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 ABSTRACT OF THE DISSERTATION 

Spatial memory precision and learning in medial temporal and 
prefrontal networks 

 
By 

Rebecca Farwell Stevenson 

Doctor of Philosophy in Biological Sciences  

University of California, Irvine, 2019 

 Professor Michael A. Yassa, Chair 

 

The medial temporal lobe and prefrontal cortex are known to play a critical role in tasks 

involving learned associations, such as between an object and a location. However, the 

exact neural mechanisms underlying the learning and retrieval of high-fidelity spatial 

associations are unknown. To address this gap, we tested presurgical epilepsy patients 

with bilateral depth electrodes implanted in the medial temporal lobe and prefrontal 

cortex on two variants of an object-location spatial learning task. In the first version of 

this task, subjects were shown a series of objects at random positions along the 

circumference of an invisible circle. At test, the same objects were shown at the top of 

the circle, and subjects used a dial to move the object to the location shown during 

encoding. Angular error between the correct location and the indicated location was 

recorded as a continuous measure of performance. By registering pre- and post-

implantation MRI scans, we were able to localize electrodes to specific hippocampal 

subfields. We found a correlation between increased high-frequency gamma power (40-

100 Hz), thought to reflect local excitatory activity, and the precision of spatial memory 

retrieval in hippocampal CA1 and dorsolateral prefrontal electrodes. Additionally, we 
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found a directional relationship between these regions, suggesting that the dorsolateral 

prefrontal cortex is involved in post-retrieval processing. In order to examine the neural 

activity underlying spatial learning, we then tested presurgical epilepsy patients on a 

variant of this task in which subjects attempted to learn object-location associations over 

the course of three training blocks with feedback. At retrieval, we found increased 

medial temporal and dorsolateral prefrontal gamma power for low error trials, consistent 

with the results described above. At feedback, we found the opposite pattern of activity, 

with increased medial temporal and dorsolateral prefrontal gamma power for high error 

trials. Increased medial temporal gamma activity at feedback also predicted greater 

decreases in error from one training block the next, indicating that these error signals 

are involved in updating memory representations or modifying incorrect associations 

during learning. Finally, we examined the contributions of low frequency oscillatory 

power to performance on this spatial learning task as well as the relationship between 

the 1/f aperiodic slope and spatial memory retrieval and learning. We found that the 

aperiodic slope, thought to reflect the ratio of excitation to inhibition, decreased across 

training blocks, but did not predict error within training blocks, suggesting that 

decreased excitation and/or increased inhibition is associated with increased familiarity 

and/or decreased novelty. Low frequency oscillatory power did not predict error within 

blocks and did not change across blocks. Overall, these data suggest putative 

mechanisms for the learning and retrieval of high-fidelity spatial associations. 
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INTRODUCTION 

 

Memory for events or experiences, known as episodic memory, depends on our ability 

to make novel associations between the items or elements that make up each event. 

For instance, my memory of parking my car this morning includes a key association 

between the car and its location in the parking lot. Converging evidence from studies in 

animals and humans suggests that this ability is subserved by medial temporal and 

prefrontal networks. However, as these studies typically have used binary, or correct 

versus incorrect, measures of performance, the relationship between neural activity 

within these networks and memory strength, or precision, is still not well understood. 

Given that novel associations (e.g. face-name) are often not learned in a single episode, 

it is also unclear how medial temporal and prefrontal activity contribute to learning over 

the course of multiple episodes (e.g. learning someone’s name after being reminded a 

few times).  

 

In order to address these questions, we developed two variants of an object-location 

association task. In the first task, subjects were tested on 100 separate object-location 

associations, eliciting a broad range of spatial memory precision ideal for examining the 

neural correlates of high-fidelity spatial memory retrieval. In this task, subjects had just 

one shot to learn the object-location associations, i.e. the test phase immediately 

followed the encoding phase. In the second task, subjects attempted to learn 30 object-

location associations over the course of three training blocks with feedback, allowing us 
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to examine how neural activity within medial temporal and prefrontal networks 

contribute to associative learning. 

 

We ran both of these tasks on pre-surgical epilepsy patients with depth electrodes 

implanted in the medial temporal lobe and prefrontal cortex. Intracranial recordings in 

pre-surgical epilepsy patients provide a rare opportunity to examine medial temporal 

and prefrontal contributions to spatial memory precision and learning with a temporal 

and spatial resolution unmatched by non-invasive functional neuroimaging techniques. 

Unlike electroencelphalography (EEG), in which neural activity is recorded from 

electrodes placed on the scalp, intracranial recordings allow for reliable recording of 

high-frequency gamma activity (>40 Hz), a frequency range that has been an 

increasingly important research focus in both human and animal studies. As many of 

the seminal studies on episodic memory have been performed using electrophysiology 

in animals, intracranial recordings in humans provide a bridge to this body of research, 

enabling the direct testing of models and theories developed in the animal literature. 

The high temporal resolution that this method affords also allows us to examine the 

dynamics of neural processing, including the role that neural oscillations play in 

coordinating intra- and inter-regional neural activity. The relatively high spatial resolution 

of intracranial recordings enables us to determine where neural signals originate and 

thus make inferences about the contribution of different regions to memory processes. 

Finally, intracranial recordings allow us to estimate the shape of neural power spectra, 

or the amount of energy (power) present at different frequencies. The slope of this 

signal is thought to be a promising new method for estimating the balance between 
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excitation and inhibition, providing a new window into neural activity. Leveraging the 

unique features of this recording method combined with the continuous, objective 

measure of performance afforded by the object-location memory tasks, the overall goal 

of this research is to identify the neural mechanisms underlying spatial memory 

precision and learning. A description of specific aims follows.         

 

Aim 1: Determine the extent to which changes in medial temporal and prefrontal 

high-frequency activity and network dynamics predict the precision of spatial 

memory retrieval.  

In order to examine the neural mechanisms underlying the precision of spatial memory 

retrieval, we tested presurgical epilepsy patients with depth electrodes implanted in the 

medial temporal lobe and prefrontal cortex on an object-location memory task designed 

to elicit a broad range of spatial memory precision. During encoding, subjects were 

shown a series of 100 objects at random locations along the circumference of an 

invisible circle. At test, the same objects were shown at the top of the circle, and 

subjects were asked to use a dial to move the object to where it appeared during 

encoding. Angular error between the correct location and the indicated location was 

recorded as a continuous measure of performance. We found a correlation between 

increased high-frequency gamma power, thought to reflect local excitatory activity, and 

the precision of spatial memory retrieval in hippocampal CA1 and dorsolateral prefrontal 

electrodes. Additionally, we found a directional relationship between activity in the 

dorsolateral prefrontal cortex and CA1 region, suggesting that the dorsolateral prefrontal 

cortex is involved in post-retrieval processing. 
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Aim 2: Determine the extent to which changes in medial temporal and prefrontal 

high-frequency activity predict error and learning at retrieval and feedback in an 

object-location associative learning task. 

In order to examine the neural mechanisms underlying spatial associative learning, we 

tested presurgical epilepsy patients with depth electrodes implanted in the medial 

temporal lobe and prefrontal cortex on a spatial memory task in which subjects 

attempted to learn object-location associations over the course of three training blocks 

with feedback. During encoding, subjects were shown a series of 30 objects at random 

locations along the circumference of an invisible circle. In each of the three training 

blocks, the same objects were shown at the top of the circle, and subjects were asked 

to use a dial to move the object to where it appeared during encoding. After the subject 

finished placing the object, it was shown in the correct location for 1 second as 

feedback. Angular error between the correct location and the indicated location was 

recorded as a continuous measure of performance. At retrieval, we found increased 

medial temporal and dorsolateral prefrontal gamma power for low error trials, consistent 

with the results described in aim 1. At feedback, we found the opposite pattern of 

activity, with increased medial temporal and dorsolateral prefrontal gamma power for 

high error trials. Increased medial temporal gamma activity at feedback also predicted 

greater decreases in error from one training block the next, indicating that these error 

signals are involved in updating memory representations or modifying incorrect 

associations during learning.  
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Aim 3: Determine the extent to which changes in low frequency oscillatory power 

and the aperiodic slope predict error and learning at retrieval and feedback in an 

object-location associative learning task. 

In order to examine the contributions of low frequency oscillatory power to performance 

on the spatial learning task described above, as well as the relationship between the 

slope of the aperiodic component of neural power spectra and spatial learning, we used 

a novel algorithm to estimate low frequency oscillatory power and the aperiodic slope. 

We found that the aperiodic slope, thought to reflect the ratio of excitation to inhibition, 

decreased across training blocks, but did not predict error within training blocks, 

suggesting that decreased excitation and/or increased inhibition is associated with 

increased familiarity and/or decreased novelty. Low frequency oscillatory power did not 

predict error within blocks and did not change across blocks. Overall, these data 

suggest putative mechanisms for the learning and retrieval of high-fidelity spatial 

associations.  
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 

 

1.1  Declarative memory and the medial temporal lobe  

Interest in the medial temporal lobe (MTL) with regards to memory research began with 

the seminal studies on patient H.M conducted by Brenda Milner. This patient had 

severe bilateral MTL damage that resulted in profound amnesia. However, Milner 

observed that while H.M. could not remember new facts or events, he could still take in 

and retain some new information, such as motor skill learning. Observing similar 

selective deficits in other MTL patients, Cohen and Squire proposed that ‘declarative 

memory’, or the memory for facts or events, and ‘procedural memory’, or the memory 

for how to accomplish certain skills are different types of memory that can be supported 

by different brain structures (Cohen & Squire, 1980). While procedural memory is 

spared with MTL damage, declarative memory is not. Declarative memory can be 

further subdivided into episodic memory (Tulving, 1984), or the memory for events and 

experiences, and semantic memory, or the memory for facts or the meaning of words. 

For the purposes of this dissertation I will focus on the contributions of the MTL to 

episodic memory. A more complete account of theories of MTL function necessitates 

some knowledge of MTL anatomy. As such, a brief overview of MTL structure and 

connectivity follows.   

 

1.2  Overview of medial temporal lobe anatomy 

The MTL consists of the hippocampus, subiculum, and the perirhinal, parahippocampal, 

and entorhinal cortices. These regions are homologous across rodents, primates, and 
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humans, though in rodents the parahippocampal cortex is referred to as the postrhinal 

cortex (Allen & Fortin, 2013). The perirhinal cortex (PRC) and parahippocampal cortex 

(PHC) are strongly interconnected but differ in the inputs they receive from cortical 

association areas (Lavenex & Amaral, 2000). The PRC receives much of its input from 

association areas along the ventral visual processing stream (Lavenex & Amaral, 2000). 

This ventral stream, also known as the ‘what’ stream, originates in the visual cortex and 

is thought to process information about object or items as well as semantic information 

(Diana, Yonelinas, & Ranganath, 2007). The parahippocampal cortex (PHC) receives 

more visuospatial input from the dorsal processing stream, or the ‘where’ stream, 

including areas such as V4, and the posterior parietal and retrosplenial cortices 

(Lavenex & Amaral, 2000; Ranganath & Ritchey, 2012). This relative segregation of 

‘what’ and ‘where’ processing streams is maintained in the EC as the lateral and medial 

portions of the EC receive cortical input primarily from the PRC and PHC, respectively 

(Burwell, 2000).  
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The hippocampus can be divided into 

the dentate gyrus (DG), CA1 and 

CA3 subfields. Early studies on 

hippocampal anatomy emphasized 

what was called the ‘trisynaptic 

circuit’ (Anderson, Bliss, & Skrede, 

1971; Lavenex & Amaral, 2000). This 

largely unidirectional pathway begins 

with cells from layer II of the EC 

projecting to granule cells in the 

dentate gyrus via an axon bundle 

known as the perforant path. The 

granule cells in turn give rise to 

axons, known as mossy fibers, that synapse onto CA3 pyramidal cells. Importantly, the 

CA3 subfield also receives strong input from itself via recurrent collaterals. The final link 

in the trisynaptic pathway is the projection from CA3 pyramidal cells to the CA1 subfield 

via the Schaffer collaterals (Amaral & Lavenex, 2007). However, this pathway was 

described when it was thought that the CA1 subfield was the primary output region of 

the hippocampus (Amaral & Lavenex, 2007). Since it was discovered the subiculum and 

entorhinal cortices also serve as major sources of hippocampal output, the phrase 

‘trisynaptic pathway’ is now thought to be outdated (Amaral & Lavenex, 2007). In 

addition to the connections described above, there is also a projection from EC layer II 

to CA3 and from EC layer III to CA1, making up what is known as the temporoammonic 

 

Figure 1.1. Schematic of medial temporal lobe 
anatomy. From Clark and Squire, 2013. 
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pathway (Clark & Squire, 2013). It should be emphasized that this is a simplified 

overview of hippocampal circuitry. For instance, not included in the schematic shown in 

Figure 1 is the fimbria-fornix pathway, which connects the hippocampus to subcortical 

structures (Amaral & Lavenex, 2007).     

    

1.3 Episodic memory and the medial temporal lobe 

Long before the detailed neuroanatomical mapping of MTL circuitry described above 

was complete, researchers used experimental lesions in animals to try to define some 

broad structure-function relationships within this region (Morris, 2007). These studies 

showed that MTL damage resulted in severe deficits on single-trial recognition memory 

tasks such as the delayed non-matching to sample (DNMS) task (Morris, 2007). In this 

task, subjects are shown a sample object, then, after a short delay, they are shown the 

same object again along with a novel object. Subjects are rewarded for choosing the 

novel object. Using this task, researchers found that lesions to the PRC resulted in 

severe impairments in object, or item recognition memory (Murray & Mishkin, 1986; 

Ranganath, 2010; Zola-Morgan, Squire, Amaral, & Suzuki, 1989). As this task depends 

on memory for single events (i.e. seeing the sample object), these results were early 

indications that the MTL is particularly important for episodic memory, or the memory for 

specific events or experiences. However, converging evidence from monkey, human, 

and rodent studies suggested that object, or item recognition memory was relatively 

spared in subjects with damage limited to the hippocampus (Ranganath, 2010). As 

such, a number of theories emerged to try to explain the functional differences between 

the hippocampus and medial temporal cortices. 
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One of these theories, called the ‘relational memory theory’, proposed that while the 

PRC and PHC are involved in representing the items or elements of an event, the HC is 

involved in representing the relationships between items (Eichenbaum & Cohen, 2014; 

Eichenbaum, Otto, & Cohen, 1992). A more recent model, called the Binding of Items in 

Context (BIC) model, builds on the relational memory theory by incorporating 

information about MTL connectivity (Diana et al., 2007; Eichenbaum, Yonelinas, & 

Ranganath, 2007). As the PRC receives much of its input from the ventral visual ‘what’ 

processing stream, the model proposed that this region is involved in processing 

information about objects or items. Similarly, as the PHC receives more input from the 

dorsal ‘where’ stream, the model proposed that this region is involved in representing 

context. The term ‘context’ as used here means a variety of things, including memory 

for where or when an event took place. In this model, the HC is involved in representing 

the relationships, or the ‘bindings’, between items and context (Diana et al., 2007). 

Evidence for this model can be found in both the animal and human literature. For 

example, studies have shown that rodents with hippocampal damage are unimpaired on 

tasks that test their ability to recognizes familiar objects, but impaired on tasks that test 

their ability to recognize familiar objects in novel locations (Eacott, Norman, Langston, & 

Wood, 2004). The BIC model interprets these results as suggesting that the 

hippocampus mediates the association, or ‘binding’, between objects and locations. 

Human studies of object-location memory have found similar deficits following 

hippocampal damage (Hannula & Ranganath, 2008; Ryan, Althoff, Whitlow, & Cohen, 

2000). Furthermore, fMRI studies have shown greater hippocampal activation during 
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associative memory tasks than during item recognition (Davachi et al. 2003; Diana, 

Yonelinas, & Ranganath, 2009).  

 

Another influential account of the functional differences between the hippocampus and 

surrounding cortices (along with rest of the neocortex) was proposed by McClelland and 

colleagues in 1995. This model, called Complementary Learning Systems (CLS), holds 

that the neocortex and hippocampus mediate two ‘complementary’ types of learning. 

While the neocortex supports the gradual acquisition of knowledge about the 

environment, the circuitry of the hippocampus supports the rapid acquisition of 

information about specific events (i.e. episodic memory) (Kumaran, Hassabis, & 

McClelland, 2016; Mcclelland, 1995). Although the BIC and CLS models focus on 

different aspects of MTL function, the two models are compatible in that they both 

propose a critical role for the hippocampus in episodic memory and specifically in the 

rapid acquisition of novel associations (Ranganath, 2010).  

 

1.4  Episodic memory and the prefrontal cortex  

The MTL is not the only region important for episodic memory. Numerous studies have 

implicated the prefrontal cortex (PFC) in many aspects of episodic encoding and 

retrieval. The PFC can be divided into 6 regions: the medial PFC (mPFC; Brodmann 

area (BA) 10/25/32), dorsolateral PFC (dlPFC; BA 9/10/46), orbitofrontal cortex (OFC; 

BA 10/11/47), ventrolateral PFC (vlPFC; BA 47/45/44), anterior cingulate cortex (ACC; 

BA 24), and caudal PFC (cPFC; BA 6/8). However, there is no consensus on these 

divisions and PFC parcellation is inconsistent across studies and literature. PFC regions 
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are highly interconnected and have extensive and often reciprocal connections with 

much of the temporal and parietal cortex (Passingham & Wise, 2012). However, each 

PFC region has a specific pattern of connectivity that is thought to reflect its function.  

The mPFC receives both direct and indirect input from the hippocampus and is thought 

to be involved in a variety of episodic memory processes. Based on anatomical studies 

in rodents and primates, the direct hippocampal input to the mPFC comes from the 

anterior HC (ventral HC in rodents) through a white matter track known as the fornix. 

While this projection is unidirectional, the mPFC is densely and reciprocally connected 

to the medial temporal cortices, which, in turn are connected to the HC (Insausti & 

Amaral, 2008; Lavenex, Suzuki, & Amaral, 2002; Muñoz & Insausti, 2005). The HC and 

mPFC are also indirectly connected via the nucleus reuniens, one of the midline 

thalamic nuclei (Amaral & Cowan, 1980; Barbas, Henion, & Dermon, 1991). One of the 

functions associated with the mPFC is the ability to use context to guide memory 

retrieval (Preston & Eichenbaum, 2013). Evidence for this idea comes from studies in 

rodents showing that mPFC damage impairs performance on tasks that require 

switching between retrieval strategies (e.g. remembering an odor or a place) based on 

context (Preston & Eichenbaum, 2013). Furthermore, neuroimaging in human studies 

show mPFC activation during retrieval of contextual details (Rugg & Vilberg, 2013).  

  

The dlPFC is also indirectly connected to the hippocampus via perirhinal and 

retrosplenial cortices (Passingham & Wise, 2012). In addition, it is highly connected to 

areas such as the posterior parietal cortex and premotor areas (Passingham & Wise, 

2012). Passingham and Wise describe how the pattern of connectivity in this region 
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supports the ability to generate goals based on context (Passingham & Wise, 2012). 

Information retrieved by the MTL can be combined with visuospatial information from 

the posterior parietal cortex to form a representation of context, while connections to the 

premotor areas allow for the execution of goals relevant to this context (Passingham & 

Wise, 2012). Evidence for this idea comes from monkey studies using delayed 

response tasks, in which subjects are given a cue and then must make a response (e.g. 

choosing an object in a specific location) based on that cue after a short delay 

(Passingham & Wise, 2012). Monkeys with lesions to the dlPFC perform at chance level 

on this task. Electrophysiological recordings of dlPFC cells during the delay period of 

this task indicate that these deficits are due to the region’s involvement in the 

prospective encoding of the response goal (i.e. the location of the object) (Passingham 

& Wise, 2012). Additionally, the dlPFC is thought to be involved in the monitoring and 

organization of information maintained in working memory as well as in the monitoring 

of information retrieved from episodic memory (Blumenfeld & Ranganath, 2007; 

Dobbins, Foley, Schacter, & Wagner, 2002; Henson, Rugg, Shallice, Josephs, & Dolan, 

1999; Simons & Spiers, 2003). Other broad structure-function relationships within the 

PFC include the OFC’s involvement in representing value and the ACC’s role in conflict 

monitoring and error detection (Botvinick, Braver, Barch, Carter, & Cohen, 2001; 

Hosokawa, Kennerley, Sloan, & Wallis, 2013; Yeung & Nieuwenhuis, 2009). 

 

1.5  Intracranial recordings in pre-surgical epilepsy patients 

As noted above, intracranial recordings in pre-surgical epilepsy patients provide a rare 

opportunity to examine episodic memory in humans with both high spatial and temporal 
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resolution. The sub-millisecond temporal resolution of this method allows us to examine 

the role neural oscillations play in coordinating intra- and inter-regional neural activity. 

While most studies using this method only obtain a post-implantation CT, which 

somewhat limits the accuracy of electrode localization, a unique feature of the current 

research is that we obtain post-implantation MRIs, enabling more accurate and precise 

electrode localization, including on the level of hippocampal subfields.   

 

A variety of signals can be obtained from subdural grid—termed electrocorticography 

(ECoG)—and depth electrode recordings in humans, including single unit activity (SUA), 

multi-unit activity (MUA), and the local field potential (LFP). For the purposes of this 

proposal, I will focus on the LFP. The LFP reflects the aggregate electrical activity 

generated by populations of neurons located in the vicinity of the recording electrode 

(Berens, Logothetis, & Tolias, 2010). The principle sources contributing to the LFP are 

thought to be excitatory and inhibitory post-synaptic currents, though other sources, 

including spiking, can also contribute (Buzsaki, Anastassiou, & Koch, 2012). Signal 

processing techniques can be used to transform the raw LFP time series into the 

frequency domain, giving a measure of energy (power) at different frequencies, called 

power spectra. Neural power spectra consist of narrowband peaks in power rising 

above a prominent “1/f” signal, where power decreases with increasing frequency 

following a power-law function. The narrowband peaks in power indicate the presence 

of neural oscillations, or rhythmic activity occurring at a particular frequency. Multiple 

neural oscillations have been identified at different frequency ranges, including delta (2-

3 Hz), theta (3-8 Hz), alpha (8-12 Hz), beta (15-30 Hz) and gamma (>30 Hz), though the 
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center frequency and range of each band can vary across studies and literature (Cohen, 

2014).  

 

 

Figure 1.2. Schematic of phase synchronization and phase-amplitude coupling. Modified from Fell and 
Axmacher, 2011. 

 

Much evidence suggests that neural oscillations in the theta and gamma range are 

involved in memory encoding and retrieval. While gamma oscillations are thought to be 

generated by local interactions between interneurons and pyramidal cells, theta 

oscillations in the rodent hippocampus are driven by interneurons projecting from the 

medial septum, though it was recently shown that theta rhythms can also emerge in in 

vitro hippocampal preparations (Buzsaki & Wang, 2012; Colgin, 2016; Colgin et al., 

2009). The rhythmic properties of these oscillations play an important role in 

coordinating the timing of neural activity via such mechanisms as phase synchronization 

and phase-amplitude coupling. Phase synchronization refers to instances when there is 

a consistent or difference in phases between two signals (see Figure 1.2) and is thought 

to support neural communication and synaptic plasticity (Cohen, 2014; Fell & 

Axmacher, 2011). For instance, as neural spiking can preferentially occur at specific 

phases of an oscillation—termed spike-field coherence—this synchronization can 



11 

 

coordinate the timing of pre- and post-synaptic action potentials (Fell & Axmacher, 

2011; Rutishauser, Ross, Mamelak, & Schuman, 2010). This temporal coordination may 

facilitate spike timing-dependent plasticity, in which the precise timing of pre- and post-

synaptic firing is key to whether or not long-term potentiation (LTP) takes place (Fell & 

Axmacher, 2011). Phase-amplitude coupling, in which the phase of a low-frequency 

oscillation (e.g. theta) modulates the amplitude of a high-frequency oscillation (e.g. 

gamma; see Figure 1.2), is also thought to facilitate neural communication and synaptic 

plasticity (Fell & Axmacher, 2011; Igarashi, Lu, Colgin, Moser, & Moser, 2014). 

Compared to high-frequencies, low-frequency phase synchronization is often spread 

across a larger area of the brain (Buzsaki & Wang, 2012; Von Stein & Sarnthein, 2000). 

As such, nesting gamma oscillations within low-frequency oscillations could facilitate 

inter-regional gamma synchronization (Buzsaki & Wang, 2012). It is becoming 

increasingly clear that interactions between low- and high-frequency activity are key 

mechanisms underlying episodic memory encoding and retrieval. 

 

1.6  High-frequency activity and episodic memory 

Intracranial studies in pre-surgical epilepsy patients report robust increases in high 

frequency activity (HFA) during episodic memory encoding and retrieval (Burke, Long, 

et al., 2014; Greenberg, Burke, Haque, Kahana, & Zaghloul, 2015; Sederberg, Schulze-

Bonhage, Madsen, Bromfield, McCarthy, et al., 2007). Moreover, increased HFA has 

been shown to predict performance on episodic memory tasks. For example, Sederberg 

et al. found that increased HFA (44-100 Hz) in regions such as the hippocampus and 

PFC during encoding predicted accuracy on a free recall task and that this pattern of 
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activity was reinstated prior to successful retrieval (Burke, Long, et al., 2014; Sederberg, 

Schulze-Bonhage, Madsen, Bromfield, McCarthy, et al., 2007). Increased HFA (45-95 

Hz) in the PFC and temporal lobe during encoding has also been found to predict 

performance on an associative memory task (Greenberg et al., 2015). In a virtual 

navigation task in which subjects learned the locations of four objects over 8 training 

blocks, Park and colleagues found that hippocampal HFA (50-100 Hz) decreased over 

the course of the 8 blocks for high-performance but not low-performance sessions. 

These results indicate that hippocampal HFA is related to the successful encoding of 

the object locations (Park et al., 2014). 

 

A prominent question in the field is what neurophysiological processes HFA in humans 

represents. One possibility is that HFA reflects gamma oscillations that coordinate the 

firing activity of populations of neurons. As described above, gamma oscillations are 

generated by local interactions between interneurons and pyramidal neurons. They 

have a well-defined frequency and phase, and appear as narrowband ‘peaks’ in the 

power spectrum (Lachaux, Axmacher, Mormann, Halgren, & Crone, 2012). As gamma 

phase synchronization can enhance spike-timing dependent plasticity, these oscillations 

are thought play a mechanistic role in memory processing (Fell & Axmacher, 2011; 

Igarashi et al., 2014). Another possibility is that HFA does not reflect oscillatory activity, 

but rather a broadband increase in the power spectra stemming from increased 

neuronal spiking (Buzsaki & Wang, 2012; Miller, Sorensen, Ojemann, & den Nijs, 2009). 

While it was originally thought that action potentials don’t contribute much to the LFP at 

frequencies below 500 Hz since the field generated by action potentials only lasts ~2ms, 
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recent studies have shown that spiking can result in increased broadband power that 

can be detected as low as 40 Hz (Buzsaki & Wang, 2012; Lachaux et al., 2012). 

Support for this view comes from studies in primates (Ray & Maunsell, 2011) and 

humans (Manning, Jacobs, Fried, & Kahana, 2009) showing that broadband increases 

in power are highly correlated with firing rate. These broadband increases in power are 

aperiodic, as they are not dominated by any particular frequency. In this view, HFA is 

non-oscillatory and does not play a mechanistic role in memory processing, but can be 

thought of as biomarker for local activity. Given that the frequency range of this 

broadband shift overlaps with that of ‘true’ gamma oscillations, a third possibility is that 

HFA reflects a combination of these processes (Burke, Long, et al., 2014). While it is 

difficult to rule out this third possibility, since most studies on HFA and memory in 

humans report broadband effects, this signal is thought to primarily reflect increased 

spiking (Burke, Ramayya, et al., 2014).  

 

1.7  Theta oscillations and episodic memory 

Theta in the rodent hippocampus is very prominent in freely moving rats and has been 

widely studied over the years. These studies have revealed a critical role for theta in 

encoding and retrieval (Berry & Thompson, 1978; Hyman, Wyble, Goyal, Rossi, & 

Hasselmo, 2003; Mitchell, Rawlins, Steward, & Olton, 1982; Winson, 1978). 

Hippocampal theta has also been linked to spatial navigation (e.g. theta phase 

precession) and representation (e.g. theta sequences) (see Colgin, 2016 for review). 

Furthermore, theta is correlated with sniffing and whisking (in rats) and eye movements 
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(in monkeys), leading some researchers to hypothesize that theta rhythms are important 

for coordinating the intake of sensory information (Colgin, 2016).  

 

Theta oscillations in humans are also thought to play an important role in memory 

encoding and retrieval. Several studies in pre-surgical epilepsy patients have found 

increased theta power in the medial temporal lobe during episodic memory retrieval 

(Burke, Long, et al., 2014; Watrous, Tandon, Conner, Pieters, & Ekstrom, 2013). While 

these studies did not find that theta power during retrieval predicted performance, 

alterations in theta power during encoding has been shown to predict subsequent 

memory (Burke et al., 2013; Lega, Jacobs, & Kahana, 2012). Furthermore, using single 

unit and LFP recordings in the MTL, Rutishauser and colleagues found that theta 

phase-locking of neural firing during encoding predicted subsequent memory on a 

recognition memory task as well as subjects’ confidence in their responses (Rutishauser 

et al., 2010). Lastly, theta power preceding the onset of an encoding stimulus or 

retrieval cue has been shown to predict successful encoding and retrieval (Addante, 

Watrous, Yonelinas, Ekstrom, & Ranganath, 2011; Fell et al., 2011; Merkow, Burke, 

Stein, & Kahana, 2014). Researchers have interpreted this pre-stimulus theta as 

reflecting a neural state that facilitates mnemonic processes. 

 

In rodents, theta phase synchronization has been shown to coordinate neural activity 

within the MTL and between the MTL and PFC during a wide variety of memory tasks, 

while theta-gamma phase-amplitude coupling within the MTL has repeatedly been 

shown to track learning of novel associations (Igarashi et al., 2014; Tort, Komorowski, 
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Manns, Kopell, & Eichenbaum, 2009). Though fewer in number, studies in humans 

suggest that theta plays a similar mechanistic role in mnemonic processes. For 

instance, MTL-PFC theta synchronization has been shown to increase during free recall 

and predict successful retrieval of spatial context (Anderson, Rajagovindan, Ghacibeh, 

Meador, & Ding, 2010; Watrous et al., 2013). As noted above, this inter-regional 

coupling is thought to facilitate neural communication and support neural plasticity 

within distributed memory networks. 

 

1.8 1/f aperiodic signal and neural excitation/inhibition 

While neural oscillations are, by definition, periodic, the 1/f component of the LFP is 

thought to arise from aperiodic neural activity (Haller et al., 2018b; Miller et al., 2009). 

1/f signals are observed in many natural phenomena (e.g. earthquakes) and are 

indicative of “scale-free” activity, meaning that they are not dominated by any particular 

frequency or time scale (He, 2014). Although more attention has been given to neural 

oscillations in the literature, recent work has highlighted the ways in which the aperiodic 

component of the LFP can be used as a window into neural activity. As noted above, 

neuronal spiking can shift the broadband aperiodic signal upwards, meaning that the 

offset of the aperiodic signal can reflect overall neural activity (Miller et al., 2014). More 

recently, results from computational modeling of the LFP signal demonstrated that the 

1/f shape of the aperiodic signal can arise from a combination of excitatory and 

inhibitory postsynaptic currents (Gao, Peterson, & Voytek, 2017). Interestingly, this 

model showed that the slope of this simulated aperiodic signal reflected the balance 

between excitation and inhibition, and that increasing the ratio of excitation to inhibition 
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increased (flattened) the slope. The results from this model were corroborated by 

experimental data showing that the aperiodic slope measured in the CA1 region of the 

rat hippocampus was correlated with the excitatory (AMPA) to inhibitory (GABA) 

synapse ratio. In addition, ECOG recordings in monkeys have shown decreases in the 

aperiodic slope following administration of propofol, a general anesthetic that positively 

modulates the effect of GABA receptors (Gao et al., 2017).  

 

Imbalances in excitation and inhibition have been implicated in multiple neurological and 

psychiatric disorders, such as schizophrenia, epilepsy, and age-related cognitive 

decline (Gao et al., 2017). Other measures of excitation/inhibition ratios are restricted to 

small populations of cells (e.g. intracellular or single unit recordings) or have low 

temporal resolution (e.g. magnetic resonance spectroscopy). As the aperiodic slope can 

be measured through LFP, ECOG, or EEG, this offers a novel method for estimating 

excitation/inhibition ratios with high temporal resolution from relatively large populations 

of neurons. A recent demonstration of the potential uses for this method showed that 

age-related impairments in working memory were mediated by a flattening of the 

aperiodic slope (Voytek et al., 2015). However, the links between the aperiodic slope 

and memory processing have yet to be fully explored. 

 

 

 

 

 



17 

 

CHAPTER 2: SPATIAL MEMORY PRECISION IN MEDIAL TEMPORAL 

AND PREFRONTAL NETWORKS 

 

2.1 Abstract 

The hippocampus plays a critical role in spatial memory. However, the exact neural 

mechanisms underlying high-fidelity spatial memory representations are unknown. We 

report findings from pre-surgical epilepsy patients with bilateral hippocampal depth 

electrodes performing an object-location memory task that provided a broad range of 

spatial memory precision. During encoding, patients were shown a series of objects 

along the circumference of an invisible circle. At test, the same objects were shown at 

the top of the circle (0 degrees) and patients used a dial to move the object to where it 

appeared during encoding. Angular error between the correct location and the indicated 

location was recorded as a continuous measure of performance. By registering pre- and 

post-implantation MRI scans, we were able to localize the electrodes to specific 

hippocampal subfields. We found a correlation between increased gamma power, 

thought to reflect local excitatory activity, and the precision of spatial memory retrieval in 

hippocampal CA1 electrodes. Additionally, we found a similar relationship between 

gamma power and memory precision in the dorsolateral prefrontal cortex, and a 

directional relationship between activity in this region and in the CA1, suggesting that 

the dorsolateral prefrontal cortex is involved in post-retrieval processing. These results 

indicate that local processing in hippocampal CA1 and dorsolateral prefrontal cortex 

supports high-fidelity spatial memory representations. 
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2.2 Introduction 

A critical feature of episodic memory is the ability to form associations between the 

elements of an experience. This ability is known to rely on the medial temporal lobe 

(MTL), consisting of the hippocampus and surrounding cortices. Neuroimaging and 

lesion studies have demonstrated that the hippocampus plays a crucial role in tasks 

involving learned associations, such as between an object and a location (Eichenbaum 

et al., 2007). While the involvement of the hippocampus in the successful encoding and 

storage of associative memories is well-established, a major gap in our understanding 

stems from the use of binary (correct vs. incorrect) measures of performance, which do 

not allow for a detailed examination of the factors underlying the precision of learned 

associations. For example, associative memory can be highly precise in some cases 

(e.g. I parked my car in the far right corner of the parking lot), or more general (e.g. I 

parked my car in the parking lot) (Harlow & Yonelinas, 2016). As such, the contributions 

of the hippocampus to the precision of remembered associations remain poorly 

understood. 

 

To address this gap, we developed an incidental object-location memory encoding task 

designed to elicit a broad range of spatial memory precision. We used a mixture 

modeling approach to analyze performance on the task, which allowed us to estimate 

which trials were remembered with some degree of precision and which trials were 

likely guesses. Testing pre-surgical epilepsy patients with bilateral depth electrodes 

implanted in the hippocampus and surrounding cortices, we used the objective, 

continuous measure of performance afforded by this task to examine the 
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electrophysiological correlates of spatial memory precision. Previous studies using 

intracranial recordings in humans have shown that MTL gamma power (> 40 Hz), which 

is thought to reflect local neural processing (Burke, Long, et al., 2014; Burke, Ramayya, 

& Kahana, 2015; Kucewicz et al., 2017), is associated with correct memory judgments 

(Burke, Long, et al., 2014; Greenberg et al., 2015; Sederberg, Schulze-Bonhage, 

Madsen, Bromfield, Litt, et al., 2007). Here, we predicted that increases in hippocampal 

gamma power during retrieval would track increases in spatial memory precision. 

Furthermore, by co-registering pre- and post-implantation MRI scans, we were able to 

localize electrodes within hippocampal subfields. This approach allowed us to estimate 

subfield-level gamma power and to examine how this activity related to performance on 

the task. Additionally, as the prefrontal cortex has also been shown to be involved in 

associative memory, we tested the relationship between gamma power and precision in 

this region. Leveraging the high temporal resolution of intracranial recordings, we also 

examined the relative timing and directionality of the observed effects across regions. 

 

2.3 Material and methods 

Participants 

Subjects were 4 patients (3 Female, 1 Male, Age 32-58) who had stereotactically 

implanted intracranial depth electrodes (Integra or Ad-Tech, 5-mm inter-electrode 

spacing) placed at the University of California, Irvine Medical Center to localize the 

seizure onset zone for possible surgical resection. Informed consent was obtained from 

each subject prior to testing and the research protocol was approved by the IRB of the 
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University of California, Irvine. Electrode placement was exclusively guided by clinical 

needs. 

 

Spatial precision task 

One hundred images of common objects were selected from a set previously used by 

our group and (S. M. Stark, R. Stevenson, C. Wu, S. Rutledge, & C. E. L. Stark, 2015). 

Images were presented on a laptop computer screen set at a comfortable distance from 

the patient. Three hundred and sixty locations on the computer screen were generated 

along the circumference of a circle centered on the screen with a spacing of 1°. During 

encoding, the 100 objects appeared one at a time at pseudorandomly assigned circle 

locations and subjects were asked to judge whether each object would more likely be 

found indoors or outdoors (Figure 1; 1.2 +/- 0.2 second ITI; .5 second ISI). Following a 

short (~1 minute) delay, subjects were shown each object again in pseudorandom 

order, this time at the top of the screen. Subjects were instructed to wait 1 second (until 

text that read ‘Wait…’ disappeared from the screen) before using a mouse wheel to 

move the object to where it appeared during encoding. Subjects pressed the space bar 

to indicate that they were finished placing the object. If subjects performed more than 

one session, new objects and locations were used. No more than one session was 

performed on each day. 

 

Behavioral analysis 

Error on the spatial precision task was measured as the number of degrees between 

where subjects placed the object and the correct location. Histograms were used to 
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examine the distribution of error values. We used mixture modeling, as implemented by 

the MemFit function of Memtoolbox (Suchow, Brady, & Alvarez, 2013), to obtain an 

estimate of two parameters describing these distributions: the guess rate (g), which 

reflects the area under the uniform distribution, and the standard deviation of the von 

Mises distribution (SDMem). We used the cumulative distribution function of the von 

Mises distribution estimated for each session to split trials into three conditions: High 

precision, Low precision, and Guess. Trials that had less than a 10% chance of being 

remembered with some degree of precision were placed in the Guess condition. The 

remaining trials were sorted by error and split evenly into the High and Low precision 

conditions. 

 

Electrode localization 

The electrode localization was performed using pre- and post-implantation structural T1-

weighted 1mm isotropic MRI scans as well as post-implantation CT scans. For each 

participant, the post-implantation MRI and CT scans were registered to the pre-

implantation scan using a 6-parameter rigid body transformation implemented with 

Advanced Normalization Tools – ANTs (Avants et al., 2011). Electrodes were localized 

within MTL subregions using a high-resolution (.55 mm) in-house anatomical template 

with manual tracings of hippocampal subfields and parahippocampal gyrus subregions 

(M. A. Yassa & C. E. L. Stark, 2009). Regions of interest (ROIs) included the CA1, 

DG/CA3, subiculum (Sub), lateral and medial entorhinal cortex (LEC, MEC), and the 

perirhinal (PrC) and parahippocampal (PHC) cortices. Hippocampal subfield 

segmentation followed our previously published protocols (M. A. Yassa & C. E. L. Stark, 
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2009). The labeled template was resampled and aligned to each subject’s pre-

implantation scan using ANTs Symmetric Normalization, so that the labels could be 

used to guide localization. Each electrode location was determined by examining the 

co-registered pre- and post-implantation MRIs and identifying the ROI that 

corresponded to the center of the electrode artifact in the post-implantation MRI and CT. 

Cases in which electrodes were on the border between ROI’s or between gray matter 

and white matter were noted as such. Outside the MTL, electrode localization was 

guided by a FreeSurfer cortical parcellation of the pre-implantation MRI (Fischl et al., 

2004). 

 

Data collection and preprocessing 

Intracranial EEG data were recorded using a Nihon Khoden recording system, analog-

filtered above 0.01 Hz and digitally sampled at 5000 Hz. After acquisition, data were 

demeaned and band-pass filtered from 0.3 Hz to 350 Hz using a two pass zero phase 

delay Butterworth infinite impulse response (IIRR) filter. Power spectra were examined 

to identify line noise and a Butterworth notch filter was used to remove 60 Hz noise and 

harmonics. All electrodes were re-referenced to a white matter electrode located on the 

same depth electrode probe. A neurologist (J.L.) with subspecialty training in epilepsy 

visually inspected continuous recordings from each session to identify all data with 

interictal epileptiform discharges. Data were also inspected for excessive noise, 

including broadband electromagnetic noise from hospital equipment. To avoid 

potentially biasing the results, the neurologist was blinded to trial information (e.g. 

stimulus onset and behavioral performance) as well as to electrode location. Only data 
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from recordings contralateral to the seizure source or outside of the seizure onset zone 

were used in subsequent analyses. 

 

Gamma Power Analyses  

Intracranial recordings were broken into event-related epochs (3 seconds pre-stimulus 

onset and 3 seconds post-stimulus offset) and convolved with complex Morlet wavelets, 

implemented using the FieldTrip toolbox, to obtain a measure of instantaneous power 

(Oostenveld, Fries, Maris, & Schoffelen, 2011). Center frequencies ranged from 1 to 

150 Hz, with a spacing of 1 Hz and a variable cycle number of 4-15. Power was 

baseline corrected to the average pre-stimulus power across all trials (0.5 to 0.2 prior to 

stimulus onset), resulting in a measure of relative power per frequency (power divided 

by pre-stimulus power) at each time point. While we examined a wider range of power 

in the spectrograms (up to 150 Hz), we used an a priori gamma frequency range of 40-

100 Hz for our gamma power analyses. This frequency range was based on prior 

literature showing MTL gamma activity in this range (Burke, Long, et al., 2014; 

Greenberg et al., 2015; Sederberg, Schulze-Bonhage, Madsen, Bromfield, Litt, et al., 

2007) and reflected the dominant gamma frequency range that was influenced by task 

performance (Fig. S2.3). For the within-session analysis, we then averaged baseline 

corrected power over our gamma frequency range (40-100 Hz) and retrieval window 

(0.25-1 second post-stimulus onset). The start of the retrieval window was based on the 

time at which stimulus-evoked activity has been shown to emerge in the hippocampus 

following stimulus onset (Mormann et al., 2005; Staresina, Fell, Do Lam, Axmacher, & 

Henson, 2012). The end of the retrieval window (1 second post-stimulus onset) is the 
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time at which subjects were able to start moving the object. We took the absolute value 

of the angular error and logged the resulting values to account for the non-normal 

distribution of error. Pearson correlation was used to test the relationship between 

single trial power in each MTL electrode and error. P values from these correlations 

were then Bonferroni-corrected for the number of MTL electrodes in each patient (see 

Table 2.1 for the number of electrodes). 

 

For the across-session analysis, electrodes were divided into nine regions: 1) the CA1 

subfield, 2) the hippocampus, including the CA1, 3) the entorhinal, and 

parahippocampal cortices, 4) the lateral temporal cortex, 5) the insula, 6) the caudal 

prefrontal cortex (broadman area (BA) 6/8), orbitofrontal cortex, and dorsolateral 

prefrontal cortex (BA 9/10/46). Electrodes that were on the border between the CA1 

subfield and other hippocampal subfields were included in the hippocampal region but 

not in the CA1 region. Regions where we had electrode contacts in fewer than three 

subjects (e.g. amygdala) were excluded from the analysis. There were not enough 

electrodes across subjects in either the DG/CA3 or subiculum to be able to look at 

activity separately within these regions. Power was baseline corrected to the average 

pre-stimulus power (as described above), and subsequently z-transformed separately 

within each session to account for differences in power and noise across sessions. 

 

We used a cluster-based permutation approach implemented using the FieldTrip 

toolbox to examine the correlation between gamma power and error (including Guess 

condition) and precision (excluding Guess condition) at each time point within each 
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region (Oostenveld et al., 2011; Seth, 2010). T-statistics derived from regression 

coefficients were calculated at each time point (-.5 to 1.5 seconds post-stimulus onset) 

and then thresholded at an αlevel of 0.05. Adjacent time points that survived this 

thresholding were grouped into clusters, and cluster-level test statistics were calculated 

as the sum of the t-statistics within each cluster. A null distribution was formed by 

randomly shuffling the correspondence between gamma power and error (or precision) 

1,000 times and taking the largest cluster-level test statistic produced by each iteration. 

P values of the observed, experimental clusters were calculated as the proportion of 

random shuffles that produced a test statistic larger that the test statistic of the observed 

clusters. We also used this method to examine the relationship between theta (3-8 Hz) 

power and error in each region and found a significant negative correlation between 

theta power and error during the retrieval window in CA1 and a significant positive 

correlation that emerged after the retrieval window in dlPFC (Fig. S2.5). Neither of these 

regions showed a significant correlation between theta power and precision. For Figures 

2.5d-f and 2.6b, trials were divided into High precision, Low precision, and Guess 

conditions, then z-transformed power was averaged over the retrieval time window 

(0.25- 1s post-stimulus onset) and a one-way ANOVA was performed across the three 

conditions. In regions where we found a main effect of error, we tested for pairwise 

differences between conditions using post hoc Holm-Sidak tests. 

 

The number of expected guesses in the High and Low precision conditions (S2.6) was 

balanced using the following method. The number of degrees spanned by each 

condition was calculated for each session and used to determine the number of 
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expected guesses in each condition as predicted by the uniform distribution. If there 

were more expected guesses in the Low precision condition, we added simulated 

‘guesses’ to the High precision condition so that the number of High and Low precision 

guesses would be equal. These simulated ‘guesses’ were generated by taking the 

mean power in the Guess condition during the retrieval window. We also added the 

same number of simulated ‘null’ trials to the Low precision condition to keep trial count 

balanced across conditions. These ‘null’ trials were generated by taking the mean 

power in the Low precision condition during the retrieval window.  

 

Granger Prediction Analysis 

The preprocessed LFP was first downsampled to 250 Hz before obtaining the mean 

gamma power time series (40-100 Hz) during the full retrieval period (0-1s post stimulus 

onset). These data were epoched, detrended, and normalized over time and across 

trials to increase stationarity (Barnett & Seth, 2014). A model order of five was chosen 

for each session. This order was determined by the Bayesian information criteria, which 

was calculated using the Multivariate Granger Causality (MGVC) Matlab Toolbox 

(Solomon et al., 2017). The MGVC toolbox was also used to calculate the time-domain 

Granger prediction index for High precision, Low precision, and Guess trials for each 

CA1 and dlPFC electrode pair. The difference in Granger prediction values between 

conditions (e.g. High-Guess) was calculated for each electrode pair, averaged over 

electrode pairs within each session for each direction (CA1 to dlPFC and dlPFC to 

CA1), and then averaged across sessions. A null average difference distribution was 

created by shuffling the trial labels 500 times before calculating the difference in 
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Granger prediction values between conditions. These distributions of permuted 

difference values were then averaged first over electrode pairs and then across 

sessions, as described above (Solomon et al., 2017). The observed average Granger 

difference value was compared to this null average Granger difference distribution. P-

values were calculated as the fraction of times the null average Granger difference 

values were equal to or more extreme than the observed average Granger difference 

value. 

 

2.4 Results 

Task performance. Subjects (7 sessions from 4 patients) performed an object-location 

memory task as we recorded intracranial electroencephalogram (EEG). During the 

encoding phase, 100 objects were presented, one at a time, at random positions around 

the circumference of an invisible circle while subjects performed an incidental encoding 

task (Fig. 2.1). At test, the same objects were presented at the top of the circle, and 

subjects were instructed to use the mouse wheel to rotate the object to where it had 

appeared during encoding. Performance was measured as angular error, or the 

difference (in degrees) between where the subjects placed the object and its correct 

initial location. 
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Figure 2.1. Spatial precision task. (a) During encoding, 100 objects were presented at random positions 
around the circumference of an invisible circle while subjects performed an incidental encoding task in 
which they were asked if each object was more likely to be found indoors or outdoors. ITI: 1.2 +/- 0.2 
seconds ISI: 0.5 seconds. (b) At test, the same objects were presented at the top of the screen. After a 1 
second wait period, subjects used the mouse wheel to rotate the object to where it appeared during 
encoding. 

 

Across sessions, the distribution of angular error was centered around zero degrees 

(the correct location) and spanned the range of possible responses (-180 to 180) (Fig. 

2.2a). These error distributions can be modeled as a mixture of two distributions: a 

uniform distribution of errors and a von Mises distribution of errors (Fig. 2.2b) (Sutterer 

& Awh, 2016; Zhang & Luck, 2008). The uniform distribution reflects trials on which the 

subject had no memory for the location of the object and guessed randomly. The von 

Mises distribution, which is the circular analog of a Gaussian distribution, reflects trials 

on which the subject remembered the location of the object with some degree of 

precision. 
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Figure 2.2. Mixture model and performance. (a) Histogram of errors across all sessions. (b) Example 
of a mixture model fit to simulated data. (c) Mean guess rate and SDmem across all sessions. (d) 
Example of a mixture model fit to the data from subject 1. The cutoff for trials placed in the Guess 
condition (+/-83; black dashed line) was derived from the cumulative distribution function of the von Mises 
distribution, i.e. 90% of trials that were remembered with some degree of precision fell within +/-83 (see 
text). Error bars indicate s.e.m. 

 

We used the MemFit function of Memtoolbox in MATLAB (Jordan W Suchow et al., 

2013), to obtain an estimate of two parameters describing these distributions: the guess 

rate (g), which reflects the area under the uniform distribution, and the standard 

deviation of the von Mises distribution (SDMem), which reflects the overall precision of 

responses that were not guesses. Figure 2.2C shows the mean value of these 

parameters across sessions (see Fig. S2.1 for parameter values for all sessions). The 

upper limit of the 95% credibility interval for each subject’s guess rate was less than 

one, indicating that performance was above chance for all subjects. An example of the 
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mixture model fit of Subject 1’s angular error is shown in Figure 2.2d. In addition to 

using a continuous measure  

 

of error, in subsequent analyses we also divided trials into three conditions, High 

precision, Low precision, and Guess. We used the cumulative distribution function of the 

von Mises distribution estimated for each session to determine which trials to place in 

the Guess condition. Trials that had less than a 10% chance of being remembered with 

some degree of precision were placed in the Guess condition. For example, in subject 

1, the middle 90% of the von Mises distribution spans +/-83, so trials with error 

greater/less than +/-83 were placed in the Guess condition (Fig. 2.2d). As such, across 

sessions most of the Guess trials were likely guesses. The remaining trials were sorted 

by error and split evenly into the High and Low precision conditions. 
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Figure 2.3. Example MRIs, CT, and template for a single subject. Electrodes were localized in each 
subject using co-registered pre-implantation (top left), post-implantation MRI (top right), and CT (bottom 
left) scans. A high-resolution template labeled with medial temporal lobe (MTL) subregions was aligned to 
each subject’s pre-implantation scan to guide electrode localization. Regions of interest (ROIs) in the MTL 
included the CA1, DG/CA3, subiculum (Sub), lateral and medial entorhinal cortex (LEC, MEC), and the 
perirhinal (PRC) and parahippocampal (PHC) cortices. The template also provided labels for amygdala 
nuclei, which can be seen in the figure but were not included in the analysis. 
 

Electrode localization. Depth electrodes were localized using co-registered pre- and 

post-implantation MRIs, as well as registration to a high resolution anatomical atlas with 

manual tracings of hippocampal subfields and MTL subregions (Fig. 2.3) (Zheng et al., 

2017). Co-registered post-implantation CTs were also used to help determine the center 

of each electrode artifact. All subjects had electrodes localized to the hippocampus and 

dlPFC, and three out of four subjects had electrodes localized to the CA1 subfield (see 

Table 2.1 for number of CA1 and dlPFC contacts for each subject; see S2.2 for number 

of contacts in each MTL subregion across subjects). Only data from recordings 

contralateral to the seizure source or outside of the seizure onset zone were used in 

subsequent analyses. 
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Figure 2.4. Within session CA1 gamma power predicts error. a, Trial-by-trial Pearson correlation 
between mean gamma power and angular error. b-d, Spectrograms showing mean power across High 
Precision (b), Low Precision (c), and Guess (d) trials for the CA1 electrodes shown in (A). Stimulus onset 
is at time zero and the frequency range (40-100 Hz) and time period (0.25-1 second post-stimulus onset) 

of interest are indicated by the black rectangle. 
 

CA1 gamma power predicts error within sessions. We first examined mean gamma 

power (40-100 Hz) over the retrieval window (0.25-1 second post-stimulus onset) within 

each session. The start of the a-priori retrieval window was based on the time at which 

stimulus-evoked activity has been shown to emerge in the hippocampus following 

stimulus onset (Mormann et al., 2005; Staresina et al., 2012), while the end of the 

retrieval window (1 second post-stimulus onset) is the time at which subjects were able 

to start moving the object. The absolute value of the angular error was logged to 

account for the non-normal distribution of error. We found a correlation between gamma 

power and logged error in all three subjects that had electrodes localized to the CA1 
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subfield (Subject 1: P = 0.002, n = 74; Subject 2: P = 0.0003, n = 98; Subject 3: P = 

0.0008, n = 63; all P < .05, Bonferroni corrected for number of MTL electrodes) (Fig. 

2.4a, see Table 2.1 for number of MTL electrodes tested). To better visualize the 

relationship between gamma power and error, spectrograms for High precision, Low 

precision, and Guess trials for the CA1 electrodes shown in Figure 2.4a are included in 

Figure 2.4b-d. While there is a smaller increase in gamma power relative to baseline 

across trials in subject 2, a correlation between gamma power and error is observed in 

the trial-by-trial analysis. In the within session analysis, the correlations in the CA1 

subfield were the only ones that survived Bonferroni correction. However, the specificity 

of this effect should be interpreted with caution, as effects in other regions could be 

present but not strong enough to surpass the stringent statistical threshold for multiple 

comparison correction.  

 

Figure 2.5. Across session gamma power in the MTL. A-C, Time course of gamma power in the CA1 
subfield (a), hippocampus (HC), including CA1, CA3/DG, and subiculum (b), and entorhinal (EC), 
perirhinal (PRC), and parahippocampal cortices (PHC) (c). Stimulus onset is at time zero and the retrieval 
window (0.25 to 1 second post-stimulus onset) is shaded in gray. Dotted gray horizontal lines indicate 
time points where there are significant correlations between gamma power and error (p < 0.05, cluster-
corrected). Solid gray horizontal lines indicate time points where there are significant correlations 
between gamma power and precision (excluding Guess trials; p < 0.05, cluster-corrected). Colored 
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shaded regions indicate s.e.m. d-f, Mean gamma power over the retrieval window (0.25 to 1 second post-
stimulus onset) for High precision, Low precision, and Guess conditions. Error bars indicate s.e.m. and * 
indicates P < 0.05. 

 

Across sessions, CA1 gamma power predicts spatial memory precision. Figure 

2.5a-c shows the time course of gamma power in the CA1 subfield, the hippocampus 

(HC, including CA1, DG/CA3, and subiculum), and the entorhinal, perirhinal, and 

parahippocampal cortices (EC/PRC/PHC) for High precision, Low precision, and Guess 

trials. First, we pooled trials from all conditions across sessions and tested for a 

correlation between gamma power and error in each MTL region. Using a cluster-based 

permutation approach to correct for multiple comparisons across time points, we found 

significant negative correlations between gamma power and error during the retrieval 

window in the CA1 subfield and HC (Fig. 2.5 a-c). To address the concern that these 

correlations were driven by a binary effect of retrieval success versus failure, we 

excluded trials that were likely guesses (i.e. the Guess condition) and reran the 

analyses. In this, as well as in subsequent analyses, we refer to correlations with 

‘precision’ in analyses where the Guess condition was excluded. We found a significant 

correlation between gamma power and precision in the CA1 subfield beginning at 804 

ms post-stimulus onset (Fig. 2.5a). In a complementary analysis, we averaged gamma 

power over the retrieval window (0.25-1s post-stimulus onset) and ran a two-way 

ANOVA with error (High Precision, Low Precision, and Guess) and region (CA1, HC, 

and EC/PRC/PHC) as fixed factors. We found a significant effect of error (F(2, 1595) = 

21.6; p = 5 x 10-10), but no significant effect of region (F(2, 1595) = 1.3; p = 0.28) and no 

interaction between region and error (F(4, 1595) = 0.81; p = 0.51). Post hoc t-tests 

revealed a significant difference between High precision and Guess conditions in all 
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MTL regions (CA1 High vs. Guess: mean difference = 0.15, P < .05, corrected; HC High 

vs. Guess: mean difference = 0.08, P < .05, corrected; MTL High vs. Guess: mean 

difference = 0.1, P < .05, corrected) (Fig. 5d-f). We also found a significant difference 

between High and Low precision as well as between Low precision and Guess in the 

CA1 subfield (High vs. Low: mean difference = 0.07, P < .05, corrected; Low vs. Guess: 

mean difference = .09, P < .05, corrected). While the CA1 subfield was the only region 

to show significant correlations between gamma power and precision as well as a 

significant difference between High and Low precision, we do not mean to imply that 

there are not similar effects in other MTL regions. 

 

Figure 2.6. dlPFC gamma power predicts the precision of spatial memory retrieval. (a) Time course 
of gamma power in the dorsolateral prefrontal cortex (dlPFC). Stimulus onset is at time zero and the 
retrieval window (0.25 to 1 second post-stimulus onset) is shaded in gray. Dotted gray horizontal lines 
indicate time points where there are significant correlations between gamma power and error (p < 0.05, 
cluster-corrected). Solid gray horizontal lines indicate time points where there are significant correlations 
between gamma power and precision (excluding Guess trials; p < 0.05, cluster-corrected). Colored 
shaded regions indicate s.e.m. (b) Mean gamma power over the retrieval window for High precision, Low 
precision and Guess conditions. (c) Mean CA1 to dlPFC Granger prediction values for each condition. * 
indicates significantly greater CA1 to dlPFC directionality for High precision versus Guess trials as 
determined by permutation testing (P < 0.05). (d) Mean dlPFC to CA1 Granger prediction values for each 
condition. 

 

PFC gamma power lags CA1 in predicting spatial memory precision. We also 

found a negative correlation between gamma power and error during the retrieval 

window in dlPFC contacts (p < 0.05 cluster corrected) (Fig 2.6a). There was no effect of 

error during the retrieval window or at any time period post-stimulus onset in any of the 
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other regions we recorded from (see Fig. S2.4). Excluding the Guess condition, we 

found a significant correlation between gamma power and precision starting at 1175 ms 

post-stimulus onset (Fig 2.6a). Averaging power over the retrieval window, we found a 

main effect of error (F(2, 613) = 3.17, P = 0.04) and a significant difference between 

High precision and Guess conditions (mean difference = 0.05, P < .05, corrected) (Fig. 

2.6b). Interestingly, we found that the significant correlations between gamma power 

and error as well as between gamma power and precision appeared later in the dlPFC 

than in the CA1 subfield (error effect: CA1 = 538 ms post-stimulus onset, dlPFC = 652 

ms; precision effect: CA1 = 804 ms, PFC = 1175 ms). However, the timing of these 

effects should be interpreted with caution, as they might be subject to statistical 

thresholding effects resulting from the cluster-based correction over time points. For 

instance, while the dlPFC precision effect doesn't reach cluster-corrected significance 

until after the end of the retrieval period (i.e. after 1000ms), the effect is also present (p 

< 0.05, uncorrected) during the retrieval window. To further examine the relative timing 

and directionality of CA1 and dlPFC activity at retrieval, we performed a time-domain 

Granger prediction analysis using the gamma power time series for all sessions 

showing a significant correlation between gamma power and error (P < 0.05) in both 

CA1 and dlPFC electrodes (n = 3 subjects). Granger prediction provides a measure of 

directionality by testing if activity from region A (for example, the dlPFC) at one time 

point can be better predicted by knowing activity from region B (for example, the CA1) 

at past time points. We first calculated Granger prediction values for all CA1-dlPFC 

electrode pairs for High precision, Low precision, and Guess trials during the full 

retrieval period (0-1s post-stimulus onset), and then calculated the difference between 
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conditions (e.g. High-Guess) for each electrode pair. We then averaged these Granger 

difference values first over electrode pairs within sessions, then across sessions (n = 3), 

and then compared this averaged difference value to a null distribution (see Methods). 

We found greater CA1 to dlPFC directionality for High precision trials than for Guess 

trials (P < 0.05, permutation test; see Methods), indicating that activity associated with 

high precision spatial memory judgments starts earlier in the CA1 subfield (Fig. 2.6c). 

There was no significant difference between conditions (High vs. Guess, High vs. Low, 

Low vs. Guess) in dlPFC to CA1 Granger prediction values (P > 0.05, permutation 

test)(Fig. 2.6d).  

 

Since the Low precision condition tended to cover a greater proportion of the estimated 

uniform distribution (see Figure 2.2d), the number of expected guesses in the Low 

precision condition was slightly higher than in the High precision condition (on average, 

there were 2.8 more expected guesses per session in the Low precision condition than 

in the High precision condition). As such, it is possible that the observed differences in 

CA1 gamma power across the High and Low precision conditions were driven by a 

slightly higher number of guesses in the Low precision condition. However, balancing 

the number of expected guesses in the High and Low precision conditions using 

simulated ‘guesses’ derived from the mean power in the Guess condition (see SI 

Materials and Methods) produced similar results (Main effect of error: F(2, 462) = 12.5, 

p = 5 x 10-6; High vs. Guess: mean diff. = 0.14, p = 3 x 10-6; High vs. Low: mean diff. = 

0.05, p = 0.06; Low vs. Guess: mean diff. = 0.09, p = 0.004) (Fig. S2.6). Since PFC 

activity is known to be modulated before the initiation of action, another possible 



38 

 

confound is that the dlPFC gamma effect is due to differences in movement onset after 

the delay period (0-1s post-stimulus onset) as patients may start moving the object 

earlier for more precise trials (Harlow & Yonelinas, 2016; Miller & Cohen, 2001). 

However, we found no significant correlation between angular error and movement 

onset, indicating that this factor was not driving the effects (Kendall’s Tau = -0.006; p = 

0.86; the data from session 1 was not included in this analysis as we did not record 

mouse movements for this session). Gamma power at encoding also did not predict 

subsequent performance on the task (Fig. S2.8). We additionally performed control 

analyses to ascertain that the gamma effects in the CA1 and dlPFC were not associated 

with the distance the object was moved on the screen or trial order (Fig. S2.7, S2.9). 

 

2.5 Discussion 

Prior studies have shown that the hippocampus and PFC are involved in associative 

memory retrieval. However, the contributions of these regions to the precision of 

remembered associations are poorly understood. One possibility is that activity within 

these regions reflects a binary signal of retrieval success versus failure. Alternatively, 

activity within these regions could track the precision, or fidelity, of the retrieved 

memory. When we included guess trials in our analyses, we found increased 

hippocampal and prefrontal gamma power in highly precise trials vs. trials that were 

likely guesses (i.e. the Guess condition). This is consistent with prior work showing 

increased activity in these regions associated with retrieval success (Blumenfeld & 

Ranganath, 2007; Burke et al., 2015; Eichenbaum et al., 2007). However, we 

additionally showed negative correlations between hippocampal and prefrontal gamma 
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power and error magnitude, suggesting that increased activity in these regions tracks 

representational fidelity. Our additional analyses after excluding the Guess condition 

further indicated that activity in these regions was associated with the precision of the 

spatial judgments. Overall, these results suggest that these regions are not only 

involved in retrieval success, but also in indexing the precision of retrieved memories. 

 

Across sessions, we found significant correlations between CA1 gamma power and 

precision and significant differences between the High and Low precision conditions. 

The CA1 subfield has long been known to be involved in spatial processing and 

memory. For instance, CA1 place cells provide precise representations of specific 

locations in an environment and can code for associations between objects and 

locations (Komorowski, Manns, & Eichenbaum, 2009; Moser, Rowland, & Moser, 2015). 

While the current task does not involve subjects physically moving through space, 

studies in primates have shown that the CA1 also contains spatial ‘view cells’ that 

respond whenever a monkey looks towards specific locations in the environment (Rolls, 

1999). More recently, studies in rats have found increased place cell firing and gamma 

power (60-100 Hz) in the CA1 as animals explored familiar objects in novel locations 

(Larkin, Lykken, Tye, Wickelgren, & Frank, 2014; Zheng, Bieri, Hwaun, & Colgin, 2016). 

However, while the CA1 subfield was the only region to show significant correlations 

between gamma power and precision as well as a significant difference between High 

and Low precision, we do not mean to imply that there are not similar effects in other 

MTL regions. 
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The neural mechanisms generating high frequency gamma activity in humans remains 

a prominent question in the field. One possibility is that high frequency gamma activity 

reflects gamma oscillations generated by local interactions between interneurons and 

pyramidal neurons (Buzsaki & Wang, 2012). As gamma phase synchronization can 

enhance spike-timing dependent plasticity, these oscillations are thought to play a 

mechanistic role in memory processing (Buzsaki & Wang, 2012). Accumulating 

evidence from the rodent literature suggests that oscillatory gamma can be split into two 

types, ‘slow gamma’ (25-55 Hz) and ‘fast gamma’ (60-100 Hz), that play distinct roles in 

memory encoding and retrieval (Colgin, 2016). As such, we examined the dominant 

frequency range influenced by task performance and found significant effects across 

our a priori frequency range (40-100 Hz) with peaks in the slow and fast gamma ranges 

(Fig. S2.3). The significance of these peaks remains unclear and whether two different 

neural mechanisms may give rise to these effects remains an outstanding question. 

Another possibility is that the high frequency activity observed in humans does not 

reflect oscillatory activity, but rather a broadband shift of the power spectrum stemming 

from increased neuronal spiking (Buzsaki & Wang, 2012; Miller et al., 2009). In this 

view, high frequency activity is non-oscillatory and does not play a mechanistic role in 

memory processing, but can be thought of as a biomarker for local activity (Rich & 

Wallis, 2017; Watson, Ding, & Buzsaki, 2018). Given that the frequency range of this 

broadband shift overlaps with that of oscillatory gamma activity, a third possibility is that 

high frequency gamma power reflects a combination of these processes (Burke et al., 

2015; Kucewicz et al., 2017). In each view, however, gamma power can be thought of 

as a spatially precise indicator of local excitatory activity. In light of our results, this 
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suggests that increasing excitatory activity in the CA1 and dlPFC is associated with 

increasing memory precision. 

 

A number of recent studies have implicated the extended hippocampal network in 

spatial memory precision (Koen, Borders, Petzold, & Yonelinas, 2017; Kolarik et al., 

2016; Nilakantan, Bridge, Gagnon, VanHaerents, & Voss, 2017). For example, 

Nilakantan et al. found that stimulation of the posterior cortical-hippocampal network 

using TMS in humans increased precision on an object-location memory task similar to 

the one used in the current study. In a case study that examined the performance of a 

patient with MTL damage on a virtual Morris water maze, Kolaric et al. found that while 

the patient tended to search in the general vicinity of the correct location, the precision 

of her search path was significantly lower than controls. These findings provide 

convergent evidence that the hippocampus facilitates the precise recall of learned 

associations. Our findings are consistent with these studies but further propose a role 

specifically for hippocampal CA1 and dlPFC as well as a temporal relationship between 

the two that may be an important facet of spatial memory retrieval. 

 

Our results also are convergent with findings from studies that have shown that 

hippocampal activity tracks subjective measures of memory strength (e.g. confidence or 

vividness) (Geib, Stanley, Wing, Laurienti, & Cabeza, 2017; Rutishauser et al., 2010; 

Rutishauser et al., 2015). While subjective ratings are associated with performance 

accuracy (Harlow & Yonelinas, 2016), these measures could be influenced by a variety 

of factors including subject bias. Here, we fit a mixture model to an objective measure of 
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precision to estimate the probability of guessing. This approach is less likely to be 

contaminated by subjective biases. 

 

In addition to hippocampal CA1, we also observed that gamma power in the dlPFC at 

retrieval was associated with spatial memory precision. The dlPFC is reciprocally 

connected to the MTL and has been implicated in a wide variety of memory processes 

(Blumenfeld & Ranganath, 2007). For instance, fMRI studies have shown increased 

activity in the dlPFC when subjects retrieve contextual details about a cue, such as the 

location of a studied object (Dobbins et al., 2002). A common interpretation of these 

findings is that the dlPFC is involved in maintaining, or monitoring information retrieved 

from episodic memory (Dobbins et al., 2002), which is consistent with the dlPFC’s well 

recognized role in working memory (Passingham & Wise, 2012). The precision effect 

observed in the CA1 region preceded the onset of the effect in dlPFC, which is 

consistent with this interpretation of the dlPFC’s role, as it involves post-retrieval 

processes. The Granger prediction analysis further corroborated this finding, indicating 

that activity associated with highly precise spatial memory judgments appears earlier in 

the CA1 than in the dlPFC. 

 

Overall, our results suggest a role for local processing within the hippocampus and 

dlPFC in indexing the precision of spatial associative memory. The correlations between 

gamma power and the precision of spatial memory judgments raise the possibility that 

disrupting gamma activity in CA1 and/or dlPFC may reduce the precision of memory 
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judgments, thereby establishing a causal link. Future studies using electrical disruption 

in humans or more invasive techniques in rodents can test these hypotheses directly. 
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CHAPTER 3: MEDIAL TEMPORAL AND PREFRONTAL HIGH 

FREQUENCY ACTIVITY DURING SPATIAL LEARNING 

 

3.1 Abstract 

The ability to learn novel associations is thought to depend on local processing within 

the medial temporal lobe (MTL) and prefrontal cortex (PFC) as well as functional 

interactions between these two regions. However, the ways in which the MTL and PFC 

contribute to associative learning in humans remain poorly understood. We tested pre-

surgical epilepsy patients with depth electrodes implanted in both the MTL and PFC 

using a spatial memory task in which subjects attempted to learn object-location 

associations over the course of three training blocks. During encoding, subjects were 

shown objects at random locations along the circumference of an invisible circle. For 

each training block, the same objects were shown at the top of the circle and subjects 

used a dial to rotate the object to where it appeared during encoding. After subjects 

finished placing each object, the object was shown in the correct location for one 

second as feedback. At retrieval, we found greater high frequency gamma (40-100 Hz) 

power in the MTL and dorsolateral PFC (dlPFC) for low error trials. The opposite pattern 

of activity was observed at feedback, with greater MTL and dlPFC gamma power for 

high error trials. Increased MTL activity at feedback also predicted greater decreases in 

error from one training block to the next, indicating that these error signals are involved 

in updating memory representations or modifying incorrect associations during learning. 

Overall, these data suggest putative mechanisms for the learning of object-location 

associations. 
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3.2 Introduction 

The ability to learn novel associations is a critical feature of episodic memory. A wealth 

of evidence indicates that medial temporal and prefrontal networks play a crucial role in 

tasks involving learned associations, such as between an object and a location. 

Convergent studies in rodents, monkeys, and humans have found that activity within the 

medial temporal lobe (MTL) during retrieval tracks the acquisition of novel associations 

(Igarashi et al., 2014; Ison, Quian Quiroga, & Fried, 2015; Law et al., 2005; Rutishauser, 

2008; Suthana et al., 2015; Wirth et al., 2009). Likewise, single unit recordings in 

monkeys have shown that neurons in the prefrontal cortex (PFC) at retrieval change 

their firing in parallel with learning (Brincat & Miller, 2015; Histed, Pasupathy, & Miller, 

2009). As novel associations are often not learned in a single episode, the ability to 

process and incorporate information about feedback is an important component of 

associative learning. Both MTL and PFC activity has been found to signal trial outcome 

at feedback, with single unit recordings showing cells that selectively increase firing for 

both correct and incorrect trials (Brincat & Miller, 2015; Wirth et al., 2009). However, the 

ways in which activity within these networks reflects trial outcome in humans is poorly 

understood. Additionally, whether feedback signals in these regions predict subsequent 

associative learning performance has not been previously shown.  

 

To address this question, we tested pre-surgical epilepsy patients with depth electrodes 

implanted in both the MTL and dorsolateral PFC (dlPFC) on a variant of a commonly 

used object-location memory task (Reagh & Yassa, 2014; Rudoy, Voss, Westerberg, & 
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Paller, 2009). During encoding, 30 objects were presented at random locations along 

the circumference of an invisible circle. For each of the three training blocks, the same 

objects were shown one at a time at the top of the circle and subjects used a dial to 

rotate the object to where it appeared during encoding. After subjects finished placing 

each object, it was shown in the correct location for one second as feedback. After the 

final training block, a final test was given with no feedback. Performance was measured 

in angular error, or the distance (in degrees) between where subjects placed the object 

and the correct location. Using a variant of this task in which subjects were given only 

one shot to learn the object-location associations (i.e. no training), we found a negative 

correlation between MTL and dlPFC gamma power (40-100 Hz), thought to reflect local 

excitatory activity, and error at retrieval, indicating that activity within these regions 

tracks representational fidelity (Stevenson et al., 2018). Here, we predicted that we 

would replicate these results, showing increased MTL and dlPFC gamma power at 

retrieval for low error trials. In addition, we predicted that MTL and dlPFC gamma power 

at feedback would predict error, and that the magnitude of this response would predict 

subsequent performance on that object-location association. 

 

3.3 Materials and methods 

Participants 

Subjects were 9 patients (5 female, 4 male, age 21-69) who had stereotactically 

implanted intracranial depth electrodes (Integra or Ad-Tech, 5-mm inter-electrode 

spacing) placed at the University of California, Irvine Medical Center to localize the 

seizure onset zone for possible surgical resection. Informed consent was obtained from 
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each subject prior to testing and the research protocol was approved by the IRB of the 

University of California, Irvine. Electrode placement was exclusively guided by clinical 

needs. 

 

Spatial learning task 

Thirty images of common objects were selected from a set previously used by our group 

(S. M. Stark, R. Stevenson, C. Wu, S. Rutledge, & C. E. Stark, 2015). Images were 

presented on a laptop computer screen set at a comfortable distance from the patient. 

Three hundred and sixty locations on the computer screen were generated along the 

circumference of a circle centered on the screen with a spacing of 1. Prior to encoding, 

subjects were told that they would be shown objects at different locations on the 

computer screen and were asked to try to remember the location of each object. During 

encoding, the 30 objects appeared one at a time at pseudorandomly assigned circle 

locations (Figure 1; 1.2 +/- 0.2 second ITI). During each of the 3 training blocks, 

subjects were shown the same objects again in pseudorandom order, this time at the 

top of the screen. Subjects were instructed to wait 1 second (until text that read ‘Wait…’ 

disappeared from the screen) before using a mouse wheel to move the object to where 

it appeared during encoding. Subjects pressed the space bar to indicate that they were 

finished placing the object. The object was then shown in the correct location for one 

second as feedback. After the third training block, there was a final test block in which 

no feedback was given. There was a short (<1 minute) break after the encoding phase 

and between each training/test block during which task instructions were read. If 
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subjects performed more than one session, new objects and locations were used. No 

more than one session was performed on each day. 

 

Behavioral analysis 

Error on the spatial learning task was measured as the number of degrees between 

where subjects placed the object and the correct location. Histograms were used to 

examine the distribution of error values across and within task blocks. We used mixture 

modeling, as implemented by the MemFit function of Memtoolbox (Suchow, Brady, 

Fougnie, & Alvarez, 2013), to obtain an estimate of two parameters describing these 

distributions: the guess rate (g), which reflects the area under the uniform distribution, 

and the standard deviation of the von Mises distribution (SDMem). We first fit the model 

using trials from all training and test blocks. Trials that had less than a 10% chance of 

being remembered with some degree of precision based on the von Mises distribution 

of this model were placed in the high error condition. The remaining trials were sorted 

by error and split evenly into the medium and low error conditions. We then fit the model 

using trials within each block (i.e. the model was fit separately for training blocks 1 and 

2) to determine how the guess rate and precision (SDMem) changed across task 

blocks. 

 

Electrode localization 

The electrode localization was performed using pre- and post-implantation structural T1-

weighted 1mm isotropic MRI scans as well as post-implantation CT scans. For each 

participant, the post-implantation MRI and CT scans were registered to the pre-
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implantation scan using a 6-parameter rigid body transformation implemented with 

Advanced Normalization Tools – ANTs (Avants et al., 2011). Electrodes were localized 

within MTL subregions using a high-resolution (.55 mm) in-house anatomical template 

with manual tracings of hippocampal subfields and parahippocampal gyrus subregions 

(M. A. Yassa & C. E. Stark, 2009). Hippocampal subfield segmentation followed our 

previously published protocols (M. A. Yassa & C. E. Stark, 2009). The labeled template 

was resampled and aligned to each subject’s pre-implantation scan using ANTs 

Symmetric Normalization, so that the labels could be used to guide localization. Each 

electrode location was determined by examining the co-registered pre- and post-

implantation MRIs and identifying the ROI that corresponded to the center of the 

electrode artifact in the post-implantation MRI and CT. Cases in which electrodes were 

on the border between ROI’s or between gray matter and white matter were noted as 

such. Outside the MTL, electrode localization was guided by a FreeSurfer cortical 

parcellation of the pre-implantation MRI (Fischl et al., 2004). 

 

Data collection and preprocessing 

Intracranial EEG data were recorded using a Nihon Khoden recording system, analog-

filtered above 0.01 Hz and digitally sampled at 5000 Hz. After acquisition, data were 

demeaned and band-pass filtered from 0.3 Hz to 350 Hz using a two pass zero phase 

delay Butterworth infinite impulse response (IIRR) filter. Power spectra were examined 

to identify line noise and a Butterworth notch filter was used to remove 60 Hz noise and 

harmonics. All electrodes were re-referenced to a white matter electrode located on the 

same depth electrode probe. A neurologist (J.L.) with subspecialty training in epilepsy 
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visually inspected continuous recordings from each session to identify all data with 

interictal epileptiform discharges. Data were also inspected for excessive noise, 

including broadband electromagnetic noise from hospital equipment. To avoid 

potentially biasing the results, the neurologist was blinded to trial information (e.g. 

stimulus onset and behavioral performance) as well as to electrode location. Only data 

from recordings contralateral to the seizure source or outside of the seizure onset zone 

were used in subsequent analyses. 

 

Gamma Power Analyses  

Intracranial recordings were broken into event-related epochs (3 seconds pre-stimulus 

onset and 3 seconds post-stimulus offset) and convolved with complex Morlet wavelets, 

implemented using the FieldTrip toolbox, to obtain a measure of instantaneous power 

(Oostenveld et al., 2011). Center frequencies ranged from 1 to 150 Hz, with a spacing 

of 1 Hz and a variable cycle number of 4-15. Power was baseline corrected to the 

average pre-stimulus power across all trials (0.5 to 0.2 prior to stimulus onset), resulting 

in a measure of relative power per frequency (power divided by pre-stimulus power) at 

each time point. Power was then z-transformed separately within each session to 

account for differences in power and noise across sessions. We then averaged 

normalized power over our a priori gamma frequency range of 40-100 Hz, based on 

prior literature showing MTL and dlPFC gamma activity in this range (Burke, Long, et 

al., 2014; Greenberg et al., 2015; Sederberg, Schulze-Bonhage, Madsen, Bromfield, 

McCarthy, et al., 2007; Stevenson et al., 2018). Next, we averaged gamma power 

across electrodes located within the MTL, including electrodes in the hippocampus as 
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well as the entorhinal, perirhinal, and parahippocampal cortices, and within the dlPFC 

(Broadman area (BA) 9/10/46). To examine the specificity of effects, we also ran 

analyses on regions outside of the MTL and dlPFC including the lateral temporal cortex, 

the insula, the caudal prefrontal cortex (BA 6/8), orbitofrontal cortex, and anterior 

cingulate cortex.  

 

We used a cluster-based permutation approach implemented using the FieldTrip 

toolbox to test for differences in gamma power across task blocks (T1-T3, test) and 

conditions (high, medium, and low error) at each time point within each region 

(Oostenveld et al., 2011). In order to test for correlations between gamma power and 

error, we averaged gamma power over 100ms sliding windows and calculated the 

Pearson correlation between gamma power and angular error at intervals of 20ms. For 

this analysis, angular error was logged to account for the non-normal distribution of 

error. We used permutation testing to ensure that the observed correlations were not 

driven by outliers or other biases in the data. A null distribution of r values was created 

by shuffling the trial labels between conditions 1000 times. We derived p-values for the 

observed r values using the cumulative distribution function of these distributions. We 

used partial correlations to test for associations between gamma power at feedback for 

high error trials and the subsequent change in error from one block the next, controlling 

for error on the earlier task block (i.e. the association between gamma power at 

feedback on a high error trial at T1 and the change in error for that object-location 

association from T1 to T2, controlling for error on that trial at T1). P-values for the 

observed rho values were obtained via permutation testing as described above. 
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3.4 Results 

 

Figure 3.1. Task schematic and performance. A. During encoding, 30 objects were presented at 
random positions along the circumference of an invisible circle. During the 3 training blocks, the same 
objects were presented at the top of the screen. After a 1 second wait period, subjects rotated the object 
to where it appeared during encoding. After subjects finished placing the object, it was shown in the 
correct location for 1 second as feedback. No feedback was given during the final test phase. B. Example 
of a mixture model fit of all trials for subject 1. The cut off for high error trials across blocks was derived 
from the cumulative distribution function of the von Mises distribution, i.e. 90% of trials estimated to be 
remembered fell within +/-38 degrees of the correct location. C-D, Mean guess rate (C), and SDMem 
across sessions for training blocks 1-3 (T1-T3) and test.  

 

Task performance. Subjects (21 sessions from 9 patients) performed a spatial learning 

task as we recorded intracranial electroencephalogram (EEG). During the encoding 

phase, 30 objects were presented, one at a time, at random positions around the 

circumference of an invisible circle (Fig. 3.1). Prior to the encoding phase, subjects were 

told that they would be tested on the location of each object. Following encoding, there 

were three training blocks during which each object was shown again, this time at the 

top of the circle, and subjects were instructed to use the mouse wheel to rotate the 
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object to where it appeared during encoding. Subjects were asked to wait 1 second 

(until text that read ‘Wait…’ disappeared from the screen) before beginning to rotate the 

object and to press the space bar when they were finished placing the object. After each 

trial, the object appeared on the screen in the correct location for 1 second as feedback. 

During the final test phase, subjects were again asked to rotate each object to the 

correct location, though this time no feedback was given. The inter-trial interval (ITI) was 

1.2 +/- 0.2 seconds and the interstimulus interval (ISI), meaning the time between when 

the subjects finished placing the object and when it was shown in the correct location as 

feedback was fixed at 0.5 seconds for subjects 1-2 and variable (0.4 +/- 0.2 seconds) 

for subjects 3-9. Performance was measured in angular error, or the distance (in 

degrees) between where subjects placed the object and the correct location. If subjects 

performed more than one session, new objects and locations were used. No more than 

one session was performed on each day. 

 

Figure 3.1B shows the distribution of error across all trials for subject 9 (session 21) 

(see S3.1 for error distributions for all sessions). These error distributions can be 

modeled as a mixture of two distributions: a uniform distribution of errors and a von 

Mises distribution of errors (Fig. 3.1B) (Sutterer & Awh, 2016; Zhang & Luck, 2008). The 

uniform distribution reflects trials on which the subject had no memory for the location of 

the object and guessed randomly. The von Mises distribution, which is the circular 

analog of a Gaussian distribution, reflects trials on which the subject remembered the 

location of the object with some degree of precision. We used the cumulative 

distribution function of the von Mises distribution estimated for each session to 
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determine which trials to place in the high error condition. Trials that had less than a 

10% chance of being remembered with some degree of precision were put into the high 

error condition. For example, in subject 1, the middle 90% of the von Mises distribution 

spans +/-38, so trials with error greater/less than +/-38 were designated as high error 

trials (Fig. 3.2B). The remaining trials were sorted by error and split evenly into the 

medium and low error conditions. 

 

We used the MemFit function of Memtoolbox in MATLAB (J. W. Suchow et al., 2013), to 

obtain an estimate of two parameters describing these distributions: the guess rate (g), 

which reflects the area under the uniform distribution, and the standard deviation of the 

von Mises distribution (SDMem), which reflects the overall precision of responses that 

were not guesses. Figure 3.1C-D shows the mean value of these parameters for T1-3 

and for the final test (see Fig. S3.1 for error histograms and parameter values across 

blocks for all sessions). Guess rate, SDMem, and angular error all decreased over task 

blocks, indicating learning of the object-location associations (linear trend analysis, 

guess rate: F(1, 60) = 14.6, p = 0.0003, SDMem: F(1, 60) = 23, p < 0.0001; error: F(1, 

60) = 173, p < 0.0001). 
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Electrode localization. Electrodes were localized using co-registered pre- and post-

implantation MRIs, as well as registration to a high resolution anatomical atlas with 

manual tracings of MTL subregions (Zheng et al., 2017). Co-registered post-

implantation CTs were also used to help determine the center of each electrode artifact. 

Five subjects had electrodes localized to the MTL and 9 subjects had electrodes 

localized to the dlPFC (see Table 3.1 for number of MTL and dlPFC contacts for each 

subject; see S3.2 for number of contacts in each MTL subregion across subjects). Only 

data from recordings contralateral to the seizure source or outside of the seizure onset 

zone were used in subsequent analyses. 

Patient information, hemisphere included in the MTL analyses, number of sessions, 
number of MTL contacts, number of dlPFC contacts. 

Subject Hand Epileptogenic 
region 

Coverage MTL 
Hemisphere 
analyzed 

Number 
of 
sessions 

MTL 
contacts 

dlPFC 
contacts 

1 R Right TLE SEEG L 1 4 (1 HC) 4 

2 R Right TLE SEEG N/A 3 0 3 

3 L Right medial 
frontal/SMA 

SEEG Bilateral 4 9 (6 HC) 6 

4 R Left TLE SEEG R 4 5 (4 HC) 7 

5 A Bilateral TLE SEEG N/A 2 0 7 

6 R Right TLE SEEG L 3 4 (1 HC) 7 

7 R Right TLE SEEG L 1 6 (6 HC) 3 

8 R Right TLE SEEG N/A 1 0 5 

9 R Not 
determined 

SEEG N/A 2 0 2 

Total     21 28 44 

L, left; R, right; A, ambidextrous; TLE, temporal lobe epilepsy; SEEG, 
stereoelectroencephalography; SMA, supplementary motor area; HC, hippocampus 
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Figure 3.2. Gamma power decreases across task blocks. Spectrograms showing mean MTL and 
dlPFC power across all trials at retrieval (A-B) and feedback (C-D). Time course of gamma (40-100 Hz) 
power for each task block (T1-3, and Test for retrieval, T1-3 for feedback). Gray horizontal lines indicate 
time points where there are significant differences between task blocks (ANOVA, p < 0.05, cluster-
corrected). Colored shaded regions indicate s.e.m. 

 

Gamma power decreases across task blocks. We first examined how gamma power 

(40-100 Hz) changed over the course of the task during retrieval and feedback. 

Spectrograms for MTL and dlPFC power across all trials at retrieval (A-B) and feedback 

(C-D) are shown in Figure 3.2A-D. The time course of mean MTL and dlPFC gamma 

power (40-100 Hz) for all task blocks at retrieval and feedback is shown in Figure 3.2E-

H. Using a cluster-based permutation approach to correct for multiple comparisons 

across time points, we found that gamma power decreased across blocks in the MTL at 

both retrieval and feedback (Fig. 3.2E, G) and in the dlPFC at feedback (Fig. 3.2H) 

(ANOVA p < 0.05, cluster-corrected). The decreases in gamma power at feedback were 

present in nearly all brain regions we recorded from, including the lateral temporal, 

orbitofrontal cortex, and anterior cingulate cortex (see S3.3-4 for results from all 

recording sites at retrieval and feedback). However, there were regions (e.g. the insula) 

and time periods where there was no significant difference in gamma power across 



57 

 

blocks suggesting that these changes were not driven by non-neural sources such as 

changes in electrode impedance over time. In order to determine if these decreases in 

gamma power predicted decreases in error from one task block to the next for specific 

object-location associations we averaged gamma power across time for the retrieval 

and feedback windows for each task block, then calculated the difference in power from 

one block to the next for specific object-location associations (e.g. gamma power during 

2 retrieval for object 1 at T1 versus gamma power during retrieval for the same object at 

T2). At feedback, we found a positive correlation between the change in MTL gamma 

power from one block the next (e.g. T2-T1) and the change in error, indicating that 

decreases in gamma power predicted decreases in error for specific object-location 

associations in this region (Spearman’s rho = 0.09, p = 0.02). However, these 

decreases in gamma power could also have been driven by increased familiarity with 

the objects themselves or with the task environment rather than by learning of the 

object-location associations. Furthermore, although MTL gamma power at retrieval also 

decreased across blocks, the correlation between the change in gamma power and 

change in error at retrieval in this region was trending in the opposite direction 

(Spearman’s rho = -0 .05, p = 0.12). These results suggest that multiple, and perhaps 

opposing, factors were driving the changes in power across blocks. 
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Figure 3.3. MTL gamma power predicts error within blocks and learning across blocks. A-D, Time 
course of MTL and dlPFC gamma power, normalized within blocks, for high, medium, and low error trials 
at retrieval (A-B) and feedback (C-D). Gray horizontal lines indicate time points where there are significant 
differences between conditions (ANOVA, p < 0.05, cluster-corrected). Colored shaded regions indicate 
s.e.m. E-F, Correlations between MTL (E) and dlPFC (F) gamma power and current error for at retrieval 
(blue), and at feedback (red), and partial correlations between gamma power at feedback and the 
subsequent change in error for high error trials from one task block to the next (green, controlling for 
current error). 

 

MTL and dlPFC gamma power at retrieval and feedback predicts error within 

blocks. In order to examine the relationship between gamma power and error within 
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blocks we first normalized gamma power within each block (T1-3 and test) to control for 

changes in gamma power across blocks. Using a cluster-based permutation approach 

to correct for multiple comparisons across time points, we found greater gamma power 

for lower error trials in the dlPFC at retrieval (ANOVA, p < 0.05, cluster-corrected). We 

found the opposite pattern of activity during feedback, with greater gamma power for 

high error trials in both regions (Fig. 3C-F). No other region we recorded from showed a 

significant difference in gamma power between high, medium, and low error trials during 

the retrieval window (S3.5). However, multiple regions, including the anterior cingulate 

cortex and caudal prefrontal cortex, showed increased gamma power for high error 

trials at feedback, indicating that this effect was relatively widespread (ANOVA, p < 

0.05, cluster-corrected) (S3.6). We also found a marginal effect of increased gamma 

power at encoding for trials that were subsequently designated low error trials at training 

block 1 (ANOVA cluster p-value = 0.09, cluster corrected) (S3.7). 

 

Since there were fewer high error trials then there were medium or low error trials, we 

performed control analyses to make sure observed differences between conditions were 

not due to differing numbers of trials across conditions. To address this issue, we sorted 

trials within each block by error and split them into thirds, putting the top 1/3 trials with 

the highest error from each block into the high error condition, the middle 1/3 trials into 

the medium error condition, and the bottom 1/3 trials with the least error from each 

block into the low error condition. We observed the same pattern of effects in both 

regions for both retrieval and feedback when trials were sorted evenly in this way 

(S3.8). We additionally performed control analyses to ascertain that the gamma effects 
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in the MTL and dlPFC at retrieval and feedback were not associated with the distance 

the object was moved on the screen (Fig. S3.9).  

 

As an alternative analysis, we also tested for correlations between gamma power and 

error in the MTL and DLPFC at retrieval and feedback. Figure 3.3 shows the correlation 

between gamma power, averaged over 100ms siding time windows, and angular error, 

logged to account for the non-normal distribution of error. We found negative 

correlations between gamma power and logged error in the MTL and DLPFC at 

retrieval, and positive correlations in both regions at feedback, replicating the results 

from the ANOVA analyses described above (Fig. 3.3E-F) (Pearson, p < 0.05, 

permutation corrected).  

 

MTL gamma power at feedback predicts accuracy on subsequent trials. We then 

wanted to determine if gamma error signals on particular trials predicted learning and 

improved performance on subsequent trials. We found a significant partial correlation 

between MTL gamma power at feedback for high error trials and the change in error 

from one block to the next (e.g. T1 to T2) for specific object-location associations, 

controlling for error on the trial occurring in the earlier block (current error) (partial 

correlation, Pearson, p < 0.05, permutation corrected) (Fig. 3.3E-F). This was a 

negative correlation, indicating that the bigger the gamma error signal in the MTL was, 

the bigger the decrease in error from one block to the next. Importantly, this partial 

correlation controls for the amount current error, indicating that this effect is not due to 

ceiling/floor effects stemming from the amount of current error (i.e the larger the current 
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error is, the more room there is for decreases in error). In addition, this correlation 

remained significant when controlling for changes in power across blocks by adding 

task block as a factor in the partial correlation instead of by normalizing power within 

blocks (S3.8).  

 

3.5 Discussion 

Prior work has shown that MTL and dlPFC activity at feedback signals trial outcome 

(correct vs. incorrect). However, the contributions of these signals to performance on 

subsequent trials (i.e. learning) are poorly understood. Here, we found that increased 

MTL and dlPFC gamma power, thought to reflect local excitatory activity, signaled 

increased error at feedback in an object-location associative learning task. Increased 

MTL activity at feedback also predicted greater decreases in error from one training 

block to the next for specific object-location associations, indicating that MTL error 

signals are involved in updating incorrect or imprecise associations during learning. 

 

A variety of processes could contribute to the observed error signals at feedback. 

Accumulating evidence suggests that the hippocampus plays a crucial role in 

developing models, or predictions, about the environment. Numerous studies have 

shown that hippocampal activity increases when predictions about the environment are 

violated, resulting in what has been termed a ‘match/mismatch’ signal (Duncan, 2012). 

These ‘match/mismatch’ signals might contribute to the observed error signals if 

subjects’ placement of an object was less accurate than they had expected. Similarly, 

prediction errors signal discrepancies between actual and expected outcomes and are 
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thought to drive learning by updating expectations to make predictions more accurate 

(Mattar & Daw, 2018; Stachenfeld, Botvinick, & Gershman, 2017). Given that it is 

generally preferable to do well on any given task, reward prediction errors, or the 

difference between an actual and expected reward might contribute to the observed 

error signals. In this case, the reward would be good performance on the task (low 

error), and a reward prediction error would occur if subjects’ placement of an object was 

less accurate than they had expected. State prediction errors, which respond to 

incorrect predictions of both neutral and affective stimuli could also contribute 

(Glascher, Daw, Dayan, & O'Doherty, 2010). The increased activity for high error trials 

might also reflect encoding (or re-encoding) of the correct location if the location of the 

object was forgotten, misremembered, or imprecise. Regardless of whether subjects 

had a specific prediction about where the object would be when it was shown in the 

correct location at feedback, there would likely be a measure of increased surprise and 

novelty for higher error trials since the object would appear at an unexpected location. 

As such, attentional effects that accompany surprise or novelty might also contribute to 

these signals (Corbetta & Shulman, 2002). However, the error signal observed in the 

MTL at feedback predicted subsequent performance on specific object-location 

associations, indicating that this signal is not just reflecting surprise or novelty but that it 

is contributing to associative learning.  

 

Previous studies in rodents and monkeys have found cells that increase firing at 

feedback for both correct and error trials (Brincat & Miller, 2015; Wirth et al., 2009). 

However, the ways in which these cells contribute to population activity as recorded by 
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the local field potential or by BOLD fMRI in animals and humans is poorly understood. 

In a cross-species study that examined feedback signals in both monkeys (using LFP) 

and humans (using fMRI), increased MTL gamma (30-100 Hz) power was found for 

error trials (incorrect > correct) in monkeys (Hargreaves, Mattfeld, Stark, & Suzuki, 

2012). The BOLD fMRI signal in humans at feedback showed the opposite polarity, with 

increased MTL activity for correct trials (correct > incorrect). High frequency gamma 

power is thought to be generated by increased spiking, gamma oscillations, or by a 

combination of these two processes (Burke et al., 2015). In each case, this would mean 

that the observed error signals reflect increased local excitatory activity, as noted 

above. Although the BOLD signal has been found to be correlated with the local field 

potential, this signal is thought to be generated by complex neurovascular coupling, 

making the polarity of this signal difficult to interpret (Logothetis, 2001). The results from 

the current study support the idea that, at a population level, MTL excitatory activity is 

driven by increased error at feedback, though other task designs could result in differing 

effects. 

 

At retrieval, we found negative correlations between increased MTL and dlPFC gamma 

power and error, replicating results from our previous study (Stevenson et al., 2018). 

These results provide additional evidence that MTL and dlPFC activity does not just 

reflect a binary signal of retrieval success versus failure, but rather that activity within 

these regions tracks representational fidelity. This adds to a growing body of literature 

implicating the extended hippocampal network in spatial memory precision (Koen et al., 

2017; Kolarik et al., 2016; Nilakantan et al., 2017). 
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We also observed decreases in MTL and dlPFC gamma power across task blocks at 

retrieval and feedback. Although these decreases in activity paralleled decreases in 

error across blocks, low error trials within blocks were associated with increased MTL 

and dlPFC activity at retrieval, indicating that these shifts in power were not driven 

solely by object-location associative learning. Interestingly, multiple other studies have 

shown decreases in gamma activity over the course of experimental sessions, linking 

these gradual shifts to decreases in novelty and increases in familiarity as well as to 

decreases in attention (Park et al., 2014; Sederberg et al., 2006; Serruya, Sederberg, & 

Kahana, 2014). Decreases in gamma power have also been linked to repetition 

suppression, where activity elicited by a stimulus decreases from the first to the second 

presentation (Rodriguez Merzagora et al., 2014). Additionally, these decreases in 

activity could be related to increases in processing efficiency or learning of the task 

environment and/or stimuli. Future work will be needed to determine how shifts in 

gamma power relate to changes in novelty, attention, processing efficiency, or item 

recognition. 

 

A limitation of the current study is that the research was conducted with patients with 

epilepsy, whose brains may undergo epilepsy-related changes. However, in line with 

recommendations put forth in a review by human and nonhuman primate intracranial 

researchers, we excluded trials that contained epileptiform discharges and only included 

recordings from non-epileptic tissues (Parvizi & Kastner, 2018).  
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The ability to update incorrect or imprecise representations of the environment based on 

negative feedback is critical for the formation of accurate predictions that can be used to 

guide behavior. These results suggest a role for the MTL in signaling error at feedback 

and in updating representations of object-location associations. We also provide 

additional evidence for the involvement of the MTL and dlPFC in high-fidelity spatial 

memory retrieval. Future studies will be needed to determine if the MTL is involved in 

non-spatial associative learning via feedback (e.g. face-name) and in indexing the 

precision of non-spatial memory judgments. 
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CHAPTER 4: MEDIAL TEMPORAL LOW FREQUENCY ACTIVITY AND 

APERIODIC SLOPE DURING SPATIAL LEARNING 

 

4.1 Abstract 

Neural power spectra consist of narrowband peaks in power, reflecting putative 

oscillations, rising above the aperiodic 1/f signal. Low frequency neural oscillations in 

the theta range (~3-8 Hz) are thought to play a critical role in memory encoding and 

retrieval by coordinating the timing of neural activity. Oscillatory power is often 

estimated via narrowband filtering, giving a measure of total power in a specific 

bandwidth. However, since this measure reflects a combination of oscillatory power (if 

present) and the aperiodic signal, apparent changes in oscillatory power can be driven 

by shifts in the aperiodic signal. As such, oscillatory power is better defined as power 

relative to the aperiodic signal, or ‘peak amplitude’. Although it has received less 

attention in the literature, the aperiodic signal is also thought to reflect aspects of 

neuronal function important for memory processing. Accumulating evidence suggests 

that the slope of the aperiodic signal reflects the balance between excitatory and 

inhibitory synaptic currents, and that decreasing the ratio of excitation to inhibition 

decreases (steepens) the slope. In order to examine low-frequency oscillations in the 

theta range and the slope of the aperiodic signal during associative learning, we tested 

presurgical epilepsy patients with depth electrodes implanted in the medial temporal 

lobe on a spatial learning task in which subjects attempted to learn object-location 

associations over the course of three training blocks with feedback. We used a novel 

algorithm to parameterize the recorded power spectra, providing an estimate of theta 
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peak amplitude as well as an estimate of the slope of the aperiodic signal. We found 

that total theta power, estimated using narrowband filtering, increased across training 

blocks at retrieval and feedback. However, there was no change in theta peak 

amplitude. Rather, the increases in total theta power were driven by decreases in the 

aperiodic slope. These results suggest that there was a decrease in the ratio of 

excitation to inhibition across training blocks, indicating decreases in excitatory activity 

or increases in inhibition that could reflect increased familiarity or decreased novelty 

with training.  

 

4.2 Introduction  

Neural oscillations in the theta range (~3-8 Hz) are thought to play a critical role in 

memory encoding and retrieval. These oscillations appear as narrowband peaks in the 

power spectrum rising above the aperiodic 1/f signal. The rhythmic properties of these 

oscillations have been shown to play an important role in coordinating the timing of 

neural activity via such mechanisms as phase synchronization and phase amplitude 

coupling (Fell & Axmacher, 2011; Rutishauser et al., 2010). Studies in presurgical 

epilepsy patients have found increased theta power in the medial temporal lobe (MTL) 

during episodic memory retrieval, though these studies did not find that theta power 

predicted memory performance (Burke, Sharan, et al., 2014; Watrous et al., 2013). 

Alterations in MTL theta power during encoding have been shown to predict subsequent 

memory, though there is conflicting evidence as to the directionality of this effect, with 

both increases and decreases in theta power predicting subsequent performance 

(Burke et al., 2013; Lega et al., 2012). A possible explanation for these conflicting 
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results is that oscillatory power is often estimated via narrowband filtering, giving a 

measure of total power in a specific bandwidth. However, since this measure reflects a 

combination of oscillatory power (if present) and the aperiodic signal, apparent changes 

in oscillatory power can be driven by shifts in the aperiodic signal. As such, the 

contributions of theta oscillations to memory processing are still unclear. 

 

Although it has received less attention in the literature, the 1/f signal is also thought to 

reflect aspects of neuronal function critical to memory processing. This signal follows a 

power-law function, in which power decreases with increasing frequency (P ~ 1/fx), 

giving it its “1/f” shape (He, 2014; Miller et al., 2009). The slope of the 1/f signal is 

defined by the power-law exponent (x), which typically ranges between 0-4 for neural 

spectra (He, 2014; Miller et al., 2009). In contrast to neural oscillations, which are, by 

definition, periodic, this signal is not dominated by any particular time scale or frequency 

and is thought to arise from aperiodic neural activity. Recent results from computational 

modeling suggest that the 1/f aperiodic signal is generated by a combination of 

excitatory and inhibitory postsynaptic currents (Gao et al., 2017). In this model, 

decreasing the ratio of excitation to inhibition decreased (steepened) the slope of the 

simulated aperiodic signal. These modeling results were corroborated by experimental 

data showing that increasing levels of inhibition predicted aperiodic slope decreases in 

rodent LFP and monkey ECOG recordings (Gao et al., 2017). The balance between 

excitation to inhibition is thought to be important for neural homeostasis, numerous 

neural computations, and normal neural processing such as the generation of neural 

oscillations (Atallah & Scanziani, 2009; Turrigiano & Nelson, 2004; Vogels & Abbott, 
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2009). Imbalances in the ratio of excitation to inhibition have been linked to multiple 

neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism 

(Gao et al., 2017). Accumulating evidence suggests that hyperactivity within the 

hippocampus is linked to age-related impairments in memory, perhaps reflecting 

excitatory/inhibitory imbalances (Bakker et al., 2012; Yassa et al., 2011). Additionally, a 

recent study found that age-related impairments in working memory were mediated by 

increases in the aperiodic slope, which could reflect increases in “neural noise” 

produced by excitatory/inhibitory imbalances (Voytek et al., 2015). However, the links 

between the aperiodic slope and memory processing are still poorly understood. 

 

In order to examine how low-frequency theta oscillations and changes in the aperiodic 

slope contribute to associative learning in humans, we tested presurgical epilepsy 

patients on a spatial learning task in which subjects attempted to learn object-location 

associations over the course of three training blocks with feedback. We used a novel 

algorithm developed by Haller and colleagues to model the recorded power spectra, 

giving us an estimate of theta power relative to the aperiodic signal (peak amplitude), as 

well as an estimate of the aperiodic slope (Haller et al., 2018a). We predicted that theta 

peak amplitude and the aperiodic slope would be modulated across the three training 

blocks at retrieval and feedback and that peak amplitude and the aperiodic slope would 

predict error within training blocks. 

 

4.3 Materials and methods 
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Participants. Subjects were 5 patients (3 female, 1 male, age 24-58) who had 

stereotactically implanted intracranial depth electrodes (Integra or Ad-Tech, 5-mm inter-

electrode spacing) placed at the University of California, Irvine Medical Center to 

localize the seizure onset zone for possible surgical resection. These patients were a 

subset of the subjects included in chapter 3 (subjects 3, 4, 6, and 7). Informed consent 

was obtained from each subject prior to testing and the research protocol was approved 

by the IRB of the University of California, Irvine. Electrode placement was exclusively 

guided by clinical needs. 

 

Spatial learning task and behavioral analyses. The spatial learning task was the same 

used in chapter 3. Briefly, during encoding subjects were shown 30 objects one at a 

time at random locations along the circumference of an invisible circle. For each training 

block, the same objects were shown at the top of the circle and subjects used a mouse 

wheel to rotate the object to where it appeared during encoding. After subjects finished 

placing each object, it was shown in the correct location for one second as feedback. 

Performance was measured as angular error, or the difference in degrees between 

where subjects placed the object and its correct location. In order to examine the 

relationship between total theta power, theta peak amplitude, and error, as well as the 

relationship between the aperiodic slope and error, we sorted trials within each block by 

error and split them into thirds, putting the top 1/3 trials with the highest error from each 

block into the high error condition and the bottom 1/3 trials with the least error from each 

block into the low error condition. See chapter 3 for a more detailed description of the 

spatial learning task and in-depth behavioral analyses. 
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Electrode localization, data collection and preprocessing. Electrode localization, data 

collection, and preprocessing were performed as in chapter 3. See Table 3.1 for number 

of MTL contacts for each subject. 

 

Total theta (3-8 Hz) power analyses (narrowband filtering). Intracranial recordings were 

broken into event-related epochs (3 seconds pre-stimulus onset and 4 seconds post-

stimulus onset) at retrieval and feedback. At retrieval, stimulus onset refers to the time 

at which the object appears at the top of the circle. At feedback, stimulus onset refers to 

the time at which the object appears at the correct location as feedback. These raw time 

series data were then convolved with complex Morlet wavelets, implemented using the 

FieldTrip toolbox, to obtain a measure of instantaneous power (Oostenveld et al., 2011). 

Center frequencies ranged from 1 to 150 Hz, with a spacing of 1 Hz and a variable cycle 

number of 4-15. Power was baseline corrected to the average pre-stimulus power 

across all trials (0.5 to 0.2 prior to stimulus onset), resulting in a measure of relative 

power per frequency (power divided by pre-stimulus power) at each time point. Power 

was then z-transformed separately within each session to account for differences in 

power and noise across sessions. We used an a priori theta frequency range of 3-8 Hz 

in order to examine total theta power, based on prior literature showing MTL theta 

activity in this range. We then averaged baseline corrected power over this theta 

frequency range (3-8 Hz) and across MTL electrodes. We used a cluster-based 

permutation testing to compare theta power across task blocks, as in chapter 3. To 

examine the specificity of effects, we also ran analyses on regions outside of the MTL 
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including the lateral temporal cortex, the insula, the caudal prefrontal cortex (BA 6/8), 

orbitofrontal cortex, anterior cingulate cortex, and dorsolateral prefrontal cortex (BA 

9/10/46).  

 

Power spectral densities (PSDs). Intracranial recordings were broken into event-related 

epochs (0 to 1 second poststimulus onset) at retrieval and feedback. We applied a 

Hanning window to these data epochs and then used Fourier transform to derive power 

spectral densities (Fieldtrip toolbox function ft_freqanalysis (‘mtmfft’, Hanning window)) 

(Oostenveld et al., 2011). Center frequencies ranged from 2 to 40 Hz with a spacing of 

1 Hz.  

 

Parameterizing the neural power spectra. In order to decompose these PSDs into 

aperiodic signals and peaks, or putative oscillations, we used a novel algorithm 

developed by Haller and colleagues called Fitting Oscillations and One Over F (1/f) 

(FOOOF) (Haller et al., 2018a). This algorithm first finds an initial fit for the aperiodic 

signal, which is then subtracted from the original PSD creating a flattened spectrum. An 

amplitude threshold is applied to this flattened spectrum in order to find low amplitude 

points that are most likely to represent the aperiodic signal. The aperiodic signal is then 

refit using these low amplitude points. After the resulting aperiodic signal is regressed 

out, the algorithm iteratively searches for peaks that are each individually fit with a 

Gaussian. A multi-Gaussian model is then fit to these peaks, minimizing the squared 

error between the flattened spectrum and the number of Gaussian. This multi-Gaussian 

model is then subtracted from the original PSD, and the aperiodic signal is refit. The 



73 

 

final fit for the aperiodic signal is then combined with the Gaussian model. Since 

changes in broadband gamma (>40 Hz) could potentially skew the model fit, we cut off 

the frequency range at 40 Hz. As such, the PSDs analyzed by the model had a 

frequency range of 2-40 Hz.  

 

Permutation testing. We used permutation testing to statistically compare parameters 

across conditions. Trials were pooled across sessions and the difference in aperiodic 

slope between conditions (e.g. T1 vs. T3) was calculated. A null difference distribution 

was created by shuffling the trial labels 500 times before calculating the difference in 

slopes between conditions. The observed slope difference value was then compared to 

this null average difference distribution. P-values were calculated as the fraction of 

times the null difference values were equal to or more extreme than the observed 

difference value. In order to compare theta peak amplitudes between conditions, we 

found the difference between the highest amplitude peaks detected between 2-11 Hz in 

each condition. A null difference distribution was created by shuffling the trial labels 500 

times before calculating the difference in peak amplitudes between conditions. If no 

peak was detected in one of the permuted iterations, the aperiodic signal was 

subtracted from the PSD creating a flattened spectrum, and the peak amplitude for that 

iteration was set as the highest amplitude point between 2-11 Hz in this flattened 

spectrum. 

 

4.4 Results 
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Task performance. Subjects (11 sessions from 4 patients) performed a spatial learning 

task as we recorded intracranial electroencephalogram (EEG). During the encoding 

phase, 30 objects were presented, one at a time, at random positions around the 

circumference of an invisible circle (see Fig. 3.1). Prior to the encoding phase, subjects 

were told that they would be tested on the location of each object. Following encoding, 

there were three training blocks during which each object was shown again, this time at 

the top of the circle, and subjects were instructed to use the mouse wheel to rotate the 

object to where it appeared during encoding. Subjects were asked to wait 1 second 

(until text that read ‘Wait…’ disappeared from the screen) before beginning to rotate the 

object and to press the space bar when they were finished placing the object. After each 

trial, the object appeared on the screen in the correct location for 1 second as feedback. 

During the final test phase, subjects were again asked to rotate each object to the 

correct location, though this time no feedback was given. The inter-trial interval (ITI) was 

1.2 +/- 0.2 seconds and the interstimulus interval (ISI), meaning the time between when 

the subjects finished placing the object and when it was shown in the correct location as 

feedback was fixed at 0.5 seconds. Performance was measured in angular error, or the 

distance (in degrees) between where subjects placed the object and the correct 

location. If subjects performed more than one session, new objects and locations were 

used. No more than one session was performed on each day. 

 

We used the MemFit function of Memtoolbox in MATLAB (J. W. Suchow et al., 2013), to 

obtain an estimate of two parameters describing these distributions: the guess rate (g), 

which reflects the area under the uniform distribution, and the standard deviation of the 
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von Mises distribution (SDMem), which reflects the overall precision of responses that 

were not guesses. Guess rate, SDMem, and angular error all decreased over task 

blocks, indicating learning of the object-location associations (linear trend analysis, 

guess rate: F(1, 30) = 10.3, p = 0.003, SDMem: F(1, 30) = 14, p = 0.0007; error: F(1, 

30) = 90.6, p < 0.0001). 

 

 

Figure 4.1. Total theta power (3-8 Hz) increases across task blocks. A-B, Spectrograms showing 
mean MTL power across all trials at retrieval (A) and feedback (B). C-D, Time course of total theta (3-8 
Hz) power for each task block at retrieval (C) and feedback (D) (T1-3, and Test for retrieval, T1-3 for 
feedback). Gray horizontal lines indicate time points where there are significant differences between task 
blocks (ANOVA, p < 0.05, cluster-corrected). Colored shaded regions indicate s.e.m. T1-3: training blocks 
1-3. 
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Total theta power (3-8 Hz) increases across task blocks. We first examined how 

total, narrowband filtered power in the theta range (3-8 Hz) changed across task blocks 

during retrieval and feedback. Spectrograms for MTL power across all trials at retrieval 

and feedback are shown in Figure 4.1A-B. The time course of mean MTL total theta 

power for each task block at retrieval and feedback (including the test block for retrieval 

but not feedback since feedback was not given during the final test) is shown in Figure 

4.1C-D. Using a cluster-based permutation approach to correct for multiple comparisons 

across time points, we found significant differences in total theta power across blocks in 

both regions for both retrieval and feedback (ANOVA p < 0.05, cluster-corrected). These 

increases in total theta power were not specific to the MTL but were present in nearly all 

brain regions we recorded from, including the orbitofrontal cortex, anterior cingulate, 

and dorsolateral prefrontal cortex (see S4.1-2 for results from all recording sites at 

retrieval and feedback). However, there were regions (e.g. the insula) and time periods 

where there was no significant difference in total theta power across blocks suggesting 

that these changes were not driven by non-neural sources such as changes in electrode 

impedance over time.  

 

To determine if these increases in total theta power reflected increases in oscillatory 

power, we pooled trials across sessions and applied the Fourier transform to the 1 

second period following stimulus onset at retrieval and feedback to obtain power 

spectral densities (PSDs) between 2-40 Hz. We used a novel algorithm developed by 

Haller and colleagues (2018), called Fitting Oscillations and One Over F (1/f) (FOOOF), 
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to disentangle putative oscillatory peaks present in these PSDs from the aperiodic 

signal. This algorithm first finds an initial fit for the aperiodic signal, which is then 

subtracted from the original PSD. The algorithm then iteratively searches for peaks in 

this flattened spectrum which are each fit with a Gaussian curve. A multi-Gaussian 

model is then fit to these peaks, minimizing the squared error between the flattened 

spectrum and the number of Gaussian curves. This multi-Gaussian model is then 

subtracted from the original PSD, and the aperiodic signal is refit. The final fit for the 

aperiodic signal is then combined with the Gaussian model. The parameters estimated 

by the final model include the center frequencies and bandwidth of the detected peaks 

(if present), the amplitude of these peaks relative to the aperiodic signal, as well as the 

broadband offset and slope of the aperiodic signal (Fig. 4.2A). The model fit of the MTL 

PSDs averaged over all trials at retrieval and feedback was highly accurate, with an r2 

of 0.9989 and a root mean squared error of 0.0198 at retrieval (Fig. 4.2B) and an r2 of 

0.9986 and a root mean squared error of 0.0201 at feedback. Peaks were detected in 

the theta range at both retrieval and feedback, with a center frequency of 8.8 Hz and 

bandwidth of 2.6 Hz at retrieval and a center frequency of 8.9 Hz and bandwidth of 2.1 

Hz at feedback. We then used permutation testing to statistically compare theta peak 

amplitudes across task blocks. First, we took the difference in MTL theta peak 

amplitudes between training block 1 (T1) and training block 3 (T3). A null difference 

distribution was created by shuffling the trial labels 500 times before calculating the 

difference between the highest amplitude peaks detected between 2-11 Hz in each 

condition. If no peak was detected in one of the permuted iterations, the aperiodic signal 

was subtracted from the PSD creating a flattened spectrum, and the peak amplitude for 
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that iteration was set as the highest amplitude point between 2-11 Hz in this flattened 

spectrum. P-values were calculated as the fraction of times the null difference values 

were equal to or more extreme than the observed difference in peak amplitudes. We 

found no significant difference in MTL theta peak amplitudes for T1 versus T3 at 

retrieval or feedback, indicating that the differences in total theta power were driven by 

alterations in the aperiodic signal (permutation testing, p > 0.05). 

 

Figure 4.2. Parameterizing neural power spectra. A. Neural power spectra consist of narrowband 
peaks in power, reflecting putative oscillations, rising above the aperiodic signal. Each peak has a center 
frequency and bandwidth, while the aperiodic signal is defined by its slope and broadband offset. 
Oscillatory power is better defined as power relative to the aperiodic signal (peak amplitude) rather than 
total power. B. Model fit of the MTL PSD averaged over all trials at retrieval. Two peaks were found, one 
with a center frequency of 8.8 Hz and a bandwidth of 2.6 Hz, and one with a center frequency of 16.9 Hz 
and a bandwidth of 6.2 Hz. The r2 of the model fit was 0.9989 and that the root mean squared error was 
0.0198. The offset of the aperiodic signal was estimated to be at 3.9, and the slope was estimated to be 
2.3. 
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Figure 4.3. Aperiodic slope decreases across training blocks. A, C. Model fit of the MTL PSDs at 
training block 1 (T1) training block 3 (T3) at retrieval (A) and feedback (C). B, D. A null distribution was 
formed by randomly shuffling trials between conditions in order to test for differences in slope. E, F. 
Aperiodic slope for T1 and T3 at retrieval (E) and feedback (C) for each session. 
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Aperiodic slope decreases across training blocks. Using the estimates of aperiodic 

slope derived from the FOOOF model, we used permutation testing to compare slopes 

across training blocks. We found that the aperiodic slope significantly decreased (i.e. 

the power-law exponent significantly increased, making the slope steeper) from training 

blocks 1 to 3 at retrieval (permutation test, p = 0.004) and feedback (permutation test, p 

= 0.002) (Fig. 4.3A-D). To determine how consistent the slope change was across 

sessions, we fit each session individually using the FOOOF algorithm and found a 

significant difference in slopes at the group level for T1 and T3 at retrieval (Wilcoxon 

signed rank test, p = 0.03) and feedback (Wilcoxon signed rank test, p = 0.001). 

Although this decrease in aperiodic slope parallels the decrease in error from T1 to T3, 

this slope decrease across training blocks could also have been driven by increased 

familiarity with the objects themselves or with the task environment rather than by 

learning of the object-location associations. As such, we next examined the relationship 

between the aperiodic slope and error within blocks. 

 

Error within blocks not predicted by total theta power, theta peak amplitude, or 

aperiodic slope. We sorted trials within each block by error and split them into thirds, 

putting the top 1/3 trials with the highest error from each block into the high error 

condition and the bottom 1/3 trials with the least error from each block into the low error 

condition. We found no significant difference in total theta power between high and low 

error trials at retrieval or feedback (p > 0.05, cluster-corrected), nor did we find a 

significant difference in theta peak amplitude between conditions for retrieval or 

feedback (p > 0.05, permutation testing). We also did not find significant differences in 
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aperiodic slope between high and low error trials, indicating that the decreases in slope 

across blocks were driven by increases in familiarity or decreases in novelty (p >0.05, 

permutation testing) (Fig. 4.4). 

 

Figure 4.4. Error within blocks not predicted by aperiodic slope. Model fit of the MTL PSD for high 
and low error trials at retrieval (A) and feedback (B). C-D, A null distribution was formed by randomly 
shuffling trials between high and low error conditions in order to test for differences in slope. 

 

4.5 Discussion 

Testing presurgical epilepsy patients with depth electrodes implanted in the medial 

temporal lobe, we found that total theta power, estimated using narrowband filtering, 

increased across training blocks in a spatial learning task. However, using a novel 

algorithm to disentangle putative oscillatory power from the aperiodic signal, we found 
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that these increases in total theta power were driven, at least in part, by decreases in 

the aperiodic slope, and that theta peak amplitude, likely reflecting oscillatory power, 

showed no change across training blocks. Neither total theta power, theta peak 

amplitude, nor aperiodic slope predicted error within blocks, suggesting that the 

decreases in aperiodic slope across training blocks reflected decreases in novelty or 

increases in familiarity rather than object-location associative learning. Since decreases 

in aperiodic slope are thought to reflect decreases in the ratio of excitation to inhibition, 

these results suggest that decreases in excitation and/or increases in inhibition might 

underlie the changes in neural processing that accompany increased familiarity or 

decreased novelty, such as decreased attention, increased processing efficiency, or 

learning of the task environment and/or stimuli. 

 

These increases in total theta power parallel the decreases in gamma power across test 

blocks described in chapter 3, suggesting these processes both reflect a tilt in the 

aperiodic signal. Interestingly, multiple studies from other groups have also shown 

simultaneous increases in theta power and decreases in gamma over the course of 

experimental sessions (Park et al., 2014; Sederberg et al., 2006; Serruya et al., 2014). 

We also observed decreases in gamma power across a single test session in a variant 

of the spatial learning task used in the current experiment (see Chapter 2) (Stevenson 

et al., 2018) . The current results indicate that these shifts in power are driven by 

changes in the aperiodic slope rather than by alterations in oscillatory power, indicating 

that changes in the ratio of excitation to inhibition commonly occur over the course of 

experimental sessions.  
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The gradual power shifts seen in previous studies during encoding have been shown to 

predict subsequent memory and have been interpreted as reflecting a primacy effect 

whereby earlier stimuli receive increased attention/processing power, or as reflecting 

increased familiarity/decreased novelty with the task environment/stimuli. In addition to 

the gradual shifts in power across experimental sessions, trial-by-trial increases in 

gamma power and decreases in theta power at encoding have been shown to be strong 

predictors of subsequent memory (Burke et al., 2013; Ezzyat et al., 2017). In a study 

that directly examined the relationship between aperiodic slope and memory, age-

related changes in working memory were found to be mediated by increases in 

aperiodic slope (Voytek et al., 2015). Although we did not find that the aperiodic slope 

predicted object-location associative error at retrieval or feedback within blocks, the 

decreased slope across training blocks could reflect increases in processing efficiency 

or learning of the task environment and/or stimuli. 

 

Although we observed a prominent peak in the theta range at both retrieval and 

feedback, indicating the presence of theta oscillations, we found no difference in theta 

peak amplitude between high and low trials at retrieval or feedback. This is consistent 

with results from previous studies, in which theta power was estimated using 

narrowband filtering, that showed no relationship between theta power and memory 

performance at retrieval. However, the differing results obtained across blocks when 

measuring total theta power versus theta peak amplitude in the current study highlight 

the need to take into account the aperiodic signal when measuring oscillatory power. 
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Future work could examine if changes in theta peak amplitude during feedback predict 

performance on specific object-location associations from one training block to the next. 

Although theta peak amplitude did not predict error on the object-location associative 

memory task, theta oscillations during retrieval or feedback could still play a role in 

memory processing. For instance, theta phase synchronization or theta-gamma phase 

amplitude coupling could facilitate reactivation at retrieval or memory updating at 

feedback by coordinating the timing of neural activity. 

 

Using a novel method for parameterizing neural power spectra combined with 

intracranial recordings in humans, these results suggest that decreases in excitation 

and/or increases in inhibition might underlie the changes in neural processing that 

accompany increased familiarity or decreased novelty. Future work using single unit 

recordings in rodents and/or magnetic resonance spectroscopy in humans to examine 

levels of glutamate, an excitatory neurotransmitter, might be able to parse whether 

these changes are driven by decreases in excitation or increases in inhibition, and how 

they relate to changes in attention, processing efficiency, or item recognition.  
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CHAPTER 5: CONCLUSION AND FUTURE DIRECTIONS 

 

5.1 Overview of findings  

Prior studies have shown that the medial temporal lobe and prefrontal cortex are 

involved in associative memory learning and retrieval. However, the contributions of 

these regions to the precision of spatial memory retrieval and to associative learning via 

feedback are poorly understood. To address this gap, we tested presurgical epilepsy 

patients with bilateral depth electrodes implanted in the medial temporal lobe and 

prefrontal cortex on two variants of an object-location associative memory task 

designed to probe spatial memory precision and learning. In chapter 2, we show that 

increased hippocampal and dlPFC high-frequency gamma power, thought to reflect 

local excitatory activity, predicted the precision of spatial memory retrieval. We replicate 

these results in chapter 3, showing negative correlations between medial temporal and 

prefrontal activity at retrieval and error magnitude. We also show a directional 

relationship between CA1 and dlPFC activity in chapter 2 indicating that the dlPFC is 

involved in post-retrieval processing. These results suggest that medial temporal and 

prefrontal networks are not only involved in retrieval success, but also in indexing the 

precision of retrieved memories. 

 

Using a variant of the spatial memory task in which object-location associations are 

learned over the course of 3 training blocks with feedback, we show the opposite 

pattern of activity at feedback in chapter 3, with increased MTL and dlPFC activity 

predicting increases in error. Increased MTL activity at feedback also predicted greater 
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decreases in error from one training block to the next for specific object-location 

associations, indicating that MTL error signals are involved in updating incorrect or 

imprecise associations during learning. We also show decreases in MTL and dlPFC 

gamma power across task blocks at retrieval and feedback which might reflect 

decreases in novelty or increases in familiarity as task environment/stimuli are learned. 

 

In chapter 4 we describe how the increases in total theta power across task blocks 

observed in the spatial learning task are driven by decreases in the aperiodic slope, 

thought to reflect decreases in the ratio of excitation to inhibition. These decreases in 

aperiodic slope parallel the decreases in gamma power across test blocks described in 

chapter 3, suggesting these processes both reflect a seesaw-like tilt in the aperiodic 

signal (i.e. low frequency power goes up, high frequency power goes down). These 

results suggest that decreases in excitation and/or increases in inhibition might underlie 

the changes in neural processing that accompany increased familiarity or decreased 

novelty, such as decreased attention, increased processing efficiency, or learning of the 

task environment and/or stimuli. 

 

A limitation of the current study is that the research was conducted with patients with 

epilepsy, whose brains may undergo epilepsy-related changes. However, in line with 

recommendations put forth in a review by human and nonhuman primate intracranial 

researchers, we excluded trials that contained epileptiform discharges and only included 

recordings from non-epileptic tissues (Parvizi & Kastner, 2018). Working with a clinical 

population also meant that subject sample sizes were relatively small (4-9) and that 
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electrode recordings were sparsely and inconsistently distributed throughout the brain 

given that electrode placement was solely driven by clinical need. 

 

 

5.2 Conceptual framework for the role of the medial temporal lobe and prefrontal cortex 

in spatial memory precision and learning 

Overall, these results are consistent with the proposed role for the hippocampus in 

relational memory and in forming and retrieving associations between the items or 

elements of an experience (e.g. an object and a location) (Diana et al., 2007; 

Eichenbaum et al., 1992). Chapter 2 adds to this framework by proposing a further role 

for hippocampal CA1 in facilitating the precise recall of learned associations. Multiple 

recent studies have implicated the extended hippocampal network in spatial memory 

precision, which, combined with the current results, provide convergent evidence that 

the hippocampus is important for the formation and retrieval of precise spatial 

representations. These results are also consistent with the Complementary Learning 

Systems framework in that the hippocampus is important for the rapid acquisition of 

novel associations (McClelland, McNaughton, & O'Reilly, 1995). Although we did not 

have enough electrodes in other hippocampal subfields or in surrounding cortices to be 

able to examine activity within these regions separately, we found that increased activity 

within the combined regions of the MTL predicted decreased error at retrieval in both 

versions of the object-location association task. As the perirhinal and parahippocampal 

cortices are thought to be involved in object and spatial/contextual processing, 

respectively, each of these regions would presumably be important for the retrieval of 
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highly precise object-location associations. The decreases in activity observed across 

task blocks in chapter 3 are consistent with the proposed role for the medial temporal 

lobe in processing changes in familiarity and novelty (Diana et al., 2007; Yonelinas, Aly, 

Wang, & Koen, 2010). As described in chapter 4, we additionally find that shifts in the 

balance between excitation and inhibition might drive the modulations in MTL activity 

that accompany changes in familiarity and novelty. Our results further propose a role for 

the MTL in signaling errors in object-location associative memory at feedback as well as 

in updating spatial memory representations or modifying incorrect associations.  

 

In chapter 2 we describe how the gamma-precision effect observed at retrieval 

appeared earlier in the CA1 than in the dlPFC. This is consistent with the proposed role 

of the dlPFC in post-retrieval processing and in maintaining goals active in working 

memory (Passingham & Wise, 2012). In this case, the dlPFC could be involved in 

maintaining the retrieved location in mind as subjects prepare to move the object. We 

also observed increased dlPFC activity for high error trials at feedback, indicating a role 

for this region in signaling errors in associative memory retrieval. Although we did not 

find a relationship between error signals in the dlPFC and subsequent performance, 

given the sparse distribution of electrode recordings it is possible that other regions of 

the prefrontal cortex or even different areas of the dlPFC contribute to associative 

learning via feedback. Overall, these data suggest putative mechanisms for the learning 

and retrieval of high-fidelity special associations. 

 

5.3 Future directions 
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In the current study, we describe a role for the hippocampus and dlPFC in indexing the 

precision of object-location associative memory. An important question that remains is 

whether these regions are important for non-spatial associative memory precision. A 

recent study from our group that tested subjects on their memory for the precise timing 

of specific events found that BOLD fMRI activity in the hippocampus and lateral 

entorhinal cortex predicted high versus low temporal precision (Montchal, Reagh, & 

Yassa, 2019). Running this task on pre-surgical epilepsy patients would provide a trial-

by-trial measure of activity within these regions, allowing us to determine if these 

regions are involved in tracking temporal precision. In addition, it would be interesting to 

determine if hippocampal activity tracks the precision of item memory in addition to 

associative memory. In prior studies examining memory precision subjects were tested 

on their memory for the color of an item by having them select the color on a 360° color 

wheel, providing a continuous, objective measure of item detail memory (Sutterer & 

Awh, 2016). As with the temporal precision task, running this task on pre-surgical 

epilepsy patients would allow us to determine if hippocampal activity tracks the fidelity of 

item memory representations.  

 

Accumulating evidence suggests that deep brain stimulation of the medial and lateral 

temporal cortices during encoding can improve subsequent memory (Ezzyat et al., 

2017; Ezzyat et al., 2018; Suthana & Fried, 2014). However, it is currently unclear if 

stimulation can improve the precision of remembered associations. In addition, multiple 

studies have found that decreased gamma power and increased theta power reflect a 

‘poor encoding state’ and that stimulation specifically during these time periods can 
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improve subsequent memory (Ezzyat et al., 2017). Since novel associations are often 

not learned in a single episode, an important question regarding the translational 

implications of this research is whether ‘poor updating/re-encoding states’ during 

feedback exist, and if stimulation during these time periods would predict learning.  

 

Although we did not find associations between oscillatory power in the theta range and 

associative error in the current study, future work could determine if coupling between 

gamma power and specific phases of low frequency oscillations predicts error/precision. 

Researchers have just begun to leverage the aperiodic signal in examining memory 

processes and there are many promising lines of investigation using this method. As 

discussed in chapter 4, age-related impairments in working memory has been shown to 

be mediated by increases in the aperiodic slope, thought to reflect an increase in the 

ratio between excitation and inhibition (Voytek et al., 2015). Future work can examine 

the relationship between aging and spatial memory precision/learning and examine if 

age-related increases in the aperiodic slope predict impairments on these tasks.  
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APPENDIX: SUPPLEMENTARY MATERIAL FOR CHAPTERS 2-4 

 

 

 

 

Fig. S2.1. Error histograms, mixture model fit, and cutoff values for the Guess condition for 
each session. a-g, The black curve indicates the mixture model fit, the blue curve indicates the pdf of 
the Von Mises distribution, the red dashed line indicates the pdf of the uniform distribution, and the 
black dashed lines indicate the cutoff values for the Guess condition. g: guess rate; sd: standard 
deviation of the Von Mises distribution (SDMem); pdf: probability density function; S1: Session 1; S2: 
Session 2; S3: Session 3. 
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Table S2.2 Number of MTL contacts in each subregion across subjects. 

MTL 
subregion 

CA1 Sub DG/CA3 HC (mixed 
subfields) 

Sub/EC EC PRC PHC 

Number of 
contacts 

10 6 0 5 2 5 2 2 

Sub, subiculum; HC, hippocampus; EC, entorhinal; PRC, perirhinal cortex; PHC, 
parahippocampal cortex. 
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Fig. S2.3. Gamma frequency range and task performance. We calculated the mean CA1 power 
during the retrieval window at successive gamma frequency ranges using a sliding window moving 
average of 20 Hz. The center frequencies showing a significant effect of error across conditions (High 
precision, Low precision, and Guess) ranged from 35 to 104 Hz, consistent with our a priori selection of 
40-100 Hz as our gamma frequency range of interest (a). The center frequencies showing a significant 
correlation between gamma power and error (b) covered a similar range (32 to 111 Hz). Dotted gray 
horizontal line indicates p < 0.05.  
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Fig. S2.4. Gamma power and error. Time course of gamma power in the lateral temporal cortex (a), 
insula (b), caudal prefrontal cortex (Brodmann areas 6/8) (c), orbitofrontal cortex (d), and anterior 
cingulate cortex (e). Stimulus onset is at time zero and the retrieval window (0.25 to 1 second post-
stimulus onset) is shaded in gray. Gray horizontal lines indicate time points where there are significant 
correlations between gamma power and error (p < 0.05). The lateral temporal cortex showed a 
significant effect of error pre-stimulus onset. Colored shaded regions indicate s.e.m. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. S2.5. Theta power and error. Time course of theta (3-8 Hz) power in the CA1 subfield (a) and 
dlPFC (b). Stimulus onset is at time zero and the retrieval window (0.25 to 1 second post-stimulus 
onset) is shaded in gray. Dotted gray horizontal lines indicate time points where there are significant 
correlations between gamma power and error (p < 0.05, cluster-corrected). Colored shaded regions 
indicate s.e.m. We found a significant negative correlation between theta power and error during the 
retrieval window in CA1 and a significant positive correlation that emerged after the retrieval window in 
dlPFC. Neither of these regions showed a significant correlation between theta power and precision. 
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Fig. S2.6. Gamma power in the CA1 and dlPFC: number of expected guesses balanced across 

High and Low precision conditions. Mean gamma power over the retrieval window (.25 to 1 second 

post-stimulus onset) in the CA1 (a) and dlPFC (b) for High precision, Low precision and Guess conditions 

with the number of expected guesses balanced across High and Low precision conditions. We ran a one-

way ANOVA across conditions (High, Low, and Guess) in each region. The results of these ANOVAs 

were similar to those obtained without balancing (CA1: F(2, 462) = 12.5, p = 5 x 10-6; High vs. Guess: p = 

3 x 10-6; High vs. Low: p = 0.06; Low vs. Guess: p = 0.004; dlPFC: F(2, 651) = 3.19, p = 0.04; High vs. 

Guess: p = 0.037; High vs. Low: p = 0.32; Low vs. Guess: p = 0.25). 
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Fig. S2.7. Gamma power is unrelated to the distance object was moved. We examined the 
relationship between gamma power and the distance the object was moved by calculating the angular 
distance from the top of the screen (the starting point) to where the subjects placed each object. Trials 
were sorted by this distance and divided evenly into three conditions: Close, meaning objects that were 
placed closer to the top of the screen, Medium, meaning objects that were placed a medium distance 
from the starting point, and Far. The time course of gamma power is shown in the CA1 (a) and dlPFC 
(b) for Close, Medium, and Far Trials. No significant correlations between gamma power and distance 
were found at any time point (p > 0.05, cluster corrected). Additionally, CA1 (c) and dlPFC (d) gamma 
power was averaged over the retrieval window and a one-way ANOVA was performed across the three 
conditions. These ANOVAs did not show a significant effect of distance in either region (CA1: F(2, 426) 
= 1.1; p = 0.32; dlPFC: F(2, 603) = 0.78; p = 0.46). Colored shaded regions and error bars indicate 
s.e.m. 
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Fig. S2.8. Gamma power at encoding and subsequent error. Time course of gamma power at 
encoding in the MTL (a), dlPFC (b) for trials that were subsequently designated high, medium and low 
precision at retrieval. Gray horizontal lines indicate time points where there are significant correlations 
between gamma power at encoding and subsequent error (p < 0.05). The lateral temporal cortex 
showed a significant effect of error pre-stimulus onset. Colored shaded regions indicate s.e.m. 
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Fig. S2.9. Gamma power decreases over the course of the test session do not drive the 
error/precision effects. To assess the relationship between gamma power and trial order, trials were 
divided evenly into three conditions: Beginning, meaning trials from the first third of the test session, 
Middle, and End. The time course of gamma power in the CA1 (a) and dlPFC (b) is shown for trials at 
the Beginning, Middle, and End of the test session. Gray horizontal lines indicate time points where 
there are significant correlations between gamma power and trial order (p < 0.05, cluster corrected). 
Colored shaded regions indicate s.e.m. c, d, Mean gamma power over the retrieval window (.25 to 1 
second post-stimulus onset) for trials at the Beginning, Middle, and End of the test session in the CA1 
(c) and dlPFC (d). One-way ANOVAs with trial order (Beginning, Middle, and End) as fixed factors 
revealed a significant effect of order in the dlPFC (F (2, 603) = 11.2; p = 0.00002) and a marginal effect 
in the CA1 (F(2, 426) = 2.7; p = 0.07). Error bars indicate s.e.m. e, To assess the relationship between 
trial order and precision, the number of High precision, Low precision, and Guess trials was calculated 
for each condition (Beginning, Middle, and End), and a two-way ANOVA was performed with trial order 
(Beginning, Middle, and End), and precision (High, Low, and Guess) as fixed factors. This ANOVA 
resulted in p values > 0.05 (Trial order: F (2, 12) = 0.5, p = 0.6; Error: F(2,12) = 0.3, p = 0.7; Interaction: 
F(4, 24) = 0.2, p = 0.9), indicating that the number of High precision, Low precision, and Guess trials 
does not change over the course of the test session. 

 
 



109 

 

 
 
Fig. S2.10. Mean dlPFC to CA1 Granger prediction values for each condition. P > 0.05 as determined by 
permutation testing. 
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S3.1. Mixture model fit for all sessions. Histograms showing the distribution of error for all trials pooled 

across sessions and mixture model fit for each session. S: session, g: guess rate, sd: standard deviation 

of the von Mises distribution. 
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Table S3.2 Number of MTL contacts in each subregion across subjects. 

MTL 
subregion 

CA1 Sub DG/CA
3 

HC (mixed 
subfields) 

Sub/EC CA1/PH
C 

EC PRC PHC 

Number of 
contacts 

5 7 3 3 2 2 4 1 5 

Sub, subiculum; HC, hippocampus; EC, entorhinal; PRC, perirhinal cortex; PHC, 
parahippocampal cortex. 
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S3.3. Gamma power across task blocks at retrieval. Time course of gamma power across task blocks 

in all regions. Gray horizontal lines indicate time points where there were significant differences between 

conditions (ANOVA, p < 0.05, cluster-corrected). The start and end of the retrieval window are indicated 

by vertical dotted lines. Colored shaded regions indicate s.e.m. 
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S3.4. Gamma power across task blocks at feedback. Time course of gamma power across task blocks 

in all regions. Gray horizontal lines indicate time points where there were significant differences between 

conditions (ANOVA, p < 0.05, cluster-corrected). The start and end of the feedback window are indicated 

by vertical dotted lines. Colored shaded regions indicate s.e.m. 
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S3.5. Gamma power and error at retrieval. Time course of gamma power normalized within blocks for 

high, medium, and low error trials. Gray horizontal lines indicate time points where there were significant 

differences between conditions (ANOVA, p < 0.05, cluster-corrected). The start and end of the retrieval 

window are indicated by vertical dotted lines. Colored shaded regions indicate s.e.m. 
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S3.6. Gamma power and error at feedback. Time course of gamma power normalized within blocks for 

high, medium, and low error trials. Gray horizontal lines indicate time points where there were significant 

differences between conditions (ANOVA, p < 0.05, cluster-corrected). The start and end of the feedback 

window are indicated by vertical dotted lines. Colored shaded regions indicate s.e.m. 
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Fig. S3.7 Gamma power at encoding and subsequent error. Time course of gamma power at 

encoding for trials subsequently placed in the high, medium, and low error conditions. Gray horizontal 

lines indicate time points where there were significant differences between conditions (ANOVA, p < 0.05, 

cluster-corrected). The start and end of the encoding window (0-1.5s post-stimulus onset) are indicated 

by vertical dotted lines. Colored shaded regions indicate s.e.m. 
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Fig S3.8. MTL gamma power predicts error within blocks and learning across blocks. A-D, Time 

course of MTL and dlPFC gamma power for high error trials within blocks, meaning the top 1/3 trials with 

the highest error within each block, medium error trials, meaning the middle 1/3 trials, and low error trials 

at retrieval (A-B) and feedback (C-D). Gray horizontal lines indicate time points where there are significant 

differences between conditions (ANOVA, p < 0.05, cluster-corrected). Colored shaded regions indicate 

s.e.m. E-F, Partial correlations between MTL (E) and dlPFC (F) gamma power and current error, 

controlling for task block, for all trials at retrieval (blue) and at feedback (red), as well as gamma power at 

feedback and the subsequent change in error for high error trials from one task block to the next (green, 

controlling for task block and current error). 
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Fig. S3.9. Gamma power is unrelated to the distance object was moved. We examined the 

relationship between gamma power and the distance the object was moved by calculating the angular 

distance from the top of the screen (the starting point) to where the subjects placed each object. Trials 

were sorted by this distance and divided evenly into three conditions: Close, meaning objects that were 

placed closer to the top of the screen, Medium, meaning objects that were placed a medium distance 

from the starting point, and Far. The time course of gamma power is shown in the CA1 (a) and dlPFC (b) 

for Close, Medium, and Far Trials. No significant differences between distances were found during the 

retrieval or feedback windows (ANOVA, p > 0.05, cluster-corrected). Increased gamma power for Close 

trials was observed in the DLPFC following the retrieval window (ANOVA, p < 0.05, cluster-corrected). 
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Fig. S4.1. Theta power across blocks at retrieval. Time course of theta power for all regions for all task 

blocks. Gray horizontal lines indicate time points where there were significant differences between 

conditions (ANOVA, p < 0.05, cluster-corrected). The start and end of the retrieval window are indicated 

by vertical dotted lines. Colored shaded regions indicate s.e.m. 
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Fig. S4.2. Theta power across blocks at feedback. Time course of theta power for all regions for all 

training blocks. Gray horizontal lines indicate time points where there were significant differences 

between conditions (ANOVA, p < 0.05, cluster-corrected). The start and end of the feedback window are 

indicated by vertical dotted lines. Colored shaded regions indicate s.e.m. 

 

 

 

 




