UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Declarative Learning: Cognition without Primitives

Permalink
@s://escholarship.org[uc/item/7h14n947|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
Furse, Edmund
Nicolson, Roderick I.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7h14n947
https://escholarship.org
http://www.cdlib.org/

Declarative Learning: Cognition without Primitives

Edmund Furse and Roderick I. Nicolson
Department of Computer Studies

The Polytechnic of Wales
Pontypridd

Mid Glamorgan

CD37 1DL

UK

efurse@uk.ac.pow.genvax
Abstract

Declarative learning by experience is a foundation
cognitive capability, and we argue that, over and
above the normal processes of declarative leamning,
the ability for truly novel learning is the critical
capability which bootstraps human cognition. Next
we assert that none of the established models of
machine learning and no established architecture for
cognition have adequate declarative learning
capabilities, in that all depend for their success on
some pre-characterisation of the learning domain in
terms of state space or pre-existing primitives geared
to the domain. Finally we describe briefly the
Contextual Memory System, which was designed
explicitly to support all five declarative learning
capabilities. The CMS underlies the Maths
Understander machine leaming system which ‘reads’
mathematics texts from scratch, assimilating
mathematics concepts, and using them not only to
check proofs but also to solve problems.

Introduction

The origins of human knowledge have provided a
fertile source of speculation over the millenia, and
even today the issue is far from resolved. Meno’s
paradox, the ‘learning paradox’ derives from the
ancient Greek sophists who argued that truly novel
learning was impossible in that “novel knowledge
cannot be derived completely from old knowledge, or
it would not be new. Yet the transcending part of it
cannot be completely new either, for then it could
never be understood.” (Boom, 1991, p274). Plato
sidestepped this paradox by asserting that all
knowledge was innate, but initially dormant, and the
ensuing debate between empiricist and nativist
positions has echoed down the centuries. Piaget
(1952, 1985) tackled the issue by arguing that the
process of equilibration, the striving to change
cognitive structures to avoid cognitive disequilibrium,
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was the key to truly novel leaming, and went on to
argue that his four stages in cognitive development
derived from three such qualitative changes in
cognition. Piaget's stage theory has, of course, been
frequently criticised, but his primary emphasis was on
genetic epistemology, the origins of knowledge.
Fodor (1980) has revived the Meno paradox, and
adopted a nativist position, arguing that Piaget's
equilibration concept was not powerful enough to
support the acquisition of novel cognitive structures,
and the issue remains unresolved in the developmental
literature (see Boom, 1991 and Juckes, 1991 for
recent analyses). Unfortunately, the debate has
focused on development rather than learning, even
though it is clearly nonsense to suggest that true
learning occurs only at three or four stages in one's
lifetime, and in reality children (frequently) and aduits
(sometimes) are confronted by the need to acquire
knowledge in a completely new domain. Adults are
able to acquire the concepts of new games, new
academic subjects (mathematics, computer
programming, statistics, geology, etc.), new social
conventions. Children have to start from scraich.
They are refuting the leaming paradox most of the
time in the early years. Consequently, we argue that
the learning paradox is at least as great a challenge for
cognitive science as it is for developmental
psychology.

We use the term declarative learning to refer to all

aspects of the leamning of declarative knowledge. It
has many facets, and in Furse and Nicolson (1991) we
stated the necessary competences of a declarative
learner, which we termed comprehension,
assimilation, utilisation, and accommodation. We
now make explicit the fifth requirement, that of
supporting truly novel leamning.
(i) Comprehension (cf. Encoding). The system
must be able to encode novel information so as to
cause it to enter working memory. We use the term
comprehension to emphasise the need to recode the
input into the format used in the declarative memory
structures.



(i) Assimilation (cf. Storage). The system must
be able to create a long-term memory entry for
information in its working memory. Furthermore,
the system must be able to incorporate the new
information into its memory structures in such a way
as to facilitate the adaptive use of that information in
other contexts. It is worth noting the need to store
not only the new information but also the context in
which it occurs. Tulving (1983) refers to this as the
‘cognitive environment’,

(iii) Utilisation (cf. Retrieval). The system must
be able to retrieve the stored information given an
appropriate cue or an appropriate context. For many
theorists, the term retrieval suggests too automatic a
process, and terms such as reconstruction (Bartlett,
1932) or ecphory (Tulving, 1983) capre better the
complex search and matching processes involved. We
adopt the neutral term to indicate the adaptive use of
the existing knowledge to satisfy the system’s
requirements.

(iv) Accommodation. Regardless of how broadly
one interprets the above three processes, we believe
that they are incomplete for a viable declarative
learner. In addition the system must be able to
modify the information in the light of subsequent
experience so as to improve its adaptivity of use.
This includes the making of new links, the
strengthening of salient associations, the forgetting of
useless associations, and the creation of new features.

(v) Novel Learning. While the above processes
provide a reasonable description of much declarative
learning, it is possible to envisage a declarative
leammer which showed all four competences but was
unable to undertake truly novel Ilearning.
Consequently, as a fifth, swringent criterion for
declarative learning, we argue that it is necessary 1o
demonstrate learning ‘from scratch’ without any pre-
characterisation of the space to be learned, or any pre-
characterisation of the primitives required for leaming
in that domain,

Existing Cognitive Science
Approaches to Declarative Learning

The problems in acquiring knowledge have recently
moved centre stage in cognitive science. Anderson
(1990) argued that the origins of human knowledge
were one of the major issues for cognitive science,
concluding by reduction that from the viewpoint of
ACT*/PUPS the weak problem solving principles
(by which all subsequent domain-dependent problem
solving productions are derived) must themselves be
innate. Lenat and Feigenbaum (1991) present as one
of the guiding principles of AI the ‘Knowledge
Principle’ — “If a program is to perform a complex
task well, it must know a great deal about the world
in which it operates. In the absence of knowledge, all
you have left is search and reasoning, and that isn’t
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enough.” Indeed, Lenat argues that this principle
mandates a new direction for the main enterprise of
Al, and accordingly has devoted the last seven years 1o
his ambitious CYC project for hand-coding a
significant subset of human knowledge, thus
providing what he hopes will be a knowledge-base
sufficiently rich to bootstrap natural language
understanding systems, and, ultimately, machine
learning systems.,

Encouragingly, the three major architectures for
cognition — Soar (Laird et al, 1986), ACT*
(Anderson, 1983) and connectionist approaches —
have a learning mechanism as the comerstone of their
approach to cognition. ACT*/PUPS suggests that
declarative knowledge must be acquired initially, then
this declarative knowledge is 'proceduralised’ by a
'knowledge compilation’ process consequent upon
successful performance, turning it into a production
rule format. The production rules may subsequently
be tuned by extended practice. Soar learns primarily
by a process of problem-space search, with learning
taking place by automatic processes of 'subgoaling'
following a failure and by 'chunking'. Connectionist
models learn by processes of differential link
strengthening procedures based on learning procedures
such as gradient descent (eg. Hinton, 1989).

Very surprisingly, summarising an analysis
presented in Nicolson and Furse (1992), not one of
the above cognitive architectures is able to cope with
declarative leaming.

Neither of the above symbolic architectures are able
to cope with declarative learning, in that they both
precharacterise the space in which learning is to take
place. Anderson hand-crafts the appropriate
declarative knowledge in each of the domains in
which he works, and Soar makes the assumption that
all learning can be characterised as search through a
problem space, an assumption criticised by Boden
(1988) as quite untenable.

The ability of connectionist models to perform at
all at the symbolic level remains controversial. In
brief, we argue that none of these approaches
addresses the Leamning Paradox.

One might expect that the problem of declarative
learning would have been extensively studied in the
machine leamning literature, but, bafflingly, this is
not so. Space precludes a detailed analysis of the
machine learning literature here (see Ellman, 1989 for
a useful review), and we shall merely note four
problems of the established machine learning
demonstrations. Thus four major critiques of the
machine leamning research are that most of the models
lack psychological plausibility; that the declarative
knowledge being acquired is relatively unstructured
and semantically arid; that the learning tasks are too
simple to be ecologically valid;, and that all the
models operate within a closed world in which the
knowledge representations are pre-specified.



In summary, declarative learning is of major
theoretical and applied importance, yet no established
cognitive architecture offers any mechanism for it,
and no current machine learning approach offers a
principled and psychologically plausible account of
the processes involved. Consequently, approaches
to modelling human cognition are critically
incomplete.

Overcoming the learning paradox-
the Contextual Memory System

Let us start by trying to derive an informal
requirements analysis for overcoming the leamning
paradox. Consider a person confronted by some novel
event or situation — watching a new game;
examining some complex, unfamiliar machine; or
trying to understand some unfamiliar branch of
mathematics or computer programming language.
First impressions are of a mass of detail — pieces and
actions; pipes, cables and bolts; or senies of symbols.
It 1s not initially a problem of telling the wood from
the trees, it is a problem of even telling what the
trees are! One can initially identify neither which
features are salient nor the overall purpose of the
components of the game, machine or language. An
expert may help by labelling a few key components
— the pieces, the components, or the commands.
One stores this information, blindly, without
understanding, but it forms the basis around which
further information can be accreted, slowly building a
better ability to describe the components and the key
features. Eventually, over a period of time, one
acquires the ability to tell the wood from the trees,
understanding not only what the purpose of the
components are, but also which features are salient.
Several approaches, including ACT*, Soar and
connectionist approaches, give a reasonably plausible
account of the later learning events, the
accommodative processes which tune the existing
knowledge 10 achieve better task performance, but the
leamning paradox arises in the initial stage — how can
we take in new information when we understand
neither what is relevant nor what features to look for?
We argue that one plausible approach is to generate
as many features as possible for each event, and to
attempt to maintain and adapt this population on the
basis of subsequent events. Over time, the feature
population will ‘evolve’ into one which fits better
into the current evolutionary niche, in that salient
features should emerge, and useless ones should die
out.
This analysis suggests that one needs
(i) a mechanism for generating features
automatically from input without the need for
some prior characterisation in terms of domain-
specific primitives
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(i) a mechanism for tuning the population of
features on the basis of subsequent experience so
as to encourage it to adapt to the domain.

This is made more formal in the Contextual
Memory System which at the top level can be
thought of as providing mechanisms for the storage
and retrieval of information, both storage and retrieval
being in terms of dynamic features. Information from
the external environment is stored within the CMS as
items which are indexed by features. The CMS starts
with no items and no features. When an item is
remembered, feature analysis takes place dynamically
to create new features. This process of remembering
will use a mixture of old features and new features.
The features and items have energy which decays with
ume, but increases on recall. The links between the
features and items have strengths which are adjusted
on recall to ensure that the most salient feamres have
the higher strengths. Since features are created
dynamically the resulting memory configuration is
complex and depends upon the history of memory
processes.

When an item is first stored, it will be in terms of
the currently high energy features. When
subsequently recalled, it may be found with a different
set of features, and a process of adjusting the CMS
takes place to improve future access of the item. We
now turn to how it is possible to generate the features
dynamically without them being built in, and how
the features are updated through experience.

Building features from the environment

It is possible to build features of new information
without using built in primitives, by using built in
feature building mechanisms, rather than built in
features themselves. The essenual idea is to break
down the input into parts. The parts may not be
meaningful to the agent on initial encoding, but
through subsequent experience, these parts acquire
meaning. We have found in the area of mathematics
that the use of positional information is useful for
subsequent retrieval of the information, and this also
provides a simple model of attention. This process is
best illustrated by means of an example from
Winston's definition of a cup (Winston et al., 1983).
This is normally represented as:
cup(x)
& liftable (x) and stable (x) and open-vessel (x)
In the FEL language (Furse, 1990), it would be
represented as:
Definition of cup
X isa cup
iff x isa liftable and x isa stable and x isa open-vessel
In whatever manner "cup” is initially represented, it
is not necessary to have already represented the
notions of "liftable”, "stable” and "open-vessel", or
even "and", "<" in order to build features of the



object. This is most easily demonstrated by the
mechanism used by the MU system (Furse, 1992a)
and the current implementation of the CMS (Furse
and Nicolson, 1991, Furse 1991, Furse 1992b),
whereby the input is first parsed into a predicate
calculus like representation:

(<=>(cup x)

(and (liftable x)
(and (stable x) (open-vessel x))))

We do not claim that the predicate calculus is used
by people as an internal representation, this is just
used for illustrative purposes. This datastructure can
be thought of as a tree, and it is possible to analyse it
into a number of features using various feature
building mechanisms. The space of feature names is
formally defined in BNF by:
<featre-name> ::= <pos><spec><type><term>

<pos>  ::=LHS-|RHS- | null

<pos> = LHS-<pos> | RHS-<pos>
<spec> = IS-| HAS-

<type> :=FORM- | TERM-

Most of this apparatus is to give a formal notion of
the focus of attention, namely what part of the
information the agent is attending to when generating
the feature. The end of the feature-name, namely the
<term> ensures that the feature space is infinite and
only determined by its inputs, ie no pre-
characterisation. LHS- means one is focusing on the
left hand side of the tree, RHS- means the right hand
side, and composition takes one further down left or
right branches of the tree. HAS- means that the term
occurs somewhere within the focus of attention,
whilst IS- means that the term occurs exactly at the
specificed focus of attention. A form is a canonical
representation of a term useful in mathematics
whereby the leaves of the tree are replaced by the
letters a, b, ¢, ... to result in a canonical
representation.  Abstract HAS-forms introduce
abstraction whereby parts of the tree are replaced by
nodes. For a given term the number of abstract HAS-
forms is in general very large.

Some of the mechanisms to generate features are:
Break the tree into single level HAS- forms without
any positional information, eg
HAS-FORM-[LIFTABLE_A]
HAS-FORM-[STABLE_A]

Break the tree into single level HAS- forms with
positional information, eg

Rl ;-HAS-FORM-[LIFTABLE_A]
LHS-RHS-IS-FORM-[STABLE_A]

Break the tree into abstract HAS- forms, at whatever
level, eg to capture the notion that one has noticed
that it is a definition of a cup:
HAS-FORM-[<=>_[CUP_A]_B]

One has noticed that there are three anded expressions
on the right:
RHS-HAS-FORM-[AND_A_[AND_B_C]]

One has noticed the liftable and stable notions
somewhere:
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HAS-FORM-

[AND_[LIFTABLE_A]_[AND_[STABLE_B]_C]]]
Using these mechanisms it is possible to generate

scores or often hundreds of different features of the

input.  This process is described in greater detail in

Furse (1992b). Clearly the current implementation

needs the use of a tree data structure, but mechanisms

could be built to work on a string representation, for

example one could break up

"x isa cup iff x isa liftable and x isa stable

and x isa open-vessel"

into features like:

HAS-FORM-"liftable"

START-HAS-FORM-"a isa cup”

HAS-FORM-"a isa liftable and a isa stable and b"

HAS-FORM-BEFORE-"liftable”_"open-vessel"

HAS-FORM-ADJACENT-

"a is liftable”_"a isa stable”

although one might want to allow the form

abstraction to range over all substrings and not just

the "x" as in the examples above, or not use it at all.

Learning the appropriate features

The processes described above allow the agent to
generate a large number of features of the input
information. But many of these features will be
redundant. It is only through experience that the
agent discovers which of the features are relevant for
making future retrievals from memory. But it is
essential that redundant features are generated at the
outset, otherwise we are in danger of being in a closed
box. Thus it is in the process of accommodation that
the CMS models this leaming experience.

In the CMS all featres are given an energy value,
and the features of highest energy can be thought of
as representing the current attentional state. The
CMS starts as a tabula rasa with no features, but as it
stores information it generates features dynamically
from the input as described above. The very first
item will of course be represented in terms of brand
new features, each of which will be given a default
energy value. When subsequent items are stored,
feature analysis will generate a mixture of old and
new features. In the CMS a mixture of old and new
features is stored, with the old features being the ones
of highest energy. At the time of initial storage this
may not be a very good choice of features for retrieval
purposes, but provided that enough were generated and
the agent is given useful subsequent experience, the
features may subsequently be refined.

Learning in the CMS takes place during retrieval of
information from memory. Any given probe gives
rise to a number of features, and of course only the
old features are used to index the memory. This
search is implemented sequentially, but conceptually
could be considered a parallel process whereby features
activate items in memory that they index. Some



items will be indexed by more than one feature, and
once their activation energy (technically within the
CMS this is known in the retrieval process as a
transient energy) rises above a threshold, the item
fires and is tested against the probe. When the item
is not in the memory this is discovered very fast. If
it is present, retrieval will result in the found item
which matches the probe, and a number of failures.
Leaming is then the processes of accommodation
whereby the CMS memory structures are adjusted so
that in future it is easier to retrieve the found item
than the failures.

There are four accommodative processes: storing
uncomputed features, increasing the energy of useful
features, decreasing the energy of unuseful features,
and creating new distinguishing features.
Uncomputed Features. Uncomputed features
arise because not all the features that are found in the
probe may be stored as indexing the recalled item.
The context of recall may be very different from when
the item was first stored and other contexts when it
was recalled, so that at the ume of recall it may not
be known whether the item has one of the probe
features or not. Features thus have a 3-valued logic:
positive, negative or uncomputed; only positive
feature links are stored in the CMS. Thus the
features which have not been previously computed for
the item, and are found to be positive for the item are
now given new links to the item.

Useful and Unuseful Features. Features are
deemed to be useful in the search if they index the
found item, but not the failed items. These features
can have their energies increased and also the energy
of the link from the feature to the item. Conversely,
features are considered unuseful if they index the failed
items but not the desired item, and they have their
energies decreased.

Creating new distinguishing Features. The
final process of leaming from the experience of recall
is to dynamically create new features to distinguish
the found item from the failures. In the CMS this is
currently only done when no existing features succeed
in doing this distinction. New features can be created
by two different approaches. In the first the found
item and a failure are analysed to discover differences,
from which a feature can be derived. In the second
approach both the found item and a failure are broken
up into a large number of features, and a feature in the
found item set and not the failure is chosen. The
CMS currently uses the latter approach.

Through these processes of accommodation, the
CMS continually adjusts itself with experience so
that the items in memory that are the most important
are most easily retrieved because specialised features
will have been built and they will have high energy.
Conversely items rarely needed take more time to
retrieve because they may only have features of low
energy, and furthermore several of these features may
not be useful in any context other than the original
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presentation, ie they are redundant. This could be
called the "Redundant Feature Hypothesis”, and
further empirical work is planned to test whether
people need 1o store redundant features.

MU: the Mathematics Understander
While the CMS is intended as a generic architecture
for learning by experience, it has to date only been
thoroughly investigated in the domain of pure
mathematics (Furse, 1992a). The CMS forms the
basis of MU, a large computer program which models
the reading of mathematics texts by students. MU
has competence in all aspects of declarative learning,
and is unique both in machine learning and in
cognitive architectures in its ability to truly capture
declarative leaming,

To date, MU has been applied to two branches of
pure mathematics, namely Group Theory (using the
textbook by Herstein, 1975) and Classical Analysis
(using the textbook by Anderson, 1969). The
approach adopted involves first rewriting the text by

Definition 2.1.7
G is abelian iff G isa groupand Va,bae Gandbe
G ab=ba

Problem 2.3.3 -
Prove (G isa group and Va,b € G (ab)*=a’b?)
= G is abelian

Solution:

Suppose G isa group

and Vabae Gandbe G= (ab)2 =a’b’

RTP G isa abelian

RTP G isa group and Vabpae Gandbe G
= ab = ba by definition of abelian

Part 1

RTP G isa group

Follows logically

QED Part 1

Part 2

RTPVabae Gandbe G= ab=ba

Supposcae Gandbe G

RTP ab = ba

Now (ab)* = a’ b

= (ab)(ab) = (aa)(bb) since x = xx

= a((ba)b) = a((ab)b) since (ab)(cd) = a((bc)d)

= (ba)b = (ab)bsinceau=aw = u=w

= ba=absinceua=wa=u=w

QED Part 2

Figure 1. Problem Solving in Group

Theory by MU




hand into FEL — a ‘formal expression language’
(Furse 1990), which captures the essential semantics
of the domain — thus forming a machine
understandable text for MU to ‘read’. The basic
requirement in reading the text is to ‘comprehend’
each input line, and then for each section either to
assimilate new knowledge, to check through each step
of a proof, or to attempt to solve a problem. An
example of successful problem solving is shown in
Figure 1 (Definition 2.1.7 for abelian has been read in
and assimilated earlier, as has the definition for
group).

The key problem in understanding proofs and
solving problems is to be able to find the appropriate
mathematical result. MU uses the CMS to ensure
that it does not suffer from a combinatorial
explosion, by focusing its search to only inference
rules that are relevant to the current context. Fig.1
shows an example of MU's ability to solve problems
in group theory. When MU is_trying to reason
forwards from the step (ab)® = a’b, it does a feature
search using features such as:

IS-FORM-[=>_A_B]
LHS-IS-OP-=
HAS-FUNCTION-*
HAS-FUNCTION-=
RHS-LHS-IS-OP-*
HAS-FUNCTION-SQUARE

These features have partly already been refined
through the experience of checking proofs. The
features retrieve a number of relevant inference rules
for example x* = xx, and also other inference rules
which do not match the input. The CMS is then
adjusted to ensue that the right inference rule can be
found more easily in future.

Because of MU'’s extremely rich knowledge, all of
which is learned, MU demonstrates much more
complex mathematical understanding than nearly all
programs derived from the theorem-proving tradition
of Al, a paradigm case of Lenat's Knowledge
Principle.

Conclusions

In conclusion, one of the major computational
problems facing the human infant, and also the
human adult, is how to make sense of new situations.
This is surely achieved by dynamic, adaptive leaming.
We argue, therefore, that a dynamic, declarative
learning capability should be the cornerstone of
architectures for cognition. The CMS has provided
an existence proof that a declarative learner can be
constructed for the mathematics domain. We hope
that this demonstration will prove the catalyst for the
construction of a new generation of cognitive
architectures.
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