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ABSTRACT OF THE DISSERTATION 
 

Innovations in ocean biogeochemical instrumentation and monitoring 
 

 
by 

 

Taylor Wirth 

 

Doctor of Philosophy in Oceanography 
 

University of California San Diego, 2024 
 

Professor Todd Martz, Chair 
 

 
Anthropogenic activities are driving changes in ocean biogeochemistry, which can be 

monitored through instruments and sensors deployed across diverse platforms in even the 

harshest marine environments. Continued monitoring of these changes demands innovations in 

instrumentation, calibration and quality control to effectively capture dynamic signals and ensure 

comprehensive ocean coverage. This dissertation focuses on advancements in oceanographic 

pH sensors, starting with the longest near-continuous ocean pH dataset collected using ion-

sensitive field effect transistor (ISFET) technology at Scripps Pier. A new in situ calibration 

approach, based on direct tris buffer injection, was compared to the traditional bottle collection 
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method, yielding a fourfold improvement in repeatability with an uncertainty of 0.006 pH. 

Additionally, an automated calibration system integrated into the sensor package was 

evaluated, offering near real-time, self-calibrating capability for ocean acidification and 

biogeochemical monitoring programs. To continue the discourse of pH sensor technology in the 

second section of this dissertation, a novel optical pH sensor was evaluated in laboratory 

settings to establish its accuracy and precision, response time, temperature and pressure 

sensitivity, and calibration techniques which improved accuracy over factory methods. Field 

tests of the optical pH sensor across diverse marine environments—deep ocean, dynamic 

nearshore, and open ocean profiling—provided guidelines for field calibration, correction and 

optimal field use. In a scaled-up sense, the final section of this dissertation leveraged pH and 

other biogeochemical sensors on BGC-Argo profiling floats to explore biogeochemical variability 

in the equatorial Pacific from 2019 to 2024. While the region has extensive physical data, 

subsurface biogeochemical observations and their links to El Niño and La Niña cycles are 

sparse. These floats revealed distinct biogeochemical patterns driven by vertical movement of 

the mixed layer depth, meridional subtropical water transport and primary production shifts 

associated with ENSO phases. Overall, this work combines new sensor technologies and 

analytical methods to provide essential data, instrument guidelines and reveal insights into 

ocean biogeochemical phenomena. Ongoing instrumentation development and monitoring will 

be critical to expand and deepen our understanding of how human-driven impacts are 

transforming our oceans. 



1 

Introduction 

A changing ocean climate 

The ocean is undergoing profound changes driven by human activities that are 

reshaping Earth's climate and ecosystems. The burning of fossil fuels, deforestation, and land-

use modifications have had far-reaching impacts on both terrestrial and marine environments. 

Rising ocean temperatures have intensified El Niño events (Trenberth & Hoar 1997; Yeh et al. 

2009; Shin et al. 2022), altered precipitation patterns and salinity (Durack et al. 2012; Konapala 

et al. 2020), and increased the frequency and strength of winds and storms (Sydeman et al. 

2014; Kossin et al. 2020). These are just a few examples of the physical impacts affecting the 

ocean. However, intertwined with these physical changes, the ocean's biogeochemistry is also 

being altered. 

Global ocean biogeochemical effects due to climate change, such as ocean 

deoxygenation (Keeling et al. 2010), disruptions to nutrient cycling and primary production 

(Marinov et al. 2010; Kwiatkowski et al. 2020), and transformations in the carbon cycle 

(Sarmiento et al. 1998; Doney et al. 2014), are all underway. A crucial aspect of ocean 

biogeochemistry is the carbon cycle and how the ocean's absorption of roughly one-third of 

atmospheric CO₂ (Sabine et al. 2004; Le Quéré et al. 2016) has led to a reduction in ocean pH, 

a process known as ocean acidification (Doney et al. 2009). Monitoring and understanding 

these biogeochemical changes have become increasingly dependent on advancements in 

sensor technologies. In particular, measuring the inorganic carbonate system, comprising pH, 

total alkalinity, dissolved inorganic carbon, and partial pressure of CO₂, is essential for tracking 

ocean acidification and broader changes in global carbon cycling (Byrne 2014; Wang et al. 

2019). Among these variables, pH is the most accessible for measuring CO₂ changes in the 

ocean, thanks to recent innovations in sensor technology (Martz et al. 2015; Bushinksy et al. 

2019). 



2 

Ocean pH instrumentation 

Ocean pH instrumentation has evolved to include various types, yet this dissertation 

focuses on two critical pH sensing technologies in use today: the potentiometric ion-sensitive 

field effect transistor (ISFET), specifically the Durafet model from Honeywell, and the optical 

Pico-pH-SUB (Pico optode) from PyroScience GmbH (Martz et al. 2010; Johnson et al. 2016; 

Staudinger et al. 2018; Staudinger et al. 2019). These two sensors stand out as the only solid-

state, scalable carbonate system sensors currently available. Their small size, pressure 

tolerance, low power consumption, and lack of moving parts or fluidics make them ideally suited 

for integration across a wide range of ocean observation platforms. 

The Durafet has become central to global ocean pH monitoring programs, serving as the 

backbone for numerous long-term datasets (Rivest et al. 2016; Johnson et al. 2017; Claustre et 

al. 2020). However, in 2022, Honeywell discontinued the Durafet, creating a significant gap for 

the carbon observing community which relies on this technology for widespread monitoring. The 

Pico optode emerged as a promising alternative, offering a new approach to pH measurement 

but still required thorough assessment for oceanographic use.  

Despite the advancements offered by new sensor technologies like the Pico optode, 

significant challenges remain in the validation and calibration of sensors in situ. Currently, the 

best practice for in-the-field calibration involves collecting seawater samples in bottles followed 

by laboratory-based pH analysis (Bresnahan et al. 2014). This approach, however, leaves room 

for improvement regarding the following:  

• Spatiotemporal mismatch: Collecting the exact water measured by the sensor in 

dynamic ocean environments can be difficult, producing large errors between sensor 

and bottle sample (Hofmann et al. 2013; Bresnahan et al. 2021). 

• Uncertainties in sample analysis: Recent work has shed light on global ship-based 

seawater carbonate measurement uncertainties, with more complications for coastal 



3 

environments showing that there is still work to be done to quantify and reduce bottle 

analysis uncertainties (Carter et al. 2023; Carter et al. 2024). 

• Variability in user expertise: The accuracy of bottle measurements can vary depending 

on the experience and skill of the personnel involved, with larger errors due to more 

inexperienced users (McLaughlin et al. 2017). 

• Resource intensity: Collecting and processing bottle data requires extensive personnel 

time, financial resources and specialty equipment, which many labs do not have (Martz 

et al. 2015).  

• Time lag: Delays in obtaining and applying bottle calibration data can result in outdated 

calibration adjustments. For example, a month-long sensor deployment may not be 

corrected until bottle data is returned, sometimes many more months or years after the 

deployment. 

Given these limitations, continued development in sensor technology, calibration techniques, 

and new methodologies is essential and further examined in this dissertation. Innovations will 

not only enhance sensor accuracy and reliability but also improve accessibility, ultimately 

ensuring the continued expansion of robust ocean pH and carbon monitoring. 

Biogeochemical monitoring 

The pH sensors previously mentioned are just one of many biogeochemical instruments 

used in ocean monitoring programs worldwide. Working alongside sensors capable of 

measuring oxygen, nutrients, chlorophyll, and particles, they collectively provide insights into the 

ocean’s biogeochemical cycles (Gruber et al. 2009; Wang et al. 2019). 

A flagship example of these technologies in concert is the Biogeochemical Argo (BGC-

Argo program, a global initiative deploying biogeochemical sensors on an array of 1,000 

profiling floats across the world’s oceans (Johnson et al. 2009; Johnson & Claustre 2016; Chai 

et al. 2020). These profiling floats are autonomous platforms that sample the upper 2,000 
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meters of the ocean, transmitting their data back via satellite every 10 days, with each float 

designed to operate for around five years providing real-time data available for public use. 

Through profiling floats, scientists have gained unprecedented insights into global ocean 

warming, shifts in the hydrological cycle, deoxygenation, and ocean acidification (Riser et al. 

2016; Hosoda et al. 2009; Sharp et al. 2023; Mazloff et al. 2023). The ability to infer these global 

changes is directly tied to the efforts in developing these sophisticated sensors and the rigorous 

work required to ensure their performance and quality control (Bittig et al. 2019). 

The ocean’s cycles of nutrients and elements play a crucial role in regulating Earth’s 

climate, ecosystems, and ocean chemistry (Falkowski et al. 2008, Gruber & Galloway 2008). 

Although significant research has advanced our understanding of these cycles, the complexity 

and variability of biogeochemical processes make them challenging to measure and model 

accurately. Ongoing biogeochemical monitoring and innovations in instrumentation will reinforce 

each other, enabling deeper exploration of hard-to-reach regions and continuous discoveries 

within the ocean’s vast systems. 

Dissertation outline 

Chapter 1, in preparation and formatted for submission to Nature: Science Data, 

presents a decade-long time-series of ocean pH measurements at Scripps Pier from the Scripps 

Ocean Acidification Real-time (SOAR) Monitoring Program. To process the high frequency pH 

measurements, the chapter focuses on the evaluation of a novel alternative in situ calibration 

method, along with new tools and routines applicable to the wider pH sensor user community. 

The data set, currently the longest near-continuous time-series using an ISFET-based pH 

sensor, was rigorously quality-controlled and made available for public use for the first time 

since data collection began in 2014. 

Chapter 2, published in Limnology and Oceanography: Methods, evaluates a new 

commercially available optical pH sensor by investigating its dependencies on temperature, 
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salinity, pressure, and characterizing response time, leading to the development of improved 

calibration procedures. Extensive field testing across multiple platforms enabled a thorough 

assessment of its performance in diverse ocean environments. Based on these results, new 

recommendations for sensor use were provided to the community which did not exist previously. 

Chapter 3, in preparation and formatted for submission to Geophysical Research 

Letters, investigates subsurface biogeochemical variability in the remote equatorial Pacific 

Ocean using data collected by BGC-Argo profiling floats. It explores potential drivers of 

biogeochemical variability and examines the influence from the historic La Niña/El Niño cycles 

of 2019-2024. 
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Abstract 

Monitoring and assessing long-term trends in coastal near-shore environments pose 

distinct challenges due to greater variability relative to the open ocean. The Scripps Ocean 

Acidification Real-time (SOAR) Monitoring Program has addressed these by collecting over a 

decade of high-frequency sensor pH measurements at the Ellen Browning Scripps Memorial 

Pier. This rigorously quality-controlled dataset incorporates calibration via both traditional bottle 

sampling methods and a novel approach using direct in situ injections of tris buffer in synthetic 

seawater, a traceable pH standard. The updated calibration procedures and methodology are 

further detailed, with the in situ tris buffer injection method achieving an accuracy of 0.006 pH. 

This near-continuous, high-quality pH time series offers a valuable resource for studying long-

term trends and variability in the near-shore inorganic carbon system, contributing to ongoing 

ocean acidification monitoring efforts. 

Background & Summary 

Monitoring the ocean's inorganic carbon system is essential for understanding 

biogeochemical processes and assessing ocean health (Tanhua et al. 2019; Wanninkhof et al. 

2021). The inorganic carbon system is typically characterized by four measurable parameters: 

pH, dissolved inorganic carbon (DIC), total alkalinity (TA), and the partial pressure of CO₂ 

(Dickson et al. 2007; Wang et al. 2019). Among these, pH has become a key focus of 
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measurement due to the availability of robust, efficient sensors that can be deployed across a 

wide range of oceanographic environments (Martz et al. 2015; Bushinsky et al. 2019). 

Recent advancements in pH sensors, especially those based on ion-sensitive field-effect 

transistor (ISFET) technology (Martz et al. 2010; Bresnahan et al. 2014; Takeshita et al. 2014; 

Johnson et al. 2016), have enabled continuous, large-scale monitoring of the ocean's inorganic 

carbon system. These sensors are widely employed in regional to global monitoring networks 

such as the Global Ocean Acidification Observing Network (GOA-ON, Rivest et al. 2016) and 

the Biogeochemical Argo array (BGC-Argo, Claustre et al. 2020). However, despite 

technological progress, the calibration or remote delayed-mode quality control of sensors in situ 

remains a significant challenge (Carter et al. 2023, Wimart-Rousseau et al. 2024), and is the 

limiting factor in the reported accuracy of all autonomous datasets. Traditionally, ISFET pH 

sensors are calibrated using discrete bottle samples (Bresnahan et al. 2014), which introduces 

uncertainties due to potential spatio-temporal mismatches, sampling methods, and the inherent 

complexities of the inorganic carbon system (Hofmann et al. 2001; McLaughlin et al. 2017). 

Additionally, the time and cost required for laboratory analyses delay the ability to quality-control 

real-time data. 

To address these limitations, use of tris buffer in synthetic seawater as a known pH 

reference, has been proposed as an alternative for in situ validation of ISFET-based pH 

sensors. This method involves directly injecting the buffer solution across the pH sensing 

surfaces within an enclosed flow cell. Tris buffer in synthetic seawater is widely used as a 

primary standard for oceanic pH measurements and has been extensively characterized across 

a range of temperatures, pressures, and salinity compositions (DelValls and Dickson, 1998; 

Rodriguez et al. 2015; Takeshita et al. 2017; Müller et al. 2018). Initially demonstrated on a 

short-term deployment (2 weeks) where the tris buffer injections (n=15) outperformed a rigorous 

bottle sampling campaign (n>100, Bresnahan et al. 2021), tris buffer offers a streamlined and 
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more consistent in situ calibration method, potentially reducing dependence on discrete bottle 

sample collection and the associated laboratory analysis.  

In this study, we present a ten-year dataset of high-frequency pH measurements (~10-

minute intervals) collected using a custom SeaFET sensor package deployed at Scripps Pier, 

La Jolla, CA, USA. The dataset, provided here, following rigorous quality control protocols, 

represents the first time these procedures have been fully developed and documented. We 

leverage the ~monthly concurrent collection of bottle samples and tris buffer injections to 

evaluate the long-term performance of in situ tris buffer calibration. Specifically, we compare 

tris-calibrated and bottle-calibrated SeaFET pH sensor data over an extended time-series, 

aiming to demonstrate that tris buffer calibration provides a more reliable and consistent method 

for sensor validation, particularly for real-time monitoring applications. A simultaneous goal of 

this research is to establish in situ tris buffer calibration as a scalable solution for high-

frequency, continuous pH monitoring, which is essential for improving ocean carbon 

observations and supporting future marine carbon dioxide removal (mCDR) initiatives. By 

enhancing sensor accuracy and operational efficiency, this method can reduce the need for 

human intervention and workload, providing a robust framework for continued monitoring of 

ocean health in a changing climate. 

The dataset offers a wide range of applications. It can be utilized to assess long-term 

ocean acidification trends, shedding light on how coastal regions are responding to global 

changes in atmospheric CO₂ levels (Duarte et al. 2013). Additionally, it allows for the 

investigation of dynamic processes such as upwelling and internal tides, which influence the 

local inorganic carbon system (Ribas-Ribas et al. 2001). The dataset also provides a valuable 

resource for times-series analysis of coastal carbon dioxide fluxes (Evans et al. 2022), and for 

exploring the impacts of climate variability, such as El Niño and La Niña cycles, on coastal 

carbon chemistry (Chavez et al. 2002; Lilly et al. 2019). The dataset also offers the opportunity 

to study the occurrence of harmful algal blooms (HABs) and red tides, events that can 
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significantly alter ocean biogeochemistry by impacting oxygen levels, and the local carbon 

system (Skelton et al. 2024). Understanding how these phenomena relate to pH variability and 

other environmental factors could provide insights into their drivers and potential links to broader 

climate patterns. 

Methods 

Sensor Operation 

A custom SeaFET pH sensor package (SF, Bresnahan et al., 2014) used in this study 

(Figure 1.1). The sensor was mounted on a pier piling approximately 4 meters deep on the 

southeastern side of the Ellen Browning Scripps Pier in La Jolla, CA, USA (32° 52’ 1.5” N, 117° 

15’ 26.5” W). The SF was deployed as part of the Scripps Ocean Acidification Real-time 

(SOAR) Monitoring Program from December 2013 to April 2024, comprised of 31 distinct 

deployments. The SF was relocated in July 2021 to a different piling approximately 20 meters 

away, at the same depth.  

 
Figure 1.1: SeaFET deployed at Scripps Pier, with conical flow cell attached used for manual tris buffer 
injection.   
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The SF measured pH potentiometrically using the Honeywell DuraFET III combination 

electrode providing an “internal” reference and an Orion chloride ion-selective electrode (Cl-ISE) 

providing an “external” reference (Martz et al. 2010; Bresnahan et al. 2014; Takeshita et al. 

2014). This arrangement provides two reference-source voltages and thus two pH values. We 

adopt the terminology used by Johnson et al. 2016 utilizing where the sensor calibration 

coefficients are referred to as “k0” and its temperature dependence “k2” (Johnson et al. 2018; 

Bresnahan et al. 2021). The SF’s reported pH in this study comes from the DuraFET internal 

reference with temperature from the DuraFET thermistor. 

In situ calibration data 

Two methods were used for in situ calibration to discrete samples of known pH: the 

traditional collection of seawater bottle samples and the injection of tris buffer into the flow cell 

of the pH sensors both manually and autonomously. 

Seawater was collected using a clear, 2-liter diver-deployed Niskin bottle, transferred to 

a 500 mL borosilicate bottle using silicone tubing, and poisoned with 240 µL of saturated 

mercuric chloride within one hour of collection (n = 102; Dickson et al. 2007). The bottle 

samples were sent to three different laboratories for analysis during the study, depending on 

availability. Spectrophotometric measurements using m-cresol purple (mCP) were conducted, 

where two labs used purified mCP and the third used impure dye with a dye impurity correction 

applied (Carter et al. 2013; Takeshita et al. 2021). Some bottles were concurrently measured for 

total alkalinity (AT) and total dissolved inorganic carbon (CT). AT was determined via open-cell 

titration following standard protocols (Dickson et al. 2003). CT was determined either by 

coulometric titration3 (Dickson et al. 2007) or by infrared detection after acidification and CO2 

stripping (Goyet and Snover, 1993; O’Sullivan and Millero, 1998). 

For the tris buffer injections, 120 mL of tris buffer was manually injected into a custom 

conical 25-mL flow manifold installed by scuba divers at time of calibration. The injection was 

performed using two 60-mL syringes, with a check valve on the outlet to prevent any mixing with 
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ambient seawater during the measurement process. Both certified tris buffer from the lab of 

Andrew Dickson at Scripps Institution of Oceanography and self-made tris buffer (Paulsen & 

Dickson 2020) were utilized. 

Calibration procedure 

Two methods were used to calibrate sensor pH to the in situ discrete samples: a single-

point or mean k0 value or a linearly fitted k0 value. Both methods require calculating k0 using 

known in situ pH values from the discrete sample data (bottle and tris), internal reference 

voltage, and temperature at the time of discrete sample collection. 

Bottle pH was converted to in situ pH using CO2SYS V3 (Lewis & Wallace 1998; Sharp 

et al. 2023), with spectrophotometric pH and AT as input parameters. Bottle salinity was 

determined by a salinometer and in situ temperature was determined from the SF at time of 

seawater collection. Nutrient concentrations were set to zero, with K1 and K2 dissociation 

constants from Lueker et al. 2000, KSO4 dissociation constant from Dickson 1990, KHF 

dissociation constant from Perez & Fraga 1987, and the boron-salinity ratio from Lee et al. 2010 

as recommended for best practice (Orr et al. 2018; Jiang et al. 2022). If bottle AT was 

unavailable, AT was estimated using a linear salinity-AT regression determined from the bottle 

samples in this study. 

Tris buffer in situ pH was calculated from DuraFET temperature at the time of injection, 

and a practical salinity of 35 using Eq. 18 from DelValls & Dickson 1998.  

During most deployments, multiple bottles were collected and tris buffer injections 

performed (~monthly), providing 4 choices for in situ sensor calibration: mean bottle k0, mean 

tris k0, linear bottle k0, or linear tris k0. The rationale for the chosen calibration method is 

discussed below (Figure 1.2, and in the section below). All deployments were individually 

processed, using a customized graphical user interface (GUI) developed for this dataset. 
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Figure 1.2: Decision tree for selecting the in situ sensor calibration method based on bottle samples and 
tris buffer injections. The number of tris buffer injections (N) and the standard deviation (σ) of the 
calibration coefficient (k0) warrant either a single k0 or linear k0 to be applied to the deployment. 

 
Calibration example 

Regarding bottle samples for calibration use, we keep with the best practices of using a 

mean (single) k0 value, regardless of quantity of bottles collected during the deployment 

(Bresnahan et al. 2014; 2021). For the remainder of this study, we focus on the tris buffer 

injection calibration method. A mean k0 value was also used for tris buffer injections if: 

1) 2 or less tris injections were performed. 

2) Or the standard deviation of the k0 values was less than 300 μV. This standard deviation 

value was chosen as it equates to ~0.006 pH, which is the reported uncertainty of the 

self-made tris buffer (Paulsen & Dickson 2020) and was the standard deviation seen 

during the study by Bresnahan et al. 2021 for the DuraFET internal reference calibrated 

to tris buffer.  

Figure 1.3a illustrates an example stable deployment that justifies the use of a mean tris buffer 

k0 as all k0 values (σ = 130 μV) fell within the 300 μV standard deviation threshold. Typically, 

tris injections for most deployments exhibited standard deviations well within this threshold, 
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supporting the use of a mean k0 (N = 21). However, in some cases (N = 10), standard 

deviations exceeded 300 μV, with a visible linear drift that aligned with the trend observed in 

bottle samples. 

 

Figure 1.3: Examples of k0 values from bottles (purple diamonds) and tris buffer injections (green 
triangles) from two deployments: (a) Stable deployment with mean k0 ± 300 μV (black line with tan 
shaded region) shown for both bottles and tris buffer. Tris buffer k0 values are within ± 300 μV suggesting 
the use of a mean tris buffer k0 value for this deployment. (b) Drifting deployment with robust linear 
regression and 95% confidence interval (CI; green line with green shaded region) fit to tris buffer 
injections including the outlier. Note the narrow mean ± 300 μV (black line with tan shaded region) for this 
deployment, calculated for tris buffer only. (c) Same as (b) but with normal linear regression fit to tris 
buffer injections excluding the outlier. 

Here we outline the steps used to apply a linear k0 correction for sensor drift, as has 

been previously demonstrated for BGC-Argo floats (Johnson et al. 2018). This correction was 

applied exclusively to tris buffer injections, which provide a direct measure of a known pH 

without the risk of spatio-temporal mismatch, offering improved consistency over bottle 

measurements (Bresnahan et al. 2021).  

If the standard deviation of tris measurements exceeded 300 μV, k0 and thus sensor 

drift was likely (Figure 1.3b). To perform a linear regression, at least three tris buffer injections 

were required during a deployment. This allowed for the calculation of goodness-of-fit statistics, 

the identification of potential outliers, and the confirmation that multiple injections exhibited the 
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same drift direction, ruling out faulty injections. The following steps were taken to apply a linear 

k0 calibration for this example (Figure 1.3b): 

1) Calculated k0 values for the tris buffer injections (N = 6; σ = 7.2 mV). Standard deviation 

was well outside the 300 μV threshold. 

2) Visually confirmed if there was a trend in k0 values and its consistency to the bottle 

samples. 

3) Fitted a robust linear regression (Figure 1.3b). R2 = 0.745 and 95% confidence interval = 

8.0 mV (CI). 

4) Identified and removed outliers greater than 2 standard deviations or outside the 95% 

CI. 

5) Refitted a normal linear regression (Figure 1.3c). R2 = 0.996 and 95% CI = 860 μV. 

6) Noted improvement in R2 value and reduction in the 95% CI, indicating significance of 

the outlier. 

7) Applied this linear k0 over the duration of the deployment (V/time). To compare to our 

300 μV standard deviation threshold for mean k0 deployments, the RMSE for this 

example was 430 μV.  

Using the outlined methodology, we present two example deployments demonstrating the 

application of a mean and linear k0 derived from tris buffer injections. Bottle samples are 

included to validate the alignment between sensor and bottle data following calibration to the tris 

buffer. 

In the stable deployment example (Figure 1.4a), residuals for the mean k0 of the tris 

injections remained near zero with a standard deviation of 128 μV (~0.002 pH). Residuals 

relative to the bottle samples showed an offset of 0.027 ± 0.007 pH. The SF data exhibited a 

maximum difference of 0.003 pH whether the mean or linear k0 was used for calibration (Figure 

1.4b). This negligible difference, within the uncertainty of tris buffer preparation (<0.006 pH), 

suggests that using a mean k0 was appropriate for this deployment. 
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Figure 1.4: Example deployments showing the use of a mean or linear k0. (a) SeaFET (SF) data from a 
stable deployment calibrated to tris buffer injections using a mean k0 (orange line) and a linear k0 (blue 
dashed line). In situ tris buffer pH (green triangles) and bottle sample pH (purple diamonds) also shown. 
(b) Residuals between the SF using both k0 values and the tris buffer injections (triangles), difference 
between SF data calibrated to mean and linear k0 (black line), and residuals between SF calibrated to the 
mean k0 and bottle samples (purple triangles). The dashed line and tan shaded region represent a 
difference of 0 ± 0.006 pH corresponding to the k0 standard deviation threshold of 300 μV. (c) Same as 
(a) but for a drifting deployment warranting the use of a linear k0 value. (d) Same as (b) for the drifting 
deployment shown in (c) but the residuals between the SF calibrated to the linear k0 and bottle samples 
are shown. 

In the drifting deployment example (Figure 1.4c), calibration of the SF using a mean k0 

revealed significant drift, as residuals between the SF and in situ tris buffer pH exhibited a clear, 

linearly increasing trend (Figure 1.4d). A similar trend was observed in the residuals for the in 

situ bottle sample pH, with a maximum deviation up to 0.15 pH. In contrast, when the SF time 

series was calibrated using a linear k0 to adjust to the in situ tris buffer pH, it also showed much 

closer alignment with the bottle samples. Residuals between the SF (calibrated with a linear k0) 

and tris buffer were 0.000 ± 0.007 pH, while residuals for the bottle samples displayed the same 

offset observed previously, at 0.028 ± 0.017 pH.  

The contrast between calibrating with a mean versus linear k0 underscores the 

importance of selecting an appropriate calibration method, as the goal is to maintain sensor 
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consistency across both tris buffer and bottle sample comparisons. This example highlights the 

efficacy of the linear k0 to correct for sensor drift, ensuring sensor data reliability over time. 

Data records 

SOAR pH time-series 

The decade-long (Dec 13, 2013 – April 17, 2024) data set of sensor pH is archived by 

the University of California San Diego Library. The data set provides comma-separated values 

(.csv) and MATLAB MAT-file (.mat) of sensor pH data corrected to the in situ tris buffer 

injections according to our methodology outlined above, as well as secondary pH data corrected 

to the bottle data. Datetime data is provided in Coordinated Universal Time. Raw sensor voltage 

and temperature is also provided to allow recalculation of sensor pH data using the in situ 

calibration data of choice. The calibration coefficients used, and calculated for all four 

methodologies is also provided. Quality-control (QC) flags for the sensor pH data corrected to 

the tris buffer injections are provided as follows:  

• 1 = good data 

• 2 = bottle sample collected during this measurement 

• 3 = tris buffer injected during this measurement 

• 4 = bad data.  

The time series of SeaFET pH data corrected to the tris buffer injections, using QC flags of 1 

and 2, is shown in Figure 1.5.  
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Figure 1.5: Scripps Ocean Acidification Real-time (SOAR) Monitoring Program time-series of SeaFET pH 
calibrated to in situ tris buffer injections. Light blue line represents high-frequency data, bold blue line is 
the daily average. Bottle samples (purple diamonds) are also shown. 

Bottle sample data 

Bottle data is archived by the University of California San Diego Library. The data set 

provides comma-separated values (.csv) and MATLAB MAT-file (.mat) of the 

spectrophotometric pH, temperature (°C) from the spectrophotometric analysis, salinity (PSU), 

AT (μmol kg-1), CT
 (μmol kg-1), and calculated in situ pH. Datetime data is provided in 

Coordinated Universal Time. 

Tris buffer metadata 

Tris buffer injection data is archived by the University of California San Diego Library. 

The data set provides comma-separated values (.csv) and MATLAB MAT-file (.mat) of the 

datetime of tris buffer injection, in Coordinated Universal Time, temperature (°C), and calculated 

in situ pH of the tris buffer. Raw sensor voltage (Vint, volts) used in this data set to calculate the 

calibration coefficients is also included.  

Technical validation 

Tris buffer vs bottle sample bias 

The data set provided an unprecedented opportunity to compare tris buffer injections 

with the traditional bottle sample calibration method for calibrating ISFET pH measurements. 

Generally, the sensor pH data tracked well with the bottle samples, indicating that correcting 
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sensor pH to the tris buffer injections was a valid calibration method. However, a consistent 

offset of 0.026 pH units was observed between sensor data when corrected to the tris buffer 

and the bottle pH, suggesting that the bottle pH was consistently lower than expected compared 

to in situ pH values from the tris buffer (Figure 1.6a). 

 
Figure 1.6: (a) Residuals (mean ± 1σ) between the SeaFET (SF, calibrated to tris buffer) and the in situ 
tris buffer pH (green triangles) and bottle sample in situ pH values from spectrophotometric analysis 
(purple diamonds).(b) Property-property plot of bottle sample in situ pH calculated from total alkalinity (AT) 
and total dissolved inorganic carbon (CT) vs in situ spectrophotometric pH. Dashed line is 1:1. 

This offset persisted throughout the entire decade-long time series, with no observed 

differences across tris buffer batches, laboratories performing spectrophotometric analysis, 

sample collectors, or bottle shelf life, which ranged from six months to two years. This bias is 

equivalent to residuals seen in several studies: ~0.03 pH from Bresnahan et al. 2014 and Velo 

& Padin et al. 2022, 0.04 pH from Gonski et al. 2018, and better than the residuals seen in 

these studies: 0.08 from McLaughlin et al. 2017, up to 0.1 from Miller et al. 2018. In contrast, the 

bias seen from the only previous study using in situ tris buffer injections was 0.008 pH at Lizard 

Island, Australia (Bresnahan et al. 2021). 

Furthermore, the standard deviation of the residuals of the tris buffer injections (0.004 

pH) compared to the bottle samples (0.015 pH) demonstrated approximately a fourfold 

improvement in calibration precision, on par with those seen previously (Bresnahan et al. 2021). 

Based on the uncertainty of tris buffer preparation (0.006 pH, Paulsen and Dickson 2020) and 

the standard deviation of SF-tris buffer residuals (0.004 pH), the accuracy of the data set is 
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reported as 0.006 pH units. Overall, the observed offset between tris and spectrophotometric pH 

corrected sensor data may be location-dependent, with uncertainties in the spectrophotometric 

analysis and CO2SYS calculations likely playing a major role in attributing to the 0.026 offset. 

A persistent discrepancy of ~0.01 pH was observed in the bottle samples when 

comparing in situ pH determined spectrophotometrically with that calculated from AT and CT 

(Figure 1.6b). This discrepancy aligns with those from global shipboard measurements (Carter 

et al. 2023), although those were conducted in the open ocean. Given the greater variability in 

coastal carbonate chemistry, this suggests that uncertainties related to unidentified AT sources 

in coastal environments may contribute to the discrepancy, requiring further research for 

characterization and determination (Carter et al. 2024).  

Calibration coefficient k0 variability 

Across the 31 deployments, 9 DuraFET sensors were deployed, yielding a mean k0 

value of -0.3712 ± 0.0111 V based on tris buffer calibrations for the time series (Figure 1.7a). In 

the 10 deployments using a linear k0, drift rates ranged from 8 to 329 μV/day (Figure 1.7b). 

Excluding the highest outlier, the average drift rate was 30 μV/day, suggesting that it would take 

approximately 10 days to exceed the 300 μV standard deviation threshold (~0.006 pH) to 

support using a linear k0.  

Two deployments exhibited negative drift, but these also had some of the lowest drift 

rates and mean k0 standard deviation. For these cases, it would take roughly 30 days to 

surpass the 300 μV threshold. Overall, for the deployments with linear k0 corrections, the root 

mean square error (RMSE) for sensor data compared to tris buffer in situ pH was 0.006 pH. In 

contrast, using a mean k0 for the drifting deployments resulted in a k0 standard deviation of 

0.0011 V, increasing the sensor-tris buffer RMSE to ~0.018 pH. This indicates that while most 



24 

the deployments that experienced drift were significant, they were robustly correctable to 

maintain the reported accuracy of the tris buffer injection calibration method of 0.006 pH. 

 
Figure 1.7: (a) Calibration coefficient k0 for tris buffer injections used throughout the time-series. Orange 
triangles represent when a mean k0 value was used (n=21) and blue triangles represent when a linear k0 
was used (n=10). The multi-color lines represent the drift rates for the linear k0 deployments. (b) Drift 
rates of k0. Line color corresponds to deployments in in (a). Legend shows standard deviation of k0 
values of the tris buffer injections before linear correction applied (i.e. > 300 μV threshold). 

Using the outlined methodology with a linear k0 approach, it is important to note that 

deployments should exceed 30 days to confidently determine if the sensor is drifting, and 

whether the drift is occurring at a consistent rate and in the same direction across three or more 

tris buffer injections. Nonlinear drift, or piece-wise drift, as observed in profiling applications 

(Johnson et al. 2018; Maurer et al. 2021), was not present in any of the deployments used to 

generate this dataset. Due to the constant pressure experienced by the sensor in fixed or 

moored applications, it is expected to only experience linear drift on occasion. 

Comparison to Self-Calibrating SeapHOx 

The Self-Calibrating SeapHOx (SCS), first described and tested by Bresnahan et al. 

2021, is identical to the SF but includes an oxygen optode (Aanderaa 5730) and conductivity 

sensor (Seabird SBE37SI). The SCS was also mounted on a nearby pier piling, at four meters 

depth. The SCS, deployed from February 2022 to October 2023, comprised of four distinct 

deployments. Additionally, the SCS uses a pump (Seabird 5P) for active flushing to limit 

biofouling and has the unique capability to collect fully automated in situ calibration 
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measurements. For intercomparison and consistency, we also report the SCS’s pH from its 

internal reference using the temperature measurement from the collocated oxygen optode.  

The SCS automates the injection of tris buffer from a flexible gas-permeable bag (Wolfe 

et al. 2021), eliminating the need for human intervention (Bresnahan et al. 2021). This system 

incorporates a pressure equilibrated 3-way valve to seamlessly and programmatically switch 

between seawater and tris buffer measurements. The SCS used self-made tris buffer, which 

was subjected to spectrophotometric testing for quality assurance. This testing confirmed that 

the pH of the self-made buffer was within 0.006 pH units of the spectrophotometric value 

(Paulsen & Dickson, 2020). 

When deployed alongside for ~1.5 years, the pH data from the two sensors closely 

matched, despite utilizing separate systems for tris buffer injection (Figure 1.8a). The residuals 

between the sensors were 0.005 pH units, within the reported accuracy of the tris buffer 

injection method. The largest discrepancy occurred during the April 2023 red tide event, likely 

due to differences in flushing mechanisms. The passive system of the SF may have trapped 

phytoplankton during the bloom, amplifying the high pH signal during a time of high productivity. 
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Figure 1.8: (a) Time-series of the SOAR SeaFET data (SF, blue line) and the Self-Calibrating SeapHOx 
(SCS, gold line), both corrected to their respective in situ tris buffer injections. Bottle samples (purple 
diamonds) are shown. (b) Residuals between the SF and SCS (black line), SF and bottle (blue 
diamonds), SCS and bottle (gold diamonds). Legend shows the mean ± 1σ of each residual. 

Residuals between both sensors and bottle samples were similarly consistent, 0.036 for 

the SF compared to 0.040 for the SCS during this period, confirming that the tris buffer 

calibration method is robust and repeatable across different sensor packages and injection 

systems (Figure 1.8b). It is important to note that this offset is larger than that seen for the entire 

dataset, which was 0.026 pH, revealing a potential increasing trend over the time of the bias 

between tris buffer and bottles. The injection of tris buffer for the SeaFET highlighted the 

effectiveness of this calibration technique, though it demands considerable human involvement, 

including scuba diving, the installation of a specialized flow cell, and manual injection via 

syringe. In contrast, the SCS’s automated injection system removes the necessity for manual 
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handling, providing high-quality in situ calibration data directly when utilized in a real-time 

monitoring system. 

Ocean acidification trend 

To further validate the time-series dataset, ocean acidification trends were estimated for 

the three time-series available: (1) SeaFET sensor pH data corrected using tris buffer injections, 

(2) SeaFET pH data corrected to bottle samples, and (3) the in situ pH of bottle samples (Figure 

1.9). No detrending was performed, in accordance with best practices for estimating ocean 

acidification trends (Sutton et al. 2022). This evaluation was conducted solely to demonstrate 

that the relative accuracy of our methods was consistent, and that all methods captured the 

same variability and trend in the in situ data.  

The linear trends for all three time-series were comparable. The tris-corrected SeaFET 

data showed a trend of -0.0023 pH year⁻¹, while the bottle-corrected SeaFET data indicated a 

trend of -0.0027 pH year⁻¹. The trend for the bottle samples alone was identical to that of the 

SeaFET data corrected to bottle samples, which is expected, as the sensor data was calibrated 

to the bottle data. 
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Figure 1.9: (a) Time-series of SeaFET sensor pH corrected to tris buffer injections (gold line) and monthly 
means (black dots). Linear trend (orange line) fitted to the sensor data, legend shows y-intercept and 
slope trend. (b) same as (a) but for SeaFET sensor pH corrected to bottle samples. (c) Bottle in situ pH 
(blue dots). 

These trends are consistent with those observed in other long-term monitoring programs 

around the world (Doney et al. 2009; Bates et al. 2014; Ishida et al. 2021; Ma et al. 2023; Wolfe 

et al. 2023). The y-intercept offset, or bias, between the two SeaFET time-series differed by 

0.024, which was equivalent to the bias between the sensor pH data corrected to tris buffer 

injections and the in situ pH from bottle samples seen in the above sections. 

To reiterate, these results indicate that regardless of the absolute accuracy of the 

calibration method—whether corrected using tris buffer injections or bottle samples—the 

observed variability and long-term trend remained consistent.  
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Conclusion 

This study provides a decade-long dataset of sensor pH measurements from the Scripps 

Ocean Acidification Real-time (SOAR) Monitoring Program with concurrent bottle sample data 

and tris buffer injection metadata. The archived data, covering the period from December 13, 

2013, to April 17, 2024, is accessible through the University of California San Diego Library. The 

dataset highlights sensor pH data corrected using in situ tris buffer injections, with a reported 

accuracy of 0.006 pH. Quality control (QC) flags ensure data integrity, providing clear 

classifications for data quality. 

The technical validation of the sensor pH data when calibrated to the tris buffer injections 

revealed a consistent offset of 0.026 pH when compared to the bottle samples. The magnitude 

of this offset is in line with previous studies, indicating that the tris buffer calibration approach 

provides consistent and reliable results. The offset is of concern, as proving the efficacy of the 

tris buffer injection calibration method relies on obtaining equal accuracy proven by best 

practices of comparing in situ sensor pH to spectrophotometric values (Martz et al. 2010; 

Bresnahan et al. 2014; Takeshita et al. 2014). Further research is required to determine the 

source of this offset, including the discrepancy of the near-shore relationship between AT and CT 

in the determination of in situ pH (Carter et al. 2024).  

The comparative time-series from the Self-Calibrating SeapHOx showcased the 

reliability and consistency of the tris buffer calibration across separate sensor packages, 

underscoring the advancements in the automated calibration system. The closely aligned pH 

readings from both sensors, along with equivalent residuals to bottle samples, confirm that there 

is no significant difference between the tris injection methods. The continued use of the Self-

Calibrating SeapHOx is an obvious choice, as it eliminates the need for manual intervention 

while ensuring the highest-quality in situ calibration for ISFET-based pH sensors, making it 

indispensable for non-expert users and long-term monitoring programs. 
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Additionally, the brief evaluation of ocean acidification trends showed a decrease of -

0.0023 pH year⁻¹, utilizing the tris buffer-corrected SeaFET data. This trend was comparable to 

that observed in the bottle-corrected SeaFET data, and the bottle samples alone. This 

consistency across the multiple datasets emphasizes the reliability of both calibration methods 

in capturing the same long-term trend. 

Overall, the dataset contributes to a deeper understanding of ocean biogeochemistry 

and highlights the significance of high-quality pH measurements in monitoring ocean 

acidification. Further refinement is needed to confidently claim the “climate” quality uncertainty 

goal of 0.003 pH uncertainty for a long-term sensor dataset such as this (Newton et al. 2015). In 

the end, the accessibility of this comprehensive dataset supports ongoing research efforts and 

underscores the importance of innovative calibration techniques in enhancing the quality of 

ocean monitoring programs. 

Code availability 

Code and the graphical user interface (GUI) application used to process individual 

deployment files that make up the entirety of this dataset are freely available on GitHub 

(https://github.com/taylorwirth4/ISFET_APP). The GUI reads in the sensor data file, a file for tris 

injection meta data, and separate bottle sample data file. Example files with required formats 

are given. The GUI outputs calibrated pH, corrected to either the bottles and/or tris buffer 

depending on user preference, along with a pdf summary of the procedure for documentation 

and note keeping. The GUI can be used for bottle or tris injections separately, requiring the user 

to specify calling the “null” data file provided for the respective calibration data they do not have 

or wish to use. 
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Chapter 3 Subsurface biogeochemical variability in the 
equatorial Pacific observed by BGC-Argo floats over the 
2019-2024 ENSO cycle 

 

Key Points 

• BGC-Argo profiling floats in the equatorial Pacific revealed greater subsurface 

biogeochemical variability than at the surface, depending on ENSO state. 

• Biogeochemical variability was primarily driven by vertical movement of the thermocline 

and meridional transport of South Pacific Tropical Water (SPTW). 

• A Biogeochemical Multivariate ENSO Index (BMEI) was developed and used to 

investigate the disparity between modes of surface and subsurface biogeochemical 

variability. 

Abstract 

The El Niño Southern Oscillation (ENSO) cycles from 2019 to 2024 featured an 

unprecedented sequence of extreme events, initiated by a weak El Niño transitioning into a rare 

three-year (“triple-dip”) La Niña, followed by one of the strongest El Niño on record. While these 

events are known to induce significant physical changes in the ocean, little has been reported 

on the corresponding subsurface biogeochemical variability and its relationship to the ENSO 

state. Leveraging observations from an array of BGC-Argo profiling floats in the equatorial 

Pacific Niño 3.4 region, we investigated the biogeochemical impacts of ENSO during this period, 

focusing on subsurface anomalous features relative to a climatology. Anomalies of oxygen, 

nitrate and dissolved inorganic carbon were most pronounced at depths below the mixed layer, 

revealing distinct correlations with Kelvin Wave activity and meridional transport. Redistribution 

of phytoplankton was also observed, with higher concentrations deeper in the water column 

during the El Niño phases relative to La Niña. We propose the concept of a Biogeochemical 

Multivariate ENSO Index (BMEI), analogous to the multitude of other multivariate indexes used 

in this region, exploring modes of variability and its utility to gauge intensity of ENSO phases. 
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This study underscores the importance of continued BGC-Argo observations to enhance our 

understanding of subsurface biogeochemical processes and their potential for assessing the 

severity of future ENSO cycles. 

Plain Language Summary 

From 2019 to 2024, the El Niño Southern Oscillation (ENSO) cycles experienced a rare 

three-year La Niña, followed by a very strong El Niño. These extreme events are known to 

cause significant changes in ocean temperature and circulation, but how they affect the ocean's 

subsurface biogeochemistry is less understood. Using data from Biogeochemical Argo (BGC-

Argo) profiling floats in the equatorial Pacific, this study examined how ENSO impacted the 

ocean's biogeochemical variability of oxygen, nutrients, carbon, and chlorophyll-a, highlighting 

features at depths below the surface that have been difficult to capture with previous monitoring 

efforts.  

Introduction 

The El Niño Southern Oscillation (ENSO) is a naturally occurring climate phenomenon 

characterized by fluctuations in oceanic and atmospheric conditions across the tropical Pacific. 

Under normal conditions, trade winds push warm surface water toward the western Pacific, 

pooling it near Asia and Australia. However, during ENSO events, these trade winds weaken or 

even reverse, allowing the warm water to spread eastward across the Pacific toward the 

Americas. This shift in oceanic circulation defines the two main ENSO phases: El Niño, the 

warm phase, and La Niña, the cold phase (Trenberth, 1997). Typically, ENSO cycles occur 

every 2-7 years, with varying intensity and duration. These events have far-reaching impacts, 

influencing global weather patterns, including altering precipitation, temperature, and 

atmospheric circulation across many regions of the world. 

Historically, oceanic monitoring of ENSO has focused primarily on physical parameters 

such as sea surface temperature (SST) and salinity, largely through surface measurements in 
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the Equatorial Pacific. Data from ships, the Tropical Atmosphere Ocean (TAO) mooring array, 

and the Tropical Pacific Observing System (TPOS) have provided continuous surface 

observations over several decades (McPhaden et al., 1998; Smith et al., 2010; McPhaden et al., 

2010). The advent of satellite remote sensing expanded this capability, allowing for high-

resolution SST monitoring across vast ocean regions. Since the early 2000s, the Argo program 

has also contributed by enabling global subsurface temperature and salinity observations down 

to 2000 meters (Roemmich et al., 2009). However, despite these advancements, the subsurface 

ocean, particularly its biogeochemical characteristics, has been less extensively studied in the 

context of ENSO variability (Christian et al., 2001; Smith et al., 2019). 

Some previous studies have explored various biogeochemical processes in the 

equatorial Pacific, such as changes in primary production (Strutton & Chavez, 2000; Gierach et 

al., 2012; Brainard et al., 2018), but these investigations were typically limited to large spatial 

scales using satellite or shipboard measurements. Similarly, variability in surface CO₂ flux has 

been studied using moorings (Sutton et al., 2014; Liao et al., 2020; Pittman et al., 2022), leaving 

the subsurface inorganic carbon system relatively unexplored. Oxygen variability, often tied to 

vertical shifts in thermocline depth and upwelling modulated by ENSO, has also been observed, 

with oxygen sensors being the most common biogeochemical sensor deployed on floats 

(Czeschel et al., 2012; Eddebbar et al., 2017; Leung et al., 2019). Additionally, changes in 

nutrient supply, closely linked to ENSO phases, show surface nutrient depletion during El Niño 

events due to reduced equatorial upwelling (Strutton et al., 2008; Turk et al., 2011). Despite 

these efforts, a comprehensive understanding of subsurface biogeochemical dynamics and 

interactions remains elusive, particularly in relation to ENSO's varying phases. 

Since 2019, the Biogeochemical Argo (BGC-Argo) program has provided a new 

observational tool, enabling continuous measurements of biogeochemical parameters such as 

oxygen, pH, nutrient and chlorophyll-a concentrations at depths down to 2000 meters (Claustre 

et al., 2020). These datasets offer the ability to view how subsurface biogeochemical processes 
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respond to ENSO-driven physical changes in the ocean. Given the complexity of the tropical 

Pacific and its role as the epicenter of ENSO activity, there is a growing interest in 

understanding the interplay between subsurface biogeochemical variability and the well-

established physical indicators of ENSO (Turk et al., 2001; Mathis et al., 2014; Kessler & 

Cravatte, 2021). 

The ENSO state is traditionally quantified using the Oceanic Niño 3.4 (ONI) index, which 

measures sea surface temperature anomalies relative to a 30-year climatological average in the 

central equatorial Pacific region, spanning from 5°S-5°N and 170°W-120°W. The period from 

2019 to 2024 presents a unique case for investigation, characterized by an unusual sequence of 

ENSO events, including a historic "triple-dip" La Niña encompassing March 2020 – February 

2024 (Li et al., 2023; Jiang et al., 2023), followed by the onset of one of the strongest El Niños 

on record. This study aims to explore subsurface biogeochemical variability throughout these 

extreme ENSO phases, using data from BGC-Argo floats in the Niño-3.4 region. Specifically, we 

examine how biogeochemical parameters align with the Oceanic Niño Index (ONI) and extend 

this analysis into the subsurface. By investigating where and when biogeochemical variability 

corresponds or diverges from physical ENSO patterns, this work seeks to provide new insights 

into the ocean’s biogeochemical response to these significant climatic events. 

Data and Methods 

Oceanic Niño Index 

The NOAA Oceanic Niño Index (ONI, Figure 3.1a) represents the monthly sea surface 

temperature anomaly in the Niño-3.4 region (5°S-5°N, 170°W-120°W). The anomalies were 

calculated relative to a 30-year baseline period from 1991 to 2020. ONI data were obtained from 

NOAA’s National Centers for Environmental Prediction (NCEP).  
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BGC-Argo profiling floats 

Biogeochemical Argo (BGC-Argo) profiling floats are drifting, autonomous robots that 

collect measurements in the upper 2000 meters of the ocean every ~10 days. They measure 

temperature and salinity, along with a suite of biogeochemical sensors. At the surface, data is 

telemetered back to shore via satellite before resuming the 10-day profiling routine. This 

process continues until the float’s battery is depleted, typically after 4-5 years.   

In the Niño-3.4 region (5°S to 5°N, 170°W to 120°W), 23 BGC-Argo floats were selected, 

covering the period from October 1, 2019, to July 1, 2024 (Figure 3.1b). The floats were 

equipped with multiple biogeochemical sensors: all 23 floats measured temperature (°C), 

salinity (PSS-78) and oxygen concentration (O2, μmol kg-1), 20 floats measured pH, 18 floats 

measured chlorophyll-a concentration (Chl-a, mg m-3) and optical backscatter, and 11 floats 

measured nitrate concentration (NO3, μmol kg-1). The data used in this analysis were from the 

delayed-mode quality control dataset, with only data flagged as QC level 1 being selected for 

inclusion (Schmechtig et al., 2023).  
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Figure 3.1: (a) The Oceanic Niño Index (ONI) surface temperature anomaly from NOAA’s National 
Centers for Environmental Prediction. (b) Map of the equatorial Pacific Ocean, with the Niño-3.4 region 
(5°S to 5°N, 170°W to 120°W) shown with the black box. Float profile locations (stars) are colored by 
year, and a 1°x1° grid (black dots) represents the climatological spatial coverage used in this study. 

The World Meteorological Organization IDs (WMOID) for each float were obtained using 

the OneArgo-Mat toolbox for MATLAB (Frenzel et al., 2022). After selection, corresponding data 

files were downloaded from the MBARI FloatViz QC directory. These files contained estimates 

of total alkalinity (TA, μmol kg-1), derived using the Linearly Interpolated Alkalinity Regression 

(LIARv2) method, using a combination of temperature, salinity, oxygen and nitrate when 

available (Carter et al., 2016). Derived carbonate system parameters, such as total dissolved 

inorganic carbon (DIC, μmol kg-1) were then calculated using the LIAR-estimated TA and the 

measured float pH values with CO2SYS (Lewis and Wallace, 1998; Sharp et al., 2023). 

The mixed layer pressure (MLP) was calculated using the Gibbs Seawater 

Oceanography Toolbox V3.06.12, where the MLP is defined as the pressure at which density 

exceeds surface density by 0.03 kg m-3 (de Boyer Montégut et al., 2004, McDougall & Barker 

2011). The mixed layer depth (MLD) in meters was then calculated from the mixed layer 
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pressure and latitude for each profile and used throughout this study. All float profiles within the 

Niño-3.4 region were included in the estimated of the MLD, with monthly mean MLD values 

used for further analysis. 

The depth (m) of the 20°C isotherm (Z20), calculated for each profile, was used as a 

proxy to describe the depth of the thermocline in this region even though recent studies 

challenge this theory (Yang and Wang, 2009; Castaño-Tierno et al., 2018 and references there-

in). As for the MLD, all profiles of Z20 were used with a monthly mean used for analysis. 

We also utilized apparent oxygen utilization (AOU, μmol kg-1), calculated as the 

difference between the oxygen concentration at saturation (Garcia & Gordon, 1992) and the 

float-measured oxygen concentration. Ocean spiciness (or mintiness) is used to describe how 

warm (cold) and salty (fresh) the seawater is, which aids in tracking ocean mixing and water 

masses through density-compensated anomalies of temperature and salinity (Munk, 1981; 

Zeller et al., 2021). Spiciness was computed using the GSW toolbox (McDougall & Barker, 

2011). Lastly preformed nitrate (preNO3) was calculated as the difference between float-

measured nitrate and AOU multiplied by the Redfield Ratio of nitrate to oxygen, N:O = -10, 

serving as another conservative tracer after accounting for biological process (Broecker, 1974; 

Emerson & Hayward, 1995; Johnson et al., 2010).   

Gridded climatology products 

We utilized the 1°x1° gridded GLODAPv2.2016b product (Key et al., 2015; Lauvset et 

al., 2016), which included temperature, salinity, oxygen, nitrate, pH, and dissolved inorganic 

carbon (DIC) averaged over the years 1972–2013. The product contained data at depth levels 

of 0, 10, 20, 30, 50, 75, 100, 125, 150, and 200 meters for the upper ocean. The derived 

parameters of spiciness, AOU and preNO3 were also calculated for the gridded product data, 

using the methods outlined in the previous section. 

Since GLODAP did not include data for chlorophyll-a or particulate organic carbon 

(derived from backscatter), we used the global 3D SOCA-BBP product from the EU Copernicus 
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Marine Service Information (CMEMS; Sauzède et al., 2016). This dataset, available on a 

0.25°x0.25° grid, was re-gridded and averaged to match the 1°x1° resolution of the GLODAP 

product. The SOCA-BBP product also included multiple depth levels extending down to 1000 

meters, which were interpolated to align with GLODAP depth levels. However, chlorophyll-a 

concentrations were available only to a depth of 120 meters.  

Lastly, monthly extensions of the Roemmich-Gilson Argo Climatology from October 2019 

to July 2024 provided a 1°x1° gridded temperature and salinity anomaly product down to 2000 

meters provided an additional asset for the analysis of wide scale features (Roemmich & Gilson, 

2009).  

Float time-series and anomalies 

Float profiles were averaged into 10-meter depth bins, spanning from the surface down 

to 200 meters. Below 200 meters, float data and anomalies were very stable, providing minimal 

signals and features warranting further exploration. In addition to depth binning, the data were 

averaged into monthly time bins. Importantly, minimal data features were lost during this 

process when compared to either a 1-week or moving filter, ensuring that the original signal 

integrity was maintained throughout the binning process. All profiles were then averaged in 

space over the entire Niño-3.4 region, providing a time-series of biogeochemistry in the upper 

200 meters. 

To ensure comparability with the float data, the gridded climatology data were 

interpolated onto the same 10-meter depth intervals and location as the float profiles. Anomalies 

were then computed as the difference between float data and the interpolated climatology. 

Positive anomalies indicated that the float data values exceeded those of the climatology, while 

negative anomalies reflected float data values that were lower than climatology. 

Biogeochemical Multivariate ENSO Index (BMEI) 

To investigate subsurface biogeochemical variability, we developed an index 

incorporating O2, DIC and Chl-a. Due to a significant one-year data gap in 2021, NO3 was 
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excluded from this index. However, as NO3 trends generally tracked those of DIC, its exclusion 

did not significantly alter the resulting index. To facilitate comparisons across the three different 

variables with differing anomaly ranges, each anomaly time-series was standardized using Z-

scores, ensuring all variables were expressed in comparable units. 

We then applied Principal Compenent Analysis (PCA) of the three variables’ 

standardized anomaly time-series to identify the dominant modes of variability. We utilized the 

pca function in MATLAB 2023b to produce the coefficients (loadings) and variance 

(eigenvalues) of each principal component. Recognizing that several principal components 

(PCs) could meaningfully contribute to overall variability, we created a unified index by 

performing a weighted average of the PCs, with each PC weighted according to its explained 

variance. This approach enabled us to consolidate multiple PCs into a single, representative 

index of biogeochemical variability. 

Results and Discussion 

Float time-series and anomalous events 

Interannual variability above the mixed layer depth (MLD) in the Niño-3.4 region 

generally tracked as expected, as measured by BGC-Argo floats (Figure 3.2a-e). Surface 

oxygen levels remained stable, staying near saturation due to atmospheric exchange above the 

MLD. During El Niño events, elevated surface temperatures coincided with reductions in nitrate 

(NO₃) and dissolved inorganic carbon (DIC), consistent with diminished upwelling of deep 

waters and the shoaling of the MLD and depth of the 20°C isotherm (Z20; Wyrtki et al., 1981). 

At the onset of the "triple-dip" La Niña (March 2020), there was a notable rebound in 

chlorophyll-a (Chl-a) in surface waters (Chavez et al., 2002; Lim et al., 2022).  

The anomalies in float data compared to the gridded climatology indicated significant 

events, all occurring below the MLD. To facilitate analysis of this biogeochemical variability, 

three prominent events were selected, labeled E1, E2, and E3 (Figure 3.2f-j), each 
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corresponding to notable anomalies. Further discussion of the anomalous events is reserved to 

O₂, NO₃, and DIC, while the variability in primary productivity (Chl-a) is addressed in the 

following section. 

 

Figure 3.2: Time-depth sections of BGC-Argo float data in the Niño-3.4 region and their respective 
anomalies. Variables shown include temperature (a & e), oxygen concentration (b & g), nitrate 
concentration (c & h), dissolved inorganic carbon (DIC, d & i) and chlorophyll-a concentration (Chl-a, e & 
j). The mixed later depth (MLD, solid black line) and depth of the 20°C isotherm (Z20, solid red line) are 
shown. E1, E2 & E3 label anomalous subsurface events discussed in the study. The vertical dashed lines 
in (e) and (j) represent time points of November 2019 (magenta), 2021 (blue), and 2023 (red). Red and 
blue shading on the x-axis represent durations of El Niño and La Niña, respectively. 

Event 1 (E1) follows the transition from a weak El Niño to a strong La Niña in early 2020. 

During this period, the MLD and Z20 shoaled, resulting in low temperature, O₂ and high NO₃, 

DIC values below the MLD. Similar signals appear in Event 3 (E3), where shoaling of the MLD 

and Z20 produced comparable patterns. The anomalies are similar in both magnitude and 

depth, though they were stronger during the 2020 transition from weak El Niño to La Niña 
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compared to the 2023 transition from a strong El Niño toward La Niña. These anomalies align 

with the shoaling of the MLD and Z20 align. 

To investigate potential drivers of E1 and E3, we analyzed longitude-time contours of 

upper ocean temperature anomalies across the equatorial Pacific extracted from Argo floats 

(Figure 3.3). Distinct phases of warm and cold anomalies in the upper 200 meters exhibited a 

clear west-to-east propagation, indicating Kelvin wave activity (McPhaden, 2002; Matthews et 

al., 2007). During E1 in early 2020 and E3 in early 2024, a relatively strong upwelling Kelvin 

wave crossed the Niño-3.4 region, evidenced by a cold upper-ocean anomaly. The duration of 

this upwelling event, approximately two months, aligns with the expected transit time of a Kelvin 

wave across this region (Rydbeck et al., 2019). Shoaling of the MLD and thermocline brought 

low O2, high NO3 and DIC water upwards, creating the anomalies we see at these depths. 

Notably, anomalies associated with MLD and Z20 (thermocline) shoaling did not appear at the 

surface. Deeper waters with upwelling characteristics may have remained trapped below the 

MLD, isolated from direct atmospheric interaction, enhancing their anomalous signature. 
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Figure 3.3: Longitude-time contour plot of upper ocean (0-200 meters) temperature anomaly across the 
equatorial Pacific (2.5°S-2.5°N) from the Roemmich-Gilson Argo climatolagy. Upwelling (thick dashed 
lines) and downwelling (thin dashed lines) Kelvin Waves shown, with events E1, E2 & E3 corresponding 
to those in Figure 3.2. 

Event 2 (E2) was unique and did not follow the pattern of other events. During E2, the 

Z20 deepened relatively quickly, over ~1 month, without any significant change in the MLD. This 

isotherm shift created large sub-MLD anomalies lasting for about a year, beginning in the La 

Niña phase and extending into the strong 2023 El Niño, marked by a sustained increase in 

temperature, O₂ and a decrease in NO₃, DIC. A downwelling Kelvin wave, known to depress the 

thermocline, was considered a potential driver. Although a downwelling Kelvin wave was 

observed during this period (Figure 3.3), its magnitude was relatively weak, and the duration of 

the event progressed faster than typical Kelvin wave speeds. 
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Density and spiciness followed temperature trends, highlighting all sub-MLD anomalous 

events. AOU mirrored oxygen levels without showing any new anomalous signatures due to 

biological effects. 

At the onset of E2, a salinity maximum was observed between the MLD and Z20 at ~ 

100 meters, corresponding with high spiciness and low preNO₃ values (Figure 3.4a). This high 

salinity is characteristic of South Pacific Tropical Water (SPTW, O’Connor et al., 2005), while 

surface salinity lows in the region arise from precipitation, with internal lows linked to Ekman 

pumping and convergence (Yu, 2015). The subsurface salinity maximum along with high 

spiciness anomaly, originating south of the equator, reflects transport from SPTW (Qu et al., 

2013).  

 

Figure 3.4: Time-depth sections of BGC-Argo salinity and derived parameters in the Niño-3.4 region and 
their respective anomalies. Variables shown include salinity (a & e), density (b & g), spiciness (c & h), 
apparent oxygen utilization (AOU, d & i) and preformed nitrate (preNO3, e & j). The mixed later depth 
(MLD, solid black line), depth of the 20°C isotherm (Z20, solid red line) and events E1, E2 & E3 are the 
same as Figure 3.2. 
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Subtropical Pacific gyres, where SPTW originates, also contain low or even negative 

preNO₃ values below the surface (Johnson et al., 2010; Smyth and Letscher, 2023). It is 

hypothesized that the concurrent high salinity, high spiciness and low preNO₃ values below the 

MLD result from meridional transport of SPTW towards the equator. As SPTW water moves into 

the Niño-3.4 region, it carries with it high temperature and O2, and low NO₃ and DIC as SPTW 

was recently at the surface, and subducted equatorward (Wijffels et al., 1996; Izumo, 2005). As 

the higher sub-MLD salinity values persist into early 2023, it is apparent that meridional 

transport of SPTW was responsible for maintaining these anomalous values (Nonaka & Sasaki, 

2007; Sasaki & Iwai, 2022). Whether this northward transport was initiated by the downwelling 

Kelvin Wave, wind anomalies or any combination of physical drivers is not further explored in 

this study. 

Redistribution of phytoplankton 

A shown in Figure 3.2e, Chl-a trends did not always correlate with other biogeochemical 

variables. Notable features in the Chl-a data include the high Chl-a "rebound" in early 2020 and 

the typically low surface Chl-a during the 2023 El Niño. These details were also evident in the 

anomaly between float and climatology data, with the rebound showing the most positive and 

the 2023 El Niño the most negative anomalous values in the time series. While float data can 

capture these events, examining the anomalies reveals positive Chl-a anomalies below the MLD 

(Figure 3.2j). During both the weak 2020 El Niño and strong 2023 El Niño, positive Chl-a 

anomalies appeared below the MLD, indicating that while surface primary productivity declined, 

it increased at depth relative to climatological averages. Turk et al., 2001 reported a similar 

finding for the western equatorial Pacific, with more recent studies focusing on surface 

productivity variability in relation to ENSO phases in the central equatorial Pacific (Chavez et al., 

2011; Pittman et al., 2022). 

To further examine these subsurface differences in primary productivity, we selected 

three specific time points that differ from those in the previous section – November 1 ± 7 days of 
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each:  November 1, 2019 (weak El Niño, n=3 profiles), November 1, 2022 (midway through the 

"triple-dip" La Niña, n=4), and November 1, 2023 (strong El Niño, n=10). November 1, 2021 was 

excluded due to missing NO₃ data. The time points were chosen to consistently represent 

different phases of the ENSO cycle while preserving the same time of year, thus minimizing any 

bias in selection of the time points. 

Figure 3.5 presents profile data for the three selected time points. During the weak 2020 

and strong 2023 El Niño events, we observed the same low surface Chl-a, contrasting with the 

increased surface Chl-a during La Niña as in the previous section. Conversely, below the MLD 

(~75 meters), Chl-a was higher during El Niño events, while La Niña displayed reduced sub-

MLD Chl-a, even lower than the float average for the study period (n=1077 profiles). 

Additionally, the subsurface Chl-a maximum shifted deeper during the weak 2020 El Niño. 

These features are difficult to interpret in the time-series section figures but show significant 

differences when viewing the profiles.  

 
Figure 3.5: Profiles of chlorophyll-a concentration (Chl-a, a) and particulate organic carbon to chlorophyll-
a ratio (POC:Chl-a, b) for the time points shown in the inlayed section plots: November 1, 2020 weak El 
Niño (magenta), November 1, 2022 La Niña (blue) and November 1, 2024 strong El Niño (red). Profile 
shading is the standard deviation of profile values. Mean profile of all float data shown by the black line 
without standard deviation. Note the logarithmic x-axis scale for POC:Chl-a. 
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Below the MLD, Chl-a levels were higher during El Niño than La Niña, suggesting 

possible phytoplankton redistribution in the water column depending on ENSO phase. Several 

mechanisms may contribute to this pattern. The first mechanism is the reduction of upwelling 

during El Niño (Strutton & Chavez 2000; Liao et al., 2020). Despite reduced upwelling, NO₃ 

levels in surface waters remained above 3 μmol kg⁻¹ (Figure 3.6c). El Niño profiles showed 

increased NO₃ and DIC levels below the MLD, along with decreased O₂, indicating that deeper, 

nutrient-rich waters still reached the euphotic zone (Turk et al., 2001). The second mechanism 

is increased stratification during El Niño. Profiles of temperature, O₂, DIC, and NO₃ during El 

Niño all exhibit more pronounced gradients compared to La Niña profile, suggesting that deep 

water mixes less effectively into surface waters during El Niño (Liu et al., 2016).  
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Figure 3.6: Profiles of temperature (a), oxygen concentration (b), nitrate concentration (c) and dissolved 
inorganic carbon (DIC, d) for the time points shown in the inlayed section plots, as in Figure 3.5.  

The 3-6 μmol kg nitrate, persistently found in the surface is a result of iron limitation of 

primary productivity in the equatorial Pacific (Martin et al., 1994; Takeda, 1998; Chavez et al., 

1999). The primary iron source to the Niño-3.4 region is via the Equatorial Under Current (EUC), 

which delivers iron-rich water into the euphotic zone, supporting productivity (Slemons et al., 

2010; Coale et al., 1996). As the EUC flows eastward, iron concentrations decrease, with lower 
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levels in the upper EUC where mixing into the thermocline allows iron uptake by phytoplankton 

(Slemons et al., 2010).  

With the observed increase in NO₃, DIC and decrease in O2 below the MLD during El 

Nino years (Figure 3.6), we infer that this water likely contains elevated iron levels 

(Aufdenkampe & Murray, 2001; Winckler et al., 2016; Rafter 2024). During El Niño, Kelvin wave 

activity shoals the thermocline and MLD, allowing this micronutrient-rich water to rise higher in 

the water column. Although increased stratification limits its mixing to the surface, phytoplankton 

at depth within the euphotic zone can still access the iron from the EUC, causing the higher Chl-

a values and positive anomalies at depth below the MLD during El Niño. 

To further evaluate these theories, we analyzed the particulate organic carbon to 

chlorophyll-a (POC:Chl-a) ratios during key periods to gain additional insights into the 

phytoplankton community dynamics (Figure 3.5b). The POC:Chl-a ratio serves as a useful proxy 

for assessing phytoplankton dominance, as well as light, nutrient, or temperature limitations, 

and can be indicative of community composition (Schallenberg et al., 2019). In surface waters, 

we observed that the POC:Chl-a ratio did not significantly differ between El Niño and La Niña 

years. Below the MLD, however, elevated POC:Chl-a ratios coincide with lower Chl-a levels 

during La Niña. Elevated POC:Chl-a ratios are typically associated with iron limitation, as 

phytoplankton experiencing iron stress exhibit reduced chlorophyll-a pigmentation (Westberry et 

al., 2016). This supports our hypothesis that increased iron availability may have occurred 

during El Niño, as indicated by lower POC:Chl-a ratios. It is also worth noting that other sources 

of POC during La Niña could contribute to increased POC:Chl-a ratios, suggesting an influx of 

non-photosynthetic organisms and particles (Wang et al., 2009; Wang et al., 2013). 

Biogeochemical Multivariate ENSO Index (BMEI) 

To further quantify and assess modes of biogeochemical variability in the Niño-3.4 

region and the influence by ENSO phases, we developed a Biogeochemical Multivariate ENSO 

Index (BMEI), similar to the Multivariate ENSO Index that computes a single index from multiple 
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input variables (Wolter & Timlin, 2011). Given the distinct biogeochemical variability between 

the surface and subsurface, as well as across different variables, we computed two indices: 

BMEISURF for surface interactions (in the MLD) and BMEISUB for subsurface interactions (below 

the MLD). After calculating the three principal components (PCs) for each index, we combined 

PC1 and PC2, which accounted for most of the variability—83% for BMEISURF and 94% for 

BMEISUB (Table 3.1). 

Table 3.1: Loadings for each Principal Component (PC) from each variable in the Biogeochemical 
Multivariate ENSO Index (BMEI), and the percent of variance for each PC.  

Loadings (Coefficients) 

 BMEISURF  BMEISUB 

 PC1 PC2 PC3  PC1 PC2 PC3 

Oxygen 0.20 0.87 -0.45  0.65 0.29 0.67 
DIC 0.64 -0.47 -0.61  -0.67 -0.11 0.74 
Chl-a 0.75 0.17 0.65  -0.28 0.95 -0.11 
Percent 48% 35% 17%  60% 34% 6% 

The BMEI time series, shown in Figure 3.7, revealed that the BMEISURF inversely tracked 

the Oceanic Niño Index (ONI) with a correlation coefficient of -0.7 (p < 0.01). This negative 

correlation aligned with ENSO impacts on surface conditions, as O₂ and DIC were influenced by 

atmospheric interactions and saturation effects related to temperature (e.g., warmer 

temperatures decrease surface O₂ and CO₂ saturation). Additionally, Chl-a productivity 

decreased during El Niño and increased during La Niña, further reinforcing the negative 

correlation. 

The principal components (PCs) supported this trend, as no single PC captured the 

majority of the variability. PC1 was primarily influenced by Chl-a and DIC, while PC2 was driven 

primarily by oxygen. Oxygen showed a positive but lower correlation with DIC and Chl-a in PC1, 

indicating a shared mode of variability, though DIC may also be affected by upwelling and 

slower atmospheric equilibration. Notably, BMEISURF showed no significant correlation with the 
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MLD, suggesting that surface variability was primarily influenced by atmospheric conditions and 

productivity rather than by upwelling or downwelling of the MLD and thermocline. 

 
Figure 3.7: Biogeochemical Multivariate ENSO Index (BMEI) from October 2019 to July 2024 for within 
(BMEISURF, magenta) and below (BMEISUB, cyan) the mixed layer depth (MLD, dashed black line). The 
Oceanic Niño Index (ONI) shown with the solid black line. Red and blue shading on the x-axis represents 
durations of El Niño and La Niña, respectively. 

In contrast, BMEISUB showed a strong correlation with the MLD, with a significant 

correlation coefficient of 0.8 (p < 0.01). The MLD was standardized such that positive values 

equate to deepening (greater depth) of the MLD. As the MLD shoaled or deepened, this caused 

the biogeochemical anomalies to vary at depth. Notably, BMEISUB did not correlate with the ONI, 

indicating distinct surface and subsurface biogeochemical responses, driven by different factors. 

Most of the BMEISUB variability (60%) was explained by PC1, dominated by O₂ and DIC, 

which tracked with MLD movement driven by Kelvin Waves during the extreme anomalous 

events (Section 3.1). For example, in early 2020 (E1) and 2023 (E3), upwelling Kelvin Waves 

caused the MLD and Z20 to shoal, promoting O2 anomalies to decrease and DIC anomalies to 

increase (hence the inverse signs of the loadings). PC2 explained 34% of the variability, 

primarily driven by Chl-a anomalies, which were prominent below the MLD during El Niño 
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events compared to La Niña with the redistribution of phytoplankton due to iron availability in 

deeper water and increased stratification. 

Though four years is a relatively brief study period in the context of ENSO, our findings 

clearly demonstrate the added dimension of observing subsurface biogeochemistry, which is 

often under sampled (Kessler & Cravatte, 2021). Continued profiling float observations, 

including floats with nitrate, will fill the much-needed gaps in our understanding of subsurface 

biogeochemical variability in the equatorial Pacific. Additionally, measuring iron or establishing 

links between biogeochemical parameters and iron would enhance understanding of primary 

productivity feedbacks in this region (Rafter et al., 2017). Employing the BMEI may aid in 

monitoring ENSO cycle intensity and improving prediction efforts by integrating subsurface 

phenomena observable from profiling floats. Our main finding that the region’s biogeochemistry 

was primarily influenced by physical processes highlights the need for continued monitoring and 

study of biogeochemical-physical interactions, in conjunction with the other monitoring efforts to 

fully understand the drivers of biogeochemical variability in response to ENSO phases. 

Conclusions 

In this study, we presented novel insights into biogeochemical variability in the Niño-3.4 

region from 23 BGC-Argo profiling floats in relation to the 2019-2024 ENSO cycles, which 

provided information inaccessible by other monitoring systems. We highlighted the spatial and 

temporal extent of the biogeochemical variability, investigating some potential drivers. The 

BGC-Argo float time-series and anomalies revealed greater variability and larger anomalies at 

depth, likely driven by Kelvin wave activity and subducted meridional transport of South Pacific 

Tropical Water (SPTW), altering sub-MLD biogeochemistry. Above the MLD, atmospheric 

interactions maintained steadier conditions.  

Many parameters utilized were derived from float-measured variables, introducing some 

uncertainties. For instance, dissolved inorganic carbon (DIC) was calculated from float-
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measured pH and estimated total alkalinity (TA). Surface LIAR-estimated TA uncertainty is 

about 6 μmol kg⁻¹ for this region (Carter et al., 2016), and pH uncertainty from floats is 0.01 

(Maurer et al., 2021; Wimart-Rousseau et al., 2024), resulting in a DIC uncertainty of ~10 μmol 

kg⁻¹ at the surface estimated from CO2SYS error propagation (Orr et al., 2018; Sharp et al., 

2023). The anomalous DIC features observed significantly exceed this margin, underscoring 

their reliability. Profiling floats thus offer extensive information that complements data from other 

monitoring programs, like the tropical mooring array and climatological data from ships and 

satellite observations 

The equatorial Pacific is highly physically dynamic, with multiple drivers of seasonal and 

interannual variability. Tropical Instability Waves (TIWs), for example, propagate along the 

equator and create vortices that facilitate deep ventilation, thermocline mixing, and meridional 

transport on short timescales (~1 month), particularly around wave cusps (Willett et al., 2006; 

Eddebbar et al., 2021). 
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Figure 3.8: Sea Surface Temperature (°C) in the equatorial Pacific from the NOAA Coral Reef Watch 
daily global 5km product. Panels represent different daily snapshots of SST, with magenta stars 
representing float profile locations of those days ± 3 days. Boxed outline is the Niño-3.4 region. 

During Event 2, we evaluated whether TIWs could bias the time-series by interacting 

with the limited float profiles, leading to the observed downwelling feature (Figure 3.8). TIWs 

were active in February 2022, with several (n=4) float profiles positioned near cooler surface 

water cusps, which coincided with a rapid thermocline deepening observed. By March 2022, 

TIW activity decreased, likely due to a downwelling Kelvin wave (Holmes & Thomas, 2016), 

then resumed in April and continued through boreal summer and fall, its peak season (Kiladis et 

al., 2009). During this period, float profile coverage remained zonally uniform, with profiles north 

and south of the equator. Averaging profiles across the region would then obscure small-scale 

TIW-induced variability as well as zonal and meridional gradients, such as the east-to-west 
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nutrient and Chl-a decline (Christian et al., 2001). The persistence of sub-MLD anomalies from 

2022 into 2023 suggests that while TIWs may promote some variability, they were likely not the 

primary driver.  

During El Niño, phytoplankton were redistributed deeper in the water column, likely to 

access elevated iron levels supplied by the Equatorial Under Current (EUC; Browning et al., 

2023). The EUC is influenced by ENSO cycles, slowing during El Niño and accelerating during 

La Niña (Karnauskas et al., 2020). Iron recycling in this region also plays a role and depends on 

residence time, where longer residence durations allowing for more iron regeneration and 

uptake, which further supports primary productivity (Rafter, 2024).  

ENSO cycles drive multiple mechanisms affecting primary productivity distribution, such 

as increased warming and stratification, which reduce surface mixing with nutrient-rich deeper 

waters (Behrenfeld et al., 2006). Floats provide unique insights into this subsurface variability 

and capture anomalous events that are challenging for traditional measurements. Moorings lack 

adequate depth coverage of biogeochemical measurements, ships are too infrequent, and 

satellites only capture surface data (Smith et al., 2019). Floats thus offer an unprecedented view 

of this remote region and the impact of ENSO on primary productivity. Understanding the 

phytoplankton subsurface variability can refine net primary productivity and carbon export 

estimates (Guidi et al., 2007). 

Researchers frequently develop indices for the tropical Pacific to relate ENSO dynamics 

and cycles with other natural phenomena, including the NOAA Oceanic Niño Index, Multivariate 

ENSO Index (Wolter et al., 2011), Kelvin Wave Index (Rydbeck et al., 2009), El Niño Modoki 

Index (Ashok et al., 2007), and Tropical Instability Wave Index (Johnson & Proehl, 2004). 

In this study, we created a biogeochemical multivariate ENSO index (BMEI) based on 

measured anomalies in oxygen (O₂), dissolved inorganic carbon (DIC), and chlorophyll-a (Chl-a) 

in the Niño-3.4 region, comparing it to the canonical ONI. Observed biogeochemical variability 

above and below the MLD led us to develop separate indices: BMEISURF and BMEISUB. BMEISURF 
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correlated with the ONI, primarily reflecting surface temperature and atmospheric equilibrium. In 

contrast, BMEISUB correlated with the MLD, where upwelling, downwelling, and sub-MLD 

meridional transport influenced biogeochemistry. Additionally, anomalous primary productivity 

events drove a unique mode of variability, distinct from other biogeochemical parameters which 

can also differ depending on types of El Niño events (Gierach et al., 2012). This study 

underscores the value of BGC-Argo floats and the BMEI for tracking biogeochemical variability 

and improving our understanding of ENSO’s impact on ocean biogeochemistry. 
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