifold not

shown.

flow manifold designed to fit around the factory sensor cap
was fabricated for the Pico-pH-SUB and integrated into the
pumped flow stream of the Spray glider (Fig. 3¢). The Pico-
pH-SUB was powered and polled by the main glider controller
and measured on both the ascent and descent for some pro-
files to assess performance between the two, which would
indicate errors due to slow sensor response. The Pico-pH-SUB
underwent the pre-deployment temperature cycle and seawa-
ter multipoint calibration procedures.

Two missions were conducted to ~ 25 km offshore in
Monterey Bay, CA, with maximum dives to 1000 m. The first
mission (15 February-02 March 2023) utilized the standard-
response sensor tip, whereas the second mission (10-17 July
2023) utilized the fast-response sensor tip. For both missions,
dives were conducted to 500 m, then dive depths were
sequentially increased to 1000 m at 100-m intervals, while
making measurements on both the ascent and descent. Unfor-
tunately, the cabling to the DSD failed during the first mis-
sion, thus, the Pico-pH-SUB with the standard foil was
compared to pH estimated from CANYON-B (Bittig
et al. 2018), as this algorithm estimates pH accurately near
Monterey Bay, particularly at depths below 300 m (Takeshita
et al. 2021a). The Pico-pH-SUB with the fast-response sensor
tip was directly compared to the DSD for the second mission.
For each mission, the difference between algorithm pH and
pH measured by the Pico-pH-SUB for the first dive below
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900 dbar determined the cal_offset applied to every profile.
The pressure coefficient determined in this study was also
applied to every profile. The DSD data were adjusted following
Takeshita et al. (2021a).

Assessment

Three-point and temperature cycle calibration

The addition of 0.7 mol L ' NaCl in the acidic solution
produced an increase in R1 of 0.0433 + 0.0008 for the three
Pico-pH-SUB units. This offset in R1 changes calculated pH
depending on the solution pH. For example, pH can shift by
~0.03 at pH 8, and ~ 0.05 at pH 7.6 due to a 0.05 shift in R1.
As R1 is the acidic asymptote, there is a larger effect at lower
pH values (Fig. 2). This was a surprising, yet repeatable effect
that was not reported in previous studies (Staudinger
et al. 2018) and highlights the importance of characterizing
R1 in a solution with similar ionic strength as the target envi-
ronment. On the other hand, there was no shift in R2
observed with the NaCl addition, indicating that it can be
characterized without the addition of NaCl, which simplifies
solution preparation.

Values for the R1, R2, and cal_offSet coefficients obtained
using the three calibration methods for the three Pico-pH-SUB
units are shown in Table 1. Large variability in R1 was
observed between the three units and had a range of ~ 0.08
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Table 1. Coefficients for three Pico-pH-SUB units, determined by varying calibration methods. R1 and R2 for the temperature cycle
method were determined by interpolating a linear regression to 20°C.

Three-point Temperature cycle Seawater multipoint

Pyro Sci Pico 1 Pico 2 Pico 3 Pico 1 Pico 2 Pico 3 Pico 1 Pico 2 Pico 3
R 1.6181 1.5920 1.5633 1.5115 1.4201 1.4004 1.3551 1.4900 1.4692 14141
R2 0.0579 0.0399 0.0309 0.0285 0.0278 0.0120 0.0168 0.0039 0.0040 0.0045
pKa 8.0840 - - - - - 8.1174 8.1109 8.1101
slope 1.0340 - - - - - - 1.0226 1.0150 1.0126
Rt —-0.0008 - - - -0.0031 —-0.0031 —0.0030 - - -
R2y —-0.0011 - - - 0.0016 0.0016 0.0016 - - =
cal_offset - 0.0509 0.0475 0.0434 - - - - -
Date - 11 Oct 2023 31 Oct 2023 08 Dec 2023

during each calibration. The relative magnitude of R1 between
the sensors were consistent across each calibration (e.g., Pico
1 had the highest R1 during each calibration), indicating that
the differences in observed R1 reflect real differences in the
calibration coefficient. Furthermore, all R1 values obtained in
this study were significantly lower than the manufacturer
assigned value. These results suggest that each sensor tip
should be calibrated individually for R1 to obtain the most
accurate results. On the other hand, the variability between
sensors for the other three coefficients were smaller, with a
range of ~ 0.01 for R2, 0.007 for pKa, and 0.01 for slope. This
indicates that batch calibration may be sufficient for these
coefficients. While these values were slightly different from
the manufacturer assigned values, the resulting biases are
<0.01 pH (Fig. 2), unless measuring solution pH of >8.5,
where biases may increase to > 0.01. Therefore, it may be suffi-
cient to utilize the manufacturer provided values for R2, pKa,
and slope for most applications where accuracy of pH better
than 0.01 are not required, requiring only a single point cali-
bration in acidic solution. However, to achieve the highest
accuracy possible, it is recommended to individually calibrate
each Pico-pH-SUB with its respective sensor tip for all three
coefficients.

Accurate temperature coefficients must be established if the
Pico-pH-SUB is to be used over a wide range of temperatures.
There was excellent agreement in the R1; and R2; between
cach Pico-pH-SUB unit (Table 1; Supporting Information
Fig. S2), suggesting that the temperature coefficients are con-
sistent across the same sensor tip batch. However, there was a
small difference of ~ 0.0025 between the temperature coeffi-
cients provided by the manufacturer and those determined by
this study (R1y was lower, and K2y was higher relative to the
manufacturer values). A difference of this magnitude for R1;
results in a maximum difference of calculated pH of 0.03 at
5°C or 35°C (vs. 20°C), while at pH 8 (Supporting Information
Fig. S3). The larger the deviation from 20°C, the greater the
difference in calculated pH.
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The R2p coefficient determined by the temperature cycle
method was opposite in sign than compared to the factory-
determined value (Table 1). The change in R2; does not affect
calculated pH as significantly as R1; for most oceanographic
applications, since its impact is larger as solution pH increases
above ~ 8.1 (pKa). A difference of 0.0025 for R2; equates to a
maximum pH difference of only ~0.002 at 5°C or 35°C
(Supporting Information Fig. $3). A lower pH yields a lower
pH difference for this change in R2y, ~ 0.001 at pH 7.6. The
presence of NaCl did not alter the slope, hence the tempera-
ture coefficients are not affected by a salinity background.

Seawater multipoint calibration

Results from the seawater multipoint calibrations for three
Pico-pH-SUB units indicate that the measurements were
within + 0.004 pH for a single calibration run against spectro-
photometric measurements between pH 7.4-8.2 (Fig. 4a). This
is derived from the range of all residuals between the pH
optodes and the spectrophotometric measurements. These
residuals are comparable with those from the DurafFET. The
calibration can be further improved if the pH range is reduced.
Reducing the range to 7.8-8.1 pH produced residuals of
+0.002 between the Pico-pH-SUB and spectrophotometric
samples. However, errors for measurements outside of the pH
fit range increase substantially and can be as high as 0.1,
highlighting the tradeoff associated with choice of calibration
range. For each pH step of the seawater multipoint method,
the precision (standard deviation) of the calculated pH output
of the Pico-pH-SUB after calibration was + 0.0006. For com-
parison, the DurafFET pH precision was + 0.0004 demonstrat-
ing that the pHstat system was reliably stable and precise at
each pH step.

The short-term accuracy of + 0.004 pH was only achievable
during single calibration runs. To investigate the repeatability
of the seawater multipoint calibration method over multiple
runs, coefficients determined from the first run were applied
to three subsequent runs for a single Pico-pH-SUB unit,
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Fig. 4. (a) Residuals between spectrophotometric pH and the DuraFET pH (open diamonds) and pH calculated from the Pico-pH-SUB (filled circles) for
three Pico-pH-SUB units during a seawater multipoint calibration. (b) Residuals between spectrophotometric pH and the DuraFET pH (open diamonds)
and a single Pico-pH-SUB unit using coefficients from run 1 applied to sequential seawater multipoint calibration runs (filled circles).

conducted over 1 week (Fig. 4b). The residuals around the pKa,
pH ~ 8, remained consistent between the calibration runs, but
the magnitude of the residuals increased to ~ 0.01 pH at lower
solution pH. Results were equivalent for all three Pico-pH-SUB
units. Thus, we report a relative accuracy for the Pico-pH-SUB
to be 0.01 over the nominal ocean pH range of 7.4-8.2.

If the PyroScience factory coefficients or three-point calibra-
tion coefficients were used to calculate pH during the seawater
multipoint routine, residuals to the spectrophotometric sam-
ples were between 0.1 and 0.3 across the calibration range.
This was anticipated, as the coefficients were established
months before the seawater multipoint calibration. We con-
clude that drift, particularly in the R1 coefficient, invalidated
the factory calibration. This emphasizes the importance of
calibrating the Pico-pH-SUB as close as possible to time of use.

Pressure dependence

During the temperature and pressure cycling, the pH of the
tris buffer was calculated as a function of temperature and
pressure and compared to the pH output of the Pico-pH-SUB
units. During pressurization, the pH of the tris buffer
decreased while pH output from the Pico-pH-SUB increased
(Fig. 5a). There was no pressure input for internal data
processing on the Pico-pH-SUB, so the increase in pH observed
in the Pico-pH-SUB output represents all combined pressure
effects on the foil including the chemical properties of the
fluorescent indicator.

When comparing the Pico-pH-SUB pH output to known
pH of the tris buffer across the pressure range, there was good
agreement across the three units and the replicates of Pico-
pH-SUB unit 4 were almost identical to each other (Fig. 5b).
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Negligible effect in the pressure response was seen due to tem-
perature. Thus, a constant pressure response of 0.029
pH/1000 dbar is recommended for all Pico-pH-SUB units. It is
unknown if this response remains valid above 2000 dbar but
was assumed applicable to the full 4000 dbar rating due to the
linear relationship seen in this study. Further testing is
required to verify the pressure coefficient above 2000 dbar.

Response time

The response time ranged from 195 to 750s for the
standard-response sensor tip, depending on temperature, and
whether pH was increasing or decreasing (Fig. 6). In general,
the direction of pH change played a significant role in
response time, with a rising pH producing longer r compared
to falling pH at all temperatures. Average 7 for both Pico-
pH-SUB units at lower temperatures (~ 7°C) were 298 + 34 s
for falling and 660 + 76 s for rising pH changes. Higher tem-
peratures (~ 17°C) produced an average r of 245 + 48 s for
falling and 378 + 64 s for rising pH changes. Flow rate had a
negligible impact on response time, which suggests that either
diffusion within the sensor tip is the dominant process con-
trolling the response time, or that the flow rates tested here
with the sensor foil faced perpendicular to the flow was insuf-
ficient to significantly alter the boundary layer thickness at
the sensor-water interface (Franker and Serensen 2019).

The 7 values from this study were larger than reported in a
previous study which stated response times of 125 s at 25°C
and 145s at 4°C for a similar pH sensitive material
(Staudinger et al. 2019). They did not explore bidirectional
changes in pH, or effects from flow rates. It is not clear why
there was such a difference between the two studies.
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Fig. 5. (a) Difference in pH between the Pico-pH-SUB and tris buffer over 2000 dbar colored by temperature. Points correspond to both increasing and
decreasing pressure. The black lines are the linear regression for each pressurization cycle at stable temperatures. (b) The difference in pH per 1000 dbar
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Fig. 6. Response time for two Pico-pH-SUB units with standard-response
sensor tips as a function of temperature. Upward triangles represent a ris-
ing pH step change. Downward triangles represent a falling pH step
change. Dashed lines are linear regressions through the rising and falling
points, applied to both Pico-pH-SUB units.

The response time for the fast-response sensor tip was
approximately 10 times faster than the standard foil (Table 2):
19 £ 3 s for falling and 62 = 19 s for rising pH changes. These
values align with the only previous study using the fast-
response sensor tip (Staudinger et al. 2018). We did not
explore the temperature effects on the response time of the
fast-response sensor tip, but response time would decrease
with increasing temperature, if diffusion processes control
response time as hypothesized.

10
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Table 2. Average response time constants (63.2%) for the Pico-
pH-SUB from this study and previous literature. The downward
arrow (|) corresponds to tests done with falling pH step changes,
upward arrow (]) corresponds to rising pH step changes. The
asterisk (*) represents the response time reported in each respec-
tive study, not necessarily the response time constant. The dash
(-) represents unknown or not mentioned values.

Sensor

Reference tip type Temperature ('C) T (s)
This study Standard 7 298|-6591

17 245|-3781
This study Fast 6 19]-621
Staudinger et al. (2019)  Standard 4 1451

25 1251
Fritzsche et al. (2018) - - 20*
Staudinger et al. (2018) Fast - < 60*

Field deployments

Station M

Throughout the nearly yearlong deployment, the tempera-
ture recorded by the AquapHOx-LX sensors remained stable,
exhibiting a mean of 1.360 = 0.006°C. Although there was a
difference of ~0.12°C from the temperature reported by
Smith et al. (2021) (Supporting Information Fig. S1b), the
focus of this study lies more on the stability of the deep condi-
tions and pH measurements than on absolute accuracy.

An initial conditioning of the Pico-pH-SUB loggers, lasting
approximately 3 weeks was observed, yet the cause, whether
pressure or temperature-related remains uncertain (Fig. 7). An

Slis) SUORIPUO) PUT SUURY 3 205 “|HTOZ60/52] 10 ASIGE] AUQ KA “9H901 EWOLTN1 Y 1 AP0 AajinKInsgs i oo sqndogstysdiy Wl PIPRIUROQ 0 ‘9SESLES|

Sk

SSUAN] SUOIED) A8 AqEadE S g PRLIAGR B ST YO ST F0 S Sy Asmagr] AEE AL


https://doi.org/10.1002/lom3.10646

Wirth et al.

Assessment of a pH optode for ocean applications

79 T T T T T T T T T T T
—BBL
Im
~—ESPER-LIR
7.85 ESPER-LIR bounds

= of -
T 78
75
7 7 L 1 1 L 1 1 1 1 1 1 } !
\ \ ) A a N )
< & 7 7 > <% S
o oF <® st Wt b ot

Fig. 7. Time series of two Pico-pH-SUB loggers attached to a bottom lander approximately 4000 m deep at Station M. One logger was just above the
benthic boundary layer (BBL, black line) and another 1 m above the bottom (1m, blue line). A linearly interpolated regression (ESPER-LIR, yellow line) was
estimated for the time series, with uncertainty bounds shown (shaded region). The logger pH values were adjusted to ESPER-LIR 21 d after deployment

on 01 November 2021.

additional in situ cal_offSet was applied at the 21-d mark on 01
November 2021 (0.063 pH for BBL logger and 0.016 pH for
1m logger) to facilitate visualization of sensor performance
compared to the stable ESPER-LIR pH estimate.

Both sensors exhibited significant drift in the cold and sta-
ble environment, surpassing ESPER-LIR estimated uncertainty
bounds of & 0.014 within 3 months. Drift rates of the two
sensors were nearly consistent for the first 6 months at a rate
of 0.00016 pH d~!. After 6 months the BBL logger continued a
near linear drift while the 1m sensor drift increased signifi-
cantly up to a maximum of 0.0008 pHd .

Scripps pier

The nearshore environment at Scripps Pier exhibited a tem-
perature range of 13-24°C and a pH range of 7.9-8.3 during
the deployment (Fig. 8; Supporting Information Fig. $4). The
SCS underwent two automated tris injections for sensor vali-
dation and correction, which yielded mean residuals within
4 0.004 pH between the SCS and in situ tris buffer pH values.
The tris corrected SCS pH residuals to the two discrete bottle
samples showed a consistent offset of —0.034 + 0.016 pH,
indicating no significant drift for the SCS pH. We are aware of
this offset between the tris buffer and bottle sample residuals
but maintain the methodology outlined in Bresnahan et al.
(2021) to calibrate to the fourfold more consistent tris buffer
injections. The deployment was divided into two periods:
(1) 18 July-15 August 2023, characterized by stable conditions,
and (2) 15 August-05 October 2023, marked by increased pH
variability and significant drift of the Pico-pH-SUB.

During the first period, the mean difference between the
Pico-pH-SUB and SCS was 0.108 + 0.010 for the three-point
calibration method and 0.004 + 0.012 for the secawater multi-
point method (Fig. 8). In the subsequent period of the
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deployment, the Pico-pH-SUB exhibited an increasing linear
drift compared to the SCS for both calibration methods.

The availability of automated tris injections presented an
opportunity for in situ adjustment of cal_offset and drift cor-
rection. The process involved calculating the difference
between the in situ pH of the tris buffer at the time of injec-
tion and the pH recorded by the Pico-pH-SUB (Fig. 9). The
adjusted cal_offset was then applied from the beginning of the
deployment (18 July) to the first tris injection (15 August). A
linear regression was fit from the first tris injection (15 August)
to the second tris injection (12 September). This regression
slope was then applied to the remaining measurements of the
deployment after the first tris injection. The correction results
were similar if the discrete bottle samples were used instead of
the tris injections. Applying this correction to both calibration
methods did not alter the results for the first month of the
deployment besides improving the offset of the three-point
calibration method to be more aligned with the SCS.

The in situ adjusted cal_offset applied to the multipoint cali-
bration method at the first tris injection was negligible, mea-
suring less than 0.001 pH. In contrast, the in situ adjusted
cal_offset applied to the three-point calibration method was
0.082 pH. This in situ cal_offset adjustment relative to the first
tris buffer injection is less than the difference between the
Pico-pH-SUB and the SCS described above (0.108). This dis-
crepancy may be due to the three-point calibration method
deviating in accuracy away from the pKa of the sensor as the
in situ pH of the tris buffer was ~ 8.3 for the first injection, or
from a slower response to rising pH changes.

During the second period of the deployment, drift rates
determined by the linear regression between the first and sec-
ond tris injections were consistent for both calibration
methods, measuring at 0.002 pHd ', aligning with previous
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Fig. 8. (a) Time-series from Scripps Pier of tris-corrected Self-Calibrating SeapHOx (SCS) pH (black line) and uncorrected pH from the Pico-pH-SUB calcu-
lated using the pre-deployment three-point calibration (yellow line) and seawater multipoint calibration (green line). Discrete tris buffer (magenta trian-
gles) and bottle samples (orange circles) also shown. (b) Difference between the Pico-pH-SUB and SCS pH for both calibration methods (yellow and
green lines) and the difference between discrete samples (tris and bottle) in situ pH and SCS pH (black triangles and circles, respectively).
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Fig. 9. (a) Difference in pH between the Pico-pH-SUB and Self-Calibrating SeapHOx (SCS) for the three-point calibration. (b) Difference in pH between
the Pico-pH-SUB and SCS for the seawater multipoint calibration method (right). In situ pH offset and linear correction shown in blue lines corrected to

the tris injections (magenta triangles).

studies (Fritzsche et al. 2018; Staudinger et al. 2018; Stau-
dinger et al. 2019).

Post deployment in situ adjustments of cal_offset resulted
in significantly improved agreement over the entire deploy-
ment (Fig. 10a). For the duration of the deployment, after the
corrections to tris buffer were applied, residuals between
the Pico-pH-SUB with the three-point calibration and the SCS
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were 0.027 + 0.015, while those with the multipoint calibra-
tion were 0.010 = 0.014. Both calibration methods exhibited
good alignment with the SCS, although a larger difference was
still observed for the three-point calibration method as previ-
ously noted. An observable reduction in the amplitude of
Pico-pH-SUB measurements was observed in the second half
of the deployment during coincident low pH and temperature

D205 2] WO ASRIgr] AUsUO SEAL “9F901 EWOLZ00 10 | AP0 Aj1 A ntigs|autuo squdogse sy wos) PIpROURO 0 “958STHS |

T

seling) SUDHIPUY,) PUT sk 3 0%

Sk

SSUAN] SUOIED) A8 AqEadE S g PRLIAGR B ST YO ST F0 S Sy Asmagr] AEE AL


https://doi.org/10.1002/lom3.10646

Wirth et al. Assessment of a pH optode for ocean applications
L 2] T T T T
83 Ha) 1
8.2 b
8.1 n ;
jun}
< g ]
79k ——sCs A Tris _
. Pico 3-point © Bottle
78} Pico multipoint 4
I A 1 1 : 1
18 Jul 01 Aug 15 Aug 29 Aug 12 Sep 26 Sep 10 Oct
T 24 24
(b) © -
22 122°0
| —
2
7.8 78
01 Aug 02 Aug 03 Aug 18 Sep 19 Sep 20 Sep

Fig. 10. (a) Time-series of the Self-Calibrating SeapHOx (SCS, black line) and Pico-pH-SUB with cal_offset adjustment and linear drift correction applied
to both the three-point calibration method (yellow line) and seawater multipoint calibration (green line). Shaded regions show a zoom in between 01-03
August (b) and 18-20 September 2023 (c) with temperature (blue dashed line).

excursions (Fig. 10c). While some of the reduced amplitude of
the Pico-pH-SUB relative to the SCS might be attributable to
sensor lag, the sustained period of several hours on
18 September where the Pico-pH-SUB never “catches up™ to
the SCS may indicate a pH-dependent calibration error that is
not captured by adjustments to cal_offset alone.

To assess the number of corrections necessary to recover
data from a drifting Pico-pH-SUB, 2-10 simulated validation
points were performed relative to the SCS (Supporting Infor-
mation Fig. S5; n = 6 shown). This exercise indicated that an
increase in the number of validation samples beyond two did
not contribute to the improvement of Pico-pH-SUB correction,
where the mean and standard deviation of the Pico-pH-SUB
corrected pH relative to the hypothetical validation samples
remained unchanged. This finding suggests that only two vali-
dation samples taken every 4 weeks was sufficient to correct
the drift for this deployment.

Spray glider

The Pico-pH-SUB functioned properly throughout both
glider missions, demonstrating the capability to withstand
repeated profiles to 1000 dbar. Over multiple dives, Pico-
pH-SUB measurements at depths below 800 dbar (where pH is
generally constant) agreed to better than 0.003, which is com-
parable to the performance of the DSD (Johnson et al. 2016;
Takeshita et al. 2021a,b). However, the standard-response sen-
sor tip experienced a large hysteresis that reached > 0.1 pH
near the surface between ascending and descending profiles
(Fig. 11a). An additional cal_offset of 0.05 pH was required to
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align the Pico-pH-SUB with CANYON-B estimates below
900 dbar. Relative to the estimated pH from the CANYON-B
algorithm, the Pico-pH-SUB pH was lower on the descent and
higher on the ascent in the upper part of the water column.
This pattern indicates that this hysteresis was caused by the
slow response time of the sensor. In theory, the slow response
time can be accounted for, as is done for oxygen optodes
(Bittig et al. 2018). However, applying corrections with a
response time of 400 s using this approach resulted in exces-
sively noisy readings > 0.5 pH throughout the entire profile.

In contrast, the fast-response sensor tip exhibited significantly
smaller hysteresis between ascending and descending profiles
(Fig. 11b). The magnitude of the hysteresis was < 0.02 pH. Small
scale vertical variability and features were captured by the Pico-
pH-SUB above 300 dbar, similar to the DSD. However, there was
a large discrepancy between the DSD and Pico-pH-SUB utilizing
pre-deployment calibration coefficients for this deployment.
These Pico-pH-SUB profiles appeared skewed and muted, indicat-
ing a sigmoid shift between pre-deployment calibration and
deployment. The cause of this shift remains unknown, but
potential sources include the expulsion of an air bubble between
the sensor tip and optoelectronics during pressurization or move-
ment of the screw-on sensor tip.

Immediately following the fast-response sensor tip recov-
ery, the Pico-pH-SUB underwent a post-deployment rec-
alibration using the seawater multipoint method. Applying
these post-deployment calibrations resulted in improved
alignment with the DSD pH, demonstrating that the calibra-
tion coefficients did in fact shift before deployment. This is
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Fig. 11. (a) Profiles of the standard-response sensor tip that measured on both the ascent (black) and descent (yellow), greater than 500 dbar.
CANYON-B algorithm (green) calculated for ascending profiles only. (b) Ascending and descending profiles of the fast-response sensor tip down to
500 dbar and deeper utilizing post-deployment calibration coefficients (black and yellow). Profiles using pre-deployment calibration coefficients are
shown for ascending profiles only (orange). Ascending Deep-Sea DuraFET (DSD) profiles (blue) were only available on the fast-response sensor tip

deployment.

troubling, as the pH optode was calibrated within 1 week of
deployment on the glider. An additional cal_offset of 0.081 pH
was required to align the Pico-pH-SUB with CANYON-B esti-
mates below 900 dbar. Ascending profiles exhibited improved
alignment with DSD profiles, likely influenced by increasing
temperature and shortened response time during ascent.

During the short deployments, Pico-pH-SUB profiles
displayed drift discernable for both the standard and fast-
response sensor tips (Supporting Information Fig. $6). To cal-
culate the drift rate, ascending profiles starting from depths
over 500 dbar were selected. The mean pH value between
500 and 600 dbar was calculated for only ascending profiles to
exclude hysteresis effects, and because this range had more
profiles where pH was assumed to be stable. A linear regression
of mean pH with time yielded drift rates of 0.005 pHd ! for
the standard-response sensor tip and 0.006 pHd ' for the
fast-response sensor tip at an average temperature of ~ 6°C.
No drift was observed for the DSD.

Discussion

In this study, we conducted a thorough assessment of the
Pico-pH-SUB pH optode for oceanographic applications,
aiming to evaluate its potential as an alternative pH sensor to
currently available technologies. Multiple calibration methods
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were scrutinized, with the seawater multipoint method yield-
ing the most accurate results as it determines all four sigmoid
coefficients within the functional range in natural seawater
media. This calibration method had a relative, short-term
accuracy of 0.004 in the lab over a pH range of 7.4-8.2 com-
pared against spectrophotometric measurements. The accuracy
was improved when analyzed over a smaller pH range,
~0.002 for pH 7.8-8.1. This accuracy would only apply to
measurements immediately following calibration, and only
over this range. Repetitions over 1 week resulted in an accu-
racy of 0.01 for the full range (7.4-8.2), which is applicable to
most practices using the Pico-pH-SUB and the accuracy
reported here. The residuals were largest at lower pH values,
suggesting that the R1 coefficient was potentially drifting or
changing between calibration runs, or a pH-dependent drift
was present. The offset in R1 during the three-point calibra-
tion due to NaCl addition highlights the importance of using
solutions with similar ionic strength or composition as the tar-
get solution. Calibration should be carried out as close in time
to deployment as possible, and an additional cal_offset may be
required once the sensor is deployed.

Minor variances were noted in Rl and R2; when compar-
ing manufacturer-provided values with those derived from the
temperature cycle method. The changes in calculated pH due
to changes in Rl and R2y are small, but for applications
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spanning large temperature and pH ranges they can be signifi-
cant. These variances were attributed to methodological dis-
parities between this study and those from the manufacturer.
PyroScience temperature coefficients were determined by sub-
jecting artificial seawater to temperature cycling across the
functional pH range. Producing the temperature coefficients at
the top and bottom of the asymptote will provide a more
robust and repeatable value, but determining the coefficients
in seawater may be advantageous for oceanographic applica-
tions, analogous to the seawater multipoint methodology.

Drift was observed across all field deployments, ranging
from 0.0002 pH d~' (deep, cold environment), 0.002 pHd '
(shallow, dynamic environment) to 0.006 pHd~" (profiling).
The unexplained initial conditioning of approximately
3 weeks only observed during the Station M deployment raises
concerns for short-term deployments in the deep sea. It is
implied that Pico-pH-SUB units with sensor tips from the same
batch may exhibit similar drift for the initial 6 months but
may be batch-dependent. The difference in drift rates seen
throughout the study suggests that they were temperature and
pH dependent. Lower temperature deployments had lower
drift rates, and lower in situ pH had higher drift rates. The
presence of nonlinear drift rates complicates drift correction,
emphasizing the need for further exploration and quantifica-
tion of these phenomena.

Despite a relatively long response time of the standard-
response sensor tip, the pH optode effectively tracked dynamic
pH variability in the near-shore environment at Scripps Pier,
showcasing comparable performance to the SCS and DuraFET
pH sensor. The multipoint calibration method proved to be a
more accurate calibration approach, but both calibration
methods captured the dynamic variability nearly equally once an
in situ cal_offset adjustment was applied. This in situ cal_offset
adjustment is similarly used for oxygen optodes that experience
calibration shifts between the lab and field (Takeshita et al. 2013;
Bittig et al. 2018). The larger in situ cal_offset adjusted value of
0.082 pH for the three-point calibration method is due to the
seawater multipoint method’s characterization of sigmoid over
the desired the pH range and its timing, performed 2 months
before the seawater multipoint method.

Using the automated in situ tris buffer validation samples
proved to be a robust method for correcting the initial offset
and linear drift. By examining a range of hypothetical valida-
tion samples, taking more than two samples did not improve
the correction, suggesting that taking validation samples every
4 weeks is sufficient. However, caution is advised against
delaying validation sample collection too long after the start
of deployment, as sensor drift may have already influenced
the data, potentially leading to an overestimation of the in
situ cal_offset adjustment.

The standard-response sensor tip proved unsuitable for pro-
filing applications. The fast-response sensor tip showed prom-
ise for profiling applications but experienced a calibration
shift between the lab and deployment. For long-term profiling
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applications, like profiling floats, which are typically not
recovered, post-deployment calibration of the sigmoid coeffi-
cients is challenging. Extrapolating the drift rate observed for
the fast-response sensor tip, the expected drift rate would be
0.06 pH per profile for a standard 10-d profiling interval for
BGC-Argo floats, which would be unacceptably large.

In its current state, the Pico-pH-SUB seems best suited for
short-term deployments on the order of weeks to months,
aimed to capture weather-scale pH variability of 0.02 (Newton
et al. 2015). With careful attention to calibration, the sensor
could provide high-quality short-term measurements on ship-
board rosette profiles and underway mapping applications in
addition to shore-based experiments such as controlling or
monitoring pH levels for mesocosm studies focused on ocean
acidification and marine carbon dioxide removal experiments
(Bockmon et al. 2013; Fuhr et al. 2024). The swappable sensor
tips, uncomplicated three-point calibration and sensor integra-
tion make it a valuable addition to the short list of viable
pH sensor technologies available to the oceanographic
community.

Comments and recommendations

From this work, here we outline recommendations for Pico-
pH-SUB users to achieve the highest quality data possible:

¢ Hydrate the sensor tip in sea water for at least 24 h preced-
ing any measurements.

e Temperature cycling to verify R1; and R2; is simple, and
the coefficients can be applied to an entire batch of sensor
tips. This is most likely unnecessary for most applications,
as these coefficients do not greatly affect calculated pH.

e For laboratory calibration, the seawater multipoint method

is the most accurate, but likely too difficult and time inten-

sive for most users.

2 The three-point calibration proved to be comparable in

performance and is recommended for most users. Only

two-points may be sufficient (R1 and R2) as cal_offset adjust-
ment will most likely be required after the laboratory
calibration.

= Performing either calibration method as close to time of

deployment may minimize the cal_offset adjustment.

= Laboratory calibration should be performed in solutions

similar in ionic strength to the deployment location.

An in situ cal_offset adjustment based on a discrete valida-

tion sample taken alongside the sensor may be required and

is recommended to be conducted early in the deployment

(< 1 week) before drift takes over.

* It may be possible to correct for drift with multiple valida-

tion samples taken throughout the deployment. Validation

samples every 3—4 weeks and at the end of the deployment
are recommended to maintain the weather objective quality
of 0.02 pH.

Short-term profiling applications on Spray gliders or other

profiling platforms would require use of the fast-response
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sensor foil, with sensor refinement to reduce or eliminate
the potential for offsets between calibration and deploy-
ment. Recoverable, short-term deployments may allow for
post-deployment re-calibration.
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Chapter 3 Subsurface biogeochemical variability in the
equatorial Pacific observed by BGC-Argo floats over the
2019-2024 ENSO cycle

Key Points

e BGC-Argo profiling floats in the equatorial Pacific revealed greater subsurface
biogeochemical variability than at the surface, depending on ENSO state.

e Biogeochemical variability was primarily driven by vertical movement of the thermocline
and meridional transport of South Pacific Tropical Water (SPTW).

e A Biogeochemical Multivariate ENSO Index (BMEI) was developed and used to
investigate the disparity between modes of surface and subsurface biogeochemical
variability.

Abstract
The EI Nifio Southern Oscillation (ENSO) cycles from 2019 to 2024 featured an

unprecedented sequence of extreme events, initiated by a weak El Nifio transitioning into a rare
three-year (“triple-dip”) La Nifa, followed by one of the strongest El Nifio on record. While these
events are known to induce significant physical changes in the ocean, little has been reported
on the corresponding subsurface biogeochemical variability and its relationship to the ENSO
state. Leveraging observations from an array of BGC-Argo profiling floats in the equatorial
Pacific Nifio 3.4 region, we investigated the biogeochemical impacts of ENSO during this period,
focusing on subsurface anomalous features relative to a climatology. Anomalies of oxygen,
nitrate and dissolved inorganic carbon were most pronounced at depths below the mixed layer,
revealing distinct correlations with Kelvin Wave activity and meridional transport. Redistribution
of phytoplankton was also observed, with higher concentrations deeper in the water column
during the EI Nifio phases relative to La Nifia. We propose the concept of a Biogeochemical
Multivariate ENSO Index (BMEI), analogous to the multitude of other multivariate indexes used

in this region, exploring modes of variability and its utility to gauge intensity of ENSO phases.
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This study underscores the importance of continued BGC-Argo observations to enhance our
understanding of subsurface biogeochemical processes and their potential for assessing the

severity of future ENSO cycles.
Plain Language Summary

From 2019 to 2024, the EI Nifio Southern Oscillation (ENSO) cycles experienced a rare
three-year La Nifia, followed by a very strong El Nifio. These extreme events are known to
cause significant changes in ocean temperature and circulation, but how they affect the ocean's
subsurface biogeochemistry is less understood. Using data from Biogeochemical Argo (BGC-
Argo) profiling floats in the equatorial Pacific, this study examined how ENSO impacted the
ocean's biogeochemical variability of oxygen, nutrients, carbon, and chlorophyll-a, highlighting
features at depths below the surface that have been difficult to capture with previous monitoring

efforts.
Introduction

The EI Nifio Southern Oscillation (ENSO) is a naturally occurring climate phenomenon
characterized by fluctuations in oceanic and atmospheric conditions across the tropical Pacific.
Under normal conditions, trade winds push warm surface water toward the western Pacific,
pooling it near Asia and Australia. However, during ENSO events, these trade winds weaken or
even reverse, allowing the warm water to spread eastward across the Pacific toward the
Americas. This shift in oceanic circulation defines the two main ENSO phases: El Nifio, the
warm phase, and La Nifia, the cold phase (Trenberth, 1997). Typically, ENSO cycles occur
every 2-7 years, with varying intensity and duration. These events have far-reaching impacts,
influencing global weather patterns, including altering precipitation, temperature, and
atmospheric circulation across many regions of the world.

Historically, oceanic monitoring of ENSO has focused primarily on physical parameters

such as sea surface temperature (SST) and salinity, largely through surface measurements in
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the Equatorial Pacific. Data from ships, the Tropical Atmosphere Ocean (TAO) mooring array,
and the Tropical Pacific Observing System (TPOS) have provided continuous surface
observations over several decades (McPhaden et al., 1998; Smith et al., 2010; McPhaden et al.,
2010). The advent of satellite remote sensing expanded this capability, allowing for high-
resolution SST monitoring across vast ocean regions. Since the early 2000s, the Argo program
has also contributed by enabling global subsurface temperature and salinity observations down
to 2000 meters (Roemmich et al., 2009). However, despite these advancements, the subsurface
ocean, particularly its biogeochemical characteristics, has been less extensively studied in the
context of ENSO variability (Christian et al., 2001; Smith et al., 2019).

Some previous studies have explored various biogeochemical processes in the
equatorial Pacific, such as changes in primary production (Strutton & Chavez, 2000; Gierach et
al., 2012; Brainard et al., 2018), but these investigations were typically limited to large spatial
scales using satellite or shipboard measurements. Similarly, variability in surface CO, flux has
been studied using moorings (Sutton et al., 2014; Liao et al., 2020; Pittman et al., 2022), leaving
the subsurface inorganic carbon system relatively unexplored. Oxygen variability, often tied to
vertical shifts in thermocline depth and upwelling modulated by ENSO, has also been observed,
with oxygen sensors being the most common biogeochemical sensor deployed on floats
(Czeschel et al., 2012; Eddebbar et al., 2017; Leung et al., 2019). Additionally, changes in
nutrient supply, closely linked to ENSO phases, show surface nutrient depletion during El Nifio
events due to reduced equatorial upwelling (Strutton et al., 2008; Turk et al., 2011). Despite
these efforts, a comprehensive understanding of subsurface biogeochemical dynamics and
interactions remains elusive, particularly in relation to ENSO's varying phases.

Since 2019, the Biogeochemical Argo (BGC-Argo) program has provided a new
observational tool, enabling continuous measurements of biogeochemical parameters such as
oxygen, pH, nutrient and chlorophyll-a concentrations at depths down to 2000 meters (Claustre

et al., 2020). These datasets offer the ability to view how subsurface biogeochemical processes
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respond to ENSO-driven physical changes in the ocean. Given the complexity of the tropical
Pacific and its role as the epicenter of ENSO activity, there is a growing interest in
understanding the interplay between subsurface biogeochemical variability and the well-
established physical indicators of ENSO (Turk et al., 2001; Mathis et al., 2014; Kessler &
Cravatte, 2021).

The ENSO state is traditionally quantified using the Oceanic Nifio 3.4 (ONI) index, which
measures sea surface temperature anomalies relative to a 30-year climatological average in the
central equatorial Pacific region, spanning from 5°S-5°N and 170°W-120°W. The period from
2019 to 2024 presents a unique case for investigation, characterized by an unusual sequence of
ENSO events, including a historic "triple-dip" La Nifia encompassing March 2020 — February
2024 (Li et al., 2023; Jiang et al., 2023), followed by the onset of one of the strongest El Nifios
on record. This study aims to explore subsurface biogeochemical variability throughout these
extreme ENSO phases, using data from BGC-Argo floats in the Nifio-3.4 region. Specifically, we
examine how biogeochemical parameters align with the Oceanic Nifio Index (ONI) and extend
this analysis into the subsurface. By investigating where and when biogeochemical variability
corresponds or diverges from physical ENSO patterns, this work seeks to provide new insights

into the ocean’s biogeochemical response to these significant climatic events.
Data and Methods

Oceanic Nifo Index

The NOAA Oceanic Nifio Index (ONI, Figure 3.1a) represents the monthly sea surface
temperature anomaly in the Nifio-3.4 region (5°S-5°N, 170°W-120°W). The anomalies were
calculated relative to a 30-year baseline period from 1991 to 2020. ONI data were obtained from

NOAA'’s National Centers for Environmental Prediction (NCEP).
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BGC-Argo profiling floats

Biogeochemical Argo (BGC-Argo) profiling floats are drifting, autonomous robots that
collect measurements in the upper 2000 meters of the ocean every ~10 days. They measure
temperature and salinity, along with a suite of biogeochemical sensors. At the surface, data is
telemetered back to shore via satellite before resuming the 10-day profiling routine. This
process continues until the float’s battery is depleted, typically after 4-5 years.

In the Nifio-3.4 region (5°S to 5°N, 170°W to 120°W), 23 BGC-Argo floats were selected,
covering the period from October 1, 2019, to July 1, 2024 (Figure 3.1b). The floats were
equipped with multiple biogeochemical sensors: all 23 floats measured temperature (°C),
salinity (PSS-78) and oxygen concentration (O, umol kgt), 20 floats measured pH, 18 floats
measured chlorophyll-a concentration (Chl-a, mg m=) and optical backscatter, and 11 floats
measured nitrate concentration (NOs, ymol kg'). The data used in this analysis were from the
delayed-mode quality control dataset, with only data flagged as QC level 1 being selected for

inclusion (Schmechtig et al., 2023).
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Figure 3.1: (a) The Oceanic Nifio Index (ONI) surface temperature anomaly from NOAA’s National
Centers for Environmental Prediction. (b) Map of the equatorial Pacific Ocean, with the Nifio-3.4 region
(5°S to 5°N, 170°W to 120°W) shown with the black box. Float profile locations (stars) are colored by
year, and a 1°x1° grid (black dots) represents the climatological spatial coverage used in this study.

The World Meteorological Organization IDs (WMOID) for each float were obtained using
the OneArgo-Mat toolbox for MATLAB (Frenzel et al., 2022). After selection, corresponding data
files were downloaded from the MBARI FloatViz QC directory. These files contained estimates
of total alkalinity (TA, umol kg), derived using the Linearly Interpolated Alkalinity Regression
(LIARv2) method, using a combination of temperature, salinity, oxygen and nitrate when
available (Carter et al., 2016). Derived carbonate system parameters, such as total dissolved
inorganic carbon (DIC, umol kg?) were then calculated using the LIAR-estimated TA and the
measured float pH values with CO2SYS (Lewis and Wallace, 1998; Sharp et al., 2023).

The mixed layer pressure (MLP) was calculated using the Gibbs Seawater
Oceanography Toolbox V3.06.12, where the MLP is defined as the pressure at which density
exceeds surface density by 0.03 kg m= (de Boyer Montégut et al., 2004, McDougall & Barker

2011). The mixed layer depth (MLD) in meters was then calculated from the mixed layer
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pressure and latitude for each profile and used throughout this study. All float profiles within the
Nifio-3.4 region were included in the estimated of the MLD, with monthly mean MLD values
used for further analysis.

The depth (m) of the 20°C isotherm (Z20), calculated for each profile, was used as a
proxy to describe the depth of the thermocline in this region even though recent studies
challenge this theory (Yang and Wang, 2009; Castafio-Tierno et al., 2018 and references there-
in). As for the MLD, all profiles of Z20 were used with a monthly mean used for analysis.

We also utilized apparent oxygen utilization (AOU, umol kg?), calculated as the
difference between the oxygen concentration at saturation (Garcia & Gordon, 1992) and the
float-measured oxygen concentration. Ocean spiciness (or mintiness) is used to describe how
warm (cold) and salty (fresh) the seawater is, which aids in tracking ocean mixing and water
masses through density-compensated anomalies of temperature and salinity (Munk, 1981;
Zeller et al., 2021). Spiciness was computed using the GSW toolbox (McDougall & Barker,
2011). Lastly preformed nitrate (preNO3) was calculated as the difference between float-
measured nitrate and AOU multiplied by the Redfield Ratio of nitrate to oxygen, N:O = -10,
serving as another conservative tracer after accounting for biological process (Broecker, 1974;
Emerson & Hayward, 1995; Johnson et al., 2010).

Gridded climatology products

We utilized the 1°x1° gridded GLODAPv2.2016b product (Key et al., 2015; Lauvset et
al., 2016), which included temperature, salinity, oxygen, nitrate, pH, and dissolved inorganic
carbon (DIC) averaged over the years 1972—-2013. The product contained data at depth levels
of 0, 10, 20, 30, 50, 75, 100, 125, 150, and 200 meters for the upper ocean. The derived
parameters of spiciness, AOU and preNO3 were also calculated for the gridded product data,
using the methods outlined in the previous section.

Since GLODAP did not include data for chlorophyll-a or particulate organic carbon

(derived from backscatter), we used the global 3D SOCA-BBP product from the EU Copernicus
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Marine Service Information (CMEMS; Sauzéde et al., 2016). This dataset, available on a
0.25°x0.25° grid, was re-gridded and averaged to match the 1°x1° resolution of the GLODAP
product. The SOCA-BBP product also included multiple depth levels extending down to 1000
meters, which were interpolated to align with GLODAP depth levels. However, chlorophyll-a
concentrations were available only to a depth of 120 meters.

Lastly, monthly extensions of the Roemmich-Gilson Argo Climatology from October 2019
to July 2024 provided a 1°x1° gridded temperature and salinity anomaly product down to 2000
meters provided an additional asset for the analysis of wide scale features (Roemmich & Gilson,
2009).

Float time-series and anomalies

Float profiles were averaged into 10-meter depth bins, spanning from the surface down
to 200 meters. Below 200 meters, float data and anomalies were very stable, providing minimal
signals and features warranting further exploration. In addition to depth binning, the data were
averaged into monthly time bins. Importantly, minimal data features were lost during this
process when compared to either a 1-week or moving filter, ensuring that the original signal
integrity was maintained throughout the binning process. All profiles were then averaged in
space over the entire Nifio-3.4 region, providing a time-series of biogeochemistry in the upper
200 meters.

To ensure comparability with the float data, the gridded climatology data were
interpolated onto the same 10-meter depth intervals and location as the float profiles. Anomalies
were then computed as the difference between float data and the interpolated climatology.
Positive anomalies indicated that the float data values exceeded those of the climatology, while
negative anomalies reflected float data values that were lower than climatology.
Biogeochemical Multivariate ENSO Index (BMEI)

To investigate subsurface biogeochemical variability, we developed an index

incorporating O, DIC and Chl-a. Due to a significant one-year data gap in 2021, NOs was
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excluded from this index. However, as NO3 trends generally tracked those of DIC, its exclusion
did not significantly alter the resulting index. To facilitate comparisons across the three different
variables with differing anomaly ranges, each anomaly time-series was standardized using Z-
scores, ensuring all variables were expressed in comparable units.

We then applied Principal Compenent Analysis (PCA) of the three variables’
standardized anomaly time-series to identify the dominant modes of variability. We utilized the
pca function in MATLAB 2023b to produce the coefficients (loadings) and variance
(eigenvalues) of each principal component. Recognizing that several principal components
(PCs) could meaningfully contribute to overall variability, we created a unified index by
performing a weighted average of the PCs, with each PC weighted according to its explained
variance. This approach enabled us to consolidate multiple PCs into a single, representative

index of biogeochemical variability.
Results and Discussion

Float time-series and anomalous events

Interannual variability above the mixed layer depth (MLD) in the Nifio-3.4 region
generally tracked as expected, as measured by BGC-Argo floats (Figure 3.2a-e). Surface
oxygen levels remained stable, staying near saturation due to atmospheric exchange above the
MLD. During El Nifio events, elevated surface temperatures coincided with reductions in nitrate
(NO3) and dissolved inorganic carbon (DIC), consistent with diminished upwelling of deep
waters and the shoaling of the MLD and depth of the 20°C isotherm (Z20; Wyrtki et al., 1981).
At the onset of the "triple-dip" La Nifia (March 2020), there was a notable rebound in
chlorophyll-a (Chl-a) in surface waters (Chavez et al., 2002; Lim et al., 2022).

The anomalies in float data compared to the gridded climatology indicated significant
events, all occurring below the MLD. To facilitate analysis of this biogeochemical variability,

three prominent events were selected, labeled E1, E2, and E3 (Figure 3.2f-)), each
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corresponding to notable anomalies. Further discussion of the anomalous events is reserved to
0., NO3, and DIC, while the variability in primary productivity (Chl-a) is addressed in the

following section.
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Figure 3.2: Time-depth sections of BGC-Argo float data in the Nifio-3.4 region and their respective
anomalies. Variables shown include temperature (a & €), oxygen concentration (b & g), nitrate
concentration (¢ & h), dissolved inorganic carbon (DIC, d & i) and chlorophyll-a concentration (Chl-a, e &
j). The mixed later depth (MLD, solid black line) and depth of the 20°C isotherm (220, solid red line) are
shown. E1, E2 & E3 label anomalous subsurface events discussed in the study. The vertical dashed lines
in (e) and (j) represent time points of November 2019 (magenta), 2021 (blue), and 2023 (red). Red and
blue shading on the x-axis represent durations of El Nifio and La Nifia, respectively.

Event 1 (E1) follows the transition from a weak El Nifio to a strong La Nifia in early 2020.
During this period, the MLD and Z20 shoaled, resulting in low temperature, O, and high NO3,
DIC values below the MLD. Similar signals appear in Event 3 (E3), where shoaling of the MLD
and Z20 produced comparable patterns. The anomalies are similar in both magnitude and

depth, though they were stronger during the 2020 transition from weak El Nifio to La Nifia
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compared to the 2023 transition from a strong El Nifio toward La Nifia. These anomalies align
with the shoaling of the MLD and Z20 align.

To investigate potential drivers of E1 and E3, we analyzed longitude-time contours of
upper ocean temperature anomalies across the equatorial Pacific extracted from Argo floats
(Figure 3.3). Distinct phases of warm and cold anomalies in the upper 200 meters exhibited a
clear west-to-east propagation, indicating Kelvin wave activity (McPhaden, 2002; Matthews et
al., 2007). During E1 in early 2020 and E3 in early 2024, a relatively strong upwelling Kelvin
wave crossed the Nifio-3.4 region, evidenced by a cold upper-ocean anomaly. The duration of
this upwelling event, approximately two months, aligns with the expected transit time of a Kelvin
wave across this region (Rydbeck et al., 2019). Shoaling of the MLD and thermocline brought
low O, high NO3 and DIC water upwards, creating the anomalies we see at these depths.
Notably, anomalies associated with MLD and Z20 (thermocline) shoaling did not appear at the
surface. Deeper waters with upwelling characteristics may have remained trapped below the

MLD, isolated from direct atmospheric interaction, enhancing their anomalous signature.
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Figure 3.3: Longitude-time contour plot of upper ocean (0-200 meters) temperature anomaly across the
equatorial Pacific (2.5°S-2.5°N) from the Roemmich-Gilson Argo climatolagy. Upwelling (thick dashed
lines) and downwelling (thin dashed lines) Kelvin Waves shown, with events E1, E2 & E3 corresponding
to those in Figure 3.2.

Event 2 (E2) was unigue and did not follow the pattern of other events. During E2, the
Z20 deepened relatively quickly, over ~1 month, without any significant change in the MLD. This
isotherm shift created large sub-MLD anomalies lasting for about a year, beginning in the La
Nifla phase and extending into the strong 2023 EIl Nifio, marked by a sustained increase in
temperature, O, and a decrease in NO3, DIC. A downwelling Kelvin wave, known to depress the
thermocline, was considered a potential driver. Although a downwelling Kelvin wave was
observed during this period (Figure 3.3), its magnitude was relatively weak, and the duration of

the event progressed faster than typical Kelvin wave speeds.
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Density and spiciness followed temperature trends, highlighting all sub-MLD anomalous
events. AOU mirrored oxygen levels without showing any new anomalous signhatures due to
biological effects.

At the onset of E2, a salinity maximum was observed between the MLD and Z20 at ~
100 meters, corresponding with high spiciness and low preNO; values (Figure 3.4a). This high
salinity is characteristic of South Pacific Tropical Water (SPTW, O’Connor et al., 2005), while
surface salinity lows in the region arise from precipitation, with internal lows linked to Ekman
pumping and convergence (Yu, 2015). The subsurface salinity maximum along with high
spiciness anomaly, originating south of the equator, reflects transport from SPTW (Qu et al.,

2013).

2020 2021 2022 2023 2024 2020 2021 2022 2023 2024

Figure 3.4: Time-depth sections of BGC-Argo salinity and derived parameters in the Nifio-3.4 region and
their respective anomalies. Variables shown include salinity (a & €), density (b & g), spiciness (c & h),
apparent oxygen utilization (AOU, d & i) and preformed nitrate (preNOs, e & j). The mixed later depth
(MLD, solid black line), depth of the 20°C isotherm (220, solid red line) and events E1, E2 & E3 are the
same as Figure 3.2.
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Subtropical Pacific gyres, where SPTW originates, also contain low or even negative
preNO; values below the surface (Johnson et al., 2010; Smyth and Letscher, 2023). It is
hypothesized that the concurrent high salinity, high spiciness and low preNO; values below the
MLD result from meridional transport of SPTW towards the equator. As SPTW water moves into
the Nifio-3.4 region, it carries with it high temperature and O», and low NO3 and DIC as SPTW
was recently at the surface, and subducted equatorward (Wijffels et al., 1996; 1zumo, 2005). As
the higher sub-MLD salinity values persist into early 2023, it is apparent that meridional
transport of SPTW was responsible for maintaining these anomalous values (Nonaka & Sasaki,
2007; Sasaki & lwai, 2022). Whether this northward transport was initiated by the downwelling
Kelvin Wave, wind anomalies or any combination of physical drivers is not further explored in
this study.

Redistribution of phytoplankton

A shown in Figure 3.2e, Chl-a trends did not always correlate with other biogeochemical
variables. Notable features in the Chl-a data include the high Chl-a "rebound" in early 2020 and
the typically low surface Chl-a during the 2023 EI Nifio. These details were also evident in the
anomaly between float and climatology data, with the rebound showing the most positive and
the 2023 EI Nifio the most negative anomalous values in the time series. While float data can
capture these events, examining the anomalies reveals positive Chl-a anomalies below the MLD
(Figure 3.2j). During both the weak 2020 EI Nifio and strong 2023 El Nifio, positive Chl-a
anomalies appeared below the MLD, indicating that while surface primary productivity declined,
it increased at depth relative to climatological averages. Turk et al., 2001 reported a similar
finding for the western equatorial Pacific, with more recent studies focusing on surface
productivity variability in relation to ENSO phases in the central equatorial Pacific (Chavez et al.,
2011; Pittman et al., 2022).

To further examine these subsurface differences in primary productivity, we selected

three specific time points that differ from those in the previous section — November 1 + 7 days of
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each: November 1, 2019 (weak EIl Nifio, n=3 profiles), November 1, 2022 (midway through the
"triple-dip" La Nifia, n=4), and November 1, 2023 (strong EI Nifio, n=10). November 1, 2021 was
excluded due to missing NO; data. The time points were chosen to consistently represent
different phases of the ENSO cycle while preserving the same time of year, thus minimizing any
bias in selection of the time points.

Figure 3.5 presents profile data for the three selected time points. During the weak 2020
and strong 2023 El Nifio events, we observed the same low surface Chl-a, contrasting with the
increased surface Chl-a during La Nifia as in the previous section. Conversely, below the MLD
(~75 meters), Chl-a was higher during El Nifio events, while La Nifia displayed reduced sub-
MLD Chl-a, even lower than the float average for the study period (n=1077 profiles).
Additionally, the subsurface Chl-a maximum shifted deeper during the weak 2020 EI Nifo.
These features are difficult to interpret in the time-series section figures but show significant

differences when viewing the profiles.
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Figure 3.5: Profiles of chlorophyll-a concentration (Chl-a, a) and particulate organic carbon to chlorophyll-
a ratio (POC:Chl-a, b) for the time points shown in the inlayed section plots: November 1, 2020 weak El
Nifio (magenta), November 1, 2022 La Nifia (blue) and November 1, 2024 strong El Nifio (red). Profile
shading is the standard deviation of profile values. Mean profile of all float data shown by the black line
without standard deviation. Note the logarithmic x-axis scale for POC:Chl-a.
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Below the MLD, Chl-a levels were higher during EIl Nifio than La Nifa, suggesting
possible phytoplankton redistribution in the water column depending on ENSO phase. Several
mechanisms may contribute to this pattern. The first mechanism is the reduction of upwelling
during EIl Nifio (Strutton & Chavez 2000; Liao et al., 2020). Despite reduced upwelling, NO;
levels in surface waters remained above 3 pmol kg™ (Figure 3.6¢). El Nifio profiles showed
increased NO3 and DIC levels below the MLD, along with decreased O-, indicating that deeper,
nutrient-rich waters still reached the euphotic zone (Turk et al., 2001). The second mechanism
is increased stratification during El Nifio. Profiles of temperature, O,, DIC, and NO3 during El
Nifio all exhibit more pronounced gradients compared to La Nifia profile, suggesting that deep

water mixes less effectively into surface waters during El Nifio (Liu et al., 2016).
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Figure 3.6: Profiles of temperature (a), oxygen concentration (b), nitrate concentration (c) and dissolved
inorganic carbon (DIC, d) for the time points shown in the inlayed section plots, as in Figure 3.5.

The 3-6 pmol kg nitrate, persistently found in the surface is a result of iron limitation of
primary productivity in the equatorial Pacific (Martin et al., 1994; Takeda, 1998; Chavez et al.,
1999). The primary iron source to the Nifio-3.4 region is via the Equatorial Under Current (EUC),
which delivers iron-rich water into the euphotic zone, supporting productivity (Slemons et al.,

2010; Coale et al., 1996). As the EUC flows eastward, iron concentrations decrease, with lower
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levels in the upper EUC where mixing into the thermocline allows iron uptake by phytoplankton
(Slemons et al., 2010).

With the observed increase in NOz, DIC and decrease in O, below the MLD during El
Nino years (Figure 3.6), we infer that this water likely contains elevated iron levels
(Aufdenkampe & Murray, 2001; Winckler et al., 2016; Rafter 2024). During EI Nifio, Kelvin wave
activity shoals the thermocline and MLD, allowing this micronutrient-rich water to rise higher in
the water column. Although increased stratification limits its mixing to the surface, phytoplankton
at depth within the euphotic zone can still access the iron from the EUC, causing the higher Chl-
a values and positive anomalies at depth below the MLD during EI Nifio.

To further evaluate these theories, we analyzed the particulate organic carbon to
chlorophyll-a (POC:Chl-a) ratios during key periods to gain additional insights into the
phytoplankton community dynamics (Figure 3.5b). The POC:Chl-a ratio serves as a useful proxy
for assessing phytoplankton dominance, as well as light, nutrient, or temperature limitations,
and can be indicative of community composition (Schallenberg et al., 2019). In surface waters,
we observed that the POC:Chl-a ratio did not significantly differ between EI Nifio and La Nifia
years. Below the MLD, however, elevated POC:Chl-a ratios coincide with lower Chl-a levels
during La Nifa. Elevated POC:Chl-a ratios are typically associated with iron limitation, as
phytoplankton experiencing iron stress exhibit reduced chlorophyll-a pigmentation (Westberry et
al., 2016). This supports our hypothesis that increased iron availability may have occurred
during EIl Nifio, as indicated by lower POC:Chl-a ratios. It is also worth noting that other sources
of POC during La Nifia could contribute to increased POC:Chl-a ratios, suggesting an influx of
non-photosynthetic organisms and particles (Wang et al., 2009; Wang et al., 2013).
Biogeochemical Multivariate ENSO Index (BMEI)

To further quantify and assess modes of biogeochemical variability in the Nifio-3.4
region and the influence by ENSO phases, we developed a Biogeochemical Multivariate ENSO

Index (BMEI), similar to the Multivariate ENSO Index that computes a single index from multiple
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input variables (Wolter & Timlin, 2011). Given the distinct biogeochemical variability between
the surface and subsurface, as well as across different variables, we computed two indices:
BMEIlsure for surface interactions (in the MLD) and BMElIsyg for subsurface interactions (below
the MLD). After calculating the three principal components (PCs) for each index, we combined
PC1 and PC2, which accounted for most of the variability—83% for BMEIsurr and 94% for
BMElsus (Table 3.1).

Table 3.1: Loadings for each Principal Component (PC) from each variable in the Biogeochemical
Multivariate ENSO Index (BMEI), and the percent of variance for each PC.

Loadings (Coefficients)

BMElsurr BMElsus
PC1 PC2 PC3 PC1 PC2 PC3
Oxygen 0.20 0.87 -0.45 0.65 0.29 0.67
DIC 0.64 -0.47 -0.61 -0.67 -0.11 0.74
Chl-a 0.75 0.17 0.65 -0.28 0.95 -0.11
Percent 48% 35% 17% 60% 34% 6%

The BMEI time series, shown in Figure 3.7, revealed that the BMElsurr inversely tracked
the Oceanic Nifio Index (ONI) with a correlation coefficient of -0.7 (p < 0.01). This negative
correlation aligned with ENSO impacts on surface conditions, as O, and DIC were influenced by
atmospheric interactions and saturation effects related to temperature (e.g., warmer
temperatures decrease surface O, and CO, saturation). Additionally, Chl-a productivity
decreased during El Nifio and increased during La Nifia, further reinforcing the negative
correlation.

The principal components (PCs) supported this trend, as no single PC captured the
majority of the variability. PC1 was primarily influenced by Chl-a and DIC, while PC2 was driven
primarily by oxygen. Oxygen showed a positive but lower correlation with DIC and Chl-a in PC1,
indicating a shared mode of variability, though DIC may also be affected by upwelling and

slower atmospheric equilibration. Notably, BMElsure showed no significant correlation with the

73



MLD, suggesting that surface variability was primarily influenced by atmospheric conditions and

productivity rather than by upwelling or downwelling of the MLD and thermocline.

5 Biogeochemical Multivariate ENSO Index (BMEI) PC1+PC2

Z-score standardized indexes

-2

Jan 2020 Jan 2021 Jan 2022 Jan 2023 Jan 2024

Figure 3.7: Biogeochemical Multivariate ENSO Index (BMEI) from October 2019 to July 2024 for within
(BMElsurr, magenta) and below (BMElsus, cyan) the mixed layer depth (MLD, dashed black line). The
Oceanic Nifio Index (ONI) shown with the solid black line. Red and blue shading on the x-axis represents
durations of El Nifio and La Nifia, respectively.

In contrast, BMElsus showed a strong correlation with the MLD, with a significant
correlation coefficient of 0.8 (p < 0.01). The MLD was standardized such that positive values
equate to deepening (greater depth) of the MLD. As the MLD shoaled or deepened, this caused
the biogeochemical anomalies to vary at depth. Notably, BMEIsys did not correlate with the ONI,
indicating distinct surface and subsurface biogeochemical responses, driven by different factors.

Most of the BMElsyg variability (60%) was explained by PC1, dominated by O, and DIC,
which tracked with MLD movement driven by Kelvin Waves during the extreme anomalous
events (Section 3.1). For example, in early 2020 (E1) and 2023 (E3), upwelling Kelvin Waves
caused the MLD and Z20 to shoal, promoting O, anomalies to decrease and DIC anomalies to
increase (hence the inverse signs of the loadings). PC2 explained 34% of the variability,

primarily driven by Chl-a anomalies, which were prominent below the MLD during El Nifio
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events compared to La Nifia with the redistribution of phytoplankton due to iron availability in
deeper water and increased stratification.

Though four years is a relatively brief study period in the context of ENSO, our findings
clearly demonstrate the added dimension of observing subsurface biogeochemistry, which is
often under sampled (Kessler & Cravatte, 2021). Continued profiling float observations,
including floats with nitrate, will fill the much-needed gaps in our understanding of subsurface
biogeochemical variability in the equatorial Pacific. Additionally, measuring iron or establishing
links between biogeochemical parameters and iron would enhance understanding of primary
productivity feedbacks in this region (Rafter et al., 2017). Employing the BMEI may aid in
monitoring ENSO cycle intensity and improving prediction efforts by integrating subsurface
phenomena observable from profiling floats. Our main finding that the region’s biogeochemistry
was primarily influenced by physical processes highlights the need for continued monitoring and
study of biogeochemical-physical interactions, in conjunction with the other monitoring efforts to

fully understand the drivers of biogeochemical variability in response to ENSO phases.
Conclusions

In this study, we presented novel insights into biogeochemical variability in the Nifio-3.4
region from 23 BGC-Argo profiling floats in relation to the 2019-2024 ENSO cycles, which
provided information inaccessible by other monitoring systems. We highlighted the spatial and
temporal extent of the biogeochemical variability, investigating some potential drivers. The
BGC-Argo float time-series and anomalies revealed greater variability and larger anomalies at
depth, likely driven by Kelvin wave activity and subducted meridional transport of South Pacific
Tropical Water (SPTW), altering sub-MLD biogeochemistry. Above the MLD, atmospheric
interactions maintained steadier conditions.

Many parameters utilized were derived from float-measured variables, introducing some

uncertainties. For instance, dissolved inorganic carbon (DIC) was calculated from float-
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measured pH and estimated total alkalinity (TA). Surface LIAR-estimated TA uncertainty is
about 6 ymol kg™ for this region (Carter et al., 2016), and pH uncertainty from floats is 0.01
(Maurer et al., 2021; Wimart-Rousseau et al., 2024), resulting in a DIC uncertainty of ~10 pymol
kg™ at the surface estimated from CO2SYS error propagation (Orr et al., 2018; Sharp et al.,
2023). The anomalous DIC features observed significantly exceed this margin, underscoring
their reliability. Profiling floats thus offer extensive information that complements data from other
monitoring programs, like the tropical mooring array and climatological data from ships and
satellite observations

The equatorial Pacific is highly physically dynamic, with multiple drivers of seasonal and
interannual variability. Tropical Instability Waves (TIWs), for example, propagate along the
equator and create vortices that facilitate deep ventilation, thermocline mixing, and meridional
transport on short timescales (~1 month), particularly around wave cusps (Willett et al., 2006;

Eddebbar et al., 2021).
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Figure 3.8: Sea Surface Temperature (°C) in the equatorial Pacific from the NOAA Coral Reef Watch
daily global 5km product. Panels represent different daily snapshots of SST, with magenta stars
representing float profile locations of those days + 3 days. Boxed outline is the Nifio-3.4 region.

During Event 2, we evaluated whether TIWs could bias the time-series by interacting
with the limited float profiles, leading to the observed downwelling feature (Figure 3.8). TIWs
were active in February 2022, with several (n=4) float profiles positioned near cooler surface
water cusps, which coincided with a rapid thermocline deepening observed. By March 2022,
TIW activity decreased, likely due to a downwelling Kelvin wave (Holmes & Thomas, 2016),
then resumed in April and continued through boreal summer and fall, its peak season (Kiladis et
al., 2009). During this period, float profile coverage remained zonally uniform, with profiles north
and south of the equator. Averaging profiles across the region would then obscure small-scale

TIW-induced variability as well as zonal and meridional gradients, such as the east-to-west
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nutrient and Chl-a decline (Christian et al., 2001). The persistence of sub-MLD anomalies from
2022 into 2023 suggests that while TIWs may promote some variability, they were likely not the
primary driver.

During EI Nifio, phytoplankton were redistributed deeper in the water column, likely to
access elevated iron levels supplied by the Equatorial Under Current (EUC; Browning et al.,
2023). The EUC is influenced by ENSO cycles, slowing during EI Nifio and accelerating during
La Nifia (Karnauskas et al., 2020). Iron recycling in this region also plays a role and depends on
residence time, where longer residence durations allowing for more iron regeneration and
uptake, which further supports primary productivity (Rafter, 2024).

ENSO cycles drive multiple mechanisms affecting primary productivity distribution, such
as increased warming and stratification, which reduce surface mixing with nutrient-rich deeper
waters (Behrenfeld et al., 2006). Floats provide unique insights into this subsurface variability
and capture anomalous events that are challenging for traditional measurements. Moorings lack
adequate depth coverage of biogeochemical measurements, ships are too infrequent, and
satellites only capture surface data (Smith et al., 2019). Floats thus offer an unprecedented view
of this remote region and the impact of ENSO on primary productivity. Understanding the
phytoplankton subsurface variability can refine net primary productivity and carbon export
estimates (Guidi et al., 2007).

Researchers frequently develop indices for the tropical Pacific to relate ENSO dynamics
and cycles with other natural phenomena, including the NOAA Oceanic Nifio Index, Multivariate
ENSO Index (Wolter et al., 2011), Kelvin Wave Index (Rydbeck et al., 2009), El Nifio Modoki
Index (Ashok et al., 2007), and Tropical Instability Wave Index (Johnson & Proehl, 2004).

In this study, we created a biogeochemical multivariate ENSO index (BMEI) based on
measured anomalies in oxygen (O,), dissolved inorganic carbon (DIC), and chlorophyll-a (Chl-a)
in the Nifio-3.4 region, comparing it to the canonical ONI. Observed biogeochemical variability

above and below the MLD led us to develop separate indices: BMEIlsure and BMElsys. BMElsurr
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correlated with the ONI, primarily reflecting surface temperature and atmospheric equilibrium. In
contrast, BMEIsug correlated with the MLD, where upwelling, downwelling, and sub-MLD
meridional transport influenced biogeochemistry. Additionally, anomalous primary productivity
events drove a unique mode of variability, distinct from other biogeochemical parameters which
can also differ depending on types of El Nifio events (Gierach et al., 2012). This study
underscores the value of BGC-Argo floats and the BMEI for tracking biogeochemical variability
and improving our understanding of ENSO’s impact on ocean biogeochemistry.
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