UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Knowledge Transfer among Programming languages

Permalink
https://escholarship.org/uc/item/7h11h74(

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors

Wu, Quanfeng
Anderson, John R.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7h11h740
https://escholarship.org
http://www.cdlib.org/

Knowledge Transfer among Programming Languages

Quanfeng Wu & John R. Anderson
Department of Psychology, Carnegie Mellon University
Pittsburgh, PA 15213

wu@psy.cmu.edu, anderson @psy.cmu.edu

Abstract

Two experiments were conducted to investigate
knowledge transfer from learned programming languages
to learning new ones. The first experiment concerned
transfer from knowing LISP to learning PROLOG; the
results showed that subjects who knew LISP had
significant advantages over subjects who did not.
Moreover, among the subjects who knew LISP those who
knew LISP better seemed to learn PROLOG faster. The
second experiment studied transfer from knowing either
PASCAL or PROLOG to learning LISP; attention was
specifically focused on transfer of knowledge of writing
recursive and iterative programs in these languages. The
results indicated that PROLOG programmers, who were
usually more knowledgeable on recursion, were more
ready to learn the recursive part of the LISP language.
Some general theoretical discussion about knowledge
transfer among programming languages is also presented
in the paper.

Introduction

Two kinds of knowledge transfer among programming
languages are possible and can be separately studied. One is
problem solving transfer; it involves people who already
know both languages and transfer knowledge from solving
a certain problem in one language to that in the other.
Katz (1988) and Wu & Anderson (in preparation) have
reported some evidence of transfer of this type among
LISP, PROLOG, and PASCAL; these studies
demonstrated significant positive transfer among the three
languages. The other type is learning transfer; i.e., transfer
from knowing one or more programming languages to
learning a new one. The present paper concerns this second
type.

This article will report two experimental studies of
such transfer, independent from the tutoring work. The first
experiment investigated learning transfer from LISP to
PROLOG. The results showed significant positive transfer.
Moreover, the first experiment also revealed that subjects
who knew LISP better seemed to learn PROLOG faster.
The second experiment studied learning transfer from either
PASCAL or PROLOG to LISP. This experiment
reinforced the evidence of positive transfer among the three
languages. Also, in this experiment attention was
specifically focused on transfer of knowledge of writing
two types of repetition programs -- namely, recursive and
iterative programs -- among these languages. The results
indicated that PROLOG programmers, who were usually
more knowledgeable on recursion, were more ready to
master the recurive part of the LISP language.

376

It is our conviction that commonalities in knowledge
representation form the basis for transfer, That is, it is the
common knowledge shared by two domains that makes
transfer possible from one domain to the other. PASCAL,
LISP, and PROLOG are generally classified into three
different categories of programming languages -- namely,
imperative (or procedural), functional, and logical
languages. However, these three languages actually have a
great deal in common. These commonalities include
similar basic arithmetic operations and predicates, and
similar basic data types and operations on them. Some
comparative analyses about commonalities shared by the
three languages are given in Wu & Anderson (in
preparation). Following the analyses there, it is reasonable
to expect that learning transfer would occur among them,
just as problem solving transfer occurred among them.

Experiment 1: Transfer
from LISP to PROLOG

As this experiment was (o investigate learning transfer
from knowing LISP to learning PROLOG, the
experimental design was basically a between-subject type.
By comparing the learning performance of Know-LISP and
Not-Know-LISP subjects we can study whether and to
what extent LISP experience would facilitate learning
PROLOG.

Method

Subjects. 24 subjects participated in the experiment,
they were recruited from CMU (Carnegie Mellon
University), either graduates or undergraduates. Among
them, sixteen knew LISP beforehand and the rest did not
know LISP. From the information gathered from
questionnaire, subject’s averaged GRE/SAT math scores
were 708. For those who knew LISP, their averaged self-
ratings of LISP proficiency were 3.44 (along a scale from
0 to 5) and their self-ratings of PASCAL proficiency were
3.63 (all of them knew PASCAL). Among those who did
not know LISP only 6 knew PASCAL and their self-
rating of PASCAL proficiency were 2.67. The GRE/SAT
math scores for the Know-LISP condition and the Not-
Know-LISP condition were comparable,

Design. Table 1 shows the design of the
experiment. There were three groups of subjects with
eight in each group. The subjects who knew LISP were
divided into Group 1 and Group 2; the subjects who did not
know LISP constituted Group 3. There were four
experimental sessions, roughly about two hours for each.

mailto:wu@psy.cmu.edu
mailto:anderson@psy.cinu.edu

Group 1 and Group 2 were treated differently only in
Session 4: one group was shown LISP solutions only on
odd-number problems while the other was shown LISP
solutions only on even-number problems. The
manipulation of Know-LISP versus Not-Know-LISP was
aimed to get a global measure of how LISP knowledge
facilitates learning PROLOG; the manipulation of shown

versus not-shown LISP solutions was intended to get some
specific understanding of how LISP knowledge helps
PROLOG programming on some particular problems.
These two manipulations can be seen at the two different
levels of transfer between LISP and PROLOG -- that is,
leaning transfer and problem solving transfer.

Table 1. The design of Experiment for transfer from knowing LISP to learning PROLOG.

Know-LISP conditions

Not-Know-LISP condition

Group 1 Group 2 Group 3
Session 1 Questionnaire; Questionnaire;
Two LISP programming problems for pretesting Read introductory material to
LISP knowledge; Read introductory material PROLOG which is independent
which is based on LISP knowledge. from LISP knowledge.
Sesssion 2 Use the PROLOG tutoring system to go through The same as the
& Session 3 a series of problems covering basic concepts and knew-LISP conditions.
syntax in PROLOG.
Session 4 Use real PROLOG environment to do eight The same as the

problems, mostly dealing with list processing;

For even number
problems, shown LISP
solutions; for odd number
problems, not shown
LISP solutions.

For odd number problems,
shown LISP solutions;
for even number
problems, not shown
LISP solutions.

knew-LISP conditions;

No LISP solutions
shown at all.

Materials and Procedure. In Session 1, two
LISP programming problems were used as a pretest of
subject's LISP knowledge for Know-LISP subjects.
Subjects did LISP programming on the Andrew system, a
campus network at CMU; the particular language version
used was CommonLisp. Also in Session 1, all the
subjects were asked to read an introductory material to
PROLOG. For most of the subjects participating in the
experiment, that was their first time exposed to PROLOG
language; few of them had already learned some concepts
about PROLOG, but none had ever actually programmed
in PROLOG. Two different kinds of instructional materials
were used for Know-LISP subjects and Not-Know-LISP
subjects. For Know-LISP subjects, the material was
written by the authors based on a comparison of LISP and
PROLOG; for Not-Know-LISP subjects, the instructional
material was a chapter taken Mayer (1988) which assumes
no prerequisite knowledge in LISP.

In Session 2 & 3, subjects used a PROLOG tutoring
system developed here in the Psychology Department at
CMU 1o go through a series of problems with the purpose
of reinforcing their knowledge about the basic concepts and
syntax of PROLOG they had studied in Session 1. In
Session 4, subjects again used the Andrew system to solve
eight problems in a real PROLOG environment; the
particular language version used was CPROLOG. Session
4 was particularly intended as a post-test of subject’s

377

PROLOG knowledge learned in the first three sessions.
The problems were mostly dealing with list processing as
that is a prominent feature of both LISP and PROLOG.
These eight problems were: Membership, Append, Attach,
Reverse, Powerset, Binary-Code, Flatten, and Skeleton;
structurally, the odd-number problems are isomorphic to
the following-up even-number problems (e.g., Powerset to
Binary-Code).!

When subjects were using real LISP or PROLOG
programming environments on the Andrew system, they
had two windows -- one was EMACS editor window to
edit the program and the other was used to debug and test
the program. Each time when they made revisions to the
program they save the program into different files so that
the experimenter could keep track the significant errors
made by subjects in the process.

Results and Discussion

Here two measures were used for the comparison made
between the two groups of Know-LISP subjects: the total
problem solving time and the algorithmic similarity
between the shown LISP solutions and the first drafts of
subject’s PROLOG programs.

1 The problems and instructuctional materials used in the
experiment can be obtained by writing (o the authors.

Figure | shows the mean total problem solving
times subjects spent on the last six problems in Session 4.
Note that there are some dramatic contrasts between these
two groups for odd-number problems, but less dramatic
contrasts for even-number problems; this is because the
even-number problems are isomorphic to the just-previous
odd-number problems. Thus in this experiment, we not
only got the results of transfer from studying LISP
solution to PROLOG programming, we also got the
manifestation of transfer between isomorphic problems
(However, since this transfer is not the primary goal of the
present study, it is not investigated any further here). To
test the statistical significance of the data, a three-way 2 X
2 X 3 ANOVA (Shown/Not-shown LISP solutions,
Odd/Even problems, 3 pairs of problems) was performed.
The results showed significant main effects due to whether
or not LISP solutions were shown: F(1, 7) = 484, p <
0.001 . Averaging the data over the two groups and the six
problems, there was 42% saving of the total problem
solving time for shown LISP solutions than not shown
LISP solutions.

—#— Group 1: shown odd problems
—8— Group 2: shown even problems

g

L
= oF

&

(in minutes)

w
=t

2

Mean Problem Solving Time

Problem No.
Figure 1. The mean problem solving time
of two groups of know-LISP subjects.

S

With respect to the algorithmic similarity between
LISP and PROLOG programs, we first broke the shown
LISP programs into basic algorithmic components and
then scored how many of these basic components appeared
in the first drafts of the PROLOG programs written by
subjects. By such a measure we can determine how many
algorithmic components subjects imported from the shown
LISP solutions to PROLOG programming. The data for
this measure are presented in Figure 2. The transfer pattern
of the results is the same as the patterns appearing in the
first measure; this again demonstrated significant transfer
from the shown LISP solutions to PROLOG
programming. Again, a three-way ANOV A was performed
on the data; the test results once more showed significant
main effect due to whether or not LISP solutions were
shown: F(1, 7) = 47.53, p < 0.001.

The above two measures largely contribute to our
understanding of problem solving transfer from particular

378

== Group 1: shown odd problems
E

r 2: shown even lems

1.0

0.9 1
0.8 7
0.7
0.6 1
0.5 1
0.4

Percentage of similarity

1 2 3

Problem No.

Figure 2. Algorithmic similarities between
shown LISP solutions and first drafts of

PROLOG programs by Know-LISP subjects

= 5 6

LISP programs to PROLOG programming. To see
the effect of learning transfer of LISP knowledge upon
PROLOG learning, we used the problem solving time for
two comparisons: one between Know-LISP subjects versus
Not-Know-LISP subjects, and the other between those who
had stronger LISP background versus those who had
weaker LISP background among Know-LISP subjects.
However, the Not-Know-LISP subjects only finished on
average 3.5 problems in this session. Thus, here we only
used the problem solving time for the first three problems.
Table 2 show the data for these two comparisons; as only
six Not-Know-LISP subjects finished three or more
problems, the data presented for this condition were only
averaged over them. For Know-LISP subjects, the two
classes of Strong-LISP and Weak-LISP were determined by
the mean problem solving time spent by them on the two
LISP pretest problems. As seen from the data, Know-
LISP subjects spent less time on solving all the three
problems; that is, they were leamning faster than Not-
Know-LISP subjects. The results also indicated that
stronger LISP background helped subjects to learn
PROLOG faster. Overall, these results tend to indicate
that LISP knowledge indeed facilitates PROLOG learning.
However, as the questionnaire information indicated, those
who were good in LISP were usually also good in
PASCAL or other programming languages; therefore, in
general, we may say it is the knowledge of previously
learned languages which helps learning a new
programming language.

Although there were some syntactic interferences from
LISP knowledge to PROLOG programming such as
confusing list conventions in the two languages, these
interferences seemed to be insignificant and could be
avoided by paying more attention in both programming
and debugging, Stylistically, LISP knowledge also seemed
to make subjects come up with PROLOG solutions which
were more procedural that they might have otherwise, and
led to other confusions such as the notions of a predicate in

PROLOG and a function in LISP. However, these negative
effects could be easily overcome by conscious practice. To
some extent, since our introduction to PROLOG based on

LISP has emphasized the differences between the two
languages, subjects were prepared to avoid difficulties.

Table 2. The comparison between Know-LISP and Not-Know-LISP subjects and the
comparison between Strong-LISP and Weak-LISP subjects.

GRE/SAT Lisp

Time for

Time for Time for

Mean
Math scores Experience problem 1 Problem 2 Problem 3
Strong-LISP 714 41.0 16.3 19.5 30.5 22.1
Know-LISP weak-LISP 740 79.8 35.7 34.5 45.5 38.6
Not-Know-LISP 710 53.3 36.8 55.2 48.4

Experiment 2: Transfer from
PASCAL/PROLOG to LISP

The purpose of this second experiment was to investigate
learning transfer from either PASCAL or PROLOG to
LISP. Here we focused our attention specifically on
transfer of knowledge of writing repetition programs in
these languages. In each of these languages there are two
ways of implementing repetition, i.e., iteration and
recursion. However, in PASCAL iteration is usually
stressed while in PROLOG recursion is usually
emphasized.? We would expect that PASCAL
programmers might be more ready to transfer knowledge of
iteration to LISP programming while PROLOG
programmers might be more ready to transfer knowledge of
recursion o LISP programming. The experimental design
used here was specifically aimed at testing this hypothesis.

Methods

Subjects. 9 subjects participated in this experiment.
They were all from CMU; among them 2 were
undergraduates and 7 were graduates. Eight of them knew
PASCAL before taking part in the experiment, while only
three knew PROLOG beforehand (i.e., two knew both
PASCAL and PROLOG). From the information collected
from questionnaire, subject’s averaged GRE/SAT math
scores were 734. For those who knew PROLOG, their
averaged self-ratings of PROLOG skill were 3.29; for
those who knew PASCAL, their averaged self-ratings of
PASCAL skill were 3.33; besides, all but one subject
knew C, their averaged self-ratings of C skill were 3.00.
The GRE/SAT math scores of the Know-PASCAL
condition and that of the Know-PROLOG condition were
comparable.

Design. The experimental design is shown in Table
3. Basically, six subjects who knew PASCAL but did not
know PROLOG were used as the Know-PASCAL

2 The PROLOG interpreter employs a back-tracking
mechanism which inberently implies recursive programming
is natural for most of problems which involve repetition.

379

condition; while the other three, all of whom knew
PROLOG but two of them also knew PASCAL, consisted
the Know-PROLOG condition (the small number of
subjects in this condition was the result of our difficulty of
recruiting PROLOG programmers as subjects from the
CMU community). There were three experimental
sessions, each approximately one and half hours long. The
manipulation of Know-PASCAL versus Know-PROLOG,
together with the manipulation of presenting recursive vs.
iterative problems in Session 2 & 3, were aimed to test the
hypothesis mentioned above.

Materials. In Session 1, three problems were used
to pretest subject’s knowledge of either PASCAL or
PROLOG programming; these problems are Summorial,
Read-month, and Fibonacci. Also in Session 1, subjects
were asked to read an introduction to LISP based on either
PASCAL or PROLOG according to their conditions. The
materials covered in these introductions included basic
concepts and syntax, arithmetic expressions, flow-of-
control, and some intermediate data types in LISP.
Subjects normally spent about one hour to cover the major
portion of the material in Session, and spent about twenty
minutes in Session 2 & 3 to cover the rest. There were 12
problems used in Session 2 & 3 for LISP programming,
These problems were: Simple-Expression, Circle-Area,
Line-Slope, Add-Fraction, Least-Common-Multiplier, (the
next four on recursion) Summorial, Integer-Power, Add-
Together, Ackerman, (the next three concerning iteration)
Summorial, Add-Together, Exponential 3

Procedure. As in Experiment 1, subjects were asked
to fill out the questionnaire form. For programming in the
three languages, almost the same procedure as used in
Session 4 of Experiment 1 was followed in all the sessions
of this experiment. However, here instead of using the
standard EMACS editor we adopted a specifically designed
editor based on EMACS; this editor was used (o time-
stamp each step of interaction subjects made with the
computer. Each time when the subject began to edit or
modify a program he was requested to turn on the timing
editor; and each time when he quit the editing window to

3 Again, the problems and instructional materials used in this
experiments can be obtained by writing to the authors.

20 (o the debugging window he was asked to turn off the
timing editor. This editor enabled uvs to collect some fine-

grained measures of the time course of programming.

Table 3. The design of Experiment 2 on transfer from PASCAL/PROLOG to LISP.

Know-PASCAL condition

Know-PROLOG condition

Session 1 Questionnaire; Questionnaire;
Three PASCAL problems for pretesting Three PROLOG problems for pretesting
PASCAL knowledge; PROLOG knowledge;
Read an introduction to LISP which is based Read an introduction to LISP which is based
on PASCAL knowledge. on PROLOG knowledge.

Session 2 Five LISP problems for basic syntax and The same as the
simple arithmetic expressions; know-PASCAL conditions.
Two LISP problem for recursion.

Session 3 Two LISP problem for recursion; The same as the

Three LISP problems for iteration.

know-PASCAL conditions.

Results and Discussion

For the time measure, we dissected the problem solving
time for each problem into programming (coding) time and
debugging time; this could be easily done by counting the
tume spent either in the editing window or in the
debugging window. Taking the method from Singley &
Anderson (1990) and Katz (1988), we further decomposed
the programming time into thinking time (planning time)
and keystroking time (execution time). The keystroking
time was defined as follows:

Keystroking time = 2 overall keystrokes T
Where T is either the interval between two consecutive
keystrokes if that is less than or equal to 2 seconds, or just
2 seconds if the interval is greater than 2 seconds. The
thinking time is simply the rest of the programming time;
that is,

Thinking time=Programming time- Keystroking time.
We could further decompose the thinking, keystroking and
debugging times into first-draft (initial-draft) time and rest-
draft (subsequent-draft) time; this could be done by
considering the transitions made between the two windows.

In Wu & Anderson (in preparation) we found that
time-savings in problem-solving transfer were largely
localized in the first-draft coding and debugging. This
finding was verified also to be true for our present situation
of learning transfer. So in this article we will limit our
report of data only to the first-draft time; however, the data
pattern also applies to the total problem solving time. 4

Table 4 presents the data for the first-draft iume for a
comparison between Know-PASCAL and Know-PROLOG
subjects. A two-way ANOVA (recursion/iteration X
PASCAL/PROLOG) was performed on the data of
PASCAL/PROLOG programming time. The effect due to
recursion/iteration was insignificant: F(1, 8) = 0.51, p >
0.1; the effect due to PASCAL/PROLOG was also
insignificant: F(1, 8) = 0.09, p > 0.1; however, the

4 A more detailed report can be obtained by writing to the
authors.

380

interaction between them was significant: F(1, 8) = 8.04, p
< 0.05. Another similar two-way ANOV A was performed
on the data of LISP programming time for both PASCAL
and PROLOG knowers. The effect due to
recursion/iteration was significant;: F(1, 32) = 6.72, p <
0.05; the effect due to PASCAL/PROLOG was also
significant: F(1, 32) = 13.08, p < 0.05; however, now the
interaction between them was insignificant: F(1, 32) =
0.21, p > 0.1. Also from the table we see that the time
ratio between these two conditions on recursion problems
remained almost the same from PASCAL/PROLOG to
LISP. Know-PROLOG subjects were better on recursion
that Know-PASCAL subjects in the initial test. This
advantage was maintained in recursive programming in
LISP. That is, PROLOG programmers indeed transferred
what they learned about recursion in PROLOG to LISP
programming. On the other hand, our Know-PROLOG
subjects also did better on iteration in LISP even though
they had not in the original test. Concerning iteration, it
seems that no general conclusion could be reached about
transfer between the three languages from this experiment.

General Discussion
and Conclusion

In explaining knowledge transfer, the theory of identical
elements had been proposed very early in the century (
Thorndike & Woodworth, 1901). Basically, the theory
postulates that it is the common elements shared by two
domains of knowledge that enables the knowledge acquired
in one domain to be transferred to the other. As there are
indeed a great many commonalities between LISP and
PROLOG, it is not surprising that in the first experiment
we witnessed substantial transfer from LISP knowledge to
learning PROLOG. With respect to recursion, as
PROLOG and LISP have more in common than PASCAL
and LISP bave, so in the second experiment we
demonstrated that PROLOG programmers had relative
advantage over PASCAL programmers in learning the
recursive part of LISP.

Table 4. Data comparison between the Know-PASCAL and the Know-PROLOG
conditions in Experiment 2 (time in seconds).

Total time on Total time on Total time on

Total time onTime on one Tune on one
3 PASCAL/ PASCAL/ PASCAL / 12 LISP 3 iteration 4 recursion
PROLOG PROLOG PROLOG problems LISP LISP
problems iteration recursion problems problems
problem problem
Knew-PASCAL 2173 547 917 8051 2780 2628
Knew-PROLOG 2152 922 352 3778 1313 980
PROLOG/PASCAL 99% 168% 38% 47% 47% 36%

In Wu & Anderson (in preparation), we reported three
experiments demonstrating the existence of problem
solving transfer among PASCAL, LISP, and PROLOG.
To account for the results, there we proposed that there are
basically three levels of transfer across programming in
different languages -- namely, the syntactic, algorithmic,
and problem levels. There we found that at the syntactical
level there were minor interferences (a type of negative
transfer) among programming in different languages; at the
algorithmic level, substantial positive transfer was
manifested as on most occasions subjects used the same
algorithm for the same problem in different languages and
a great deal of time-saving was exhibited in
reprogramming. Besides these two levels, there we also
found that sometimes, although different algorithms were
used for the same problem in different language, there was
still positive transfer manifested (as time-saving); this
transfer must have resulted from problem understanding and
we postulated it as transfer at the problem level.

In the present investigation we have demonstrated
transfer both for problem solving and for learning. Here
again we showed that syntactic transfer is largely negative
but only plays a minor role in learning and problem
solving. We also showed that algorithmic transfer
constitutes the major portion of transfer, as manifested by
saving the total problem solving time, reducing the
number of program drafts needed for revising the program,
and importing algorithmic components from LISP
solutions to PROLOG programming. However, in both
experiments we did not see that different algorithms were
used for the same problem in different languages, thus
transfer at the problem level was not demonstrated in this
study.

On the other hand, as this study was focused on
learning transfer, we also witnessed a higher level transfer
than the syntactic and algorithmic level transfer; and this
transfer is also different from the transfer at problem level.
This level may be called learning transfer -- the transfer of
the most general programming knowledge which one does
not need to learn again and again when learning new
programming languages. One example of such transfer
would be the notion of recursion; after learning how to
implement repetition in a recursive way in one language
one can easily transfer that knowledge to learning a new

381

language provided that the new language also easily
facilitates recursion,

W would conclude from the present study:

1. There was significant transfer from learned LISP
knowledge to learning PROLOG; that is, LISP knowledge
helped to learn PROLOG faster. Moreover, the more LISP
knowledge the more facilitation to learning PROLOG.

2. Although syntactically and stylistically, there were
some interferences from LISP to PROLOG programming,
these negative effects were greatly overwhelmed by
positive transfer at other higher levels. At the algorithmic
level, transfer was manifested as substantial time saving,
fewer revisions of programs, and importing algorithmic
components from shown LISP solutions to PROLOG
programming.

3. As PROLOG programmers usually would be more
knowledgeable than PASCAL programmers on recursive
programming, PROLOG programmers seemed to have
relative advantages over PASCAL programmers in learning
the recursive part of LISP programming.

4. Aside from the three levels of transfer we proposed
for problem solving transfer among programming
languages -- the syntactic, algorithmic, and problem levels,
one more level of transfer was proposed there -- the
learning transfer. The knowledge responsible for this
transfer is the most general programming knowledge across
several languages and across a large number of problems,
such as the knowledge about recursive programming.

References
Anderson, J. R. 1983. The Architecture of Cognition.
Cambridge, Mass: Harvard University Press.
Katz, I. R. 1988. Transfer of Knowledge in Programming.
Ph.D. Diss., Dept. of Psychology, Camnegie Mellon Univ.
Mayer, H. G. 1988. Programming Languages. New York:
MacMillan Publishing Company.
Singley, M.K.; Anderson, J. R. 1990. The Transfer of
Cognitive Skill. Cambridge, Mass: Harvard University
Press.
Thorndike, E. L.; Woodworth, R. S. 1901. The influence
of improvement in one mental function upon the efficiency
of the other function. Psychological Review, Vol. 8.
Wu, Q.; Anderson, J. R. in preparation. Problem solving
transfer among programming languages (submitted to
Human-Computer Interaction).

	cogsci_1991_376-381

