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Abstract. We compare one-dimensional representations for the isotopy-stable

dynamics of homeomorphisms in two dimensions. We consider the skeleton

graph representative, which captures periodic behaviour, and the homotopy graph

representative which captures homo/heteroclinic behaviour. The main result of

this paper is to show that the dual to the skeleton graph representative is the

homotopy graph representative of the inverse map. This gives a strong link

between different methods for computing the dynamics.
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1. Introduction

Homoclinic tangles were first observed by Poincaré [1] in his treatise on celestial

mechanics, from which he concluded that the dynamics was nonintegrable and

extremely complicated. For low-dimensional (such as two-dimensional discrete-time)

systems, it turns out that detailed information about the behaviour in terms of

symbolic dynamics and topological entropy can be calculated. This information

is useful in studying properties of fluid mixing [2, 3, 4, 5, 6, 7], ionization of

hydrogen [8, 9, 10, 11], optically-injected semiconductor lasers [12], and many other

applications.

In this paper we study the topological dynamics of surface diffeomorphisms with

homoclinic and heteroclinic tangles. Since tangles contain an infinite amount of

combinatorial information, we study finite pieces of the stable and unstable manifolds,

which together form a trellis for the diffeomorphism. Other approaches consider

homoclinic orbits as the fundamental starting point, such as [13, 14].

The topological approximation method of Rom-Kedar constructed symbolic

dynamics in the form of rectangular strips in the trellis [15, 16, 17, 18]. The theory of

homotopic lobe dynamics [19, 20, 21, 22], which was developed independently, refines

the information obtained by the topological approximation method by obtaining a

minimal symbolic description for networks of tangles of arbitrary complexity.

In an alternative approach, the theory of trellises [23, 24], finds optimal bounds

for the topological entropy and symbolic dynamics by finding periodic orbits using a

form of Nielsen periodic-point theory. The main step is to compute a one-dimensional

representation of the dynamics, called the skeleton graph map.

The main aim of this paper is to show that the “homotopy dynamics” approach

based on curves (or strips) is dual to the approach based on skeleton graphs. The

main contribution of the paper is to formalise the duality relationship between the

homotopy graph and the skeleton graph of the inverse map. This gives a new algorithm

for computing the skeleton graph by first computing homotopy graphs, which avoids

the use of the Bestvina-Handel algorithm. We illustrate the concepts by two examples,

both of which occur in the Hénon family.

The paper is organised as follows. In Section 2, we introduce trellises, and

technical preliminaries on homotopies and surface-embedded graphs. In Section 3
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we introduce the homotopy dynamics and skeleton dynamics, two ways of describing

the dynamics forced by a trellis. In Section 4, we describe the duality relationships

between the skeleton and homotopy dynamics. We give some conclusions in Section 5.

2. Preliminaries

2.1. Trellises

Let f be a diffeomorphism of a two-dimensional surface M and P an invariant set of

periodic saddle points of f . Then by the Stable Manifold Theorem [25], the unstable

and stable manifolds WU and WS of P are each disjoint unions of immersed curves

in M . An intersection of WU and WS is a homoclinic or heteroclinic point to P ,

depending on whether the intersection connects the same or different points in P . Since

the curves WU and WS are immersed curves, typically of infinite length, they cannot

be numerically computed in their entirety and are difficult to analyse completely.

Instead, we consider finite-length pieces of WU and WS .

Following [23], we say that a pair T = (TU , TS) with TU ⊂WU and TS ⊂WS is

a trellis for f if TU and TS are of finite length and if f(TU ) ⊃ TU and f(TS) ⊂ TS .

Figure 1 shows an example trellis. A point q ∈ TU ∩ TS is a (trellis) intersection of

T . If T = (TU , TS) is a trellis for f , then T−1 = (TS , TU ) is a trellis for f−1. A

closed interval TU [q1, q2] in TU with endpoints, but no interior points, in TS is called

a segment of TU ; segments of TS are defined analogously. The closure of a connected

component of M\(TU∪TS) is a region of T . A region is a bigon if its boundary consists

of one unstable and one stable segment, and a rectangle if its boundary consists of two

unstable and two stable segments, with interior angles less than 180◦. We define X to

be the set
⋃

n∈Z f
n(TU ∩ TS). An inner bigon is a bigon B such that #(B ∩X) = 2.

The vertices of an inner bigon are called pseudoneighbours.

Given a trellis T = (TU , TS), we can cut along the unstable curve(s) to obtain

a new surface CUM . Formally, cutting consists of removing each component of TU

in M and replacing it by a topological circle. This circle is topologically partitioned

into two arcs, each of which is a copy of the component of TU that was removed.

Informally, the result is what one would obtain by cutting along an arc drawn on a

piece of paper. Topological details of the construction are discussed in [23]. The stable

curve(s) TS in M lift to the arcs CUT
S ⊂ CUM . (An arc is a non-self-intersecting
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curve that begins and ends on the boundary, but otherwise does not intersect the

boundary.) The surface diffeomorphism f lifts to a map CUf : CUM → CUM . Since

TS is forward-invariant under f , the lifted stable arcs are invariant under the lift

of f , i.e. CUf(CUT
S) ⊂ CUT

S . Alternatively, we can cut along the stable curves

to obtain CSM with unstable arcs CST
U ⊂ CSM . The inverse map f−1 lifts to

the map CSf
−1 : CSM → CSM , which leaves the lifted unstable arcs invariant, i.e.

CSf
−1(CST

U ) ⊂ CST
U .

We henceforth make the following assumptions on our trellises, which shall

simplify the duality result Theorem 4.4.

Assumptions 2.1.

(i) The surface M is the 2-sphere S2. ‡

(ii) The trellis T is connected, i.e. TU ∪ TS is a connected set.

(iii) The endpoints of TU and TS are trellis intersections, ∂TU ∪ ∂TS ⊂ TU ∩ TS .

(iv) The curves TU and TS are (topologically) transverse at all intersections except

the endpoints ∂TU ∪ ∂TS .

(v) The preimage of ∂TU and the image of ∂TS are trellis intersections, equivalently

∂TS ⊂ f−1(TU ) and ∂TU ⊂ f(TS).

2.2. Curves and homotopies

Our main way of studying trellises is via curves embedded in the surfaces M , CSM ,

and CUM . A (directed) curve in a general surface X is a continuous map γ : I → X,

where I = [0, 1] is the unit interval. The initial and final endpoints of γ are the points

γ(0) and γ(1), respectively. A curve in X rel Y , where Y ⊂ X is one-dimensional, is

a continuous map α : I → X such that α({0, 1}) ⊂ Y . A multicurve in X rel Y is a

list of curves {α1, . . . , αm} rel Y . A curve in X rel Y is exact, denoted α : I � X rel

Y , if the curve only intersects Y at its endpoints, i.e. α(I \{0, 1}) ⊂ X \Y . The exact

version rel Y of a curve α : I → X is the multicurve {α1, . . . , αm}, where each exact

αi : I → X rel Y is obtained by cutting α along the set Y , and the concatenation of

the αi’s returns the curve α.

‡ In applications M is often a topological disc; assuming the boundary of the disc maps to itself with

trivial winding, this case reduces to the case M = S2 via a one-point compactification.
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For two curves α0 and α1 in a surface X rel Y , A homotopy rel Y between α0

and α1 is a continuous map α∗ : I × I → X such that, for all s ∈ I, α∗(s, 0) = α0(s)

and α∗(s, 1) = α1(s), and such that, for all t ∈ I, α∗(0, t), α∗(1, t) ∈ Y . We typically

denote such a homotopy as αt defined by αt(s) = α∗(s, t). The equivalence class, or

homotopy class, of all curves I → X homotopic to α rel Y is denoted [α].

As usual, assuming Y is simply connected, we define the product of homotopy

classes in X rel Y in terms of the catenation of curves. For two curves α : I → X and

β : I → X, for which α(1) and β(0) lie on the same pathwise-connected component

of Y , the product [α] · [β] is the homotopy class [γ] of the curve γ : I → X obtained

by concatenating α, δ, and β, where δ is an arbitrary curve within Y joining α(1) to

β(0). An explicit parameterisation of γ is given by:

γ(s) =


α(3s) 0 ≤ s ≤ 1/3,

δ(3s− 1) 1/3 ≤ s ≤ 2/3,

β(3s− 2) 2/3 ≤ s ≤ 1.

(1)

In general, the collection Π of all homotopy classes [α] rel Y forms a groupoid [26]

under the homotopy product.

An arc α in a surface X is an injective curve with endpoints, but no other points,

in ∂X, i.e. α is an injective, exact curve in X rel ∂X. A homotopy between arcs is

an isotopy if each curve αt is injective, i.e. is an arc. If arcs α0 and α1 are homotopic

in S2 or D2, then α0 and α1 are isotopic [27].

We recall that an isotopy of a topological space X is a function h : X × I → X

such that each ht = h(·, t) is a homeomorphism, and an isotopy of the identity is an

isotopy such that h0 = id . We say arcs α0 and α1 in X are ambient isotopic if there

is an isotopy of the identity h : X × I → X such that αt = ht ◦ α0 is a homotopy

between α0 and α1. Clearly arcs which are ambient isotopic are isotopic. By the

isotopy extension theorem [28], any isotopy αt extends to an ambient isotopy.

A multiarc in X is a list of mutually-disjoint arcs {α1, . . . , αm}. The above results

on isotopies of arcs extend easily to multiarcs.

Definition 2.2 (Minimal position/tight). Let X be a surface with boundary and

{α1, . . . , αm} and {β1, . . . , βn} multiarcs in X. Then ({αi}, {βj}) are in minimal

position, or tight, if all intersections of any αi with any βj are topologically transverse

and form no bigons, i.e. topological discs bounded by a sub-arc of some αi and a
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sub-arc of some βj .

We now give some results about homotopies and minimal position of multiarcs.

Similar results can be found in [23, 29]. The case where X is a topological disc is

straightforward, and the case where X has higher genus can be proved by passing to

the universal cover.

Lemma 2.3 (Pulling tight). Let {α1, . . . , αm} and {β1, . . . , βn} be multiarcs in a

surface X with boundary ∂X. Then {αi} is ambient isotopic to a multiarc {α̃i} in

minimal position with {βj}.

Proof. We directly construct the isotopy h : X × I → X of the identity such that

αi,t = ht ◦ αi satisfies αi,0 = αi and αi,1 = α̃i for all i = 1, . . . ,m. Over the interval

0 ≤ t ≤ 1/2, we employ local isotopies near non-transverse crossings to ensure that

all crossings of {αi,t} with the {βj} are transverse when t = 1/2. Over the interval

1/2 ≤ t ≤ 1, we then successively reduce the number of intersections by isotopies

supported in small neighbourhoods of discs bounded by a sub-arc of some αi,t and

some βj . In this manner all bigons are removed, and the multiarcs {αi,1} and {βj}
are tight.

An example of pulling-tight is shown in Fig. 2

The following lemma shows that if the multiarcs {αi} and {βj} are in minimal

position, then the number of intersections of any αi with the βj is minimal, and the

relative ordering of the intersections is well-defined.

Lemma 2.4 (Essentialness of the intersections of tight multiarcs). Suppose

{α1, . . . , αm} and {β1, . . . , βn} are multiarcs in minimal position. Consider an

arbitrary i, and suppose there are ` intersections between αi and the {β1, . . . , βn}.
Let si,1 < si,2 < · · · < si,` denote the parameters of the intersection points, i.e.

for each k = 1, . . . , `, αi(si,k) ∈ βjk(I), for some jk and αi(s) 6∈ βj(I) for all

s 6= s1, . . . , s` and j = 1, . . . , n. Suppose α̃i is homotopic to αi. Then there exist

parameters s̃i,1 < s̃i,2 < · · · < s̃i,` such that α̃i(s̃i,k) ∈ βjk(I) for all k. That is, there

is a subset of the intersections between α̃i and {β1, . . . , βn} that occur in the same

order and with the same βj’s as αi.

Proof. The proof is a modification of that for Lemma 2.3. After the initial phase of

making all intersections nondegenerate, the pulling-tight procedure can be performed
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by successively removing adjacent pairs of intersections and without introducing new

intersections. Since all pulling-tight removes bigons, the remaining intersections retain

the same relative ordering regardless of how the pulling-tight is performed.

We say the intersections of a tight multiarc of {[α1], . . . , [αm]} with {β1, . . . , βn} are

the essential or forced intersections of the [αi] with the βj .

Finally, we show that the minimal position is unique up to topological conjugacy.

Lemma 2.5 (Topological conjugacy of tight multiarcs). Suppose

({α1, . . . , αm}, {β1, . . . , βn}) and ({α̃1, . . . , α̃m}, {β̃1, . . . , β̃n}) are both tight multiarc

representatives of the same homotopy classes. Then there is a homeomorphism h

of X such that h ◦ αi equals α̃i, up to reparameterization of the multiarcs, for all

i = 1, . . . ,m and h ◦ βj equals β̃j, up to reparameterization, for all j = 1, . . . , n.

Proof. We first define a homeomorphism h1 taking the βj to β̃j , for all j = 1, . . . , n.

We then define a homeomorphism h2 that preserves the multiarcs β̃j and that takes

intersections of the h1 ◦ αi with the β̃j to those of the α̃i with β̃j , for all i and j;

the homeomorphism h2 exists since the ordering of the intersections between β̃j and

h1 ◦ αi are the same as those between β̃j and α̃i (Lemma 2.4). We finally define a

homeomorphism h3 that leaves all points in the multiarcs β̃j invariant and also takes

h2 ◦h1 ◦αi to α̃i; the homeomorphism h3 exists since the two multiarcs are homotopic

in the surface obtained by cutting along the β̃j ’s. The homeomorphism h = h3◦h2◦h1
then satisfies the requirements of the lemma.

Similar to the case above, we now define the notion of a multiarc being in minimal

position, or tight, with respect to a collection of mutually-disjoint trees. We say a

multitree is a collection {t1, . . . , tn} of mutually-disjoint trees embedded in X with

endpoints attached to the boundary of X.

Definition 2.6 (Minimal position/tight for trees). Let X be a surface with boundary,

and {t1, . . . , tn} a multitree in X. Let {α1, . . . , αm} be a multiarc in X. Then the

{αi} are in minimal position, or tight, with respect to the tj ’s if all intersections of

any αi with any tj are topologically transverse and if there are no discs bounded by

a sub-arc of some αi and a sub-arc of
⋃n

j=1 tj .

Unlike the prior case in Definition 2.2, it is not always possible to pull the arcs αi

tight with respect to the tj ’s. Figure 3 shows both the cases in which an arc cannot
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be pulled tight and in which an arc can. However, if each αi can be pulled-tight with

respect to each tree tj (which on the disc is equivalent to αi crossing each tj at most

once), then the natural extension of Lemmas 2.3, and 2.5 hold.

Lemma 2.7. Let X be a surface with boundary, {t1, . . . , tn} a multitree in X, and

{α1, . . . , αm} a multiarc in X. Suppose each αi is homotopic to an arc which is in

minimal position with respect to each tree tj. Then {αi} is ambient isotopic to a

multiarc {α̃i} in minimal position with {tj}.

Proof. Notice that pulling-tight either involves removing a pair of adjacent

intersections, or combining a pair of intersections by pushing them over a vertex.

This can be performed successively as in the proof of Lemma 2.3.

Lemma 2.8. Suppose {α1, . . . , αm} and {α̃1, . . . , α̃m}, are both tight multiarc

representatives of the same homotopy classes with respect to the multitree {t1, . . . , tn}.
Then there is a homeomorphism h of X such that h ◦ αi equals α̃i, up to

reparameterization of the multiarcs, for all i = 1, . . . ,m

Proof. The relative ordering of the intersections of the {αi} with the {tj} in minimal

position is unique, following a similar argument to that used for Lemma 2.4. Existence

of the homeomorphism then follows from the argument for Lemma 2.5.

2.3. Surface-embedded graphs

We now give a brief overview of the use of graph maps in surface dynamics. Self-

maps of surface-embedded graphs with a differentiable structure (known as train-

tracks) were used in Thurston [30] to represent the dynamics of psuedo-Anosov surface

homeomorphisms, and in the proof of Thurston’s classification theorem by Bestvina

and Handel [31]. We will view a graph both as a combinatorial object and as a

topological object.

Combinatorially, a graph G is a pair (V,E), where V is a finite set of vertices,

and E is a finite set of undirected edges, each of which has two directed versions.

The reverse of a directed edge e is denoted ē. The initial vertex of a directed edge

e is denoted ı(e). An edge-path ε is a list of directed edges e1e2 · · · ek such that

ı(ēi) = ı(ei+1) for all i = 1, . . . , k−1. The reverse of the edge-path ε is ε̄ = ēkēk−1 · · · ē1.
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The edge-path ε is a loop if ı(e1) = ı(ēk). The edge-path ε is said to back-track if it

has a substring · · · eē · · · for some directed edge e.

Topologically, a graph is a 1-dimensional CW (closure-finite in the weak topology)

complex, and maps between graphs are continuous functions mapping vertices to

vertices. We will be interested in graphs embedded in an oriented surface M , which

may have punctures or boundary components. A face of a graph G embedded in a

surface M is a component of M \G.

We say a surface-embedded graph G is a skeleton graph if G is a deformation-

retract of M via a deformation retraction r : M → G, or equivalently, if every

component of M \ G is a topological annulus with one boundary component in G

and one in ∂M . (See Fig. 4.) If G is a skeleton graph in M , then any closed curve α

in M is homotopic to a closed edge-path in G, and this path is unique (up to cyclic

permutation of edges) if it does not back-track.

For a surface-embedded graph G, a surface-embedding of a self-map g : G → G

is an embedding ĝ : G → Ĝ, where Ĝ is a neighbourhood of G which deformation-

retracts onto G via a deformation retraction r : Ĝ → G such that g = r ◦ ĝ. (See

Fig. 5.) If G is a skeleton graph in M , f is a homeomorphism of M , and r : M → G is a

deformation-retraction, then g = r◦f |G is a self-map of G which is surface-embeddable

via the embedding f |G.

The embedding structure of a surface-embedded graph is given by the relation

C describing the (anticlockwise) cyclic ordering of outgoing-directed edges around

a vertex. We say that an edge-path ε = e1e2 · · · ek is peripheral if either for all i,

ēi C ei+1 or for all i, ei+1 C ēi. The faces F of a surface-embedded graph correspond

to peripheral loops.

The dual of a surface-embedded graph G is a surface-embedded graph G∗ with

one vertex for each face of G, and one edge for each edge of G. For each directed edge

e of G, the dual (directed) edge e∗ crosses e once, transversely and such that (e, e∗)

defines a positively oriented frame. The cyclic ordering of outgoing-directed edges

around a vertex of G∗ is given by e∗i C e
∗
j if ēj C ei. The dual G∗∗ of G∗ is canonically

isomorphic to G.

If G is the skeleton graph of a surface M with boundary, then each face of G is

an annulus and the vertex of G∗ corresponding to the face may be identified with that

part of the boundary of the annulus formed by ∂M . In this case, the edges of G∗ may
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be realized as mutually disjoint arcs in M .

Combinatorially, a graph map is a self-map of G specified by mapping each

vertex v to a vertex g(v), and each directed edge e to an edge-path g(e) such that

ı(g(e)) = g(ı(e)). Such a combinatorial graph map g is efficient if gn(e) does not

back-track for any edge e and any n > 0.

For a graph map g, the transition matrix A of g has components Aij that count

the number of times g(ej) contains the edge ei (in either direction). Since the matrix

A consists of positive integer elements, its maximal eigenvalue λ is strictly positive and

has positive left and right eigenvectors; log λ is the entropy of g. The left eigenvector l

gives the length of each edge, and the right eigenvector w gives the width of each edge.

An edge is infinitesimal if it has zero length or width. We say g is weakly irreducible

if w is the only positive (right) eigenvector of A whose eigenvalue is not 1.

We often wish to simplify the representation of a graph map. The most important

way of doing this is by combining edges. Suppose there are edges e1 and e2 such that

ē1 and e2 are the only incident edges at some vertex v. Suppose further that no

other vertex maps to v. Then whenever e1 or e2 occur in an edge-path α = g(a),

they occur together, either as e1e2 or ē2ē1. We can then simplify the graph map by

eliminating vertex v and combining e1 and e2 into a single edge e. We denote this

transformation symbolically by e = e1e2. It is easy to show that if g1 and g2 are

related by combining edges, then the entropy of g1 and g2 are equal. We will also

need the inverse transformation, that of splitting edges. Finally, we can also simplify

the transition matrix by identifying and relabelling the edges. Suppose g(e1) = g(e2).

Then we can label both e1 and e2 by e, which we denote symbolically by e = e1 = e2.

2.4. Controlled graphs

In the following, we assume that T is a trellis of a map f : M → M , satisfying

Assumptions 2.1.

Definition 2.9 (Controlled graph). Let G be a graph embedded in M . Call the edges

of G that cross T control edges and those that do not cross T free edges. Then G

is a stable (unstable) controlled graph, relative to T , if there is a pairing between the

control edges of G and the unstable (stable) edges of T such that (i) Each control

edge of G intersects T at exactly one unstable (stable) edge of T . (ii) Each unstable
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(stable) edge of T intersects exactly one control edge of G. The free edges of G are

said to be of stable (unstable) type.

The tree in Fig. 3 and the skeleton graph in Fig. 4 are examples of controlled

graphs that we have already encountered.

Recall the construction of the dual of a surface-embedded graph from Section 2.3.

For the case of a controlled graph, such as the homotopy graph of a trellis, we make

some adjustments to the construction.

Definition 2.10 (Controlled dual graph). Let GU be an unstable controlled graph

with control edges CU crossing segments of TS and free edges EU . Then the controlled

dual graph (GU )
∗

is the standard dual graph of the graph whose edges are the segments

of TU and the free edges EU and which is embedded in the surface M \ (TS ∪ CU ).

The controlled dual graph is a stable controlled graph whose control edges are those

crossing TU and whose free edges are those crossing EU . An analogous definition

applies for the dual (GS)∗ of a stable controlled graph GS .

An example of a controlled graph and its controlled dual is given in Fig. 12, which

will be discussed in detail in Sect. 3.3. The following algorithm explicitly constructs

the controlled dual.

Algorithm 2.11. The controlled dual graph (GU )∗ of GU is constructed by the

following steps. The construction of the dual to a stable controlled graph GS is

entirely analogous.

(i) Assign a vertex for each component of M \ (TU ∪ TS ∪GU ).

(ii) For every segment U of TU , place a control edge z across U , joining the vertices

in the components of M \ (TU ∪ TS ∪G) separated by U .

(iii) For every free edge eu of GU , place a free edge across eu, joining the vertices in

the components of M \ (TU ∪ TS ∪G) separated by eu.

The following lemma shows that the construction merits the name “dual”.

Lemma 2.12. If G is a stable or unstable controlled graph, then (G∗)
∗

is canonically

isomorphic to G.

Proof. Immediate from the construction, since the control edges of (G∗)
∗

are precisely

those of G and the free edges are the usual duals of the dual edges.
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We use the terminology spanning graph for a controlled graph all of whose vertices

are the endpoints of control edges. The following lemma shows that spanning graphs

and skeleton graphs are mutual duals.

Lemma 2.13. Suppose T is a trellis satisfying Assumptions 2.1 and G is either a

stable or unstable controlled graph.

(i) If G is a spanning graph, then G∗ is a skeleton graph.

(ii) If G is a skeleton graph, then G∗ is a spanning graph.

Proof.

(i) Assume G is spanning. In each region R of T , the restriction of G∗ to R is simply-

connected, and hence a skeleton graph, since every vertex of G has a controlled

edge that prevents loops in G∗.

(ii) Assume G is a skeleton graph. If G is of unstable-type, then every component

F of M \ (TU ∪ TS ∪ G) contains a segment U of TU on its boundary. So the

vertex of G∗ within F is the endpoint of a control edge crossing U . The case of

a stable-type graph is analogous.

Definition 2.14 (Controlled graph map). For an unstable controlled graph G, a

surface-embedded graph map g acting on G is called a controlled graph map if each

control edge z of G maps to a control edge g(z) such that if z crosses segment S of

TS , then g(z) crosses the segment S′ that contains f(S). A controlled graph map for

a stable controlled graph is defined analogously using the inverse map f−1.

Definition 2.15 (Optimal controlled graph map). A controlled graph map g : G→ G

is said to be optimal if g is locally injective on the set of free edges.

3. Homotopy and Skeleton Dynamics

In this section we study trellises based on homotopy classes of curves joining stable

segments. This approach corresponds to the homotopic lobe dynamics of [19, 20, 21, 22]

and the strips of [18].
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3.1. Dynamics on the fundamental groupoid

Given a trellis T in M , an unstable-type curve is a curve α in CUM rel CUT
S , i.e.

a continuous map α : I → CUM , where I = [0, 1] and α({0, 1}) ⊂ CUT
S . (Recall

Sections 2.1 and 2.2). Typically, we draw an unstable-type curve as a curve in M \TU ,

which has the same homotopy class as CUM . By definition, α is exact if α only

intersects CUT
S at the endpoints of α. We say that an unstable-type curve α crosses

CUT
S if there is a topologically transverse crossing of α with CUT

S ; this crossing

need not be at a point, but may contain an interval. For simplicity, we shall also say

that α crosses TS , where the cutting by TU is implicit.

We say two unstable-type curves α0, α1 : I → CUM are U-homotopic, denoted

α0 ∼u α1, if they are homotopic in CUM rel CUT
S . § Any unstable-type curve

α : I → CUM is homotopic to a tight representative α′ : I → CUM that has a

minimum number of intersections with CUT
S . As discussed in Section 2.2, since

CUT
S is simply connected, the catenation of curves leads to a well-defined product

between classes [α]u and [β]u if α(1) and β(0) lie on the same component of CUT
S .

Under this product, the collection of U -homotopy classes ΠU forms a groupoid [26]. A

curve is trivial if it is homotopic to a curve lying entirely in TS , and a homotopy class

is trivial if it contains a trivial curve; trivial classes play the role of identity elements

in ΠU . We shall denote trivial classes by [•]. As in Section 2.3, we use an overbar to

denote the reverse ᾱ of a curve α. The reverse of a curve corresponds to the groupoid

inverse of the homotopy class, which we also denote by an overbar, i.e., [ᾱ]u = [α]u,

where [α]u[α]u = [•]. See Fig. 6 for an illustration of these concepts.

Since TS is forward invariant and TU is backward invariant, the image of an

unstable-type curve α : I → CUM is also an unstable-type curve. We thus define the

homotopy image f([α]u) = [f ◦ α]u. Clearly, f(ab) = f(a)f(b) and f(ā) = f(a), for

any homotopy classes a and b. Thus, f is a groupoid homomorphism. However, f is

not a groupoid isomorphism, since f(a) may equal a trivial class, for some a. (See

discussion of inert classes below.)

An atomic class is the homotopy class of a nontrivial exact curve α : I � CUM .

An atomic class is a segment class if it contains a segment of TU . (Note that the

§ In [19, 20, 21, 22], an alternative homotopy structure is used in which holes are punched near

pseudoneighbours, rather than along the entirety of TU .
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segment classes generate all of ΠU .) An atomic class is a bridge class if it contains an

interval of the full unstable manifold WU ; note that this interval itself may intersect

TS multiple times. An atomic class is inert if it becomes trivial under a sufficient

number of iterations. The inert classes form sequences u0, u1, . . ., which begin with an

initial class u0 and for which ui maps to ui+1. Eventually, for some n, all subsequent

inert classes in the sequence are trivial, un, un+1, un+2, . . . = [•].
Any nontrivial homotopy class [α]u can be written as a product of atomic classes;

there is a unique such product with the minimum number of atomic classes. We

call this the concise product. If [α]u has concise product a1 . . . an, then a tight

representative α of [α]u is the concatenation of exact curves αi : I � CUM ,

i = 1, . . . , n, for which [αi]u = ai. Hence, α has exactly n + 1 intersections with TS

(including endpoints), and an arbitrary α′ ∈ [α]u has at least n+ 1 intersections with

TS . Thus, the concise product of a homotopy class reveals the essential intersections

with TS of an arbitrary unstable-type curve in the class.

Of special importance is the concise product representative of the image f([α]u)

of a bridge class [α]u; clearly, this product consists of only bridge classes. This forms a

canonical presentation of the image of f on ΠU , referred to as the (concise) homotopy

action.

Example 3.1. The bridge classes in Fig. 7a yield the following homotopy action. For

simplicity, we drop the u-subscript on the homotopy classes.

f([αu]) = [αu] · [γu] · [βu
1 ], f([βu

1 ]) = [βu
2 ], f([βu

2 ]) = [βu
3 ],

f([βu
3 ]) = [αu] · [γu] · [βu

1 ] f([γu]) = [•], f([δu]) = [αu] · [γu] · [βu
1 ], (2)

f([εu1 ]) = [•], f([εu2 ]) = [εu1 ], f([εu3 ]) = [ε̄u1 ].

The entire unstable homotopy formalism for f can be translated into a stable

homotopy formalism by using the map f−1 and the trellis (TS , TU ). Thus, a stable-type

curve α : I → CSM is a curve in CSM rel CST
U . Such a curve has a stable homotopy

class [αs]s, with an inverse homotopy image f−1([αs]s) = [f−1 ◦ αs]s. For simplicity,

we shall drop the s/u subscript on a homotopy class [ ]s/u when the stability type of

the curve inside the brackets is clear, e.g. [αs]s = [αs] and [αu]u = [αu], as we have

already done in (2).

Example 3.2. As an example of the stable homotopy action, the stable-type bridge
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classes in Fig. 7(b) map as

f−1([αs]) = [αs] · [δs] · [βs
1], f−1([βs

1]) = [βs
2], f−1([βs

2]) = [βs
3],

f−1([βs
3]) = [αs] · [δs] · [βs

1], f−1([γs]) = [αs] · [δs] · [βs
1], (3)

f−1([δs]) = [•], f−1([εs1]) = [•], f−1([εs2]) = [εs1], f−1([εs3]) = [ε̄s1].

Example 3.3. Figure 8 shows a more complicated example of the homotopy action.

All the bridge classes are segment classes, except for γu5 (Fig. 8a) and γs3 (Fig. 8b).

Note that γs3 ∼s γ̄
s
1 γ̄

s
2 and γs3 ∼s γ̄

s
5 γ̄

s
4 . The stable-type bridge classes depicted in 8(b)

map as

f−1([αs]]) = [αs] · [ῑs1] · [εs], f−1([βs]) = [αs] · [ῑs1] · [εs], f−1([εs]) = [γ̄s4 ],

f−1([γs1 ]) = [βs] · [ῑs1] · [δs3], f−1([γs2 ]) = [γs1 ] · [ῑs3] · [δs2] · [ιs2] · [β̄s], (4)

f−1([γs3 ]) = [δs1] · [ῑs3] · [γ̄s1 ], f−1([γs4 ]) = [γ̄s2 ], f−1([γs5 ]) = [γ̄s3 ] · [ιs3] · [δ̄s1],

f−1([δs1]) = [γ̄s3 ] · [ιs3] · [δ̄s1], f−1([δs2]) = [δs1] · [ῑs3] · [γ̄s5 ], f−1([δs3]) = [γ̄s4 ].

The homotopic approach is summarized by the following algorithm, which

generates the concise homotopy action induced by a trellis.

Algorithm 3.4. [Construction of the homotopy action] For a diffeomorphism f with

trellis T , satisfying Assumptions 2.1, the following construction returns a set of bridge

classes HU and the map hu that takes a bridge class a ∈ HU and returns the string of

bridge classes hu(a) ∈ (HU )∗ representing the concise product for f(a). [Here (HU )∗

is the space of strings drawn from HU .]

(i) Determine all segment classes of TU , i.e. the set of unstable bridge classes that

contain a segment of TU , assigning to each class an arbitrary orientation. (Note

that each unstable segment of TU gives rise to two unstable homotopy classes in

CUM , one on each side of the cut.) Call the resulting set HU .

(ii) Remove from HU all trivial bridge classes and all duplicate undirected bridge

classes. (Note that trivial homotopy classes are exactly those lying in a bigon,

and duplicate classes are exactly those lying in a common rectangle.)

(iii) For each bridge class [α] ∈ HU , construct hu([α]) by applying f to α and

expressing [f(α)] as the concise product.

(iv) Insert any new nontrivial bridge classes from the above concise products into HU .

(v) Repeat from (iii) until no additional bridge classes are added.
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These first five steps construct the full homotopy action. The recurrent homotopy

action includes the following additional step.

R Recursively remove any homotopy elements from HU which have no preimages

under hu.

Alternatively, the collapsed homotopy action includes the following additional step.

C Remove all inert classes from HU , that is those bridge classes that map to a

trivial class. Then, identify those bridge classes that only differ by an inert class,

i.e. for a given bridge class a, if either au, va or vau were also a bridge class, for

inert classes u and v, then that class would be identified with a.

Either of steps R or C can be applied by itself, or they can be applied in combination,

forming the recurrent collapsed homotopy action, or what we call the reduced homotopy

action, for short.

Note that step C can be viewed as passing to the groupoid quotient under the

kernel of fn, for a sufficiently large n. The induced action of f on the quotient groupoid

is then injective. Step R ensures that the resulting action is surjective. Applying both

steps R and C guarantees that the resulting action of f is a groupoid automorphism.

The following proposition summarises the properties of the homotopy action hu.

Proposition 3.5. Algorithm 3.4 constructs a set of homotopy classes HU =

{[αu
1 ], . . . , [αu

m]} and the presentation of a map hu : HU → (HU )∗ such that

(i) HU , defined for the full homotopy action, contains every bridge class.

(ii) It is possible to find exact representatives αu
i : I � CUM of all the bridge classes

such that the αu
i ’s are mutually-disjoint. Each representative αu

i thus lies entirely

within a region Ri, uniquely associated with [αu
i ].

Writing hu([αu
i ]) = [βu

i,1] · [βu
i,2] · · · [βu

i,ki
], then for all indices j = 1, . . . , ki

(iii) βu
i,j(1) lies in the same segment of CUT

S as βu
i,j+1(0).

(iv) βu
i,j and βu

i,j+1 lie in different regions of T .

(v) No βu
i,j is trivial.

Proof. Immediate from the construction.
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Algorithm 3.4 is a constructive method for computing symbolic dynamics that

does not rely on a Bestvina-Handel pruning-type algorithm. The homotopy action

can be used to show the existence of orbits of f . The following result is similar to that

of Rom-Kedar [18].

Theorem 3.6. Suppose there is an infinite sequence of homotopy elements

([αu
0 ], [αu

1 ], . . .) in HU such that hu([αu
i ]) contains [αu

i+1] for all i. Let Ri be the region

containing [αu
i ] for all i. Then there is an orbit (x0, x1, . . .) of f such that xi ∈ Ri for

all i.

Proof. We recursively construct a sequence of curves βu
i such that for all i ≥ 0: (i)

[βu
i ] = [αu

i ], (ii) βu
i ([0, 1]) ⊂ Ri, and (iii) f(βu

i ([0, 1])) ∩ R◦i+1 ⊃ βu
i+1([0, 1]) ∩ R◦i+1,

where R◦i denotes the interior of Ri. By Prop. 3.5, part (ii), we choose βu
0 ∈ [αu

0 ] so

that βu
0 lies entirely in the region R0. For a given i, assume we have chosen βu

j , j ≤ i,
satisfying (i) – (iii). Since [αu

i+1] is an element of the concise description of f([βu
i ]),

there is a segment δi+1 of f ◦ βu
i such that δi+1(0), δi+1(1) ∈ TS and δi+1 ∼u α

u
i+1.

Since each component of M \ (TU ∪ TS) is simply-connected by Assumption 2.1(i),

there is a curve βu
i+1 in Ri+1 homotopic to δi+1 such that δi+1(s) = βu

i+1(s) whenever

βu
i+1(s) ∈ R◦i+1. This completes the inductive proof for the existence of the βu

i ’s.

By conditions (ii) and (iii), for any k ≥ 0, any point in βu
k ([0, 1]) that does

not lie in TS must equal fk(x) for some x ∈ βu
0 ([0, 1]), and further, for any i < k,

f i(x) ∈ βu
i ([0, 1]) ⊂ Ri. Hence the set Ak = {x ∈ R0|f i(x) ∈ Ri,∀i 6 k} is nonempty.

Since the sets Ak are also compact and nested (Ak+1 ⊂ Ak), they have a nonempty

intersection, which contains a point x such that f i(x) ∈ Ri for all i.

Since the regions form a topological partition, and since all points on the stable

region-boundaries are asymptotically forward stable to each other and all points on

the unstable region-boundaries are asymptotically backward stable, we can deduce the

following result on topological entropy (see [18, 23]).

Corollary 3.7. The topological entropy of f is at least the topological entropy of hu,

i.e. htop(hu) 6 htop(f).

3.2. The homotopy graph

To clarify the organization of the (unstable) bridge classes, we seek to represent these

homotopy classes as edges of a surface-embedded graph. Ideally, we would like a graph
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whose edges correspond to the bridge classes and whose vertices correspond to stable

segments. In the simplest case (e.g. Fig. 7(a)), we may select the edges so that they

share common endpoints; if edge α and β both terminate on the same component of

CUTS , then they can be chosen to have the same endpoint. However, this procedure

fails for more complex situations, such as the local topologies in Figs. 9(a1) and 9(a2).

Consider the edges (thick, red lines) shown in Fig. 9(b1). We would like to distort the

three on the right side so that they share a common endpoint with the edge on the

left, but this is impossible without at least one of the curves passing through the cut

along TU (thin, red lines). A similar problem is evident in Fig. 9(b2).

To solve the above problem, we use the idea of a controlled graph, and in particular

the concept of control edges, introduced in Section 2.4 (Definition 2.9). Control edges

are “infinitesimally-short” edges crossing stable segments. We see how they can be

used to connect up bridge classes in Figs. 9(c1) and 9(c2).

Example 3.8. An example of a homotopy graph is shown in Fig. 10(b). The control

edges are denoted ζi, where the i subscript orders them by their distance from the

fixed-point p along TS . The free edges correspond to the bridge classes, with the edge

corresponding to exact curve αu in Fig. 10(a) being labelled α, etc.

The control edges are mapped to each other, with the image of the control edge ζi

crossing segment Si being the control edge ζj crossing segment Sj ⊃ f(Si). The image

of the edge corresponding to an exact curve αu is based on the homotopy action, but

must now also include a control edge for every essential intersection of [f ◦ αu] with

TS . The homotopy dynamics therefore induces the following action on the edges of

the homotopy graph.

ζ0, ζ1, ζ2 7→ ζ0, ζ3 7→ ζ1, ζ4 7→ ζ2, ζ5 7→ ζ3, ζ6, ζ7, ζ8 7→ ζ4ζ6,

α 7→ αζ̄8γζ6β1, β1 7→ β2, β2 7→ β3, β3 7→ αζ̄8γζ6β1, (5)

γ 7→ •, δ 7→ αζ̄8γζ6β1, ε1 7→ •, ε2 7→ ε1, ε3 7→ ε̄1,

where • indicates that the edge maps to a single vertex.

The general construction proceeds as follows.

Algorithm 3.9 (Construction of the homotopy graph representative (HU
G , h

u
G)).

For a trellis T of the map f , satisfying Assumptions 2.1, we construct the

homotopy graph representative (HU
G , h

u
G), consisting of the (unstable) homotopy graph
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HU
G , embedded in M , and the homotopy (graph) map huG. The homotopy graph HU

G

is constructed as follows.

(i) In each region of T , construct one vertex of HU
G for each stable boundary arc.

(ii) For each segment S of TS , construct a control edge ζ crossing S transversely, and

joining the vertices from step (i) on either side of S.

Note that the endpoints of the control edges are disjoint, except in the case of

two stable segments separated by an endpoint of TU . (See Fig. 9.)

(iii) For each bridge class [αu], construct a homotopy edge αu
G of HU

G within the region

containing αu joining the vertices corresponding to the segments joined by αu.

The αu are chosen to be mutually disjoint from one another.

The homotopy graph map huG acts on HU
G as follows.

(iv) If ζ is the control edge crossing stable segment S, then huG(ζ) is the control edge

crossing the segment S′ containing f(S).

(v) The image of the homotopy edge αu
G corresponding to [αu] is the edge-path in

HU
G corresponding to the concise homotopy action hu([αu]), including a control

edge whenever hu([αu]) has an essential intersection with TS .

Note that the G subscript distinguishes HU
G , which is a graph, from HU , which is

simply a set of homotopy classes, the elements of which are identified with the free

edges of HU
G . The first five steps construct the full homotopy graph representative.

The recurrent homotopy graph representative includes the following additional step.

R Recursively remove any control or free edge that has no preimage. Note that any

remaining homotopy edges must connect two non-removed control edges.

Alternatively, the collapsed homotopy graph representative includes the following

additional step.

C Collapse all inert homotopy edges, i.e. those homotopy edges that eventually map

to a single vertex. Then, in the event that multiple homotopy edges connect the

same two vertices, keep only one of these edges.

Either of steps R or C can be applied by itself, or they can be applied in combination,

forming the recurrent collapsed homotopy graph representatives or simply the reduced

homotopy graph representative, for short.
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The recurrent and reduced homotopy graphs of the trellis T3 are shown in Figs. 10c

and 10d. A somewhat more involved example of the transition from the recurrent

homotopy graph to the reduced homotopy graph, by applying step C, is shown in

Fig. 11 for the trellis T3e.

It is clear from the construction and the properties of the homotopy action that

the image of any edge ε of HU
G is an edge-path which contains no two consecutive

edges in the same region.

Theorem 3.10. The homotopy graph constructed in Algorithm 3.9 is an unstable

controlled graph, which is also spanning, i.e. all vertices are endpoints of control

edges. The corresponding homotopy graph map is an optimal controlled graph map.

Proof. Straightforward from the construction. The conciseness of the dynamics

ensures that the graph map is optimal.

We can also construct the homotopy graph representative of (f−1, (TS , TU )),

which we call the stable homotopy graph representative of (f, (TU , TS)). The stable

homotopy graph and graph map are denoted HS
G and hsG.

Remark. It will be noted that each 2n-gon in the complement of the trellis generically

is crossed by 2n − 3 unstable bridge classes. The complements of these edges form

either strips along an unstable segment, or triangles bounded by three homotopy

classes. For a bigon however, this formula suggests −1 edges, and indeed, the case

of a bigon is rather degenerate. For this paper, we consider a bigon to contain no

nontrivial homotopy element.

3.3. The skeleton graph

The skeleton graph representative of a trellis was defined in [23], and gives an

alternative representative to the homotopy graph representative. It can be defined

by the axioms given in Definition 3.12 below, and is the unique graph map satisfying

these axioms. The direct computation of the skeleton graph representative relies on

an algorithm similar to that of Bestvina and Handel [31] for computing train-tracks.

In Section 4.2, we shall show that the dual of the recurrent homotopy graph map is

precisely the skeleton graph representative, yielding an alternative computation.
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Definition 3.11. For a trellis T of the map f , satisfying Assumptions 2.1, a

compatible skeleton graph KU
G and skeleton graph map kuG for (T, f) satisfy:

(i) KU
G is an unstable controlled graph.

(ii) KU
G is a skeleton graph of M \ TU , i.e., KU

G restricted to any region is a tree.

(iii) kuG is a controlled graph map (Definition 2.14) such that the image of any unstable

arc α embedded in KU
G lies in the homotopy class of f(α).

There are many possible skeleton graphs compatible with a given trellis, as (for

example) a region with 4 unstable boundary segments may contain a valence-4 vertex

or two valence-3 vertices (in two possible configurations). Further, the image under

kuG of an arc in KU
G joining two stable segments need not be concise.

Definition 3.12. A skeleton graph map kuG compatible with (T, f) is optimal if in

addition to the conditions of Definition 3.11, it satisfies:

(iv) The map kuG is locally injective when restricted to the free edges.

In [23], the following result was shown.

Theorem 3.13. Properties (i) – (iv) of Definitions 3.11 and 3.12 yield a unique KU
G

and kuG. For every orbit (w0, w1, . . .) of kuG with wi in region Ri, there is an orbit

(x0, x1, . . .) of f with xi ∈ Ri, and if (w0, w1, . . .) is periodic, then so is (x0, x1, . . .).

The topological entropy of f is at least that of kuG.

From this point forward, whenever we mention the skeleton graph representative, we

mean the optimal compatible skeleton graph and map (KU
G , k

u
G).

Just as for the homotopy graph representative, we can remove and collapse

edges. A recurrent compatible skeleton graph is be computed from a skeleton graph

representative by the following additional step.

R Recursively remove any skeleton edge that has no preimage, and then remove any

control edge that does not thereby share a vertex with any skeleton edge.

Alternatively, a collapsed skeleton graph representative includes the following

additional step.

C Collapse all inert skeleton edges, i.e. those skeleton edges that eventually map to

a single vertex, and, in the event that multiple skeleton edges connect the same

two vertices, keep only one of these edges.
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Either of steps R or C can be applied by itself, or they can be applied in combination,

forming a recurrent collapsed skeleton graph representative.

Note that conditions (i) are equivalent to saying that the topological pair (G,C)

is homotopy-equivalent to the pair (M \TU , TS \TU ). The dynamical conditions (iii)

are equivalent to saying that the map g : (G,C) → (G,C) is homotopy-equivalent to

f : (M \ TU , TS \ TU ) → (M \ TU , TS \ TU ). The optimality condition implies that

the graph map is efficient in the sense of Bestvina and Handel [31, 23].

We note that the image of the skeleton graph restricted to any component of

M \ (TU ∪ TS ∪ CS) is injective. This means that no image of an edge back-tracks,

and the incident edges at any vertex map to distinct edge-paths with distinct initial

edges. E.g. in Example 4.2, at the vertex with incident edges c̄1, c̄2, c̄3, we have

c̄1 7→ c3c̄2, c̄2 7→ c4 and c̄3 7→ c5z̄20z18d1, beginning, respectively, with edges c̄3, c̄4, c̄5.

In particular, any vertex maps to a vertex of equal or higher valence.

4. Duality

In this section, we consider duality relationships involving the homotopy dynamics and

the skeleton dynamics. We first define a duality relation on controlled graph maps,

and show the main result of this paper, that the dual of the (backward) homotopy

graph map is the skeleton graph map. We also show a duality relation between the

unstable and stable homotopy dynamics. We also show how the forward homotopy

graph can be projected onto the skeleton graph.

4.1. The dual graph map

Example 4.1. For the trellis T3 we have the stable homotopy graph HS
G shown in

Fig. 12(a). The controlled dual graph (Definition 2.10), denoted (HS
G)∗, is then as

shown in Fig. 12(b). The control edges of the dual graph cross the stable segments

of T3. The free edges of (HS
G)∗ cross the edges of HS

G representing bridge classes. In

the region with edges β1, β2 and β3, there are therefore three edges of (HS
G)∗, labelled

b1, b2 and b3, meeting at a valence-3 vertex. Note that (HS
G)∗ is a skeleton graph, as

defined in Sect. 2.3.

Having constructed a dual skeleton graph (HS
G)∗ to the (stable) homotopy graph

HS
G, we now consider a dual map (hsG)∗ to the homotopy action hsG. This graph map
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will be determined by the order in which the images of skeleton edges are forced to

cross stable bridge edges.

Example 4.2. For the trellis T4 in Fig. 8, we obtain the dual skeleton graph in Fig. 13

if we only focus on the “interior” region of the trellis. (Technically, Fig. 13 shows the

reduced skeleton graph; details will be given later.)

The skeleton edge a is homotopic to the curve αu (Fig. 8), and the image

f([αu]) = [αu] · [βu] has essential crossings with αs and βs. Hence the image f(a)

is homotopic to the curve az̄24z14b, where zi denotes a control edge, indexed by its

position along TS . Thus, (hsG)∗(a) = az̄24z14b. Similarly, the skeleton edge b is

homotopic to βu, and f([βu]) = [γu1 ], which has essential crossings with γs1 and γ̄s2 , so

(hsG)∗(b) = c1c̄2.

The skeleton edge c1 is not in any unstable bridge class. To compute its image, we

instead compute essential crossings of c1 with preimages of stable arcs. We note that

f−1([γs2 ]) = [γs1 ] · [ιs3] · [δs2] · [ῑs2] · [β̄s] and f−1([γs3 ]) = [δs1] · [ῑs3] · [γ̄s1 ], so (hsG)∗(c1) should

contain both c2 and c̄3. This suggests that (hsG)∗(c1) = c2c̄3. Since f−1([γs4 ]) = [γs2 ],

we have (hsG)∗(c2) = c3. Since f−1([γs5 ]) = f−1([δs1]) = [γ̄s3 ] · [ι3] · [δ̄s1], we have

(hsG)∗(c3) = d̄1z̄10z11c̄5. Similarly, (hsG)∗(c4) = d̄3z̄9z12ē and (hsG)∗(c5) = d̄2. It can be

seen that the images so constructed yield a consistent image for the end vertices of c3.

In summary, (hsG)∗ yields the following action on the skeleton graph,

a 7→ az̄24z14b, b 7→ c1c̄2, e 7→ az̄24z14b,

c1 7→ c2c̄3, c2 7→ c̄4, c3 7→ d̄1z̄18z20c̄5, c4 7→ d̄3z̄16z22ē, c5 7→ d̄2, (6)

d1 7→ d2d̄1z̄18z20c̄5c3, d2 7→ c2, d3 7→ c1.

This construction of the graph map on the skeleton graph given in Example 4.2

generalises. Given a stable homotopy arc [αs], the homotopy preimage h−1[αs] can

be written as the concise product [βs
1] · · · · · [βs

k], where each [βs
i ] is a bridge class. We

identify each bridge class [βs
i ] with its edge βs

i in HS
G, so that the concise product

representation of h−1[αs] is identified with a multiarc in CSM . Since each βs
i is dual

to an edge bui of the skeleton graph, and since βs
i and βs

i+1 always lie in different

regions for each i = 1, . . . , k − 1, the intersections of h−1[αs] with the tree (HS
G)
∗

are

tight (Definition 2.6). Further, by Lemma 2.7, the homotopy preimages h−1([αs]) of

all bridge classes [αs] can be simultaneously put in minimal position with respect to

(HS
G)
∗

by a common isotopy. In this tight configuration, each edge eu of (HS
G)
∗

crosses
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the preimages of homotopy arcs in a well-defined order h−1([αs
1]), . . . , h−1([αs

l ]) with

no back-tracking by Lemma 2.8. Finally, we define the dual graph map (hsG)∗ applied

to this edge eu to be the edge-path au1 , . . . , a
u
l , where aui is the edge of (HS

G)
∗

dual

to αs
i . This edge-path also contains the necessary control edges zuj between the free

edges aui . The dual graph map (hsG)∗ applied to a control edge zu of (HS
G)∗ maps to a

control edge zu′ such that if zu crosses segment S of TU , then zu′ crosses the segment

S that contains f−1(S). We have therefore shown:

Theorem 4.3 (Dual to homotopy graph map). There is a natural controlled graph

map (hsG)∗ acting on the dual graph (HS
G)
∗

to the stable homotopy graph HS
G, as

constructed above. This action forms a dual to the homotopy dynamics. In particular,

the dual skeleton edge au to the stable bridge class [αs] maps across edge bu if, and only

if, the corresponding dual bridge [βs] maps under hG to a concise product containing

[αs].

4.2. Duality between the homotopy and skeleton dynamics

We now state and prove the main theorem of the paper, which gives the relationship

between the homotopy dynamics and the skeleton dynamics.

Theorem 4.4. Let (HS
G, h

s
G) be the recurrent stable homotopy graph representative and

(KU
G , k

u
G) be the collapsed unstable skeleton graph representative. Then KU

G = (HS
G)
∗

and kuG = (hsG)
∗
.

Proof. The basic structure of this proof is to show that the dual to the homotopy

graph representative ((HS
G)∗, (hsG)∗) satisfies Definition 3.12 for the skeleton graph

representative. First, by construction of the dual (Definition 2.10), (HS
G)∗ is an

unstable controlled graph, which proves property (i) of Definition 3.11.

Second, by Lemma 2.13 we have already seen that the dual of any stable spanning

graph, such as HS
G, is a skeleton graph, thereby yielding property (ii).

Third, by the construction of the dual map (Theorem 4.3), (hsG)∗ is a controlled

graph map. Next suppose a free edge e maps to an edge path buzcu, where

z ∈ (hsG)∗(C) is a control edge and bu and cu are edge paths. Then there is a control

edge z′ ∈ C such that z = (hsG)∗(z′). But this means that e must have a transverse

intersection with TS , which is not true since e lies in a single region. Hence, e does

not map to any control edge in (hsG)∗(C). This completes the proof of property (iii).
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Finally, we show that (hsG)∗ is locally injective on the free edges. Note, for an

arbitrary bridge class [αs], f
−1 ◦ αs is homotopic to a tight edge-path that passes

through each region at most once (since CSM is simply connected), and hence crosses

any edge of the skeleton graph at most once. By the construction of the dual map

in Theorem 4.3, (hsG)∗ applied to any edge of (HS
G)∗ cannot map to two copies of the

same edge. Hence, (hsG)∗ restricted to any edge is injective.

By a similar argument, we show that (hsG)∗ is locally injective at a vertex

connecting free edges in (HS
G)∗. Suppose (hsG)∗ were not locally injective at a vertex,

then (HS
G)∗ would have two free edges au1 and au2 beginning at a common vertex

such that (hsG)∗ applied to either au1 or au2 would begin with the same initial edge

bu. Then, for a homotopy edge [αs], the concise description of hsG([αs]) would contain

two homotopy elements in the same region, one each intersecting au1 and au2 . But

we have already determined that there is a single homotopy element in each region

for the concise description. Hence (hsG)∗ is locally injective at a vertex of free edges.

Combining this with the local injectivity along each free edge, allows us to conclude

that (hsG)∗ is locally injective when restricted to the free edges, condition (iv) of

Definition 4.4

By step R of Algorithm 3.9, every free edge in the recurrent homotopy graph HS
G

has a preimage under hsG. Thus, none of the dual edges in (HS
G)∗ maps to a trivial

edge-path under (hsG)∗.

We illustrate the construction by another example.

Example 4.5. Consider the trellis T3 in Fig. 12. The edges α, β1, β2, β3, γ, δ of the

stable homotopy graph HS are dual to (i.e. cross) the edges a, b1, b2, b3, c, d of the

skeleton graph KU
G . These homotopy elements map

α 7→ α ζ̄8 δ ζ6 β3, β1 7→ α ζ̄8 δ ζ6 β3, β2 7→ β1 ζ̄6 δ̄ ζ8 ᾱ,

β3 7→ β2, γ 7→ α ζ̄8 δ ζ6 β3, δ 7→ [•],

where we have ignored the trivial dynamics on the free edges ε1, ε2, ε3. The
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corresponding transition matrix (Sect. 2.3) is

AH =

α β1 β2 β3 γ δ



α 1 1 1 0 1 0

β1 0 0 1 0 0 0

β2 0 0 0 1 0 0

β3 1 1 0 0 1 0

γ 0 0 0 0 0 0

δ 1 1 1 0 1 0

, (7)

where we have only recorded transitions between the free edges.

The skeleton edges map

a 7→ az̄8cz6b1b̄2, b1 7→ b2, b2 7→ b3,

b3 7→ az̄8cz6b1, c 7→ [•], d 7→ az̄8cz6b1b̄2,

with corresponding transition matrix

AS =

a b1 b2 b3 c d



a 1 0 0 1 0 1

b1 1 0 0 1 0 1

b2 1 1 0 0 0 1

b3 0 0 1 0 0 0

c 1 0 0 1 0 1

d 0 0 0 0 0 0

. (8)

We see that AH = AT
S , illustrating that the stable homotopy graph map is dual to the

unstable skeleton graph map.

If we reduce the homotopy and skeleton graphs by recursively deleting edges with

no preimages (Step R), and also collapsing edges with trivial image (Step C), we see

that the edge c is collapsed and its dual counterpart γ is removed, whereas the edge

d is removed and its dual counterpart δ is collapsed. The resulting graphs are shown

in Fig. 15, and are again dual to each other, as are the graph maps

α 7→ α ζ̄8 ζ6 β3, β1 7→ α ζ̄8 ζ6 β3, β2 7→ β1 ζ̄6 ζ8 ᾱ, β3 7→ β2

and

a 7→ az̄8z6b1b̄2, b1 7→ b2, b2 7→ b3, b3 7→ az̄8z6b1.
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The following result shows that applying the collapsing process applied to the dual

of the full stable homotopy graph map also yields the skeleton graph representative.

Proposition 4.6. The skeleton graph representative is obtained from the dual of the

full stable homotopy graph map by collapsing all inert skeleton edges.

Proof. The collapsed edges are precisely those which cross elemental homotopy arcs

which are removed when constructing the recurrent homotopy graph. Removing an

edge from the homotopy graph induces a collapsing of the corresponding edge in the

dual graph.

4.3. Time-reversal symmetry of the homotopy dynamics

We consider the intersections of unstable homotopy elements with stable homotopy

elements. We first construct a geometric figure such that the representatives of the

homotopy classes of HU and HS are tight, such as shown in Fig. 16. The homotopy

representative αu crosses αs, and βu
1 crosses βs

3 and β̄s
2 in that order. The image f ◦αu

belongs in homotopy class f([αu]) = [αu] · [γu] · [βu
1 ], so it has essential intersections

with αs, γs, βs
3 and β̄s

2 in that order.

The following results directly from Lemma 2.3.

Theorem 4.7 (Time-reversal symmetry). For all [αu] ∈ HU and all [βs] ∈ HS (using

the full homotopy action), the number of essential intersections of f([αu]) with βs is

equal to the number of essential intersections of f−1([βs]) with αu.

Proof. First, note that if (TU , TS) is a trellis for f , and h is a homeomorphism such

that h(x) = x for all x ∈ TU ∪ f(TS), then (TU , TS) is a trellis for h ◦ f . Similarly, if

h is a homeomorphism such that h(x) = x for all x ∈ f−1(TU )∪TS , then (TU , TS) is

a trellis for f ◦ h.

Now, suppose f ◦ αu is homotopic to a path φu which intersects βs once. By

pulling tight (Lemma 2.3) there is an isotopy (gut )t∈[0,1] of M such that gu0 = id ,

gut (x) = x for x ∈ TU ∪ f(TS), and gu1 ◦ (f ◦ αu) = φu. Then gst = f−1 ◦ (gut )−1 ◦ f is

an isotopy such that gs0 = id , gst (x) = x for x ∈ f−1(TU ) ∪ TS , and gs1 ◦ (f−1 ◦ βs) =

f−1 ◦ (gu1 )−1 ◦ f ◦ f−1 ◦ βs = f−1 ◦ (gu1 )−1 ◦ βs. Hence intersections of gs1 ◦ (f−1 ◦ βs)

with αu are conjugate to intersections of βs with gu1 ◦ f ◦ αu. In particular, if f ◦ αu

is homotopic to a curve with n intersections with βs, then f−1 ◦ βs is homotopic to a

curve with n intersections with αu.
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Note that if each component of M\(TU∪f(TS)) is simply-connected, then f([αu])

has at most one essential intersection with βs for any αu and βs.

4.4. Projection of the homotopy graph onto the skeleton graph

We notice that there is also a relationship between the unstable skeleton graph and

the unstable homotopy graph. Each homotopy graph element is homotopic to an

edge-path in the skeleton graph, and the concise description of the homotopy type of

the image of the homotopy graph element is equivalent to the image edge-path in the

skeleton graph. For example, comparing Fig. 8a to Fig. 13, we have γu1 ∼ c1c̄2, with

c1c̄2 7→ c2c̄3c̄4 ∼u γ
u
2 ∼u f ◦ γu1 .

We now describe this relationship between the (unstable) homotopy and skeleton

graphs.

Lemma 4.8. Let [αu]u be a homotopy element and a1 · · · ak the edge-path in the

skeleton graph which is homotopic to αu. Then the concise description of [f ◦ αu]u

crosses the same stable homotopy arcs whose preimages contain αs
1, . . . , α

s
k, where each

αs
i is dual to ai, for all i = 1, . . . , k.

Proof. The reduced skeleton graph map kuG is locally-injective on each region, so the

representative of any nontrivial homotopy element maps to an edge-path that does

not back-track. This edge-path therefore crosses each stable homotopy arc at most

once, and hence crosses the same arcs as the concise description of [f ◦ αu]u.

We now show that the forward homotopy graph and skeleton graph can each be

easily computed from the other.

Theorem 4.9. The homotopy graph HU
G and map huG are related to the skeleton graph

KU
G and map kuG by an edge-splitting followed by an edge-identification.

Proof. Each edge in the homotopy graph embeds as an edge-path in the skeleton

graph. Since each edge in the homotopy graph lies in a single region, the image of the

edge in the skeleton graph does not back-track, so equals the projected image under

the skeleton graph map. In other words, there is a projection puG : HU
G → KU

G such

that kuG(puG(α)) = puG(huG(α)) for all homotopy elements α.

We next construct the split graph H̃U
G of the homotopy graph HU

G . Since a given

edge α in HU
G projects to an edge-path a1 . . . al of length l in KU

G , we split α into l
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pieces α1, α2, . . . , αl, i.e. α is represented by the edge-path α1α2 . . . αl. We extend

the projection puG to the split graph H̃U
G in the natural way, i.e. puG(αi) is defined to

be ai. We next extend huG to a map h̃uG acting on H̃U
G . Since puG(huG(α)) = kuG(puG(α)),

we must require puG(h̃uG(α1α2 . . . αk)) = kuG(a1)kuG(a2) · · · kuG(al). Since each edge of the

split homotopy graph projects to exactly one edge of KU
G , we can take h̃uG(α1) to be

the initial arc of h̃uG(α) with length |kuG(a1)|, so that puG(h̃uG(α1)) = kuG(puG(α1)). We

construct the remaining h̃uG(α2), h̃uG(α3), . . . recursively.

We have therefore constructed a graph H̃U
G for which there is a surjective inclusion

iuG : HU
G → H̃U

G , and a projection puG : H̃U
G → KU

G mapping edges to edges. The induced

dynamics h̃uG on H̃U
G satisfies h̃uG ◦ iuG = iuG ◦ huG and puG ◦ h̃uG = kuG ◦ puG.

By combining Theorems 4.4 and 4.9, we obtain the following result:

Corollary 4.10.

(a) huG is related to hsG by an edge-splitting, duality, and edge-identification.

(b) The transition matrix of huG is shift equivalent to the dual of the transition matrix

of hsG.

Example 4.11. Consider the homotopy and skeleton graphs shown in Fig. 17 for the

trellis T3 (Fig. 15).

The control edges map z0, z2 7→ z0, z4 7→ z2, z6, z8 7→ z4, and homotopy graph map

huG and the skeleton graph map kuG take

huG(α) = αz̄8z6β1, huG(β1) = β2, huG(β2) = β3z6z̄8ᾱ, huG(β3) = αz̄8z6β1; (9)

kuG(a) = az̄8z6b1b̄2, kuG(b1) = b2, kuG(b2) = b3, kuG(b3) = az̄8z6b1. (10)

We take a projection of HU
G into KS

G given by

puG(α) = a, puG(β1) = b1b̄2, puG(β2) = b2b̄3, puG(β3) = b3b̄1.

We split β1, β2 and β3 each into two edges, e.g. β1 = β1,1β1,2, with

puG(β1,1) = b1, p
u
G(β1,2) = b̄2,

puG(β2,1) = b2, p
u
G(β2,2) = b̄3,

puG(β3,1) = b3, p
u
G(β3,2) = b̄1.

Since huG(β1) = β2 we have puG(huG(β1)) = b2b̄3, and we verify kuG(puG(β1)) = kuG(b1b̄2) =

kuG(b1)kuG(b̄2) = b2b̄3. We take h̃uG(β1,1) = β2,1 since kuG(puG(β1,1)) = b2 = puG(β2,1),
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and take h̃uG(β1,2) = β2,2. Since huG(β3) = αz̄8z6β1, and kuG(puG(β3)) = kuG(b3)kuG(b̄1) =

az̄8z6b1 b̄2, we take h̃uG(β3,1) = αz̄8z6β1,1 and h̃uG(β3,2) = β1,2. The graph map h̃uG

obtained by splitting is

h̃uG(α) = αz̄8z6β1,1β̄1,2, h̃uG(β1,1) = β2,1, h̃uG(β1,2) = β2,2,

h̃uG(β2,1) = β3,1, h̃uG(β2,2) = β3,2z̄6z8ᾱ, h̃uG(β3,1) = αz̄8z6β1,1,

h̃uG(β3,2) = β2.

It is clear that this map h̃uG satisfies the projection conditions puG(h̃uG(ε)) = kuG(puG(ε))

for every split edge ε. For example, we have

puG(h̃uG(β̄2,2)) = puG(αz̄8z6β̄3,2) = az̄8z6b1 = kuG(b3) = kuG(puG(β̄2,2),

puG(h̃uG(β3,1) = puG(αz̄8z6β̄1,1) = az̄8z6b1 = kuG(b3) = kuG(puG(β3,1).

Note that Theorem 4.4 implies that the skeleton graph shows how to partition

the state space into regions bounded by stable curves such that the chaotic dynamics

is contained in rectangles. This is similar to the construction of “strips” in [18], and

of uniformly hyperbolic representatives in [24]. For at every vertex of valence greater

than two of the skeleton graph, we can introduce new homotopy curves dual to the

edges at that vertex. Since the vertices are invariant, these homotopy curves can

be made to map into themselves. Further, since every homotopy element maps to a

sequence of homotopy elements, these curves are never crossed by TS under backward

iteration. The elements of the new trellis are rectangles, each corresponding to a stable

homotopy element. A similar decomposition can be performed for unstable homotopy

elements using the forward skeleton graph. The effect of introducing new stable and

unstable arcs on the forward skeleton graph is shown in Fig. 18.

5. Conclusions

In this paper, we have considered the relationship between the approach to studying

homoclinic dynamics by the use of skeleton graphs of trellises, and of homotopy lobe

dynamics. We have shown that the two approaches are dual to each other, in the sense

that the “bridge classes” of the homotopy lobe dynamics of the inverse map are dual to

the “free edges” of the skeleton graph representative. The homotopy dynamics can be

directly constructed by considering iteration of elemental homotopy classes under the

diffeomorphism, yielding a canonical construction of the skeleton graph representative
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by duality, as opposed to constructing an initial skeleton graph simplifying by folding

and pulling-tight. In both cases, we have shown how to represent the dynamics via a

combinatorial graph embedded in the surface. The two approaches are complementary

in the sense that the homotopy dynamics more directly captures the structure of the

homoclinic orbits forced by the trellis, whereas the skeleton graph provides a direct

proof of existence of periodic orbits via the Nielsen fixed-point theory.

We note that a similar theory could be developed for periodic orbits, with

the skeleton graph corresponding to train-tracks, and the homotopy dynamics

corresponding to iteration of arcs joining periodic points. However, the theory of

finite developments of homoclinic tangles is in some sense actually easier than the

theory for periodic orbits. In particular, the skeleton graph and homotopy graphs are

unique, while a train-track for a pseudo-Anosov mapping class is not unique, but is

related by zipping.

Although in the exposition we have used examples of planar horseshoe trellises,

the results generalise in a straightforward way to arbitrary irreducible trellis types in

surfaces of higher genus.

An interesting project for further work would be to automatically extract the

trellis topology from a computation of a geometric trellis, and hence compute the

homotopy and skeleton graph representatives.
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Figure 1. The trellis T3. The point p is a saddle fixed point, and the bold
(blue) and thin (red) curves are the stable and unstable manifolds respectively.
The points qi (exes) are homoclinic intersection points on the same orbit. The
points r and r′ are pseudoneighbours (open dots), and are the vertices of a shaded
inner bigon. The regions R0 and R1 must contain chaotic dynamics.
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Figure 2. Pulling tight a multiarc.
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Figure 3. Pulling-tight arcs relative to a tree. (a) The homotopic arcs α0 and
α1 cannot be pulled-tight. (b) The arc α can be pulled tight into α̃.
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Figure 4. A skeleton graph G of the cut surface CUM .



FIGURES 38

(b)(a)

az0 z6z8

v

z2 b3

b1

z4
g(b2)
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Figure 5. (a) A surface embedded graph, which is a subgraph of the graph of
Fig. 4. The ordering at vertex w is given by b̄1 C b̄2 C b̄3 C b̄1. (b) A surface-
embedding of the graph map g is also shown, with g(z0) = g(z2) = z0, g(z4) = z2,
g(z6) = g(z8) = z4, g(a) = az̄8z6b1b̄2, g(b1) = b2, g(b2) = b3 and g(b3) = az̄8z6b.
The vertex w is fixed, g(w) = w, and g is not locally-injective at vertex v.
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Figure 6. Unstable-type curves α0, α1, α2, β1, β2, β3, γ0, γ1, δ and ε.
The curves α0, β1, β2, γ0, γ1 and δ represent homotopy elements. The curve ε
represents a trivial homotopy element. The curves γ0 and γ1 are U -homotopic,
since the initial endpoint of γt can pass through the point q3. The homotopy
classes map f([αi]) = [αi+1] for i = 0, 1 and f([βi]) = [βi+1] for i = 1, 2. Note
that α2 has six intersections with TS (including endpoints), since although α2 is
homotopic to the homotopy class β3 with four intersections, the intersections of
α2 with TS(q1, q2) are forced by the intersections of α1 with TS(q0, q1).
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Figure 7. The (a) unstable and (b) stable bridge classes for the trellis T3.



FIGURES 41

(a) (b)

q4

q3

q0 q1p

q5
αu

βu

ǫu

γu
3 γu

5

δu3

γu
4

δu1

γu
1

δu2

γu
2

q2

q4

q3

q0 q1 q2p

δs1
δs2δs3ǫs

βsαs γs
1

γs
2

γs
5

γs
3

γs
4

ιs2ιs1

ιs3

q5

Figure 8. The trellis T4, with a valence-4 region, showing the bridge classes for
(a) the reduced unstable action and (b) the reduced stable action.
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Figure 9. Two examples (top and bottom rows) of handling locally complex
trellis topologies. (a) The local trellis topology itself with unstable (red) and
stable (blue) segments. (b) The homotopy edges (thick red segments) terminate
at vertices on the stable segment. Note that the vertices cannot be drawn together
into a single point without forcing the homotopy edges to cross over the unstable
curves. (c) The termination vertices are now replaced with control edges, which
are “infinitesimally-short” edges crossing stable segments. The control edges form
a single connected component joining all four homotopy edges.
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Figure 10. (a) The unstable homotopy elements of the trellis T3. (b) The
corresponding full homotopy graph. (c) The recurrent homotopy graph. (d) The
reduced homotopy graph.
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Figure 11. (a) The recurrent homotopy graph and (b) the reduced homotopy
graph for the trellis T3e. This trellis is similar to T3 except that the lobes inside the
main square are extended such that they “overshoot”, or transect, one another.
(Compare with Fig. 10.) Despite this initial difference, the reduced homotopy
graphs and graph maps for T3 (Fig. 10d) and T3e (Fig. 11b) are the same.
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Figure 12. (a) The stable homotopy graph HS
G (dark blue) with control edges

CS and free edges ES for the trellis T3. (b) The dual graph KU
G (red), being the

graph-theoretic dual of TS ∪ ES in the complement of TU ∪ CS .
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Figure 13. The reduced skeleton graph for the trellis T4. The labels for the
stable bridge classes are shown in Fig. 8(b).
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Figure 14. Preimages of stable homotopy elements crossing the unstable
skeleton graph for the trellis T4.
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Figure 15. The reduced homotopy graph and its dual skeleton graph for the
trellis T3.
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Figure 16. Minimal representatives of unstable and stable bridge classes for
T3.
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Figure 17. (a) Reduced homotopy graph for trellis T3 (Fig. 15.) (b) Reduced
skeleton graph for T3, obtained by projecting the βi’s in (a) onto the bi’s.
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Figure 18. The effect on the forward skeleton graph of adding new homotopy
elements to the trellis.
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