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ABSTRACT 

 
Uncovering the diversity of CRISPR-Cas systems 

 
by 
 

Lucas B Harrington 
 

Doctor of Philosophy in Molecular and Cell Biology 
University of California, Berkeley 

 
Professor Jennifer A. Doudna, Chair 

 
CRISPR has revolutionized the speed and efficiency of genome editing. This powerful 

tool originates from an adaptive immune system found in prokaryotes that protects against 
viruses and other nefarious nucleic acids. In these systems, genetic memories of prior infections 
are transcribed into guide RNAs which program an interference complex, such as Cas9, to 
make a targeted DNA break, halting the infection. These systems are present in nearly half of all 
prokaryotes and are highly diverse. This dissertation focuses on the diversity of CRISPR-Cas 
systems, the evolutionary pressures that have led to these elegant immune systems, and 
applications resulting from this investigation.  
 Although thousands of Cas9 orthologs have been sequenced, biochemical and genome 
editing experiments have largely focused on a small subset of representatives. To investigate 
this diversity further we conducted biochemical interrogation of various Cas9 orthologs and 
found that all Cas9 proteins tested are robust single stranded DNA (ssDNA) cutters. Moreover, 
we found that many smaller orthologs had limited ability to interrogate double stranded DNA 
(dsDNA), explaining their unsuccessful use for genome editing. In this process, we recognized a 
new Cas9 variant from thermophilic environments, GeoCas9. We developed this ortholog for 
genome editing in human cells and found that it was more resistant to degradation in human 
plasma compared to the widely used Cas9 from S. pyogenes, expanding CRISPR applications 
to thermophilic hosts. Our newfound understanding of Cas9 diversity led to curiosity about what 
factors were driving the diversification of this protein. Anti-CRISPRs (Acrs) are small, viral 
encoded proteins that have evolved to inactivate CRISPR in this microbial arms race. We 
studied three different Acrs using biochemical, structural and genome editing experiments. Our 
results showed that these three Acrs had distinct targeting mechanisms to inactivate Cas9. In 
addition to allowing precise control of CRISPR-Cas9 in cells, these results provided a window 
into one of the driving forces steering Cas9 evolution. 
 We next turned our attention to metagenomic datasets, with the hypothesis that Cas9 
was not the only single effector CRISPR system. Searching through terabase scale 
metagenomic data, we identified two new types of CRISPR systems that we called CasX and 
CasY (reclassified as Cas12e and Cas12d, respectively). These new systems included the most 
compact CRISPR systems described to date and provided new, streamlined proteins for 
genome editing with less restrictive sequence requirements. Continuing our search of 
metagenomic data, we were surprised to find 8 new varieties of CRISPR proteins that pushed 
the limit of size even further, at just a third of the size of typical CRISPR effector. We found that 
these systems, in addition to Cas12a, were targeted ssDNA shredders, a property which we 
developed into a robust platform for rapid, single nucleotide resolution genotyping. Together the 
investigation of CRISPR adaptive immunity described here gives insight into the pressures that 
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have shaped these immune systems and in turn provides new tools that enable us to edit 
genomes, control CRISPR cutting and diagnose disease.
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1.1 Introduction 
 

Prokaryotes are in a constant battle with invasive nucleic acids from phages, 
plasmids and other mobile genetic elements. Adaptive immune systems involving 
clustered regularly interspaced short palindromic repeats (CRISPRs) have evolved to 
defend against these invaders. CRISPR systems are found in an estimated 50% of 
bacteria and nearly 90% of archaea(K S Makarova et al., 2015). Each CRISPR locus 
encodes CRISPR-associated (Cas) proteins and a CRISPR array composed of short 
repeating elements intervened by spacers, which serve as genetic memories of 
previous foreign encounters.  

CRISPR immunity is divided into three stages: acquisition, RNA processing and 
interference (Figure 1.1). In the acquisition stage, foreign DNA is captured and 
integrated into the CRISPR array by Cas1 and Cas2, the only two proteins conserved 
across all active CRISPR loci (Nuñez, Harrington, Kranzusch, Engelman, & Doudna, 
2015; Nuñez et al., 2014b; Nuñez, Lee, Engelman, & Doudna, 2015; Yosef, Goren, & 
Qimron, 2012). During RNA processing, the CRISPR locus is transcribed to produce a 
long precursor CRISPR RNA (pre-crRNA) that is further processed by host 
factors(Elitza Deltcheva et al., 2011) or dedicated Cas proteins(R. Wang, Preamplume, 
Terns, Terns, & Li, 2011) to produce multiple crRNA sequences. Each mature crRNA 
consists of a spacer sequence and a portion of the repeat sequence. In the interference 
stage, a crRNA is loaded into a Cas protein complex that binds and cleaves foreign 

Figure 1.1 | Outline of Type II CRISPR adaptive immunity. CRISPR immunity is divided into three stages, 
acquisition, RNA processing and interference. In acquisition, foreign DNA is integrated into the CRISPR array by the 
Cas1-Cas2 complex (red). The array is transcribed and processed to yield multiple mature crRNA sequences. The 
crRNA is loaded into the Cas9 interference complex (green) which uses it to identify and cleave invading nucleic 
acids.  
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nucleic acids based on DNA-RNA(Garneau et al., 2010; M Jinek et al., 2012; Samai et 
al., 2015a) or RNA-RNA(W. Jiang, Samai, & Marraffini, 2016; Samai et al., 2015a) base 
pairing with the crRNA.  

CRISPR loci are classified according to the Cas proteins flanking the CRISPR 
array(K S Makarova et al., 2015). The majority of this dissertation will focus on Type II 
and Type V CRISPR systems, which include a single interference proteins Cas9 and 
Cas12 respectively. In addition to the crRNA, Type II systems also require a trans-
activating crRNA (tracrRNA)(Chylinski, Le Rhun, & Charpentier, 2013; M Jinek et al., 
2012). The tracrRNA base pairs with the repeat portion of the crRNA and the 
tracrRNA:crRNA duplex is processed by host RNase III(Elitza Deltcheva et al., 2011). 
Once loaded with this dimeric RNA, Cas9 binds sequences containing a 2-5 bp 
protospacer adjacent motif (PAM) flanking the targeted region in the DNA(Cencic et al., 
2014; Deveau et al., 2008; Mojica, Diez-Villasenor, et al., 2009), at which point the 
crRNA invades the DNA duplex to form an R-loop(Fuguo Jiang et al., 2016; Szczelkun 
et al., 2014). Upon binding to the correct target, the HNH and RuvC nucleases are 
activated to cleave the target and non-target strands, respectively(M Jinek et al., 2012).  

Type II CRISPR systems are further divided into three subtypes (A, B and C) 
based on other Cas proteins found in the CRISPR locus. It is believed that the ancestral 
Type II locus had only three proteins (Cas9, Cas1 and Cas2). This simple CRISPR 
locus architecture still exists in Type II–C systems – the most abundant 
subtype(Chylinski, Makarova, Charpentier, & Koonin, 2014a). Type II–B diverged from 
Type II–C systems by acquiring a new Cas1 and Cas2 and the additional protein Cas4. 
Type II–B subtypes are rare and the Cas9 proteins found in these loci are typically 
larger(Chylinski et al., 2014a).  The model Type II–B system is from Francisella novicida 
and has been proposed to have diversified functions(Hirano et al., 2016; Sampson, 
Saroj, Llewellyn, Tzeng, & Weiss, 2013). After Type II–B divergence, the Type II–C 
lineage further diversified by addition of Csn2 to form the Type II–A subtype(Chylinski et 
al., 2014a; K S Makarova et al., 2015).  This subtype includes the system from 
Streptococcus pyogenes, the first Type II system to be functionally reconstituted.  

Type V CRISPR systems were more recently discovered and are distinguished 
by the presence of a single nuclease domain called the RuvC(Shmakov et al., 2015; 
Zetsche et al., 2015). Despite only having a single nuclease, many Type V systems 
have been shown to cleave double stranded DNA (dsDNA). Prior to the work described 
here, three distinct subtypes of Type V systems have been described (Type V-a, b and 
c). Type V systems are diverse and likely originated from the transposase associated 
protein TnpB (Shmakov et al., 2017a). There is no known function for this ancestral 
protein and it is not essential for transposition (Bao & Jurka, 2013; He et al., 2015).  

For my graduate work, I aimed to understand the diversity of CRISPR-Cas 
systems and the evolutionary pressures that have led to these elegant immune 
systems. In the process of studying this microbial warfare, we have developed new 
tools that enable us to edit genomes, control CRISPR cutting and diagnose disease.  
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Chapter 2 
 
 
 
 
 
 
 
 
 
 
 

Single-stranded DNA cleavage by 
divergent CRISPR-Cas9 enzymes 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Part of the work presented in this chapter has previously been published in the 
following manuscript:  Ma, E.*, Harrington, L. B.*, O’Connell, M. R., Zhou, K., & 
Doudna, J. A. (2015). Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 
Enzymes. Molecular Cell, 60(3), 398–407.  
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2.1 Abstract 
 

Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-
Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences 
in DNA and generate a site-specific double-strand break, a robust activity harnessed for 
genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer 
adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from 
evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) 
by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis 
shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome 
engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and 
unwinding activity and promiscuous guide-RNA specificity. These results indicate that 
inefficiency of type II-C Cas9 enzymes for genome editing results from limited ability to 
cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 
enzyme family. 
 
2.2 Introduction 

Bacteria and archaea use CRISPR (clustered regularly interspaced short 
palindromic repeats) systems composed of Cas (CRISPR-associated) proteins and 
short RNA guides to provide adaptive immunity against invasive nucleic acids (Doudna 
& Charpentier, 2014; W. Jiang & Marraffini, 2015; van der Oost, Westra, Jackson, & 
Wiedenheft, 2014). Cas9, a protein component of Type II CRISPR-Cas systems, is a 
programmable, RNA-guided DNA endonuclease whose specificity is determined by 
RNA-DNA base pairing (Gasiunas, Barrangou, Horvath, & Siksnys, 2012; Martin Jinek 
et al., 2012a). The Streptococcus pyogenes Cas9 (Spy Cas9) has been employed 
widely for genome engineering based on its ability to generate site-specific double-
stranded DNA breaks at sequences abutting an NGG PAM sequence (Doudna & 
Charpentier, 2014; Sontheimer & Barrangou, 2015; Terns & Terns, 2015). In nature, a 
large and diverse collection of cas9 genes have been identified, and a few different 
Cas9 enzymes have been characterized (Jinek et al., 2012; Chylinski et al., 2014; 
Esvelt et al., 2013; Fonfara et al., 2014; Ran et al., 2015). In all cases studied so far, 
PAM binding plays a key role in double-stranded DNA (dsDNA) target sequence 
recognition, although PAM sequences can differ between Cas9 variants. The nucleic-
acid cleavage activities of more evolutionarily divergent Cas9 proteins, and whether all 
Cas9 proteins employ the same DNA recognition and cleavage mechanism have not 
been determined.  

To investigate the function of highly divergent Cas9 proteins, we studied the DNA 
binding and cleavage activities of seven different Cas9 proteins belonging to the type II-
A and type II-C subclasses of the Cas9 superfamily. Surprisingly, all of these enzymes 
were found to possess PAM-independent single-stranded DNA (ssDNA) cleavage 
activity, and the type II-C Cas9 proteins could utilize a range of guide RNA constructs 
for productive ssDNA binding and cleavage. We show that the type II-C Cas9s possess 
little dsDNA unwinding capability and consequently do not have robust dsDNA cleavage 
activity. These results suggest that ssDNA cleavage is an intrinsic activity of the Cas9 
enzyme family that involves a distinct mode of substrate binding and catalytic domain 
organization. This activity may have evolved to target particular kinds of bacterial 
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pathogens, and may be useful for applications that involve ssDNA binding or cleavage 
due to the lack of target sequence constraints. 
 
2.3 Materials and Methods 
 
2.3.1 Cloning and purification of Cas9 proteins  

In this study, seven Cas9 proteins have been used. The sources and molecular 
weights of these Cas9s are summarized in Table S1. To produce the Cas9 proteins for 
in vitro studies, we amplified each ORF from genomic DNA via PCR with primers 
tagged with a common sequence for ligase-independent cloning (LIC), we then cloned 
the PCR products into the 2CT expression vector (His6-MBP-N10-tev-ORF, from UC 
Berkeley MacroLab). All Cas9 proteins were expressed in Rosetta cells (Novagen), 
purified with Ni2+ resin, cleaved with TEV protease to remove the MBP tag, and further 
purified using Superdex 200 size-exclusion column (Figure 2.6B). The Cas9 proteins 
were stored at −80 °C in Cas9 storage buffer (20 mM HEPES (pH 7.5), 0.2 M KCl and 
5% Glycerol).  
 
2.3.2 Construction of single guide RNA (sgRNA)  

Guide RNAs were designed according to the single-guide RNA construct 
structure established previously (Jinek et al 2012) in which crRNA and tracrRNA 
sequences were linked by an RNA tetraloop. We used predictions based on type II 
CRISPR system and Cas9 protein phylogenies (Chylinski et al., 2014; Fonfara et al., 
2014) to generate crRNA and tracrRNA sequences; the Cdi guide RNA was based on 
an experimentally validated construct  (Ran et al., 2015). sgRNA-encoding DNAs were 
amplified by PCR to add a T7 promoter fragment (TAATACGACTCACTATAGG). The 
T7 fragment-tagged DNAs were then used as templates for the in vitro transcription of 
sgRNAs as described   The transcribed sgRNAs were purified by denaturing PAGE, 
ethanol precipitated and folded according to (Lin et al., 2014). All other RNA oligos (and 
all DNA oligos) were synthesized by Integrated DNA Technologies, Inc. (Coralville, 
Iowa). DNA and RNA Oligo sequences as well as sgRNA sequences used in this study 
are listed in Table S2. 
 
2.3.3 In vitro DNA cleavage assays 

In vitro cleavage reactions were carried out in a total volume of 10 μl of Cas9 
cleavage buffer (150 mM KCl, 20 mM HEPES (pH7.5), 1% glycerol, 5 mM MgCl2 and 1 
mM DTT) in the presence of 30 nM Cas9, 30 nM sgRNA and ~2 nM 5’-end 32P-labeled 
target DNA. Reactions were incubated at 37°C for one hour (unless otherwise stated). 
The reactions were stopped by the addition of 12 ul of 2X loading buffer (2X loading 
buffer: 0.2 mg/ml of bromophenol blue, 0.2 mg/ml of xylene cyanol, 40 mM EDTA and 
95% of formamide) and incubated at 70°C for 10 min. Cleavage products were analyzed 
by 10% denaturing PAGE, visualized by phosphorimaging and quantified with 
ImageQuant TL (GE Healthcare). The fraction of RNA cleaved at each time point was 
plotted as a function of time, and these data were fit with a single exponential decay 
curve using Prism 6 (GraphPad Software, Inc., La Jolla, USA), according to the 
equation: Fraction cleaved =A X (1 – exp(-k x t)), where A is the amplitude of the curve, 
k is the first-order rate constant, and t is time. All experiments were carried out at least 
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in triplicate, with representative replicates shown in the figure panels. Pseudo first-order 
rate constants (kcleave) and associated errors are reported in the figure legends. 
 
2.3.4 Filter binding assays 

Filter binding was carried out in RNA Binding Buffer (20 mM Tris, pH 7.5, 150 
mM KCl, 5 mM MgCl2, 1 mM DTT, 5% glycerol, 0.01% Igepal CA-630, 10μg/ml yeast 
tRNA and 10 μg/ml BSA). Cas9 was incubated with radiolabeled RNA (<0.02nM) for 1hr 
at room temperature.  Tufryn, Protran and Hybond-N+ were assembled onto a dot-blot 
apparatus in the order listed above.  The membranes were washed with 50μL 
Equilibration Buffer (20 mM Tris, pH7.5, 150 mM KCl, 5 mM MgCl2, 1 mM DTT, 5% 
glycerol) twice before the sample was applied to the membranes.  Membranes were 
again washed twice with 50 μL Equilibration Buffer, dried and visualized by 
phosphorimaging.  Data were quantified with ImageQuant TL Software (GE Healthcare) 
and fit to a binding isotherm using Prism (GraphPad Software). All experiments were 
carried out at least in triplicate, with representative replicates shown in the figure panels  
Dissociation constants (KD) and associated errors are reported in the figure legends. 
 
2.3.5 Electrophoretic mobility-shift assay 

Assays were done in Binding Buffer (20 mM Tris, pH 7.5, 150 mM KCl, 5 mM 
EDTA, 1 mM DTT, 5% (v/v) glycerol, 50 μg/mL heparin, 0.01% Tween 20, and 100 
μg/mL BSA). Cas9-sgRNA complexes were preformed by incubating 1μM of Cas9 and 
sgRNA for 30min at room temperature. Cas9-sgRNA complexes were diluted and DNA 
(<0.05nM) was added and allowed to incubate for another 30min at room temperature. 
Samples were then analyzed by 8% polyacrylamide gel containing 0.5x TBE. Gels were 
imaged by phosphorimaging, quantified using ImageQuant TL Software (GE 
Healthcare) and fit to a binding isotherm using Prism (GraphPad Software). All 
experiments were carried out at least in triplicate, with representative replicates shown 
in the figure panels. Dissociation constants (KD) and associated errors are reported in 
the figure legends. 
 
2.3.6 Limited proteolysis of Cas9 complexes 

Limited proteolysis was conducted in a 10μL reaction using 5 μM Cas9 with or 
without guide (1:1.5 molar ratio) and/or DNA (1:3 molar ratio).  The Cas9 and guide 
mixture was pre-incubated for 30min at room temperature in 1x Trypsin Buffer (100mM 
Tris, pH 7.5, 150 mM KCl, 2% glycerol, 1 mM EDTA and 1 mM DTT).  DNA was added 
and the reaction was incubated for 5 to 30 min before the addition of 0.2μg trypsin per 
10μL of Cas9 complex.  The reaction was quenched by addition of 5× loading dye (5% β-
Mercaptoethanol, 0.02% bromophenol blue, 30% glycerol, 10% sodium dodecyl sulfate, 
250 mM Tris-Cl, pH 6.8) to a final concentration of 1x and the products were analyzed on 
10% PAGE gels.  All experiments were carried out at least in triplicate, with representative 
replicates shown in the figure panels. 
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2.4 Results  
 
 
2.4.1  Single-stranded DNA cleavage by highly divergent Cas9 enzymes 

Phylogenetic analysis of the three established type II CRISPR-Cas9 subtypes, 
type II-A, -B and -C, suggests that type II-C is ancestral to the others (Chylinski et al., 
2014b; Fonfara et al., 2014). Of interest, Type II-C Cas9 proteins may harbor unique 
biochemical properties as they are diverse at the level of primary sequence and are 
generally smaller than type II-A and II-B Cas9 proteins (Chylinski et al., 2014b; Fonfara 
et al., 2014). To determine whether biochemical activities of the smaller and ostensibly 
more ancient type II-C Cas9 proteins diverge from that of Spy Cas9, we selected six 
type II-C enzymes for analysis (Figure 2.1A). The type II-C Cas9 enzyme from N. 
meningitidis, as well as the type II-A enzyme from S. pyogenes, have been shown to 
function in eukaryotic cells for genome engineering applications, although Spy Cas9 is 
by far the most widely used to date (reviewed in Doudna and Charpentier, 2014). 
 All of the selected Cas9 enzymes, found within evolutionarily divergent bacterial 
strains, share a common chassis consisting of the RuvC and HNH catalytic domains, 
the bridge helix, the alpha-helical domain (also known as the REC domain; Nishimasu 
et al., 2014), and the PAM-interaction domain (Figure 2.1B). However, the size of the 
alpha-helical domain and the primary sequence outside of the catalytic domains vary 
widely among the different Cas9 proteins tested (Figure 2.6A). After expressing and 
purifying these enzymes (Figure 2.7B), we tested their activities in DNA cleavage 
assays with various types of substrates. We focus here on the relative activities of the 
C. diphtheriae (Cdi) Cas9 enzyme, compared to the Spy Cas9 as a control. The Cdi 
Cas9 shares PAM recognition specificity with Spy Cas9, simplifying DNA substrate 
design, and its guide RNA has been validated (Ran et al., 2015a). The Ana Cas9 bears 
sequence similarities to Cdi Cas9 and its crystal structure is known (Martin Jinek et al., 
2014). In the absence of validated tracrRNA and PAM sequences for Ana Cas9, this 
enzyme provides a useful benchmark for PAM-independent DNA binding and cleavage 
behavior. Relevant biochemical data for the other four Cas9 enzymes are shown in 
supplemental figure panels. 

To explore the substrate selectivity of these Cas9 proteins, we examined 
cleavage of double-stranded and single-stranded DNA substrates, as well as a double-
stranded DNA substrate containing a 20-base-pair mismatched segment along the 
length of the guide RNA recognition site (Figure 2.1C). Guide RNAs used in these 
experiments bear the single-guide RNA architecture (Martin Jinek et al., 2012a) 
consisting of CRISPR RNA (crRNA) and tracrRNA components derived from each 
bacterial host genome encoding the Cas9 in question (see Methods). Surprisingly, we 
found that in contrast to Spy Cas9, which has robust dsDNA cleavage activity but slow 
ssDNA cleavage activity, Cdi Cas9 demonstrated a preference for ssDNA cleavage 
(Figure 2.1D). Unsurprisingly, Ana Cas9 was unable to cleave dsDNA, due to a non-
cognate guide RNA and PAM sequence in the substrate (Figure 2.7B). However, Ana 
Cas9 was active for ssDNA cleavage. Notably, the cleavage site in the ssDNA substrate 
was the same as that observed when the dsDNA substrate was used, implying that the 
mechanism of cleavage site selection does not require the PAM nucleotides, which are 
present in the non-target strand of the DNA (see Figure 2.1C). Although Spy Cas9 has 
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been shown previously to cleave target ssRNA only in the presence of a PAM-
containing DNA oligonucleotide (PAMmer) (O’Connell et al., 2014), we did not observe 
ssRNA cleavage (in the absence of a PAMmer) by Spy Cas9, Cdi Cas9 or Ana Cas9 
(Figure 2.7D). 

We next tested the ability of the RuvC and HNH domains to cleave DNA 
individually by conducting cleavage assays with the mismatched DNA substrate and 
only one strand of the substrate radiolabeled. Both the Spy and Cdi enzymes contain 
two active domains, but we did not detect catalytic activity of the RuvC domain in the 
Ana Cas9 (Figure 2.1D, Figure 2.7B). We also noted that in contrast to the staggered 
RuvC-domain cleavage characteristic of the Spy Cas9 enzyme, the RuvC domain of Cdi 
Cas9 produced a single specific DNA cleavage product. Similar results were obtained 
for the other type II-C Cas9 enzymes tested in this study (Figure 2.7B). 

 Efficient dsDNA cleavage requires Cas9-mediated local DNA unwinding to 
promote the formation of an R-loop (Sternberg, Redding, Jinek, Greene, & Doudna, 
2014; Szczelkun et al., 2014). This DNA unwinding ability can be detected indirectly by 
assessing the dsDNA versus ssDNA cleavage activities of each Cas9 enzyme. 
Substrate cleavage kinetics, compared under single-turnover reaction conditions, 
quantify the marked difference in ssDNA versus dsDNA cleavage capabilities of the Spy 
versus Cdi and Ana Cas9 enzymes (Figure 2.1E, Figure 2.7E). Whereas the Spy Cas9 
rapidly cleaves a dsDNA substrate, only slow cleavage of this substrate is observed for 
Cdi Cas9, and as anticipated, no cleavage occurs with the Ana Cas9. In contrast, when 
the same target DNA strand is presented as a ssDNA substrate, similar rates of 
cleavage are observed for all three Cas9 enzymes. When the target DNA strand is 
presented in the context of a “bulged” dsDNA in which the 20-nucleotide target site is 
mismatched to the complementary DNA strand, the three Cas9 enzymes also show 
similar rates of cleavage. Analogous results were obtained using a supercoiled plasmid 
DNA substrate (Figure 2.8A, 2.8B), and control experiments using a guide RNA with a 
scrambled target-recognition sequence did not support DNA cleavage (Figure 2.7C). 
These observations imply that although Cas9 enzymes share a fundamental RNA-
targeted DNA cleavage activity, they have markedly different abilities to unwind a 
dsDNA substrate. 

 
2.4.2 Programmable and PAM-independent Cas9-catalyzed DNA cleavage 
 We next compared the guide RNA specificities of the Spy, Cdi and Ana Cas9 
enzymes to support dsDNA versus ssDNA substrate cleavage (see Figure 2.2A for 
guide RNA schematic). As observed previously, we found that the Spy Cas9 enzyme is 
highly selective for its cognate guide RNA, and only supports dsDNA or ssDNA 
cleavage when its own guide RNA is used in the reaction ((Briner et al., 2014; Martin 
Jinek et al., 2012a); Figure 2B). In contrast, both the Cdi and Ana proteins can use a 
variety of guide RNAs corresponding to guide RNA sequences corresponding to five 
different Cas9 enzymes (Figures 2.2B and 2.8D). The Cdi enzyme catalyzed dsDNA 
cleavage in the presence of either its own guide RNA or the Spy guide RNA, but only 
ssDNA cleavage in the presence of the other three guide RNAs tested. As expected, 
Ana Cas9 could only catalyze ssDNA cleavage but could do so using any of the five 
guide RNAs in these reactions.  
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We also observed some differences in DNA cleavage site specificity as a 
function of the guide RNA construct used in the reaction. With some guide RNAs, both 
the Cdi and Ana enzymes generated two cleavage products corresponding to a site 
three base pairs from the end of the target sequence (the cognate cleavage site) and a 
site ~2 nucleotides downstream of this position (Figure 2.2B and 2.8D). For both Cdi 
and Ana Cas9 enzymes, the two cleavage products were generated only in reactions 
containing the Spy, Nme or Cje guide RNAs. These results suggest that guide RNA 
positioning and/or HNH domain docking may differ depending on the length and/or 
structure of the guide RNA used by these proteins.  

We next tested whether ssDNA cleavage is programmable by generating a set of 
Spy guide RNAs with a common architecture but different 20-nt. target recognition 
sequences designed to bind successive DNA target sites shifted by two nucleotides in 
each case (Figure 2.2C). Each of the three Cas9 enzymes tested in this experiment 
showed programmable DNA cleavage such that the primary product generated with 
each guide RNA corresponded to cleavage at the phosphodiester bond positioned three 
nucleotides downstream of the 3′ end of the guide RNA (Figure 2.2D, 2.8C). In addition, 
we found that the Cdi and Ana enzymes were somewhat less precise in the cleavage 
reaction, generating two or three cleavage products in each reaction. These results 
show that like Cas9-catalyzed dsDNA cleavage, ssDNA cleavage is site-specific and 
programmable. In contrast to Cas9-catalyzed dsDNA cleavage, however, ssDNA 
cleavage is PAM-independent and the cleavage site appears to be determined largely 
by measuring from the end of the RNA-DNA hybrid. There may also be sequence-
context effects that influence the precision of cleavage, perhaps reflecting differences in 
docking of the HNH domain that is catalyzing the cleavage reaction in each case. 
 
2.4.3 DNA unwinding capability differs among Cas9 variants 
 The different relative activities of Spy, Cdi and Ana Cas9 enzymes for cleavage 
of dsDNA versus ssDNA substrates implied a difference in DNA unwinding capabilities 
of these different proteins. To examine this, we tested the ability of each enzyme to 
cleave dsDNA substrates containing either a completely base-paired target site or 
varying numbers of mismatched base pairs (2-16) extending from the PAM-proximal 
end of the target site (Figure 2.3A). Importantly, in these experiments, the radiolabeled 
target strand of the DNA does not change, only the unlabeled strand to which it is 
annealed to generate the dsDNA substrate. Remarkably, a two base mismatch in the 
dsDNA target is required to greatly enhance dsDNA cleavage by Cdi Cas9, unlike Spy 
Cas9, which cleaves all of the tested substrates robustly (Figures 2.3B and 2.3C). The 
same behavior is observed for other type II-C enzymes tested with their cognate guide 
RNAs (Figure 2.9A). For Ana Cas9, at least six bases of the target dsDNA sequence 
must be mismatched to the DNA complementary strand before cleavage occurs, and 
there is a notable increase in cleavage product generation when the size of the 
mismatched DNA region is 12 base pairs or larger. Similar behavior is observed for 
other type II-C enzymes tested with non-cognate guide RNAs (Figure 2.9A).  These 
results show that the Cdi and other type II-C Cas9 enzymes have limited ability to 
cleave dsDNA unless the nucleotides located in the target sequence adjacent to the 
PAM are not base paired. Kinetic assays showed that Cdi Cas9 cleaves dsDNA at least 
50-fold slower than Spy Cas9 unless the DNA substrate contains the two-base-pair 
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bulge (Figures 2.3B, 2.3C and 2.9B). To ensure this observation wasn’t an artifact 
caused by the use of an artificial Cdi sgRNA, we repeated ssDNA vs. dsDNA cleavage 
experiments using the native Cdi dual crRNA:tracrRNA guide and saw a similar effect 
(Figures 2.9C, 2.9D).  Thus, the type II-C proteins lack the robust DNA unwinding 
capacity observed for the type II-A Spy Cas9 enzyme.  
 These findings along with the weak selectivity for cognate guide RNA molecules 
suggested that extremely minimal guide RNA constructs might be sufficient for ssDNA 
target recognition. We compared ssDNA cleavage by Spy, Cdi and Ana Cas9 using the 
Spy single-guide RNA, the cognate crRNA or a 20 nucleotide RNA complementary to 
the ssDNA target sequence (Figure 2.3D). Spy Cas9 can use all three of these RNAs 
for sequence-specific ssDNA cleavage, although at similar concentrations the sgRNA 
supports faster cleavage kinetics (Figure 2.3D). In contrast, Cdi Cas9 only worked well 
with the full-length sgRNA; with the 20-nt guide RNA, a slightly longer cleavage product 
was slowly generated, and with the crRNA only trace reaction products appeared. 
Similar results were observed for the Ana Cas9, except that the crRNA construct was 
not functional in these reactions(Figure 2.9E). We also noted that the ssDNA cleavage 
site for Cdi and Ana enzymes changed to a 2-nt longer product when the shorter guide 
RNAs were used. These results suggest that an RNA-DNA hybrid provides some of the 
DNA cleavage specificity in these reactions, independent of PAM binding or the 
presence of the full-length guide RNA. 
 
2.4.4 Divergent Cas9 proteins have varying affinities for guide RNAs and 
substrates 
 It is possible that the different cleavage activities and guide RNA specificities of 
the Spy, Cdi and Ana Cas9 enzymes reflect differences in binding affinities of these 
complexes. To test this, we first used filter-binding assays to test Cas9 protein affinity 
for cognate versus non-cognate guide RNA constructs. We found that Spy Cas9 binds 
to its cognate guide RNA with an apparent Kd of ~30 pM, whereas binding affinities for 
non-cognate guide RNAs were ~10,000-fold weaker (Figure 2.4A). The Cdi Cas9 has a 
binding affinity of ~1 nM for its cognate guide RNA, whereas binding to a non-cognate 
guide RNA is >100-fold weaker. The binding affinities of Ana Cas9 are similar to Cdi 
Cas9 at ~1nM for Cdi sgRNA and ~100nM for Spy sgRNA (Figure 2.10A).  Based on 
these results, binding affinities alone do not account for the differences observed for 
DNA cleavage activity among the Spy, Cdi and Ana Cas9 enzymes, since cleavage 
assays were conducted under saturating or near-saturating conditions for the different 
guide RNAs with the Spy and Cdi enzymes. Instead, we suspect that the large Cas9 
protein architecture can accommodate RNAs in distinct binding sites that may differ in 
their capacity to induce formation of a functional protein-RNA complex. Evidence for 
alternate guide RNA binding sites within Spy Cas9 was obtained previously (Martin 
Jinek et al., 2012a). 
 We next used gel mobility shift assays to test the affinity of pre-formed Cas9-
guide RNA complexes for binding to a dsDNA substrate and to each ssDNA strand of 
this substrate individually (target and non-target) (Figure 2.4B, 2.10B and 2.10C). All 
three Cas9-guide RNA complexes had a binding affinity of ~10-60 nM for the target-
strand ssDNA substrate. However, they had markedly different affinities for the dsDNA 
and non-target ssDNA molecules. Whereas the Spy Cas9-guide RNA complex bound to 
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dsDNA with a similar ~10 nM affinity, binding to the non-target ssDNA was >1000 nM 
under these conditions. By contrast, the Cdi Cas9-guide RNA complex bound to dsDNA 
with a Kd of >1000 nM, and binding to non-target ssDNA was not detectable (Figure 
2.4B). The Ana Cas9-guide RNA complex did not bind detectably to either dsDNA or 
non-target ssDNA (Figure 2.10B). These data show that only Spy Cas9 possesses a 
robust dsDNA binding capability. Consistent with DNA cleavage behavior for the Spy, 
Cdi and Ana proteins, this may reflect the superior ability of Spy Cas9 to unwind a target 
dsDNA to enable guide RNA strand annealing. 
 
2.4.5 Cas9 conformational changes reveal differences in nucleic acid binding 
modes 
 Previous studies of Spy Cas9 revealed that the protein undergoes a substantial 
conformational rearrangement upon binding to guide-RNA and subsequently target 
DNA that can be detected by susceptibility to proteolytic cleavage (F. Jiang, Zhou, Ma, 
Gressel, & Doudna, 2015; Martin Jinek et al., 2014; Sternberg et al., 2014). We used 
trypsin digestion to assess structural changes that might accompany Cdi or Ana Cas9 
assembly with guide RNA and DNA substrates. In control experiments we observed that 
Spy Cas9 alone is rapidly cleaved by trypsin, but in the presence of guide RNA the 
protein is largely protected (Figure 2.10A; Jiang et al., 2015; Jinek et al., 2014).  
Similarly, the Cdi Cas9 enzyme is cleaved rapidly by trypsin in the absence of guide 
RNA but becomes protected upon binding to guide RNA. We also noted that although 
the addition of non-target-strand ssDNA to Cdi Cas9: guide-RNA results in only small 
changes in protease sensitivity, Cdi Cas9 becomes more susceptible to proteolysis in 
the presence of target strand ssDNA (Figure 2.5A). Therefore, there is likely an 
additional conformational change occurring upon guide RNA-DNA hybridization, 
perhaps undocking of the mobile HNH domain and subsequent interaction with the 
substrate. Furthermore, the distinct cleavage patterns of Cdi Cas9 in the presence of 
target or non-target ssDNA indicate that in contrast to Spy Cas9, Cdi Cas9 maintains its 
ssDNA sequence specificity even at these elevated concentrations (15μM DNA). By 
contrast, the Ana Cas9 enzyme did not exhibit much difference in proteolytic digestion 
patterns in the absence or presence of (non-cognate) guide RNA and DNA (Figure 
2.9B). Together, these results suggest that like Spy Cas9, Cdi Cas9 undergoes 
structural changes as it assembles into a functional RNA-guided DNA-bound complex. 
The lack of conformational change detected for Ana Cas9, even under conditions that 
favor guide RNA-DNA hybrid binding, may reflect an alternate mode of nucleic acid 
recognition in the absence of a cognate guide RNA. 
 Similarities between the Cdi and Ana Cas9 protein sizes (1085 and 1098 amino 
acids, respectively) and sequences (45.4% sequence identity) enabled creation of a 
homology model of Cdi Cas9 based on the crystal structure (Jinek et al., 2014) of Ana 
Cas9 (Figure 2.5B). Comparison to the Spy Cas9 protein structure in the presence of 
guide RNA (PDB ID: 4ZT9), suggest that the alpha-helical (REC) lobe contributes both 
to guide RNA recognition specificity (Briner et al., 2014) and possibly to DNA unwinding 
activity (Figure 2.5B). This analysis suggests that ancestral Cas9 proteins like Cdi or 
Ana may have lacked robust activity against dsDNA due to a more compact alpha-
helical lobe structure that doesn’t appear to include additional regions of the alpha-
helical lobe found in Spy Cas9 that bind to the stem-loop bulge and nexus regions of the 
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sgRNA, and contribute to guide-RNA specificity (Figure 2.5B) and DNA cleavage 
efficiency (Briner et al., 2014). Evolutionary pressure may have led to enhanced dsDNA 
binding and cleavage capability due to acquisition of new protein architectures and 
consequent guide-RNA specificity.  
 

 
 
Figure 2.1. Diverse DNA cleavage activity of divergent Cas9 enzymes. (A). Phylogenetic tree of the 
seven Cas9 proteins used in this study, generated using MAFFT (Katoh, 2002). (B). Secondary structures 
and sizes of divergent Cas9 enzymes in this study. Domains are colored and drawn proportionally to the 
full length of its protein sequence.  (C).  Schematic presentation of three DNA substrates used for the figures 
of D and E. Target sequence is presented in red and underlined. PAM (AGG) is shown in yellow. (D). In 
vitro cleavage of DNA substrates. Cleavages of single-stranded DNA (ssDNA), double-strand DNA 
(dsDNA) and bulged DNA (bulged) mediated by Spy, Cdi and Ana Cas9 proteins are shown. * denotes that 
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the target strand is labeled; Δ indicates the non-target strand is labeled. Substrate and product sizes are 
labeled on the right. Vertical lines indicate the border between two separate gels (E). Quantification of DNA 
cleavage activity on dsDNA, ssDNA and bulged substrates with the 5′- end of the target strand radiolabeled.  
Cleavage assays were conducted in at least triplicate, as described in the Methods, and the quantified data 
were fitted with single-exponential decays to obtain pseudo first-order rate constants (kcleave¬) for each 
reaction. kcleave ± SD values for dsDNA cleavage by Spy, Cdi and Ana Cas9 are 3.5 ± 0.9 min-1, 0.041 ± 
0.003 min-1 and 0.020 ± 0.001 min-1, respectively. kcleave ± SD values for ssDNA cleavage by Spy, Cdi 
and Ana Cas9 are 0.27 ± 0.09 min-1, 0.16 ± 0.1 min-1 and 0.11 ± 0.001 min-1, respectively. kcleave ± SD 
values for  bulged dsDNA cleavage by Spy, Cdi and Ana Cas9 are 1.0 ± 0.5 min-1, 0.59 ± 0.4 min-1 and 
0.73 ± 0.5 min-1, respectively. 
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Figure 2.2. Programmable and PAM-independent Cas9-catalyzed DNA cutting.  (A). Schematic 
representation of the five sgRNAs used in this study. All of the sgRNAs were drawn based on their mfold 
predictions (Zuker, 2003)  and contain the same 20 nt. ‘spacer’ sequence (shown in red), which is 
complementary to the target sequence in the DNA substrates. (B). In vitro cleavage assay of  ssDNA (ss) 
and dsDNA (ds) using various combinations of Cas9 proteins and sgRNAs.  The 5′-end of the target strand 
is radiolabeled. Cas9 proteins are shown on the left. (C). Schematic presentation of the four sgRNAs 
(sgRNAs A-D) used in D. All four sgRNAs have a same Spy sgRNA handle and contain different 20-nt. 
spacer sequence that is able to base pair to the target sequence in the DNA substrate. (D). Programmable 
ssDNA cleavage by divergent Cas9 enzymes. The product sizes are labeled on the right; solid lines indicate 
borders between separate gels. 
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Figure 2.3. Substrate recognition varies among divergent Cas9 enzymes.  (A). Schematic 
representation of DNA substrates used in this experiment. Target sequence is same in all of the 
substrates (red). For bulged dsDNAs, the bulge sizes are given on the left and mismatches are colored in 
blue.  The PAM is indicated in yellow. (B). In vitro cleavage of bulged DNA substrates. Bulged substrates 
are indicated by the number of mismatches (2 to 16). Cas9 proteins are labeled on the left of each panel, 
and sizes of the substrate and cleaved products are labeled on the right. (C). Kinetic analysis of 2-nt. 
bulged substrate versus perfectly matched dsDNA. Cleavage assays were conducted in at least triplicate, 
as described in the Methods, and the quantified data were fitted with single-exponential decays to obtain 
pseudo first-order rate constants (kcleave) for each reaction. kcleave ± SD values for dsDNA cleavage by Spy 
and Cdi Cas9 are 2.9 ± 0.3 min-1  and 0.041 ± 0.002 min-1, respectively. kcleave ± SD values for  2-nt bulge 
dsDNA cleavage by Spy and Cdi Cas9 are 2.3 ± 0.1 min-1  and 0.99 ± 0.6 min-1, respectively.   (D). DNA 
cleavage by Cas9 proteins can be guided by short RNAs. Guide RNAs (sgRNA, 20-nt. and crRNA) used 
in this study are represented schematically above each lane. Cas9 proteins are labeled on the left of each 
panel, and sizes of the substrate and cleaved products are labeled on the right. 
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Figure 2.4 Binding affinity of Cas9 proteins for sgRNA and DNA. (A). Binding affinity of Cas9 proteins for 
cognate and non-cognate guides as determined by filter binding assays. Measurements were made in at 
least triplicate to determine KD and a representative replicate is shown. Data were fit to a binding 
isotherm.  (KD ± SD for Spy Cas9 to Spy sgRNA, 28 pM ± 6 pM; Spy Cas9 to Cdi sgRNA, 146 ± 11nM; 
Spy Cas9 to Ana sgRNA, 152 ± 9nM; Cdi Cas9 to Spy sgRNA, 115 ± 51nM; Cdi Cas9 to Cdi sgRNA, 0.56 
± 0.13nM; Cdi Cas9 to Ana sgRNA, 46 ±17nM; Ana Cas9 to Spy sgRNA, 76 ± 11nM; Ana Cas9 to Cdi 
sgRNA, 0.35 ± 0.15nM; Ana Cas9 to Ana sgRNA, 6 ± 2nM) (B). Binding affinity of Cas9 proteins for 
dsDNA, target ssDNA and non-target ssDNA as measured by electrophoretic mobility shift assay (EMSA). 
Each Cas9 protein was incubated with its cognate guide except Ana, which was complexed with the Cdi 
sgRNA. Measurements were made in at least triplicate to determine KD and a representative replicate is 
shown.  Data were fit to a binding isotherm. (KD ± SD [where appropriate] for Spy Cas9 to dsDNA, 25 ± 
11 nM; Spy Cas9 to target ssDNA, 40 ± 11 nM; Spy Cas9 to non-target ssDNA, >1000 nM; Cdi Cas9 to 
dsDNA, >1000 nM; Cdi Cas9 to target ssDNA, 58 ± 32 nM; Cdi Cas9 for non-target ssDNA, >1000 nM; 
Ana Cas9 to dsDNA, >1000 nM; Ana Cas9 to target ssDNA, 12 ± 8 nM; Ana Cas9 for non-target ssDNA, 
>1000 nM) 

0.001 0.01 0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

[Cas9] (nM)

Fr
ac

tio
n 

bo
un

d
Spy Cas9

0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

[Cas9-sgRNA] (nM)

Fr
ac

tio
n 

bo
un

d

Spy Cas9

0.001 0.01 0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

[Cas9] (nM)

Fr
ac

tio
n 

bo
un

d

Cdi Cas9

0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Cdi Cas9

[Cas9-sgRNA] (nM)

Fr
ac

tio
n 

bo
un

d

0.001 0.01 0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

[Cas9] (nM)

Fr
ac

tio
n 

bo
un

d

Ana Cas9

Ana sgRNA
Spy sgRNA

Cdi sgRNA

0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

[Cas9-sgRNA] (nM)

Fr
ac

tio
n 

bo
un

d

Ana Cas9

Target ssDNA
Non-target ssDNA
dsDNA

A

B

Ana sgRNA
Spy sgRNA

Cdi sgRNA
Ana sgRNA
Spy sgRNA

Cdi sgRNA

Target ssDNA
Non-target ssDNA
dsDNA

Target ssDNA
Non-target ssDNA
dsDNA

Figure 4



 18 

 
Figure 2.5.  Limited proteolysis and structural comparison of Spy and Cdi Cas9 proteins.  (A). Each Cas9 
(5 μM) was incubated with its preferred guide RNA before the addition of DNA. Trypsin was added to the 
preformed complexes and allowed to digest the protein for 5, 15 or 30min. Degradation products were 
analyzed on 10% SDS-PAGE gels. ds: dsDNA; ss: ssDNA. Vertical lines indicate the border between two 
separate gels and approximate molecular weights are indicated on the right. (B). Structural alignment 
between Spy Cas9 alpha-helical (REC) lobe (PDB ID: 4ZT9) and the homology model of the alpha-helical 
lobe of Cdi Cas9 (based on the crystal structure of Ana Cas9 PDB ID: 4OGE); all atom RMSD: 3.9Å. The 
alpha-helical lobe of Cdi Cas9 is shown in red, sgRNA in shown in grey, and Spy Cas9 is colored 
according to primary sequence alignment with Cdi Cas9: green represents regions not present in the Cdi 
Cas9 protein sequence, blue represents regions present and conserved in the Cdi Cas9 sequence, and 
straw represents regions that are loosely conserved in the Cdi protein sequence. Spy sgRNA schematic 
is shown below with regions of interest boxed and labeled in blue.  
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Figure 2.6. Cas9 proteins used in this work, Related to Figure 2.1. (A) Alignment of Cas9 proteins 
used in this work.  
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Figure 2.7. Cas9 proteins used in this work and their cleavage activity on various substrates, 
Related to Figure 2.1. (A) Superdex 200 purified Cas9 proteins analyzed on 12% SDS-PAGE gel.  (B) In 
vitro cleavage assays of ssDNA, dsDNA and bulged DNAs mediated by Nme, Cje, Rpa and Rru Cas9s. 
The cleavage products were separated in 10% urea-PAGE gel. (C) ssDNA cleavage mediated by Cas9s 
using targeting (T) or non-targeting (NT) guide sequences. Guide RNAs are constructed from Spy sgRNA 
handle. (D) Cleavage assay of Cas9 enzymes using RNA substrates. The RNA sequence is the same as 
that used for ssDNA cleavage assays presented in this work. (E) Cleavage kinetics of Ana Cas9.  
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Figure 2.8. In vitro Cas9 cleavage activity on supercoiled plasmid and ssDNA substrates. Related 
to Figure 2.2. (A) Cleavage of supercoiled pUC19 plasmid by Cas9 enzymes.  Products were analyzed 
on 1% agarose gel stained with ethidium bromide. (B) Cleavage of ssDNA by Ana Cas9 with various 
sgRNA sequences. “ss” and “ds” denote single stranded DNA and double stranded DNA respectively. (C) 
Cleavage of ssDNA substrate tiled with guide RNAs.  Spy and Cdi Cas9 are shown from main text for 
reference.  The cleavage products were separated by a 10% urea-PAGE gel. 
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Figure 2.9. In vitro cleavage assays on budged substrates. Related to Figure 2.3. (A) In vitro 
cleavages of bulged DNA substrates mediated by Nme, Cje, Rpa and Rru Cas9. (B) Representative gels 
used for kinetic analysis of 2nt bulged substrate versus perfectly matched dsDNA. The cleavage products 
were separated in 10% urea-PAGE gel.(C) Cleavage kinetics of Cdi Cas9 using dual guide RNA.  (D) 
Gels used for quantification shown in S4C. (E) Cleavage of Ana Cas9 using shortened guide constructs.  
See Figure 3D for diagrams of guide RNAs. 
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Figure 2.10. Electrophoresis mobility shift assay and limited proteolysis of Cas9 enzymes. Related 
to Figures 2.4 and 2.5. (A) Binding of Ana Cas9 to sgRNA. (KD ± SD for Ana Cas9 to Spy sgRNA, 76 ± 
11nM; Ana Cas9 to Cdi sgRNA, 0.35 ± 0.15nM; Ana Cas9 to Ana sgRNA, 6 ± 2nM) (B) Binding Ana Cas9 
to DNA substrates. (KD ± SD [where appropriate] for Ana Cas9 to target ssDNA, 12 ± 8 nM; Ana Cas9 for 
non-target ssDNA, >1000 nM) (C) Representative gels used for EMSA data, related to Figure 4.  Red 
dotted line indicates the border between two separate gels. (D) Limited proteolysis of Ana Cas9, related 
to Figure 5.  
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Strains Symbol Subclass # of 

a.a. 
MW 
(Da) 

Source 

Streptococcus pyogenes 
SF370 

Spy IIA 1366 158445 ATCC 
700294 

Nesseria meningitidis 
Z2491 

Nme IIC 1082 124324 Pasteur 
Institute 

Campylobacter jejuni 
NCTC 11168 

Cje IIC 984 114770 Pasteur 
Institute 

Rhodopseudomonas 
palustris BisB5 

Rpa  IIC 1064 123267 ATCC 
BAA-1123 

Rhodospirillum rubrum 
ATCC 11170 

Rru  IIC 1173 132088 ATCC 
11170 

Actinomyces naeslundii str. 
Howell 279 

Ana  IIC 1101 127417 ATCC 
12104 

Corynebacterium 
diphtheriae NCTC 13129 

Cdi  IIC 1084 125185 ATCC 
700971 

 
Table 2.1.  Cas9 orthologues used in this study. Related to Figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25 

DNA Sequence 
20-nt target strand 
DNA  

5’-TGTGGAAACACTACATCTGC-3’  

 
20-nt non-target 
strand DNA  

5’-GCAGATGTAGTGTTTCCACA-3’ 

20-nt guide RNA  5’-GCAGAUGUAGUGUUUCCACA-3’  

Perfectly matched 
dsDNA 

5’-TGATGATACATGACATGACGCAGATGTAGTGTTTCCACAAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  
 

2-nt bulged dsDNA 5’-TGATGATACATGACATGACGCAGATGTAGTGTTTCCATTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  
 

4-nt bulged dsDNA  5’-TGATGATACATGACATGACGCAGATGTAGTGTTTCTTTTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  
 

6-nt bulged dsDNA 5’-TGATGATACATGACATGACGCAGATGTAGTGTTATTTTTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target 
 

8-nt bulged dsDNA  5’-TGATGATACATGACATGACGCAGATGTAGTGCCATTTTTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  
 

10-nt bulged 
dsDNA 

5’-TGATGATACATGACATGACGCAGATGTAGATCCATTTTTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  
 

12-nt bulged 
dsDNA 

5’-TGATGATACATGACATGACGCAGATGTTTATCAATTTTTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  
 

16-nt bulged 
dsDNA 

5’-TGATGATACATGACATGACGCAGTAATTTATCAATTTTTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  
 

20-nt bulged 
dsDNA 

5’-TGATGATACATGACATGACTTATTTTTTTTTTAATTTTTAGGAAGATTTCGTGATA-non-target  
3’-ACTACTATGTACTGTACTGCGTCTACATCACAAAGGTGTTCCTTCTAAAGCACTAT-target  

Spy sgRNA GCAGAUGUAGUGUUUCCACAGUUUUAGAGCUAUGCUGAAAGCAUAGCAAGUUAAAAUAAG
GCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUG  
 

Spy-crRNA GCAGAUGUAGUGUUUCCACAGUUUUAGAGCUAUGCUGUUUUGAAUGGUCCCAAAAC  
 

Nme-sgRNA GCAGAUGUAGUGUUUCCACAGUUGUAGCUCCCUUUCUCAUUUCGCAGUGCGAAAGCACUG
CGAAAUGAGAACCGUUGCUACAAUAAGGCCGUCUGAAAAGAUGUGCCGCAACGCUCUGCC
CCUUAAAGCUUCUGC  
 

Nme-crRNA GCAGAUGUAGUGUUUCCACAGUUGUAGCUCCCUUUCUCAUUUCGCAGUGCG 
 

Cje-sgRNA GCAGAUGUAGUGUUUCCACAGUUUUAGUCCCUUUUUAAAUUUCUUUAUGGUAAAAUUAUAA
UCUCAUAAGAAAUUUAAAAAGGGACUAAAAUAAAGAGUUUGCGGGACUCUGCGGGGUUACA
AUCCCCUAAAACCGCUU 
 

Cje-crRNA:  GCAGAUGUAGUGUUUCCACAGUUUUAGUCCCUUUUUAAAUUUCUUUAUGGU 
 

Cdi-sgRNA:  GCAGAUGUAGUGUUUCCACAACUGGGGUUCAGUUCUCAAAAACCCUGAUAGACUUGAAAA
GUCACUAACUUAAUUAAAUAGAACUGAACCUCAGUAAGCAUUGGCUCGUUUCCAAUGUUGA
UUGCUCCGCCGGUGCUCCUUAUUUUUAAGGGCGCCGGCUUU  
 

Cdi-crRNA GCAGAUGUAGUGUUUCCACAACUGGGGUUCAGUUCUCAAAAACCCUGAUAGACUUC  
 

Ana-sgRNA GCAGAUGUAGUGUUUCCACAGCUGGGAUUCAGUCACCAGACCCCUUGAUAGACUUCAGAA
ACGUCUGUCAAGGGGGUCUGACCAGCCGUAAACACCUCGUCAGAGGUUCAGGAAGAUCAU
GAGCUGUUGGGGC  

Ana-crRNA GCAGAUGUAGUGUUUCCACAGCUGGGAUUCAGUCACCAGACCCCUUGAUAGACUUC  
 

Rpa-sgRNA GCAGAUGUAGUGUUUCCACAGCCGUGGCUUCCCUACCGAUUUGAAAAAAUCGGUAGGAAA
GCCACGGCAAGCAACGGAAACCUUGGUUUUCGUUGCGAAGGAUUACCCCCGUUGCGGAGA
CGUAACGGGGGG  
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Table 2.2. Sequences of DNA and guide RNA used in this paper.  Related to Figure 2.1-5. 
Mismatches are shown in red and PAM sequences are identified in blue.  Target strand of DNA and 
targeting sequence of RNA are underlined.  
 
2.5 Discussion 
 
 CRISPR-Cas9 proteins share a common domain composition, but are highly 
diverse in overall size, primary sequence and guide RNA and PAM specificity (Jinek et 
al., 2012; Esvelt et al., 2013; Chylinski et al., 2014; Fonfara et al., 2014; Ran et al., 
2015). We show here that evolutionarily divergent Cas9 enzymes from the type II-C 
Cas9 subclass preferentially cleave ssDNA, as opposed to the dsDNA activity typified 
by the type II-A Spy Cas9. Since dsDNA cleavage requires guide-RNA strand invasion 
and local DNA unwinding to form an R-loop (Szczelkun et al., 2014), these findings 
imply that the smaller and perhaps ancestral type II-C Cas9 proteins have limited DNA 
unwinding capability.  
 Distinct Cas9 cleavage activities correlate with protein size and architecture. 
Structural and biochemical studies indicate that the type II-A Spy Cas9 undergoes a 
large conformational rearrangement upon guide RNA binding, with additional changes 
upon dsDNA target recognition (F. Jiang et al., 2015; Martin Jinek et al., 2014). 
Similarly, we found that the type II-C Cdi Cas9 undergoes substantial structural change 
upon binding to guide RNA, as detected by partial proteolysis (Figure 2.5A). By 
contrast, the similar proteolytic digestion patterns detected for Ana Cas9 in the absence 
or presence of guide RNA or DNA suggest a similar or highly dynamic structure under 
all conditions tested, an observation likely related to the minimal dsDNA-cleavage 
activity of this enzyme without its cognate guide-RNA and PAM present.  
 We also found that the type II-C enzymes can utilize a variety of guide RNAs to 
recognize and cleave ssDNA substrates, and type II-A and II-C Cas9 proteins can 
employ the crRNA or even a simple 20-nt RNA for residual site-specific ssDNA 
cleavage. The ability of type II-C enzymes to use non-cognate full-length guide RNAs is 
markedly different from the activity of Spy Cas9, which is highly selective for its cognate 
guide RNA (Briner et al., 2014; Martin Jinek et al., 2012a). Structural differences 
between Spy and Ana Cas9 proteins, and likely similarity between the structures of the 
Ana and Cdi Cas9 proteins, suggest an interesting connection between recognition of 
the guide RNA in the region of the nexus (Briner et al., 2014; Figure 2.5B) and DNA 

 
Rru-sgRNA:  GCAGAUGUAGUGUUUCCACAACUCUACCAUGGCGGUGUGGGACGGGAAACCGUCCCACAC

GGCCAUGGUAGAGUGCGAUCACCCUAUCACACCUCUUUGAUUUGUAAAGGGGCACACCUC
UUU  
 

sgRNA A:  GCAGAUGUAGUGUUUCCACAGUUUUAGAGCUGUGCUGAAAAGCACAGCACGUUAAAAUAA
GGCAGUGAUUUUUAAUCCAGUCCGUAUUCAGCUUGAAAAAGU  
 

sgRNA B:  ACGCAGAUGUAGUGUUUCCAGUUUUAGAGCUGUGCUGAAAAGCACAGCACGUUAAAAUAA
GGCAGUGAUUUUUAAUCCAGUCCGUAUUCAGCUUGAAAA AGU  
 

sgRNA C:  UGACGCAGAUGUAGUGUUUCGUUUUAGAGCUGUGCUGAAAAGCACAGCACGUUAAAAUAA
GGCAGUGAUUUUUAAUCCAGUCCGUAUUCAGCUUGAAAAAGU  
 

sgRNA D:  CAUGACGCAGAUGUAGUGUUGUUUUAGAGCUGUGCUGAAAAGCACAGCACGUUAAAAUAA
GGCAGUGAUUUUUAAUCCAGUCCGUAUUCAGCUUGAAAA AGU  
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binding capability. The lack of guide RNA binding specificity in the type II-C Cas9s may 
also relate to their limited ability to unwind dsDNA.  
 The observations that type II-C Cas9 enzymes are more promiscuous for guide 
RNA binding and have limited dsDNA unwinding and cleavage activity have important 
implications for genome editing applications. Because guide RNA binding is less 
specific, the potential for spurious guide RNA association may increase the likelihood of 
unintended editing events. In addition, the lack of robust dsDNA binding and cleavage 
activity imply inhibited ability to generate dsDNA breaks in cells. This finding may 
explain why type II-C Cas9 enzymes have reduced or in some cases undetectable 
genome editing activity relative to the type II-A Spy Cas9 (Hou et al., 2013; Ran et al., 
2015b).  
 Based on previous phylogenetic analysis (Chylinski et al., 2014b; Fonfara et al., 
2014), it is possible that the properties of the type II-C proteins represent ancestral 
activities of the Cas9 enzyme family. Although the physiological functions of ssDNA 
cleavage by type II-C Cas9 enzymes have not been determined, these enzymes may 
have evolved to recognize substrates such as ssDNA bacteriophage. However, 
bacteriophage ssDNA is generally stably bound and protected by ssDNA-binding 
proteins (Chase & Williams, 1986) and ssDNA cleavage by type II-C Cas9 enzymes 
would therefore require either transient exposure of naked ssDNA during replication or 
the ability to displace cellular ssDNA-binding proteins. In addition, Cas9 proteins could 
potentially silence active gene loci in a manner analogous to the ssDNA targeting that 
occurs during transcription in vivo by type III-A CRISPR/Cas systems (Deng, Garrett, 
Shah, Peng, & She, 2013; Samai et al., 2015b). In all cases, type II-C Cas9 enzymes 
might require additional cellular co-factors to promote efficient dsDNA cleavage. 
Persistent evolutionary pressure to protect bacteria from dsDNA phage or plasmids 
might have driven the emergence of larger variants of Cas9 with insertions in the alpha-
helical (REC) lobe that confer both guide RNA recognition specificity and the ability to 
unwind dsDNA target sites. We also envision that despite limited efficiency for genome 
editing applications requiring dsDNA cleavage, it may be possible to harness the 
intrinsic type II-C Cas9 activity for ssDNA target recognition in vitro or possibly in cells. 
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Chapter 3 
 
 
 
 
 
 
 
 
 
 
 

A thermostable Cas9 with increased 
lifetime in human plasma 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Part of the work presented in this chapter has previously been published in the 
following manuscript: Harrington, L. B., Paez-Espino, D., Staahl, B. T., Chen, J. S., 
Ma, E., Kyrpides, N. C., & Doudna, J. A. (2017). A thermostable Cas9 with 
increased lifetime in human plasma. Nature Communications, 8(1), 1–7. 



 29 

3.1 Abstract 
 
 CRISPR-Cas9 is a powerful technology that has enabled genome editing in a 
wide range of species. However, the currently developed Cas9 homologs all originate 
from mesophilic bacteria, making them susceptible to degradation and unsuitable for 
applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 
protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) 
catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at 
temperatures up to 70°C, compared to 45°C for Streptococcus pyogenes Cas9 
(SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We 
also found that GeoCas9 is an effective tool for editing mammalian genomes when 
delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in 
human plasma, the thermostable GeoCas9 provides the foundation for improved RNP 
delivery in vivo and expands the temperature range of CRISPR-Cas9.  
 
3.2 Introduction 
 

The use of CRISPR-Cas9 has rapidly transformed the ability to edit and modulate the 
genomes of a wide range of organisms(H. Wang, La Russa, & Qi, 2016). This technology, 
derived from adaptive immune systems found in thousands of bacterial species, relies on RNA-
guided recognition and cleavage of invasive viral and plasmid DNA(Chylinski et al., 2014a). The 
Cas9 proteins from these species differ widely in their size and cleavage activities(Chylinski et 
al., 2014b; Ma, Harrington, O’Connell, Zhou, & Doudna, 2015; Ran et al., 2015b). Despite the 
abundance and diversity of these systems, the vast majority of applications have employed the 
first Cas9 homolog developed from Streptococcus pyogenes (SpyCas9)(Martin Jinek et al., 
2012b). In addition to SpyCas9, several other Cas9 proteins have also been shown to edit 
mammalian genomes with varying efficiencies(Cong, Ran, Cox, Lin, & Barretto, 2013; Esvelt et 
al., 2013a; Hirano et al., 2016; Hou et al., 2013; Ran et al., 2015b). While these proteins 
together provide a robust set of tools, they all originate from mesophilic hosts, making them 
unsuitable for applications requiring cleavage at higher temperatures or extended protein 
stability. 

This temperature restriction is particularly limiting for genome editing in obligate 
thermophiles(Xiang, Zhang, An, Cheng, & Wang, 2016). Recent efforts using SpyCas9 to edit a 
facultative thermophile have been possible by reducing the temperature within the 
organism(Mougiakos et al., 2017). While effective, this approach is not feasible for obligate 
thermophiles, and requires additional steps for moderate thermophiles. This is especially 
important for metabolic engineering for which thermophilic bacteria present enticing hosts for 
chemical synthesis due to decreased risk of contamination, continuous recovery of volatile 
products and the ability to conduct reactions that are thermodynamically unfavorable in 
mesophilic hosts(Zeldes et al., 2015). Developing a thermostable Cas9 system will enable facile 
genome editing in thermophilic organisms using technology that is currently restricted to 
mesophiles.   

CRISPR-Cas9 has also emerged as a potential treatment for genetic diseases(Porteus, 
2016). A promising method for the delivery of Cas9 into patients or organisms is the injection of 
preassembled Cas9 ribonucleoprotein complexes (RNP) into the target tissue or 
bloodstream(Staahl et al., 2017). One major challenge to this approach is that Cas9 must be 
stable enough to survive degradation by proteases and RNases in the blood or target tissue for 
efficient delivery. Limited protein lifetime will require delivery of higher doses of Cas9 into the 
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patient or result in poor editing efficacy. In contrast, delivering a Cas9 with improved stability 
could greatly enhance genome-editing efficiency in vivo. 

To address these challenges, we tested the thermostable Cas9 protein from Geobacillus 
stearothermophilus (GeoCas9). We find that GeoCas9 maintains activity over a wide 
temperature range. By harnessing the natural sequence variation of GeoCas9 from closely 
related species, we engineered a PAM variant that recognizes additional PAM sequences and 
thereby doubles the number of targets accessible to this system. We also engineered a highly 
efficient sgRNA using RNAseq data from the native organism and show that GeoCas9 can 
efficiently edit genomic DNA in mammalian cells. The functional temperature range of GeoCas9 
complements that of previously developed Cas9 systems, greatly expanding the temperatures 
that Cas9 can be used for both in vitro cleavage and genome editing applications. 
 
3.3 Materials and Methods 
 
3.3.1 Identification of Cas9 homologs and generation of plasmids  

We mined all isolate genomes from the public Integrated Microbial genomes (IMG) 
database(Markowitz et al., 2012) using the “Genome Search by Metadata Category tool.” 
We selected all the genomes annotated as “thermophile” (336) or “hyperthermophile” (94) 
and searched for the presence of Cas9-like candidates (hits to a TIGRfam model 01865 
for Csn-like or 03031 for a Csx12-like) contained within a full CRISPR-Cas system 
(presence of Cas1, Cas2, and a Repeat-Spacers array). We initially selected the 
GeoCas9 variant due to its completeness, smaller gene size (shorter than the widely used 
SpyCas9), and growth in a large temperature range from 30-75 (optimal at 55C).The 
Cas9 from Geobacillus stearothermophilus was codon optimized for E. coli, ordered as 
Gblocks (IDT) and assembled using Gibson Assembly. For protein expression, a pET 
based plasmid containing an N terminal 10xHis-tag and MBP was used. For PAM 
depletion assays, a p15A plasmid was generated with the sgRNA constitutively 
expressed.  
 
3.3.2 Cas9 purification  

Cas9 was purified as previously described(Martin Jinek et al., 2012b) with 
modification. After induction, E. coli BL21(DE3) expressing Cas9 was grown in Terrific 
Broth overnight at 18°C. Cells were harvested, re-suspended in Lysis Buffer (50mM 
Tris-HCl, pH 7.5, 20mM imidazole, 0.5mM TCEP, 500mM NaCl, 1mM PMSF), broken 
by sonication, and purified on Ni-NTA resin. TEV was added to the elution and allowed 
to cleave overnight at 4°C. The resulting protein was loaded over tandem columns of an 
MBP affinity column onto a heparin column and eluted with a linear gradient from 
300mM to 1250mM NaCl. The resulting fractions containing Cas9 were purified by gel 
filtration chromatography and flash frozen in Storage Buffer (20mM HEPES-NaOH pH 
7.5, 5% Glycerol, 150mM NaCl, 1mM TCEP).  
 
3.3.3 Differential Scanning Calorimetry  

Cas9 proteins were dialyzed into degassed DSC Buffer (0.5mM TCEP, 50mM 
KH2PO4(pH 7.5), 150mM NaCl) overnight at 4°C. Samples were diluted to 0.3mg ml-1  
and loaded a sample cell of a NanoDSC (TA instruments); buffer alone was used in the 
reference cell. The cell was pressurized to 3atm and the sample was heated from 20 to 
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90°C. Measurements made for buffer in both the sample and reference cells were 
subtracted from the sample measurements.  
 
3.3.4 Biochemical cleavage assays  

Radioactive cleavage assays were conducted as previously described(Wright et 
al., 2015). Reactions were carried out in 1× Reaction Buffer (20mM Tris-HCl, pH 7.5, 
100mM KCl, 5mM MgCl2, 1mM DTT and 5% glycerol (v v-1)). 100nM Cas9 and 125nM 
sgRNA were allowed to complex for 5min at 37°C. ~1nM radiolabeled probe was added 
to the RNP to initiate the reaction. Finally, the reaction was quenched with 2× Loading 
Buffer (90% formamide, 20mM EDTA, 0.02% bromophenol blue, 0.02% xylene cyanol 
and products were analyzed on 10% urea-PAGE gel containing 7M urea. 

For thermostability measurements (Fig. 3.4a), 100nM Cas9 was complexed with 
150nM sgRNA in 1× Reaction Buffer for 5min at 37°C. 100nM of a PCR product 
containing the targeted sequence was cleaved using dilutions of the estimated 100nM 
RNP complex to accurately determine a 1:1 ratio of Cas9 to target. Next, samples were 
challenged at the indicated temperature (40°C–75°C) for 10min and then returned to 
37°C. 100nM PCR product containing the targeted sequence was added to the reaction 
and it was allowed to react for 30min at 37°C. The reaction was quenched with 6× 
Quench Buffer (15% glycerol (v v-1), 1mg ml-1 Orange G, 100mM EDTA) and products 
were analyzed on a 1.25% agarose gel stained with ethidium bromide.  

For thermophilicity measurements (Fig. 3.4b), 500nM Cas9 was complexed with 
750nM sgRNA in 1x Reaction Buffer for 5min at 37°C. The samples were placed at the 
assayed temperature (20°C–80°C) and 100nM of PCR product was added to the 
reaction. Time points were quenched using 6× Quench Buffer and analyzed on a 1.25% 
agarose gel stained with SYBR Safe (Thermo Fisher Scientific). 

To study the effect of human plasma on the stability of Cas9 proteins, 
preassembled Cas9-RNP was incubated for 8 hours either at 37°C or 4°C in Reaction 
Buffer with the specified amount of normal human plasma. Substrate was then added 
and cleavage products were analyzed as described for thermostability measurements. 
Uncropped gels related to Figure 4 and 5 can be found in Supplementary Figure 3.9. 

 
3.3.5 Small RNA sequencing  

Geobacillus stearothermophilus was obtained from ATCC and cultured at 55°C in 
Nutrient Broth (3g beef extract and 5g peptone per liter water, pH 6.8) to saturation. 
Cells were pelleted and RNA was extracted using a hot phenol extraction as previously 
described(Zhang et al., 2013). Total RNA was treated with TURBO DNase (Thermo 
Fisher Scientific), rSAP (NEB) and T4 PNK (NEB) according to manufactures 
instructions. Adapters were ligated onto the 3′ and 5′ ends of the small RNA, followed by 
reverse transcription with Superscript III. The library was amplified with limited cycles of 
PCR, gel-extracted on an 8% native PAGE gel and sequenced on an Illumina MiSeq. 
Adapters were trimmed using Cutadapt and sequences >10nt were mapped to the G. st. 
CRISPR locus using Bowtie 2(Langmead & Salzberg, 2012).  
 
 
3.3.6 HEK293T EGFP disruption assay and indel analysis 
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 HEK293T cells expressing a destabilized GFP were grown in Dulbecco's 
Modification of Eagle's Medium (DMEM) with 4.5g L-1 glucose L-glutamine and sodium 
pyruvate (Corning Cellgro), supplemented with 10% fetal bovine serum, penicillin and 
streptomycin at 37°C with 5% CO2. ~24hrs before transfection, ~3 × 104 cells were 
seeded into each well of a 96-well plate. The next day, 20pmol (unless otherwise 
specified) of RNP was assembled as previously described(Lin et al., 2014) and mixed 
with 10µL OMEM. The RNP was added to 10µl of 1:10 dilution of Lipofectamine 2000 
(Life Technologies) in OMEM and allowed to incubate at room temperature for 10min 
and added to the cells. Cells were analyzed for GFP fluorescence 48h later using 
Guava EasyCyte 6HT. Experiments were conducted in triplicate and the mean ±S.D. is 
shown. For analysis of indels, genomic DNA was extracted using Quick Extraction 
Solution (Epicentre), and the DNMT1 and AAVS1 loci were amplified by PCR. T7E1 
reaction was conducted according to the manufacturer’s instructions and products were 
analyzed on a 1.5% agarose gel stained with SYBR gold (Thermo Fisher Scientific).  
 
3.4 Results 
 
3.4.1 Identification of thermostable Cas9 homologs 
 Although thousands of cas9 homologs have been sequenced, there have been 
no functionally validated Cas9 from archaea(Burstein, Harrington, Strutt, & Probst, 
2017), restricting our search for a thermophilic Cas9 to thermophilic bacteria. We 
searched all the isolates in Integral Microbial Genomes database (IMG) from a 
thermophilic environment that contained a Cas9-like protein(Markowitz et al., 2012) (hits 
to a TIGRfam model 01865 for Csn1-like or 03031 for a Csx12-like). From them, the 
Cas9 from Geobacillus stearothermophilus (G. st.; formerly Bacillus 
stearothermophilus)(Donk, 1920) stood out because it was full-length and its sequence 
is shorter than the average Cas9. Most importantly, this candidate is from the organism 
that can grow in a reported temperature range from 30–75 (optimal at 55C). A BLASTn 
of GeoCas9 revealed several nearly identical homologs (from 93.19–99.91% identity 
over the full length) in 6 other Geobacillus species and 92.55% Identity over the full 
length in Effusibacillus pohliae DSM22757. G. st. has been a proven source of enzymes 
for thermophilic molecular cloning applications(Notomi et al., 2000), thermostable 
proteases(Fujii, Takagi, Imanaka, & Aiba, 1983) and enzymes for metabolic 
engineering(Ingram et al., 2010). Moreover, the wide temperature range that G. st. 
occupies(Cordova, Long, Venkataramanan, & Antoniewicz, 2015) holds promise that 
the Cas9 from this species (GeoCas9) may be able to maintain activity at both 
mesophilic and thermophilic temperatures (Fig. 3.1a).  Notably, GeoCas9 is 
considerably smaller than SpyCas9 (GeoCas9, 1,087 amino acids; SpyCas9, 1,368 
amino acids). A homology model of GeoCas9 based on available Cas9 crystal 
structures along with sequence alignments revealed that the small size of GeoCas9 is 
largely the result of a reduced REC lobe, as is the case with other compact Cas9 
homologs from Streptococcus aureus Cas9 (SauCas9) and Actinomyces naeslundii 
Cas9 (AnaCas9) (Fig. 3.1b; Supplementary Fig. 3.6).   

We purified GeoCas9 and performed initial thermostability tests using differential 
scanning calorimetry (DSC), which showed that in the absence of RNA or DNA, 
GeoCas9 has a denaturation temperature about 20°C higher than SpyCas9 (Fig. 3.1d). 
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Moreover, GeoCas9 denatures at 15°C higher than the slightly thermophilic 
Streptococcus thermophilus CRISPR III Cas9 (SthCas9) (Fig. 3.1e). Given these 
results, we selected GeoCas9 as a candidate for further development and optimization. 

 
3.4.2 GeoCas9 PAM identification and engineering 

CRISPR systems have evolved a preference for a protospacer adjacent motif 
(PAM) to avoid self-targeting of the host genome(Bolotin, Quinquis, Sorokin, & Dusko 
Ehrlich, 2005; Mojica, Diez-Villasenor, et al., 2009). These PAM sequences are 
divergent among Cas9 homologs and DNA targets are often mutated in this region to 
escape cleavage by Cas9(Paez-Espino et al., 2015). To identify the PAM for GeoCas9, 
we first searched for naturally targeted viral and plasmid sequences using 
CRISPRtarget(Biswas, Gagnon, Brouns, Fineran, & Brown, 2013). The three 
sequenced strains of G. st. provided 77 spacer sequences, and 3 of them had high-
confidence viral and plasmid targets (Supplementary Fig. 3.7). Extracting the 
sequences 3′ of the targeted sequence revealed a consensus of 5′-NNNNCNAA-3′ (Fig. 
3.2a, ED Fig. 3.2). Given the low number of viral targets, we next performed cleavage 
assays on substrates containing various PAM sequences, revealing a complete PAM 
sequence of 5′-NNNNCRAA-3′ (Fig. 3.2b). 

In addition to the CRISPR loci found in G. st. strains, we also found a type II 
CRISPR locus in Geobacillus LC300 containing a Cas9 with ~97% amino acid identity 
to the G. st. Cas9. Despite having nearly identical sequences, alignment of these two 
homologs of GeoCas9 revealed a tight cluster of mutations in the PAM interacting 
domain (PI) (Fig. 3.2d). Furthermore, mapping these mutations onto the homology 
model of GeoCas9 showed that they are located near the PAM region of the target DNA 
(Fig. 3.2c). We hypothesized that this GeoCas9 variant might have evolved altered PAM 
specificity. By searching for viral targets using the spacers in the G. LC300 array, we 
identified a preference for GMAA in place of the CRAA PAM of G. st., lending support to 
our hypothesis. We constructed and purified a hybrid Cas9 protein in which the PI 
domain of the G. LC300 Cas9 was substituted for the PI domain of G. st. Cas9 and 
tested cleavage activity on targets containing various PAM sequences (Fig. 3.2b). We 
found that, as predicted by protospacer sequences, the hybrid Cas9 preferred a GMAA 
PAM rather than the CRAA PAM utilized by GeoCas9. Moreover, G. LC300 appears to 
be more specific for its optimal PAM, which may result in lower off-target cleavage for 
genome editing applications(Kleinstiver, Prew, Tsai, Topkar, et al., 2015). By creating a 
hybrid Cas9 with this naturally occurring PAM-recognition variant, we double the 
sequence space that can be targeted by GeoCas9 without resorting to structure based 
protein engineering as has been done for other Cas9 homologs(Kleinstiver, Prew, Tsai, 
Topkar, et al., 2015).  

 
3.4.3 Identification of tracrRNA and engineering of GeoCas9 sgRNA 
 CRISPR-Cas9 systems use a trans-activating crRNA (tracrRNA), which is 
required for maturation of the crRNA and activation of Cas9(Elitza Deltcheva et al., 
2011; Martin Jinek et al., 2012b). To identify the tracrRNA for GeoCas9, we cultured G. 
st. and deep sequenced the small RNA it produced. We found that the CRISPR array 
was transcribed despite a lack of phage or plasmid challenge, and that the array was 
transcribed in the opposite direction of the Cas proteins (Fig. 3.3a). The crRNA was 
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processed to 23nt (Fig. 3.3b) of the spacer sequence and 18nt of the repeat sequence 
in vivo, similar to other small type IIC Cas9 proteins(Fonfara et al., 2014; Hou et al., 
2013). Mapping of the RNAseq reads to the CRISPR array also revealed a putative 
tracrRNA upstream of the Cas9 open reading frame (ORF).  
 We joined this putative tracrRNA to the processed crRNA using a GAAA-
tetraloop to generate a single-guide RNA (sgRNA)(Savell & Day, 2017). Variations of 
this sgRNA were in vitro transcribed and tested for their ability to direct GeoCas9 to 
cleave a radiolabeled double-stranded DNA target at 37°C. We first varied the length of 
the crRNA:tracrRNA duplex and found that this modification had little impact on the 
DNA cleavage rate (left panel, Fig. 3. 3c), making it a valuable place for further sgRNA 
modifications(Konermann et al., 2014; Mali et al., 2013). Next, we tested the length of 
the tracrRNA, which here refers to the region after the tetraloop, choosing stopping 
points near predicted rho-independent terminators. In contrast to the crRNA:tracrRNA 
duplex length, the length of the tracrRNA had a dramatic effect on the cleavage rate, 
with sequences shorter than 91nt supporting only a small amount of cleavage (middle 
panel, Fig. 3.3c). Finally, we varied the length of the spacer sequence and found that 
21–22nt resulted in a more than 5-fold increase in cleavage rate, compared to the 20nt 
spacer preferred by SpyCas9 (right panel, Fig. 3.3c). This finding contrasts with the 
most abundant spacer length of 23nt found in RNAseq. This difference may be due to 
inter- or intramolecular guide interactions in the in vitro transcribed sgRNA(Thyme, 
Akhmetova, Montague, Valen, & Schier, 2016). To test this we used an additional guide 
sequence with no predicted structure in the spacer region (Target 2). In contrast to 
Target 1, Target 2 had similar cleavage rates for 21, 22 and 23nt (right panel, Fig. 3.3c). 
In addition, testing cleavage of off-target substrates revealed that GeoCas9 has higher 
sensitivity of mismatched sequences proximal to the PAM then distal, similar to 
previously described Cas9 proteins (Supplementary Fig. 3.8A). 
 
3.4.4 Genome editing by GeoCas9 RNP in mammalian cells 
 With evidence that GeoCas9 maintains cleavage activity at mesophilic 
temperatures, we assessed the ability of GeoCas9 to edit mammalian genomes.  We 
tested GeoCas9 and SpyCas9 editing efficiency by delivering preassembled 
ribonucleoprotein complexes (RNPs) into cultured cells, circumventing differences 
between SpyCas9 and GeoCas9 protein expression. First, GeoCas9 RNPs targeting 
regions adjacent to various PAM sequences were delivered into HEK293T cells 
expressing a destabilized GFP (Fig. 3.4a). We found that when targeted to sequences 
adjacent to the preferred CRAA PAM, GeoCas9 decreased GFP fluorescence at levels 
comparable to those observed for SpyCas9 (Fig. 3.4a). Next, we targeted GeoCas9 to 
cleave the native genomic loci DNMT1 and AAVS1 (Fig. 3.4b,c). We varied the length of 
the targeting spacer sequence and found that at one site 21nt was a sufficient length to 
efficiently induce indels while at another site a 22nt spacer length was necessary. Given 
this variability and that extending the spacer length to 22nt had no detrimental effects, 
we conclude that a 22nt guide segment length is preferred for use in genome editing 
applications. Moreover, when we tested editing efficiency at a site containing an 
overlapping PAM for both GeoCas9 and SpyCas9, we observed similar editing 
efficiencies by both proteins (Fig. 3.4b). At the DNMT1 locus we titrated amounts of 
GeoCas9 and SpyCas9 RNPs to assess the effect on genome editing efficiency (Fig. 



 35 

3.4c). Products analyzed by T7E1 assay again showed efficient production of indels by 
both GeoCas9 and SpyCas9. These results demonstrate that GeoCas9 is an effective 
alternative to SpyCas9 for genome editing in mammalian cells.  
 
3.4.5 Stability of GeoCas9 

Based on initial observations showing that GeoCas9 protein remains folded at 
elevated temperatures (Fig. 3.1d, e), we tested whether the GeoCas9 RNP maintains 
activity after exposure to high temperatures. We incubated SpyCas9 and GeoCas9 at a 
challenge temperature and added equimolar substrate to test the fraction of RNP that 
remained functional. After incubation for 10 min at 45°C, the fraction of active SpyCas9 
was greatly reduced (Fig. 3.5a). In contrast, the fraction of GeoCas9 after incubation at 
45°C remained at 100% and not until challenge at 70°C did we detect a decrease in 
activity (Fig. 3.5a).  

Often thermostability comes at the cost of reduced activity at lower 
temperatures(Sawle & Ghosh, 2011). However, the wide range of natural growth 
temperatures for G. st. suggested that GeoCas9 might maintain activity at mesophilic 
temperatures. To examine this hypothesis, we measured the cleavage rate of SpyCas9 
and GeoCas9 at various temperatures (Fig. 3.5b). SpyCas9 DNA cleavage rates 
increased between 20–35°C, reaching maximum levels from 35–45°C. Above these 
temperatures, SpyCas9 activity dropped sharply to undetectable levels, as predicted by 
thermostability measurements. In contrast, GeoCas9 activity increased to the maximum 
detection limit at 50°C and maintained maximum detectable activity up to 70°C, 
dropping to low levels at 75°C. These results make GeoCas9 a valuable candidate for 
editing obligate thermophilic organisms and for biochemical cleavage applications 
requiring Cas9 to operate at elevated temperatures. 

The lifetime of proteins in blood is often limiting for their use as a therapeutic and 
many strategies have been employed to improve this, including fusion of other proteins 
and polymers to the protein of interest(Kontermann, 2011; Schellenberger et al., 2009). 
We investigated the lifetime of SpyCas9 RNP in mouse plasma and found that it had a 
half-life of ~1.5hrs (Fig. 3.5c). Further investigation revealed that a combination of RNA 
and protein degradation likely plays a role in this inactivation (Supplementary Fig. 3.8b, 
c). Although what determines the lifetime of a protein in blood is complex, it was shown 
previously that thermostabilization of a protein can increase its lifetime in 
blood(Narasimhan et al., 2010). To test if this is the case for GeoCas9, we incubated 
SpyCas9 and GeoCas9 in diluted human plasma at 37°C for 8 hrs and measured the 
amount of Cas9 activity remaining (Fig. 3.5d). Although SpyCas9 maintained activity 
when incubated in reaction buffer at 37°C, its activity was abolished even at the lowest 
concentration of plasma. In contrast, GeoCas9 maintained significant activity after 
incubation with human plasma, making it a promising candidate for in vivo RNP 
delivery.  
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Figure 3.1 | GeoCas9 is a small, thermostable Cas9 homolog.  a, Phylogeny of Cas9 
proteins used for genome editing with their length (amino acids) and the maximum temperatures 
that supports growth of the host indicated to the right (Cordova et al., 2015) (Nme, Neisseria 
meningitidis; Geo, Geobacillus stearothermophilus; Geo LC300, Geobacillus LC300; Spy, 
Streptococcus pyogenes; Sau, Streptococcus aureus; Fno, Francisella novicida; Sth (3), 
Streptococcus thermophilus CRISPR III). b, Homology model of GeoCas9 generated using 
Phyre 2(Kelly, Mezulis, Yates, Wass, & Sternberg, 2015) with the DNA from PDB 5CZZ docked 
in. c, Schematic illustration of the domains of Spy Cas9 (blue) and GeoCas9 (orange) with 
active site residues indicated below with asterisks. d, Representative traces for Differential 
Scanning Calorimetry (DSC) of GeoCas9 and SpyCas9, Td; Denaturation temperature. e, 
Denaturation temperature of various Cas9 proteins as measured by DSC, mean ± S.D. is 
shown.  
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Figure 3.2 | PAM identification and engineering of GeoCas9. a, WebLogo for sequences 
found at the 3′ end of protospacer targets identified with CRISPRTarget for Geobacillus 
stearothermophilus (left panel) and Geobacillus LC300 (right panel). b, Cleavage assays 
conducted with the two homologs of GeoCas9.  Substrates with various PAM sequences were 
P32-labelled and mean ± S.D. is shown. c, Mapping of mutated residues (orange spheres) 
between G. st. and G. LC300 onto the homology model of GeoCas9 showing high density in the 
PAM interacting domain near the PAM region of the target DNA. c, Alignment of the Cas9 
proteins from G. st. and G. LC300 with the domain boundaries shown above. Solid colors 
represent identical residues and grey lines indicate residues that are mutated between the two 
Cas9 homologs. 
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Figure 3.3 | Small RNA-seq and sgRNA engineering for GeoCas9. a, Small RNA sequenced 
from G. stearothermophilus mapped to the CRIS 
PR locus. Inset shows enlargement of the region corresponding to the tracrRNA and the most 
highly transcribed repeat and spacer sequence. b, Distribution of the length of the spacer 
sequences extracted from the small RNA sequencing results. c, Length optimization of the 
tracrRNA and crRNA for GeoCas9 and the optimal guide RNA design (right panel). The length 
of the tracrRNA, crRNA:tracrRNA duplex and spacer was optimized sequentially by transcribing 
variations of the sgRNA and testing their ability to guide GeoCas9-mediated cleavage of a 
radiolabeled substrate. For spacer length, two different targets were used (Target 1 and Target 
2). The mean kcleave ± S.D. is shown and experiments were conducted in triplicate. 

 
Figure 3.4 | Genome editing activity of GeoCas9 in mammalian cells. a, EGFP disruption in 
HEK293T cells by GeoCas9. HEK293FT cells expressing a destabilized GFP were 
transfected with GeoCas9 RNP preassembled with a targeting or non-targeting guide 
RNA. Cells were analyzed by flow cytometry and targets adjacent to the CRAA PAM 
resulted in efficient GFP disruption (NT, non-targeting; kb, kilobases). b, T7E1 analysis 
of indels produced at the AAVS1 locus when the guide length was varied from 21 to 
22nt. The Cas9 used is indicated above each lane and the length of the spacer is 
shown below (NT; non-targeting). c, T7E1 analysis of indels produced using a titration 
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of GeoCas9 and SpyCas9 RNP targeting the DNMT1 locus in HEK293T cells. The 
Cas9 used is indicated above each lane and the amount of RNP delivered to each well 
of a 96-well plate is indicated below (NT, non-targeting; kb, kilobases).  

 
Figure 3.5 | Thermostability of GeoCas9 and longevity in human plasma. a, Activity of 
SpyCas9 and GeoCas9 after incubation at the indicated temperature. After challenging at the 
higher temperature, reactions were conducted at 37°C using a 1:1 ratio of substrate to RNP (kb, 
kilobases). b, Cleavage rate of SpyCas9 and GeoCas9 RNPs at various temperatures. 
Maximum detection limit is shown by the dashed line at kcleave=5, indicating that the reaction 
completed in ≤30s. c, Lifetime of SpyCas9 after incubation in 50% mouse plasma. Incubation 
was done at 37°C for the specified amount of time after which DNA substrate was introduced at 
an equimolar ratio of substrate to RNP d, Effect of incubating GeoCas9 and SpyCas9 in human 
plasma. After incubation in varying concentrations of human plasma for 8hrs at 37°C, the 
reaction was carried out with 1:1 ratio of DNA substrate to RNP (kb, kilobases).   

 

Figure 3.6 | Alignment of selected Cas9 homologs. Alignment was generated using MAFFT 
and the approximate domain boundies are shown below. Black lines indicate conserved 
residues.  
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Figure 3.7 | Targets used to generate logos in figure 2b and 2c. a,c. Phage and plasmid 
targets matching the G. stearothermophilus and G. LC300 spacer sequences. PAM region is 
highlighted in yellow. b,d, Logo of the sequences 3′ of the protospacer targets identified in a and 
c.  

 5' ----------AGUUUUUAGGCCGUAGCGGCUCGAAUACGG---------- 3'   
              ||||||||||||||||||||||||||||||          
 3' CTGTCGCACGTCAAAAATCCGGCATCGCCGAGCTTATGCCGTCTCTTTGT 5'    
    ||||||||||                              ||||||||||
 5' GACAGCGTGCAGTTTTTAGGCCGTAGCGGCTCGAATACGGCAGAGAAACA 3'v

 GU568037 Deep-sea thermophilic phage D6E DQ453159 Geobacillus virus E2
 5' ----------CGGACUGAUACCCAACACAACAAAGGAGGC---------- 3'  
              ||||||||||||||||||||||||||||||          
 3' ACAAGGTCCGGCCTGACTATGGGTTGTGTTGTTTCCTCCGCAAACTTTTT 5'   
    ||||||||||                              ||||||||||
 5' TGTTCCAGGCCGGACTGATACCCAACACAACAAAGGAGGCGTTTGAAAAA 3'

 5' ----------UUCCCUCGCUGAUUUCUCCGCGUGCGAAUUG---------- 3'    
               ||||||||||||||||||||||||||||||          
 3' CGAGATATAACAGGGAGCGACTAAAGAGGCGCACGCTTAACTAGCCGTTGA 5'   
    ||||||||||                               ||||||||||
 5' GCTCTATATTGTCCCTCGCTGATTTCTCCGCGTGCGAATTGATCGGCAACT 3'

 5' ----------UCGGAGUGACGUUGUUCGGCCUGCGACGAG---------- 3'   
              | |||||||||||||||||||||| |||||          
 3' CGGTGGGGTAAACCTCACTGCAACAAGCCGGACGTTGCTCTGTCCGTTGC 5'   
    ||||||||||                              ||||||||||
 5' GCCACCCCATTTGGAGTGACGTTGTTCGGCCTGCAACGAGACAGGCAACG 3'

 5' ----------AGUUUUUAGGCCGUAGCGGCUCGAAUACGG---------- 3'  
              |||||||||||||||||||||||||||  |          
 3' CTGTCGCATGTCAAAAATCCGGCATCGCCGAGCTTATTGCTTCCTTTTCG 5'   
    ||||||||||                              ||||||||||
 5' GACAGCGTACAGTTTTTAGGCCGTAGCGGCTCGAATAACGAAGGAAAAGC

 5' ----------UGCCCAUGCGACGGCAUGCUCCUUCAUUUC---------- 3'  
              ||||||||| ||||||||||| ||||||||          
 3' CCACTCCGGGACGGGTACGTTGCCGTACGAGAAAGTAAAGTTTTCGCTAA 5'   
    ||||||||||                              ||||||||||
 5' GGTGAGGCCCTGCCCATGCAACGGCATGCTCTTTCATTTCAAAAGCGATT 3'

KJ159566 Geobacillus phage GBK2

 5' ----------GGUCGGCCAGCCGAUCAGCACGCACACGGA---------- 3'    
               |||||||||||||||||||||||||| ||          
 3' TACTGTAACAGCAGCCGGTCGGCTAGTCGTGCGTGTGGCTCCTTCTTTTC 5'    
    ||||||||||                              ||||||||||
 5' ATGACATTGTCGTCGGCCAGCCGATCAGCACGCACACCGAGGAAGAAAAG

G. LC300

 5' ----------UUGUCGCUGUUCCUCCGGCGUGAUGUCCAG---------- 3'   
               |||||||||||||||||||||||||||||          
 3' ACCAGACGTTCACAGCGACAAGGAGGCCGCACTACAGGTCGGTAGCTTAC 5'  
    ||||||||||                              ||||||||||
 5' TGGTCTGCAAGTGTCGCTGTTCCTCCGGCGTGATGTCCAGCCATCGAATG

Geobacillus stearothermophilus plasmid pGS18
G. stearothermophilus

 GU568037 Deep-sea thermophilic phage D6E
 5' ----------UUCUUUCUGCGCACAUCCGUUCCGCGAAUC---------- 3'   
              || ||||| ||||||||||| |||||||||          
 3' GTAGGAGTGTAAAAAAGAGGCGTGTAGGCAGGGCGCTTAGTAGCGATTTT 5'   
    ||||||||||                              ||||||||||
 5' CATCCTCACATTTTTTCTCCGCACATCCGTCCCGCGAATCATCGCTAAAA 3'

 5' ----------CUUCAUUUAUUGCACUAUUGCGACAGAAGG---------- 3'    
              |||||||||||||  ||||||| ||||| |          
 3' GGCAGTCGGCGAAGTAAATAACGCAATAACGCCGTCTTTCCCTAGTTTCA 5'    
    ||||||||||                              ||||||||||
 5' CCGTCAGCCGCTTCATTTATTGCGTTATTGCGGCAGAAAGGGATCAAAGT
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Figure 3.8 | Mismatch cleavage by GeoCas9 and degradation of SpyCas9 in mammalian 
plasma, GeoCas9 cleavage of targets containing mismatches in the PAM proximal (5-6bp MM) 
or PAM distal (19-20bp MM) regions of the target DNA showing higher specificity for the PAM 
proximal region. b, Western blot against SpyCas9 after incubated the RNP in human plasma for 
the specified period of time. c, SpyCas9 sgRNA after incubation in human plasma for the 
specified period of time.  

 
 

Figure 3.9 | Uncropped images of gels for Figure 4 and 5 
a, Uncropped gel shown in the top panel of Figure 4b. b, Uncropped gel shown in the bottom 
panel of Figure 4b. c, Uncropped gel shown in Figure 4c. d, Uncropped gel shown in the top 
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panel of Figure 5a. e, Uncropped gel shown in Figure 5d. Red outline marks the region shown in 
the main text figures.  

 
 

3.5 Discussion 
 Our results establish GeoCas9 as a thermostable Cas9 homolog and expand the 
temperatures at which Cas9 can be used. We anticipate that the development of 
GeoCas9 will enhance the utility of CRISPR-Cas9 technology at both mesophilic and 
thermophilic temperatures. The ability of Cas9 to function reliably in a wide range of 
species has been key to its rapid adoption as a technology, but the previously 
developed Cas9 homologs are limited for use in organisms that can grow below 42°C. 
The complementary temperature range of GeoCas9 with SpyCas9 (Fig. 3.5b) opens up 
Cas9 based genome editing to obligate thermophiles and facultative thermophiles, 
without the additional steps of altering the temperature of the organisms. We also 
anticipate that GeoCas9 will be useful for in vitro molecular biology applications 
requiring targeted cleavage at elevated temperatures.  Furthermore, we predict that the 
extended lifetime of GeoCas9 in human plasma may enable more efficient delivery of 
Cas9 RNPs. GeoCas9 also has an extended PAM and spacer sequence compared to 
SpyCas9. These features are similar to SauCas9 and NmeCas9, both of which have 
been shown to be naturally higher fidelity than SpyCas9(Amrani et al., 2017; Friedland 
et al., 2015; Kleinstiver, Prew, Tsai, Nguyen, et al., 2015; Ran et al., 2015b) and it will 
be interesting for future work to investigate if this trend also holds true for GeoCas9.  

 We were interested to note that GeoCas9 and SpyCas9 induced similar levels of 
indels in HEK293T cells as SpyCas9 when delivered as an RNPs (Fig. 3.4b-d), despite 
GeoCas9’s lower DNA cleavage rate at 37°C (Fig. 3.5b). We conclude that biochemical 
cleavage rates may not reflect the limiting step of target search in a human cell. It may 
be that GeoCas9 can persist longer in cells, which raises its effective concentration over 
time and compensates for its slower cleavage rate. Moreover, in applications requiring 
delivery of Cas9 into the bloodstream, the benefit of improved stability by GeoCas9 may 
become even more apparent. However, it remains to be seen if the efficient GeoCas9 
mediated genome editing observed here will hold true in more challenging genome 
editing applications. 

The development of GeoCas9 hinged upon utilizing the naturally occurring 
diversity of CRISPR systems. The sheer abundance and diversity of Cas9 makes it 
advantageous over newer type V systems, such as Cpf1, for developing specialized 
genome editing tools. It has previously been suggested that type II CRISPR systems 
are only found in mesophilic bacteria, and that protein engineering would be required to 
develop a thermophilic Cas9(Y. Li et al., 2015). The rarity of type II CRISPR systems in 
thermophiles is surprising given that CRISPR systems in general are enriched in 
thermophilic bacteria and archaea(Weinberger, Wolf, Lobkovsky, Gilmore, & Koonin, 
2012). However, by searching the continually growing number of sequenced bacteria, 
we uncovered a naturally occurring thermophilic Cas9. Exploiting Cas9 sequence 
diversity, rather than engineering thermostability, revealed a protein that maintains 
activity over a broad temperature range, which is often difficult to select for using 
directed evolution. Using the natural context of this CRISPR system, including the 
transcribed RNA and targeted sequences, we further developed GeoCas9 with minimal 
experimental optimization. The strategy of mining the natural context and diversity of 
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CRISPR systems has proven successful for uncovering novel interference 
proteins(Burstein, Harrington, Strutt, & Probst, 2017; Shmakov et al., 2017b), and we 
anticipate that it can be applied more broadly to discover and develop new genome 
editing tools.  
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4.1 Abstract 
 
 CRISPR-Cas9 is a powerful technology that has enabled genome editing in a 
wide range of species. However, the currently developed Cas9 homologs all originate 
from mesophilic bacteria, making them susceptible to degradation and unsuitable for 
applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 
protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) 
catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at 
temperatures up to 70°C, compared to 45°C for Streptococcus pyogenes Cas9 
(SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We 
also found that GeoCas9 is an effective tool for editing mammalian genomes when 
delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in 
human plasma, the thermostable GeoCas9 provides the foundation for improved RNP 
delivery in vivo and expands the temperature range of CRISPR-Cas9.  
 
4.2 Introduction 
 

CRISPR systems provide bacteria and archaea with adaptive immunity against foreign 
DNA and RNA (R Barrangou et al., 2007; Brouns et al., 2008; Marraffini & Sontheimer, 2008). 
To initiate immunity, CRISPR-associated (Cas) proteins integrate fragments of invading DNA 
into the host genome at the CRISPR locus, where they serve as transcription templates for the 
synthesis of RNA that directs Cas nucleases to cleave infectious nucleic acids (Garneau et al., 
2010; Hale et al., 2009). Class 2 CRISPR systems are streamlined versions that require only a 
single protein to target foreign DNA or RNA (K S Makarova et al., 2015; Shmakov et al., 2017b). 
CRISPR-Cas9, the most abundant and diverse of Class 2 CRISPR proteins, exists in three 
subtypes of which type IIA and IIC are more common compared to the relatively rare type IIB 
(Chylinski et al., 2014b; Shmakov et al., 2017b). The programmable nature of Cas9 has made it 
a powerful tool for gene editing and genomic modulation in a wide range of organisms.  

 In response to these robust prokaryotic immune systems, phages have evolved proteins 
that bind to and inactivate Cas proteins as they search for foreign nucleic acids (Joe Bondy-
Denomy, Pawluk, Maxwell, & Davidson, 2013; Joseph Bondy-Denomy et al., 2015; Pawluk, 
Bondy-denomy, Cheung, Maxwell, & Davidson, 2014). Although only a small number of these 
anti-CRISPRs (Acrs) have been discovered to date, phylogenetic analysis suggests that Acrs 
are widespread and likely play a significant role in the evolution of Cas proteins (Houte et al., 
2016; Pawluk, Staals, et al., 2016). In addition to their native functions, Acrs that inhibit Cas9 
nucleases allow for control of Cas9 in genome editing applications (Pawluk, Amrani, et al., 
2016; Rauch et al., 2017). Specifically, three unique Acrs that target the type IIC Cas9 from 
Neisseria meningitidis (NmeCas9) have been identified (AcrIIC1, 2 and 3) along with four that 
target select type IIA Cas9 orthologs (AcrIIA1, 2, 3 and 4). While some of these Acrs have been 
shown to inhibit NmeCas9 and SpyCas9 in mammalian cells (Pawluk, Amrani, et al., 2016; 
Rauch et al., 2017), their ability to inactivate other Cas9 orthologs used for genome editing 
remains unknown. Understanding this specificity as well as the mechanisms by which they 
disable Cas9 will be critical for their successful deployment as modulators of Cas9 in human 
and other cell types. Apart from applications, this mechanistic information is also fundamental to 
understanding how these Acrs have evolved to target distinct Cas9 orthologs and what 
evolutionary pressures they impose on CRISPR systems.  
Here we investigated the inactivation of Cas9 by AcrIIC1 and AcrIIC3, uncovering unique 
mechanisms for both. We focused on these two Acrs because of their potent inhibition of 
NmeCas9 in human cells (Pawluk, Amrani, et al., 2016). Our data show that AcrIIC1 blocks DNA 
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cleavage by multiple Cas9 orthologs without impacting DNA binding, effectively transforming 
catalytically active Cas9 into catalytically inactive dCas9. This mechanism is accomplished by 
AcrIIC1 binding directly to the HNH nuclease domain of Cas9, obscuring the active site and 
restricting conformational changes required for cleavage. AcrIIC3, by contrast, inhibits only a 
single Cas9 ortholog by blocking DNA binding. AcrIIC3 also causes Cas9 to dimerize, possibly 
contributing to its ability to interfere with target recognition and suggesting a mechanism distinct 
from that observed for AcrIIA4 (Dong et al., 2017; Shin et al., 2017). Together, AcrIIC1 and 
AcrIIC3 enable either broad-spectrum or selective inhibition of Cas9 orthologs respectively. The 
different mechanisms of these two Acrs allow separate control of binding to and cleavage of DNA 
by Cas9. Moreover, these mechanisms reveal vulnerabilities of Cas9 that are susceptible to 
inhibition, shedding light on the evolutionary arms race between bacteriophage and bacteria. 
4.3 Materials and Methods 
 
4.3.1 Phylogenetic analyses 
Cas9 and Acr protein sequences were gathered from previous publications and additional Cas9 
orthologs targeted by Acrs were added (Burstein, Harrington, Strutt, & Probst, 2017; Fonfara et 
al., 2014; Pawluk, Amrani, et al., 2016). A non-redundant set of proteins was compiled by 
clustering proteins with >90% identity. Proteins were aligned using MAFFT and maximum-
likelihood phylogenies were constructed using RAxML (Stamatakis, 2014). Trees were 
visualized using FigTree 1.4.1.  
 
4.3.2 Protein expression and purification 
Proteins were purified as previously described (Martin Jinek et al., 2012a) with modification. For 
Cas9, E. coli BL21(DE3) was grown in Terrific Broth at 18°C for 14 h. Cells were harvested and 
resuspended in Lysis Buffer (50 mM Tris-HCl, pH 7.5, 20 mM imidazole, 0.5 mM TCEP-NaOH, 
500 mM NaCl and 1 mM PMSF), disrupted by sonication, and purified on Ni-NTA resin. TEV 
protease was incubated with the elution overnight at 4°C. Next, the protein was run over an 
MBP affinity column onto a heparin column and eluted with a gradient from 300–1250 mM NaCl. 
The resulting fractions containing Cas9 were purified using a Superdex 200 10/300 gel filtration 
column and flash frozen in Storage Buffer (20 mM HEPES-NaOH, pH 7.5, 5% (v/v) glycerol, 150 
mM NaCl and 1 mM TCEP-NaOH). The HNH domain and Acrs were purified using the same 
procedure, omitting the heparin and MBP column.  
 
4.3.3 Cleavage assays 
All reactions were carried out in 1× Reaction Buffer (20 mM Tris-HCl, pH 7.5, 100 mM KCl, 5 
mM MgCl2, 1 mM DTT and 5% glycerol (v/v)). 500 nM Cas9 was complexed with 625 nM 
sgRNA for 5 min at 37°C. The Acr was added at 2.5 μM and the reaction was incubated at 37°C 
for another 5 min. Next, DNA substrate was added to a final concentration of 25nM and the 
reaction was allowed to react for 15min (Fig 1A) or for 30 s, 1 min, 2 min, 5 min and 30 min 
(Figure 4.7B). Products were analyzed on 1.25% agarose, 0.5× TAE gels stained with ethidium 
bromide.  

For P32-labeled DNA cleavage assays, 40 nM Cas9 was complexed with 40 nM sgRNA 
in 1× Reaction Buffer for 10 min at 37°C. The AcrIIC1 was added at 400 nM and the reaction 
was incubated at room temperature for another 20 min. Next probe was added to a final 
concentration of ~1nM and the reaction was allowed to react for 0, 1, 2.5, 5 and 10min (Figure 
4.2B). Products were analyzed on 12% denature PAGE gel before being dried and visualized by 
phosphorimaging. 

 
4.3.4 HEK293T transfection and indel analysis 
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Plasmids expressing NmeCas9, SpyCas9 and their respective sgRNAs targeting the DTS3 site, 
as well as plasmids expressing AcrE2 (Addgene #85677), AcrIIC1Boe (Addgene #85678 ) and 
AcrIIC1Nme (Addgene #85679), were previously described (Pawluk, Amrani, et al., 2016). AcrIIA4 
expressing plasmid (Addgene #86842) was described previously (Rauch et al., 2017). The 
CjeCas9-expressing plasmid (PX404) was acquired from Addgene (#68338). For CjeCas9 
sgRNA expression, the published sgRNA sequence (Kim et al., 2017) was synthesized as a 
gBlock (IDT), and was used to replace the NmeCas9 sgRNA cassette in pLKO.1-puro plasmid 
[(Pawluk, Amrani, et al., 2016); Addgene #85715] by Gibson Assembly. The resulting plasmid 
(pEJS676) contains the CjeCas9 sgRNA cassette with BfuAI sites that can be used to insert any 
spacer of interest. Next, two previously validated guide sequences [targeting the AAVS1 locus 
(TS2 and TS6; (Kim et al., 2017)] were inserted into the CjeCas9 sgRNA expression construct, 
yielding plasmids pEJS677 and pEJS678, respectively. 

Plasmids were used to transfect HEK293T cells as previously described (Pawluk et al., 
2016). Briefly, 1.5 × 105 HEK293T cells [cultured at 37°C, 5% CO2 in DMEM + 10% FBS + 1% 
Penicillin/Streptomycin (Gibco)] were transiently transfected with 100 ng Cas9-expressing 
plasmid, 100 ng sgRNA-expressing plasmid, and 100 ng Acr plasmid. 72 h after transfection, 
cells were harvested and genomic DNA was extracted with the DNeasy Blood and Tissue kit 
(Qiagen). 50 ng genomic DNA was used for PCR amplification [High Fidelity 2× PCR Master 
Mix (New England Biolabs)] with primers flanking the targeted site. The T7 Endonuclease I 
(T7E1, New England Biolabs) digestion was performed according to the manufacturer’s 
instructions, and samples were fractionated in a 2.5% agarose/1×TAE gel, and visualized by 
ImageQuant LAS 4000.  

For GeoCas9 RNP, 20 pmol of RNP was assembled as previously described (Lin et al., 
2014) and mixed with 10 µl OMEM. The RNP was added to 10 µl of 1:10 dilution of 
Lipofectamine 2000 (Life Technologies) in OMEM and allowed to incubate at room temperature 
for 10 min before adding it to the cells. The same procedure was used to deliver the indicated 
molar ratio of AcrIIC1. For analysis of indels, genomic DNA was extracted using Quick 
Extraction Solution (Epicentre), and the DNMT1 locus was amplified by PCR. T7E1 reactions 
were conducted according to the manufacturer’s instructions and products were analyzed on a 
1.5% agarose gel stained with SYBR gold (Thermo Fisher Scientific). Guide sequences and 
primers for amplification of targeted sites can be found in the Key Resources Table. 

 
4.3.5 Filter binding 
Filter binding assays were conducted as previously described (Ma et al., 2015).  Assays were 
conducted in RNA Binding Buffer (20 mM Tris-HCl, pH 7.5, 150 mM KCl, 5 mM MgCl2, 1 mM 
DTT, 5% (v/v) glycerol, 0.01% Igepal CA-630, 10 μg ml-1 yeast tRNA, and 10 μg ml-1 BSA). 
<0.02 nM radiolabeled sgRNA was incubated with Cas9 at the specified concentration for 20min 
and loaded onto a dot-blot apparatus through Tufryn, Protran and Hybond-N+ membranes, in 
that order. The membranes were washed with 50 µL Equilibration Buffer (20 mM Tris-HCl, pH 
7.5, 150mM KCl, 5mM MgCl2, 1mM DTT, 5% glycerol) before being dried and visualized by 
phosphorimaging. Data were fit to a binding isotherm using Prism (GraphPad Software). 
 
 
4.3.6 Gel shift assays and Fluorescence polarization 
Electrophoretic mobility shift assays (EMSA) were conducted as previously described (Ma et al., 
2015). Binding reactions were conducted in 1× Binding Buffer (20 mM Tris-HCl, pH 7.5, 150 mM 
KCl, 5 mM EDTA, 5mM MgCl2, 1 mM DTT, 5% (v/v) glycerol, 50 μg ml-1 heparin, 0.01% Tween 
20, and 100 μg ml-1 BSA). Cas9 and sgRNA were incubated first for 5min at 37°C to allow for 
guide binding. Next the Cas9–sgRNA complex was diluted to the indicated concentration and a 
constant amount of 20 μM Acr was added to each sample and allowed to incubate for 10min at 
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room temperature. Radiolabeled DNA target was then added (<0.05 nM). The binding reaction 
was incubated at 37°C for 30 min at room temperature. Samples were analyzed by 6% 
polyacrylamide/0.5× TBE gel electrophoresis. Gels were dried and imaged by phosphorimaging. 
Assays were conducted in triplicate with representative gels shown. The same procedure was 
used for fluorescence polarization except that 10nM FAM labeled probe was used in place of 
the radiolabeled DNA and binding was analyzed using fluoresce polarization.  
 
4.3.7 Isothermal titration calorimetry  
Isothermal titration calorimetry was conducted as previously described (Nuñez et al., 2014b). 
Proteins were dialyzed overnight into 20 mM HEPES-NaOH, pH 7.5, 300 mM NaCl and 1 mM 
TCEP-NaOH. 100μM AcrIIC1 was titrated into the cell containing 10μM NmeCas9. Origin 
software (OriginLab) was used for baseline correction, integration and curve fitting. The KD 
reported is the mean ± standard deviation of three replicates.  
 
4.3.8 Size exclusion binding assays 
To test for binding, ~20 μM Cas9, Cas9 chimeras or Cas9 truncations were incubated with ~40 
μM of Acr or Acr–GFP. Binding was conducted in Storage Buffer (above) omitting the glycerol. 
Complexes were resolved on either a Superdex 200 10/300 (full length Cas9 and chimeras) or 
Superdex 75 10/300 (HNH domains). Fractions were analyzed on a 4–20% PAGE gel and 
stained with coomassie G-250 
 
 
4.3.9 In vivo assay of AcrIIC1 activity 
A plasmid expressing GeoCas9 targeting E. coli phage Mu was constructed from pGeoCas9-
sgRNA. This plasmid was linearized with BsaI, and DNA encoding a crRNA targeting phage Mu 
was inserted (oligos 03Lys8F and 03Lys8R). AcrIIC1 was expressed by synthesizing its gene 
(GenScript) and ligating it to vector, pCDF-1 digested with NcoI and HindII.  

The plasmid expressing the Mu-targeting GeoCas9 and the plasmid expressing WT or 
mutant AcrIIC1 were co-transformed into E.coli strain BB101 (a derivative of BL21(DE3) with a 
deletion of the slyD gene). Cells carrying both plasmids were subcultured (1:100) in LB 
containing chloramphenicol and streptomycin, grown for 2 hours, and the AcrIIC1 expression 
was induced with 0.01mM IPTG. After 3 h of induction, 200 μL of cells were mixed with top agar 
and poured onto LB agar plates containing both antibiotics, and supplemented with 200 ng/mL 
aTc (to induce GeoCas9), 0.2 % arabinose and MgSO4 (10 mM). Phage Mu lysates were 
spotted in 10-fold serial dilutions onto these plates after the top agar had hardened.  

To confirm AcrIIC1 mutant expression in E. coli, 500 µl of culture after IPTG induction 
was centrifuged, and then cells were resuspended in 100 µl SDS loading buffer. AcrIIC1 mutant 
expression was analyzed by SDS-PAGE on a 15% Tris-Tricine gel, followed by Coomassie Blue 
staining. 
 
4.3.10 Generation of AcrIIC1 mutants 
Mutations were introduced into the AcrIIC1 open reading frame, contained in the pCDF-1b-
derived plasmid by site-directed mutagenesis. For each mutation, two 40bp complementary 
primers containing the desired mutation in the center with correct sequences on both sides were 
designed (see Key Resources Table). The PCR reaction was conducted using Pfu DNA 
polymerase (ThermoScientific), followed by DpnI digestion to eliminate the wild-type plasmid. 
The resulting DNA product was used to transform E.coli Stellar cells (Clontech). Plasmids were 
isolated from streptomycin resistant colonies and all mutations were verified by sequencing. 
 
4.3.11 Crystallography  
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Crystals were obtained by hanging-drop vapor diffusion at 18°C. Purified NmeCas9 HNH 
domain was incubated with a 1.2× molar excess of AcrIIC1Nme on ice for 30 min. Complexed 
Nme HNH–AcrIIC1 was separated over a Superdex75 16/600 column in gel filtration buffer (150 
mM NaCl, 20 mM HEPES-NaOH pH 7.5, 0.5 mM TCEP-NaOH). Preliminary crystallization 
conditions were identified by sparse-matrix screen using 400 nl drops set over 70 μl reservoir 
solutions in a 96-well format (Falcon). Optimized crystals were grown in Easy-Xtal 15-well trays 
(QIAGEN) in 2 μl drops with a 1:1 ratio of protein and reservoir solution with a final protein 
concentration ~12 mg ml-1 in 200 mM ammonium sulfate, 0.1 M sodium acetate pH 4.25, and 
22% (w/v) PEG 4000. 

Crystals were further optimized by micro-seeding to improve single crystal formation. 
Crystals were looped and crushed by vortexing and optimized in 2 µL hanging drops composed 
of 0.2 µl (1:10,000) micro-seed dilution, 1 µl of 7 mg ml-1 protein complex, and 0.8 µl reservoir 
solution. Single crystals were transferred with a nylon loop to a new drop containing reservoir 
solution supplemented with 15% (v/v) glycerol as a cryoprotectant and incubated for 
approximately 30 s before flash freezing in liquid nitrogen. Native and anomalous data were 
collected under cryogenic conditions at the Lawrence Berkeley National Laboratory Advanced 
Light Source (Beamline 8.3.1). 

X-ray diffraction data were processed with XDS and AIMLESS (Kabsch, 2010) using the 
SSRL autoxds script (A. Gonzalez, Stanford SSRL). Nme HNH–AcrIIC1 crystals belonged to the 
orthorhombic space group P 21 21 21, and contained one copy of each protein in the asymmetric 
unit. Sulfur single-wavelength anomalous dispersion (S-SAD) data was collected from a single 
native crystal for experimental phase determination. Briefly, iterative data sets were collected at 
~6,000V and merged until a potential phase solution was obtained at ~90× multiplicity using 
HySS in PHENIX (Adams et al., 2010). Manual placement of a orthologous HNH domain from 
Actinomyces naeslundii was used to confirm the resulting map and allow extension of the 
correct solution to the native data processed to ~1.50Å using SOLVE/RESOLVE (Terwilliger, 
1999). The correct phase solution contained 17 sites corresponding to 16 sulfur atoms and 1 
SO4 position. The Final model was completed by iterative model building in COOT (Emsley & 
Cowtan, 2004) and before refinement with PHENIX. X-ray data for refinement were extended 
according to an I/σ resolution cut-off of ~1.0, CC* correlation, Rpim parameters, and visual 
inspection of the resulting map. 

 
4.3.12 Small-angle X-ray scattering 
Small-angle X-ray scattering (SAXS) data were collected at the SIBYLS beamline at the Lawrence 
Berkeley National Laboratory Advanced Light Source. Data of NmeCas9, NmeCas+Acr1 and 
NmeCas9+Acr3 was collected over a dilution series from 1 to 4 mg ml-1.  
Data were background-corrected in SCÅTTER (BIOISIS) before primary data processing using 
the ATSAS software package (Konarev, Petoukhov, Volkov, & Svergun, 2006). The Guinier 
region, intensity at 0 [I(0)], and radius of gyration (Rg) were calculated using PRIMUS (Konarev, 
Volkov, Sokolova, Koch, & Svergun, 2003). The P(r) distribution and maximum dimension (Dmax) 
were calculated using GNOM (Semenyuk & Svergun, 1991). Molecular weights were calculated 
from the mass parameter QR in SCÅTTER using the volume-of-correlation (Vc) and the power-
law relationship for protein (Rambo & Tainer, 2013).  
 
4.3.13 Electron microscopy 
NmeCas9-sgRNA-AcrIIC3 was cross-linked by 0.02% glutaraldehyde at room temperature for 7 
minutes. NmeCas9-sgRNA was used directly after gel filtration. All samples were diluted to a final 
concentration of ~100 nM and negatively stained in 2% (w/v) uranyl acetate solution following the 
standard deep-stain procedure on holey carbon-coated EM copper grids covered with a thin layer 
of continuous carbon (J.-J. Liu et al., 2014). Negetivly stained specimens were mounted on a 
transmission electron microscope holder and examined by a Tecnai Spirit electron microscope 
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operated at 120-kV acceleration voltage. Magnified digital micrographs of the specimen were 
taken at a nominal magnification of 49,000 on a Gatan Ultrascan4000 CCD camera with a pixel 
size of 2.18 Å at the specimen level. The defocus values used were about -1.0 to -1.5μm, and the 
total accumulated dose at the specimen was about 50 electrons per Å2. The particle 
picking and 2D analysis were performed within Appion (Lander et al., 2009). 

  
4.4 Results 
 
 4.4.1 AcrIIC1 inhibits diverse Cas9 orthologs  

Phylogenetic analysis revealed that AcrIIC1 is part of an unusually diverse family 
of Acr proteins (Figure S1A). Mirroring this diversity, the bacterial genomes containing 
AcrIIC1 include Cas9 orthologs that span a large portion of the type IIC Cas9 tree 
(Figure 1A). Based on its phylogenetic distribution, we hypothesized that AcrIIC1 would 
be more promiscuous than other Acr proteins with respect to the Cas9 orthologs it can 
inhibit. 
 To test this idea, we conducted cleavage assays using various type IIC Cas9 
orthologs previously shown to function in human cells (Esvelt et al., 2013b; Harrington, 
Paez-espino, et al., 2017; Hou et al., 2013; Kim et al., 2017). We found that in addition 
to NmeCas9, the AcrIIC1 from Neisseria meningitidis (AcrIIC1Nme) exhibits robust 
inhibition of the Cas9 proteins from Geobacillus stearothermophilus (GeoCas9) and 
Campylobacter jejuni (CjeCas9) (Figure 1B and S1B). CjeCas9 and GeoCas9 are 36% 
and 42% identical to NmeCas9 respectively and represent diverse branches of the type 
IIC Cas9 phylogeny (Figure 1A). By contrast, AcrIIC2 and AcrIIC3 were both highly 
specific for NmeCas9, having no noticeable impact on CjeCas9- or GeoCas9-catalyzed 
DNA cleavage (Figure 1B and S1B).  
To determine whether inhibition by AcrIIC1 can disable CjeCas9 in genome-editing 
applications, we transfected HEK293T cells with plasmids expressing NmeCas9, 
CjeCas9 or SpyCas9 and their respective single-guide RNAs (sgRNAs) in the presence 
or absence of a gene encoding AcrIIC1 (Figure 1C and S1C). Similar to the biochemical 
cleavage assays, we observed that in cells, CjeCas9 is inhibited by AcrIIC1 but not by 
AcrIIC3. Expressing AcrIIC1Nme or the AcrIIC1 from Brackiella oedipodis (AcrIIC1Boe) 
resulted in efficient inhibition of CjeCas9, indicating that this promiscuity is not unique to 
the AcrIIC1Nme ortholog (Figure S1C). In similar cell-based assays, we found that 
AcrIIC1 is also a potent inhibitor of GeoCas9 ribonucleoprotein complexes (RNPs) in 
mammalian cells (Figure S1D), revealing that AcrIIC1 can also function when delivered 
as an expressed protein. The robust inhibition of both CjeCas9 and GeoCas9, in 
addition to NmeCas9, suggested that AcrIIC1 exploits a conserved feature of the Cas9 
protein. 
 4.4.2 AcrIIC1 traps the DNA-bound Cas9 complex 

Acrs can potentially inhibit Cas9 proteins at multiple distinct steps including guide 
RNA binding, target DNA binding or target cleavage. To determine the step at which 
AcrIIC1 inhibition occurs, we biochemically tested each of these possible mechanisms. 
First, we measured the binding affinity of NmeCas9 for its sgRNA in the presence and 
absence of AcrIIC1 (Figure S2A) and found that RNP assembly was unaffected by 
AcrIIC1. Next, we conducted equilibrium binding measurements of NmeCas9–sgRNA to 
its target DNA. Surprisingly, we found that NmeCas9 DNA binding was unimpeded by 
the presence of AcrIIC1, indicating that AcrIIC1 selectively blocks DNA cleavage (Figure 
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S2B-C). Titrating AcrIIC1 and  AcrIIC3 in a cleavage assay revealed that both are 
capable of inhibiting NmeCas9 even at low concentrations (Figure S2D). We conducted 
end-labeled cleavage assays to determine if cutting of both the target and non-target 
DNA strands is inhibited to the same degree (Figure 2A and 2B). Here we found that 
AcrIIC1 strongly inhibits cleavage of both DNA strands but with a subtle difference in 
kinetics. Although slow cleavage of the non-target DNA strand catalyzed by the RuvC 
active site is observed, target-strand cleavage catalyzed by the HNH domain is 
undetectable. These results suggested that AcrIIC1 traps Cas9 in its DNA-bound state, 
while inhibiting DNA cleavage. We tested this hypothesis by conducting gel shift assays 
using catalytically active GeoCas9 with and without AcrIIC1. In the absence of AcrIIC1, 
GeoCas9 cleaved its DNA target substrate at concentrations above ~30 nM (Figure 2C). 
However, when AcrIIC1 was included in the reaction, Cas9 did not cleave the target 
DNA even though DNA binding was unaffected. This remarkable mechanism is distinct 
from the recently studied AcrIIA2 and AcrIIA4 anti-CRISPR proteins, which function as 
inhibitors of DNA binding by SpyCas9 (Dong et al., 2017; Shin et al., 2017). The unique 
ability of AcrIIC1 to trap Cas9 on its DNA target in a catalytically inactivate state 
effectively transforms the wild-type Cas9 into its catalytically inactive variant dCas9 
(Martin Jinek et al., 2012a). 
 4.4.3 AcrIIC1 binds to the HNH domain of Cas9 
The ability of AcrIIC1 to inhibit multiple Cas9 orthologs without preventing DNA binding 
suggested that it targets a conserved region of Cas9 involved in DNA cleavage. To 
determine which region of Cas9 interacts with AcrIIC1, we generated Cas9 truncations 
and tested their abilities to bind to AcrIIC1 using size exclusion chromatography (Figure 
3A, 3B and S3A). Although many NmeCas9 truncations were insoluble, we took 
advantage of the thermostable GeoCas9 (Harrington, Paez-espino, et al., 2017) to 
generate soluble truncations. AcrIIC1 was able to associate with GeoCas9 without 
either the REC or PAM-interacting domains (Figure 3A), leaving the two nuclease 
domains as potential interacting partners. Truncating further to remove the RuvC 
domain allowed us to identify the HNH domain as being sufficient for AcrIIC1 binding to 
Cas9 (Figure 3A, 3B and S3A). Cas9 binding to RNA and DNA has been shown to be 
independent of the HNH domain(Sternberg, LaFrance, Kaplan, & Doudna, 2015; 
Yamada et al., 2017). In line with this, complexing of GeoCas9 with AcrIIC1 revealed 
that AcrIIC1 is able to interact with Cas9 irrespective of the presence of sgRNA or 
sgRNA and target DNA (Figure S3B). To determine if AcrIIC1 interacts specifically with 
the HNH domain, we exchanged the HNH domain of a Cas9 ortholog that does not 
interact with AcrIIC1 (Actinomyces naeslundii, AnaCas9) with an ortholog that does 
(GeoCas9). Here we found that the GeoCas9 chimera containing the AnaCas9 HNH 
domain no longer bound to AcrIIC1, while the AnaCas9 with the GeoCas9 HNH domain 
substitution was able to interact with AcrIIC1 (Figure 3A, 3B and S3C). These results 
indicated that the HNH domain is the primary site of interaction for AcrIIC1.  

To examine whether this interaction also occurs with NmeCas9, we purified the 
HNH domain of NmeCas9 and tested its ability to bind to AcrIIC1 using size exclusion 
chromatography (Figure 3C). While AcrIIC1 and the HNH domain eluted at similar 
volumes in isolation, applying the two proteins to the size exclusion column together 
resulted in a large shift in elution volume, indicative of protein association. Importantly, 
the eluted HNHNme–AcrIIC1 complex remains in the included volume of the column, 
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indicating that the large shift is not due to aggregation. Further analysis of AcrIIC1 
binding to NmeCas9 by isothermal titration calorimetry (ITC) demonstrated an 
equilibrium binding affinity of AcrIIC1 6.3 ±  3.4 nM with a stoichiometry of one AcrIIC1 
for each Cas9 (Figure S3D). The HNH nuclease domain is highly conserved across all 
Cas9 proteins (Figure S3E) and controls cleavage of both strands of the target DNA 
(Dagdas, Chen, Sternberg, Doudna, & Yildiz, 2017; Sternberg et al., 2015). Although 
the Cas9 HNH nuclease domain is directly responsible for cleavage of the target strand 
of the DNA (Gasiunas et al., 2012; Martin Jinek et al., 2012a), conformational activation 
of the HNH domain is a prerequisite for activating cleavage of the non-target strand by 
the RuvC nuclease domain (Sternberg et al., 2015). The ability of AcrIIC1 to bind to the 
most conserved domain of Cas9 explains its ability to robustly inhibit related Cas9 
orthologs (Figure 1B) and its wide phylogenetic distribution (Figure 1A).  
 
 4.4.4 Structure of AcrIIC1 bound to the Cas9 HNH domain 

To better understand how AcrIIC1 has evolved to bind to multiple Cas9 proteins, 
we determined a 1.5 Å resolution crystal structure of AcrIIC1Nme bound to the HNH 
domain of NmeCas9. The overall structure shows that AcrIIC1 binds directly to the HNH 
active site (Figure 4.4A), restricting it from accessing the target DNA. AcrIIC1 binds to 
the active site interface of the HNH domain through several ionic and hydrogen-bonding 
interactions. Critically, the HNH domain active site residues H588 and D587 hydrogen 
bond to AcrIIC1 residue S78 and to the backbone amine of C79, respectively (Figure 
4.4B), possibly excluding the divalent cation necessary for target-strand DNA cleavage 
(Martin Jinek et al., 2012a). Mapping amino acid conservation onto the structure 
revealed that residues within the binding interface of both the HNH domain and AcrIIC1 
are highly conserved (Figure 4.4D, S4A, S4B). In contrast to this observed 
conservation, antagonistic binding interfaces often evolve rapidly, leading to lower 
conservation (Franzosa & Xia, 2011), suggesting that AcrIIC1 is targeting a highly 
conserved surface in order to limit the chance for the host to escape inhibition. 

Comparative structural homology searches of AcrIIC1 against protein structure 
databases using DALI and Vast revealed that AcrIIC1 adopts a novel protein fold (Holm 
& Laakso, 2016). The β1β2β3α1α2β4β5 fold of AcrIIC1 comprises a five-stranded beta 
bundle interspaced by two alpha-helices. The beta bundle is the conserved core feature 
found in all AcrIIC1 orthologs while the internal loops connecting beta-strands and 
alpha-helices vary in length and composition across species (Figure 4.10B). All of the 
HNH-interacting residues occur within these variable loop regions, revealing how 
AcrIIC1 can evolve to target divergent HNH domains without compromising structural 
integrity.  

For AcrIIC1 to effectively prevent Cas9 from cleaving the invading viral DNA, it 
must remain bound to the HNH domain for extended periods of time. This stable 
interaction is in part accomplished by multiple charged residues around the periphery of 
the active site that form an additional five hydrogen bonds with AcrIIC1 (Figure 4.10C). 
Interestingly, some interactions target conserved residues present in diverse Cas9 
orthologs and other interactions appear to have evolved to target specific species. For 
example, S78 and E81 of AcrIIC1Nme interact with the highly conserved catalytic 
residues H588 and N616 of the HNHNme domain, respectively. By contrast, AcrIIC1Nme 
residue D14 and the backbone carbonyl of P39 interact with K551 and K549 of 
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NmeCas9, which are mutated to a serine and glycine in AnaCas9. To assess the 
importance of individual amino acids for the biological function of AcrIIC1, we 
established an in vivo anti-CRISPR activity assay in E. coli. Plasmid-mediated 
expression of GeoCas9 and an sgRNA designed to target E. coli phage Mu (Morgan, 
Hatfull, Casjens, & Hendrix, 2002) led to a reduction in the plaquing efficiency of this 
phage by approximately 106-fold (Figure 4.4C). Co-expression of wild-type AcrIIC1 
restored the full plaquing activity of phage Mu, implying that that GeoCas9 was 
completely inhibited by the anti-CRISPR. By contrast, the S78A mutant displayed very 
little anti-CRISPR activity in this assay as phage Mu plaquing in the presence of this 
mutant was barely above background (Figure 4.4C and 4.10D). Substitutions of other 
residues positioned in the HNH:AcrIIC1 interaction interface, such as M76 and E81, 
caused more modest reductions in anti-CRISPR activity (Figure 4.10D) while 
substitution of other interface residues caused no reduction in biological activity. 
Importantly, all mutant proteins were expressed at the same level as wild-type (Figure 
4.10E). AcrIIC1 interacting residues on the active site interface of the NmeCas9 HNH 
domain closely align with those on the same interface of S. aureus Cas9 (SauCas9), but 
diverge from equivalent residues in SpyCas9 and AnaCas9 mainly near the N-terminus 
of the HNH domain (Figure 4.11A). Together with this structure, the high degree of 
structural similarity between the HNH domains of these species will enable rational 
engineering of AcrIIC1 to target specific Cas9 orthologs of interest.  

Investigation of Cas9 target recognition and cleavage has uncovered several 
checkpoints along the interference pathway that ensure cleavage of the correct DNA 
sequence (Sternberg et al., 2015). The best understood of these checkpoints is 
mediated by the HNH domain, which undergoes a large rotation and translation to 
cleave the target DNA only when sufficient complementarity to the guide RNA is sensed 
(Dagdas et al., 2017; Sternberg et al., 2015). The structure presented here suggests 
that AcrIIC1 exploits one checkpoint in this process to ensure inhibited cleavage of both 
the target and non-target DNA strands. When modeled into a Cas9–sgRNA complex 
bound to dsDNA (Fuguo Jiang et al., 2016), AcrIIC1 sterically blocks the HNH domain 
from rotating into position above the scissile phosphate (Figure 4.4E and Figure 4.11B). 
We propose that the inability to correctly dock the HNH domain in the presence of 
AcrIIC1 inhibits RuvC cleavage of the non-target strand, explaining how a small protein 
that allows dsDNA engagement can still inhibit the two separate nucleases of Cas9. 
 
 4.4.5 AcrIIC3 blocks DNA binding and induces NmeCas9 dimerization 

In contrast to AcrIIC1, AcrIIC3 has few natural orthologs and is found only in 
Neisseria. In HEK293T cells, expression of AcrIIC3 leads to the inability of dNmeCas9 
to localize to a genomic target (Pawluk, Amrani, et al., 2016), suggesting that AcrIIC3 
prevents NmeCas9 from binding to DNA. We tested this biochemically using 
fluorescence polarization, which detected a ~10 fold decrease in equilibrium DNA 
binding affinity of NmeCas9 in the presence of AcrIIC3 (71 ± 13.4 nM without AcrIIC3 
versus 859 ± 149 nM with AcrIIC3) (Figure 4.5A). This reduced but not abolished 
binding affinity of NmeCas9 for DNA in the presence of AcrIIC3 may indicate that 
NmeCas9 can still interact with the PAM region of the DNA, but cannot achieve 
complete R-loop formation (Mekler, Minakhin, & Severinov, 2017).  
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After incubating NmeCas9 and AcrIIC3 together we noted a large shift in elution 
volume by size exclusion chromatography (SEC) compared to either AcrIIC1-bound 
NmeCas9 or NmeCas9 alone (Figure 4.5B). This large shift suggested either a 
substantial conformational change or oligomerization of Cas9. Analysis of the fractions 
by small-angle X-ray scattering (SAXS) revealed that the AcrIIC3-bound NmeCas9 
increased in size relative to NmeCas9 alone or NmeCas9–AcrIIC1, as indicated by an 
elongated pair distance distribution, increased radius of gyration (Rg) and volume of 
correlation (Vc) (Figure 4.5C, Figure 4.12A). Using the power-law relationship for protein 
SAXS (Rambo & Tainer, 2013), we estimated the mass of NmeCas9 alone and AcrIIC1-
bound NmeCas9 to be ~110kDa, a slight underestimate of the theoretical masses of 
124kDa and 137kDa, respectively. In contrast, the estimated mass of AcrIIC3-bound 
NmeCas9 was ~210kDa. Together, our solution studies suggest that AcrIIC3 induces 
dimerization of NmeCas9, possibly contributing to its ability to block DNA binding. 
Analysis of AcrIIC3 alone by SEC and native mass spectrometry suggested that this Acr 
is monomeric in solution (Figure 4.12B and S6C), although dimerization of two AcrIIC3 
monomers upon binding to NmeCas9 is possible.  

To visualize the dimerization of NmeCas9, we examined NmeCas9 and AcrIIC3-
bound NmeCas9 using electron microscopy. Although the protein interaction surfaces 
could not be identified due to limited resolution, an overall shape of the AcrIIC3-bound 
NmeCas9 complex can be observed in the 2D class averages (Figure 4.5D). To obtain 
better-resolution 2D class averages, the particles were cross-linked to reduce the 
flexibility of the NmeCas9–sgRNA complex and reduce dissociation of the dimer. These 
data reveal an overall symmetrical complex with dimensions consistent with tw o Cas9 
proteins (Figure 4.5D). Cas9 inhibition by AcrIIC3-induced dimerization is consistent 
with the independent evolution of Acrs that act by diverse mechanisms.  
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Figure 4.1 AcrIIC1 inhibits diverse Cas9 orthologs while AcrIIC2 and AcrIIC3 are highly 
specific  
(A) Unrooted phylogenetic tree of Cas9. Cas9 orthologs targeted by Acrs are indicated with 
circles at ends of branches (closed circles, Cas9 orthologs naturally targeted by an Acr; open 
circles, Cas9 orthologs which have been shown experimentally to be inhibited by an Acr but 
without naturally occurring AcrIIC1 orthologs). For branches containing multiple Acrs of a given 
type only one circle is shown for simplicity (phylogeny adapted form (Burstein, Harrington, 
Strutt, & Probst, 2017). 
(B) DNA cleavage assays conducted by various Cas9 orthologs in the presence of AcrIIC1, 
AcrIIC2 and AcrIIC3. (–Cas9, no Cas9 added; +Cas9, Cas9 and sgRNA added; Cje, 
Campylobacter jejuni; Nme, Neisseria meningitidis; Geo, Geobacillus stearothermophilus; Spy, 
Streptococcus pyogenes).  
(C) (Left) Cartoon depicting experiment to test inhibition of Cas9 orthologs by AcrIIC1 in 
HEK293 cells. (Right) T7E1 assay analyzing indels produced by CjeCas9 and NmeCas9 shows 
that CjeCas9 genome editing is inhibited by AcrIIC1Nme but not AcrIIC3Nme. See also Figure 4.7.  
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Figure 4.2 AcrIIC1 traps the DNA-bound Cas9 complex  
(A) Cartoon of Cas9-mediated double-stranded DNA cleavage. Guide RNA (black) is duplexed 
to the DNA target strand (red), which is splayed from the DNA non-target strand (blue) adjacent 
to the PAM sequence (yellow). The HNH and RuvC nuclease domains (black triangles) cleave 
the target strand and non-target strand, respectively.  
(B) Radiolabeled cleavage assays conducted using GeoCas9 to measure AcrIIC1 inhibition of 
cleavage on the target and non-target strands. Cas9–sgRNA RNP was complexed with or 
without AcrIIC1 and added to radiolabeled target DNA duplex with each strand labeled 
separately. The lanes for a given condition correspond to increasing time (0-30min) from left to 
right. Black triangles indicate cleavage products.  
(C) Analysis of GeoCas9 binding and cleavage in the presence or absence of AcrIIC1 analyzed 
on a non-denaturing gel with the non-target strand labeled. GeoCas9 RNP concentration was 
varied in the absence or presence of excess AcrIIC1. The top band corresponds to GeoCas9 
bound to the target DNA, the middle band is free DNA, and the lower band is cleaved DNA 
(concentration series correspond to 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512nM of GeoCas9 
RNP). See also Figure 4.8. 
 

Figure 4.3 AcrIIC1 binds to Cas9 HNH domain  
(A) Domain schematics of GeoCas9 truncations and Cas9 chimeras, designed to identify the 
Cas9 binding interface of AcrIIC1. Constructs 1-10 were incubated with AcrIIC1, fractionated 
over an S200 size-exclusion column and analyzed by SDS-PAGE. Constructs that bound to 
AcrIIC1 are indicated with a (+) and constructs that showed no interaction are indicated with a (-
). The chimeric Cas9 proteins (7-10) were generated by switching the HNH domains of a Cas9 
that is not inhibited by AcrIIC1 (AnaCas9) and a Cas9 that is inhibited (GeoCas9).  
(B) Fractions from the S200 runs in Figure 4.9A were separated on a 4-20% SDS-PAGE gel. 
Numbers above the gel correspond to the construct or chimera numbers from Figure 4.2A. 
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(C) Elution from an S75 size exclusion column of NmeCas9 HNH domain (purple), AcrIIC1 
(orange) or the two incubated together with 2-fold excess AcrIIC1(red). See also Figure 4.9. 

 
Figure 4.4 Structure of AcrIIC1 bound to the NmeCas9 HNH domain 
(A) (Top) Cartoon depiction of NmeCas9 (grey) bound to a guide RNA (black.) The black outline 
of the HNH domain (purple) indicates the binding interface to AcrIIC1. (Bottom) Crystal structure 
of NmeCas9 HNH domain bound to AcrIIC1 (PDB:5VGB). Catalytic residues are depicted as 
sticks. 
(B) Occlusion of HNH active site residues (purple) through hydrogen bonding with AcrIIC1 
(orange). HNH catalytic residues H588 and D587 form hydrogen bonds (black dotted line) with 
S78 and the backbone amine of C79 of AcrIIC1, respectively. 2mFo-DFc electron density map is 
shown for interacting residues and contoured at 1.8 s. 
(C) Plaquing of E. coli phage Mu targeted by GeoCas9 in the presence of wild-type AcrIIC1 or 
the S78A AcrIIC1 mutant. Mutation of S78A results in nearly complete inactivation of AcrIIC1’s 
inhibitory effect on GeoCas9.  
(D) Binding interfaces of NmeCas9 HNH domain and AcrIIC1 show residue conservation. 
Conservation was calculated using multiple sequence alignments of AcrIIC1 orthologs and Cas9 
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HNH domains. Conserved residues are colored red (1, 100% sequence identity) and non-
conserved residues are colored white (0).  
(E) Model of AcrIIC1 inhibiting cleavage of both target and non-target strands. NmeCas9 HNH 
domain (purple) was modeled into a “docked” position using dsDNA-bound SpyCas9 structure 
(PDB: 5F9R) as a reference for a homology model of NmeCas9. Placement of AcrIIC1 (orange) 
between the HNH domain and the target strand (red) prevents target cleavage and activation of 
the RuvC domain for non-target strand (dark blue) cleavage. See also Figure 4.10, 11 and 
Table 4.1. 
 

 
Figure 4.5 AcrIIC3 blocks DNA binding and dimerizes Cas9 
(A) Equilibrium binding measurements of NmeCas9 to dsDNA using fluorescence polarization in 
the presence (blue) or absence (black) of AcrIIC3. Measurements were made in triplicate and 
the mean +/- S. D. is shown.  
(B) Elution from a Superdex 200 10/300 size exclusion column for NmeCas9 (black), 
NmeCas9+AcrIIC1 (orange), and NmeCas9+AcrIIC3 (blue) showing a large shift in elution 
volume for NmeCas9-AcrIIC3, indicative of oligomerization. 
(C) SAXs data for fractions collected from samples in (C). (Left) pair-distance distribution 
function for NmeCas9 alone (black), with AcrIIC1 (orange) or with AcrIIC3 (blue), indicating 
increased particle size upon AcrIIC3 binding. (Rg, radius of gyration; Vc, volume of correlation; 
Dmax, maximum dimension.) 
(D) 2D class averages of NmeCas9-sgRNA monomers (left) and NmeCas9-sgRNA bound to 
AcrIIC3 (right). Scale bar is 10nm. See also Figure 4.8 and 4.10. 
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Figure 4.6 Model of AcrIIC1 and AcrIIC3 inhibition of Cas9  
 
Cas9 assembles with its guide RNA to form the search complex. Phage encoded AcrIIC1 
(orange) binds to Cas9, still allowing target dsDNA binding but occluding the HNH (purple) 
active site, and stopping cleavage of the target strand. AcrIIC1 also conformationally restricts 
HNH docking, stopping cleavage on the non-target strand. For AcrIIC3 (blue), Cas9’s target 
DNA binding is inhibited and Cas9 is caused to dimerize. 
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Figure 4.7 AcrIIC1 inhibits diverse Cas9 orthologs, while AcrIIC2 and AcrIIC3 are highly 
specific, related to Figure 4.1.  
(A) Unrooted phylogenetic tree of AcrIIC1.  
(B) Kinetic measurement of DNA cleavage mediated by GeoCas9 in the presence or absence of 
type IIC Acrs.  
(C) Genome editing mediated by NmeCas9, SpyCas9 and CjeCas9 in the presence of various 
Acrs. Human (HEK293T) cells were transfected with plasmids expressing NmeCas9, SpyCas9, 
or CjeCas9, along with cognate, previously validated sgRNAs targeting genomic sites. T7E1 
digestion was used to detect editing. A Type I anti-CRISPR (AcrE2) was used as a negative 
control for inhibition. As reported previously, NmeCas9 genome editing (upper panel) was 
inhibited by AcrIIC1Boe, AcrIIC1Nme, and AcrIIC3Nme; full inhibition by AcrIIC2Nme in human cells 
generally requires higher amounts of cotransfected expression plasmid. Inhibition of SpyCas9 
genome editing (middle panel) was observed only with AcrIIA4Lmo (Rauch et al., 2017). In 
contrast, CjeCas9 editing activity (bottom panel) was inhibited by AcrIIC1Boe and AcrIIC1Nme, but 
not by any of the other anti-CRISPRs.  
(D) GeoCas9 RNP mediated editing of HEK293T cells in the presence and absence of AcrIIC1. 
Indels were analyzed by T7E1 digestions. 
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Figure 4.8 Impact of AcrIIC1 and AcrIIC3 on Cas9 RNA and DNA binding, related to 
Figures 4.2 and 4.5. (A) Filter-binding assays measuring the affinity of NmeCas9 to its guide in 
the presence and absence of AcrIIC1. Radiolabeled sgRNA was incubated with NmeCas9 in the 
presence (orange) or absence (black) of AcrIIC1. NmeCas9–sgRNA RNP formation was 
measured using a filter binding assay and fraction sgRNA bound was calculated and plotted 
against NmeCas9 concentration. When incubated with Cas9 prior to sgRNA binding, AcrIIC1 
does not inhibit RNP formation.  
(B) Equilibrium binding measurements of NmeCas9–sgRNA binding to dsDNA in the presence 
and absence of AcrIIC1, measured by fluorescence polarization.  
(C) Equilibrium binding measurements of SpyCas9 in the presence and absence of AcrIIC3, 
related to Figure 4.5D.  



 62 

 
Figure 4.9 AcrIIC1 Binds to the Cas9 HNH domain, related to Figure 4.3. 
(A) Superdex 200 10/300 traces of truncations used to identify the binding interface of AcrIIC1. 
Each trace included the indicated GeoCas9 truncation and excess AcrIIC1. Black asterisks 
indicate the fractions analyzed in Figure 4.3B. For construct #4 (REC lobe), multiple peaks 
resulted from bound contaminating nucleic acid species from the purification and both peaks 
were pooled and analyzed together. 
(B) Superdex 200 10/300 traces for GeoCas9 complexed with the components indicated in the 
top right. Fractions indicated with asterisk were analyzed on SDS-PAGE (upper gel) gel and 
denaturing urea PAGE gel (lower gel) and components were added in the order listed.  
 (1, Apo GeoCas9; 2, GeoCas9 +AcrIIC1; 3, GeoCas9+sgRNA+AcrIIC1; 4, 
GeoCas9+sgRNA+DNA+AcrIIC1).  
(C) (top) HNH domains between GeoCas9 (orange) and AnaCas9 (yellow) were swapped to 
create chimeric Cas9 proteins. AcrIIC1 was fused with GFP (to more easily visualize a change 
in elution volume once bound to Cas9) and run over a S200 size-exclusion column. Additionally, 
AcrIIC1–GFP detection at a wavelength of 495 nm offers another indication of change in 
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AcrIIC1 elution volume. (bottom) SDS-PAGE gradient gel (4–20%) with protein samples from 
S200 elution peaks of chimeric Cas9 proteins incubated with AcrIIC1.  
(D) Representative ITC trace for AcrIIC1 binding to the NmeHNH domain.  
(E) Conservation of Cas9 mapped onto the approximate domain boundaries below using a non-
redundant list of Cas9 orthologs from all Cas9 subtypes. HNH is highlighted in purple. Bar 
heights are proportional to protein identity, with yellow bars indicating highly conserved 
residues. 

 
Figure 4.10 Alignment of HNH domains and AcrIIC1 orthologs and structure of AcrIIC1–
HNH, related to Figure 4.4 
(A) A multiple sequence alignment of selected HNH-domains. The multiple sequence alignment 
was generated using the extracted HNH domains of 6 Cas9 orthologs and the restriction 
enzyme from Pseudoaltermonas lipolytica (RE_HNH). Red boxes surround catalytic residues 
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and black asterisks indicate catalytic residues involved in AcrIIC1 binding. Blue boxes surround 
other residues involved in AcrIIC1 interaction. 
(B) A multiple sequence alignment of AcrIIC1 using 11 AcrIIC1 orthologs. Highest degree of 
conservation occurs within a beta barrel (marked by a grey arrow). Red boxes surround 
selected residues involved in the binding between the NmeCas9 HNH domain and AcrIIC1Nme. 
Red asterisks indicate AcrIIC1 residues that interact with the backbone of HNH. Black asterisks 
indicate AcrIIC1 residues that interact with catalytic residues of the HNH domain. 
 (C) Charged residues (depicted as sticks) surrounding the active site of the HNH domain 
(purple) form ionic and hydrogen binding interactions (depicted as dotted black lines) with 
AcrIIC1 (orange). 
(D) Fold reduction in phage titer in response to GeoCas9 targeting of phage Mu in the presence 
of AcrIIC1 mutants. One representative plate is shown for each mutant tested. 10-fold serial 
dilutions of phage Mu lysate were spotted lawns of bacteria expressing the indicated AcrIIC1 
mutant. The fold reductions shown in the bar graph were qualitatively evaluated from inspecting 
three replicates of each experiment.  
(E) SDS-PAGE gel showing the expression levels of WT and mutant AcrIIC1s used for 
experiments in panel D. The approximate mass of AcrIIC1 is indicated on the right (ev, empty 
vector; E2, AcrIE2).  
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Figure 4.11 Conservation of the Cas9 HNH domain in the context of full length Cas9, 
related to Figure 4.4.  
(A) Crystal structure of NmeCas9 HNH domain bound to AcrIIC1 (PDB: 5VGB). The HNH is 
rotated 90˚C to show the active site interface with labeled residues (depicted as sticks) involved 
in AcrIIC1 binding. (Bottom) Crystal structures of the HNH domains from three Cas9 orthologs 
(Staphylococcus aureus, PDB: 5CZZ; Streptococcus pyogenes, PDB: 4CMP; Actinomyces 
naeslundii, PDB: 4OGE). RMSD values were generated using super alignment in PyMol. 
Comparison of crystallized Cas9 orthologs reveals strong similarity between AcrIIC1 interacting 
residues of NmeCas9 and SauCas9 HNH domains. 
(B) (Left) Model of AcrIIC1 inhibiting cleavage of both target and non-target strands. NmeCas9 
HNH domain (purple) was modeled into a “docked” position using the dsDNA-bound SpyCas9 
structure (PDB: 5F9R) as a reference. Placement of AcrIIC1 (orange) between the HNH domain 
and the target strand (red) prevents target cleavage and activation of the RuvC domain for non-
target strand (dark blue) cleavage. The black box shows a zoomed-in view of the NmeHNH-
AcrIIC1 complex. (Right) Model of AcrIIC1 clashing with the RuvC domain when the HNH 
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domain is in an “undocked” conformation. NmeCas9 HNH was placed in a undocked 
conformation using a GeoCas9 Phyre model as a reference. Placement of AcrIIC1 indicates 
steric clashing with the RuvC domain, indicating that binding of AcrIIC1 to the HNH domain 
must position the HNH domain between the docked and undocked position. The black box 
shows a zoomed-in view of the HNHNme-AcrIIC1Nme complex. 

 
Figure 4.12 AcrIIC3 is monomeric and dimerizes NmeCas9, related to Figure 4.5.  
(A) Small-angle X-ray scattering (SAXS) curves of NmeCas9, NmeCas9+AcrIIC1 and AcrIIC3.  
(B) Analysis of AcrIIC1 (yellow, top) and AcrIIC3 (blue, below) on a Superdex 200 10/300 size 
exclusion column.  
(C) Native mass spectrometry of AcrIIC3. The estimated masses from deconvoluting the charge 
series are identified in the top right corner.  
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 Nme HNH : Acr1 Nme HNH: Acr1 
(S-SAD) 

 

Data collection    
Space group P 212121 P 212121  

Cell dimensions    
a, b, c (Å) 46.16, 60.49, 77.32 46.25, 60.45, 77.32  
α, β, γ (°) 90, 90, 90 90, 90, 90  

Wavelength  1.11583  2.06633  
Resolution (Å) a 39.64–1.50 (1.55–1.50) 39.69–2.76 (2.92-2.76)  

Rmerge (%) 8.1 (195.2) 15.5 (52.6)  
Rpim (%) 4.4 (1.2) 1.6 (12.4)  

I/σ 13.25 (0.97) 34.5 (5.2)  
CC1/2 1.0 (0.48) 1.0 (0.81)  

Completeness (%) 99.0 (100.0) 98.1 (87.1)  
Redundancy 6.3 (6.0) 90.1 (18.3)  

    
Refinement    

Resolution (Å) 39.64–1.50   
No. reflections    

Total 228,832   
Unique 35,654   
Free (%) 5   

Rwork/Rfree 16.4 / 20.9   
No. atoms    

Protein 1930   
Ligands/ion 23 (Glycerol, SO4)   

Water 145   
Average B-factors (Å2)    

Protein 29.6   
Ligand/ion 51.6   

Water 37.6   
R.m.s deviations    
Bond lengths (Å) 0.006   
Bond angles (º) 0.82   
Ramachandran    

Favored (%) 98.3   
Allowed (%) 1.3   
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Outliers (%) 0.4   
A single crystal was used for both the Native and S-SAD data sets 
aValues in parentheses are for the highest resolution shell. 
Table 4.1. Data collection and refinement statistics, related to Figure 4.4. 

4.5 Discussion 
  

We investigated the functions of two anti-CRISPR proteins, AcrIIC1 and AcrIIC3, and 
found that they block Cas9 activity by distinct mechanisms (Figure 4.6). AcrIIC1, an 85 amino 
acid protein, inactivates a wide range of type IIC Cas9 orthologs by binding to and 
conformationally restraining the conserved HNH domain. The direct interaction with essential 
catalytic residues of the HNH domain limits the opportunity for Cas9 to mutate and escape 
inhibition by AcrIIC1, explaining the phylogenetic propagation of this inhibitor to target multiple 
Cas9 orthologs. Intriguingly, AcrIIC1 traps Cas9 in an inactive but DNA-bound state, effectively 
converting wild-type Cas9 into a catalytically inactive dCas9. In contrast, the 116-amino acid 
AcrIIC3 binds specifically to the NmeCas9 enzyme to trigger dimerization and prevent DNA 
binding. Both of these mechanisms are different from that of the anti-CRISPR protein AcrIIA4, 
which acts as a DNA mimetic that prevents DNA binding by occupying the PAM-recognition site 
within a small subset of related type IIA Cas9 orthologs (Dong et al., 2017; Shin et al., 2017). 

The CRISPR inhibition mechanisms determined in this study concur with two general 
strategies observed previously for blocking interference proteins in both type I and type II CRISPR 
systems. The first and most common mechanism is to target the CRISPR surveillance complex 
by disrupting DNA binding (AcrIIC3, AcrIIA4, AcrF1, AcrF2; (Bondy-Denomy et al., 2015; 
Chowdhury et al., 2017; Dong et al., 2017; Pawluk et al., 2016b; Rauch et al., 2017; Shin et al., 
2017). The second is to target nucleases or nuclease domains, thereby allowing DNA binding but 
not cleavage (AcrIIC1, AcrF3; (Bondy-Denomy et al., 2015; Wang et al., 2016). Of the currently 
studied Acrs, the strategy of inhibiting crRNA assembly with Cas proteins has yet to be found. 
The absence of this mechanism is possibly because this strategy would be unable to interfere 
with CRISPR nucleases that were assembled prior to infection. Nonetheless, many CRISPR 
systems are tightly regulated and are often activated in response to cell density and other factors 
(Høyland-Kroghsbo et al., 2016; Patterson et al., 2016, 2017). Inhibition of crRNA binding could 
be an effective Acr method to inhibit those systems where RNP assembly coincides with phage 
infection, and such inhibitors may yet be discovered. Moreover, only Acrs that target CRISPR 
interference proteins have been found, despite the fact that the methods currently used to identify 
Acrs are capable of finding inhibitors of spacer acquisition and crRNA processing. Nonetheless, 
it is likely that in cases where interference proteins are linked to other steps in CRISPR adaptive 
immunity, such as acquisition for type IIA Cas9 or RNA processing for Cas12a, such Acrs exist 
(Fonfara et al., 2016; Heler et al., 2015; Wei et al., 2015).  

The mechanism of HNH domain binding by AcrIIC1 is particularly interesting for several 
reasons. First, the high structural similarity of the Cas9 HNH domain across Cas9 orthologs 
implies that AcrIIC1-type inhibitors may be more widespread than current analysis has identified. 
There also may be other Acrs that have converged on this mechanism. Second, type IIC Cas9 
orthologs are capable of tracrRNA- and PAM-independent DNA cleavage of single stranded DNA 
catalyzed by the HNH-domain (Ma et al., 2015; Zhang et al., 2015). In addition to inhibition of 
double-stranded DNA cleavage, AcrIIC1 would also be able to inhibit this single-stranded 
cleavage activity, whereas inhibitors of PAM binding such as AcrIIA4 may not be able to. Third, 
the fact that AcrIIC1 traps Cas9-guide RNA complexes in a catalytically inactive but DNA-bound 
state is consistent with additional roles for this inhibitor that include gene regulation rather than 
genome protection. Notably, efforts to engineer regulatory forms of Cas9 have utilized dCas9, a 
catalytically inactive mutant of the enzyme that retains RNA-programmed DNA binding activity. It 
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would be exciting to determine whether bacteria natively employ AcrIIC1 to repurpose Cas9 as a 
gene regulator in cells. Whether or not this occurs in nature, it is an enticing possibility that AcrIIC1 
can be employed in gene editing applications to obviate the need to generate separate dCas9 
enzymes for gene regulatory purposes (Gilbert et al., 2014; Mali et al., 2013; Qi et al., 2013). 
Finally, we note that the HNH fold is not unique to Cas9 but is in fact common to many bacterial 
restriction enzymes (Vasu and Nagaraja, 2013). This raises the possibility that in addition to 
targeting CRISPR-based adaptive immunity, AcrIIC1 also inhibits restriction enzymes. In line with 
this hypothesis, we observed that no Cas9 ortholog is present in Pseudoaltermonas lipolytica 
despite the presence of an AcrIIC1. A blastp search of the P. lipolytica genome for Cas9 revealed 
an HNH restriction enzyme with homology to the Cas9 HNH domain (20% sequence identity of 
HNH domains). It may be that AcrIIC1 has evolved to inhibit both adaptive (CRISPR) and innate 
(restriction) immune systems by targeting this conserved protein domain. 

Given the rapid evolution and resourcefulness of phage, it is likely that Acrs are much 
more widespread than is currently known. As the toolbox of proteins used to edit genomes 
continues to expand to include other Class 2 CRISPR systems, discovery of new Acrs can serve 
as potent tools to control these new systems. Continued analysis of the abundance of Acrs as 
well as their mechanisms will provide unique opportunities to regulate and disable CRISPR 
systems, and in the process illuminate the influence of Acrs on CRISPR diversity. 
 
 
4.6 Acknowledgements  
 
We thank G. Meigs and the 8.3.1 beamline staff at the Advanced Light Source for assistance 
with data collection and members of the Doudna laboratory for comments and discussions. The 
8 .3.1 beamline is supported by UC Office of the President, Multicampus Research Programs 
and Initiatives grant MR-15-328599 and Program for Breakthrough Biomedical Research, which 
is partially funded by the Sandler Foundation. J.A.D. is an Investigator of the Howard Hughes 
Medical Institute. This research was supported in part by the Allen Distinguished Investigator 
Program, through The Paul G. Allen Frontiers Group, the National Science Foundation (MCB-
1244557 to J.A.D.), the National Institutes of Health (GM115911 to E.J.S.) and the Canadian 
Institutes of Health Research (MOP-130482 to A.R.D and MOP-136845 to K.L.M.). L.B.H., 
K.W.D. and J.S.C. are supported by US National Science Foundation Graduate Research   

 
4.7 Author Contributions  
 

L.B.H., K.W.D., E.M., K.L.M, J.A.D. and A.R.D. designed experiments. L.B.H, A.E., 
N. A., and E.J.S. designed and performed cell-based assays. L.B.H, K.W.D., J.S.C. and 
J.C.C. purified proteins. L.B.H. designed and purified RNA and DNA substrates. L.B.H 
and E.M conducted in vitro cleavage and binding experiments. K.W.D and E.M. 
assembled complex and set trays for protein crystallization. K.W.D and L.B.H acquired 
diffraction data. P.J.K. and K.W.D. determined the experimental phases of 
crystallographic data and traced the initial models and K.W.D. completed model building. 
L.B.H. and G.J.K. conducted and analyzed SAXS experiments. J. L. conducted electron 
microscopy experiments. A.R.D, K.L.M and B.G. designed and executed phage plaquing 
experiments. L.B.H, K.W.D, and J.A.D. wrote the manuscript. All authors revised and 
agreed to the final manuscript. 
 
 



 70 

Chapter 5 
 
 
 
 
 
 
 
 
 
 
 

New CRISPR-Cas Systems from 
Uncultivated Microbes 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Part of the work presented in this chapter has previously been published in the 
following manuscript: Burstein, D.*, Harrington, L. B.*, Strutt, S. C.*, & Probst, A. J. 
(2017). New CRISPR-Cas systems from uncultivated microbes. Nature Publishing 
Group, 542(7640), 237–241. 
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5.1 Abstract 
 
 CRISPR-Cas adaptive immune systems have revolutionized genome 
engineering by providing programmable enzymes capable of site-specific DNA 
cleavage. However, current CRISPR-Cas technologies are based solely on systems 
from cultured bacteria, leaving untapped the vast majority of enzymes from organisms 
that have not been isolated. Here, using cultivation-independent genome-resolved 
metagenomics, we identified new CRISPR-Cas systems, including the first reported 
Cas9 in the archaeal domain of life. This divergent Cas9 enzyme was found in little-
studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we 
discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which 
are among the most streamlined systems yet identified. Notably, all required functional 
components were identified by metagenomics, enabling validation of robust in vivo 
RNA-guided DNA interference activity in E. coli. Interrogation of environmental microbial 
communities combined with in vivo experiments allows access to an unprecedented 
diversity of genomes whose content will expand the repertoire of microbe-based 
biotechnologies. 
 
5.2 Introduction 
 

The sequencing of microbial genomes provides access to a large inventory of 
microbial genes, many of which encode hypothetical proteins or RNAs of undetermined 
function. The CRISPR-Cas system, an example of a pathway that was unknown to 
science prior to the DNA sequencing era, is now understood to confer bacteria and 
archaea with acquired immunity against phage and viruses1,2. CRISPR-Cas systems 
consist of Cas proteins that are involved in acquisition, targeting and cleavage of foreign 
genetic material, and a CRISPR array comprising direct repeats flanking short spacer 
sequences that guide Cas complexes to their targets. Class 2 CRISPR-Cas systems are 
streamlined versions in which a single Cas protein bound to RNA is responsible for 
recognizing and cleaving a targeted sequence3,4. The programmable nature of these 
minimal systems has enabled their use as a versatile technology that is broadly 
revolutionizing biology and clinical medicine5. 

Metagenomics, the sequencing of DNA extracted from natural microbial 
communities, provides access to the genetic material of organisms that have never been 
studied in the laboratory. Metagenomic reads are assembled into contiguous DNA 
sequences (contigs) and the contigs clustered into genome bins6. The resulting genomes 
encode an enormous variety of proteins for which functional insights are lacking7,8. Since 
this approach offers an opportunity to investigate both microbial defense systems and the 
entities they target (e.g., phage and plasmids) it is ideal to explore both diversity and 
evolution of CRISPR-Cas systems. Here, we analyzed terabase-scale metagenomic 
datasets, seeking class 2 CRISPR-Cas systems that are not represented among cultured 
organisms. We searched for large uncharacterized genes in proximity to a CRISPR array 
and cas1, the universal CRISPR integrase9–11, in a dataset of more than 155 million 
proteins from groundwater, sediment, acid mine drainage biofilms, soil, infant gut, and 
other microbial communities. We identified the first Cas9 proteins in domain Archaea, and 
discovered in uncultivated bacteria two new CRISPR-Cas systems, which we refer to as 
CRISPR-CasX and CRISPR-CasY (Fig. 5.1). Notably, both the archaeal Cas9 and CasY 
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are encoded exclusively in the genomes of organisms from lineages with no known 
isolated representatives. 
 
5.3 Materials and Methods 
 
3.3.1 Metagenomics and metatranscriptomics 

Metagenomic samples from three different sites were analyzed: (1) Acid mine 
drainage (AMD) samples collected between 2006 and 2010 from the Richmond Mine, 
Iron Mountain, California42,43 (2) Groundwater and sediment samples collected 
between 2007 and 2013 from the Rifle Integrated Field Research (IFRC) site, adjacent 
to the Colorado River near Rifle, Colorado7,29. (3) Groundwater collected in 2009 and 
2014 from Crystal Geyser, a cold, CO2-driven geyser on the Colorado Plateau in 
Utah44. 
 

For the AMD data, DNA extraction methods and short read sequencing were 
reported by Denef and Banfield (2012)42 and Miller et al. (2011)43. For the Rifle data, 
DNA extraction, sequencing, assembly, and genome reconstruction were described by 
Anantharaman et al. (2016)29 and Brown et al. (2015)7. For samples from Crystal 
Geyser, methods follow those described by Probst et al. (2016)44 and Emerson et al. 
(2016)45. Rifle metatranscriptomic data was used from the data reported by Brown et 
al. (2015)7. 
 

Briefly, DNA was extracted from samples using the PowerSoil DNA Isolation Kit 
(MoBio Laboratories Inc., Carlsbad, CA, USA). RNA was extracted from 0.2 μm filters 
collected from six 2011 Rifle groundwater samples. Following RNA extraction using the 
Invitrogen TRIzol reagent, DNA removal was done with the Qiagen RNase-Free DNase 
Set and Qiagen Mini RNeasy kits, and cDNA template library was generated using the 
Applied Biosystems SOLiD Total RNA-Seq kit. DNA was sequenced on Illumina 
HiSeq2000 platform, and Metatrancriptomic cDNA on 5500XL SOLiD platform after 
emulsion clonal bead amplification using the SOLiD EZ Bead system (Life 
Technologies). For the newly reported Crystal Geyser data and reanalysis of the AMD 
data, sequences were assembled using IDBA-UD46. DNA and RNA (cDNA) read-
mapping used to determine sequencing coverage and gene expression, respectively, 
was performed using Bowtie247. Open reading frames (ORFs) were predicted on 
assembled scaffolds using Prodigal48. Scaffolds from the Crystal Geyser dataset were 
binned on the basis of differential coverage abundance patterns using a combination of 
ABAWACA7, ABAWACA2 (https://github.com/CK7) Maxbin249, and tetranucleotide 
frequency using Emergent Self-Organizing Maps (ESOM)50. Genomes were manually 
curated using % GC content, taxonomic affiliation, and genome completeness. 
Scaffolding errors were corrected using ra2.py (https://github.com/christophertbrown). 

 
5.3.2 CRISPR-Cas computation analysis  

The assembled contigs from the various samples were scanned for known Cas 
proteins using Hidden Markov Model (HMMs) profiles, which were built using the 
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HMMer suite39, based on alignments from Makarova et al. (2015)3 and Shmakov et al. 
(2015)4. CRISPR arrays were identified using a local version of the CrisprFinder 
software51. Loci that contained both Cas1 and a CRISPR array were further analyzed if 
one of the ten ORFs adjacent to the cas1 gene encoded for an uncharacterized protein 
larger than 800 aa, and no known cas interference genes were identified on the same 
contig. These large proteins were further analyzed as potential class 2 Cas effectors. 
The potential effectors were clustered to protein families based on sequence similarities 
using MCL52. These protein families were expanded by building HMMs representing 
each of these families, and using them to search the metagenomic datasets for similar 
Cas proteins. To make sure that the protein families are indeed new, known homologs 
were searched using BLAST53 against NCBI’s non-redundant (nr) and metagenomic 
(env_nr) protein databases, as well as HMM searches against the UniProt 
KnowledegeBase39,54. Only proteins with no full-length hits (> 25% of the protein’s 
length) were considered novel proteins. Distant homology searches of the putative Cas 
proteins were performed using HHpred from the HH-suite32. High scoring HHpred hits 
were used to infer domain architecture based on comparison to solved crystal 
structures55,56, and secondary structure that was predicted by JPred457. The HMM 
database, including the newly discovered Cas proteins are available in Supplementary 
Data 6. 

 
Spacer sequences were determined from the assembled data using 

CrisprFinder51. CRASS58 was used to locate additional spacers in short DNA reads of 
the relevant samples. Spacer targets (protospacers) were then identified by BLAST53 
searches (using “-task blastn-short”) against the relevant metagenomic assemblies for 
hits with ≤ 1 mismatch to spacers. Hits belonging to contigs that contained an 
associated repeat were filtered out (to avoid identifying CRISPR arrays as 
protospacers). Protospacer adjacent motifs (PAMs) were identified by aligning regions 
flanking the protospacers and visualized using WebLogo59. In cases that one spacer 
had multiple putative protospacers with different composition of flanking nucleotides, 
each distinct combination of protospacer and downstream nucleotides was taken into 
account for the logo calculation. RNA structures were predicted using mFold60. 
Average nucleotide identity was computed with the pyani Python module 
(https://github.com/widdowquinn/pyani), using the Mummer61 method. CRISPR 
array diversity was analyzed by manually aligning spacers, repeats and flanking 
sequences from the assembled data. Manual alignments and contig visualizations were 
performed with Geneious 9.1. 

 
For the phylogenetic analyses of Cas1 and Cas9 we used proteins of the newly 

identified systems along with the proteins from Makarova et al. (2015)3 and Shmakov et 
al. (2015)4. A non-redundant set was compiled by clustering together proteins with ≥ 
90% identity using CD-HIT62. Alignments were produced with MAFFT63, and 
maximum-likelihood phylogenies were constructed using RAxML64 with 
PROTGAMMALG as the substitution model and 100 bootstrap samplings. Cas1 tree 
were rooted using the branch leading to casposons. Trees were visualized using 
FigTree 1.4.1 (http://tree.bio.ed.ac.uk/software/figtree/) and iTOL v365. 
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5.3.3 Generation of heterologous plasmids 

Metagenomic contigs were made into minimal CRISPR interference plasmids by 
removing proteins associated with acquisition for CRISPR-CasX and reducing the size 
of the CRISPR array for both CRISPR-CasX and CRISPR-CasY. The minimal locus 
was synthesized as Gblocks (Integrated DNA Technology). Native promoters were 
used, with the exception of the overexpression of CasY.1 and expression of the crRNA 
alone or sgRNA for CasX in figure 3c where the J23119 constitutive promoter was used. 
The minimal CRISPR loci were assembled using Gibson Assembly66 into a plasmid 
with a p15A origin of replication and chloramphenicol resistance gene. Detailed plasmid 
maps are available at the links provided in Supplementary Table 2. 

 
5.3.4 PAM depletion assay 

PAM depletion assays were conducted as previously described with 
modification67. Plasmid libraries containing randomized PAM sequences were 
assembled by annealing a DNA oligonucleotide containing a target with a 7 nt 
randomized PAM region with a primer (Supplementary Table 2) and extended with 
Klenow Fragment (NEB). The double stranded DNA was digested with EcoRI and NcoI 
and ligated into a pUC19 backbone. The ligated library was transformed into E. coli 
DH5α and >108 cells were harvested and the plasmids extracted and purified. 200 ng of 
the pooled library was transformed into electrocompetent E. coli harboring a CRISPR 
locus or a control plasmid with no locus. The transformed cells were plated on selective 
media containing carbenicillin (100 mg L-1) and chloramphenicol (30 mg L-1) for 30 
hours at 25°C. Plasmid DNA was extracted and the PAM sequence was amplified with 
adapters for Illumina sequencing. The 7 nt PAM region was extracted and PAM 
frequencies calculated for each 7 nt sequence. PAM sequences depleted above the 
specified threshold were used to generate a sequence logo with WebLogo59. 

 
5.3.5 Plasmid Interference 

Putative targets identified from metagenomic sequence analysis or PAM 
depletion assays were cloned into a pUC19 plasmid. 10 ng of target plasmid were 
transformed into electrocompetent E. coli (NEB Stable) containing the CRISPR loci 
plasmid. CasX.1 was used for the plasmid interference assays under control of native 
promoters or using a strong heterologous promoter (J23119) for sgRNA and crRNA 
expression. CasY.1 was put under the control of a heterologous promoter (J23119) for 
these assays. Cells were recovered for 2 hrs at 25°C in Super Optimal Broth (SOB) and 
an appropriate dilution was plated on selective media. Plates were incubated at 25°C 
and colony forming units were counted. All plasmid interference experiments were 
performed in triplicate and electrocompetent cells were prepared independently for each 
replicate. 
 
5.3.6 Northern Blots 
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E. coli containing the deltaproteobacteria CasX CRISPR locus was grown to 
OD600=1 at 25°C in SOB media. RNA was extracted by warm phenol extraction, separated 
on 10% denaturing polyacrylamide gel and blotted as previously described by Zhang et 
al. (2013)(Zhang et al., 2013). 

 
5.4 Results and Discussion 
 
5.4.1 CRISPR-CasX is a novel dual-RNA-guided CRISPR system  

In addition to Cas9, only three families of class 2 Cas effector proteins have been 
discovered and experimentally validated: Cpf1, C2c1, and C2c2(Abudayyeh et al., 2016a; 
Shmakov et al., 2015; Zetsche et al., n.d.). Another gene, c2c3, which was identified only 
on small DNA fragments, has been suggested to also encode such a protein 
family(Shmakov et al., 2015). We hypothesized that other distinct types of effector 
proteins might exist within uncultivated microbes whose genomes were reconstructed 
from our metagenomic datasets. Indeed, a new type of class 2 CRISPR-Cas system was 
found in the genomes of two bacteria recovered repeatedly from groundwater and 
sediment samples(Anantharaman et al., 2016). This newly described system includes 
Cas1, Cas2, Cas4 and an uncharacterized ~980 aa protein that we refer to as CasX. The 
high conservation (68% protein sequence identity, Supplementary Data 1) of this protein 
in two organisms belonging to different phyla, Deltaproteobacteria and Planctomycetes, 
suggests a recent cross-phyla transfer(Burstein et al., 2016; Godde & Bickerton, 2006). 
The CRISPR arrays associated with each CasX had highly similar repeats (86% identity) 
of 37 nt, spacers of 33–34 nt, and a putative tracrRNA between the Cas operon and the 
CRISPR array (Fig. 1b, Extended Data Table 1). BLAST searches revealed only weak 
similarity (e-value > 1×10-4) to transposases, with similarity restricted to specific regions 
of the CasX C-terminus. Distant homology detection(Remmert, Biegert, Hauser, & 
Söding, 2012) and protein modeling(Kelley, Mezulis, Yates, Wass, & Sternberg, 2015) 
identified a RuvC domain near the CasX C-terminal end, with organization reminiscent of 
that found in type V CRISPR-Cas systems (Extended Data Fig. 6). The rest of the CasX 
protein (630 N-terminal amino acids) showed no detectable similarity to any known 
protein, suggesting this is a novel class 2 effector. The combination of tracrRNA and 
separate Cas1, Cas2 and Cas4 proteins is unique among type V systems. Further, CasX 
is considerably smaller than any known type V proteins: 980 aa compared to a typical 
size of more than 1,200 aa for Cpf1, C2c1 and C2c3.  

We wondered whether CasX would be capable of RNA-guided DNA targeting 
analogous to Cas9 and Cpf1 proteins. To test this possibility, we synthesized a plasmid 
encoding a minimal CRISPR-CasX locus including casX, a short repeat-spacer array and 
intervening noncoding regions. We found that when expressed in E. coli, this minimal 
locus blocked transformation by a plasmid bearing a target sequence identified by 
metagenomic analysis (Fig. 3a–c, Extended Data Fig. 7). Furthermore, interference with 
transformation occurred only when the spacer sequence in the mini-locus matched the 
protospacer sequence in the plasmid target.  

To identify a PAM sequence for CasX, we repeated the transformation assay in E. 
coli using a plasmid containing either a 5′ or 3′ randomized sequence adjacent to the 
target site. This analysis revealed a stringent preference for the sequence ‘TTCN’ located 
5′ of the protospacer sequence (Fig. 3d). No 3′ PAM preference was observed (Extended 
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Data Fig. 7). Consistent with this finding, we observed that ‘TTCA’ is the sequence found 
upstream of the putative Deltaproteobacteria CRISPR-CasX protospacer that was 
identified in the environmental samples. Notably, both CRISPR-CasX loci share the same 
PAM sequence, in line with their high degree of protein sequence homology.  
 Examples of both single-RNA and dual-RNA guided systems exist among type V 
CRISPR loci. We used environmental RNA (metatranscriptomic) data to determine 
whether CasX requires a tracrRNA for DNA targeting activity. This analysis revealed a 
non-coding RNA transcript with a sequence complementary to the CRISPR repeat 
encoded between the Cas2 open reading frame and the CRISPR array (Fig. 4a). To check 
for expression of this non-coding RNA in E. coli expressing the CasX locus, Northern 
blots were conducted against this transcript in both directions (Extended Data Fig. 7). The 
results showed expression of a transcript on the same stand as the CasX ORF of about 
110 nt with a more heterogeneous band at about 60–70 nt, suggesting that the leader 
sequence for the CRISPR array lies between the tracrRNA and the array. Transcriptomic 
mapping further suggests that the CRISPR RNA (crRNA) is processed to include ~23 nt 
of the repeat and 20 nt of the adjacent spacer, similar to the crRNA processing that occurs 
in CRISPR-Cas9 systems(Elitza Deltcheva et al., 2011; Martin Jinek et al., 2012a) (Fig. 
4a). To determine the dependence of CasX activity on the putative tracrRNA, we deleted 
this region from the minimal CRISPR-CasX locus described above, and repeated the 
plasmid interference assays. Deletion of the putative tracrRNA-encoding sequence from 
the CasX plasmid abolished the robust transformation interference observed in its 
presence (Fig. 4c). This putative tracrRNA was joined with the processed crRNA using a 
tetraloop to form a single-guide RNA (sgRNA)(Martin Jinek et al., 2012a). While 
expression using a heterologous promoter of the crRNA alone or a shortened version of 
the sgRNA did not have any significant plasmid interference, expression of the full-length 
sgRNA conferred resistance to plasmid transformation (Fig. 4c). Together, these results 
establish CasX as a new functional DNA-targeting, dual-RNA guided CRISPR enzyme. 
5.4.2 CRISPR-CasY, a system found exclusively in bacterial lineages lacking 
isolates 

We identified another new class 2 Cas protein encoded in the genomes of certain 
candidate phyla radiation (CPR) bacteria(Brown et al., 2015a; Hug et al., 2016) (Fig. 1, 
Extended Data Table 1). These bacteria typically have small cell sizes (based on cryo-
TEM data and enrichment via filtration), very small genomes and a limited biosynthetic 
capacity, indicating they are most likely symbionts(Brown et al., 2015a; Kantor et al., 
2013; Luef et al., 2015; Nelson & Stegen, 2015; Rinke et al., 2013). The new ~1,200 aa 
Cas protein, which we named CasY, appears to be part of a minimal CRISPR-Cas system 
that includes Cas1 and a CRISPR array (Fig. 5a). Most of the CRISPR arrays have 
unusually short spacers of 17–19 nt, but one system, which lacks Cas1 (CasY.5), has 
longer spacers (27–29 nt). No predicted tracrRNA was detected in the vicinity of CRISPR-
CasY, based on partial complementarity to the repeat sequences; however, we had 
insufficient metatranscriptomic data mapped to the CasY loci to detect potential tracrRNA 
sequences. Thus, we cannot exclude the dependence of CasY on a tracrRNA for robust 
interference from the available data. 

The six examples of CasY proteins we identified had no significant sequence 
similarity to any protein in public databases. A sensitive search using profile models 
(HMMs(Finn, Clements, & Eddy, 2011)) built from published Cas proteins(Kira S. 
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Makarova et al., 2015; Shmakov et al., 2015) indicated that four of the six CasY proteins 
had local similarities (e-values 4×10-11– 3×10-18) to C2c3 in the C-terminal region 
overlapping the RuvC domains and a small region (~45 aa) of the N-terminal region (see 
Extended Data Fig. 6). C2c3 proteins are putative type V Cas effectors(Shmakov et al., 
2015) that were identified on short contigs with no taxonomic affiliation, and have not 
been validated experimentally. Like CasY, the C2c3s were found next to arrays with short 
spacers and Cas1, but with no other Cas proteins. Notably, two of the CasY proteins 
identified in the current study had no significant similarity to C2c3s, despite sharing 
significant sequence similarity (best Blast hits: e-values 6×10-85, 7×10-75) with the other 
CasY proteins (Supplementary Data 2). 

Given the low homology of CRISPR-CasY to any experimentally validated CRISPR 
loci, we wondered whether this system confers RNA-guided DNA interference, but due to 
the short spacer length we did not have reliable information about a possible PAM motif 
that might be required for such activity. To work around this, the entire CRISPR-CasY.1 
locus was synthesized with a shortened CRISPR array and introduced into E. coli on a 
plasmid vector. These cells were then challenged in a transformation assay using a target 
plasmid with a sequence matching a spacer in the array and containing an adjacent 
randomized 5′ or 3′ region to identify a possible PAM. Analysis of transformants revealed 
depletion of sequences containing a 5′ TA directly adjacent to the targeted sequence (Fig. 
5b). Using this identified PAM sequence, the CasY.1 locus was overexpressed using a 
heterologous promoter and was tested against plasmids containing single PAMs. Plasmid 
interference was strongest in the presence of a target containing the identified 5′ TA PAM 
sequence (Fig. 5c). Thus, we conclude that CRISPR-CasY has DNA interference activity.  
 
5.4.3 Discussion 

We discovered new class 2 CRISPR-Cas adaptive immune systems in genomes 
from uncultivated bacteria and archaea. Evolutionary analysis of Cas1 (Fig. 6a), which is 
universal to active CRISPR loci, suggests that the archaeal Cas9 system described here 
does not clearly fall into any existing type II subtype. The Cas1 phylogeny (as well as the 
existence of cas4) affiliate it as a type II-B system(Chylinski et al., 2014b; Kira S. 
Makarova et al., 2015), yet the Cas9 sequence is more similar to type II-C proteins 
(Extended Data Fig. 8, Supplementary Data 3). Thus, the archaeal type II system may 
have arisen as a fusion of type II-C and II-B systems (Fig. 6b). Cas1 phylogenetic 
analyses also indicate that the Cas1 from the CRISPR-CasX system is distant from any 
other known type V system. Type V systems have been suggested to be the result of the 
fusion of a transposon with the adaptation module (Cas1–Cas2) from an ancestral type I 
system(Shmakov et al., 2015). We therefore hypothesize that the CRISPR-CasX system 
emerged following a fusion event different from those that gave rise to the previously 
described type V systems. Strikingly, both CRISPR-CasY and the putative C2c3 systems 
seem to lack Cas2, a protein that is considered essential for integrating DNA into the 
CRISPR locus(Nuñez et al., 2014a; Yosef et al., 2012). Given that all CRISPR-Cas 
systems are thought to be descendants of an ancestral type I system that contained both 
Cas1 and Cas2(Shmakov et al., 2015), CRISPR-CasY and C2c3 systems may either 
have different ancestry than the rest of the CRISPR-Cas systems, or alternatively, Cas2 
might have been lost during their evolutionary history. It remains to be seen whether these 
new type V systems are functional for acquisition. 
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The discovery of Cas9 in archaea and two previously unknown bacterial CRISPR-
Cas systems was enabled by access to extensive DNA and RNA sequence datasets 
obtained from complex natural microbial communities. In the case of CasX and CasY, 
genome context was critical to prediction of functions that would not have been evident 
from unassembled sequence information. Further, the identification of a putative 
tracrRNA, as well as targeted sequences uncovered through analysis of the metagenomic 
data, guided the functional testing. Interestingly, we discovered some of the most 
compact CRISPR-Cas loci identified to date in organisms with very small genomes. A 
consequence of small genome size is that these organisms likely depend on other 
community members for basic metabolic requirements, and thus they have remained 
largely outside the scope of traditional cultivation-based methods. The small number of 
proteins that are required for interference, and their relatively short length make these 
minimal systems especially valuable for the development of new genome editing tools. 
Importantly, we show that metagenomic discoveries related to CRISPR-Cas systems are 
not restricted to in silico observations, but can be introduced into an experimental setting 
where their function can be tested. Given that virtually all environments where life exists 
can now be probed by genome-resolved metagenomic methods, we anticipate that the 
combined computational-experimental approach will greatly expand the diversity of 
known CRISPR-Cas systems, enabling new technologies for biological research and 
clinical applications. 

 
   

 
 

Figure 5.1 | Novel identified CRISPR-Cas systems from uncultivated organisms. a, Ratio of 
major lineages with and without isolated representatives in all bacteria and archaea, based on 
data of Hug et al. (2016)(Hug et al., 2016). The results highlight the massive scale of as-yet little 
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investigated biology in these domains. Archaeal Cas9 and the novel CRISPR-CasY were found 
exclusively in lineages with no isolated representatives. b, Locus organization of the newly 
discovered CRISPR-Cas systems. 

 
Figure 5.2 | CasX mediates programmable DNA interference in E. coli. a, Diagram of 
CasX plasmid interference assays. E. coli expressing a minimal CasX locus is 
transformed with a plasmid containing a protospacer matching the sequence in the 
CRISPR array (target) or plasmid containing a non-matching sequence (non-target). After 
being transformed, cultures are plated and colony-forming units (cfu) are quantified. b, 
Serial dilution of E. coli expressing the Planctomycetes CasX locus with spacer 1 (sX1) 
and transformed with the specified target (sX1, CasX protospacer 1; sX2, CasX 
protospacer 2; NT, non-target). c, Plasmid interference by Deltaproteobacteria CasX, 
using the same spacers and targets as in (b). Experiments were conducted in triplicate 
and mean ± s.d. is shown. d, PAM depletion assays for the Planctomycetes CasX locus 
expressed in E. coli. PAM sequences depleted greater than 30-fold compared to a control 
library were used to generate the sequence logo (see also Extended Data Fig. 7).  

 
Figure 5.3 | CasX is a dual-guided CRISPR complex. a, Mapping of environmental 
RNA sequences (metatranscriptomic data) to the CasX CRISPR locus diagramed below 
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(red arrow, putative tracrRNA; white boxes, repeat sequences; green diamonds, spacer 
sequences). Inset shows detailed view of the first repeat and spacer. b, Diagram of CasX 
DNA interference. c, Results of plasmid interference assays with the putative tracrRNA 
knocked out of the CasX locus and CasX coexpressed with a crRNA alone, a truncated 
sgRNA or a full length sgRNA (T, target; NT, non-target). Experiments were conducted in 
triplicate and mean ± s.d. is shown. 

 

 
Figure 5.4 | Expression of a CasY locus in E. coli is sufficient for DNA interference. 
a, Diagrams of CasY loci and neighboring proteins (see also Extended Data Table 1). b, 
Sequence logo of the 658 5′ PAM sequences depleted greater than 3-fold by CasY 
relative to a control library. c, Plasmid interference by E. coli expressing CasY.1 and 
CRISPR array expressed with a heterologous promoter and transformed with targets 
containing the indicated PAM. Experiments were conducted in triplicate and mean ± s.d. 
is shown. 
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Figure 5.5 | The newly identified CRISPR-Cas in context of known systems. a, Simplified 
phylogenetic tree of the universal Cas1 protein. CRISPR types of known systems are noted on 
the wedges and branches; the newly described systems are in bold. Detailed Cas1 phylogeny is 
provided in Supplementary Data 4. b, Proposed evolutionary scenario that gave rise to the 
archaeal type II system as a result of a recombination between type II-B and type II-C loci. 

 
 
Figure 5.6 | Newly identified CRISPR-Cas systems compared to known proteins. Similarity 
of CasX and CasY to known proteins based on the following searches: (1) Blast search against 
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the non-redundant (NR) protein database of NCBI, (2) Hidden Markov model (HMM) search 
against an HMM database of all known proteins and (3) distant homology search using 
HHpred(Remmert et al., 2012, p.) (E, e-value). 

 
Figure 5.7 | Programmed DNA interference by CasX. a, Plasmid interference assays for 
CasX.1 (Deltaproteobacteria) and CasX.2 (Planctomycetes), continued from Figure 3c (sX1, 
CasX spacer 1; sX2, CasX spacer 2; NT, non-target). Experiments were conducted in triplicate 
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and mean ± s.d. is shown. b, Serial dilution of E. coli expressing a CasX locus and transformed 
with the specified target, continued from Figure 5.2b. c, PAM depletion assays for the 
Deltaproteobacteria CasX and d, Planctomycetes CasX expressed in E. coli. PAM sequences 
depleted greater than the indicated PAM depletion value threshold (PDVT) compared to a control 
library were used to generate the sequence logo. e, Diagram depicting the location of Northern 
blot probes for CasX.1. f, Northern blots for CasX.1 tracrRNA in total RNA extracted from E. coli 
expressing the CasX.1 locus. The sequences of the probes used are provided in Supplementary 
Table 2. 
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Chapter 6 
 
 
 
 
 
 
 
 
 
 
 

Programmed DNA destruction by 
miniature CRISPR-Cas14 enzymes 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Part of the work presented in this chapter has previously been published in the 
following manuscript: Harrington, L. B.*, Burstein, D.*, Chen, J. S., Paez-Espino, 
D., Ma, E., Witte, I. P., … Doudna, J. A. (2018). Programmed DNA destruction by 
miniature CRISPR-Cas14 enzymes. Science (New York, N.Y.). 
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6.1 Abstract 
 
 CRISPR-Cas systems provide microbes with adaptive immunity to infectious 
nucleic acids and are widely employed as genome editing tools. These tools utilize 
RNA-guided Cas proteins whose large size (950—1400 amino acids) has been 
considered essential to their specific DNA- or RNA-targeting activities. Here we present 
a set of CRISPR-Cas systems from uncultivated archaea that contain Cas14, a family of 
exceptionally compact RNA-guided nucleases (400—700 amino acids). Despite their 
small size, Cas14 proteins are capable of targeted single-stranded DNA (ssDNA) 
cleavage without restrictive sequence requirements. Moreover, target recognition by 
Cas14 triggers non-specific cutting of ssDNA molecules, an activity that enables high-
fidelity SNP genotyping (Cas14-DETECTR). Metagenomic data show that multiple 
CRISPR-Cas14 systems evolved independently and suggest a potential evolutionary 
origin of single-effector CRISPR-based adaptive immunity. 
 
6.2 Introduction 
 
  Competition between microbes and viruses stimulated the evolution of CRISPR-
based adaptive immunity to provide protection against infectious agents (Rodolphe 
Barrangou et al., 2007; Jackson et al., 2017). In class 2 CRISPR-Cas systems, a single 
100–200 kilodalton (kDa) CRISPR-associated (Cas) protein with multiple functional 
domains carries out RNA-guided binding and cutting of DNA or RNA substrates (J. S. 
Chen & Doudna, 2017; Shmakov et al., 2017a). To determine whether simpler, smaller 
RNA-guided proteins occur in nature, we queried terabase-scale metagenomic datasets 
(Anantharaman et al., 2016; Brown et al., 2015b; I. M. A. Chen et al., 2017; Markowitz 
et al., 2014; Probst et al., 2017) for uncharacterized genes proximal to both a CRISPR 
array and cas1, the gene that encodes the universal CRISPR integrase (Nuñez, Lee, et 
al., 2015; Yosef et al., 2012). This analysis identified a diverse family of CRISPR-Cas 
systems that contain cas1, cas2, cas4, and a new gene, cas14, encoding a 40–70 kDa 
polypeptide (Fig. 6.6.1A). We initially identified 24 different cas14 gene variants that 
cluster into three subgroups (Cas14a–c) based on comparative sequence analysis 
(6.6.1A–B, fig. 6.5, 6.6). Cas14 proteins are ~400–700 amino acids (aa), about half the 
size of previously known class 2 CRISPR RNA-guided enzymes (950—1400 aa) (Fig. 
6.1C–D). While the identified Cas14 proteins exhibit considerable sequence diversity, all 
are united by the presence of a predicted RuvC nuclease domain, whose organization is 
characteristic of Type V CRISPR-Cas DNA-targeting enzymes (Fig. 6.6.1D) (Burstein, 
Harrington, Strutt, Probst, et al., 2017; Shmakov et al., 2015, 2017a).  
 
6.3 Materials and Methods 
 
6.3.1 Metagenomics and metatranscriptomics 

The initial analysis was performed on previously assembled and binned 
metagenomes from two sites: the Rifle Integrated Field Research (IFRC) site, adjacent 
to the Colorado River near Rifle, Colorado(Anantharaman et al., 2016; Brown et al., 
2015b) and Crystal Geyser, a cold, CO2-driven geyser on the Colorado Plateau in 
Utah(Probst et al., 2017). Metatranscriptomic data from IFRC site (Anantharaman et al., 
2016; Brown et al., 2015b) was used to detect transcription of non-coding elements in 
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nature. Further mining of CRISPR-Cas14 systems was then performed on public 
metagenomes from IMG/M (Markowitz et al., 2014, 2012). 
 
6.3.2 CRISPR-Cas computation analysis 

The assembled contigs from the various samples were scanned with the HMMer 
suite(Finn et al., 2011) for known Cas proteins using Hidden Markov Model (HMMs) 
profiles(Burstein, Harrington, Strutt, Probst, et al., 2017). Additional HMMs were 
constructed for Cas14 proteins based on the MAFFT alignments of putative type V 
effectors that contained less than 800 aa, and were adjacent to acquisition cas genes 
and CRISPR arrays. These HMMs were iteratively refined by augmenting them with 
manually selected novel putative Cas14 sequences that were found using the existing 
Cas14 HMM models. The sequence of newly identified Cas14 are provided in Data S1. 
CRISPR arrays were identified using a local version of the CrisprFinder 
software(Grissa, Vergnaud, & Pourcel, 2007) and CRISPRDetect(Biswas, Staals, 
Morales, Fineran, & Brown, 2016). Phylogenetic trees of Cas1 and type V effector 
proteins were constructed using RAxML(Stamatakis, 2014) with PROTGAMMALG as 
the substitution model and 100 bootstrap samplings. Trees were visualized using 
FigTree 1.4.1 (http://tree.bio.ed.ac.uk/software/figtree/). Metatranscriptomic reads were 
mapped to assembled contigs using Bowtie2(Langmead & Salzberg, 2012). RNase 
presence analysis was based on HMMs that were built from alignment of KEGG 
orthologous groups (KOs) downloaded from KEGG database (Ogata et al., 1999). 
 
6.3.3 Generation of expression plasmids, RNA and DNA substrates 

Minimal CRISPR loci for putative systems were designed by removing acquisition 
proteins and generating minimal arrays with a single spacer. These minimal loci were 
ordered as gBlocks (IDT) and assembled into a plasmid with a tetracycline inducible 
promoter driving expression of the locus. Plasmid maps are available on Addgene and 
in supplementary materials. All RNA was in vitro transcribed using T7 polymerase and 
PCR products as dsDNA template. Resulting IVTs were gel extracted and ethanol 
precipitated. DNA substrates were obtained from IDT and their sequences are available 
in Supplementary Table 1. For radiolabeled cleavage assays DNA oligos were gel 
extracted from a PAGE gel before radiolabeling. For FQ assays, DNA substrates were 
used without further purification.  
 
6.3.4 E. coli RNAseq 

Small RNA sequencing was conducted as described previously with 
modification(Harrington, Paez-Espino, et al., 2017). E. coli NEB Stable3 was 
transformed with a plasmid expressing Cas14a1 system with a tetracycline inducible 
promoter upstream of the Cas14a1 ORF or the same plasmid with an N-terminal 10x-
histidine tag fused to Cas14. Starters were grown up overnight in SOB, diluted 1:100 in 
5mL fresh SOB containing 214nM anhydrotetracycline and grown up overnight at 25°C. 
For sequencing of RNA pulled down with Cas14a, the plasmid containing an N-terminal 
His-tag fused to Cas14a1 was grown up at 18°C before lysis and purification as 
described in “Protein purification”, stopping after the Ni-NTA elution. Cells were pelleted 
and RNA was extracted using hot phenol as previously described. Total nucleic acids 
were treated with TURBO DNase and phenol extracted. The resulting RNA was treated 
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with rSAP which was heat inactivated before addition of T4 PNK. Adapters were ligated 
onto the small RNA using the NEBnext small RNA kit and gel-extracted on an 8% native 
PAGE gel. RNA was sequenced on a MiSeq with single end 300bp reads. For analysis, 
the resulting reads were trimmed using Cutadapt, discarding sequences <8nt and 
mapped to the plasmid reference using Bowtie2 (Langmead & Salzberg, 2012).  
 
6.3.5 PAM depletion assays 

PAM depletion assays were conducted as previously described (Burstein, 
Harrington, Strutt, Probst, et al., 2017). Randomized plasmid libraries were generated 
using a primer containing a randomized PAM region adjacent to the target sequence. 
The randomized primers were hybridized with a primer that was complementary to the 
3’ end of the primer and the duplex was extended using Klenow Fragment (NEB). The 
dsDNA containing the target and were digested with EcoRI and NcoI, ligated into 
pUC19 backbone and transformed into E. coli DH5α and >107 cells were harvested. 
Next E. coli NEBstable was transformed with either a CRISPR plasmid or an empty 
vector control and these transformed E. coli were made electrocompetent by repeated 
washing with 10% glycerol. These electrocompetent cells were transformed with 200ng 
of the target library and plated on bioassay dishes containing selection for the target 
(carbenicillin, 100mg l-1) and CRISPR plasmid (chloramphenicol, 30mg l-1). Cells were 
harvested and prepared for amplicon sequencing on an Illumina MiSeq. The PAM 
region was extracted using Cutadapt and depletion values were calculated in python. 
PAMs were visualized using WebLogo(Crooks, Hon, Chandonia, & Brenner, 2004). 
 
6.3.6 Protein purification 

Cas14a1 was purified as described previously with modification(Harrington, 
Doxzen, et al., 2017). E. coli BL21(DE3) RIL were transformed with 10xHis-MBP-
Cas14a1 expression plasmid and grown up to OD600 =0.5 in Terrific Broth (TB) and 
induced with 0.5mM IPTG. Cells were grown overnight at 18°C, collected by 
centrifugation, resuspended in Lysis Buffer (50 mM Tris-HCl, pH 7.5, 20 mM imidazole, 
0.5 mM TCEP, 500 mM NaCl) and broken by sonication. Lysate was batch loaded on to 
Ni-NTA resin, washed with the above buffer before elution with Elution Buffer (50 mM 
Tris-HCl, pH 7.5, 300 mM imidazole, 0.5 mM TCEP, 500 mM NaCl). The MBP and His-
tag were removed by overnight incubation with TEV at 4°C. The resulting protein 
exchanged into Buffer A (20 mM HEPES, pH 7.5, 0.5 mM TCEP, 150 mM NaCl) and 
loaded over tandem MBP, heparin columns (GE, Hi-Trap) and eluted with a linear 
gradient from Buffer A to Buffer B (20 mM HEPES, pH 7.5, 0.5 mM TCEP, 1250 mM 
NaCl). The resulting fractions containing Cas14a1 were loaded onto an S200 gel 
filtration column, flash frozen and stored at -80°C until use.  
 
6.3.7 In vitro cleavage assays 
Radiolabeled  

Radiolabeled cleavage assays were conducted in 1× Cleavage Buffer (25 mM 
NaCl, 20 mM HEPES, pH 7.5, 1 mM DTT, 5% glycerol and 5mM MgCl2). For cleavage 
assays with different divalent cations, 5mM MgCl2 was replaced with 5mM of the 
indicated metal or EDTA. 100nM Cas14a1 was complexed with 125nM crRNA and 
125nM tracrRNA for 10min at RT. ~1nM radiolabeled DNA or RNA substrate was added 
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and allowed to react for 30min at 37°C. The reaction was stopped by adding 2x Quench 
Buffer (90% formamide, 25mM EDTA and trace bromophenol blue), heated to 95°C for 
2min and run on a 10% polyacrylamide gel containing 7M Urea and 0.5×TBE. Products 
were visualized by phosphorimaging.  
 
M13 DNA cleavage 

M13 DNA cleavage assays were conducted in 100 mM NaCl, 20 mM HEPES, pH 
7.5, 1 mM DTT, 5% glycerol, 5mM MgCl2. 250nM Cas14a1 was complexed with 250nM 
crRNA and 250nM tracrRNA and 250nM ssDNA activator. The reaction was initiated by 
addition of 5 nM M13 ssDNA plasmid and was quenched by addition of loading buffer 
supplemented with 10mM EDTA. Products were separated on a 1.5% agarose TAE gel 
prestained with SYBR gold (Thermofisher).  
 
FQ detection of trans-cleavage 

FQ detection was conducted as previously described with modification(J. S. 
Chen et al., 2018). 100nM Cas14a1 was complexed with 125nM crRNA, 125nM 
tracrRNA, 50nM FQ probe and 2nM ssDNA activator in 1× Cleavage Buffer at 37°C for 
10 min. The reaction was then initiated by addition of activator DNA when for all 
reactions except for the RNA optimization experiments where the variable RNA 
component was used to initiate. The reaction was monitored in a fluorescence plate 
reader for up to 120 minutes at 37°C with fluorescence measurements taken every 1 
min (λex: 485 nm; λem: 535 nm). The resulting data were background subtracted using 
the readings taken in the absence of activator and fit using a single exponential decay 
curve.  
 
6.3.8 Cas14 and Cas12a-DETECTR assays 
 

For Cas14a1 or Cas12a detection of the A/G SNP in the HERC2 gene, saliva 
samples were taken at three independent times by brown and blue-eyed individuals. For 
crude DNA extraction, saliva was pelleted and washed twice in phosphate buffered 
saline (1 × PBS), incubated for 5 min at 100°C, and centrifuged for 5 min at 10000×g. 

DETECTR assays involved an initial PCR amplification followed by detection by 
Cas14a1 or LbCas12a. 50 uL PCRs consisting of 1 uL template DNA, 10uL 5X Q5 
Buffer, 0.48uM forward/reverse primers, 200uM (each) dNTPs, and 1 U Q5 DNA 
Polymerase underwent 25 cycles of amplification. The first four 5′ nucleotides of the 
forward primer were phosphorothioated to protect from degradation by T7 exonuclease 
in the subsequent detection step, while the 5′ end of the reverse primer was unmodified. 
2 uL of the PCR product was transferred to a 384 well plate and combined directly in the 
plate with the DETECTR reaction mix. The Cas14a1 DETECTR reaction consisted of a 
final concentration of 100nM Cas14a1, 125nM sgRNA, 50 nM ssDNA-FQ reporter, and 
5 U T7 exonuclease in a total reaction volume of 20 uL. The LbCas12a DETECTR 
reaction consisted of a final concentration of 50 nM LbCas12a, 50 nM sgRNA, 50 nM 
ssDNA-FQ reporter, and 2.5 U T7 exonuclease in a total reaction volume of 20 uL. 
Reactions were incubated in a fluorescence plate reader (Tecan Infinite Pro 200 M 
Plex) for 2 hours at 37°C with fluorescence measurements taken every 30 seconds 
(λex: 485 nm; λem: 535 nm). 
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6.4 Results and Discussion 
 

 The Cas14 proteins we identified occur almost exclusively within DPANN, a 
super-phylum of symbiotic archaea characterized by small cell and genome sizes 
(Castelle et al., 2015; Rinke et al., 2013). Phylogenetic comparisons showed that Cas14 
proteins are widely diverse with similarities to C2c10 and C2c9, families of bacterial 
RuvC-domain-containing proteins that are sometimes found near a CRISPR array but 
not together with other cas genes (Fig. 6.1B, fig. 6.5) (Shmakov et al., 2017a). This 
observation and the small size of c2c10, c2c9 and cas14 genes made it improbable that 
these systems could function as standalone CRISPR effectors (Shmakov et al., 2017a). 

Based on their proximity to conserved genes responsible for creating genetic 
memory of infection (cas1, cas2, cas4) (fig. 6.7A), we explored whether CRISPR-Cas14 
systems can actively acquire DNA sequences into their CRISPR arrays. Assembled 
metagenomic contiguous DNA sequences (contigs) for multiple CRISPR-Cas14 loci 
revealed that otherwise identical CRISPR systems showed diversity in their CRISPR 
arrays. These results are consistent with active adaptation to new infections although 
without longitudinal sampling this data could also be explained by alternative biological 
mechanisms (Fig. 6.2A, fig. 6.7B) (Burstein, Harrington, Strutt, Probst, et al., 2017). The 
evidence suggesting acquisition of new DNA sequences led us to hypothesize that 
these CRISPR-Cas14 loci encode functional enzymes with nucleic acid targeting activity 
despite their small size. To test this possibility, we first investigated whether RNA 
components are produced from CRISPR-Cas14 loci. Environmental metatranscriptomic 
sequencing data were analyzed for the presence of RNA from the native archaeal host 
that contains CRISPR-Cas14a (Fig. 6.6B, fig. 6.8A). In addition to CRISPR RNAs 
(crRNAs), a highly abundant non-coding RNA was mapped to a ~130-base pair 
sequence located between cas14a and the adjacent CRISPR array. Notably, the 3′ end 
of this transcript was mostly complementary to the repeat segment of the crRNA (Fig. 
6.2C, fig. 6.8B), as observed for trans-activating CRISPR RNAs (tracrRNAs) found in 
association with Cas9, Cas12b and Cas12e CRISPR systems (Burstein, Harrington, 
Strutt, Probst, et al., 2017; E Deltcheva et al., 2011; Shmakov et al., 2015). In these 
previously studied systems, the double-stranded-RNA-cutting enzyme Ribonuclease III 
(RNase III) generates mature tracrRNAs and crRNAs, but no genes encoding RNase III 
were present in cas14-containing reconstructed genomes (fig. 6.9A), nor did Cas14a 
cleave its own pre-crRNA when tested biochemically (fig. 6.9B). These observations 
imply that an alternative mechanism for CRISPR-associated RNA processing exists in 
these hosts.  

To test whether the Cas14a proteins and associated RNA components can 
assemble together in a heterologous organism, we introduced a plasmid into E. coli 
containing a minimal CRISPR-Cas14a locus that includes the Cas14 gene, the CRISPR 
array and intergenic regions containing the putative tracrRNA. Affinity purification of the 
Cas14a protein from cell lysate and sequencing of co-purifying RNA revealed a highly 
abundant mature crRNA as well as the putative tracrRNA, albeit in lower relative 
abundance than environmental metatranscriptomics, suggesting that Cas14 associates 
with both crRNA and tracrRNA (fig. 6.9B). The calculated mass of the assembled 
Cas14a protein-tracrRNA-crRNA particle is 48% RNA by weight compared to just 17% 
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for S. pyogenes Cas9 (SpCas9) and 8% for F. novicida Cas12a (FnCas12a) (Fig. 6.2D), 
hinting at a central role of the RNA in the architecture of the Cas14a complex. Known 
class 2 CRISPR systems require a short sequence called a protospacer adjacent motif 
(PAM) to target double-stranded DNA (dsDNA) (Mojica, Díez-Villaseñor, García-
Martínez, & Almendros, 2009). To test whether Cas14a requires a PAM and can 
conduct dsDNA interference, we transformed E. coli expressing a minimal Cas14a locus 
with a dsDNA plasmid containing a randomized PAM region next to a sequence 
matching the target-encoding sequence (spacer) in the Cas14 array. Notably, no 
depletion of a PAM sequence was detected among E. coli transformants, suggesting 
that the CRISPR-Cas14a system is either unable to target dsDNA, can do so without 
requiring a PAM, or is inactive in this heterologous host (fig. S6A, B). 

We next tested whether purified Cas14a-tracrRNA-crRNA complexes are 
capable of RNA-guided nucleic acid cleavage in vitro. All currently reconstituted DNA-
targeting class 2 interference complexes are able to recognize both dsDNA and ssDNA 
substrates (J. S. Chen et al., 2018; Ma et al., 2015; Zhang, Rajan, Seifert, Mondragón, 
& Sontheimer, 2015). We incubated purified Cas14a-tracrRNA-crRNA complexes with 
radiolabeled target oligonucleotides (ssDNA, dsDNA, and ssRNA) bearing 20-
nucleotide sequence complementary to the crRNA guide sequence, or a non-
complementary ssDNA, and we analyzed these substrates for Cas14a-mediated 
cleavage. Only in the presence of a complementary ssDNA substrate was any cleavage 
product detected (Fig. 6.3A, fig. 6.11A-C), and cleavage was dependent on the 
presence of both tracrRNA and crRNA, which could also be combined into a single-
guide RNA (sgRNA) (Fig. 6.3B, fig. 6.12). The lack of detectable dsDNA cleavage 
suggests that Cas14a targets ssDNA selectively, although it is possible that some other 
host factor or sequence requirement could enable dsDNA recognition in the native host. 
Mutation of the conserved active site residues in the Cas14a RuvC domain eliminated 
cleavage activity (fig. 6.11D-E), implicating RuvC as the domain responsible for DNA 
cutting. Moreover, Cas14a DNA cleavage was sensitive to truncation of the RNA 
components to lengths shorter than the naturally produced sequences (fig. 6.13A-D). 
These results establish Cas14a as the smallest class 2 CRISPR effector demonstrated 
to conduct programmable RNA-guided DNA cleavage thus far.  

Although we were unable to identify a dsDNA PAM in vivo, we tested whether 
Cas14a requires a PAM for ssDNA cleavage in vitro by tiling Cas14a guides across a 
ssDNA substrate (Fig. 6.3C). Despite sequence variation adjacent to the targets of 
these different guides, we observed cleavage for all four sequences. Notably, the 
cleavage sites occur beyond the guide-complementary region of the ssDNA and shift in 
response to guide binding position (Fig. 6.3C). These data demonstrate Cas14a is a 
ssDNA-targeting CRISPR endonuclease that does not require a PAM for activation. 

Based on the observation that Cas14a cuts outside of the crRNA/DNA targeting 
heteroduplex, we hypothesized that Cas14a might possess target-activated non-specific 
ssDNA cleavage activity, similar to the RuvC-containing enzyme Cas12a (J. S. Chen et 
al., 2018; Zetsche et al., 2015). To test this possibility, we incubated Cas14a-tracrRNA-
crRNA with a complementary activator DNA and an aliquot of M13 bacteriophage 
ssDNA bearing no sequence complementarity to the Cas14a crRNA or activator (Fig. 
6.3D). The M13 ssDNA was rapidly degraded to small fragments, an activity that was 
eliminated by mutation of the conserved Cas14a RuvC active site, suggesting that 
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activation of Cas14a results in non-specific ssDNA degradation. However, we were 
unable to observe Cas14a-mediated interference against the ssDNA bacteriophage 
ΦX174 when we expressed Cas14a heterologously in E. coli (Fig. 6.14A-C), possibly 
due to the dissimilarity between E. coli and Cas14a’s native archaeal host. To 
investigate the specificity of target-dependent non-specific DNA cutting activity by 
Cas14a, we adapted a fluorophore-quencher (FQ) assay in which cleavage of dye-
labeled ssDNA generates a fluorescent signal (Fig. 6.4A) (East-Seletsky et al., 2016). 
When Cas14a was incubated with various guide RNA-target ssDNA pairs, a fluorescent 
signal was observed only in the presence of the cognate target and showed strong 
preference for longer FQ-containing substrates (fig. 6.14D, Fig. 6.4A). We next tested 
Cas14a mismatch tolerance by tiling 2-nt mismatches across the targeted region in 
various ssDNA substrates. Surprisingly, mismatches near the middle of the ssDNA 
target strongly inhibited Cas14a activity, revealing an internal seed sequence that is 
distinct from the PAM-proximal seed region observed for dsDNA-targeting CRISPR-Cas 
systems (Fig. 6.4B, fig. 6.15A-D). Moreover, DNA substrates containing strong 
secondary structure resulted in reduced activation of Cas14a (fig. 6.15E). Truncation of 
ssDNA substrates also resulted in reduced or undetectable trans cleavage (fig. 6.15F). 
Together, these results suggest a mechanism of fidelity distinct from dsDNA-targeting 
class 2 CRISPR systems, possibly utilizing a mechanism similar to the ssRNA-targeting 
Cas13a enzymes (Abudayyeh et al., 2016b; Knott et al., 2017; L. Liu et al., 2017).  
 The target-dependent, non-specific DNase activity of Cas12a serves as a DNA 
detection platform (DNA endonuclease-targeted CRISPR trans reporter; DETECTR) for 
diagnostic uses (J. S. Chen et al., 2018; S. Y. Li et al., 2018). While Cas12a exhibits low 
fidelity in discriminating against ssDNA substrates (J. S. Chen et al., 2018), Cas14a 
requires complementarity in the seed region for ssDNA substrate recognition. This 
improved specificity raised the possibility of using Cas14a for high-fidelity detection of 
DNA single nucleotide polymorphisms (SNPs) without the constraint of a PAM 
sequence. To test this idea, DNA substrates were amplified using a phosphorothioate 
(PT)-containing primer to protect one strand from degradation by exonucleases. Upon 
addition of T7 exonuclease, the unmodified strand was degraded, leaving ssDNA 
substrates that can be detected by Cas14a (Fig. 6.4C–D). As a proof of principle, we 
aimed to detect the human HERC2 gene, which contains a SNP responsible for eye 
color (Eiberg et al., 2008). We amplified the HERC2 gene from DNA in human saliva 
from both blue-eyed and brown-eyed individuals, using the PT amplification approach 
described above. When programmed with a guide RNA targeting the blue-eyed SNP, 
Cas12a failed to discriminate between the two ssDNA targets, exhibiting robust trans 
activity in both cases, while Cas14a exhibited strong activation in recognition of the 
blue-eyed SNP with near-background signal for the brown-eyed sample (Fig. 6.4E). The 
development of Cas14-DETECTR now allows for CRISPR-based detection of medically 
and ecologically important ssDNA pathogens as well as high-fidelity detection of SNPs 
without the constraint of a PAM sequence. 

Further investigation of compact Type V systems in metagenomic data revealed 
a large diversity of systems that, like Cas14a–c, include a gene encoding a short RuvC-
containing protein adjacent to acquisition-associated cas genes and a CRISPR array. 
We found 20 additional such systems in various uncultivated microbes that cluster into 
five main families (Cas14d–h). Excluding cas14g, which is related to cas12b, the cas14-
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like genes form separate clades on the type V effector phylogeny (fig. 6.16A, B), 
suggesting these families evolved from independent domestication events of TnpB, the 
transposase-associated protein implicated as the evolutionary ancestor of type V 
CRISPR effectors (Shmakov et al., 2017b). Phylogenetic reconstruction of their 
associated cas1 genes indicated that they too have different origins for the cas14 
subtypes (fig. 6.6A). Altogether we identified 38 CRISPR-Cas14 systems belonging to 
eight families (Cas14a–h) and eight additional systems that could not be clustered with 
our analysis (termed Cas14u, data S1).  

The small size of the Cas14 proteins described here and their resemblance to 
type V effector proteins suggest that RNA-guided ssDNA cleavage may have existed as 
an ancestral class 2 CRISPR system (Koonin, Makarova, & Zhang, 2017; K S Makarova 
et al., 2015). In this scenario, a small, domesticated TnpB-like ssDNA interference 
complex may have gained additional domains over time, gradually improving dsDNA 
recognition and cleavage. Related to this hypothesis, smaller Cas9 orthologs exhibit 
weaker dsDNA-targeting activity than their larger counterparts but retain the ability to 
robustly cleave ssDNA (Ma et al., 2015). Aside from the evolutionary implications, the 
ability of Cas14 to specifically target ssDNA suggests a role in defense against ssDNA 
viruses or mobile genetic elements (MGEs) that propagate through ssDNA 
intermediates (Barabas et al., 2008). A ssDNA-targeting CRISPR system would be 
particularly advantageous in certain ecosystems where ssDNA viruses comprise the 
vast majority of viral abundance (Yoshida et al., 2018). The unexpected finding that 
these miniature CRISPR proteins can conduct targeted DNA cleavage highlights the 
diversity of CRISPR systems hidden in uncultivated organisms. Ongoing exploration of 
these underrepresented microbial lineages will likely continue to reveal new, 
unexpected insights into this microscopic arms race and lead to continued development 
of valuable CRISPR-based technologies.  
  

 
 

Figure 6.1  Novel identified CRISPR-Cas systems from uncultivated organisms. (A) 
Phylogenetic tree of Type V CRISPR systems. Newly identified miniature CRISPR systems are 
highlighted in orange. (B) Representative loci architectures for C2c10 and CRISPR-Cas14 
systems. (C) Length distribution of Cas14a–c systems compared to Cas12a-e and Cas9. (D) 
Domain organization of Cas14a compared to Cas9 and Cas12a with the nuclease domains (RuvC 
and HNH) indicated. Protein lengths are drawn to scale. 
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Figure 6.2 CRISPR-Cas14a actively adapts and encodes a tracrRNA. (A) Spacer diversity for 
Cas14b4 and Cas14b14 with CRISPR repeats diagramed in tan and unique spacers shown in 
different colors. (B) Metatranscriptomics reads mapped to Cas14a1 and Cas14a3. Inset shows 
expansion of most abundant repeat and spacer sequence. (C) In silico predicted structure of 
Cas14a1 crRNA and tracrRNA. Notably, RNase III orthologs were not identified in host genomes 
(fig. 6.9A). (D) Fraction of various CRISPR complexes mass made up of by RNA and protein.   
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Fig. 6.3 CRISPR-Cas14a is an RNA-guided DNA-endonuclease. (A) Cleavage kinetics of 
Cas14a1 targeting ssDNA, dsDNA, ssRNA and off-target ssDNA. (B) Diagram of Cas14a RNP 
bound to target ssDNA and Cas14a1 cleavage kinetics of radiolabeled ssDNA in the presence of 
various RNA components. (C) Tiling of a ssDNA substrate by Cas14a1 guide sequences. (D) 
Cleavage of the ssDNA viral M13 genome with activated Cas14a1.  
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Fig. 6.4 High fidelity ssDNA SNP detection by CRISPR-Cas14a. (A) Fluorophore-quencher 
(FQ) assay for detection of ssDNA by Cas14a1 and the cleavage kinetics for various length FQ 
substrates. (B) Cleavage kinetics for Cas14a1 with mismatches tiled across the substrate 
(individual points represent replicate measurements). (C) Diagram of Cas14-DETECTR strategy 
and HERC2 eye color SNP. (D) Titration of T7 exonuclease and impact on Cas14a-DETECTR. 
(E) SNP detection using Cas14a-DETECTR with a blue-eye targeting guide for a blue-eyed and 
brown-eyed saliva sample compared to ssDNA detection using Cas12a.  
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Fig. 6.5 Phylogenetic analysis of Cas14 orthologs 
Maximum likelihood tree for known Type V CRISPR effectors and class 2 candidates containing 
a RuvC domain. Inset shows individual orthologs for each newly identified subtype.  
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Fig. 6.6 Maximum likelihood tree for Cas1 from known CRISPR systems. Newick format of 
the Cas1 tree is provided in Data S4.  
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Fig. 6.7 Acquisition of new spacers by CRISPR-Cas14 systems 
(A) Alignment of Cas14 Cas1 orthologs. Expansion shows conservation of previously implicated 
active site residues highlighted in red boxes. (B) Multiple CRISPR arrays assembled for various 
CRISPR-Cas14 systems revealing spacer diversity for these CRISPR systems. Orange arrows 
indicate repeats while variously colored boxes indicate unique spacers.  
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Fig. 6.8 Metatranscriptomics for CRISPR-Cas14 loci 
(A)Environmental RNA sequencing reads for Cas14a orthologs. Location of Cas14 and the 
CRISPR array indicated below. RNA structures to the right show the in silico predicted structure 
of the tracrRNA identified from metatranscriptomics. (B) Predicted hybridization for Cas14a1 
crRNA:tracrRNA duplex.  
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Fig. 6.9 RNA processing and heterologous expression by CRISPR-Cas14 
(A) Presence of common RNase orthologs in Cas14 containing genomes. Light purple 
represents hits that were significantly shorter than the expected length for the given RNase. 
Note that RNase III is absent in all investigated genomes. (B) Small RNAseq reads from 
heterologous expression of Cas14a1 locus in E. coli (bottom two) compared to 
metatranscriptomic reads (top panel). Pull down refers to RNA that copurified with Ni-NTA 
affinity purified Cas14a1. 
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Fig. 6.10 Plasmid depletion by Cas14a1 and SpCas9 
(A) Diagram outlining PAM discovery experiment. E. coli expressing the CRISPR system of 
interest is challenged with a plasmid containing a randomized PAM sequence flanking the 
target. The surviving (transformed) cells are harvest and sequenced along with a control 
harboring an empty vector. The depleted sequences are then sequenced and PAMs depleted 
more than the PAM Depletion Value Threshold (PDVT) are used to generate a Weblogo. (B-C) 
PAM sequences depleted by heterologously expressed Cas14a1 transformed with a target 
plasmid containing a randomized PAM sequence 5’ (B) or 3’ (C) of the target. “No sequences” 
indicates that no sequences were found to be depleted at or above the given PDVT.  
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Fig. 6.11 Degradation of ssDNA by Cas14a1 
(A) SDS-PAGE of purified Cas14a1 and Cas14a1 point mutants. (B) Optimization of salt, cation 
and temperature for Cas14a1 cleavage of ssDNA targets. (C) Radiolabled cleavage of ssDNA 
by Cas14a1 with spacer sequences of various lengths. (D) Alignment of Cas14 with previously 
studied Cas12 proteins to identify RuvC active site residues and (E) cleavage of ssDNA by 
purified Cas14a1 RuvC point mutants.  
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Fig. 6.12 Kinetics of Cas14a1 cleavage of ssDNA with various guide RNA components.  
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Fig. 6.13 Optimization of Cas14a1 guide RNA components 
(A) Diagram of Cas14a1 targeting ssDNA. Impact on Cas14a1 cleavage of an FQ ssDNA 
substrate by varying the spacer length (B), repeat length (C), tracrRNA (D), and fusing the 
crRNA and tracrRNA together(E). For the tracrRNA variants +nt label refers to extensions at the 
3’ end of the RNA and for the singe guide RNA (sgRNA) variants sgRNA 1 contains a truncated 
tracrRNA portion of the sgRNA. (F) Heat map showing the background subtracted fluorescence 
resulting from cleavage of a ssDNA FQ reporter in the presence of various guide and target 
combinations.  
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Fig. 6.14 Impact of various activators on Cas14a1 cleavage rate 
(A) Diagram of Cas14a1 targeting of ssDNA with position of mismatches used in panels A-D 
and raw rates for representative replicates of mismatch (MM) position for Target 1. Cleavage 
rates for Cas14a targeting substrates with mutations tiled across three different substrates (B-
D). (E) Trans cleavage rates for substrates with increasing amounts of secondary structure. (F) 
Trans leavage rates with truncated substrates. Points represent individual measurements.  
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Fig. 6.15 Diversity of CRISPR-Cas14 systems 

(A)Representative locus architecture for indicated Cas14 systems. Protein lengths are drawn to 
scale. The eight Cas14 subtypes. (B) Maximum likelihood tree for Type V effectors including all 
identified subtypes of Cas14. Detailed tree in Newick format provided in Data S3. 
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