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Systems biology of allosteric GTPase mutations 

Christopher John Pascal Mathy 

 

Abstract 

Living systems operate at many scales, from biochemical reactions of individual atoms and 

molecules to complex behaviors of cells and organisms, and even evolutionary adaptation of entire 

ecosystems. Understanding the relationships between these processes, namely how changes at one 

scale propagate to other scales, is a fundamental pursuit of biology. One such complex propagation 

is called a genotype-phenotype map, defined here as how a protein mutation impacts its function 

in the context of its molecular interaction network to ultimately alter cellular fitness. Our generally 

poor understanding of this propagation limits our prediction of the effects of disease mutations and 

our ability to rationally engineer mutations for precisely tuning protein function in the dynamic 

cellular environment. In this dissertation, I present two studies of the small GTPase switch Gsp1, 

the S. cerevisiae homolog of human Ran, which uncover novel allosteric mechanisms governing 

how the effects of point mutations propagate from the molecular to the cellular scale. 

In Chapter 1, I outline the systems biology approach to studying molecular interaction 

networks, introduce the components of the network of Ran/Gsp1, and motivate the use of 

mutagenesis in the study of protein structure and cellular function. In Chapter 2, I describe the 

genetic and physical interaction profiling of point mutations in Gsp1 partner interfaces, which led 

to the discovery of novel allosteric sites coupled to the GTPase switch, as confirmed by enzyme 

kinetics and 31P nuclear magnetic resonance. Analysis of the genetic interaction profiles showed 

that distinct cellular processes were sensitive to changes in either the rates of GTPase hydrolysis 
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or nucleotide exchange, prompting a model for a single GTPase selectively and independently 

controlling different downstream pathways by regulated tuning of its switching. In Chapter 3, I 

describe a mutational scanning study which quantitatively measured the fitness effect of all 

possible point mutations in Gsp1. The scan revealed an unexpected widespread toxic/gain-of-

function response, in which mutations were more deleterious than loss of gene function by 

truncation of Gsp1 via internal STOP codon. Sites enriched for toxic/gain-of-function mutations 

included a novel allosteric cluster of residues which stabilize the GDP-bound state of Gsp1, 

confirmed by enzyme kinetics. The study defined a functional map of allosteric regulatory sites in 

Gsp1 which generalizes to other GTPases and confirmed that perturbation of the switch 

mechanism is the dominant factor in the effect Gsp1 mutations exert at the cellular level. Finally, 

in Chapter 4, I discuss the implications of these findings for future studies of molecular switches 

and their interaction networks, as well as for the use of high-throughput genome-wide 

measurements to guide the engineering of protein function. 
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Chapter 1. Introduction 

Systems biology: uncovering the mechanisms governing molecular interaction 

networks 

Life depends on the integrated and coordinated activity of biochemical processes performed 

by many distinct molecular species sequestered together in cells, such as proteins, nucleic acids, 

lipids, sugars, organic small molecules, and inorganic ions. This intricate dance of molecules can 

be abstracted as graphs in which each node represents a species and each edge represents some 

form of molecular interaction. So-called molecular interaction networks are widely used to 

represent metabolic or signaling pathways, protein-protein interaction networks, and gene 

regulatory circuits. The fields of systems biology or network biology encompass the collection and 

integration of experimental data on molecular interaction networks followed by the use of 

computational tools to model, inspect, and predict systems level behaviors. By providing 

frameworks for understanding and predicting the complex processes of life, systems biology can 

advance biological discovery, inform therapeutic interventions, and guide the bioengineering of 

new living systems. 

Models of interaction networks rely on molecular mechanisms, or the rules for how various 

interactions change the quantity, identity, or activity of the molecules involved. Biologists 

uncover, test, and update molecular mechanisms through the iterative process of experimentation 

and model building, which includes both conceptual and quantitative models, the latter of which 

can be mathematical, statistical, or both. By focusing on the emergent properties of molecular 

interaction networks, systems biologists seek to uncover new or expand existing mechanisms to 

capture natural processes more accurately. 
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An example can illustrate what molecular mechanisms are, and how systems biologists 

approach the task of defining or refining them. One of the most well-known and foundational 

molecular mechanisms is the central dogma of molecular biology, which specifies the allowed 

(and disallowed) paths of residue-by-residue transfer of genetic information in biological systems, 

with the most common being gene expression through transcription followed by translation (DNA 

→ RNA → Protein).1 Recent advances in molecular biology techniques have uncovered more 

nuanced details of gene expression, such as the phenomenon of discontinuous temporal regimes 

of transcriptional activity known as bursting.2 While bursting can be recapitulated in vitro using a 

small number of molecular parts,3 single molecule RNA probes and single-cell RNA sequencing 

have shown its in vivo relevance is more complex and widespread than previously appreciated, 

with some studies going so far as to suggest that burst frequency controlled by enhancers could be 

the major factor leading to transcriptional changes during development.4,5 The studies that 

advanced the bursting field followed a “systems” approach: rigorous, quantitative experimental 

measurements of molecular species in their full biological context produced datasets for 

parameterizing, evaluating, and discriminating between many possible models, with the ultimate 

goal of expanding on how a powerful molecular mechanism (the central dogma) truly operates in 

a complex biological process (gene expression). 

Generally, systems biologists posit that iterative integration of systems level experimentation 

with computational modeling can lead to more complete and actionable understanding of complex 

biology,6 with the model providing insight that is “greater than the sum of its parts”. This approach 

contrasts with reductionism, which asserts that an understanding of each biochemical component 

individually is sufficient to describe the behavior of an entire biological system.7 This does not 

mean reductionist models cannot explain much of biology; rather, systems level models are needed 
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to extend reductionist models so as to explain the rest of biology. And just as the advent of 

molecular biology revealed that much of biology was encoded in the sequence and structure of 

biomolecules, the high-throughput genome-wide technologies of the last two decades have shown 

that an additional level of complexity emerges from the structure and dynamics of molecular 

interaction networks. Thus, a systems biology approach to understanding a biochemical 

phenomenon truly relies on both molecular-scale and systems-scale investigation. 

A non-exhaustive list of other important (but in many cases, incompletely understood) 

mechanisms operating at the molecular and systems scales are shown in Table 1.1 and Table 1.2. 

Many of the molecular mechanisms have been observed to act in concert, even within single 

molecular interaction events, to produce the emergent systems level behaviors of cellular 

pathways. For instance, allosteric stabilization of a functional conformation is essential to the 

cooperativity observed in the classic example of hemoglobin.8 Likewise, systems level phenomena 

often occur together: feedback and ultrasensitivity can drive oscillations and bistability,9 and some 

(but not all) bistable systems are known to exhibit hysteresis.10,11 The specific local connectivity 

of groups of molecular interactions, known as a “network motif,”12 is also key in defining which 

systems level properties are accessible to a network.10 Much work has been done outlining modular 

motifs that can operate predictably in cells,13–16 such as circuits driven by chimeric antigen 

receptors (CARs) functionalized on T cells to respond to sets of signals unique to tumor 

microenvironments. More generally, defining the relationships between these and other molecular 

and systems level mechanisms is necessary for better understanding cellular processes in both 

healthy and disease states, for predicting how therapeutic interventions will act, and for guiding 

the engineering of new cellular behaviors. 
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The studies in this thesis aim to identify the molecular and systems level mechanisms at play 

in the essential and conserved eukaryotic interaction network of the small GTPase switch 

Ran/Gsp1, introduced in detail in the next section. Ran/Gsp1 was chosen for its notable systems 

level property of multifunctionality, as it regulates several distinct processes. The studies 

ultimately present evidence for differential sensing of the kinetics of switching by distinct 

processes as the systems level mechanism underlying Ran/Gsp1 multifunctionality, and for 

significant and underappreciated allostery in the GTPase fold as an essential molecular feature 

allowing for interaction partners and posttranslational modifications to regulate the switch. 

The molecular interaction network of the small GTPase Ran/Gsp1, a model protein 

switch 

Gsp1 (the S. cerevisiae homolog of human Ran) is a member of the Ras-superfamily of small 

GTPases,17 themselves a part of a larger class of proteins known as switches. Protein switches 

undergo regulated cycling between two states, one of which is the principally active on-state. In 

GTPases, the on- and off-states correspond to binding to GTP or GDP, respectively, with the 

former being recognized preferentially by downstream effectors. Activation occurs through 

exchange of a bound GDP for a GTP from solution while deactivation occurs via hydrolysis of a 

bound GTP to GDP. These rates of switching are intrinsically slow but accelerated via interaction 

with opposing regulators, the GTPase activating proteins (GAPs) and the guanine nucleotide 

exchange factors (GEFs). While , while other GTPases have been observed to interact with several 

distinct GAPs and GEFs, Ran/Gsp1 is known to have only one GAP (human RanGAP / yeast 

Rna1) and one GEF (human RCC1 / yeast Srm1). The key structural features of small GTPases 

are a set of evolutionarily conserved regions that confer specificity for binding guanine 
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nucleotides, as well as the well-known Switch I and Switch II loops which undergo large 

conformational changes depending on the nucleotide bound and resulting in the state-dependent 

differences in interaction affinities with partners.18 In addition, Ran/Gsp1 has a unique C-terminal 

extension which stabilizes the GDP-bound state and facilitates binding of the key partner 

RanBP1/Yrb1, in the GTP-bound state. 

Due to their ability to activate or inhibit signal transduction in a regulated fashion, GTPases 

and other switch proteins are key components of larger signaling pathways that need to selectively 

turn on or off. 19 This centrality means switches are often misregulated in disease,20 and also makes 

them attractive targets for engineering responsive behavior and external control into both existing 

and novel cellular pathways.21 Our understanding of protein switches is extensive enough that 

simpler types of protein switches, such as sensors of a single input signal, can be readily designed 

de novo.22,23 Additionally, design rules have been mapped for some naturally-occurring protein 

switches with more complex molecular or systems level functions, such as those which rely on 

allostery between distinct protein domains24 or those which show ultrasensitivity.25 

However, Ran/Gsp1 has a notable characteristic that differentiates it from many other switches 

and for which no design rules are readily available: it is multifunctional, both at the molecular 

level in that it binds many partners from several fold families (also known as multi-specificity),26 

and at the systems level in that it regulates many distinct cellular processes. These processes 

include nucleocytoplasmic transport of both proteins and RNA,27,28 cell cycle progression,29,30 

spindle assembly,31,32 nuclear envelope assembly,33 chromatin structure at the telomeres,34,35 and 

even ciliogenesis in humans.36 Ran/Gsp1 regulation of these pathways is mediated by interactions 

with an extensive network of effector proteins, many of which have been characterized through 

high-resolution crystal structures. These interaction partners include: the karyopherin transporter 



 
 
 

6 

family;37,38 the essential partner NTF2, which binds the GDP-bound form of Ran/Gsp1 to shuttle 

it into the nucleus; a class of proteins containing the Ran-binding domain (RanBD, the monomeric 

version of which is known as Yrb1 in yeast and RanBP1 in humans);39,40 nucleoporins containing 

RanBDs as well as zinc finger domains that bind Ran/Gsp1;41 and many other proteins from 

various fold families and cellular pathways such as the exosome subunit Rrp44/Dis3,42,43 the 

GID/CLTH complex components RanBP9 and RanBP10,44–46 and the conserved regulator 

RanGRF/Mog1 which stimulates nucleotide release of Ran/Gsp1 and sequesters the switch in a 

stable nucleotide-free complex,47 a process thought to be important for removing active Ran/Gsp1 

from the GTPase cycle48 and/or enabling faster nucleotide exchange in concert with 

RanBP1/Yrb1.49,50 These many interactions place Ran/Gsp1 as the primary regulator at the center 

of a dense molecular interaction network. Ran has no homologs in humans, and although S. 

cerevisiae Gsp1 has one highly similar (>95% amino acid identity) paralog named Gsp2 arising 

from an ancient whole genome duplication,51,52 Gsp2 has been observed at 10-fold lower 

expression levels than Gsp1, and unlike Gsp1 exhibits carbon source dependency and is not 

required for cell viability.51 

The central role of Ran/Gsp1 in key cellular processes, its high degree of connectivity in a 

large interaction network, and its relative lack of functional homologs evoke a puzzle: how can a 

single protein simultaneously but independently regulate so many unrelated processes? That is, 

how can Ran/Gsp1 dynamically alter the activity of one pathway (e.g., nuclear export) in response 

to a stimulus without also transducing the same change to all other pathways (e.g., mitotic 

progression). The studies in Chapters 2 and 3 seek to uncover the mechanisms behind this 

multifunctionality by perturbing S. cerevisiae Gsp1 with point mutations and examining the 

resulting changes in structure, biochemical function, network interactions, and cellular fitness. 
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Point mutations as high-resolution, targeted perturbations of gene function 

The use of mutations to explore gene function is a foundational idea in genetics. Mutations 

introduce variations in genes, and gene function can be inferred by examining the resulting changes 

to measurable phenotypes. While the human RAN allele was identified through a cDNA library 

screen for homology to Ras proteins,53 the S. cerevisiae GSP1 and GSP2 alleles were identified 

using a random mutagenesis approach coupled to a screen for genetic interactions with the GEF 

Srm1, identifying mutations which suppressed a temperature-sensitive allele.51 

As opposed to discovery of gene function using random mutations and targeted screens, 

molecular biology techniques have also enabled precise engineering of point mutations to explore 

the contribution of individual residues to the structure, stability, and biochemical function of 

proteins.54,55 Scaling up of mutagenesis to multiple sites through experimental or computational 

alanine scanning allowed for mapping the regions of proteins contributing to a function and 

identifying “hotspot” residues whose relative contribution to function is greatest.56–58 Alanine was 

chosen for its relatively neutral sidechain (a single methyl group), allowing for mutations to probe 

the role of the original sidechain functional group without introducing additional effects. In recent 

years, approaches collectively known as deep mutational scanning (DMS) have expanded on this 

scaled up approach to measure the effects that all possible single amino acid substitutions at each 

site have on a molecular function or cellular fitness.59–61 The study presented in Chapter 3 uses 

DMS to construct an exhaustive functional map for Gsp1. 

In parallel to improvements in mutagenesis techniques, genome-wide techniques were 

developed in functional genetics to better define a given gene’s function in the full cellular context. 

In yeast, a genetic interaction profiling method known as synthetic genetic arrays (SGA) was 

developed to measure functional relationships between genes in a medium-throughput, array-
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based format.62 Double mutant strains are generated by crossing a series of mutants (query strains) 

against a genome-wide set of single gene deletions (array or library strains), and growth rates are 

measured for the double mutant and single mutant strains. A quantitative genetic interaction score 

is computed as the deviation of the observed double mutant growth rate from its expected rate 

when assuming the two genes do not have a functional relationship, calculated as the product of 

each single mutant growth rate. If the double mutant grows slower than expected, the genetic 

interaction is called negative, synthetic sick, or synergistic, and suggests that the two genes in 

question buffer one another and/or participate in complementary ways in the same biological 

process. A double mutant that grows less poorly than expected is called positive, alleviating, or 

antagonistic, and suggests that the two genes function directly together (potentially even in the 

same complex), since deletion of one alters the shared cellular pathway enough that a second 

deletion is less consequential.63 

When many genetic interactions are measured for the same query strain, a genetic interaction 

profile can be constructed, serving as a vector representation of the phenotype of the query 

mutation in a large number of genetic backgrounds. Correlation between profiles of two genes is 

highly indicative of related function. Early technical limitations in the number of gene pairs that 

could be screened by SGA prompted the development of a related approach termed epistatic 

miniarray profiles (E-MAPs). The developers of E-MAPs reasoned that since genetic interactions 

were rare, it would be useful to select query genes within a smaller set of known colocalized or 

coregulated genes, so that more high confidence functional interactions could be included in 

profiles, even while screening a smaller fraction of all possible gene pairs.64 Both SGA and E-

MAP have been used widely by yeast genetics labs throughout the world, and genetic interaction 

profiling has proven powerful for many applications such as the genome-wide mapping of 
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functional relationships between genes65 or the prediction and even structure determination of 

genes physically interacting in complexes.66,67 

While genetic interaction profiles based on gene deletions are powerful, they cannot be used 

to examine the cellular roles of individual functions in multifunctional proteins like Ran/Gsp1, 

since the deletion of a gene removes all its functions at once. For this reason, a variation on the E-

MAP approach using point mutations as queries, termed pE-MAP, was developed and tested on 

RNA polymerase II (RNAPII).68 Analysis of the pE-MAP enabled functional assignment of 

individual RNAPII subdomains, and grouped point mutations based on not only their biophysical 

properties but also their cellular effects, as indicated by high correlations with genetic profiles of 

multiple protein complex members and verified experimentally. In this way, the pE-MAP 

approach combines the structural resolution afforded by targeted point mutations with the rich 

cellular phenotypes of genetic interaction profiles to enable a functional analysis of proteins that 

spans the molecular and systems scales. The study presented in Chapter 2 uses the pE-MAP 

approach in concert with physical interaction profiling to construct a genotype-phenotype map for 

several point mutations in Gsp1. 

Mutagenesis studies of proteins in their cellular context are not only useful in predicting the 

effects of other mutations, but they can also predict the action of other types of perturbations, such 

as partner binding, posttranslational modifications (PTMs), or small molecule binding. For 

example, mutations are considered mimetic if the mutation results in a new sidechain that is 

chemically similar to a posttranslationally modified sidechain of the original amino acid. Serine to 

aspartate mutations are considered phosphomimetic since the carboxyl group of aspartate mimics 

phospho-serine,69,70 and lysine to glutamine mutations are considered acetyl-mimetic since the 

amide group of glutamine somewhat mimics acetylated lysine.71,72 In this way, study of mutations 
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that perturb proteins in the same way as a PTM can inform on the molecular and cellular impact 

of that PTM. 

This concept can be extended to mutations at protein interaction sites and small molecule 

binding sites, as the rearrangement of atoms induced by the mutation can be similar to the 

rearrangement induced by binding. More formally, residues at any two sites in a protein can be 

identified as thermodynamically coupled if the change in energy of a process due to mutation at 

one site changes in the background of  a mutation at the other site, 73 and this coupling can be 

exploited by binding interactions or PTMs. This physical similarity between the effects of 

mutations and other types of perturbations to proteins is core to the value of mutations in 

understanding cellular regulation of protein function in cells. Cells do not use mutations to 

reversibly regulate protein function, but instead use PTMs or the binding of other proteins or small 

molecules. Furthermore, while regulation at known functional sites (such as the active site of an 

enzyme) can be straightforward to predict from structural information alone, regulation that occurs 

at unknown allosteric sites is harder to predict. Mutagenesis can serve as a reliable tool to probe 

for allosterically coupled sites which can then be validated by computational74 and experimental 

techniques.75 This approach is seen in the study presented in Chapter 2: mutations reveal that 

partner interfaces on Ran/Gsp1 are coupled to the nucleotide binding site, as confirmed by 

observation of similar changes in the chemical environment of a bound nucleotide’s gamma 

phosphate after distal mutation or partner binding.76  
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Table 1.1 Examples of molecular interaction network principles that operate at the molecular scale. 

  

Mechanism Name Description 

Allosteric Regulation Modulation of a functional site in a protein by a perturbation at a distal site, as opposed 
to orthosteric regulation via perturbations at the site itself.77 

Cooperativity The characteristic of a system in which subsequent molecular events of the same type 
become more or less favorable based on previous events, often due to allosteric 
coupling.78 

Specificity A metric of how preferred an interaction with one partner is over interactions with 
proteins related to the partner. It contrasts with promiscuity or molecular multi-
specificity, in which multiple similar interactions (of the same or different family of 
interactors) are similarly favored.79–81 

Selectivity / Biased 
Agonism 

A phenomenon of different ligand inputs of a receptor resulting in recruitment of distinct 
sets of downstream signaling proteins.82,83 

Homomer Asymmetry Distinct asymmetry of individual subunits in homooligomers, which expands the 
number of functional conformations sampled by these complexes.84,85 

Ordered Complex 
Assembly 

The unique pathway(s) by which subunits of larger macromolecular complexes assemble 
and disassemble.86,87 

Competition / 
Occlusion 

The existence of overlapping functional sites that prevent two interactions from 
occurring simultaneously. Differences in interaction strengths allow for thermal ratchets, 
where sequences of interactions can occur in a unidirectional fashion when coupled to 
an energy source.26,37 
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Table 1.2 Examples of molecular interaction network principles that operate at the systems scale. 

 

  

Mechanism Name Description 

Feedback, Autoregulation A widespread feature of dynamical systems in which the system’s output 
also serves as an input, enabling its current state to dynamically alter its 
behavior.88,89 

Multifunctionality or multi-
specificity 

The observation of a protein performing several unrelated functions, 
effectively participating in multiple cellular interaction networks that are 
otherwise insulated from each other.90–93 

Logic Gates A general name for network motifs that integrate signals according to 
Boolean logic operations.94–96 

Ultrasensitivity A property of switch-like network motifs, in which a small change in input 
signal results in a sharp change in downstream signal, often magnified via 
cascades (multiple switches connected in series) 97,98. 

Oscillations Equilibrium states of a system that nonetheless show time-dependent, 
periodic differences in activity level.99,100 

Multistability The existence of two or more states of a system which are “effectively 
irreversible”, meaning that they are stable and persist until perturbed by a 
stimulus that can push them into another state.101–103 

Hysteresis / Memory The dependence of a signal response function on the previous state of the 
system, i.e. in which high previous levels of an input signal10 

Fold-change Detection A property of systems which respond chiefly to fold-change differences of 
input signal, but are robust to other parameters, such as the absolute levels of 
internal components.104,105 

Crosstalk A very broad term for how multiple different input signals can affect a 
common output, indicating that two or more cellular pathways are connected 
directly (e.g. via shared pathway component) or indirectly (e.g. one pathway 
activates the expression of another pathway).106 

Temporal / Kinetic Filtering The ability for a system to respond differently to an input signal depending 
on the duration of time it persists.107 

Phase Separation / Biomolecular 
Condensates 

The compartmentalization of a nonstoichiometric assemblies of biomolecules 
without lipid membranes, allowing for selective inclusion of certain species 
and local changes in effective concentration.108 
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Chapter 2. Systems-level effects of allosteric perturbations to a model molecular 

switch 

Summary 

Molecular switch proteins whose cycling between states is controlled by opposing 

regulators109,110 are central to biological signal transduction. As switch proteins function within 

highly connected interaction networks,111 the fundamental question arises how functional 

specificity is achieved when different processes share common regulators. Here we show that 

functional specificity of the small GTPase switch protein Ran/Gsp1112 is linked to differential 

sensitivity of biological processes to different kinetics of the Ran/Gsp1 switch cycle. We make 55 

targeted point mutations to individual protein interaction interfaces of Ran/Gsp1 and show through 

quantitative genetic63 and physical interaction mapping that Ran/Gsp1 interface perturbations have 

widespread cellular consequences. Unexpectedly, the cellular effects of the interface mutations 

group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the 

targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle 

kinetics. These results suggest a model where protein partner binding, or posttranslational 

modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar 

mechanisms may underlie regulation by other GTPases, and other biological switches. 

Furthermore, our integrative platform to determine the quantitative consequences of molecular 

perturbations may help explain the effects of disease mutations targeting central molecular 

switches. 
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Introduction 

Proteins perform their cellular functions within networks of interactions with many partners.111 

The interconnectivity of these networks raises the fundamental question of how different 

individual functions can be controlled with the required specificity, especially when distinct 

cellular processes share common regulators. Moreover, in highly interconnected networks even 

small perturbations could have widespread cellular effects.67,68 

To determine the mechanism and extent by which molecular perturbations affect 

interconnected biological processes, we targeted a central molecular switch, a GTPase. GTPases 

are two-state switches controlled by regulators with opposing functions.110 The two states of 

GTPase switches are defined by the conformation of their GTP- or GDP-bound forms, and the 

interconversion between states is catalyzed by guanine nucleotide exchange factors (GEFs) and 

GTPase-activating proteins (GAPs) (Figure 2.1A). Other, similar biological switch motifs involve 

covalent modifications controlled by opposing kinase/phosphatase or acetylase/deacetylase 

regulators. One striking feature of such motifs is their potential for ultrasensitive response to 

regulation, where small changes in the activity of the regulators can lead to sharp changes in the 

state of the switch.109,110 Moreover, switch motifs such as GTPases are often multi-specific, 

defined here as regulating several distinct processes.113  

Here we focus on the multi-specific small GTPase Gsp1 (the S. cerevisiae homolog of human 

Ran) as a model system. Gsp1/Ran is a highly conserved molecular switch with one main GEF 

and one main GAP114 that regulates nucleocytoplasmic transport of proteins115 and RNA,116 cell 

cycle progression,117 and RNA processing.118 Crystal structures of Gsp1/Ran in complex with 16 

different binding partners are known (Figure 2.2, Figure 2.3, Table 2.1). We reasoned that by 

placing point mutations in Gsp1 interfaces with these partners, we would differentially perturb 
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subsets of biological processes regulated by Gsp1. We then determined the functional 

consequences of these Gsp1 interface mutations on cellular processes in S. cerevisiae using 

quantitative genetic interaction mapping (Figure 2.1A), measured changes to the physical 

interaction network using affinity purification mass spectrometry (AP-MS), and quantified 

molecular effects on the Gsp1 switch using biophysical studies in vitro.  

Results 

Genetic interactions of Gsp1 mutants. 

We designed 55 genomically integrated point mutant alleles of S. cerevisiae Gsp1 to target 

each of its 16 known interactions (Figure 2.1B, Figure 2.2, Table 2.2, Table 2.3), avoiding 

mutations in the Gsp1 nucleotide binding site and the switch I and II regions. We confirmed by 

Western blot that the mutant Gsp1 protein levels were close to the endogenous wild-type levels 

(Figure 2.4). 

To determine the cellular effects of the Gsp1 interface mutations, we performed a genetic 

interaction (GI) screen in S. cerevisiae using the epistatic mini-array profile (E-MAP) 

approach.63,68 We measured growth of each GSP1 point mutant in the context of an array of 1444 

single gene knockouts, resulting in a quantitative functional profile of up to 1444 GI values for 

each GSP1 point mutant (Supplementary Data 1). The 55 GSP1 point mutants fell into two 

clusters, 23 ‘strong’ mutants with rich GI profiles containing 9-373 significant interactions (Figure 

2.1C), and 32 ‘weak’ mutants with 0-8 significant interactions (Figure 2.5, Figure 2.6, Methods). 

The strong mutants covered eleven Gsp1 sequence positions and all 16 structurally characterized 

Gsp1 protein interaction interfaces (Figure 2.7A). Twelve of the GSP1 interface point mutants 

had a greater number of significant GIs than an average deletion of a non-essential S. cerevisiae 



 
 
 

16 

gene, and six GSP1 point mutants had more GIs than an average temperature sensitive mutant of 

an essential gene in a published S. cerevisiae GI map65 (Figure 2.1D). Hierarchical clustering of 

S. cerevisiae genes based on their GIs with the Gsp1 interface mutations grouped genes by their 

cellular functions, including mRNA transport, tRNA modification, and spindle assembly 

regulation (Figure 2.1C, Figure 2.7B). Taken together, the GI analysis reveals expansive 

functional consequences of Gsp1 interface point mutations - similar in magnitude to effects 

typically observed for deleting entire genes - that illuminated many of the biological functions of 

GSP1.  

In contrast to their clustering of biological processes, the GI profiles of the Gsp1 point mutants 

did not group based on their location in the Gsp1 partner interfaces. For example, strains with 

GSP1 mutations at residues T34 (T34E/Q) and D79 (D79S/A) have similar GI profiles (Figure 

2.1C) but these mutations are in different interfaces (Figure 2.7A) on opposite sides of the Gsp1 

structure (Figure 2.1B). This observation was contrary to our initial expectation that Gsp1 

achieves its functional specificity by interacting with different partners. To analyze this finding 

further, we compared the GSP1 mutant GI profiles to profiles from 3370 S. cerevisiae alleles65 

using Pearson correlations. Significant positive correlations of GI profiles indicate functional 

relationships63 (Supplementary Data 2, Table 2.4, Figure 2.7C). Strikingly, GI profiles of GSP1 

mutants and of Gsp1 physical interaction partners were on average no more similar to each other 

in instances where the Gsp1 mutation was located in the partner interface than when the mutation 

was not (Figure 2.1E, Figure 2.7D). This result suggests that the rich functional profiles of GSP1 

mutants cannot simply be explained by considering only the partner interaction targeted by the 

interface point mutation.  
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Physical interactions of Gsp1 mutants. 

To investigate further why the GI profiles of Gsp1 mutations did not group based on targeted 

physical interactions of Gsp1, we sought to determine how interface point mutations affected the 

physical protein interaction network of Gsp1. We tagged wild-type Gsp1 and 28 mutants covering 

all interface residues shown in Figure 2.7Awith an amino- or carboxy-terminal 3xFLAG tag and 

quantified the abundance of 316 high-confidence ‘prey’ partner proteins in complex with Gsp1 by 

AP-MS (Figure 2.8, Figure 2.9, Supplementary Data 3). We refer to the prey partner protein 

abundance in the pulled-down Gsp1 complexes simply as “abundance” below. Six of the 16 Gsp1 

binding partners for which we had structural information were robustly observable in the AP-MS 

data for both Gsp1 wild type and mutants: the two core regulators Rna1 (GAP) and Srm1 (GEF), 

as well as four effectors Yrb1, Kap95, Pse1 and Srp1. As expected, the abundance of the prey 

partner was decreased on average (although not always) when the Gsp1 mutation was in the 

interface core with the prey partner (Figure 2.8A, left distribution). However, instead of expected 

minimal effects, we also found notable changes in prey abundance in cases where the mutation 

was not directly in the interface (Figure 2.8A, right distribution). A wide spread of abundance 

changes was apparent for the two main GTPase regulators, GAP (Rna1) and GEF (Srm1), even 

for mutations at positions that are outside either of the interfaces such as T34 (Figure 2.8B, Figure 

2.10, Table 2.5). In summary, the AP-MS experiments show that the point mutations, in addition 

to affecting the targeted interactions, also introduce extensive changes to the physical interaction 

network of Gsp1 that cannot simply be explained by the interface location of the mutations.  

Effect of mutants on Gsp1 switch kinetics. 

The AP-MS experiments showed that most Gsp1 interface mutations significantly altered 

physical interactions with the two principal GTPase regulators, GAP and GEF. This observation 
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prompted the question whether the mutations, rather than acting indirectly in the cellular context 

(i.e., by altering the competition between physical interaction partners in the cell), affected the 

molecular function of the switch directly. To assess the molecular effects of mutation on switch 

function, we recombinantly expressed and purified wild-type and 24 Gsp1 mutants and measured 

their effects on GAP-mediated GTP hydrolysis and GEF-mediated nucleotide exchange in vitro 

(Figure 2.11A, B, Figure 2.12, Figure 2.13, Figure 2.14, Table 2.6, Table 2.7). Of the 24 Gsp1 

point mutants, 17 (of which all except K132H had strong GI profiles) showed 3- to >200-fold 

change in kcat/Km on either or both of the GAP- or GEF-mediated reactions (Figure 2.12E). 

These results show that Gsp1 interface mutations can modulate the GTPase cycle by affecting GTP 

hydrolysis and nucleotide exchange catalyzed by the GAP and GEF. Moreover, since nine out of 

the 17 mutations with larger than 3-fold effects are located outside of the interface cores with either 

the GAP (Figure 2.11A) or the GEF (Figure 2.11B) as well as outside the known switch regions, 

our data suggest considerable, previously unappreciated, allostery in the GTPase switch. 

Allosteric effects of mutations. 

To probe the mechanism of these allosteric effects, we examined the impact of Gsp1 point 

mutations on the conformational distribution in the active site of GTP-bound Gsp1 using 1D 31P 

nuclear magnetic resonance (NMR) spectroscopy. Prior 31P NMR data on human Ran76 showed 

two distinct peaks for the γ-phosphate of bound GTP arising from differences in the local chemical 

environment of the γ-phosphate in each of two distinct conformations (termed γ1 and γ2). Our 31P 

NMR spectra of S. cerevisiae wild-type Gsp1:GTP showed two distinct peaks for the γ-phosphate 

of bound GTP with 87% of wild-type Gsp1:GTP in the γ2 state conformation (Figure 2.11C, 

Figure 2.15). Strikingly, the relative populations of the γ1 and γ2 states were modulated by our 
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Gsp1 interface mutations and ranged from close to 0% in the γ2 state for T34E and T34Q, to close 

to 100% for H141R, Y157A, and K132H (Figure 2.11C).  

Furthermore, we observed a linear relationship between the effect of the mutation on the 

equilibrium between the γ1 and γ2 conformations (plotted as the natural log-transformed ratio of 

the equilibrium constant) and the natural log-transformed ratio of the relative catalytic efficiencies 

of GAP-mediated GTP hydrolysis (Figure 2.11D) and intrinsic GTP hydrolysis (Figure 2.15B, 

C, Table 2.8). This relationship suggests that the γ2 state represents the active site conformation 

of Gsp1:GTP competent for GTP hydrolysis. Exceptions to the linear relationship are K132H, 

which is in the core of the GAP interface and hence expected to directly affect the interaction with 

the GAP, and D79S and R78K, which are adjacent to the GTPase switch II region and could lead 

to different perturbations of the nucleotide binding site. 

Remarkably, the mutated residues that tune the population of the γ2 state (positions T34, H141, 

Q147, and Y157) are all distal, affecting the chemical environment of the Gsp1-bound GTP γ 

phosphate from at least 18 Å away (Figure 2.15D, E). Taken together, our in vitro data support an 

allosteric mechanism where distal mutations at different surface interaction sites of Gsp1 modulate 

the GTPase switch by differentially affecting GEF-catalyzed nucleotide exchange and GAP-

catalyzed GTP hydrolysis. Moreover, comparison between the in vitro kinetic and our AP-MS data 

showed that the direction of the GTPase cycle perturbation is a good predictor of altered physical 

interactions with the two main cycle regulators (Figure 2.16), even in the context of other 

potentially competing partner proteins. 

Encoding of Gsp1 multi-specificity. 

Finally, we asked whether the allosteric effects of the mutations on the GTPase cycle kinetics 

explained the functional effects observed in the cellular GI profiles. This analysis also provided 
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insights into the ability of Gsp1 to distinctly regulate different biological processes (functional 

multi-specificity). We clustered the GI profiles of the Gsp1 mutants based on correlation with the 

GI profiles of 3358 S. cerevisiae alleles;65 276 alleles had significant correlations to Gsp1 mutants 

(Figure 2.17A). We then compared clustering of these GI profile correlations with the biophysical 

effects of the Gsp1 mutations. Remarkably, the Gsp1 mutant GI profile clustering mirrored an 

approximate ordering by the in vitro mutant effects on the GTPase cycle: relative GAP efficiency 

systematically increased with increasing column number and relative GEF efficiency decreased 

(Figure 2.17A). (The clear outlier, K101R, could be explained by acetylation of this residue.119 

The K101R mutation could affect a critical mechanism by which the cell reduces GEF activity,72 

phenocopying mutants with reduced GTP hydrolysis activity.) Overall, genes in Figure 2.17A fall 

into one of three categories: (i) genes in cluster 1, but also cluster 2, that correlate with mutants 

primarily perturbed in GTP hydrolysis (Figure 2.17A, orange bars), (ii) genes in cluster 7 that 

correlate with mutants primarily perturbed in nucleotide exchange (teal bars), and (iii) genes that 

correlate strongly with all or most of the Gsp1 point mutants (cluster 5, but also clusters 3, 4, and 

6).  

Importantly, genes with shared biological functions (gene sets, Supplementary Data 4) all 

predominantly fall into one of the three categories defined above. For example, genes involved in 

spindle assembly regulation have significant GI profile correlations primarily with Gsp1 mutant 

group I (Figure 2.17B, red points), genes involved in tRNA modification primarily with Gsp1 

mutant group III (blue points), and genes important for nucleocytoplasmic transport with Gsp1 

mutants from all three groups (green points). The three groups of Gsp1 mutants show distinct 

kinetic characteristics: Group I has decreased efficiency of GTP hydrolysis, group III decreased 

nucleotide exchange, and group II shows intermediate behavior (Figure 2.17C). Therefore, our 
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analysis suggests that distinct cellular processes regulated by Gsp1, such as spindle assembly 

regulation, tRNA modification, and nuclear transport (Figure 2.17B, D), as well as 5’ mRNA 

capping, transcriptional regulation, cytoplasm-to-vacuole targeting, and actin, tubulin and cell 

polarity (Figure 2.18) are differentially sensitive to perturbations of GTPase cycle kinetics. Taken 

together, our findings lead to a model where Ran/Gsp1 acts by three different modes defined by 

the sensitivity of different biological processes to perturbations of different characteristics of the 

Gsp1 GTPase cycle, i.e. the ability to (i) cycle, (ii) turn off by hydrolyzing to Gsp1:GDP, and (iii) 

turn on by producing Gsp1:GTP (Figure 2.17D). While other effects such as changes in interaction 

affinities or expression levels undoubtedly also play a role in modulating the functional effects of 

our Gsp1 mutations, our model explains to a remarkable degree how a single molecular switch 

motif can differentially control subsets of biological processes by using one of the three functional 

modes.  

Discussion 

The discovery of several new allosteric sites (positions 34, 141, 147, and 157) in Gsp1 has 

implications for GTPase regulation. Our finding that mutations in Gsp1 interfaces allosterically 

modulate the switch cycle identifies thermodynamic coupling between distal interfaces and the 

active site; partner binding or posttranslational modifications at these distal sites could also 

regulate the switch.  

Our observation of widespread functional effects of point mutations inducing relatively small 

perturbations in the GTPase switch kinetics is reminiscent of the zero-order ultrasensitivity 

achievable in biological motifs with opposing regulators.110 While switch-like ultrasensitivity is 

typically described for systems controlled by covalent modifications (such as phosphorylation), 
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our results, as well as the observations that cellular levels of small GTPase regulators require tight 

control,120,121 corroborate a model of ultrasensitivity for GTPase conformational switches.122 

Given the prevalence of biological two-state switch motifs with opposing regulators 

(kinase/phosphatase, acetylase/deacetylase), we envision our approach to engineer defined 

molecular perturbations and characterize them with systems-level functional genetics integrated 

with molecular biophysics to be informative for other studies of cellular regulation. The approach 

could be extended to mammalian systems using CRISPR-based approaches to yield mechanistic 

insights into the consequences of disease mutations targeting central molecular switches.  

Methods 

Point mutations in genomic Gsp1 sequence 

We identified all residues in Gsp1 that comprised the interfaces with Gsp1 binding partners for 

which co-complex crystal structures with Gsp1 were available (Figure 2.3, Figure 2.2, Table 2.1). 

Residues comprising the interface core, the surface exposed rim around the core, and more buried 

support residues were defined based on per-residue relative solvent accessible surface area 

(rASA), as previously described.123 rASA is compared to the empirical maximum solvent 

accessible surface area for each of the 20 amino acids.124 rASA values were calculated for the 

Gsp1 monomer (rASAmonomer) and for the complex (rASAcomplex) using the bio3d R 

package.125 The three types of interface residues were defined as: interface core if rASAmonomer 

> 25%, rASAcomplex < 25% and ΔrASA (change upon complex formation) > 0; rim residues if 

rASAcomplex > 25% and ΔrASA > 0; and support residues if rASAmonomer < 25% and ΔrASA 

> 0. All custom code for interface analysis from co-complex crystal structures is provided in the 

associated code repository at 
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https://github.com/tinaperica/Gsp1_manuscript/tree/master/Scripts/complex_structure_analyses. 

We avoided Gsp1 residues that are within 5 Å of the nucleotide (GDP or GTP) in any of the 

structures or that are within the canonical small GTPase switch regions126 (P-loop, switch loop I, 

and switch loop II). We then mutated residues that are located in interface cores (defined as 

residues that bury more than 25% of their surface upon complex formation, as previously 

defined,123 Table 2.2, Figure 2.2) into amino acid residues with a range of properties (differing in 

size, charge and polarity) and attempted to make stable and viable S. cerevisiae strains carrying a 

genomic Gsp1 point mutation coupled to nourseothricin (clonNAT / nourseothricin, Werner 

BioAgents GmbH, CAS 96736-11-7) resistance (Figure 2.19). The list of attempted mutants is 

provided in Table 2.3. The genomic construct was designed to minimally disrupt the non-coding 

sequences known at the time, including the 5′ UTR and 3′ UTR, as well as the putative regulatory 

elements in the downstream gene Sec72 (Figure 2.19). The GSP1 genomic region was cloned into 

a pCR2.1-TOPO vector (Invitrogen) and point mutations in the GSP1 coding sequence were 

introduced using the QuikChange™ Site-Directed Mutagenesis (Stratagene, La Jolla) protocol. S. 

cerevisiae strains containing mutant GSP1 genes were regularly confirmed by sequencing the 

Gsp1 genomic region.  

S. cerevisiae genetics and genetic interaction mapping 

S. cerevisiae transformation 

To generate MAT:α strains with Gsp1 point mutations the entire cassette was amplified by 

PCR using S. cerevisiae transformation forward and reverse primers, and S. cerevisiae was 

transformed into the starting SGA MAT:α his3D1; leu2D0; ura3D0; LYS2þ; can1::STE2pr-
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SpHIS5 (SpHIS5 is the S. pombe HIS5 gene); lyp1D::STE3pr-LEU2 strain from127 as described 

below. Primers for amplifying the GSP1 genomic region were: 

• FWD: GTATGATCAACTTTTCCTCACCTTTTAAGTTTGTTTCG 

• REV: GATTGGAGAAACCAACCCAAATTTTACACCACAA 

DNA competent S. cerevisiae cells were made using a LiAc protocol. The final transformation 

mixture contained 10 mM LiAc (Lithium acetate dihydrate, 98%, extra pure, ACROS Organics™, 

CAS 6108-17-4), 50 μg ssDNA (UltraPure™ Salmon Sperm DNA Solution, Invitrogen, 

15632011), 30% sterile-filtered PEG 8000 (Poly(ethylene glycol), BioUltra, 8,000, Sigma-

Aldrich, 89510-250G-F). A S. cerevisiae pellet of approximately 25 μl was mixed with 15 μl of 

linear DNA PCR product and 240 μl of the transformation mixture, and heat shocked at 42 ºC for 

40 minutes. Transformed cells were grown on YPD (20 g Bacto™ Peptone (CAT # 211820, BD 

Diagnostic Systems), 10 g Bacto™ Yeast Extract (CAT # 212720 BD), and 20 g Dextrose (CAT 

# D16-3, Fisher Chemicals) per 1-liter medium) + clonNAT plates and incubated at 30 ºC for 3 to 

6 days. Many colonies that appeared after 24-48 hours carried the clonNAT cassette but not the 

GSP1 point mutation, or the 3xFLAG tag. Cells were therefore sparsely plated, and plates were 

incubated for a longer period of time after which colonies of different sizes were picked and the 

mutant strains were confirmed by sequencing. 

Epistatic mini-array profiling (E-MAP) of Gsp1 point mutants 

Genetic interactions of all viable GSP1 point mutant (PM-GSP1-clonNAT) strains were 

identified by epistatic miniarray profile (E-MAP) screens64,127 using a previously constructed array 

library of 1,536 KAN-marked (kanamycin) mutant strains assembled from the S. cerevisiae 

deletion collection128 and the DAmP (decreased abundance by mRNA perturbation) strain 
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collection,66 covering genes involved in a wide variety of cellular processes.68 The E-MAP screen 

was conducted as previously described in Collins et al.,66 using the HT Colony Grid Analyzer Java 

program63 (http://sourceforge.net/project/showfiles.php?group_id=163953) and the E-MAP 

toolbox for MATLAB (http://sourceforge.net/project/showfiles.php?group_id=164376) to extract 

colony sizes of double mutant strains and a statistical scoring scheme to compute genetic 

interaction scores. Genetic interaction scores represent the average of 3-5 independent replicate 

screens. Reproducibility was assessed as previously described63 by comparing individual scores to 

the average score for each mutant:gene pair, with the two values showing strong correlation across 

the dataset (Pearson correlation coefficient = 0.83, Figure 2.20).  

Hierarchical clustering of E-MAP genetic interaction data 

All E-MAP library DAmP strains as well as library strains showing poor reproducibility were 

discarded, leaving 1444 out of the original 1536 library genes. Averaged S-scores of genetic 

interactions between wild-type and point mutant Gsp1 and the 1444 S. cerevisiae genes are 

provided in Supplementary Data 1. Hierarchical clustering on the GI profiles was performed 

using the average linkage method and the pairwise Pearson correlation coefficient as a distance 

metric. To identify clusters of functionally related library genes, the hierarchical clustering tree 

was cut to produce 1200 clusters, resulting in 43 clusters with 3 or more members. Biological 

function descriptions for genes in these clusters were extracted from the Saccharomyces Genome 

Database (SGD).129 Clusters of genes representing common functions (complexes, pathways or 

biological functions) were selected by manual inspection and represented in the main text Figure 

2.1C and Figure 2.7B. All custom code for E-MAP analysis is provided in 

https://github.com/tinaperica/Gsp1_manuscript/tree/master/Scripts/E-MAP. Clustered heatmaps 

were produced using the ComplexHeatmap package.130 
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Scaling of published genetic interaction data to the E-MAP format 

To enable comparison of GSP1 point mutant GI profiles to GI profiles of other S. cerevisiae 

genes, published Synthetic Gene Array (SGA) genetic interaction data65 from CellMap.org131 were 

scaled to the E-MAP format using a published non-linear scaling method.132 First, 75,314 genetic 

interaction pairs present in both the SGA and a previously described E-MAP dataset used to study 

chromatin biology66 were ordered by genetic interaction score and partitioned into 500 equally 

sized bins separately for each dataset. Bin size (150 pairs per bin) was chosen to provide enough 

bins for fitting the scaling spline (described below) while still maintaining a large number of pairs 

per bin such that the mean could be used as a high confidence estimate of the score values in each 

bin. Scaling factors were computed that scaled the mean of each SGA bin to match the mean of 

the corresponding E-MAP bin. A non-linear univariate spline was fit through the scaling factors, 

providing a scaling function that was subsequently applied to each SGA score. The distribution of 

scores of shared interactions between the scaled SGA and the E-MAP chromatin library was 

similar to that between replicates in the E-MAP chromatin library, matching what was seen in the 

previously published scaling of SGA data to E-MAP format132 (Figure 2.21). The SGA genetic 

interaction scores are taken from CellMap.org.131 The scaling code is provided in 

https://github.com/tinaperica/Gsp1_manuscript/tree/master/Scripts/SGA_Scaling. 

Significance of genetic interactions 

The S-score metric used in scoring genetic interactions measured by the E-MAP method has 

been previously characterized in terms of confidence that any given averaged S-score represents a 

significant interaction.63 We fit a spline to data points from Figure 4C in Collins et al,63 allowing 

us to provide an approximate confidence estimate for each of our measured GSP1 and scaled S. 

cerevisiae SGA genetic interaction scores. The SGA dataset65 is accompanied by p-values as well 
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as its own recommendations for a threshold at which individual interactions are considered 

significant. We plotted the SGA score scaled to E-MAP format vs. the associated p-value (negative 

log-transformed, Figure 2.6A) and found the distribution to have a similar shape to the confidence 

function for S-scores (Figure 2.6B). For example, a 95% confidence threshold is associated with 

E-MAP S-scores less than -4 or greater than 5, while the median p-value of scaled SGA scores is 

less than 0.05 for scores less than -5 or greater than 3. We ultimately elected to use a significance 

cutoff of absolute S-score greater than 3. This threshold corresponds to an estimated confidence 

value of 0.83 for S-scores less than -3 and 0.65 for S-scores greater than 3. We compared these 

values to the intermediate significance threshold recommended for the SGA data from Costanzo 

et al,65 which was p-value < 0.05 and absolute SGA score > 0.08. After scaling to E-MAP format, 

this threshold corresponds to scaled S-scores less than -2.97 or greater than 2.25, below our chosen 

threshold of -3 and 3. 

GI profile correlation measurements 

Of the 1444 library genes in the GSP1 point mutant GI profile map, 1129 were present in the 

SGA dataset from Costanzo et al.65 Pairwise Pearson correlation coefficients were computed 

between all GSP1 point mutants and SGA gene profiles, and all profiles trimmed to include only 

genetic interaction measurements with the 1129 shared library genes. Due to the relative sparsity 

of GI profiles, pairwise comparisons are dominated by high numbers of non-significant 

interactions. Accordingly, we did not consider correlations with GSP1 point mutants or SGA gene 

profiles that did not have significant genetic interactions (absolute scaled S-score greater than 3, 

see above) with at least 10 of the 1129 library genes. This requirement removed all weak Gsp1 

point mutants and one strong mutant (R108A) from the correlation analysis (as they had at most 

nine genetic interactions with absolute score greater than 3), leaving 22 strong mutants and 3370 



 
 
 

28 

S. cerevisiae SGA alleles to be included in the correlation analysis. All Pearson correlations and 

their p-values between Gsp1 mutants and S. cerevisiae genes, including all correlations that did 

not pass our significance filtering procedures, are provided in Supplementary Data 2. The subset 

of Pearson correlations between Gsp1 point mutants and Gsp1 partners with available co-complex 

X-ray crystal structures, used to make the point plots in Figure 2.1E and Figure 2.7C, D, are also 

available in Table 2.4. 

Statistical significance of correlations was computed using both two-sided and one-sided 

(positive) t-tests adjusted for multiple hypothesis testing using both the Bonferroni method and the 

FDR method, which controls the false discovery rate.133 All p-values reported in the text and 

figures are one-sided (positive) and corrected by the FDR method, unless otherwise stated. The 

FDR method of p-value correction has been shown to account for the positive dependency between 

test statistics, such as those arising from the underlying functional similarities between S. 

cerevisiae alleles.134 Custom code for GI profile correlation calculations and filtering is provided 

in the accompanying repository 

https://github.com/tinaperica/Gsp1_manuscript/tree/master/Scripts/E-MAP/correlations. 

Significance testing was used to filter out S. cerevisiae gene SGA profiles that did not show a 

significant correlation (one-sided positive, Bonferroni-adjusted) with the GI profiles of at least two 

GSP1 point mutants. In total, 276 S. cerevisiae alleles from the SGA had a significant GI profile 

correlation (one-sided positive, Bonferroni-adjusted) with at least two GSP1 point mutants and 

were therefore included in the correlation analysis shown in Figure 2.17A. We required alleles to 

correlate with at least two mutants because the goal of this analysis was to group mutants by 

similarity, and an allele that only significantly correlated with one mutant is uninformative for this 

task. After this filtering step, the one-sided p-values were used to populate a matrix of 22 mutants 
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vs. 276 alleles, and hierarchical clustering was performed using Ward’s method. We used Ward’s 

method rather than the average linkage criterion as we found the latter resulted in a wide variety 

of group sizes due to a few sparsely populated outliers. Using Ward’s methods resulted in rounder 

clusters, allowing us to identify meaningful functional groups of mutants and alleles. Pearson 

correlation between correlation vectors was used as a distance metric for the mutant (row) 

clustering, while Euclidean distance was selected for the gene (column) clustering, due to the 

column vectors being relatively short (22 mutants per column vs. 276 alleles per row) and thus 

sensitive to outliers when clustered using Pearson correlations as the distance metric (for additional 

analysis of E-MAP statistics and clustering see the Supplementary Note). 

For the gene set analysis, we decreased the stringency of inclusion of S. cerevisiae SGA genes 

to include all alleles with a significant GI profile correlation (one-sided positive, Bonferroni-

adjusted) with one or more Gsp1 mutants, which added another 201 alleles, resulting in 477 alleles. 

We made the gene sets larger to increase our confidence in connecting the patterns of correlations 

between S. cerevisiae genes and Gsp1 mutants to the GTPase cycle parameters represented in 

Figure 2.17B, D. Indeed, while S. cerevisiae genes that only correlate significantly with one 

mutant are not informative for grouping mutants, they are informative for annotating the functional 

effects of individual mutants. Manually curated gene sets of S. cerevisiae genes with significant 

correlations with Gsp1 mutants are provided in Supplementary Data 4. 

Protein expression levels by Western Blot 

S. cerevisiae strains were grown at 30°C in YPD medium (20 g Bacto™ Peptone (CAT # 

211820, BD Diagnostic Systems), 10 g Bacto™ Yeast Extract (CAT # 212720 BD), and 20 g 

Dextrose (CAT # D16-3, Fisher Chemicals) per 1 L medium) for 1.5 - 2 hours until OD600 reached 

0.3. Cell culture aliquots of 1 ml were centrifuged for 3 minutes at ~ 21,000 x g and resuspended 
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in 30 μl of phosphate buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 

KH2PO4, pH = 7.4) and 10 µl of SDS-PAGE Sample Buffer (CAT # 161-0747, BioRad), to a final 

SDS concentration of 1%, and ~ 2mM beta-mercaptoethanol. Lysates were run (3 µl for most, and 

6 µl for slow growing mutants with lower OD600) on Stain-Free gels (4-20%, CAT #4568096, 

BioRad, Tris/Glycine SDS Buffer (CAT #161-0732, BioRad)). After electrophoresis, the gel was 

scanned for total protein quantification and the proteins were subsequently transferred to an 

Immobilon-FL PVDF membrane (CAT #IPF00010, EMD Millipore). The membrane was probed 

with Rabbit anti-RAN (CAT # PA 1-5783, ThermoFisher Scientific) primary, and Goat anti-

Rabbit-IgG(H+L)-HRP (CAT #31460, ThermoFisher) secondary antibodies. The membrane was 

developed using Super Signal West Femto substrate (CAT # 34096, ThermoFisher), and scanned 

and analyzed with Image Lab software on a ChemiDoc MP (BioRad). Each blot had at least one 

wild-type (WT-GSP1-clonNAT) and at least one MAT:α strain control. The total protein levels 

(𝑇𝑃𝑀𝑈𝑇) for each Gsp1 point mutant lane were then normalized to the wild-type (WT-GSP1-

clonNAT) lane of the corresponding blot (𝑇𝑃𝑊𝑇), providing an adjustment value to account for 

differences in loading between lanes (𝑎𝑀𝑈𝑇 =  𝑇𝑃𝑀𝑈𝑇 𝑇𝑃𝑊𝑇⁄ ). To compute the relative 

expression of a Gsp1 point mutant, the density (𝐷𝑀𝑈𝑇) of the Western blot bands corresponding 

to the Gsp1 point mutant was divided by the total protein adjustment and finally normalized against 

the same value for the wild-type Gsp1, i.e. 𝑟𝑒𝑙. 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑀𝑈𝑇 =
𝐷𝑀𝑈𝑇

𝑎𝑀𝑈𝑇⁄

𝐷𝑊𝑇
𝑎𝑊𝑇⁄

. Note that for blots 

with a single WT lane, 𝑎𝑊𝑇 = 1. For blots with more than one WT lane included, 𝑎𝑊𝑇 was 

computed for each WT lane by normalizing to the average TP across all WT lanes, and the average 

adjusted WT density (𝐷
𝑊𝑇

𝑎𝑊𝑇⁄ ) across all WT lanes was used for computing the relative 
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expression of point mutants. An example Western blot is provided in Figure 2.22, and the final 

protein expression level data for all mutants are shown in Figure 2.4. 

Physical interaction mapping using affinity purification mass spectrometry (AP-MS) 

S. cerevisiae cell lysate preparation 

When choosing mutants for AP-MS we sought to cover all Gsp1 sequence positions where 

mutations had strong GI profiles (Figure 2.7A), as well as several ‘weak’ mutants. We observed 

that tagging the endogenous Gsp1 with either an amino-terminal or a carboxy-terminal FLAG tag 

affects the S. cerevisiae growth in culture. We therefore attempted to make each of the mutants 

intended for AP-MS experiments with both tags, and where both tags were viable, we obtained the 

AP-MS data for both. We could not make a FLAG-tagged R108Q mutant for AP-MS. S. cerevisiae 

strains for AP-MS were grown in YAPD medium (120 mg adenine hemisulfate salt (CAT # 

A9126, SIGMA), 10 g Bacto yeast extract (CAT # BD 212720), 20 g Bacto peptone (CAT # BD 

211820), 20 g dextrose (D-glucose D16-3 Fisher Chemicals) per 1 L of medium). Each strain was 

grown at 30ºC for 12 to 24 h to OD600 of 1-1.5. The cells were harvested by centrifugation at 3000 

RCF for 3 minutes and the pellet was washed in 50 ml of ice-cold ddH2O, followed by a wash in 

50 ml of 2x lysis buffer (200 mM HEPES pH 7.5, 200 mM KCl, 2 mM MgCl2, 30 μM GTP 

(Guanosine 5′-triphosphate sodium salt hydrate, CAT #G8877, Sigma-Aldrich), 1 mM 

Dithiothreitol (Promega V3151), 0.1% IGEPAL CA-630 (CAT # I8896, Sigma-Aldrich), and 10% 

glycerol). Each pellet of approximately 500 μl was then resuspended in 500 μl of 2X lysis buffer 

supplemented with protease inhibitors without EDTA (cOmplete, Mini, EDTA-free Protease 

Inhibitor Cocktail, CAT # 11836170001, Roche) and dripped through a syringe into liquid 
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nitrogen. The frozen S. cerevisiae cell pellets were lysed in liquid nitrogen with a SPEX™ 

SamplePrep 6870 Freezer/Mill™. 

FLAG immunoprecipitation 

FLAG immunoprecipitations were performed as previously described.135,136 Details are as 

follows. For FLAG immunoprecipitations, frozen samples were initially kept at room temperature 

for 5 minutes and then placed on ice or at 4°C in all subsequent steps, unless indicated otherwise. 

Following the addition of 1.5 – 3.0 ml Suspension Buffer (0.1 M HEPES pH 7.5, 0.1 M KCl, 1 

mM MgCl2, 15 μM GTP, and 0.5 mM Dithiothreitol) supplemented with cOmplete mini EDTA-

free protease and PhosSTOP phosphatase inhibitor cocktails (Roche), samples were incubated on 

a rotator for at least 10 minutes and then adjusted to 6.0 ml total volume with additional Suspension 

Buffer supplemented with inhibitors before centrifugation at 18,000 rpm for 10 minutes. Anti-

FLAG M2 Affinity Gel beads (50 μl slurry; Sigma-Aldrich) were washed twice with 1.0 ml 

Suspension Buffer. After reserving 50 μl, the remaining supernatant and anti-FLAG M2 Affinity 

Gel beads were combined and incubated for >= 2 hours on a tube rotator. Beads were then collected 

by centrifugation at 300 rpm for 5 minutes and washed three times. For each wash step, beads were 

alternately suspended in 1.0 ml Suspension Buffer and collected by centrifugation at 2,000 rpm 

for 5 minutes. After removing residual wash buffer, proteins were eluted in 42 μl 0.1 mg/ml 

3xFLAG peptide, 0.05% RapiGest SF Surfactant (Waters Corporation) in Suspension Buffer by 

gently agitating beads on a vortex mixer at room temperature for 30 minutes. Immunoprecipitated 

proteins (~4 μl) were resolved on 4-20% Criterion Tris-HCl Precast gels (BioRad) and visualized 

by silver stain (Pierce Silver Stain Kit; Thermo Scientific) (Figure 2.23) before submitting 10 μl 

of each sample for mass spectrometry. At least three independent biological replicates were 

performed for each FLAG-tagged protein and the untagged negative control. 
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Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis 

 To prepare samples for LC-MS/MS analysis, immunoprecipitated protein (10 μl) was 

denatured and reduced in 2 M urea, 10 mM NH4HCO3, and 2 mM Dithiothreitol for 30 minutes at 

60°C with constant shaking, alkylated in the dark with 2 mM iodoacetamide for 45 minutes at 

room temperature and digested overnight at 37°C with 80 ng trypsin (Promega). Following 

digestion, peptides were acidified with formic acid and desalted using C18 ZipTips (Millipore) 

according to the manufacturer's specifications. Samples were re-suspended in 4% formic acid, 2% 

acetonitrile solution, and separated by a 75-minute reversed-phase gradient over a nanoflow C18 

column (Dr. Maisch). Peptides were directly injected into a Q-Exactive Plus mass spectrometer 

(Thermo), with all MS1 and MS2 spectra collected in the orbitrap. Raw MS data were searched 

against the S. cerevisiae proteome (SGD sequences downloaded January 13, 2015) using the 

default settings in MaxQuant (version 1.5.7.4), with a match-between-runs enabled.137,138 Peptides 

and proteins were filtered to 1% false discovery rate in MaxQuant, and identified proteins were 

then subjected to protein-protein interaction scoring using SAINTexpress.139 Protein were filtered 

to only those representing high confidence protein-protein interactions (Bayesian false discovery 

rate from SAINT (SAINT BFDR) < 0.05). Protein abundance values for this filtered list were then 

subjected to equalized median normalization, label free quantification and statistical analysis were 

performed using MSstats,140 separately for data from amino- or carboxy-terminally tagged baits. 

Fold change in abundance of preys for 3xFLAG-tagged Gsp1 point mutants was always calculated 

compared to the wild-type Gsp1 with the corresponding tag. All AP-MS data are available from 

the PRIDE repository under the PXD016338 identifier. Fold change values between prey 

abundance between the mutant and wild-type Gsp1 and the corresponding FDR adjusted p-values 

are provided in Supplementary Data 3. The intersection of all prey proteins identified at least 
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once with both the amino- or carboxy-terminal 3xFLAG tag, and their interquartile ranges (IQR) 

of log2-transformed fold change values across all the Gsp1 mutants, are provided in Table 2.5. 

Quality of data and reproducibility between replicates was assessed based on correlations of 

protein abundance between replicates (Figure 2.24, Figure 2.25). 

Biochemical and biophysical assays 

Protein purifications 

All proteins were expressed from a pET-28 a (+) vector with a N-terminal 6xHis tag in E. coli 

strain BL21 (DE3) in the presence of 50 mg/L Kanamycin for 2xYT medium, and 100 mg/L of 

Kanamycin for autoinduction EZ medium. GEF (Srm1 from S. cerevisiae, (Uniprot P21827)) was 

purified as Δ1-27Srm1 and GAP (Rna1 from S. pombe, Uniprot P41391) as a full-length protein 

(for use of S. pombe Rna1 see the Supplementary Note). ScΔ1-27Srm1 and SpRna1 were 

expressed in 2xYT medium (10 g NaCl, 10 g yeast extract (BD BactoTM Yeast Extract #212720), 

16 g tryptone (Fisher, BP1421) per 1 L of medium) overnight at 25 ºC upon addition of 300 μmol/L 

Isopropyl-β-D-thiogalactoside (IPTG). Gsp1 variants were expressed by autoinduction for 60 

hours at 20ºC.141 The autoinduction medium consisted of ZY medium (10 g/L tryptone, 5 g/L yeast 

extract) supplemented with the following stock mixtures: 20xNPS (1M Na2HPO4, 1M KH2PO4, 

and 0.5 M (NH4)2SO4), 50x 5052 (25% glycerol, 2.5% glucose, and 10% α-lactose monohydrate), 

1000x trace metal mixture (50 mM FeCl3, 20 mM CaCl2, 10 mM each of MnCl2 and ZnSO4, and 

2 mM each of CoCl2, CuCl2, NiCl2, Na2MoO4, Na2SeO3, and H3BO3 in ~60 mM HCl). Cells were 

lysed in 50 mM Tris pH 7.5, 500 mM NaCl, 10 mM imidazole, and 2 mM β-mercaptoethanol using 

a microfluidizer from Microfluidics. For Gsp1 purifications, the lysis buffer was also 

supplemented with 10 mM MgCl2. The His-tagged proteins were purified on Ni-NTA resin 
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(Thermo Scientific #88222) and washed into a buffer containing 50 mM Tris (pH 7.5) and 100 

mM NaCl, with 5 mM MgCl2 for Gsp1 proteins. The N-terminal His-tag was digested at room 

temperature overnight using up to 12 NIH Units per mL of bovine thrombin (Sigma-Aldrich 

T4648-10KU). Proteins were then purified using size exclusion chromatography (HiLoad 26/600 

Superdex 200 pg column from GE Healthcare), and purity was confirmed to be at least 90% by 

SDS polyacrylamide gel electrophoresis. Samples were concentrated on 10 kDa spin filter columns 

(Amicon Catalog # UFC901024) into storage buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM 

Dithiothreitol). Storage buffer for Gsp1 proteins was supplemented with 5 mM MgCl2. Protein 

concentrations were confirmed by measuring at 10-50x dilution using a Nanodrop 

(ThermoScientific). The extinction coefficient at 280 nm used for nucleotide (GDP or GTP) bound 

Gsp1 was 37675 M-1 cm-1, as described in.142 The ratio of absorbance at 260 nm and 280 nm for 

purified Gsp1 bound to GDP was 0.76. Extinction coefficients for other proteins were estimated 

based on their primary protein sequence using the ProtParam tool 

(https://web.expasy.org/protparam/). Concentrated proteins were flash-frozen and stored at -80 ºC.  

In our hands every attempt to purify the S. cerevisiae homologue of GAP (Rna1, Uniprot 

P11745) from E. coli yielded a protein that eluted in the void volume on the Sephadex 200 size 

exclusion column, indicating that the protein is forming soluble higher-order oligomers. We were, 

however, successful in purifying the S. pombe homologue of GAP (Rna1, Uniprot P41391) as a 

monomer of high purity as described above, and we used the purified S. pombe homolog of Rna1 

in all of our GTP hydrolysis kinetic experiments. Although we cannot exclude slight differences 

between the kinetic parameters of S. pombe and S. cerevisiae Rna1, we do not believe such 

differences would significantly affect our conclusions for two main reasons: First, residues in the 

interface with Gsp1 are highly conserved between S. pombe and S. cerevisiae GAP Rna1, 
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suggesting that mechanism of catalysis and kinetic parameters are also likely to be similar. S. 

pombe and S. cerevisiae Rna1 proteins have an overall 39% sequence identity and 53% sequence 

similarity. Importantly, all but one interface core residues are identical in sequence between S. 

cerevisiae and S. pombe homologues (Figure 2.26). The X-ray crystal structure of Ran GTPase 

and its GAP used in our analyses is a co-complex structure of the S. pombe homolog of Rna1 

(PDB: 15kd), human Ran, and human RanBP1 (Table 2.1). Second, we rely only on the relative 

differences between GAP kinetic parameters of different Gsp1 mutants to group our mutants into 

three classes. Even in the case of differences between the absolute kinetic parameters between the 

S. pombe and S. cerevisiae GAP Rna1, the order of mutants is less likely to be different, and even 

in the case of some differences, we expect the grouping to be robust to these changes (see the 

Supplementary Note for more detail). 

Circular dichroism (CD) spectroscopy of protein thermostability 

Samples for CD analysis were prepared at approximately 2 μM Gsp1 in 2 mM HEPES pH 7.5, 

5 mM NaCl, 200 μM MgCl2, and 50 μM Dithiothreitol. CD spectra were recorded at 25 °C using 

2 mm cuvettes (Starna, 21-Q-2) in a JASCO J-710 CD-spectrometer (Serial #9079119). The 

bandwidth was 2 nm, rate of scanning 20 nm/min, data pitch 0.2 nm, and response time 8 s. Each 

CD spectrum represents the accumulation of 5 scans. Buffer spectra were subtracted from the 

sample spectra using the Spectra Manager software Version 1.53.01 from JASCO Corporation. 

Temperature melts were performed from 25°C - 95°C, monitoring at 210 nm, using a data pitch of 

0.5°C and a temperature slope of 1°C per minute. As all thermal melts of wild-type and mutant 

Gsp1 proteins were irreversible, only apparent Tm was estimated (Figure 2.27) and is reported in 

Table 2.9. 
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GTP loading of Gsp1 

Gsp1 variants for GTPase assays as well as for 31P NMR spectroscopy were first loaded with 

GTP by incubation in the presence of 20-fold excess GTP (Guanosine 5′-Triphosphate, Disodium 

Salt, CAT # 371701, Calbiochem) in 50 mM Tris HCl pH 7.5, 100 mM NaCl, 5 mM MgCl2. 

Exchange of GDP for GTP was initiated by the addition of 10 mM EDTA. Reactions were 

incubated for 3 hours at 4°C and stopped by addition of 1 M MgCl2 to a final concentration of 20 

mM MgCl2 to quench the EDTA. GTP-loaded protein was buffer exchanged into either NMR 

buffer or the GTPase assay buffer using NAP-5 Sephadex G-25 DNA Grade columns (GE 

Healthcare # 17085301). We were unable to obtain sufficient material for some mutants (H141E/I, 

Y148I), for which we collected AP-MS data, since these mutants precipitated during the nucleotide 

exchange process at the high concentrations required for 31P NMR, possibly because of the limited 

stability of nucleotide-free Ran/Gsp1 generated during exchange, as noted previously.143 

Reverse phase high performance liquid chromatography (HPLC)  

Analysis of bound nucleotide was performed using reverse-phase chromatography as 

previously described142 using a C18 column (HAISIL TS Targa C18, particle size 5 μm, pore size 

120 Å, dimensions 150 x 4.6 mm, Higgins Analytical # TS-1546-C185). The column was preceded 

by a precolumn filter (The Nest Group, Inc, Part # UA318, requires 0.5 μm frits, Part # UA102) 

and a C18 guard column (HAICart SS Cartridge Column, HAISIL Targa C18, 3.2x20 mm, 5μm, 

120 Å Higgins Analytical # TF-0232-C185, requires a Guard Holder Kit, Higgins Analytical # 

HK-GUARD-FF). To prepare the nucleotide for analysis, a Gsp1 sample was first diluted to a 

concentration of 25-30 μM and a volume of 40 μl. The protein was denatured by addition of 2.5 

μl of 10% perchloric acid (HClO4). The pH was raised by addition of 1.75 μl 4 M sodium acetate 

(CH3COONa) pH 4.0. The nucleotide was separated from the precipitated protein before 
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application to the column by spinning at 20,000 x g for 20 minutes. 30 μl of supernatant was 

withdrawn and mixed 1:1 with reverse-phase buffer (10 mM tetra-n-butylammonium bromide, 100 

mM KH2PO4 / K2HPO4, pH 6.5, 0.2 mM NaN3). 20 μl of sample was injected onto the equilibrated 

column and  run isocratically in 92.5% reverse-phase buffer, 7.5% acetonitrile at a flow rate of 1 

ml/min for 35 min (~20 column volumes). Nucleotide retention was measured by monitoring 

absorbance at both 254 nm and 280 nm. Example HPLC reverse phase chromatogram of GTP-

loaded wild-type Gsp1 is shown in Figure 2.28. 

NMR Spectroscopy 

Gsp1 samples for 31P NMR spectroscopy were first loaded with GTP as described above, and 

buffer exchanged into NMR Buffer (D2O with 50 mM Tris-HCl pH 7.4, 5 mM MgCl2, 2 mM 

Dithiothreitol). Final sample concentrations were between 250 μM and 2 mM, and 400 μl of 

sample were loaded into 5 mm Shigemi advanced microtubes matched to D2O (BMS-005TB; 

Shigemi Co. Ltd, Tokyo, Japan.). 31P NMR experiments were performed on a Bruker Avance III 

600 MHz NMR spectrometer with a 5 mm BBFO Z-gradient Probe. Spectra were acquired and 

processed with the Bruker TopSpin software (version 4.0.3). Indirect chemical shift referencing 

for 31P to DSS (2 mM Sucrose, 0.5 mM DSS, 2 mM NaN3 in 90% H2O + 10% D2O; water-

suppression standard) was done using the IUPAC-IUB recommended ratios.144 Spectra were 

recorded at 25°C using the pulse and acquire program zg (TopSpin 3.6.0), with an acquisition time 

of 280 milliseconds, a recycle delay of 3.84 seconds, and a 65° hard pulse. *4,096 complex points 

were acquired over the course of 4,096 scans and a total acquisition time of 4.75 hours. Spectra 

were zero-filled once and multiplied with an exponential window function (EM) with a line-

broadening of 6 Hz (LB = 6) prior to Fourier transformation. Peaks were integrated using the auto-

integrate function in TopSpin 4.0.7, and peak areas were referenced to the bound GTP-β peak of 
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each spectrum. The peak at approximately -7 ppm is defined as γ1 and the peak at approximately 

-8 ppm is defined as γ2. The percent of γ phosphate in γ2 is defined as a ratio of areas under the 

curve between the γ2 and the sum of the γ1 and γ2 peaks. 

Kinetic measurements of GTP hydrolysis. 

Kinetic parameters of the GTP hydrolysis reaction were determined using a protocol similar to 

one previously described.145 Gsp1 samples for GTP hydrolysis kinetic assays were first loaded 

with GTP as described above. GTP hydrolysis was monitored by measuring fluorescence of the E. 

coli phosphate-binding protein labeled with 7-Diethylamino-3-[N-(2-maleimidoethyl) carbamoyl] 

coumarin (MDCC) (phosphate sensor, CAT # PV4406, Thermo Fisher) upon binding of the free 

phosphate GTP hydrolysis product (excitation at 425 nm, emission at 457 nm). All experiments 

were performed in GTPase assay buffer (40 mM HEPES pH 7.5, 100 mM NaCl, 4 mM MgCl2, 1 

mM Dithiothreitol) at 30°C in 100 μl reaction volume on a Synergy H1 plate reader from BioTek, 

using Corning 3881 96-well half-area clear-bottom non-binding surface plates. The phosphate 

sensor at 20 μM and 50 μM concentrations was calibrated with a range of concentrations of 

K2HPO4 using only the data in the linear range to obtain a conversion factor between fluorescence 

and phosphate concentration. For each individual GAP-mediated GTP hydrolysis experiment, a 

control experiment with the same concentration of GTP-loaded Gsp1 and the same concentration 

of sensor, but without added GAP, was run in parallel. The first 100 s of these data were used to 

determine the baseline fluorescence, and the rest of the data were linearly fit to estimate intrinsic 

GTP hydrolysis rate (Table 2.8). Although we do estimate the intrinsic hydrolysis rates from the 

background data, the estimate is only approximate, as well as 105 to 106 lower than the rate of 

GAP-mediated GTP hydrolysis, which is why we do not use intrinsic hydrolysis rates when fitting 

the GAP-mediated hydrolysis data. The affinity of Rna1 for GDP-bound Ran is negligible (Kd of 
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100 μM for Ran:GDP,146 which is ~250-fold weaker than the estimated Km for GAP-mediated 

GTP hydrolysis) and was not taken into account when fitting the data.  

As the estimated Km for the GAP-mediated hydrolysis for many of the Gsp1 variants was low 

(in the 0.1-0.4 μM range, resulting in difficulties to reliably measure hydrolysis at low substrate 

concentrations), we sought to estimate the kinetic parameters (kcat and Km) by directly analysing 

the full reaction progress curve with an analytical solution of the integrated Michaelis-Menten 

equation (see section below for details).  

Estimating the kcat and Km parameters of GAP-mediated hydrolysis using an accurate solution to 

the integrated Michaelis-Menten equation. 

Others (e.g. Goudar et al147) have shown that both kcat and Km can be estimated with reasonable 

accuracy/precision from a single time-course with initial [S] > Km by directly analyzing the full 

reaction progress curve with an analytical solution of the integrated Michaelis-Menten equation 

based on the Lambert ω function. This analysis is possible because the full reaction progress curve 

is characterized by an initial linear phase for [S] > Km, a final exponential phase for [S], and a 

transition phase for [S] ~ Km. Whereas kcat is sensitive to the slope of the initial linear phase (i.e. 

the initial velocity), Km is sensitive to the shape of the progress curve, which will have an extended 

linear phase if Km << initial [S] or no linear phase if Km >> initial [S]. Use of the integrated 

Michaelis-Menten analysis requires the experiment to be set up with the following conditions: (i) 

[Gsp1:GTP0] > Km, (ii) [GAP0] <<< [Gsp1:GTP0], and (iii) the reaction time course F(t) is 

measured to completion (i.e. until it approaches equilibrium). Our experiments were all set up to 

fulfill those conditions, which means that the F(t) sampled a concentration range from [Gsp1:GTP] 

(at t = 0) > Km to [Gsp1:GTP] (at t = final time) << Km. The entire F(t) can then be directly analyzed 

by a non-linear fit with the analytical solution for the integrated Michaelis-Menten equation. As 
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the initial linear phase of the time course is well measured, kcat can be well determined. As the 

exponential phase and transition region of the time course are also well measured, the maximum 

likelihood value of Km can also be determined. 

Specifically, each time course was fitted to an integrated Michaelis Menten equation: 

𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 = 𝐵 + [𝐸]𝑡(𝐶𝑖 + (𝐶𝑓 − 𝐶𝑖)(1 − 𝐾𝑚 ∗  
𝜔
[𝑆]0
), 

where [E]t is the total enzyme (GAP) concentration, Ci is the initial fluorescence, Cf is the final 

fluorescence, [S]0 is the initial concentration of the substrate (GTP loaded Gsp1), and B is the 

baseline slope in fluorescence per second. Exact concentration of loaded Gsp1:GTP [S]0 was 

estimated based on the plateau fluorescence and the sensor calibration parameters to convert the 

fluorescence to free phosphate concentration. The ω parameter was solved by using the Lambert 

ω algorithm, as previously described,147 where 

𝜔 = 𝐿𝑎𝑚𝑏𝑒𝑟𝑡 𝑜𝑚𝑒𝑔𝑎([𝑆]0
𝐾𝑚
 𝑒
[𝑆]0− 𝑘𝑐𝑎𝑡[𝐸]𝑡∗𝑡𝑖𝑚𝑒

𝐾𝑚 ). 

The curves were fit with the custom-made software DELA.148 Examples of full reaction progress 

curves and their integrated Michaelis-Menten fits are shown in Figure 2.13. 

We confirmed that the kinetic value parameters we obtained for wild-type Gsp1 using the 

phosphate sensor and integrated Michaelis-Menten equation were similar to those estimated using 

intrinsic tryptophan fluorescence.149 Their values were a Km of 0.45 μM and kcat of 2.1 s-1 at 25˚C 

for mammalian Ran hydrolysis activated by S. pombe GAP, while our values for wild type S. 

cerevisiae Gsp1 and S. pombe GAP at 30˚C are Km of 0.38 μM and kcat of 9.2 s-1. 

For most mutants a concentration of 1 nM GAP (SpRna1, Rna1 from S. pombe) was used. In 

order to run the time courses to completion, for mutants with low kcat/Km enzyme concentrations 

of 2-5 nM were used. Initially we collected time course data for all Gsp1 variants at approximately 
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8 μM concentration of loaded Gsp1:GTP with 1 nM GAP and 20 μM phosphate sensor. If the 

estimated Km was higher than 1 μM, we repeated the time course kinetic experiments with higher 

concentration of Gsp1:GTP of approximately tenfold above the Km.  

To quantify the accuracy of parameter (kcat, Km) estimation for GAP-mediated GTP-hydrolysis 

by the integrated Michaelis Menten approach over a range of kinetic parameters and substrate 

concentrations [Gsp1:GTP] we simulated data covering the range of parameters estimated for all 

of our Gsp1 point mutants, and estimated the accuracy of parameters determined given the 

Gaussian noise similar to our experimental data. The largest standard deviations were 3%, 17%, 

and 18% for kcat, Km, and kcat/Km, respectively (Figure 2.29). In addition, we analyzed how the χ2 

statistic changed as the Michaelis Menten parameters were systematically varied around the 

estimated maximum likelihood values (Figure 2.30). For these analyses, the kcat or Km values were 

independently fixed and incremented while the remaining parameters were fit to generate χ2 

surfaces for one degree of freedom. Confidence intervals (CIs) for which χ2 increased by 4.0 

compared to the maximum likelihood minimum were estimated by linear interpolation after 

iterative bisection. A χ2 increase of 4.0 corresponds to the 95% confidence limit for a normal 

distribution. The kcat/Km ratio and corresponding χ2 values were derived from the analyses with 

systematic variation of either kcat or Km. CIs for kcat/Km were estimated by linear interpolation 

without iterative bisection. The χ2 surfaces approach a parabolic shape with a well-defined 

minimum at the maximum likelihood value. The CIs are further consistent with the parameter 

ranges obtained from the simulations. Thus, both the simulations and χ2 surfaces indicate that kcat 

and Km are estimated with reasonable accuracy over the range of parameter values and 

experimental conditions used in this study.  
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The Michaelis Menten kcat and Km parameters and their standard deviations were calculated 

from at least three technical replicates from two or more independently GTP-loaded Gsp1 samples 

(Table 2.6). For more details on the kinetic analysis see the Supplementary Note. 

Kinetic measurements of Srm1 mediated nucleotide exchange. 

Kinetic parameters of GEF mediated nucleotide exchange were determined using a 

fluorescence resonance energy transfer (FRET) based protocol.149 Each Gsp1 variant was purified 

as a Gsp1:GDP complex, as confirmed by reverse phase chromatography. Nucleotide exchange 

from GDP to mant-GTP (2'-(or-3')-O-(N-Methylanthraniloyl) Guanosine 5′-Triphosphate, CAT # 

NU-206L, Jena Biosciences) was monitored by measuring a decrease in intrinsic Gsp1 tryptophan 

fluorescence (295 nm excitation, 335 nm detection) due to FRET upon binding of the mant group. 

Each time course was measured in GEF assay buffer (40 mM HEPES pH 7.5, 100 mM NaCl, 4 

mM MgCl2, 1 mM Dithiothreitol) with excess of mant-GTP. The affinity of Ran/Gsp1 is estimated 

to be 7-11-fold lower for GTP than for GDP,143 and for most variants of Gsp1 we measured time 

courses at Gsp1:GDP concentrations ranging from 0.25 to 12 μM with an excess mant-GTP 

concentration of 200 μM. For Gsp1 variants with high Km values that had to be measured at 

concentrations of up to 200 μM we used an excess of 1000 μM mant-GTP. In addition, we fit the 

data using a combination of fits following the approach of Klebe.149 For concentrations of substrate 

(Gsp1:GDP) that were much lower than the excess of mant-nucleotide (200 μM) we used a 

combination of two exponential decays, and for reactions with high concentrations of Gsp1, where 

the relative excess of mant-nucleotide was lower, we always estimated the initial rates using linear 

fits to the very beginning of the reaction, when levels of mant-nucleotide-bound Gsp1 are very low 

and therefore exchange is overwhelmingly from Gsp1-GDP to Gsp1-mant-nucleotide. 
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All kinetic measurements were done at 30ºC in 100 μl reaction volume using 5 nM GEF (Δ1-

27Srm1), except for higher concentrations of the mutants with high Km values that were measured 

at 20 nM GEF. Data were collected in a Synergy H1 plate reader from BioTek, using Corning 

3686 96-well half-area non-binding surface plates. For low concentrations of Gsp1:GDP the time 

course data were fit to a combination of two exponential decays: 

Y = span1 * exp(kexchange * Time) + span2 * exp(kbackground * Time) + fluorescenceplateau 

where kexchange is the rate constant of the GDP to mant-GTP exchange, kbackground is the rate constant 

of background decay due to photo-bleaching, and span1 and span2 are the fluorescence amplitudes 

for the two processes. For high concentrations of substrate, or for mutants with very low rates, the 

initial velocity was determined by a linear fit to the initial 10-20% of the data. As the intrinsic 

exchange rate in the absence of GEF is estimated to be more than 104 lower143 we do not use the 

intrinsic rate for fitting the data. The kinetic parameters of the nucleotide exchange were 

determined by fitting a Michaelis-Menten equation to an average of 38 data points (ranging from 

17 to 91) per Gsp1 point mutant for a range of substrate concentrations from [Gsp1:GDP] = 0.25 

μM to [Gsp1:GDP] >> Km. Michaelis-Menten fits are shown in Figure 2.14. Michaelis-Menten 

kcat and Km parameters for GEF-mediated nucleotide exchange are provided in Table 2.7. The 

errors of the kcat and the Km parameters were determined from the standard error of the exponential 

fit of the Michaelis-Menten equation to the data. The error of the catalytic efficiency (kcat/Km) was 

calculated by adding the standard errors of the individual parameters and normalizing it for the 

values of the parameters (𝑘𝑐𝑎𝑡 𝐾𝑚⁄ √(𝑠𝑡𝑑. 𝑒𝑟𝑟𝑜𝑟(𝑘𝑐𝑎𝑡) 𝑘𝑐𝑎𝑡⁄ )
2
+ (𝑠𝑡𝑑. 𝑒𝑟𝑟𝑜𝑟(𝐾𝑚) 𝐾𝑚⁄ )

2
 ). 

All custom code for fitting and analysis of kinetics data is provided in the accompanying repository 
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(https://github.com/tinaperica/Gsp1_manuscript/tree/master/Scripts/kinetics). For more details on 

the kinetic analysis see the Supplementary Note. 

Supplementary Note 

Linkage criteria used for E-MAP hierarchical clustering analyses  

For clustering of Gsp1 mutants and E-MAP library genes (Figure 2.1C, Figure 2.5, Figure 

2.7) we used average linkage to be consistent with how we and others have clustered and 

represented genetic interaction (GI) data in previously published E-MAP datasets (as detailed in 

Braberg et al150). Even though our data are based on screens of point mutants of a single protein, 

different from most previous studies that screen knockouts of many different genes, we show that 

average linkage remained an appropriate criterion for clustering our E-MAP matrix based on the 

recovery of known groups of functionally related genes within the dendrogram of library genes 

(Figure 2.1C, Figure 2.7B).  

The clustering analysis in Figure 2.17A had the goal of assigning the Gsp1 mutants by 

functional similarity to classes in an unbiased manner, and to assess whether the classes of mutants 

matched the grouping defined by the in vitro kinetics and NMR data. To quantify functional 

similarity, we adopted the widespread approach of computing correlation coefficients between GI 

profiles. Most studies have represented these data as networks and used existing annotations 

(typically Gene Ontology categories) to assert functional groupings65 but we sought to use an 

unsupervised clustering approach instead. To do so, we used Ward’s linkage criterion, since it was 

designed to build hierarchies by selecting joining operations that minimize within-group 

dispersion151 to find compact, spherical clusters. Indeed, we found Ward’s linkage resulted in 

rounder clusters reflecting known biological functions, and these clusters were less sensitive to 
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sparsely populated outliers. In contrast, we found the average linkage criterion to be more sensitive 

to a few sparsely populated outliers (resulting in a variety of group sizes).  

Nonetheless, to show that the linkage method used does not alter our primary conclusions 

regarding the grouping of mutants, we compared the clustering from average linkage with the 

clustering from Ward’s method in the dendrograms (Figure 2.31). Both methods identify the three 

main classes of mutants (I, II, and III below, I, III, and IV above), but average linkage is more 

sensitive to the sparsely populated vectors and outliers, resulting in a wider variety of cluster sizes. 

Potential dependencies between alleles when computing genetic interaction (GI) profile 

correlations  

We use Pearson correlations in three cases: (1) as a distance metric for clustering the Gsp1 E-

MAP matrix (Figure 2.1C, Figure 2.5, Figure 2.7B), (2) for quantifying the functional similarity 

of GI profiles of Gsp1 point mutants and S. cerevisiae alleles (Figure 2.1E, Figure 2.17ABD, 

Figure 2.18), and (3) as a distance metric for clustering the vectors of Gsp1 mutant correlations 

(Figure 2.17A). In all three cases, there are certainly dependencies between some S. cerevisiae 

alleles, as evidenced by their own clustering into groups according to their biological function 

(Figure 2.1C): mRNA export genes cluster together, meaning that if one mRNA export gene has 

a large negative S-score with a Gsp1 mutant, other mRNA export genes are likely to as well 

(relevant for case 1). Likewise, if the GI profile of a gene is significantly correlated with a Gsp1 

mutant, other genes in the same pathway are likely to have correlated profiles as well (relevant for 

cases 2 and 3). This dependency is expected and is indeed a main benefit of a GI profiling 

approach, as the S-scores allow us to infer functional relationships between genes and ascribe 

likely functions to unknown genes. 
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With regards to Case 1, we note that assessing similarity of GI profiles using Pearson 

correlations without further correction for dependencies between alleles is a standard analysis.65,66  

Case 2 is the only analysis for which we compute statistical significance when using 

correlations. We accounted for the dependencies between alleles by adjusting our p-values to 

control the False Discovery Rate, which has been shown to be valid when this form of dependency 

(positive regression dependency) exists between test statistics.134 In plots showing correlations 

between genetic interaction profiles of Gsp1 mutants and S. cerevisiae alleles, we use these 

corrected p-values instead of correlation values for simplicity, because, as can be seen in Figure 

2.32, only positive correlations of above 0.1 have significant p-values.  

With regards to Case 3, most GI studies have used the correlations between GI profiles to 

define edge attributes for graphical representations of GI networks. We elected to keep the data in 

matrix form and cluster it to identify functionally similar groups of mutants and S. cerevisiae 

alleles in an unbiased fashion. To cluster the Gsp1 vectors of p-values (columns), we used Pearson 

correlations as a distance metric. To cluster the S. cerevisiae alleles (rows), we used the Euclidean 

distance instead of the Pearson correlation (as stated in the GI profile correlation measurements 

section of the Methods) because the vectors were only 22 entries long and many were sparse, 

making them especially sensitive to outliers when using Pearson correlation as the distance metric. 

To test whether the use of Pearson correlations for the clustering of mutant vectors significantly 

changes our clustering, we re-clustered the matrix in Figure 2.17A using the Spearman correlation 

or the Euclidean distance as distance metrics instead. While there are slight differences in the 

ordering of mutants using these different distance metrics, the grouping of mutants is very similar 

to the original heatmap in Figure 2.17A in that it identifies a GAP-perturbed group of mutants, a 

GEF-perturbed group of mutants, and an intermediate group (Figure 2.33). Thus, we believe this 
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analysis robustly identifies three functional classes of Gsp1 mutants regardless of any effect that 

dependencies between the S. cerevisiae alleles may have on the Pearson correlations.  

Robustness of the analysis to leaving out data 

Sub-sampling EMAP data. 

We randomly subsampled the library genes in the Gsp1 E-MAP (Figure 2.1C) and found that 

similar groupings of mutants were maintained down to 60% of the library (Figure 2.34). We also 

sub-sampled the S. cerevisiae alleles in the correlation p-value matrix (Fig. 2.17A) and found that 

the groupings of mutants were maintained down to 50% (Figure 2.35). 

Withholding mutants 

We performed a computational analysis where we withheld each of our mutants from the 

analysis one at a time, perform the clustering of genetic interaction profiles for the remaining data 

as in Figure 2.17A, and then assign the withheld mutant to the group whose centroid is most 

correlated with the mutant. In 21/22 cases, the withheld mutant had the highest correlation with 

the centroid of its original group (Figure 2.36, dark bars). This analysis confirms the robustness 

of our analysis and addresses the question whether our model would be capable of placing a new 

mutant not included in the analysis into the correct category. 

Potential caveats associated with using the GAP (Rna1) from S. pombe 

Our GAP-mediated GTP hydrolysis kinetics experiments used the wild type and mutant Gsp1 

from S. cerevisiae, but Rna1 GAP from S. pombe. We chose to use the Rna1 ortholog from S. 

pombe as S. cerevisiae Rna1 formed soluble aggregates after purification, and S. pombe Rna1 was 

the only RanGAP for which there was a structure in complex with Ran (PDB IDs: 1K5D and 

1K5G). While there could be slight differences between the kinetic parameters of S. pombe and S. 
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cerevisiae GAP Rna1 acting on Gsp1, we do not believe these differences would significantly 

affect our conclusions, based on the following considerations: 

Sequence conservation between S. cerevisiae and S. pombe Rna1.  

A sequence alignment between S. cerevisiae, S. pombe, and human GAP proteins shows that 

all but one interface core residue in the PDB file 1K5D is conserved in sequence between S. 

cerevisiae and S. pombe (Figure 2.26). Overall, out of the 1290 Å2 buried by S. pombe Rna1 upon 

interface formation with Ran (PDB 1K5D), 997 Å2 (77%) are buried by residues that are conserved 

in sequence between S. pombe and S. cerevisiae, and the sequence identity of the Rna1 interface 

with Ran/Gsp1 (including all residues that change solvent accessible surface area upon complex 

formation) overall is 71% (Table 2.1). 

Comparable kinetic parameters to the human Ran/RanGAP1 pair.  

The kinetic parameters for our S. cerevisiae Gsp1 and S. pombe Rna1 GAP are comparable to 

the kinetic parameters for the human Ran and human RanGAP1 reported by Klebe et al.149 They 

estimate a Km of 0.45 μM and kcat of 2.1 s-1 for Ran/RanGAP1 at 25˚C, while our values for the 

wild type S. cerevisiae Gsp1 and S. pombe Rna1 at 30˚C are a Km of 0.38 μM and kcat of 9.2 s-1. In 

addition, it was shown that Rna1 from S. pombe can activate the hydrolysis in both human and S. 

cerevisiae Ran/Gsp1 with very similar observed rates of hydrolysis (Figure 4A in Becker et al152). 

Conclusions are based on relative values between the wild-type Gsp1 and its point mutants.  

Although we report the absolute values of the kinetics parameters, when we compare the 

kinetics parameters with the results from genetic interaction profiling and AP-MS, we always use 

the relative parameters as compared to the wild type. Based on the sequence conservation and 

comparable kinetics described above, we expect the relative ordering of mutants to be similar as 
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well. Importantly, we use the relative kinetic data to group our mutants into three classes. Even in 

the case of small quantitative differences caused by using the S. pombe instead of the S. cerevisiae 

Rna1 GAP, we make the assumption that these differences would not significantly affect this 

grouping. 

Validity of the Michaelis-Menten formalism for GTPases 

Michaelis-Menten formalisms have been used for multiple GTPases including Ran,143 Ras,153 

or Rap.154 Historically there have been many attempts to formalize the conditions under which the 

Michaelis-Menten equation to describe enzyme kinetics are valid (as reviewed by Schnell155). 

These conditions have converged on the steady-state approximation or more generally, on the 

reactant stationary assumption. The formal condition for steady-state approximation is that t[ES] 

(the time it takes for the steady-state levels of [ES] complex to accumulate) is substantially shorter 

than t[S] (the time where [S] changes significantly). The formal condition for reactant stationary 

assumption is that [S] ≈ [S0] during initial build-up of [ES].  

The formal condition for validity of the Michaelis-Menten equation can be expressed as: 

[𝐸0]
𝐾𝑚+ [𝑆0]

 ≪ (1 + 𝐾
𝐾𝑆
) (1 + [𝑆0]

𝐾𝑚
), 

where 𝐾 = 𝑘𝑐𝑎𝑡
𝑘𝑜𝑛

 and 𝐾𝑆 = 
𝑘𝑜𝑓𝑓
𝑘𝑜𝑛

, and koff and kon are the rates of [ES] complex formation.156 

The measured dissociation constant, 𝐾𝑆 = 
𝑘𝑜𝑓𝑓
𝑘𝑜𝑛

, for the formation of the Ran:GDP:RCC1 

complex from Ran:GDP and RCC1, where RCC1 is the human RanGEF, is 0.9 μM,149 which is 

approximately the same as the Km value obtained for the GEF-mediated nucleotide exchange for 

both S. cerevisiae Gsp1 and human Ran. That means than 𝐾 ≪ 𝐾𝑆, and so the condition for 

validity of the Michaelis-Menten equation can be approximated as [𝐸0]
𝐾𝑚+ [𝑆0]

 ≪ (1 + [𝑆0]
𝐾𝑚
). Since 
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in all of our GEF experiments [E0] = 5-20 nM << Km and [E0] << [S0], the condition holds true for 

the entire range of [S0] values, both below and above the Km. 

As 𝐾
𝐾𝑆

 can also be expressed as 𝑘𝑐𝑎𝑡
𝑘𝑜𝑓𝑓

, and the measured koff of human Ran:GTP and RanGAP 

from S. pombe is estimated to be around 150 s-1, while our measured kcat values range from 1 to 10 

s-1, as above, 𝐾
𝐾𝑆
 ≪ 1 the assumption of steady-state holds true as long as [E0] << Km and [E0] << 

[S0], which is the case as we used 1-5 nM GAP in all of our experiments. 
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Figures 

 
Figure 2.1 GI profiles of Gsp1 interface point mutants cluster by biological processes but not by 
targeted interfaces.  
(a) Interface point mutations enable the probing of biological functions of the multi-specific GTPase switch 
Gsp1. (b) Mutated residue positions shown as Cα atom spheres on the structure of GTP-bound Gsp1. Bold 
font indicates the positions of mutations with strong GI profiles; italic font indicates the positions not 
conserved in the sequence between S. cerevisiae and human. Colored dots, interaction partners for which 
the residue is in the interface core; blue and pink: switch I and switch II regions, respectively. (c) GI profiles 
of 23 GSP1 mutants with nine or more significant GIs, hierarchically clustered by Pearson correlation. A 
negative S-score (blue) indicates synthetic sick or synthetic lethal GIs; a positive S-score (yellow) indicates 
suppressive or epistatic GIs. (d) Distributions of significant GIs of GSP1 point mutants compared to GIs of 
mutant alleles of essential and non-essential genes. (e) Distributions of Pearson correlations between the 
GI profiles of Gsp1 interaction partners and GSP1 mutants if mutation is (right, black) or is not (left, grey) 
in the interface with that partner. Point size corresponds to the false discovery rate (FDR)-adjusted one-
sided (positive) P value of the Pearson correlation. Pink bars (d, e), mean. 
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Figure 2.2 Design of interface point mutations in S. cerevisiae Gsp1. 
Interface residues are categorized as interface core, rim, and support positions (see Supplementary 
Methods) and provided in Supplementary Table 2. (a–f) Structures of RAN (Gsp1) in partner-bound 
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conformations with interface residues coloured by partner protein. All mutated Gsp1 residues are shown as 
spheres. (a) Srm1 (GEF) interface core (dark teal) and interface rim and support (light teal) PDB 1I2M; (b) 
Rna1 (GAP) interface core (dark orange) and interface rim and support (light orange) PDB 1K5D; (c) Ntf2 
interface core (dark purple) and interface rim and support (light purple) PDB 1A2K; (d) Residues that are 
in both the core of the Yrb1 and Yrb2 interfaces (dark yellow), and in only one of the two interfaces (light 
yellow) PDB 1K5D; (e) Srp1 interface core (dark pink) and interface rim and support (light pink) PDB 
1WA5; (f) Residues that are in the core of four or more (dark green), two to three (green) and one (light 
green) karyopherin interface. Karyopherins are: Kap95, Crm1, Los1, Kap104, Msn5, Cse1, Mtr10. PDB 
2BKU. (g) Location of Gsp1 residues in partner interfaces. Residues within 5 Å of the nucleotide, in the 
canonical P-loop, or in the switch I or II regions126 were not mutated. Residues belonging to the switch I, 
switch II, and C-terminal α helix are indicated by dark navy bars. Chosen Gsp1 point mutation substitutions 
are provided in Table 2.3. 
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Figure 2.3 Cartoon representation of co-complex structures of S. cerevisiae Gsp1 (dark navy) with 
indicated partners (or homologs). 
Srm1 (PDB 1I2M), Rna1 (PDB 1K5D), Ntf2 (PDB 1A2K), Nup1/Nup60 (PDB 3CH5), Yrb1 (PDB 3M1I), 
Yrb2 (PDB 3WYF), Srp1 (PDB 1WA5), Kap95 (PDB 2BKU), Crm1 (PDB 3M1I), Los1 (PDB 3ICQ), 
Pse1(PDB 3W3Z), Kap104 (PDB 1QBK), Msn5 (PDB 3A6P), Cse1 (PDB 1WA5), Mtr10 (PDB 4OL0). 
Species and sequence identity to S. cerevisiae homologs for these structures are provided in Table 2.1.  
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Figure 2.4 Endogenous expression levels of Gsp1 in S. cerevisiae strains with genomically integrated 
GSP1 point mutations profiled by western blot. 
(a) Expression data for strong mutants, defined as mutants with nine or more significant GIs. (b) Expression 
data for weak mutants, defined as mutants with fewer than nine significant GIs. In (a) and (b), bar heights 
indicate averages over two or more biological replicates (n) grown on separate days (except for T34D which 
has only one biological replicate), with error bars indicating one standard deviation for n >= 3. Overlaid 
points indicate individual biological replicates (each an average over at least 12 technical replicates per 
biological replicate for wild-type and MAT:α strains, and between one and six technical replicates per 
biological replicate for mutant strains). Expression levels are relative to the expression levels of wild-type 
Gsp1 protein with clonNAT resistance marker (WT) shown as red dashed lines (relative expression of 1). 
MAT:α is the starting S. cerevisiae strain (see Methods). (c) Distributions of average relative expression 
levels for strong and weak mutants. Each point is as in (a) and (b). Horizontal pink bars indicate the mean 
of the point distributions.  
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Figure 2.5 GI profiles of the 56 GSP1 strains (wild-type GSP1 with clonNAT cassette and 55 point 
mutants). 
Negative S-score (blue) represents synthetic sick or synthetic lethal GIs, positive S-score (yellow) 
represents suppressive or epistatic GIs; neutral S-scores (no significant GI) are shown in black. Gsp1 point 
mutants and S. cerevisiae genes are hierarchically clustered by Pearson correlation. GSP1 mutants fall into 
two clusters: a cluster of 23 strong mutants with nine or more significant GIs and 32 weak mutants with 
fewer than nine significant GIs.  
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Figure 2.6 Comparison of definitions of high confidence S-scores used in our analysis. 
(a) Distribution of the SGA scores scaled to the E-MAP S-scores versus their corresponding published p-
values from the CellMap.65 (b) Distribution of the E-MAP S-score averaged from all the individual 
replicates versus the confidence of the functional genetic interaction reproduced from Collins et al.63 
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Figure 2.7 Functional profiles of GSP1 mutants cannot be explained solely by the positions of 
mutations in interfaces. 
(a) Locations of mutated residues in structurally characterized interfaces. ΔrASA is the difference in 
accessible surface area of a residue upon binding, relative to an empirical maximum for the solvent 
accessible surface area of each amino acid residue type (see Methods). (b) GI profiles of GSP1 mutants 
group S. cerevisiae genes by biological processes and complexes, such as the dynein/dynactin pathway, 
SWR1 complex, the Hog1 signaling pathway, mRNA splicing, mitochondrial proteins, and the Rpd3L 
histone deacetylase complex. (c) Distributions of Pearson correlations between the GI profiles of strong 
GSP1 mutants and alleles of Gsp1 direct interaction partners with available co-complex crystal structures 
(left) and strong GSP1 mutants and alleles of all other S. cerevisiae genes (right). (d) Distributions of 
Pearson correlations between the GI profiles of Gsp1 interaction partners and strong and weak GSP1 
mutants if mutation is (black and light purple) or is not (grey and dark purple) in the interface with that 
partner. Teal violin plot on the right represents the distribution of all other Pearson correlations between 
GSP1 mutants and S. cerevisiae genes. In (c) and (d), point size indicates the false discovery rate adjusted 
one-sided (positive) p-value of Pearson correlation, and pink bars indicate the mean of the point 
distributions; n denotes the number of GSP1 point mutant-gene GI profile correlations in each category. 
Data for strong mutants are also shown in Figure 2.1E and included here for comparison. 
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Figure 2.8 Gsp1 interface point mutations rewire the physical interaction network of Gsp1, including 
interactions with the switch regulators GEF (Srm1) and GAP (Rna1). 
Shown is the log2-transformed fold change (‘log2FC’ in the figure) between the abundance of partner 
proteins pulled down with a Gsp1 mutant versus those pulled down with wild-type Gsp1. (a) Change in 
abundance of partner proteins with crystal structures in complex with Gsp1 (Rna1, Srm1, Yrb1, Kap95, 
Pse1, Srp1) in which the mutation is (left) or is not (right) in the interface core with the partner. n refers to 
the number of partner abundance changes in each category. The mean log2-transformed fold change values 
(pink bars) are −1 and 0.73, respectively (t-test P value = 1.6 × 10−5). Point size corresponds to the P value 
of abundance fold change. (b) Change in abundance of pulled-down Rna1 and Srm1. Point size as in (a); 
points colored by interface location. 
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Figure 2.9 Interface point mutations in Gsp1 rewire its physical interaction network. 
(a) Schematic representation of the affinity purification mass spectrometry (AP-MS) experiment to 
determine the abundance of pulled-down protein interaction partners of wild type and mutant Gsp1. The 
change in abundance of partner proteins pulled down with Gsp1 mutants in (b), (c), and (d) is represented 
as log2-transformed fold change (FC) between abundance of a partner pulled-down with a Gsp1 mutant 
versus pulled-down with wild-type Gsp1 (log2(abundance(PREY)MUT/abundance(PREY)WT). To account 
for possible tag effects, the fold change in prey abundance was always computed relative to the wild-type 
protein with the corresponding tag. Decreased abundance compared to pull-down with wild-type Gsp1 is 
annotated in red and increased abundance in blue. The log2-transformed fold change values are capped at 
+/− 4. (b) Amino- and (c), -carboxy terminally 3xFLAG-tagged Gsp1 point mutants (rows) and prey 
proteins identified by AP-MS (columns) hierarchically clustered by the log2-transformed fold change in 
prey abundance. (d) Prey proteins pulled down by both amino- and carboxy-terminal tagged constructs. 
Left semi-circle represents an amino-terminal 3xFLAG-tagged Gsp1 point mutant, and right semi-circle 
represents carboxy-terminal 3xFLAG-tagged Gsp1 point mutant. Semi-circle size is proportional to the 
significance of the log2-transformed fold change (false discovery rate adjusted p-value) of the prey 



 
 
 

62 

abundance in pulled-down complexes with a Gsp1 mutant compared to complexes with the wild-type Gsp1. 
Overall we identified 316 high-confidence prey partner proteins, with the amino- and carboxy-terminally 
tagged Gsp1 mutants pulling down 264 and 103 preys, respectively, including 51 overlapping preys. The 
difference in preys identified by experiments with N- or C-terminal tags illustrates the sensitivity of the 
interaction network to perturbation of Gsp1. 
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Figure 2.10 Gsp1 interface mutations rewire interactions with the core regulators Srm1 and Rna1. 
(a, b) Protein-protein interactions between interface mutants of Gsp1 and Gsp1 partners for which there are 
co-complex X-ray crystal structures (core regulators Srm1 and Rna1, and effectors Yrb1, Kap95, Pse1, and 
Srp1). Change in pulled-down prey partner abundance is expressed as log2(PREY abundanceMUT/PREY 
abundanceWT)). N-3xFL and C-3xFL labelled mutants are tagged with an amino- or carboxy-terminal triple 
FLAG tag, respectively, and partners are colored as indicated. (a) Bar plot depicting changes in pulled-
down prey partner abundance when the point mutation is in the core of the Gsp1 interface with the prey 
partner. (b) Bar plot depicting all changes in pulled-down prey partner abundance for core regulators Srm1 
and Rna1, and effectors Yrb1, Kap95, Pse1, and Srp1, regardless of whether the mutation is directly in the 
interface core with the partner or not. (c) Distribution showing the variation in log2-transformed fold change 
in abundance of all prey proteins pulled down with the Gsp1 mutants, as defined by interquartile range 
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(IQR) across mutants. Values for core partners shown as arrows (Rna1 orange, Srm1 teal, Yrb1 yellow, 
Kap95 green, Pse1 light green, Srp1 pink). Mean and +1 standard deviation of IQR values are highlighted 
with a dark grey and a light grey arrow, respectively. The extent to which the abundance of the two cycle 
regulators Rna1 and Srm1 changed across the Gsp1 point mutants is larger than the change for an average 
prey protein. All IQR values are provided in Table 2.5. (d) Position of T34 with respect to the interfaces 
with Rna1 (GAP, orange surface, PDB 1K5D), Srm1 (GEF, teal surface, PDB 2I1M), and Yrb1 (yellow 
surface, PDB 1K5D). As the coordinates for T34 are not resolved in the 2I1M structure, in all three 
structures the pink spheres show the residue location in the aligned 1K5D structure. Gsp1: navy cartoon; 
GTP nucleotide: stick representation. Residues that were mutated in the Rna1 and Srm1 interfaces are 
shown in sphere representation and are colored in orange (Rna1, left) or teal (Srm1, middle). 
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Figure 2.11 Point mutations in Gsp1 interfaces allosterically modulate GTPase cycle parameters by 
tuning active site conformational distributions. 
(a, b) Catalytic efficiency (kcat/Km) of GAP-mediated GTP hydrolysis (a) or GEF-mediated nucleotide 
exchange (b) of Gsp1 mutants. Dotted lines indicate the wild-type (WT) efficiency. In (a), points represent 
kcat/Km from an individual experiment fit to an integrated Michaelis–Menten equation. Error bars, s.e.m. 
from n ≥ 3 replicates. In (b), error bars are the s.e.m. of the Michaelis–Menten fit to data from n ≥ 17 
measurements at different substrate concentrations. (c) 31P NMR of GTP-bound Gsp1 point mutants. NMR 
peak heights are normalized to the β-peak of bound GTP (βGTPb). The two peaks of the γ-phosphate of bound 
GTP are highlighted in yellow. (d) Natural log (ln)-transformed ratios (mutant to wild-type; MUT/WT) of 
the exchange equilibrium constants (Kex = population in γ2/population in γ1, assuming a detection limit of 
3% for the γ-peak estimation by 31P NMR) plotted against the natural log-transformed ratios (MUT/WT) 
of the relative catalytic efficiency (kcat/Km) of GAP-mediated GTP hydrolysis. Error bars, s.e.m. from n ≥ 
3 replicates. Pink line, least-squares linear fit, excluding K132H, R78K and D79S (grey box).  
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Figure 2.12 Effect of Gsp1 point mutations on the in vitro efficiency of GAP-mediated GTP hydrolysis 
and GEF-mediated nucleotide exchange. 
(a) kcat and (b) Km values of GAP-mediated GTP hydrolysis of wild-type and point mutant Gsp1. Error bars 
represent the standard deviation of the kcat and the Km parameters from the integrated Michaelis-Menten fit 
for n ≥ 3 replicates. (c) kcat and (d), Km of GEF-mediated nucleotide exchange of wild-type and point mutant 
Gsp1. Inset shows the Km bar plot for all but the four mutants with the highest Km (K101R, R108L, R108I, 
and R108Y). Error bars represent the value plus/minus the standard error of the Michaelis-Menten fit to 
data from n ≥ 17 measurements at different substrate concentrations. (a-d) Dotted lines indicate the wild-
type values. Dark blue bar denotes the wild-type Gsp1, and orange and teal bars highlight the residues that 
are in the core of the interface with the GAP and GEF, respectively. (e) Comparison of relative change in 
catalytic efficiencies of GAP-mediated GTP hydrolysis (orange bars) and GEF-mediated nucleotide 
exchange (teal bars) defined as kcat

MUT/Km
MUT / kcat

WT/Km
WT. Grey line indicates a three-fold increase 

compared to wild type and black line indicates a three-fold decrease compared to wild type. Error bars 
represent the added standard error of the mean (for GAP) or standard error of the fit (for GEF) values of 
the mutant and the wild-type efficiency (kcat/Km) values. Mutations not in the interface core with the GAP 
both increased (3-fold, R108G mutant) and decreased (3 to 10-fold, T34E/Q /A/G, R78K, D79S/A, R108I, 
and R112S mutants) the catalytic efficiency kcat/Km of GAP-mediated GTP hydrolysis, compared to wild-
type Gsp1. As expected, mutations in the interface core with the GEF (K101, and R108) decreased the 
catalytic efficiency of GEF-mediated nucleotide exchange >40-fold. However, other mutations not in the 
GEF interface core (R78K, R112S, Y157A) also decreased the efficiency notably (3- to 10-fold). 
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Figure 2.13 GAP-mediated GTP hydrolysis monitored as fluorescence increase upon binding of 
released free phosphate to a fluorescent phosphate sensor. 
Curves were fit with the integrated Michaelis-Menten equation using the DELA software. Final Michaelis-
Menten kinetic parameters (kcat and Km) for each Gsp1 mutant were calculated from three to nine 
individually fit curves as the ones shown in this figure. (a) Wild type Gsp1, (b-y), Gsp1 point mutants. 
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Figure 2.14 Michaelis-Menten plots for GEF-mediated nucleotide exchange. 
Black line represents the Michaelis-Menten fit, and the gray lines represent the plus and minus one standard 
error of the fit. (a) Wild type Gsp1. (b-y) Gsp1 point mutants. 
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Figure 2.15 Gsp1 interface mutations act allosterically to modulate the rate of GTP hydrolysis. 
(a) Annotated 1D 31P NMR spectrum of wild-type Gsp1 loaded with GTP. Peak areas are computed over 
intervals shown and normalized to the GTPβ bound peak. The peaks from left to right correspond to: free 
phosphate (Pi), β phosphate of GDP bound to Gsp1 (GDPβbound), β phosphate of free (unbound) GDP 
(GDPβfree), γ phosphate of GTP bound to Gsp1 in conformation 1 (γ1), γ phosphate of GTP bound to Gsp1 
in conformation 2 (γ2), α phosphate of bound or unbound GDP or GTP, β phosphate of GTP bound to Gsp1 
(GTPβbound), β phosphate of free (unbound) GTP (GTPβfree). (b) Rate of intrinsic GTP hydrolysis of 
wild-type Gsp1 and mutants. Dotted line indicates wild-type value. Error bars represent the standard 
deviations from n ≥ 3 replicates (dots). (c) Natural log-transformed exchange equilibrium constant between 
the γ2 and γ1 conformations plotted against the relative rate of intrinsic GTP hydrolysis represented as a 
natural logarithm of the ratio of the rate for the mutant over the rate of the wild type. The pink line is a 
linear fit. Error bars represent the standard deviation from n ≥ 3 replicates of intrinsic GTP hydrolysis 
measurements. (d) Location of Y157, H141, and Q147 (pink spheres) in the Crm1 interface (grey surface, 
PDB 3M1I). Gsp1: navy cartoon; GTP nucleotide: yellow stick representation. (e) Location of T34 (pink 
spheres) in the interface with Yrb1 (grey surface, PDB 1K5D). Distances from the γ phosphate of GTP to 
the residue α-carbon are indicated below the residue numbers in (d) and (e). 
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Figure 2.16 Relative prey protein abundance overlaid onto the effects of each mutation on relative in 
vitro efficiencies of GAP-mediated GTP hydrolysis and GEF-mediated nucleotide exchange. 
Relative GAP-mediated hydrolysis and GEF-mediated exchange efficiencies are plotted as 
ln(kcat

MUT/Km
MUT / kcat

WT/Km
WT). Mutants that affect the efficiency (kcat/Km) of GEF-catalyzed nucleotide 

exchange more than the efficiency of GAP-catalyzed GTP hydrolysis are above the diagonal, and the 
mutants that affect the GAP-catalyzed hydrolysis are below the diagonal. Left semi-circle represents an 
amino-terminal 3xFLAG-tagged Gsp1 point mutant, and right semi-circle represents a carboxy-terminal 
3xFLAG-tagged Gsp1 point mutant, relative to wild-type Gsp1 with the corresponding tag. (a) Color 
represents log2-transformed ratio of GAP and GEF abundance fold change for each Gsp1 point mutant 
compared to wild type defined as log2((abundance(Rna1)MUT/abundance(Rna1)WT) / 
(abundance(Srm1)MUT/abundance(Srm1)WT)). Orange colored mutants pull-down relatively less Rna1 
(GAP) and teal mutants less Srm1 (GEF). (b-f) Color represents the log-transformed ratio of mutant and 
wild type pulled-down prey protein represented as log2(PREY abundanceMUT/PREY abundanceWT). Log-
transformed relative abundance values are capped at +/− 4. Decreased prey abundance from AP-MS in 
pulled-down complexes with a mutant Gsp1 compared to complexes with the wild-type Gsp1 is represented 
in red and increased abundance in blue. Prey proteins: (b) Rna1 (GAP); (c) Srm1 (GEF); (d) Yrb1; (e) 
Kap95, and (f) Vps71. Yrb1 follows a pattern similar to that of Rna1 (GAP), whereas Kap95 and Vps71 
are similar to Srm1 (GEF). 
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Figure 2.17 Cellular effects of interface mutations group by their effect on GTPase cycle kinetics. 
(a) Clustering of 276 S. cerevisiae alleles and 22 strong GSP1 point mutants by the p-value of Pearson 
correlations of their GI profiles compared to the relative efficiencies of GAP-mediated GTP hydrolysis and 
GEF-mediated nucleotide exchange (asterisks, not measured). Grey scale: FDR-adjusted one-sided 
(positive) P value of the Pearson correlations. Numbers in parentheses indicate the number of genes in the 
cluster. (b) Distributions of Pearson correlations, separated by GSP1 point mutant groups from column 
hierarchical clustering in (a). Green, red, or blue points are individual correlations with S. cerevisiae genes 
in three gene sets; grey violin plots show distributions of correlations with all other genes; point size 
corresponds to the FDR-adjusted one-sided (positive) p-value of the Pearson correlation. Only significant 
correlations (p-value < 0.05) are included. (c) Kinetic characteristics of Gsp1 mutant groups I to III. Outliers 
are shown as empty circles and dashed lines. The log ratio of relative catalytic efficiencies is capped at −3. 
(d) Heat maps of the FDR-adjusted one-sided (positive) p-value of the Pearson correlation for the three 
representative gene sets. S. cerevisiae genes for each gene set are clustered by p-value. The GTPase cycle 
schemes on the right represent three modes of Gsp1 function. In (c, d), only Gsp1 mutants with kinetics 
data are shown, grouped as in (a). 
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Figure 2.18 Sets of S. cerevisiae genes grouped by biological functions. 
Heat maps of the false discovery rate adjusted one-sided (positive) p-values of the Pearson correlations 
between the GI profiles of 22 strong GSP1 point mutants and GI profiles of knock-outs or knock-downs of 
S. cerevisiae genes from a previously published dataset.65 The p-value is represented as a white to grey 
range as in Figure 2.17. Genes are organized in gene sets based on their biological function (Methods). The 
line plots above the heat maps are the same as in Figure 2.17. (a) GSP1 point mutants and alleles of Gsp1 
binding partners with available co-complex X-ray crystal structures, and S. cerevisiae genes involved in 
nuclear transport of RNA and proteins. (b) GSP1 point mutants and S. cerevisiae genes involved in 
transcription regulation or 5′ mRNA capping. (c) GSP1 point mutants and S. cerevisiae genes involved in 
the cytoplasm-to-vacuole targeting (CVT) pathway, and actin, tubulin, and cell polarity. 
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Figure 2.19 Schematic of genomically integrated GSP1 constructs.  
For E-MAP experiments, wild type or mutant GSP1 cassettes including the clonNAT resistance cassette 
were integrated into the MAT:α strain. For AP-MS the constructs also included either an amino- (N) 
terminal or a carboxy- (C) terminal 3xFLAG tag (MDYKDHDGDYKDHDIDYKDDDDKGGGGA and 
GGGGADYKDHDGDYKDHDIDYKDDDDK, respectively).  
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Figure 2.20 Reproducibility of GSP1 point mutant E-MAP screens.  
A linear relationship between the genetic interaction S-score from a single E-MAP experiment and the final 
average S-score based on three or more replicates. The linear fit was calculated using the odregress function 
from the pracma R package.  
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Figure 2.21 Non-linear scaling of SGA data from the Cell Map to E-MAP format. 
(a) Distribution of S-scores from the chromatin biology E-MAP dataset66 and the SGA score from the 
CellMap dataset.65 (b) Distribution of S-scores from the chromatin biology E-MAP dataset and the scaled 
SGA score from the CellMap dataset. (c) Quantile-quantile plot showing the distribution of genetic 
interaction scores from the CellMap before scaling and the E-MAP chromatin biology datasets. (d) 
Quantile-quantile plot showing the distribution of genetic interaction scores from the CellMap after scaling 
and the E-MAP chromatin biology dataset. (e) The scaling function applied to the CellMap data. Red curve 
is the fitted spline of the scaling factors between the E-MAP S-scores and the SGA scores. Black dots 
represent the individual bins. 
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Figure 2.22 Example data for Gsp1 protein expression estimation by Western blot. 
(a) Total protein staining. (b) Western blot of starting S. cerevisiae strain (MAT:α, see Methods for full 
strain description), wild type Gsp1 with clonNAT resistance marker (WT), and its mutants with anti-Ran 
antibody. 
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Figure 2.23 Silver stain gels after FLAG immunoprecipitation of amino- (N) or carboxy- (C) 
terminally 3xFLAG tagged genomically integrated Gsp1. 
The strongest band at approximately 30 kDa corresponds to tagged Gsp1. Untagged wild type Gsp1 (lanes 
8 and 14 in the left and right gel, respectively) were used as negative control for mass spectrometry analysis. 
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Figure 2.24 Clustering of individual AP-MS replicates based on correlations between protein 
abundance before the final scoring. 
Data shown are for amino-terminally FLAG tagged wild type (WT) and Gsp1 mutants. 
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Figure 2.25 Clustering of individual AP-MS replicates based on correlations between protein 
abundance before the final scoring. 
Data shown are for carboxy-terminally FLAG tagged wild type (WT) and Gsp1 mutants.  
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Figure 2.26 Multiple sequence alignment between Rna1 from S. cerevisiae (Rna1_YEAST) and S. 
pombe (Rna1_SCHPO), as well as human RanGAP (RAGP1_HUMAN, excluding the C-terminal 
SUMO conjugation domain which is absent in Fungi). 
Overall sequence identity between S. cerevisiae and S. pombe Rna1 is 39%, with 53% sequence similarity. 
Interface core residues (based on the X-ray crystal structure between S. pombe Rna1 and mammalian Ran, 
PDB ID: 1k5d) are highlighted in orange. All interface core residues except Pro108 in S. pombe Rna1, 
which corresponds to Leu122 in S. cerevisiae Rna1, are conserved in sequence between S. cerevisiae and 
S. pombe Rna1.  
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Figure 2.27 Circular dichroism (CD) data for wild type (WT) Gsp1 and select mutants. 
(a) CD spectra. (b) Irreversible temperature melts. 
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Figure 2.28 HPLC reverse phase chromatograms of a GTP/GDP mix (top) and that of a purified and 
GTP loaded wild type Gsp1 (bottom). 
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Figure 2.29 Accuracy estimation for determining the kinetic parameters of GAP-mediated GTP 
hydrolysis from individual time courses spanning [S] > Km to [S] << Km fit with an accurate solution 
of the integrated Michaelis Menten (IMM) equation. 
Each time course was simulated using the experimentally determined parameters determined from the fitted 
IMM model, with added Gaussian noise similar to the experimental fluorescence signal noise. The deviation 
from the mean is plotted against a ratio of initial substrate (Gsp1:GTP) concentration [S] and the 
experimentally determined Km. Deviation from the mean is reported either as standard deviation or 
𝑅𝑀𝑆𝐷 = √∑(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑟𝑎𝑚 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙_𝑝𝑎𝑟𝑎𝑚)2 /𝑁, where N = 100 simulations, and 
simulation_param and experimental_param are simulated and experimental kcat, Km, and kcat/Km, 
respectively. Here, simulated refers to the average of the fitted values for the simulated data sets.  
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Figure 2.30 Estimated error around the maximum likelihood estimated values of the Michaelis-
Menten parameters. 
Plotted is the change in χ2 statistics as each of the parameters was fixed in gradual increments around the 
maximum likelihood value. The χ2 values are relative to the maximum likelihood values. Error estimate 
analysis is shown for three of the Gsp1 variants: wild type Gsp1, the low efficiency Gsp1 T34Q mutant, 
and the high efficiency Gsp1 H141R mutant. 95% CI is the estimated 95% confidence interval for each 
value, based on the χ2 surface. (a) Change of χ2 statistics as the kcat value is varied around the maximum 
likelihood value. (b) Change of χ2 statistics as the Km value is varied around the maximum likelihood value. 
(c) Change of χ2 statistics as the kcat/Km value is varied around the maximum likelihood value and the Km 
is kept fixed at the maximum likelihood value (kcat is varied). (d) Change of χ2 statistics as the kcat/Km value 
is varied around the maximum likelihood value and the kcat is kept fixed at the maximum likelihood value 
(Km is varied). 
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Figure 2.31 Hierarchical clustering of 22 strong Gsp1 point mutants by the p-value of Pearson 
correlations of their GI profiles and those of 276 S. cerevisiae alleles, using either the average linkage 
(top) or Ward’s method (bottom) as linkage criterion. 
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Figure 2.32 FDR corrected p-values for Pearson correlations of genetic interaction profiles between 
Gsp1 mutants and S. cerevisiae alleles.  
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Figure 2.33 Clustering of S. cerevisiae alleles and strong Gsp1 point mutants by the p-value of Pearson 
correlations using alternative distance metrics. 
Hierarchical clustering of 276 S. cerevisiae alleles and 22 strong Gsp1 point mutants by the p-value of 
Pearson correlations of their GI profiles compared to the relative efficiencies of GAP-mediated GTP 
hydrolysis and GEF-mediated nucleotide exchange as indicated (asterisks indicate not measured). The p-
value is a false discovery rate adjusted one-sided (positive) p-value of the Pearson correlations (represented 
as gray scale). The underlying data are identical to those presented in Figure 2.17A, but the column 
clustering was performed using the Spearman correlation or the Euclidean distance rather than the Pearson 
correlation as a distance metric. 
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Figure 2.34 Subsampling of S. cerevisiae alleles maintains clustering of Gsp1 mutants based on their 
E-MAP profiles.  
GI profiles of Gsp1 mutants. Negative S-score (blue) represents synthetic sick/lethal GIs, positive S-score 
(yellow) represents suppressive/epistatic GIs. Mutants and genes are hierarchically clustered by Pearson 
correlation. As in Figure 2.1C, all 55 point mutants are included in the clustering of columns, but only the 
dendrogram branch containing the strong mutants is shown. The clustering of mutants is robust to 
subsampling, with similar ordering of mutants observed down to removal of at least 60% of library genes. 
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Figure 2.35 Random subsampling of S. cerevisiae alleles maintains clustering of Gsp1 mutants based 
on the p-value of Pearson correlations of their GI profiles.  
The p-value is a false discovery rate adjusted one-sided (positive) p-value of the Pearson correlations 
(represented as gray scale). The grouping of mutants into the three observed groups is robust to 
subsampling, as the groups are maintained down to removal of at least 50% of alleles. 
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Figure 2.36 Leave-one-out analysis of Figure 2.17A. 
Each bar graph shows the Pearson correlation values between the indicated withheld mutant and the 
centroid of each of the three groups identified by hierarchical clustering of the remaining 21 mutants. We 
grouped the bar graphs according to the original group to which each mutant was assigned in Figure 2.17A. 
For each of the withheld mutants, the dark bar represents the expected group (group I left bar, group II 
middle bar, group III right bar). With the exception of G80A, which is slightly more correlated with the 
group I centroid (Pearson correlation = 0.38) than the centroid of its original group, group II (Pearson 
correlation = 0.28), all other mutants have the highest correlation with their original groups.  
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Tables 
Table 2.1 Co-complex X-ray crystal structures of Ran or Gsp1 with its partners. 

Ran/Gsp1 binding partner Ran/Gsp1 

Overall 
sequence 

identity to S. 
cerevisiae 
homolog 

Interface 
sequence 

identity to S. 
cerevisiae 
homolog 

Gene 
name 

Partner protein name / 
function PDB source 

species 
source 
species 

Gsp1 
[%] 

partner 
[%] 

Gsp1 
[%] 

partner 
[%] 

Srm1 
Guanine nucleotide 
exchange factor of 

Gsp1 (GEF) 
1I2M H. sapiens H. sapiens 83 25 94 42 

Rna1 
Ran GTPase-

activating protein 1 of 
Gsp1 (GAP) 

1K5D S. pombe H. sapiens 83 39 84 71 

Ntf2 Nuclear transport 
factor 2 1A2K R. norvegicus C. lupus 83 40 89 44 

Nup1 FG-repeat 
nucleoporin 3CH5 R. norvegicus H. sapiens 83 13 67 37 

Nup60 FG-repeat 
nucleoporin 3CH5 R. norvegicus H. sapiens 83 8 67 37 

Yrb1 Ran-specific GTPase-
activating protein 1 3M1I S. cerevisiae S. cerevisiae 100 100 100 100 

Yrb2 Ran-specific GTPase-
activating protein 2 3WYF S. cerevisiae S. cerevisiae 100 100 100 100 

Srp1 

Importin subunit 
alpha - receptor for 
simple and bipartite 

NLS 

1WA5 S. cerevisiae C. lupus 83 100 67 100 

Kap95 Importin subunit beta-
1 - receptor for cNLS 2BKU S. cerevisiae C. lupus 83 100 94 100 

Crm1 

Exportin-1 - Receptor 
for the leucine-rich 

nuclear export signal 
(NES) 

3M1I S. cerevisiae S. cerevisiae 100 100 100 100 

Los1 Exportin-T - tRNA 
nucleus export 3ICQ S. pombe S. cerevisiae 100 22 100 30 

Pse1 
Importin subunit beta-
3 - receptor for cNLS 

and rg-NLS 
3W3Z S. cerevisiae C. lupus 83 100 89 100 

Kap104 
Importin subunit beta-

2 - receptor for rg-
NLS and PY-NLS 

1QBK H. sapiens H. sapiens 83 31 92 43 

Msn5 Exportin and importin 
of proteins and tRNA 3A6P H. sapiens C. lupus 83 18 89 29 

Cse1 
Importin alpha re-
exporter - export 
receptor for Srp1 

1WA5 S. cerevisiae C. lupus 83 100 89 100 

Mtr10 mRNA transport 
regulator 4OL0 H. sapiens H. sapiens 83 21 88 36 
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Table 2.2 Mutated residues in Gsp1 and their interface position and ΔrASA. CellMap alleles are 
annotated in parentheses.  

Gsp1 residue 
number Crm1 Cse1 

(cse1-5002) Kap104 Kap95 
(kap95-e126k) Los1 (los1) Msn5 (msn5) 

34    rim / 0.1   

58       

78 rim / 0.1 core / 0.34 core / 0.44 core / 0.2 rim / 0.33 rim / 0.18 
79 core / 0.3 core / 0.29 support / 0.12 core / 0.37 support / 0.16 core / 0.28 
80 core / 0.31 core / 0.27 core / 0.42 core / 0.29 core / 0.37 core / 0.32 
84 rim / 0.3 rim / 0.21 rim / 0.3 rim / 0.41 rim / 0.09 rim / 0.09 
101 rim / 0.17    rim / 0.13 rim / 0.02 
102 support / 0.01    core / 0.08  

105 rim / 0.06   rim / 0.03 rim / 0.16 core / 0.25 
108 core / 0.26 rim / 0.1 rim / 0.11 rim / 0.12 core / 0.43 core / 0.42 
112 core / 0.55 core / 0.45 core / 0.44 core / 0.56 core / 0.4 core / 0.58 
115 rim / 0.25 rim / 0.2 rim / 0.27 rim / 0.07 rim / 0.34 rim / 0.34 
129  rim / 0.61 rim / 0.59 rim / 0.19  rim / 0.23 
132 core / 0.12 rim / 0   rim / 0.03 rim / 0.12 
137       

139 rim / 0.01   core / 0.04 rim / 0.02  

141 support / 0.14  support / 0.19 core / 0.15   

143 rim / 0.48 rim / 0.15 core / 0.35 rim / 0.27 rim / 0.09 rim / 0.01 
147 core / 0.23  support / 0.23 core / 0.25 core / 0.07 core / 0.14 
148 support / 0.11 support / 0.03 support / 0.13  support / 0.01  

154  core / 0.28  core / 0.38 rim / 0.13  

157 core / 0.38 rim / 0.13 core / 0.39 core / 0.29 rim / 0.05  

169 rim / 0.21   rim / 0.02  rim / 0.17 
180   rim / 0.01    
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Gsp1 
residue 
number 

Mtr10 
Ntf2 (ntf2-

h104y, ntf2-
5001) 

Nup1 Nup60 Pse1 Rna1 (rna1-1, rna1-
s116f) 

34       
58   rim / 0.28 rim / 0.28   
78 core / 0.25 core / 0.57 rim / 0 rim / 0 support / 0.03 support / 0.02 
79 core / 0.36 rim / 0.1   core / 0.26  
80 core / 0.51 core / 0.27 support / 0.13 support / 0.13 core / 0.51  
84 rim / 0.36  rim / 0.25 rim / 0.25 rim / 0.2  

101      rim / 0.01 
102 support / 0.1     support / 0.07 
105 core / 0.21      
108 core / 0.18    rim / 0.12  
112 core / 0.57    core / 0.46  
115 rim / 0.12    rim / 0.37  
129      rim / 0 
132      core / 0.44 
137 core / 0.08     rim / 0.01 
139 rim / 0.15    core / 0.18  
141 core / 0.14    support / 0  
143 core / 0.44    core / 0.52  
147 support / 0.09    core / 0.09  
148 support / 0.01      
154 rim / 0.03    rim / 0.05  
157 rim / 0.04      
169       
180       
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Gsp1 residue 
number Srm1 (srm1-g282s, srm1-ts) Srp1 (srp1-5001) Yrb1 (yrb1-51) Yrb2 

34   core / 0.4 rim / 0.24 
58   core / 0.4 core / 0.39 
78 rim / 0.46    
79 rim / 0.01    
80     
84     
101 core / 0.67 core / 0.47   
102 support / 0.15    
105 core / 0.44 rim / 0.03   
108 core / 0.47    
112 rim / 0.24    
115     
129  rim / 0.1   
132 rim / 0.16 core / 0.22   
137  core / 0.2   
139 core / 0.26 rim / 0.01   
141     
143 rim / 0.07    
147     
148     
154     
157     
169     
180   core / 0.64 rim / 0.5 
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Table 2.3 Gsp1 mutants and attempted yeast constructs. 
Construct name Gsp1 residue number Gsp1 point mutation Yeast strain successfully made 

C-terminal 3xFLAG GSP1 T34L 34 T34L yes 
C-terminal 3xFLAG GSP1 T34Q 34 T34Q yes 

GSP1 T34A 34 T34A yes 
GSP1 T34D 34 T34D yes 
GSP1 T34E 34 T34E yes 
GSP1 T34G 34 T34G yes 
GSP1 T34L 34 T34L yes 
GSP1 T34Q 34 T34Q yes 
GSP1 T34S 34 T34S yes 
GSP1 T34Y 34 T34Y yes 

N-terminal 3xFLAG GSP1 T34A 34 T34A yes 
N-terminal 3xFLAG GSP1 T34E 34 T34E yes 
N-terminal 3xFLAG GSP1 T34G 34 T34G yes 
N-terminal 3xFLAG GSP1 T34L 34 T34L yes 
C-terminal 3xFLAG GSP1 F58A 58 F58A yes 

GSP1 F58A 58 F58A yes 
GSP1 F58L 58 F58L yes 
GSP1 R78K 78 R78K yes 

N-terminal 3xFLAG GSP1 R78K 78 R78K yes 
C-terminal 3xFLAG GSP1 D79A 79 D79A yes 

GSP1 D79A 79 D79A yes 
GSP1 D79S 79 D79S yes 

N-terminal 3xFLAG GSP1 D79A 79 D79A yes 
N-terminal 3xFLAG GSP1 D79S 79 D79S yes 
C-terminal 3xFLAG GSP1 G80A 80 G80A yes 

GSP1 G80A 80 G80A yes 
N-terminal 3xFLAG GSP1 G80A 80 G80A yes 

GSP1 N84Y 84 N84Y yes 
C-terminal 3xFLAG GSP1 K101R 101 K101R yes 

GSP1 K101R 101 K101R yes 
GSP1 N102I 102 N102I yes 
GSP1 N102K 102 N102K yes 
GSP1 N102M 102 N102M yes 

C-terminal 3xFLAG GSP1 N105L 105 N105L yes 
GSP1 N105L 105 N105L yes 
GSP1 N105V 105 N105V yes 

C-terminal 3xFLAG GSP1 R108A 108 R108A yes 
C-terminal 3xFLAG GSP1 R108I 108 R108I yes 
C-terminal 3xFLAG GSP1 R108Y 108 R108Y yes 

GSP1 R108A 108 R108A yes 
GSP1 R108D 108 R108D yes 
GSP1 R108G 108 R108G yes 
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Construct name Gsp1 residue number Gsp1 point mutation Yeast strain successfully made 
GSP1 R108I 108 R108I yes 
GSP1 R108L  108  R108L  yes  
GSP1 R108Q  108  R108Q  yes  
GSP1 R108S  108  R108S  yes  
GSP1 R108Y  108  R108Y  yes  

N-terminal 3xFLAG GSP1 R108G  108  R108G  yes  
N-terminal 3xFLAG GSP1 R108Y  108  R108Y  yes  
C-terminal 3xFLAG GSP1 R112S  112  R112S  yes  

GSP1 R112A  112  R112A  yes  
GSP1 R112S  112  R112S  yes  

N-terminal 3xFLAG GSP1 R112S  112  R112S  yes  
GSP1 E115A  115  E115A  yes  
GSP1 E115I  115  E115I  yes  
GSP1 K129E  129  K129E  yes  
GSP1 K129F  129  K129F  yes  
GSP1 K129I  129  K129I  yes  
GSP1 K129T  129  K129T  yes  

C-terminal 3xFLAG GSP1 K132H  132  K132H  yes  
GSP1 K132H  132  K132H  yes  

N-terminal 3xFLAG GSP1 K132H  132  K132H  yes  
GSP1 T137G  137  T137G  yes  
GSP1 T139A  139  T139A  yes  
GSP1 T139R  139  T139R  yes  

C-terminal 3xFLAG GSP1 H141I  141  H141I  yes  
C-terminal 3xFLAG GSP1 H141V  141  H141V  yes  

GSP1 H141E  141  H141E  yes  
GSP1 H141I  141  H141I  yes  
GSP1 H141R  141  H141R  yes  
GSP1 H141V  141  H141V  yes  

N-terminal 3xFLAG GSP1 H141E  141  H141E  yes  
N-terminal 3xFLAG GSP1 H141I  141  H141I  yes  
N-terminal 3xFLAG GSP1 H141R  141  H141R  yes  
N-terminal 3xFLAG GSP1 H141V  141  H141V  yes  
C-terminal 3xFLAG GSP1 K143W  143  K143W  yes  

GSP1 K143H  143  K143H  yes  
GSP1 K143W  143  K143W  yes  
GSP1 K143Y  143  K143Y  yes  

N-terminal 3xFLAG GSP1 K143W  143  K143W  yes  
GSP1 Q147E  147  Q147E  yes  
GSP1 Q147L  147  Q147L  yes  

N-terminal 3xFLAG GSP1 Q147E  147  Q147E  yes  
C-terminal 3xFLAG GSP1 Y148I  148  Y148I  yes  
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Construct name Gsp1 residue number Gsp1 point mutation Yeast strain successfully made 
GSP1 Y148I  148  Y148I  yes  

N-terminal 3xFLAG GSP1 Y148I  148  Y148I  yes  
GSP1 K154M  154  K154M  yes  

C-terminal 3xFLAG GSP1 Y157A  157  Y157A  yes  
GSP1 Y157A  157  Y157A  yes  
GSP1 K169I  169  K169I  yes  

C-terminal 3xFLAG GSP1 A180T  180  A180T  yes  
GSP1 A180T  180  A180T  yes  

N-terminal 3xFLAG GSP1 A180T  180  A180T  yes  
T34A Cter3xFL  34  T34A  no  
T34E Cter3xFL  34  T34E  no  
T34G Cter3xFL  34  T34G  no  
T34Q Nter3xFL  34  T34Q  no  

K39M  39  K39M  no  
Y41A  41  Y41A  no  
V49D  49  V49D  no  

F58A Nter3xFL  58  F58A  no  
G70N  70  G70N  no  
Q71E  71  Q71E  no  
K73Q  73  K73Q  no  
G75N  75  G75N  no  

R78K Cter3xFL  78  R78K  no  
D79K  79  D79K  no  

D79S Cter3xFL  79  D79S  no  
G80N  80  G80N  no  
G80S  80  G80S  no  
I98F  98  I98F  no  

K101R Nter3xFL  101  K101R  no  
R108G Cter3xFL  108  R108G  no  
R108I Nter3xFL  108  R108I  no  
R108L Nter3xFL  108  R108L  no  
R108Q Cter3xFL  108  R108Q  no  
R108S Cter3xFL  108  R108S  no  

K132M  132  K132M  no  
K132Y  132  K132Y  no  
T137E  137  T137E  no  

H141E Cter3xFL  141  H141E  no  
H141R Cter3xFL  141  H141R  no  
Q147E Cter3xFL  147  Q147E  no  

Y157K  157  Y157K  no  
 

  



 
 
 

103 

Table 2.4 Pearson correlations between Gsp1 mutants and the alleles of their direct interaction 
partners from the SGA CellMap. Ordered by correlation value 

GSP1 
mutant 

Partner strain 
name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 
 GSP1 

mutant 
Partner strain 

name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 
D79S kap95-e126k 0.4146 TRUE  H141I crm1_damp 0.2706 FALSE 
Y148I crm1_damp 0.4027 FALSE  T34Q kap95-e126k 0.2681 FALSE 
R108L ntf2-h104y 0.3827 FALSE  T34A yrb1-51 0.2676 TRUE 
R108G crm1_damp 0.3783 TRUE  T34Q ntf2-5001 0.2588 FALSE 
R108L ntf2-5001 0.3612 FALSE  Y148I ntf2-5001 0.2555 FALSE 
R108Y ntf2-h104y 0.3612 FALSE  K101R ntf2-5001 0.255 FALSE 
G80A kap95-e126k 0.3545 TRUE  R108I ntf2-5001 0.2544 FALSE 
R112A ntf2-h104y 0.3533 FALSE  D79A srm1-ts 0.251 FALSE 
R108Y crm1_damp 0.3453 TRUE  D79S yrb1-51 0.2502 FALSE 
K101R ntf2-h104y 0.3389 FALSE  H141I ntf2-5001 0.2501 FALSE 
R112S ntf2-h104y 0.3353 FALSE  T34G cse1-5002 0.2467 FALSE 
R108Q crm1_damp 0.3291 TRUE  D79A ntf2-h104y 0.2459 FALSE 
T34A ntf2-5001 0.3231 FALSE  K101R kap95-e126k 0.2449 FALSE 
Q147E kap95-e126k 0.323 TRUE  T34Q yrb1-51 0.241 TRUE 
H141R crm1_damp 0.3199 FALSE  G80A ntf2-h104y 0.2402 TRUE 
K101R srm1-ts 0.3197 TRUE  T34G kap95-e126k 0.2365 FALSE 
T34E srm1-ts 0.3155 FALSE  K101R srm1-g282s 0.2359 TRUE 
T34Q ntf2-h104y 0.3135 FALSE  G80A cse1-5002 0.2357 TRUE 

R112A ntf2-5001 0.3117 FALSE  Y148I ntf2-h104y 0.2355 FALSE 
T34E ntf2-h104y 0.3116 FALSE  T34E ntf2-5001 0.2354 FALSE 

R108Y ntf2-5001 0.3091 FALSE  G80A yrb1-51 0.2354 FALSE 
D79S ntf2-h104y 0.309 FALSE  D79S srp1-5001 0.2343 FALSE 
D79S srm1-ts 0.3085 FALSE  T34G srm1-ts 0.2321 FALSE 
R112S ntf2-5001 0.3043 FALSE  G80A crm1_damp 0.2317 TRUE 
D79S cse1-5002 0.3022 TRUE  H141R ntf2-5001 0.2296 FALSE 
T34Q srm1-ts 0.3015 FALSE  T34A crm1_damp 0.2291 FALSE 
T34A ntf2-h104y 0.2946 FALSE  R108I ntf2-h104y 0.2275 FALSE 

H141R ntf2-h104y 0.2929 FALSE  G80A ntf2-5001 0.2275 TRUE 
T34E yrb1-51 0.2898 TRUE  T34E srm1-g282s 0.2249 FALSE 
T34A srm1-ts 0.2881 FALSE  R108Q ntf2-h104y 0.2245 FALSE 
T34E kap95-e126k 0.2813 FALSE  G80A srm1-ts 0.2188 FALSE 
T34A kap95-e126k 0.2791 FALSE  H141E rna1-s116f 0.2185 FALSE 
R108L srm1-ts 0.2773 TRUE  R108L crm1_damp 0.2176 TRUE 
D79A kap95-e126k 0.2754 TRUE  D79S ntf2-5001 0.2171 FALSE 
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GSP1 
mutant 

Partner strain 
name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 
 GSP1 

mutant 
Partner strain 

name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 

R108G ntf2-h104y 0.2171 FALSE  D79A srp1-5001 0.171 FALSE 

Q147E srm1-ts 0.2142 FALSE  H141E ntf2-h104y 0.1682 FALSE 

R108G ntf2-5001 0.2131 FALSE  D79A yrb1-51 0.1672 FALSE 

T34A cse1-5002 0.2104 FALSE  R108G yrb2_damp 0.1669 FALSE 

Q147E ntf2-h104y 0.2101 FALSE  Y148I yrb2_damp 0.1654 FALSE 

R108Y srm1-ts 0.208 TRUE  D79S srm1-g282s 0.1652 FALSE 

R112A crm1_damp 0.2075 TRUE  R108Y yrb2_damp 0.165 FALSE 

H141E kap95-e126k 0.2073 FALSE  R108Y kap95-e126k 0.1645 FALSE 

R108I srm1-ts 0.2059 TRUE  T34A rna1-s116f 0.1637 FALSE 

D79A cse1-5002 0.2047 TRUE  D79A ntf2-5001 0.1621 FALSE 

Q147E ntf2-5001 0.2044 FALSE  H141R srm1-ts 0.1596 FALSE 

T34Q srm1-g282s 0.2038 FALSE  T34A srp1-5001 0.1557 FALSE 

H141I ntf2-h104y 0.2025 FALSE  D79A srm1-g282s 0.1534 FALSE 

T34E cse1-5002 0.1994 FALSE  T34Q srp1-5001 0.1529 FALSE 

R112S srm1-ts 0.1945 FALSE  H141E rna1-1 0.1529 FALSE 

Q147E yrb1-51 0.1942 FALSE  R108L srm1-g282s 0.1527 TRUE 

R108Q ntf2-5001 0.1936 FALSE  Q147E srm1-g282s 0.1524 FALSE 

H141I srm1-ts 0.1934 FALSE  Y157A crm1_damp 0.1495 TRUE 

R112A srm1-ts 0.1929 FALSE  Q147E cse1-5002 0.148 FALSE 

K101R yrb1-51 0.1912 FALSE  T34G srm1-g282s 0.1476 FALSE 

R108Q yrb2_damp 0.1895 FALSE  R108G srm1-ts 0.1462 TRUE 

R112S crm1_damp 0.1894 TRUE  T34G ntf2-h104y 0.1453 FALSE 

H141I kap95-e126k 0.188 FALSE  H141E srm1-ts 0.1446 FALSE 

H141E cse1-5002 0.1817 FALSE  Q147E srp1-5001 0.1417 FALSE 

T34E srp1-5001 0.1805 FALSE  R108I srm1-g282s 0.139 TRUE 

T34G yrb1-51 0.1781 TRUE  H141E crm1_damp 0.138 FALSE 

T34G srp1-5001 0.1779 FALSE  Y148I kap95-e126k 0.134 FALSE 

G80A srp1-5001 0.1775 FALSE  R112A kap95-e126k 0.1302 TRUE 

H141E ntf2-5001 0.1762 FALSE  T34E rna1-1 0.1295 FALSE 

R108L kap95-e126k 0.1753 FALSE  Q147E crm1_damp 0.1269 FALSE 

T34Q cse1-5002 0.1738 FALSE  H141I yrb2_damp 0.1254 FALSE 

T34A srm1-g282s 0.1729 FALSE  D79A rna1-s116f 0.1242 FALSE 

R108I kap95-e126k 0.1719 FALSE  R108I crm1_damp 0.1232 TRUE 

H141R yrb2_damp 0.1717 FALSE  T34Q rna1-s116f 0.1232 FALSE 
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GSP1 
mutant 

Partner strain 
name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 
 GSP1 

mutant 
Partner strain 

name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 

R108Q srm1-ts 0.1214 TRUE  H141E yrb2_damp 0.0828 FALSE 

T34A rna1-1 0.1214 FALSE  H141I yrb1-51 0.082 FALSE 

T34G rna1-1 0.1199 FALSE  R108I msn5 0.0815 TRUE 

R112S yrb2_damp 0.1175 FALSE  H141I cse1-5002 0.0795 FALSE 

R108I yrb1-51 0.1171 FALSE  D79S crm1_damp 0.0789 TRUE 

Y157A rna1-s116f 0.1168 FALSE  R108I los1 0.075 TRUE 

R108G kap95-e126k 0.1162 FALSE  T34Q crm1_damp 0.0745 FALSE 

R112S srm1-g282s 0.1154 FALSE  G80A rna1-1 0.0735 FALSE 

H141R kap95-e126k 0.115 FALSE  T34E crm1_damp 0.0732 FALSE 

K101R srp1-5001 0.1149 TRUE  R108I cse1-5002 0.0721 FALSE 

Q147E rna1-s116f 0.1139 FALSE  K101R los1 0.0704 FALSE 

H141E srp1-5001 0.1135 FALSE  H141I rna1-1 0.0702 FALSE 

R112S kap95-e126k 0.1112 TRUE  R108L los1 0.0699 TRUE 

D79S rna1-s116f 0.1081 FALSE  T34A los1 0.0695 FALSE 

G80A srm1-g282s 0.1073 FALSE  Q147E rna1-1 0.0666 FALSE 

H141I srm1-g282s 0.1062 FALSE  Y148I yrb1-51 0.0651 FALSE 

H141I rna1-s116f 0.1045 FALSE  Y157A cse1-5002 0.0637 FALSE 

R108Y srm1-g282s 0.104 TRUE  R108G srm1-g282s 0.0626 TRUE 

T34G rna1-s116f 0.1031 FALSE  T34Q los1 0.0616 FALSE 

R112A srm1-g282s 0.1025 FALSE  R108L msn5 0.0612 TRUE 

H141E yrb1-51 0.1023 FALSE  R108G rna1-1 0.0609 FALSE 

T34E rna1-s116f 0.1013 FALSE  Y157A ntf2-5001 0.0609 FALSE 

R112A yrb2_damp 0.0975 FALSE  R108Q kap95-e126k 0.0608 FALSE 

T34Q rna1-1 0.0959 FALSE  R108Q msn5 0.0592 TRUE 

G80A rna1-s116f 0.0947 FALSE  H141I srp1-5001 0.059 FALSE 

Y148I srm1-ts 0.0933 FALSE  R108G msn5 0.0587 TRUE 

T34E los1 0.0932 FALSE  R108G rna1-s116f 0.0578 FALSE 

Y157A kap95-e126k 0.092 TRUE  H141R srm1-g282s 0.0573 FALSE 

R108L yrb1-51 0.0904 FALSE  D79A rna1-1 0.0562 FALSE 

D79S rna1-1 0.089 FALSE  G80A yrb2_damp 0.0522 FALSE 

Y157A rna1-1 0.0878 FALSE  R108I srp1-5001 0.0516 FALSE 

K101R cse1-5002 0.0869 FALSE  D79S los1 0.0504 FALSE 

Y148I rna1-s116f 0.086 FALSE  Y148I rna1-1 0.0501 FALSE 

Y157A yrb1-51 0.0843 FALSE  Y148I srm1-g282s 0.0482 FALSE 
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GSP1 
mutant 

Partner strain 
name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 
 GSP1 

mutant 
Partner strain 

name 

Pearson 
correlation 
coefficient 

Residue in 
interface 

core 

D79A crm1_damp 0.0482 TRUE  H141E msn5 -0.0441 FALSE 

R108L srp1-5001 0.047 FALSE  D79S msn5 -0.0471 TRUE 

R108I rna1-1 0.045 FALSE  T34G msn5 -0.0479 FALSE 

R112S rna1-s116f 0.044 FALSE  R78K kap95-e126k -0.0485 FALSE 

Q147E los1 0.0436 FALSE  H141R los1 -0.0521 FALSE 

R112S rna1-1 0.0432 FALSE  R108Q los1 -0.0593 TRUE 

R108Y los1 -0.0089 TRUE  Y148I los1 -0.0601 FALSE 

R78K srp1-5001 -0.0124 FALSE  K101R yrb2_damp -0.0651 FALSE 

R108G los1 -0.0126 TRUE  R108Q srp1-5001 -0.0685 FALSE 

R78K los1 -0.0127 FALSE  R108Q yrb1-51 -0.0696 FALSE 

R112A cse1-5002 -0.013 TRUE  R78K cse1-5002 -0.0696 TRUE 

Y157A msn5 -0.0139 FALSE  R78K rna1-1 -0.0711 FALSE 

R112S los1 -0.0142 TRUE  T34E msn5 -0.0741 FALSE 

D79A msn5 -0.0197 TRUE  R78K yrb1-51 -0.0814 FALSE 

T34G crm1_damp -0.0216 FALSE  R78K crm1_damp -0.0839 TRUE 

H141R rna1-1 -0.0229 FALSE  G80A msn5 -0.0892 TRUE 

R78K msn5 -0.023 FALSE 

H141I los1 -0.0242 FALSE 

H141I msn5 -0.0244 FALSE 

Y148I msn5 -0.0253 FALSE 

K101R msn5 -0.0271 FALSE 

T34Q yrb2_damp -0.0272 TRUE 

R108G srp1-5001 -0.0277 FALSE 

R112S cse1-5002 -0.0303 TRUE 

R108Q cse1-5002 -0.0317 FALSE 

R108L rna1-s116f -0.032 FALSE 

Q147E msn5 -0.0322 FALSE 

R78K ntf2-h104y -0.0322 TRUE 

T34E yrb2_damp -0.033 TRUE 

H141R msn5 -0.0364 FALSE 

R108Q rna1-s116f -0.0378 FALSE 

T34Q msn5 -0.0382 FALSE 

Y157A srm1-g282s -0.039 FALSE 

R78K ntf2-5001 -0.0426 TRUE 
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Table 2.5 Interquartile range (IQR) of log2(fold change) values across all the Gsp1 mutants for each 
prey protein identified. Ordered by IQR. 

Prey 
name 

Interquartile 
range (IQR) 

 Prey 
name 

Interquartile 
range (IQR)  Prey 

name 
Interquartile 
range (IQR)  Prey name Interquartile 

range (IQR) 
Spa2 14.10  Apa1 2.53  Tub1 1.79  Mph1 1.55 

Pup2 10.27  Eno1 2.49  Rpl39 1.78  Rpl26a 1.55 

Cdc3 9.65  Hpm1 2.48  Swc5 1.78  Taf2 1.51 

Rna1 6.86  Srm1 2.46  Ugp1 1.77  Net1 1.51 

Mae1 6.34  Scj1 2.44  Tif4631 1.77  Msh2 1.51 

Hrp1 6.25  Rtp1 2.44  Aim36 1.77  Egd1 1.49 

Spb1 6.23  Tub3 2.34  Dbp3 1.76  Rpl29 1.47 

Adr1 5.92  Idh2 2.30  Pln1 1.73  Hmo1 1.47 

Rgr1 5.83  Idh1 2.20  Rpl37a 1.73  Tdh3 1.47 

Ecm1 5.69  Tub2 2.19  Svf1 1.72  Azf1 1.46 

Swi1 5.66  Aro9 2.17  Thi20 1.72  Nop2 1.45 

Yar1 5.65  Krr1 2.17  Mcm6 1.70  Rps0b 1.44 

Cmr1 5.30  Cia2 2.14  Npa3 1.70  Rpc82 1.43 

Acf4 5.26  Ade5,7 2.13  Krs1 1.68  Ssa1 1.43 

Vps71 5.25  Ura7 2.08  Siw14 1.68  Gbp2 1.42 

Kri1 5.12  Afg2 2.02  Cbf5 1.67  Lcl2 1.42 

Lcp5 5.09  Yap1 2.01  Zuo1 1.67  Rpp1a 1.41 

Gcd14 4.99  Hef3 2.00  Rvb1 1.65  Mgm101 1.40 

Srp54 4.94  Hsp60 1.99  Wtm1 1.65  Gfa1 1.39 

Reh1 4.79  Rpa135 1.98  Vps13 1.64  Grs1 1.38 

Gcd10 4.79  Vps1 1.98  Cdc14 1.64  Mcm4 1.38 

Tdh1 4.78  Rvb2 1.96  Dpb4 1.64  Puf6 1.38 

Srp68 4.75  Yrb30 1.96  Yku70 1.63  Rpl10 1.37 

Srp1 4.61  Dep1 1.93  Fun12 1.62  Tra1 1.37 

Rpc37 4.04  San1 1.92  Pwp1 1.61  Pro3 1.37 

Kap120 3.24  Frs1 1.91  Rpc34 1.61  Nop4 1.35 

Pol2 3.23  Rpc31 1.90  Aco1 1.60  Tfc3 1.35 

Kap95 3.05  Oca1 1.90  Spt8 1.59  Spt20 1.35 

Rix7 2.93  Mtc1 1.89  Orc1 1.58  Rpl3 1.34 

Yef3 2.85  Tti1 1.87  Pse1 1.58  Rpl33b 1.33 

Rpb8 2.62  Yrb1 1.87  Pdi1 1.57  Cdc9 1.33 

Gpn3 2.59  Ptc3 1.85  Rpa190 1.57  Ubp15 1.32 

Rea1 2.56  Sdd3 1.84  Sum1 1.56  Rpc11 1.31 

Paa1 2.55  Dbp2 1.80  Yku80 1.56  Rpo21 1.31 
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Prey 
name 

Interquartile 
range (IQR) 

 Prey 
name 

Interquartile 
range (IQR)  Prey 

name 
Interquartile 
range (IQR)  Prey name Interquartile 

range (IQR) 
Rlp24 1.31  Rtg3 1.16  Rpc40 1.01  Rpl8b 0.87 

Skn7 1.31  Rfm1 1.15  Ade3 1.01  Rsc6 0.87 

Hsp42 1.31  Gdh1 1.14  Hho1 1.01  Mog1 0.86 

Cys4 1.30  Sry1 1.13  Rpl5 1.00  Rsc9 0.84 

Orc2 1.30  Chd1 1.12  Stm1 1.00  Rsc3 0.84 

Hca4 1.29  Top2 1.11  Reb1 1.00  Gcd1 0.83 

Ree1 1.29  Rpl31b 1.11  Ioc4 0.99  Rfc2 0.83 

Ssz1 1.27  Cst6 1.11  Asg1 0.99  Swi3 0.83 

Yta7 1.27  Rpl36a 1.10  Ioc3 0.99  Ies5 0.82 

Pre6 1.26  Rpl4a 1.10  Msn1 0.99  Ioc2 0.82 

Gtr2 1.26  Abf2 1.09  Adh6 0.99  Imh1 0.81 

Hal5 1.25  Rpb5 1.09  Rpc19 0.99  Oye2 0.80 

Rpb4 1.24  Spt7 1.08  Rpc53 0.98  Ies1 0.80 

Nop6 1.24  Orc4 1.08  Adh3 0.98  Nhp10 0.79 

Rpc25 1.23  Sin3 1.08  Rbg1 0.98  Arp9 0.79 

Muk1 1.23  Rpo31 1.07  Raf1 0.98  Spt16 0.77 

Caf40 1.23  Nur1 1.07  Orc3 0.98  Sfh1 0.76 

Aat1 1.23  Rpb10 1.06  Rfc1 0.96  Htb2 0.76 

Msh3 1.23  Sko1 1.06  Srl2 0.96  Enp2 0.76 

Spt5 1.22  Rpp2b 1.06  Rpl24a 0.96  Taf10 0.76 

Rok1 1.22  Rpo26 1.05  Top1 0.95  Bur6 0.76 

Swr1 1.21  Vps72 1.05  Rpl6b 0.95  Isw2 0.75 

Irc20 1.20  Rpl30 1.04  Isw1 0.95  Rsc2 0.75 

Rpp2a 1.20  Hri1 1.04  Sth1 0.94  Taf5 0.74 

Rim1 1.20  Nop10 1.03  Nhp2 0.94  Ies3 0.74 

Hpc2 1.19  Pdr1 1.03  Egd2 0.93  Rpb11 0.74 

Mcm5 1.19  Ald4 1.03  Npl6 0.90  Arp8 0.73 

Rpl15a 1.19  Yra1 1.03  Rps29a 0.90  Rtt102 0.73 

Rpa49 1.19  Nip7 1.02  Taf9 0.89  Cdc1 0.72 

Ret1 1.18  Prp43 1.02  Gar1 0.89  Pob3 0.69 

Tkl2 1.17  Rtt106 1.02  Rsc4 0.89  Htz1 0.68 

Hst1 1.16  Hir2 1.02  Snf2 0.88  Spt15 0.68 

Rpl9a 1.16  Arp5 1.02  Taf14 0.88  Rsc58 0.67 

Elo1 1.16  Itc1 1.02  Grx1 0.87  Hir1 0.64 
  



 
 
 

109 

Prey 
name 

Interquartile 
range (IQR) 

 Prey 
name 

Interquartile 
range (IQR) 

Rfc3 0.62  Snf12 0.00 

Hos3 0.61  Snf5 0.00 

Mot1 0.61  Spp41 0.00 

Rsc8 0.61  Stb4 0.00 

Arp4 0.60  Sti1 0.00 

Pre2 0.60  Sub1 0.00 

Ies2 0.60  Tif4632 0.00 

Arp7 0.55 

Rpc10 0.54 

Ant1 0.54 

Abf1 0.54 

Thi7 0.52 

Lsm6 0.51 

Rfc5 0.49 

Hir3 0.49 

Srp14 0.48 

Rco1 0.45 

Rfc4 0.43 

Aim14 0.37 

Sis1 0.33 

Aah1 0.00 

Aim41 0.00 

Arl3 0.00 

Cfd1 0.00 

Gcn3 0.00 

Lrs4 0.00 

Opi1 0.00 

Rad5 0.00 

Rpl21b 0.00 

Rrp8 0.00 

Rrs1 0.00 

Sen1 0.00 

Slx9 0.00 

Smc2 0.00 
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Table 2.6 Michaelis-Menten parameters of GAP-mediated GTP hydrolysis. The two Michaelis-
Menten parameters and their ratio (enzymatic efficiency) are determined by an integrated Michaelis-
Menten fit for each individual experiment. Standard error is based on three or more replicates. 

Gsp1 
mutant kcat [s-1] std.error kcat 

[s-1] Km  [μM] std.error Km  
[μM] 

kcat/Km 
[s-1 μM-1] 

std.error kcat/Km 
[s-1 μM-1] 

WT 9.2 0.66 0.4 0.04 26.0 2.57 

T34A 9.8 3.65 2.3 0.63 4.0 0.56 

T34E 8.9 0.23 1.4 0.09 6.5 0.36 

T34G 5.0 0.81 0.8 0.12 7.1 0.99 

T34L 15.2 1.27 2.0 0.10 7.5 0.88 

T34Q 5.4 0.20 2.2 0.26 2.5 0.23 

F58A 8.6 0.57 0.2 0.03 35.8 2.97 

R78K 4.3 0.73 2.1 0.59 2.4 0.35 

D79A 11.9 2.21 3.6 1.11 3.8 0.62 

D79S 4.1 0.32 1.7 0.23 3.0 0.59 

G80A 8.8 0.14 0.3 0.01 28.8 1.56 

K101R 8.2 1.22 0.2 0.01 44.7 9.20 

R108A 7.8 0.32 0.2 0.01 42.0 4.14 

R108G 9.2 0.16 0.1 0.01 82.3 5.74 

R108I 13.2 2.24 3.1 0.66 4.3 0.15 

R108L 5.2 0.63 0.3 0.07 19.3 2.87 

R108Q 9.2 0.03 0.2 0.00 61.2 1.18 

R108Y 7.8 1.39 0.2 0.07 40.1 6.34 

R112S 4.9 1.28 3.0 1.01 1.7 0.20 

K132H 6.7 0.45 5.6 0.13 1.2 0.06 

H141R 7.2 1.19 0.1 0.02 56.3 3.04 

K143W 9.5 0.86 0.1 0.02 71.8 3.48 

Q147E 7.6 0.65 0.7 0.04 11.6 1.58 

Y157A 8.8 1.89 0.2 0.03 57.7 4.87 

A180T 4.0 0.49 0.4 0.04 11.1 0.29 
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Table 2.7 Michaelis-Menten parameters of GEF-mediated nucleotide exchange. Standard error is 
based on the error of the Michaelis-Menten fit to the data. 

Gsp1 
mutant kcat [s-1] std.error kcat 

[s-1] Km [μM] std.error Km  
[μM] 

kcat/Km 
[s-1 μM-1] 

std.error kcat/Km 
[s-1 μM-1] 

WT 3.0 0.08 0.9 0.12 3.3 0.44 

T34A 1.8 0.10 0.9 0.22 2.1 0.55 

T34E 1.7 0.07 1.0 0.17 1.7 0.29 

T34G 2.5 0.14 1.4 0.28 1.8 0.39 

T34L 2.0 0.11 1.6 0.35 1.2 0.27 

T34Q 1.3 0.05 1.0 0.14 1.3 0.20 

F58A 1.9 0.06 1.6 0.16 1.2 0.13 

R78K 3.5 0.19 10.2 1.43 0.3 0.05 

D79A 3.2 0.14 2.6 0.31 1.2 0.15 

D79S 2.2 0.12 0.9 0.21 2.6 0.64 

G80A 1.2 0.10 1.0 0.33 1.2 0.39 

K101R 4.0 0.42 304.9 50.52 0.0 0.00 

R108A 3.0 0.13 0.9 0.16 3.2 0.56 

R108G 5.4 0.12 8.5 0.55 0.6 0.04 

R108I 8.1 0.55 149.2 15.73 0.1 0.01 

R108L 3.4 0.08 49.2 2.95 0.1 0.00 

R108Q 3.8 0.10 8.7 0.64 0.4 0.03 

R108Y 4.5 0.14 19.3 1.59 0.2 0.02 

R112S 0.8 0.12 4.1 1.28 0.2 0.07 

K132H 1.9 0.17 1.6 0.49 1.1 0.35 

H141R 0.6 0.03 0.5 0.13 1.2 0.30 

K143W 1.2 0.08 0.6 0.20 1.8 0.57 

Q147E 1.9 0.07 1.4 0.18 1.4 0.19 

Y157A 1.0 0.06 1.0 0.24 0.9 0.22 

A180T 2.3 0.05 1.2 0.09 2.0 0.16 
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Table 2.8 Intrinsic GTP hydrolysis rate of wild type and mutant Gsp1. Standard deviation is based 
on data from 3 or more replicates. 

Gsp1 mutant Intrinsic GTP hydrolysis rate [s-1] std.error of intrinsic GTP hydrolysis rate [s-1] 

WT 2.5E-05 1.2E-06 

T34A 7.4E-06 3.0E-06 

T34E 8.7E-06 1.1E-06 

T34G 2.0E-05 1.9E-06 

T34L 1.8E-05 3.7E-07 

T34Q 6.6E-06 3.0E-06 

F58A 2.1E-05 2.7E-07 

R78K 8.0E-06 3.9E-06 

D79A 4.3E-05 1.2E-05 

D79S 1.8E-05 2.9E-06 

G80A 1.5E-05 7.3E-07 

K101R 2.7E-05 2.1E-06 

R108A 1.4E-05 4.9E-07 

R108G 1.9E-05 1.2E-06 

R108I 3.4E-05 8.8E-06 

R108L 1.9E-05 9.4E-07 

R108Q 1.9E-05 5.0E-07 

R108Y 2.0E-05 2.4E-06 

R112S 1.6E-05 5.9E-06 

K132H 3.3E-05 4.9E-06 

H141R 3.1E-05 8.8E-07 

K143W 2.9E-05 7.6E-07 

Q147E 1.6E-05 9.6E-08 

Y157A 3.9E-05 5.5E-06 

A180T 2.7E-05 1.4E-06 
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Table 2.9 Apparent Tm values estimated from the circular dichroism (CD) thermal melts. Mutants 
are ordered by apparent Tm. 

Gsp1 mutant Apparent Tm [ºC] 

R78K 79 

G80A 77 

T34G 77 

R108Y 77 

N105L 77 

R108G 77 

WT 76 

T34L 76 

K101R 76 

R108Q 75 

R108I 74 

A180T 74 

K132H 74 

Q147E 73 

R108L 73 

K143W 73 

D79S 72 

R112S 71 

H141I 66 

H141V 63 

H141R 63 

Y157A 63 
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Chapter 3. A complete allosteric map of a GTPase switch in its native network 

Summary 

Allosteric regulation is central to protein function in cellular networks.77 However, despite 

technological advances157,158 most studies of allosteric effects on function are conducted in 

heterologous environments,157,159,160 limiting the discovery of allosteric mechanisms that rely on 

endogenous binding partners or posttranslational modifications to modulate activity. Here we 

report an approach that enables probing of new sites of allosteric regulation at residue-level 

resolution in essential eukaryotic proteins in their native biological context by comprehensive 

mutational scanning. We apply our approach to the central GTPase Gsp1/Ran. GTPases are highly 

regulated molecular switches that control signaling, with switching occurring via catalyzed GTP 

hydrolysis and nucleotide exchange. We find that 28% of 4,315 assayed mutations in Gsp1/Ran 

are highly deleterious, showing a toxic response identified by our assay as gain-of-function (GOF). 

Remarkably, a third of all positions enriched for GOF mutations (20/60) are outside the GTPase 

active site. Kinetic analysis shows that these distal sites are allosterically coupled to the active site, 

including a novel cluster of sites that alter the nucleotide preference of Gsp1 from GDP to GTP. 

We describe multiple distinct mechanisms by which allosteric mutations alter Gsp1/Ran cellular 

function by modulating GTPase switching. Our systematic discovery of new regulatory sites 

provides a functional map relevant to other GTPases such as Ras that could be exploited for 

targeting and reprogramming critical biological processes. 

Introduction 

Allostery, the process by which perturbations at one site of a protein exert functional effects at 

distal sites, is a central regulatory mechanism in cells.77 Protein or ligand binding, posttranslational 
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modifications, and mutations can allosterically alter subsequent binding events or enzymatic 

activities to control metabolism158 or signaling,161,162 making allosteric regulation a driver of 

disease and attractive target for therapeutic drug design.163 While it has been suggested that a 

considerable fraction of protein residues may be primed for allosteric regulation157 and this priming 

may enable the evolution of new functional protein-protein interactions,164 it remains an open 

question how prevalent allosteric sites are in a protein structure. Moreover, while biophysical 

aspects of allostery have been mapped using technological advances,157 the role of allosteric 

perturbations on cellular function in physiological networks has not been mapped comprehensively 

even for single proteins. One contributor is a lack of methods for discovering new sites of allosteric 

regulation in the cellular context, thus limiting the identification of new targets for drug 

development and the reprogramming of functions in cellular networks. 

A class of proteins thought to be regulated through allosteric mechanisms are switches, which 

cycle between “on” and “off” states in response to signals, are ubiquitous in biological regulation,19 

and whose misregulation is often associated with disease.20 In small GTPase switches, 

interconversion between a GTP-bound on-state and a GDP-bound off-state is intrinsically slow 

but is accelerated by two opposing regulators: GTPase-activating (GAP) proteins that activate GTP 

hydrolysis and guanine nucleotide exchange factor (GEF) proteins that accelerate nucleotide 

replacement. Perturbations at a very limited number of allosteric sites distal from the active site, 

which comprises the nucleotide binding region and the switch loops,18 have been shown to affect 

the kinetics of biochemical switching function in vitro161 and to lead to switch overactivation159,160 

and altered cellular function.161 Additionally, one allosteric site of the GTPase Ras has been 

successfully targeted by small molecule inhibitors.165 Despite these key findings, the vast majority 

of GTPase sites remain untested for allosteric regulation in their  native biological networks111 
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when the functional context of opposing regulators, posttranslational modifications, interaction 

partners, and downstream signaling pathways is preserved (Figure 3.1A). 

Here we introduce an approach to generate a complete allosteric map of the essential eukaryotic 

GTPase switch Gsp1/Ran in the native context of its in vivo interaction network in S. cerevisiae 

based on comprehensive mutational perturbation.59,61 Gsp1/Ran uses a single pair of regulators, 

the GAP Rna1 and the GEF Srm1, but an extended network of adaptor and effector proteins, whose 

interactions with Gsp1/Ran are dependent on switch state, control diverse processes including 

nucleocytoplasmic transport, cell cycle progression and RNA processing.161 Gsp1 is highly 

conserved, with 82% of its amino acid sequence identical to the human homolog Ran. With some 

notable exceptions,160,166 prior mutational scanning experiments have revealed a tolerance to 

mutations even among highly conserved proteins,167 suggesting missing biological context.166,168 

In contrast, for Gsp1 in its physiological network, here we report that cellular function is affected 

by mutations at a large number of previously uncharacterized positions outside the active site, 

identifying widespread sensitivity of a central GTPase to allosteric regulation. 

Results 

Comprehensive mutational perturbation of Gsp1. 

To systematically measure the effect of all Gsp1 mutations on cellular function (Figure 3.1A), 

we developed an approach derived from our EMPIRIC (extremely methodical and parallel 

investigation of randomized individual codons) method60 but with a generalizable plasmid dropout 

selection to probe the function of essential genes (Figure 3.1B, Methods). We transformed a 

chromosomal GSP1 knockout strain with the wild-type (WT) GSP1 allele under the control of its 

native promoter on a URA selectable plasmid harboring constitutively expressed GFP, and 
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confirmed Gsp1 protein expression via Western blot (Figure 3.2). We introduced a library of all 

possible single Gsp1 mutants, also expressed from the native Gsp1 promoter, using a HIS 

selectable plasmid harboring constitutively expressed mCherry. We sorted for cells expressing 

mCherry (library plasmid) but not GFP (WT plasmid) and compared allele abundances from the 

initial population to the population after six generations of growth to compute fitness scores for all 

19 possible single amino acid substitutions as well as WT synonymous (WT-syn) and STOP 

codons at every position in Gsp1 (Figure 3.1C, Methods). This approach interrogates variant 

fitness both in the presence and absence of a WT copy with the potential to inform on both gain of 

toxic function and loss of normal function. 

We categorized the fitness score of each mutation relative to the distributions of fitness scores 

for WT-syn and STOP codons (Figure 3.1D, Methods). Compared to the WT-syn distribution, 

48.5% of all mutations showed deleterious fitness effects, while very few mutations (15/4315 or 

0.35%) were beneficial. We observed strongly deleterious mutations in the GTPase active site, 

which we define as the highly conserved G1-5 functional regions of the Ras superfamily of small 

GTPases (including the switch loops that change conformation in the GDP- and GTP-bound states) 

and any additional positions contacting the nucleotide (Figure 3.1C and Figure 3.3). 

The distribution of STOP codon scores (Figure 3.1D, E) fell into two groups: STOP codon 

mutations before Gsp1 sequence position 175 had narrowly distributed fitness scores no lower than 

-2.90 (scores are log2-transformed changes in variant abundance relative to wild-type). In contrast, 

STOP mutations after position 175 had substantially lower fitness scores (down to -10.5). Residues 

1-174 comprise a standard GTPase fold, whereas residues 175-219 comprise a C-terminal 

extension specific to the Ran subfamily (Figure 3.1C and Figure 3.3A). Thus, the first set of 

STOP codon mutants (residues 1-174) likely represent the growth defect of a null Gsp1 mutant, as 
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internal truncations in the GTPase fold likely result in nonfunctional proteins. Mutations with 

worse scores than null alleles must have a functional effect more detrimental than loss-of-function, 

and we termed these mutations “toxic gain-of-function”, or toxic/GOF. Using a conservative 

definition of scores worse than the mean STOP codon mutation score of positions 1-174 by more 

than three standard deviations, more than half of all deleterious mutations (58.4%, and 28.4% of 

all mutations) were toxic/GOF. Toxic/GOF mutations were not exclusive to the active site regions 

defined above, but were broadly distributed across the Gsp1 structure, including in interfaces with 

Gsp1 partner proteins, in parts of the Gsp1 buried core, and at surface positions outside of the 

interaction interfaces (Figure 3.4A). 

Mapping structural locations of toxic/GOF mutations. 

Both the prevalence of toxic/GOF mutations and their locations across the GTPase fold were 

unexpected. To identify potential mechanisms underlying these findings, we defined sequence 

positions that were enriched in toxic/GOF mutations. We counted the number of toxic/GOF 

mutations at each position and compared this empirical distribution to a null distribution 

parameterized according to the total number of toxic/GOF mutations in the dataset (Figure 3.5, 

Methods). Positions with 10 or more toxic/GOF mutations showed significant enrichment and 

were labeled as toxic/GOF positions. In total, 60 out of 219 Gsp1 sequence positions were 

toxic/GOF; 57 of these residues were identical in amino acid identity between S. cerevisiae Gsp1 

and human Ran. 

Given most substantial fitness effects observed in mutational perturbation studies are typically 

from mutations at positions in active sites required for function, or at positions in the protein core 

critical for stability, we asked whether the locations of toxic/GOF positions overlapped with the 

active site or the core. Only half (30/60) of the toxic/GOF positions are in the active site (Figure 
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3.4B, blue) and an additional 10 positions are in the C-terminal extension. Thus, 20/60 toxic/GOF 

positions are at positions in the GTPase fold but distal to the active site (Figure 3.4B, red). 16 out 

of the 46 active site positions are not toxic/GOF. Conversely, only 19 out of the 60 toxic/GOF 

positions are in the buried protein core (Figure 3.4C, red), and 43 out of the 62 core positions are 

not toxic/GOF (Figure 3.4C, orange). Moreover, mutations in the active site would typically be 

expected to ablate function and therefore lead to a loss-of-function phenotype (similar to STOP). 

However, we observe 517 (61%) toxic/GOF mutations in the active site compared to only 93 (11%) 

STOP-like mutations (Figure 3.4A). Similarly, mutations in the protein core that destabilize Gsp1 

would be expected to exhibit a fitness cost similar to that observed for STOP codons in the GTPase 

fold, but not be toxic/GOF. In addition, computational stability calculations (Methods) showed 

little correlation between predicted destabilization and decreased fitness when including 

toxic/GOF mutations, and only a modest correlation for mutations in the buried core when 

excluding toxic/GOF mutations (Figure 3.6, Figure 3.7). Thus, the mechanism of Gsp1 toxic/GOF 

mutations is not satisfactorily explained by either simply the location in the active site or by 

destabilization of the protein. 

Functional roles of toxic/GOF mutants. 

The prevalence of toxic/GOF mutations in the C-terminal extension (Figure 3.1C, E) provided 

the first evidence that the toxicity of the mutants stems from perturbed regulation: Deleting the C-

terminus of Ran/Gsp1 is known to alter the balance between the switch states by stabilizing the 

GTP-bound form,169 which may explain the enrichment of cancer mutations in the C-terminus of 

Ran.170 We therefore asked whether all toxic/GOF mutations perturbed Gsp1 GTPase switch 

function. This model would account for the toxic/GOF effects of mutations at the 40 positions in 

the GTPase active site or C-terminus. Of the remaining 20 toxic/GOF distal sites within the 
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GTPase fold (Figure 3.4B), 13 are located in the interfaces with key regulators of the GTPase 

switch Rna1 (GAP), Srm1 (GEF), and Yrb1; Y157 is an allosteric site previously identified to be 

coupled to the Gsp1 active site,161 consistent with the proposed effect of mutations on regulated 

switching; and S155 is a known phosphorylation site171 neighboring the conserved G5 SAK motif 

in the active site (Figure 3.1C). Four of the remaining five toxic/GOF positions are clustered in 

the Gsp1 structure outside of the active site, and along with the final position (H50) and two other 

toxic/GOF positions (N156 and F159) form distal interaction networks in crystal structures of 

Ran/Gsp1 that extend up to 16Å away from the nucleotide ligand to the Switch I and the C-terminal 

extension in the GDP-bound state172 (Figure 3.8A). We verified that toxic/GOF mutants at these 

positions indeed had severe fitness defects compared to WT or an internal STOP-codon mutant 

when co-expressed with WT using a yeast spotting assay (Figure 3.8B), and that a C-terminal 

deletion variant was as toxic as the toxic/GOF mutations at these positions. 

To examine whether toxic/GOF mutations perturbed switch function in this unexplained set of 

mutants, we purified and characterized pairs of toxic/GOF (F28V, F54A, F159L, and F163L) and 

WT-like mutants (F28Y, F54W, F159W, and F163Y) at the four Phenylalanine positions that are 

clustered in the structure but distal from the active site. All purified mutants were well-folded and 

stable (Figure 3.9, Figure 3.10). We then assessed switching by measuring the rate of GEF-

mediated nucleotide exchange to either GTP or GDP using recombinantly expressed and purified 

S. cerevisiae Srm1, the GEF of Gsp1 (Figure 3.8C, Figure 3.11A, Methods). All mutants except 

F159L had reduced or similar GEF-catalyzed nucleotide exchange rates compared to WT (Figure 

3.11B). However, the exchange was dependent on the nucleotide: toxic/GOF mutants had a faster 

rate of exchange to GTP than to GDP while the WT-like counterparts had a preference for GDP 

over GTP, identical to WT (Fig. 3.8D, Figure 3.11A-C). Hence, toxic/GOF mutations reversed 
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the nucleotide preference of the switch but WT-like mutations did not. We also measured GAP-

catalyzed GTP hydrolysis and found that toxic/GOF mutations did not have reduced GTP 

hydrolysis (Figure 3.11D). We conclude that toxic/GOF mutations distal to the active site can 

indeed allosterically perturb the molecular function of the switch by disfavoring the GDP-bound 

state, while WT-like mutations at the same positions do not. 

An allosteric map of a GTPase switch. 

Our analyses assign functional roles to all 60 toxic/GOF positions in our dataset, mapping the 

functionally essential residues in a GTPase molecular switch (Figure 3.12A, B). While the active 

site (nucleotide recognition sites and the GTPase switch loops) is the most common location for 

toxic/GOF positions, 33% of toxic/GOF positions (20/60) are outside of the active site (Figure 

3.12A). These sites are at least 5 and up to 30Å away from the nucleotide (Figure 3.12C), showing 

that our method quantifying perturbations to cellular function in the native network identifies many 

non-local sites of allosteric regulation, even surpassing a recent study of allostery quantifying 

effects on biophysical function in peptide binding domains.157 

We identify several mechanisms for how perturbations at regions outside of the active site 

allosterically affect GTPase switching: First, 13 sites are in interaction interfaces with the key 

regulators Rna1 (GAP) and Srm1 (GEF), which accelerate interconversion between the GTP- and 

GDP-bound states, and Yrb1, the S. cerevisiae homolog of human RanBP1, which stabilizes the 

GTP-bound state of Gsp1 and increases interaction with the GAP.169 Second, distal positions in 

protein-protein interaction interfaces are in addition directly coupled to the switch by modulating 

the efficiency of GTP hydrolysis.161 Third, we show here that a previously unknown allosteric 

cluster in the structure core (Figure 3.12A, C, red) is coupled to switch regulation by altering the 

nucleotide preference (Figure 3.8). Finally, the toxic/GOF positions also include 4 locations of 
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posttranslational modifications (PTMs).171,173,174 Relatively small perturbations at all identified 

sites resulted in cellular defects consistently worse than a null mutant, which suggests that the 

effect on the rates of regulated switching between GTPase states is the key quantitative parameter 

dominating the functional effects of any Gsp1 mutation. 

While there are no experimental studies probing the function of other GTPases under normal 

cellular conditions at the residue level, our functional map of Gsp1 is predictive of many activating 

mutations recently reported for the human H-Ras protein in mouse-derived Ba/F3 cells159 (Figure 

3.12d). 19/30 positions with activating mutations in H-Ras are also toxic/GOF positions in Gsp1 

(Figure 3.12E). Those positions are enriched in the active site (Figure 3.14), whereas our Gsp1 

perturbation analysis revealed additional allosteric sites including many in regulatory partner 

interfaces. The additional sites may be specific to Gsp1 or may not be detectable using the 

overactivation phenotype screened for in the H-Ras assay. Conversely, of the 11/30 activating 

positions not classified by our stringent cutoff as toxic/GOF in Gsp1, six have at least five 

toxic/GOF mutations in Gsp1, and all have at least one (Figure 3.14). We also compared our data 

to a computational analysis of GTPases based on residue-residue co-variation in multiple sequence 

alignments of the GTPase superfamily175 (Figure 3.12F). Key “sector” positions identified 

computationally show more overlap with the Gsp1 toxic/GOF positions than the H-Ras activation 

data (26/49 of the alignable positions, versus 19/49), again primarily by capturing more residues 

in the GTPase active site regions (Figure 3.14). Of the additional 30 positions suggested by the 

sector analysis, 12 have at least five toxic/GOF mutations in the Gsp1 data, and only four have no 

toxic/GOF mutations (Figure 3.14). However, the computational sector analysis misses 23/49 

toxic/GOF positions in Gsp1. This finding could indicate a lack of sensitivity or the potential for 

key regulatory differences between highly conserved GTPases that may be difficult to discern from 
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sequence analysis alone, but which are enabled by quantitative perturbations in the native cellular 

context using our approach.  

Discussion 

A key finding of our work is the broad sensitivity of a critical molecular switch to perturbations 

at many allosteric regulatory sites outside the typically studied active site “switch” regions (Figure 

3.12A, C). We propose a model where this sensitivity of the switch facilitates both its 

responsiveness to many biological inputs and its output signaling specificity.161 We identify an 

altered switch balance as the common mechanism by which toxic/GOF mutations affect the 

cellular function of Gsp1. This finding suggests that the GTPase switch balance is finely tuned and 

that the sensitivity of this balance to mutations at many positions might explain why GTPases are 

so highly conserved even outside the active site regions. We further show that relatively small 

perturbations to the switch balance have deleterious functional consequences. This finding is 

consistent with results from kinetic models of ultrasensitivity, where for switches controlled by 

opposing regulators (Figure 3.1A) small changes in the concentration or activity of regulators can 

result in sharp changes in the fraction of the switch “on” state.110 Our study provides an important 

link between allosteric regulation of the switch balance110 at the molecular level, and the 

ultrasensitivity of switches110 and functional consequences for cellular regulation at the systems 

level.161 Our residue-level functional map of a GTPase molecular switch and the discovery of new 

regulatory sites opens avenues to interrogate and target GTPases controlling many essential 

biological processes including intracellular transport, cell growth, differentiation, and cell survival. 
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Methods 

Deep mutational scanning of Gsp1 in S. cerevisiae 

Plasmid and strain construction 

To facilitate rapid Fluorescence Activated Cell Sorting (FACS)-based isolation of yeast 

harboring mutant Gsp1 variants, we generated plasmids marked with GFP or mCherry along with 

auxotrophic markers. To mimic endogenous expression of Gsp1, we cloned the Gsp1 coding 

sequence along with its natural promoter sequence (420 bases upstream of the start codon) and its 

natural 3’ region (220 bases downstream from the stop codon). We used centromeric plasmids to 

approximate genomic copy level. To generate a strong fluorescent signal, we used the Tef1 

promoter to drive either GFP or mCherry. We cloned this Gsp1 construct into a URA-marked 

plasmid with GFP (pRS416Gsp1GFP), and a HIS-marked plasmid with mCherry 

(pRS413Gsp1mCherry). 

We engineered a systematic library including all possible single amino acid changes in Gsp1 

as previously described.176 Briefly, we cloned the Gsp1 open reading frame into pRNDM and 

created a set of constructs with tiled inverted BsaI restriction sites bracketing 10 amino acid regions 

of Gsp1. For each amino acid in Gsp1, we used complementary oligonucleotides with single 

codons randomized as NNN to generate a comprehensive library of variants encoding all possible 

amino acid changes. We used Gibson assembly to transfer the library into the plasmid swap vector, 

generating pRS413Gsp1libmCherry. To enable library transfer, this destination vector was 

modified to harbor a cassette containing an SphI site along with upstream and downstream 

homologous sequences to Gsp1 promoter and terminator regions respectively. To facilitate short-

read estimates of variant frequency we implemented a barcoding strategy as previously 
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described.176 We used cassette ligation at NotI and AscI restriction sites downstream of Gsp1 gene 

to introduce an oligonucleotide cassette including an N18 random sequence into the 

pRS413Gsp1libmCherry variants. We used paired-end Illumina sequencing to associate the 18 

base barcodes with the encoded Gsp1 variants.  

To generate the plasmid swap strain, DBY681, we started with a heterozygous diploid Gsp1 

knockout (BY4743 Gsp1::KanMX) ordered from GE. First, we introduced pRS416Gsp1GFP and 

selected for transformants on synthetic media lacking uracil. Next, we sporulated the diploid 

transformants to generate haploids bearing the URA-marked plasmid. Successful transformation 

was evident because the selected haploid yeast cells grew on synthetic media lacking uracil, 

expressed GFP, grew on G418 antibiotic that selects for endogenous Gsp1 knockout, and lacked 

growth on synthetic media having 5-FOA which negatively selects yeast cells with URA-marked 

plasmid. The resulting DBY681 strain was used for all Gsp1 plasmid swap experiments. 

Gsp1 fitness competition 

The DBY681 strain was made competent using the lithium acetate method177 and transformed 

with the barcoded pRS413Gsp1libmCherry plasmids. Transformation efficiency was determined 

by plating a small fraction of cells on selection media (SD-Ura-His+G418), aiming for five-fold 

coverage of the library. Sufficient transformations were performed to introduce each barcoded 

plasmid variant into more than 10 independent yeast cells. Following transformation, the cells 

were allowed to recover in synthetic dextrose media lacking uracil (SD-Ura) for ~10 hours at room 

temperature. The cells were then collected by centrifugation at 5000 x g for 5 minutes, washed 

multiple times to eliminate residual extracellular plasmid and resuspended in synthetic dextrose 

media lacking uracil and histidine (SD-Ura-His+G418). Sufficient media was used to achieve an 

optical density of approximately 0.1 at 600 nm. The cells were grown on an orbital shaker at 30 
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°C in the double selection media for approximately 42 hours, with constant dilution to maintain 

the cells in log phase. 

A sample of these “initial” cells were retained for sequencing and the remainder were 

collected by centrifugation at 5000 x g for 10 minutes and resuspended in synthetic dextrose media 

lacking only histidine (SD-His) to enable loss of the URA-marked WT Gsp1 plasmid. Cells were 

grown in this medium with orbital shaking at 30 °C for 16 hours, which represents 6 doubling 

times of the parental DBY681 strain under these conditions. At the end of 16 hrs, cells were 

collected by centrifugation, then washed and diluted in 1x TBS with 1% BSA. For flow cytometry, 

the non-fluorescent parental strain W303 was treated as a negative control while DBY681 and 

W303 transformed with pRS413NoinsertmCherry plasmid were considered as GFP and mCherry 

positive controls. 3 million cells were analyzed by FACS. Cells that had lost the GFP-marked 

plasmid encoding WT Gsp1 were isolated by FACS. A total of 500,000 GFP-/mCherry+ cells were 

isolated by FACS as a sorted sample. The cells were isolated by centrifugation.  

Deep sequencing was used to estimate the enrichment or depletion of mutants in the 16 hour 

sorted sample as compared to the initial sample in double selection media. The initial and sorted 

yeast samples were lysed using zymolyase and PCR amplified to generate samples for 100 bp 

Illumina sequencing of barcodes as previously described.176 Briefly, primers were used that added 

sequences for identifying each sample as well as for compatibility with Illumina sequencing. Reads 

with low quality (PHRED score < 20) or that did not match in expected constant regions were 

eliminated from further analyses. The remaining reads were then parsed into initial and sorted bins 

and the number of reads of each amino acid mutation in each bin was tabulated. The experimental 

fitness of each variant was estimated as a selection coefficient based on the counts in the initial 

and sorted samples using WT synonyms for normalization using the following equation: 
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𝑠𝑚𝑢𝑡 = (
𝑁𝑚𝑢𝑡,𝑠𝑜𝑟𝑡𝑒𝑑
𝑁𝑚𝑢𝑡,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

) − 𝑚𝑒𝑎𝑛 [(
𝑁𝑊𝑇,𝑠𝑜𝑟𝑡𝑒𝑑
𝑁𝑊𝑇,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

) ] 

where 𝑠𝑚𝑢𝑡 is the selection coefficient of a mutant, 𝑁𝑚𝑢𝑡,𝑠𝑜𝑟𝑡𝑒𝑑  is the number of reads of the mutant 

in the sorted sample, 𝑁𝑊𝑇,𝑠𝑜𝑟𝑡𝑒𝑑 is the number of reads of WT synonyms in the sorted sample, 

𝑁𝑚𝑢𝑡,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the number of reads of the mutant in the initial sample, and 𝑁𝑊𝑇,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the number 

of reads of a WT synonym in the initial sample. Using this equation, the average WT synonym has 

a selection coefficient of 0, while deleterious variants have negative 𝑠 and beneficial variants have 

positive 𝑠. Alleles with low read counts in the initial sample, defined as less than 2% of the average 

variant’s number of reads, were excluded from all downstream analysis. 

Fitness scores were then binned according to thresholds set by the mean and standard 

deviations of the distributions of scores for WT synonyms and STOP mutants. From the latter 

distribution we excluded mutations at sequence positions after 174, as these C-terminal STOP 

mutants showed significant deviations from the relatively consistent distribution of scores for 

STOP mutants up to and including position 174 (Figure 3.1E) and correspond to C-terminal 

deletion mutants that are known to encode fully folded proteins with perturbed biochemical 

function.169 Scores within two standard deviations of the mean of the WT synonym score 

distribution were labeled as WT-like, and scores higher than this cutoff were labeled as beneficial. 

For the STOP mutant distribution, scores within two standard deviations above or three standard 

deviations below the mean were labeled STOP-like, and scores worse than the bottom cutoff were 

labeled as toxic/GOF. Finally, scores between the WT-like and STOP-like distributions were 

labeled as intermediate. 
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Expression levels of Gsp1 variants via western blot 

Yeast cells were grown to exponential phase in either rich (YPD) or synthetic (SD-ura) media 

at 30°C. 108 yeast cells were collected by centrifugation and frozen as pellets at −80°C. Cells were 

lysed by vortexing the thawed pellets with glass beads in lysis buffer (50 mM Tris-HCl pH 7.5, 5 

mM EDTA and 10 mM PMSF), followed by addition of 2% sodium dodecyl sulfate (SDS). Lysed 

cells were centrifuged at 18,000 x g for 1 min to remove debris, and the protein concentration of 

the supernatants was determined using a BCA protein assay kit (CAT #23227, Pierce) compared 

to a Bovine Serum Albumin (BSA) protein standard. 25 µg of total cellular protein was resolved 

by SDS-PAGE and was either visualized with Coomassie blue stain, or transferred to a PVDF 

membrane, and probed using Rabbit anti-RAN primary (CAT # PA 1-5783, ThermoFisher 

Scientific) and Donkey anti-Rabbit HRP-linked secondary (CAT # NA934V, Cytiva Life Science) 

and visualized with ECL-2 substrate (CAT #80196, Pierce). 

Yeast spotting assays 

Individual variants of Gsp1 were generated by site-directed mutagenesis using overlapping 

mutagenic PCR primers and confirmed by Sanger sequencing. Variants were cloned in a HIS-

marked plasmid (pRS413 with mCherry). For the yeast spotting assays, the plasmids were 

transformed into DBY681 (Gsp1::kan, pRS416Gsp1 with GFP) using the lithium acetate 

method.177 Transformed cells were recovered in SD-ura media for 6 hours and then 5 uL of a 10x 

dilution series of cells were spotted onto SD-ura-his plates. For the bacterial spotting assays, the 

same plasmids were transformed into chemically competent E. coli, recovered for 1 hour in LB, 

and 5 uL of a 10x dilution series of cells were spotted on LB-amp plates. 
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Statistical modeling of the distribution of toxic/GOF mutations 

A hypergeometric distribution was used to model the null distribution of toxic/GOF mutations 

partitioning among the 219 residue positions. This approach computes the probability that a certain 

number of toxic/GOF scores would be at the same position, given the number of toxic/GOF scores 

in the dataset and 21 possibilities at each position (20 amino acids and STOP). The calculation 

was performed using the dhyper function in the stats package of the programming language R. 

Biochemical and biophysical assays 

Protein purifications 

Gsp1 variants were expressed from a pET-28 a (+) vector with an N-terminal 6xHis tag in E. 

coli strain BL21 (DE3) in the presence of 50 mg/L Kanamycin in autoinduction EZ medium for 

60 hours at 20 °C.141 The autoinduction medium consisted of ZY medium (10 g/L tryptone, 5 g/L 

yeast extract) supplemented with the following stock mixtures: 20xNPS (1M Na2HPO4, 1M 

KH2PO4, and 0.5 M (NH4)2SO4), 50x 5052 (25% glycerol, 2.5% glucose, and 10% α-lactose 

monohydrate), 1000x trace metal mixture (50 mM FeCl3, 20 mM CaCl2, 10 mM each of MnCl2 

and ZnSO4, and 2 mM each of CoCl2, CuCl2, NiCl2, Na2MoO4, Na2SeO3, and H3BO3 in ~60 mM 

HCl). Cells were lysed in 50 mM Tris pH 7.5, 500 mM NaCl, 10 mM MgCl2, 10 mM imidazole, 

and 2 mM β-mercaptoethanol using a microfluidizer from Microfluidics. The His-tagged proteins 

were purified on Ni-NTA resin (Thermo Scientific #88222) and washed into a buffer of 50 mM 

Tris (pH 7.5), 100 mM NaCl, and 4 mM MgCl2. The N-terminal His-tag was digested at room 

temperature overnight using 12 NIH Units per mL of bovine thrombin (Sigma-Aldrich T4648-

10KU). Proteins were then bound to an additional 1 mL of Ni-NTA resin to remove non-specific 

binders and passed through a 0.22 uM filter. Purity was confirmed to be at least 90% by SDS 
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polyacrylamide gel electrophoresis. Samples were concentrated on 10 kDa spin filter columns 

(Amicon Catalog # UFC901024) into a storage buffer of 50 mM Tris pH 7.5, 150 mM NaCl, 4 

mM MgCl2, and 1 mM Dithiothreitol. Using this protocol, Gsp1 variants are purified bound to 

GDP (as any bound GTP is likely hydrolyzed completely during the lengthy incubation steps 

beginning with thrombin cleavage). The complete hydrolysis to GDP was confirmed for this 

protocol previously161 using reverse phase high performance liquid chromatography on a C18 

column. Protein concentrations were confirmed by measuring at 10-50x dilution using a Nanodrop 

(ThermoScientific). The extinction coefficient at 280 nm used for wild-type Gsp1 was 37675 M-1 

cm-1, based on the value calculated from the primary protein sequence using the ProtParam tool 

(https://web.expasy.org/protparam/) accounting for the cleaved N-terminal residues, and 

augmented by 7765 M-1 cm-1 to account for the bound nucleotide, as described previously (see 

Note 4.13 by Smith and Rittinger142). Extinction coefficients were calculated for each Gsp1 mutant 

by the same method. The ratio of absorbance at 260 nm and 280 nm for purified Gsp1 bound to 

GDP was 0.76 for all mutants except for N156W, for which it was 1.34. Concentrated proteins 

were flash-frozen and stored at -80 °C. 

S. cerevisiae Srm1 (GEF, Uniprot P21827) and S. pombe Rna1 (GAP, Uniprot P41391) were 

also expressed from a pET-28 a (+) vector with a N-terminal 6xHis tag in E. coli strain BL21 

(DE3). For discussion on the appropriateness of using S. pombe GAP for kinetics studies of S. 

cerevisiae Gsp1, see the Supplementary Note in Chapter 2. Srm1 was purified as Δ1-27Srm1 and 

GAP as a full-length protein. ScΔ1-27Srm1 and SpRna1 were expressed in 2xYT medium (10 g 

NaCl, 10 g yeast extract (BD BactoTMYeast Extract #212720), 16 g tryptone (Fisher, BP1421) 

per 1 L of medium) in the presence of 50 mg/L Kanamycin overnight at 25 ºC. Expression was 

induced by addition of 300 μmol/L Isopropyl-β-D-thiogalactoside (IPTG). Cells were lysed in 50 
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mM Tris pH 7.5, 500 mM NaCl, 10 mM imidazole, and 2 mM β-mercaptoethanol using a 

microfluidizer from Microfluidics. The His-tagged proteins were purified on Ni-NTA resin 

(Thermo Scientific #88222) and washed into a buffer of 50 mM Tris (pH 7.5) and 100 mM NaCl. 

The N-terminal His-tag was digested at room temperature overnight using 12 NIH Units per mL 

of bovine thrombin (Sigma-Aldrich T4648-10KU). Proteins were then bound to an additional 1 

mL of Ni-NTA resin to remove non-specific binders and passed through a 0.22 uM filter. Proteins 

were then purified using size exclusion chromatography (HiLoad 26/600 Superdex 200 pg column 

from GE Healthcare), and purity was confirmed to be at least 90% by SDS polyacrylamide gel 

electrophoresis. Samples were concentrated on 10 kDa spin filter columns (Amicon Catalog # 

UFC901024) into storage buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM Dithiothreitol). Protein 

concentrations were confirmed by measuring at 10-50x dilution using a Nanodrop 

(ThermoScientific). Extinction coefficients were estimated based on their primary protein 

sequence using the ProtParam tool (https://web.expasy.org/protparam/). Concentrated proteins 

were flash-frozen and stored at -80 ºC. 

Circular dichroism (CD) spectroscopy 

Samples for CD analysis were prepared to a concentration of 1 - 2.5 μM Gsp1 in 2.5 mM Tris 

pH 7.5, 5 mM NaCl, 200 μM MgCl2, and 50 μM Dithiothreitol. CD spectra were recorded at 25 

°C using 1- or 2-mm cuvettes (Starna, 21-Q-1 or 21-Q-2) in a JASCO J-710 CD-spectrometer 

(Serial #9079119). The bandwidth was 2 nm, rate of scanning 20 nm/min, data pitch 0.2 nm, and 

response time 8 s. Each CD spectrum represents the accumulation of 5 scans. Buffer spectra were 

subtracted from the sample spectra using the Spectra Manager software Version 1.53.01 from 

JASCO Corporation. Temperature melts were performed from 25 °C - 95 °C, monitoring at 210 

nm, using a data pitch of 0.5°C and a temperature slope of 1°C per minute. As all thermal melts of 
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wild-type and mutant Gsp1 proteins were irreversible, only apparent Tm was estimated by fitting 

melts to a two-state unfolding equation: 

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 = (𝑦𝑓 +𝑚𝑓 ∗ 𝑇) + (𝑦𝑢 +𝑚𝑢 ∗ 𝑇) ∗

(

 
 𝑒𝑥𝑝 (𝑚 ∗ ( 1𝑇𝑚

− 1𝑇))

1 + 𝑒𝑥𝑝 (𝑚 ∗ ( 1𝑇𝑚
− 1𝑇)))

 
 

 

with 𝑇 corresponding to the temperature in degrees Celsius, 𝑦𝑢 and 𝑦𝑓 corresponding to the molar 

ellipticity signal at the unfolded and folded states, and 𝑚𝑢, 𝑚𝑓, and 𝑚 corresponding to the slopes 

of signal change at the unfolded state, the folded state, and the state transition. 

Kinetic measurements of GEF-mediated nucleotide exchange 

Kinetic parameters of GEF mediated nucleotide exchange were determined using a 

fluorescence resonance energy transfer (FRET) based protocol as previously described.161 Gsp1 

variants are purified as a Gsp1:GDP complex, as verified previously.161 Nucleotide exchange from 

GDP to either mant-dGDP (3' - O - (N - Methyl - anthraniloyl) - 2' - deoxyguanosine - 5' - 

diphosphate, CAT # NU-205L, Jena Biosciences) or mant-dGTP (3' - O - (N - Methyl - 

anthraniloyl) - 2' - deoxyguanosine 5' triphosphate, CAT # NU-212L, Jena Biosciences) was 

monitored by measuring a decrease in intrinsic Gsp1 tryptophan fluorescence (295 nm excitation, 

335 nm detection) due to FRET upon binding of the mant group. Experiments were performed in 

100 µl reaction volumes containing GTPase assay buffer (40 mM HEPES pH 7.5, 100 mM NaCl, 

4 mM MgCl2, 1 mM Dithiothreitol) using 5 µM Gsp1, 2.5 nM Srm1 (GEF), and 100 µM mant-

labeled nucleotide. Time courses were collected for 20 min at 30ºC in a Synergy H1 plate reader 

from BioTek, using Corning 3686 96-well half-area non-binding surface plates. Initial rates 𝑣0 of 

nucleotide exchange were estimated using linear fits to the very beginning of reactions for all 
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variants except F28V. Due to the especially slow exchange rate of F28V, the reactions maintained 

linearity over the entire time course, and so the true exchange rate was estimated by subtracting 

the rate of background fluorescence decay (obtained from a control without GEF in a separate well 

on the same plate) from a linear fit of the full time course. At least four replicates were performed 

for each variant, allowing for calculation of the standard deviation of 𝑣0 values (𝑠𝑑). The 

preference for GTP over GDP was calculated as 𝑝 = 𝑣0𝐺𝑇𝑃 𝑣0𝐺𝐷𝑃⁄ , with the error of preference (𝑒) 

being computed using error propagation over the division operator: 

𝑒 =  |
𝑣0𝐺𝑇𝑃

𝑣0𝐺𝐷𝑃 
| ∗ √(

𝑠𝑑𝐺𝑇𝑃

𝑣0𝐺𝑇𝑃
)
2

+ (
𝑠𝑑𝐺𝐷𝑃

𝑣0𝐺𝐷𝑃
)
2

 

Finally, the relative change in preference 𝑝𝑀𝑈𝑇 𝑝𝑊𝑇⁄  was calculated for each mutant, with the 

error once again propagated across the division operator. All relative changes in preference were 

computed using WT rates fit on the same day using the same aliquot of GEF, to normalize for any 

errors in enzyme concentration measurements. Furthermore, experiments for pairs of toxic/GOF 

and WT-like mutants were always performed on the same day using the same aliquots of GEF. 

GTP loading of Gsp1 for GAP-activated hydrolysis assay 

WT Gsp1 was loaded with GTP by incubation in the presence of 20-fold excess GTP 

(Guanosine 5′-Triphosphate, Disodium Salt, CAT # 371701, Calbiochem) in 50 mM Tris HCl pH 

7.5, 100 mM NaCl, 4 mM MgCl2. Exchange of GDP for GTP was initiated by the addition of 10 

mM EDTA. Reactions were incubated for 3 hours at 4°C and stopped by addition of 1 M MgCl2 

to a final concentration of 20 mM MgCl2 to quench the EDTA. GTP-loaded protein was buffer 

exchanged into a GTPase assay buffer of 40 mM HEPES pH 7.5, 100 mM NaCl, 4 mM MgCl2, 1 

mM DTT using NAP-5 Sephadex G-25 DNA Grade columns (GE Healthcare # 17085301). 
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Kinetic measurements of GAP-activated GTP hydrolysis 

Kinetic parameters of the GTP hydrolysis reaction were determined as previously 

described.161 Gsp1 samples for GTP hydrolysis kinetic assays were first loaded with GTP as 

described above. GTP hydrolysis was monitored by measuring fluorescence of the E. coli 

phosphate-binding protein labeled with 7 - Diethylamino - 3 - [N - (2 - maleimidoethyl) carbamoyl] 

coumarin (MDCC) (phosphate sensor, CAT # PV4406, Thermo Fisher) upon binding of the free 

phosphate GTP hydrolysis product (excitation at 425 nm, emission at 457 nm). Experiments were 

performed in 100 µl GTPase assay buffer (40 mM HEPES pH 7.5, 100 mM NaCl, 4 mM MgCl2, 

1 mM Dithiothreitol) using 5 µM Gsp1:GTP, 1 nM SpRna1 (GAP), and 20 µM phosphate sensor. 

Time courses were collected for 60 min at 30ºC in a Synergy H1 plate reader from BioTek, using 

Corning 3881 96-well half-area clear-bottom non-binding surface plates. A conversion factor 

between fluorescence and phosphate concentration was calibrated for the 20 µM concentration of 

the sensor with a range of concentrations of K2HPO4, considering only data in the linear range. 

For each individual GAP-mediated GTP hydrolysis experiment, a control experiment with the 

same concentration of GTP-loaded Gsp1 and the same concentration of sensor, but without added 

GAP, was run in parallel. The first 100 s of these data were used to determine the baseline 

fluorescence. The kinetic parameters (𝑘𝑐𝑎𝑡  and 𝐾𝑚) were estimated by directly analyzing the full 

reaction progress curve with an analytical solution of the integrated Michaelis-Menten equation, 

as done previously161 using the custom-made software DELA.148 Specifically, each time course 

was fitted to an integrated Michaelis Menten equation: 

𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 = 𝐵 + [𝐸] ∗ (𝐶𝑖  + (𝐶𝑓 − 𝐶𝑖 ) ∗  (1 − 𝐾𝑚 ∗
𝜔
[𝑆]0

 )) 
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where [𝐸] is the total enzyme (GAP) concentration, 𝐶𝑖 is the initial fluorescence, 𝐶𝑓 is the final 

fluorescence, [𝑆]0 is the initial concentration of the substrate (Gsp1:GTP), and 𝐵 is the baseline 

slope in fluorescence per second. Exact concentration of loaded Gsp1:GTP [𝑆]0 was estimated 

based on the plateau fluorescence and the sensor calibration parameters to convert the fluorescence 

to free phosphate concentration. The 𝜔 parameter was solved by using the Lambert 𝜔 algorithm, 

𝜔 =  𝐿𝑎𝑚𝑏𝑒𝑟𝑡 𝑜𝑚𝑒𝑔𝑎 (
[𝑆]0
𝐾𝑚

∗ 𝑒𝑥𝑝 (
[𝑆]0 − 𝑘𝑐𝑎𝑡 ∗ [𝐸] ∗ 𝑡𝑖𝑚𝑒

𝐾𝑚
)) 

Computational methods 

Structural bioinformatics 

Protein structures were downloaded from the PDB-REDO databank web server.178 Secondary 

structure annotation of the GTP-bound (PDB 3M1I, chain A) and GDP-bound (PDB 3GJ0) states 

were performed using PyMOL (Schrödinger, Inc.) with the command ss H/S, followed by manual 

inspection and comparison to the results of the DSSP algorithm179 implemented in the PyRosetta 

interface (version 2020.28+release.8ecab77aa50) to the Rosetta molecular modeling suite.180  

Assignments of structural regions (structure core, interface core, and surface) of Gsp1 were 

previously reported161 whereby burial of a residue (in either the structure core or interface core) 

was defined based on per-residue relative solvent accessible surface area (rASA)123 compared to 

the empirical maximum solvent accessible surface area for each of the 20 amino acids.124 

Annotations of the canonical Ras superfamily GTPase regions were taken from181 as well as 

studies of Ran structures.182–185 The key GEF binding region annotations were taken from Renault 

et al.186 
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Rosetta ΔΔG calculations 

Stability calculations for all 19 possible point mutations were performed using the application 

cartesian-ddg187,188 in the Rosetta software suite. Calculations were performed for both the GTP-

bound (PDB 3M1I, chain A) and GDP-bound (PDB 3GJ0) structures. First, the structures were 

minimized in cartesian coordinates using the relax application, the ref2015_cart score function, 

and constraints to starting coordinates. The relax protocol was run 20 times and the lowest scoring 

structure was chosen. The GTP-bound structure was truncated after position 183, as the C-terminal 

extension contains unresolved regions in this crystal structure and adopts a different conformation 

when bound to Yrb1. The prepared starting structures were then run through the cartesian-ddg 

protocol, which computes energy scores in Rosetta Energy Units (REU) for each mutation by 

choosing the best scoring rotamer for the mutant amino acid, then minimizing the structure 5 times 

in cartesian coordinates while only allowing movement of sidechain atoms within a 6Å window 

around the mutated residue and backbone atoms within a three residue window (1 neighboring 

residue on each side), and finally taking the average score of the 5 structures. ΔΔG scores are 

computed by performing the same protocol at each site while choosing the best WT rotamer at the 

first step, and then taking the difference between the mutant and WT energies. Finally, the ΔΔG 

values were scaled down using a scaling factor of 0.298, determined from a benchmark set of 

stability calculations (performed in parallel with the Gsp1 calculations) for which experimental 

ΔΔG values are available,189,190 as recommended by the authors of the cartesian-ddg protocol.187 

Position Q71 was excluded from the analysis, as the GTP-bound structure harbors a Q71L 

mutation at the catalytic glutamine. The full set of command line flags for the relax and cartesian-

ddg protocols are shown below. The movemap file gsp1.movemap was not included for relax runs 

on the benchmark set. All associated configuration files as well as the datasets of Gsp1 and 



 
 
 

137 

benchmark set ΔΔG values are available in full at the code repository at 

https://github.com/cjmathy/Gsp1_DMS_Manuscript.  

 

relax flags: 

<path/to/Rosetta>/main/source/bin/relax.default.linuxgccrelease \ 

-s <path/to/pdb_file> \ 

-out:path:all <path/to/output_dir> \ 

-database <path/to/Rosetta>/main/database \ 

-use_input_sc \ 

-in:file:movemap gsp1.movemap \ # for Gsp1 structures only 

-constrain_relax_to_start_coords \ 

-ignore_unrecognized_res \ 

-nstruct 20 \ 

-relax:cartesian \ 

-relax:coord_constrain_sidechains  \ 

-relax:min_type lbfgs_armijo_nonmonotone \ 

-score:weights ref2015_cart \ 

-relax:script cart2.script 

 

gsp1.movemap: 

RESIDUE * BBCHI 

RESIDUE 201 202 NO # Nucleotide and Mg in 3M1I. Use 208 209 for 3GJ0 

JUMP * YES 

 

cart2.script: 

switch:cartesian 
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repeat 2 

ramp_repack_min 0.02  0.01     1.0  50 

ramp_repack_min 0.250 0.01     0.5  50 

ramp_repack_min 0.550 0.01     0.0 100 

ramp_repack_min 1     0.00001  0.0 200 

accept_to_best 

endrepeat 

 

cartesian-ddg flags: 

<path/to/Rosetta>/main/source/bin/cartesian_ddg.linuxgccrelease \ 

    -database <path/to/Rosetta>/main/database \ 

    -s <path/to/relaxed_pdb_file> \ 

    -out:path:all <path/to/output_dir> \ 

    -ddg:mut_file <path/to/mut_file> \ 

    -ddg:output_dir <path/to/output_dir> \ 

    -ddg:iterations 5 \ 

    -ddg::cartesian \ 

    -ddg::dump_pdbs true \ 

    -ddg::bbnbrs 1 \ 

    -fa_max_dis 9.0 \ 

    -score:weights ref2015_cart 

   

Example mut_file, which specifies the mutation to make (here, F159L, which is residue 150 in 

the numbering scheme used by Rosetta, which always starts at 1 for the N-terminal residue in a 

chain). One such mut_file is used for each modeled mutation. 

total 1 # specifies only one mutation is being made 

1       # specifies only one mutation is being made 
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F 150 L 

Comparison to H-Ras mutagenesis data 

Alignment of sequence positions between Gsp1 and H-Ras was performed with the bio3d 

package125 using the function pdbaln followed by refinement of the alignment upon inspection of 

the structural superposition using the function pdbfit. PDB structures used for the superposition 

were 3M1I, 1K5D, 1WQ1, and 3L8Z. The sequence alignment is shown in Figure 3.13. In total, 

156 structurally aligned positions were included in the analysis. Fitness scores from the human H-

Ras mutagenesis study159 were obtained from datasets deposited on GitHub at 

https://github.com/fhidalgor/ras_cancer_hidalgoetal (commit 0dcb01b from Dec. 22, 2021, 

downloaded on January 31, 2022). Receiver operating characteristic (ROC) curves were produced 

as described in the original study,159 namely by considering H-Ras mutations with a fitness score 

greater than 1.5 times the standard deviation in the Ba/F3 dataset as activating (true positives), 

with the other mutations labeled as true negatives. Then, a variable threshold value of Gsp1 fitness 

is used, and for each threshold value, mutations with a Gsp1 fitness score less than that threshold 

(starting with the most deleterious mutations and proceeding to decreasingly deleterious Gsp1 

mutations) are considered to predict H-Ras activation. 

For the analysis of overlap with Gsp1 toxic/GOF positions (Figure 3.12E, Figure 3.14), a 

threshold of 2 or more activating mutations at a position was chosen for defining H-Ras activation 

positions, since a large number of positions have only a single activating mutation out of the 21 

possible mutations. This threshold was supported by a chi-squared test evaluating the strength of 

association between the Gsp1 toxic/GOF and H-Ras activating sets when applying the threshold 

(P = 7.711 e-5) vs. including all positions with one or more activating mutation (P = 0.0411). 
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Comparison to Statistical Coupling Analysis 

H-Ras sector positions identified by statistical coupling analysis191 were taken from an analysis 

notebook document by the Ranganathan group publicly available on their Github 

(https://github.com/ranganathanlab/pySCA/blob/master/notebooks/SCA_G.ipynb, commit 

301f874, downloaded on February 9, 2022) prepared in concert with their study.175  
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Figures 

 
Figure 3.1 In vivo sensitivity of the GTPase Gsp1 to all possible single amino acid substitutions.  
(a) Mutational perturbations exhaustively probe a switch in its native network. (b) Generalizable plasmid 
swap approach to probe essential genes by mutational mapping. (c) Heatmap showing quantitative fitness 
scores for all Gsp1 mutations after 6 generations of competitive growth. Dot indicates WT synonymous 
codons; X indicates mutants with low reads in the initial library outgrowth. Conserved G1-5 regions are 
shown in colors corresponding to structural annotations in Figure 3.3. Additional annotated functional 
regions include the catalytic residue Q71, the GEF interacting region, and the basic patch and acidic tail 
that interact in the GDP-bound structure.172 Positions contacting the nucleotide or magnesium cofactor are 
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indicated by yellow bars. Secondary structure assignments for each position in the GTP- and GDP-bound 
states are shown below. (d) Histogram of scores colored by bin (Methods). Note that 37 of the STOP 
mutants are toxic/GOF. (e) Distribution of fitness scores ordered by Gsp1 sequence position, colored by 
mutation type: WT synonymous mutations (green), STOP codon mutations (black), and substitutions 
(gray). 
  



 
 
 

143 

 
Figure 3.2 Verification of EMPIRIC plasmid expression and growth phenotypes of individual Gsp1 
variants.  
(a) Western blot comparing the expression of genomic Gsp1 (lanes 1 and 2) to that of Gsp1 expressed from 
an EMPIRIC plasmid driven by its native promoter (lanes 3-5) in the presence of a GFP marker (lane 3), 
mCherry marker (lane 4) or no marker (lane 5). (b) Dilution series for individual Gsp1 variants expressed 
from an EMPIRIC plasmid. S. cerevisiae (left) and E. coli (right) cells were transformed with equal amounts 
of plasmid and subsequently spotted onto selective plates in a dilution series. Series are shown for WT, one 
internal STOP codon mutant (Y81*), three toxic/GOF substitution variants (F28V, F159L, F163L), and one 
C-terminal extension STOP codon mutant (Y199*). Corresponding fitness scores from the EMPIRIC assay 
are provided. Bacterial dilutions show that the EMPIRIC plasmid itself is not generally toxic. 
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Figure 3.3 Structural annotation of Ran/Gsp1 GTPase regions.  
(a) Structures of GTP-bound S. cerevisiae Gsp1 (PDB ID: 3M1I co-complex partners Yrb1 and Xpo1 not 
shown) and GDP-bound H. sapiens Ran (PDB ID: 3GJO). G1-5 regions corresponding to Fig. 1b are shown 
in surface representation: P-loop (red), Switch I loop (green), Switch II loop (yellow), nucleotide binding 
motifs (blue), C-terminal extension (cyan). Nucleotides are shown in yellow stick representation, and the 
Mg2+ cofactors are shown as green spheres. Large conformational changes associated with state-switching 
occur in the Switch I and II loops as well as the C-terminal extension. (b) Residues comprising the G 
regions, highlighting the distinction between canonical definitions derived from evolutionary conservation 
analysis of all Ras superfamily GTPases181 and the Ran/Gsp1 specific definitions derived from structural 
characterization.182 All sequence numbers shown correspond to S. cerevisiae Gsp1. 
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Figure 3.4 Locations of toxic/GOF positions outside of the active site.  
 (a) Histograms of fitness scores of mutants by structural regions; colors are as in Figure 3.1D (showing 
only point mutations, excluding changes that are WT synonymous or to/from STOP; intermediate and 
beneficial mutations make up the difference to 100%). Fractions are computed within each structural region; 
n indicates number of mutations. (b, c) Two views rotated by 180 degrees of the Gsp1-GTP structure (PDB 
ID: 3M1I) showing toxic/GOF positions in stick and surface representation (excluding the C-terminal 
extension). (b) Toxic/GOF positions in the GTPase active site shown in blue, other toxic/GOF positions 
shown in red. Venn diagram below shows overlap of toxic/GOF positions with GTPase active site positions 
(10 toxic/GOF positions not shown in the structure are in the C-terminal extension). (c) Toxic/GOF core 
positions shown in red, non-toxic/GOF core positions shown in orange. Venn diagram below shows overlap 
of toxic/GOF positions with structure core positions. 
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Figure 3.5 Null model of the distribution of toxic/GOF mutations used to define toxic/GOF positions.  
A null distribution for the number of toxic/GOF mutations observed at each of the possible 219 positions 
in Gsp1 was constructed from the hypergeometric distribution (Methods) and compared to the observed 
number of toxic/GOF mutations at each position. We chose a threshold of 10 or more toxic/GOF mutations 
at a position to define a position as toxic/GOF. 
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Figure 3.6 Prediction of effects of mutation on protein stability (ΔΔG) using Rosetta.  
Scatterplot comparing the EMPIRIC fitness score with the calculated change in protein stability upon 
mutation (ΔΔG in Rosetta Energy Units, REU) predicted using the GTP-bound structure (PDB ID: 3M1I, 
residues 10-183). Points are colored by score category as in Figure 3.1. Scatterplots broken down by 
structural region are also shown. Lines indicate best fit when including (blue) or excluding (green) the 
toxic/GOF mutations.  



 
 
 

148 

 
Figure 3.7 WT-like mutations predicted as destabilizing are predominantly at hydrophobic positions 
in the C-terminal lobe. 
(a) Heatmap showing the number of mutations with WT-like fitness scores that are predicted as 
destabilizing (ΔΔG > 3 Rosetta Energy Units, REU) for Gsp1-GTP, broken down by original and 
substituted amino acid. (b) Experimentally measured and computed ΔΔG values in a large benchmark 
dataset separated by mutations at positions with a hydrophobic WT amino acid residue (W, Y, F, M, L, I, 
V, A), vs. those at all other residues. (c) Number of mis-predicted WT-like mutations as in panel (a), ordered 
by Gsp1 sequence position. Positions with two or more mutations mis-predicted are labeled. Mutations at 
hydrophobic positions shown in red. A large set of mutations at core hydrophobic residues in the C-terminal 
lobe of Gsp1 are predicted as destabilizing but have WT-like fitness scores, a discrepancy that cannot be 
explained by poor method accuracy of Rosetta given high performance on similar mutations in a large 
benchmark dataset as seen in panel (c). (d) Structural representation of Gsp1-GTP (PDB ID: 3M1I) showing 
the N-terminal lobe (white), C-terminal lobe (purple), and a stretch of C-terminal extension residues (cyan). 
Hydrophobic sidechains comprising the C- terminal lobe core (red dots after sequence position 87 in panel 
(d)) are shown in sticks and surface representation. Nucleotide shown in white sticks and Mg2+ cofactor 
shown as a green sphere.  
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Figure 3.8 Distal toxic/GOF mutations allosterically alter the balance of the switch states.  
(a) Structural depiction of extended networks of interactions in the GTP-bound (top, PDB ID: 3M1I) and 
GDP-bound states (bottom, PDB ID: 3GJ0). Toxic/GOF mutants characterized in panels (b) and (d) shown 
in red. Backbone is colored for the Switch I region (blue) and the C-terminal linker (cyan). The nucleotides 
are shown in yellow sticks. (b) Plate growth assay showing a dilution series of individual Gsp1 variants 
expressed together with WT in S. cerevisiae, with corresponding fitness scores from the EMPIRIC assay. 
(c) FRET-based nucleotide exchange kinetics are measured by adding an excess of mant-labeled fluorescent 
nucleotide and catalytic amounts of GEF to purified Gsp1 bound to GDP (Methods). (d) Relative change 
in nucleotide preference for pairs of toxic and wild-type like variants at the Phe positions highlighted in (a), 
calculated as the ratio of initial rate of exchange to GTP divided by the initial rate of exchange to GDP, 
normalized to the wild-type ratio. Error bars represent the standard deviations of v0 measurements 
propagated across the division operator (Methods). 
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Figure 3.9 Circular dichroism (CD) spectra of purified Gsp1 variants.  
CD spectra for Gsp1 variants at 25ºC. Variants with a toxic/GOF mutation are shown in red, variants with 
a WT-like mutation in blue, and WT in gray. 
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Figure 3.10 Circular dichroism (CD) thermal melts of purified Gsp1 variants.  
CD melts of Gsp1 variants from 25 - 95°C. Variants with a toxic/GOF mutation are shown in red, variants 
with a WT-like mutation in blue, and WT in gray. Apparent melting temperature (𝑇𝑚

𝑎𝑝𝑝) values were 
computed by fitting melts to a two-state unfolding equation (see Methods). CD melts are not reversible. All 
variants are stable up to at least 50°C, although toxic/GOF mutations resulted in slightly decreased apparent 
melting temperatures (𝑇𝑚

𝑎𝑝𝑝 62.7–72.7°C) compared to WT (𝑇𝑚
𝑎𝑝𝑝 78.5°C) or WT-like mutations (𝑇𝑚

𝑎𝑝𝑝 
77.8–88.3°C) at the same positions. 
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Figure 3.11 Biophysical properties of toxic/GOF and WT-like mutations.  
(a) Comparison of toxic/GOF vs WT-like mutations for various parameters (from left to right): EMPIRIC 
fitness score, apparent 𝑇𝑚 as measured by irreversible CD melts, calculated ΔΔG for the GDP-bound 
structure (H. sapiens Ran-GDP, PDB ID: 3GJ0) using Rosetta, and the change in preference for GTP over 
GDP relative to WT as measured using the GEF-mediated nucleotide exchange assay. Variants colored by 
category: Toxic/GOF (red) and WT-like (blue). WT values shown as black dotted line. Colored dotted lines 
connect mutants at the same sequence position. (b) Initial rates of GEF-mediated nucleotide exchange, 
normalized to the WT values. Measurements performed with n >= 4 replicates. Error bars represent the 
standard deviations of v0 measurements propagated across the division operator (Methods). (c) Relative 
change in nucleotide preference, calculated as the ratio of initial rate of exchange to GTP divided by the 
initial rate of exchange to GDP, normalized to the wild-type ratio. Error bars represent the standard 
deviations of 𝑣0 measurements propagated across the division operator. (d) Catalytic efficiency (𝑘𝑐𝑎𝑡 𝐾𝑚⁄ ) 
of GAP-activated GTP hydrolysis, normalized to the WT value. Individual replicates are shown as points 
on each bar. 
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Figure 3.12 Allosteric map of the Gsp1 GTPase switch.  
(a) Wire representation of Gsp1-GTP (PDB ID: 3M1I, residues 1-180). Toxic/GOF positions are shown in 
sphere representation. Sphere radius represents number of toxic/GOF mutations at each position. Spheres 
are colored by functional categories, see (b). The nucleotide and Mg2+ cofactor are shown in yellow. (b) 
Heatmap showing fitness scores at toxic/GOF positions ordered by number of toxic/GOF mutations. WT 
amino acid residue shown below each column. Functional annotations (stars) are shown below and marked 
in red for positions outside of the active site. (c) Distance of closest sidechain heavy atom at each position 
to the nucleotide (GTP). Colors are as in (a). Residues not belonging to one of the four categories indicated 
by an open circle. (d) Receiver operating characteristic (ROC) curves and area under the curve (AUC) 
showing the statistical power of Gsp1 fitness scores in classifying an H. sapiens HRas mutant as activating, 
as defined by Hidalgo et al.159 Datasets were trimmed to the 156 sequence positions alignable for Gsp1 and 
HRas (Figure 3.13). (e, f), Overlap of functional sites defined as Gsp1 toxic/GOF and either (e) HRas 
activating or (f) comprising an HRas sector defined by statistical coupling analysis (SCA)175 (Table 3.1). 
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         10        20        30        40        50        60        70        80        90 
         |         |         |         |         |         |         |         |         | 
Gsp1  10 VPTFKLVLVGDGGTGKTTFVKRHLTGEFEKKYIATIGVEVHPLSFYTNFGEIKFDVWDTAGQEKFGGLRDGYYINAQCAIIMF 92 
HRas   1 MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIE-DSYRKQVVIDGETCLLDILDTAGQEEYSAMRDQYMRTGEGFLCVF 82 
                  |         |         |          |         |         |         |         |  
                  10        20        30         40        50        60        70        80 
 
               100       110         120       130        140       150       160       170 
                |         |           |         |          |         |         |         | 
Gsp1  93 DVTSRITYKNVPNWHRDLVRV--CENIPIVLCGNKVDVKERKVKAKTIT-FHRKKNLQYYDISAKSNYNFEKPFLWLARKLAGN 173 
HRas  83 AINNTKSFEDIHQYREQIKRVKDSDDVPMVLVGNKCDLAARTVESRQAQDLARSYGIPYIETSAKTRQGVEDAFYTLVREIRQH 166 
                |         |         |         |         |         |         |         |       
                90       100       110       120       130       140       150       160 

 
Figure 3.13 Sequence alignment of Gsp1 – H-Ras based on structural alignment.  
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Figure 3.14 Locations of functional positions identified by the Gsp1 generalized EMPIRIC assay, 
HRas activation assay, or HRas statistical coupling analysis.  
Active site defined as in Figure 3.1, including the canonical G1-5 regions conserved across Ras-
superfamily GTPases, as well as residues included in the expanded definitions for Ran/Gsp1 based on 
structural analysis (Figure 3.3, Methods). Venn diagrams are as in Figure 3.12E, F and repeated here for 
comparison. Bar graphs underneath indicate number of positions in each of the categories (red, blue, and 
white) from the Venn diagram. Bars are shaded by number of toxic/GOF mutations in the Gsp1 generalized 
EMPIRIC assay.  
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Table 

Table 3.1 Overlap of positions annotated as toxic/GOF in Gsp1, activating in H-Ras, or part of an H-
Ras sector by SCA. Definitions for categories are from Gsp1 analysis, shown in Fig. 4. Sets of H-Ras sites 
for each category were constructed based on a structural alignment, and the subset of sites labeled as 
activating159 or as part of the SCA sector175 are listed. 

Gsp1 residue 
category 

(Figure 3.12)  

Toxic/GOF positions in Gsp1 
(10 or more toxic mutations)  

Activating positions in H-Ras 
(>=2 activating mutations)  

Sector positions in H-Ras 
(from SCA analysis)  

Active site 
regions  

 

G19, D20, G21, G22, T23, G24, 
K25, T26, G35, E36, F37, A43, 
T44, I45, G46, D67, T68, A69, 
G70, Q71, E72, G75, L77, R78, 
G80, Y81, K125, D127, S152, 
A153  

G12, G13, V14, K16, A18, 
P34, T58, A59, G60, Q61, 
E63, R68, N116, K117, 
D119, L120, S145, A146, 
K147  

G10, A11, V14, G15, 
K16, S17, F28, Y32, P34, 
T35, I36, D57, T58, A59, 
G60, Q61, E62, E63, 
Y64, R68, Y71, N116, 
K117, D119, S145, A146, 
K147 

Distal sites 
affecting 
switching 

F28, H32, G35, H50, F54, N156, 
Y157, F159, F163  

L19, Q22, L23, V152, F156  Q22, L23, A134, F156 

PTM sites in 
Gsp1 

K25, K101, K125, S155  K16, K117  K16, K117 

Regulator 
Interface 

G21, G22, G35, E36, F37, A43, 
I45, T56, G59, A69, Q71, E72, 
G75, D93, S96, R97, T99, K101, 
K132, V133, N156, F159, E160  

G12, G13, P34, A59, Q61, 
E63, A83, V152 

F28, Y32, P34, I36, A59, 
Q61, E62, E63, Y64, 
A83, Q99, R123, V125 
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Chapter 4. Conclusion 

Switching constrains the genotype-phenotype map of Gsp1 

The concept of a genotype-phenotype map is vital to biology. Derived from the mathematical 

concept of a “mapping” between two sets, it firstly captures the linkage between hereditary 

information (genotype) and an organization of molecules that maintains homeostasis in a dynamic 

natural environment (phenotype, or the behavior of a living system). But a genotype-phenotype 

map also specifies that this linkage is well-defined, i.e. we can discover the rules that uniquely 

determine how a phenotype arises from a given genotype, and under similar environmental 

constraints we can reproduce a phenotype by deploying the corresponding genotype.  

This reproducibility of genotype-phenotype maps is vital to bioengineering. While natural 

living systems are optimized through Darwinian survival of the fittest, where selection occurs on 

phenotypes sampled through random mutation of genotypes, bioengineers can much more 

efficiently design optimal living systems by first “charting” and then “navigating” these genotype-

phenotype maps (to use a corny but suitable double-entendre of the word “map”). Charting the 

underlying mechanics of living systems through experimentation and model building can guide 

the design of effective treatments and of interesting and useful biotechnologies for non-medical 

applications, such as in agriculture, bioremediation, or even the arts. 

Unfortunately, genotype-phenotype maps are notoriously hard to chart. This is for many valid 

reasons: many mechanisms occur simultaneously in a single cell, and our inventory of molecules 

is incomplete; very precise tools are often required to make repeated, non-destructive 

measurements of living systems; the space of possible genotypes is massive; and physical systems 

often behave in unique ways at certain scales, meaning we have to be careful to not base our models 
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too heavily on intuition from other fields – for instance noting that a torpedo pool toy will move 

very differently than a similarly shaped bacterium in fluids at low Reynold’s number.192  

The particular characteristic complicating genotype-phenotype maps that motivated this 

dissertation is the possibility for complex propagation of effects across multiple scales (Figure 

4.1). There is a distinct separation in scale between genotypes encoded at the level of molecules 

and phenotypes which undergoes selection at the level of cells or even entire tissues. Our 

understanding of how sequence changes alter the structure of proteins has indeed taken a huge leap 

recently due to the emergence of methods for protein structure prediction based on deep learning 

and evolutionary conservation.193 However, it remains challenging to predict how these structural 

changes translate to altered protein dynamics or biochemical functions like binding and catalysis, 

how changes in biochemical function propagate through a molecular interaction network, and how 

the state of a molecular network determines cellular fitness in any number of possible 

environments. 

The studies presented in this dissertation sought to identify if, in the Gsp1 network, this 

complex propagation was dominated by a single mechanism. By making measurements of the 

effects of mutations at each scale – measuring structure and dynamics with 31P NMR, biochemical 

function with in vitro enzymology, network rewiring with AP-MS, and cellular phenotype with 

the E-MAP and EMPIRIC assays – we identified the kinetic rates of GTPase switching as the key 

parameters constraining the genotype-phenotype map of Gsp1.  

Whether this genotype-phenotype map is of use for bioengineers will ultimately be determined 

by future efforts to understand, modulate, and design the function of GTPases and other protein 

switches. However, several existing studies suggest that the importance of regulated tuning of 

switch kinetics is not only broadly important for other biological switches, but is also engineerable. 
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First, misregulation of the balance between switch states is a major mechanism of oncogenesis 

driven by Ras mutations,194 and the ratio of expression levels of Ras GAPs and Ras GEFs is 

perturbed in cancerous tissues despite being consistent across healthy tissues.120 This suggests that 

targeted modulation of the rates of GTPase activation and deactivation may be a valid therapeutic 

strategy, and indeed at least one inhibitor targeting the Ras GEF SOS has advanced to clinical 

trials.195 Second, the ability for molecular interactions of certain kinetic rates to selectively occur 

over other interactions, known as kinetic proofreading,196 is important for reducing error in many 

cellular processes, including tRNA charging197, activation of SOS,198 and antigen discrimination 

by T cell receptors.199 Proofreading has been successfully engineered by tuning dwell times of 

ligand-receptor complexes via affinity engineering.200 At the systems level, different kinetics of 

activation or dwelling can also result in selective activation of downstream pathways in a 

mechanism known as kinetic filtering.107 The sensitivity of downstream processes to altered 

kinetics of Gsp1 switching adds to this large set of kinetic mechanisms that underly complex 

biology and thus might be of interest for porting to new engineered systems.  

An open question for future efforts in engineering pathway responses to differential switch 

kinetics will be whether the phenomenon requires some or all of the characteristic features of the 

Ran/Gsp1 system, such as the spatial gradient of activity due to separation of the GEF and GAP 

into different compartments, the large set of effector proteins with varying affinities,38 the lack of 

functional homologs whose presence might introduce pathway crosstalk, or the thermodynamic 

coupling between effector interfaces and the molecular switch. If these features are dispensable or 

readily engineerable, it may be possible to introduce similar multifunctionality to that seen in Gsp1 

into other two-state molecular switches with opposing regulators, such proteins whose regulatory 

function is dependent on one or more PTMs. 
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Protein engineering of systems level function – could we design a protein like Gsp1? 

Protein engineering aims to identify protein sequences with a desired function, through the 

purposeful introduction of mutations into existing proteins by randomized201 or guided processes 

(such as through the use of structural202, functional203, or evolutionary data204,205). Key to this idea 

is the view of a genotype-phenotype map in terms of a protein fitness landscape: for a protein of 

sequence length 𝑁, we define a fitness function 𝑓(𝑁) which represents how evolutionarily favored 

that sequence is in a certain set of environmental conditions.206 All protein engineering methods 

go through iterations of sampling different sequences, scoring them based on a measurable proxy 

of fitness, and selecting one or more sequences that have desirable traits (which in addition to 

intended function may also include biophysical properties such as stability or reduced 

immunogenicity). An especially fit sequence is said to lie at a fitness peak, and the ruggedness of 

the fitness landscape refers to how likely neighboring sequences are to be similarly fit. 

Fitness landscapes first served as a useful theoretical framework for understanding natural 

evolution and developing protein engineering strategies,206 but in recent years machine learning-

based methods that explicitly model fitness landscapes have enabled new levels of efficiency in 

identifying fit variants.207,208 For instance, an approach known as UniRep209 first trained an 

unsupervised recurrent neural network on raw protein sequences, learning how to distinguish 

protein-like from non-protein-like sequences, and then re-weighted the model using green 

fluorescent protein (GFP) sequences to learn the fitness landscape of that specific family. UniRep 

was highly accurate in predicting mutations that reduced fluorescence,209 and was able to identify 

new better-than-WT variants for both GFP and the enzyme TEM-1 β-lactamase after re-weighting 

the model with sequences from only 24 initially characterized variants for each task.210 This low 

ratio of sequences initially characterized to those identified as more fit represents an enormous 
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increase in efficiency over directed evolution approaches, given that they often rely on screening 

libraries of 106-109 (or greater) variants,211 and that the selection of optimal variants by UniRep is 

fast once the models have been re-trained on the experimental data. While computational protein 

design methods similarly offer improved efficiency by bypassing any experimental step for 

selecting fit variants, validation experiments have found that the percent of stable, functional 

designs from large scale studies is still relatively low.212  

Given that Ran/Gsp1 is an essential and conserved piece of eukaryotic machinery, a natural 

question for protein engineers is: could we design a protein like Gsp1? While many of the key 

mechanisms of the Ran/Gsp1 system can currently be engineered, such as conformational 

switching,21 allosteric regulation,23,24 protein-protein interactions of high affinity and 

specificity,213,214 and precise protein interaction network connectivity,215 the systems level 

property of multifunctionality – the selective, simultaneous, and independent tuning of 

downstream processes – poses a design task that is difficult to achieve using current methods. 

Whether via directed evolution, computational design, or machine learning-guided engineering, 

most protein engineering methods rely on single parameter objective functions to serve as a proxy 

for fitness. For instance, surface display screens typically select for variants with optimal binding 

affinity to only one partner, perhaps in the presence of a competitor. On the other hand, growth 

assays of protein variant libraries in their native context do account for the impact of new 

sequences on all functions, but which of the multiple functions was improved or diminished for a 

given variant is indistinguishable from the growth rate alone. This was evidenced in the deep 

mutational scanning study presented in Chapter 3, as toxic/gain-of-function mutations of Gsp1 at 

many different sites and with different molecular mechanisms of perturbed switching had similar 

fitness scores.  
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For a multifunctional protein like Gsp1, an alternative approach might be to monitor the effects 

of each variant on several functions simultaneously using systems level phenotypic data, and then 

applying computational tools to integrate the data for many variants and model a fitness landscape. 

The potential of this approach is apparent in the results of the E-MAP study presented in Chapter 

2: the functional genetics data was sufficient to classify mutations based on their effect on all 

individual cellular functions of Gsp1. However, that study was limited to only 55 mutations, due 

to the intensive process of yeast strain engineering and the medium-throughput array-based format 

of genetic interaction profiling. Fortunately, advanced high-throughput methods have been 

recently developed for engineering mutations216,217 and performing functional genomics with 

transcriptomic readouts218–221. Furthermore, a pioneering enzyme engineering campaign has 

shown how systems level measurements might guide protein engineering: monitoring the S. 

cerevisiae metabolome using microfluidic sorting and matrix-assisted laser desorption ionization 

(MALDI)-MS enabled the discrimination of enzyme variants that preferentially and to varying 

degrees metabolize a substrate to one product instead of an alternative product.222 Developing 

general computational methods for constructing fitness landscapes from high-dimensional systems 

level data will also enable other forms of phenotype data to be used in protein engineering, such 

as high content imaging data,223–225 or genome-wide measurements of global protein complex 

formation.226–228 

Summary 

Together, the systems biology studies of the S. cerevisiae GTPase Gsp1 presented in this 

dissertation culminated in a new model for how switch cycle kinetics enable the independent 

regulation of distinct downstream processes, as well as the identification of new allosteric 
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regulatory sites in GTPases. Future work will ask to what extent these mechanisms generalize to 

human Ran, to other eukaryotic small GTPases, and to protein switches in general, and whether 

the integrated experimental and computational approaches for uncovering new biochemical 

phenomena presented here can drive new biological inquiry and the productive engineering of 

living systems. 
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Figures 

 
Figure 4.1 Complex propagation of mutational effects to cellular phenotypes.  
The effects of mutations in proteins (Δ Sequence) can exert their effect at multiple scales, and the 
propagation from each scale to the next adds complexity to the genotype-phenotype map of a protein. 
Cartoon representations are shown for: how mutations can induce differential population of structural states 
(Δ Structure); how populating different structural states can directly alter biochemical function, such as the 
kinetic rates of enzymes (Δ Function); how changes in structural states and biochemical functions can 
rewire molecular interaction networks, as seen in different protein complex abundances identified by 
affinity-purification mass spectrometry experiments (Δ Pathway); and how the many pathways acting 
together in a cell ultimate result in a measurable phenotype, shown as yeast colony sizes and genetic 
interaction profiles (Δ Phenotype). 
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Appendix A. Titles and Legends of Data Files for Chapter 2  

Supplementary Data 1 Genetic interaction (GI) data from the E-MAP screens. 

This data file contains genetic interaction (GI) scores (S-scores) from the E-MAP screens of 

56 S. cerevisiae strains (wild type and 55 Gsp1 point mutants). 

 

Column definitions: 

query allele name (Gsp1 mutant): point mutation (amino acid substitution) in the S. cerevisiae 

Gsp1 gene (query gene in the E-MAP screen, see Methods and Collins et al127). 

query allele ORF: open reading frame ID, a unique database identifier of the query gene Gsp1 

(from the Saccharomyces Genome Database, yeastgenome.org). 

array allele: allele name, either a gene deletion or a gene DAmP64 (array gene in the E-MAP 

screen, see Methods and Collins et al127). 

array allele ORF: open reading frame ID, a unique database identifier of the array gene (from 

the Saccharomyces Genome Database, yeastgenome.org). 

E-MAP S-score: genetic interaction (GI) score between the query and the array alleles. See 

References63,64,127 for definition. 
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Supplementary Data 2 Pairwise Pearson correlations of profiles between SGA genes 

and Gsp1 point mutants, with associated p-values. 

This data file contains the Pearson correlation coefficients and accompanying p-values for 

correlations between genetic interaction profiles of Gsp1 point mutants and the genetic interaction 

profiles of S. cerevisiae alleles from the CellMap SGA dataset published in 14. 

 

Column definitions: 

mutant: point mutation (amino acid substitution) in the S. cerevisiae Gsp1 gene (query gene in 

the E-MAP screen). 

CellMAP_allele: S. cerevisiae gene allele (gene deletion) from the CellMap.65,131 

yeast_gene: standard gene name (as defined in the Saccharomyces Genome Database, 

yeastgenome.org) of the CellMap allele. 

Pearson correlation: Pearson correlation between the genetic interaction profile of a Gsp1 

mutant and the CellMAP allele (from the CellMap dataset65,131).  

greater p-value: p-value associated with the Pearson correlation (one-sided positive t-test). 

greater FDR: greater p-value after correction by the FDR method. 

greater Bonferroni: greater p-value after Bonferroni correction. 
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Supplementary Data 3 Affinity purification mass spectrometry (AP-MS) data 

reported as fold change and significance value, as well as a list of significant 

interaction hits. 

This data file contains two tables. Table 1 contains the affinity purification mass spectrometry 

(AP-MS) data for Gsp1 point mutants. The data in the table are the output from MSstats140 (see 

Methods) and report on the abundance of the pulled down protein, the log-transformed fold change 

of the abundance compared to the wild type with the appropriate 3xFLAG tag, and the 

accompanying FDR adjusted p-value. The data are provided for both the global and equalized 

median normalization methods available. 

 

Table 1 column definitions: 

sample: unique identifier of the S. cerevisiae strain. Contains information on the position of 

the 3xFLAG tag (N- or C-terminal) and the point mutation (amino acid substitution) in the 

GSP1 gene. 

terminus position of the 3xFLAG tag: N- or C-terminus position of the 3xFLAG tag. 

Gsp1 mutant: amino acid substitution in the GSP1 gene in S. cerevisiae. 

normalization method (equalized median or global standard of PPI list): normalization method 

used in MSstats (eqM is equalized median, gs is global standard). 

Prey protein ORF: open reading frame ID, a unique database identifier of the pulled-down 

protein interaction partner in the AP-MS experiment with Gsp1 point mutants (ORF ID 

defined in the Saccharomyces Genome Database, yeastgenome.org). 
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Prey protein gene name: standard gene name of the pulled-down protein interaction partner 

(as defined in the Saccharomyces Genome Database, yeastgenome.org). 

log2 (fold change): log-transformed fold change of the abundance of pulled-down interaction 

partner between the point mutant and the wild type Gsp1 sample with the corresponding 

3xFLAG tag (N- or C-terminal). 

FDR adjusted p-value: FDR adjusted p-value of the fold change of abundance, from MSstats. 

abundance of pulled down protein: total abundance of the pulled-down protein interaction 

partner. 

 

Table 2 contains the list of high-confidence interaction partners of Gsp1 from our AP-MS 

experiments (as determined by SAINTexpress,139 see Methods).  

 

Table 2 column definitions: 

C-terminal 3xFLAG tag: list of high-confidence protein interaction partners identified with 

wild type or mutant Gsp1 with the C-terminal 3xFLAG tag. 

N-terminal 3xFLAG tag: list of high-confidence protein interaction partners identified with 

wild type or mutant Gsp1 with the N-terminal 3xFLAG tag. 

ORF: open reading frame ID, a unique database identifier of the gene (as defined in the 

Saccharomyces Genome Database, yeastgenome.org). 

gene name: standard gene name (as defined in the Saccharomyces Genome Database, 

yeastgenome.org) 
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Supplementary Data 4 S. cerevisiae genes from the SGA data with significant 

positive correlations with Gsp1 mutants organized by biological functions into gene 

sets. 

This data file provides a list of S. cerevisiae alleles from the SGA dataset whose GI profiles 

have significant correlations with the GI profiles of Gsp1 mutants (see Methods). The genes were 

manually grouped into “gene sets” based on their biological function (as annotated in the 

Saccharomyces Genome Database, yeastgenome.org). 

 

Column definitions: 

Allele in the SGA CellMAP: S. cerevisiae gene allele (gene deletion) from the CellMap.65,131 

S. cerevisiae gene name: standard gene name of the CellMap allele (as defined in the 

Saccharomyces Genome Database, yeastgenome.org). 

gene set: annotated gene set (genes grouped by their annotated biological function from the 

Saccharomyces Genome Database, yeastgenome.org, and updated annually). 

Cluster from Fig. 4a (1-7, or expanded dataset, see Methods): cluster number (1-7) 

corresponding to the hierarchical clustering presented in Figure 2.17A, referred to as Fig. 

4a in the published manuscript. 
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Appendix B. Titles and Legends of Data Files for Chapter 3  

Supplementary Data 5 Gsp1 fitness scores with bins and raw read counts 

Column definitions:  

mutant: descriptor of the allele (e.g. F28V). 

aa_from: wild-type amino acid (e.g. F). 

position: sequence position of the mutation (e.g. 28). 

aa_to: substituted amino acid (e.g. V). 

counts_0gen: number of reads corresponding to the allele at the beginning of selection. 

counts_6gen: number of reads corresponding to the allele after 6 generations of selection. 

score: computed fitness score, a log2-transformed changes in variant abundance relative to 

wild-type. 

bin: assigned score bin. 

low_reads_flag: boolean flag stating whether the allele had low read counts in the initial 

sample (< 2% of the average allele’s number of reads).  
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Supplementary Data 6 Gsp1 ΔΔG data  

Column definitions:  

mutation: descriptor of the mutation (e.g. F28V). 

aa_from: wild-type amino acid (e.g. F). 

aa_to: substituted amino acid (e.g. V). 

pdb_id: PDB ID of the crystal structure used for the calculation. 

species: organism of the gene used for determination of the crystal structure. 

pos_Sc: sequence position number of the corresponding residue in S. cerevisiae Gsp1. 

aa_Sc: wild-type amino acid of the corresponding residue in S. cerevisiae Gsp1. 

pos_Hs: sequence position number of the corresponding residue in H. sapiens Ran. 

aa_Sc: wild-type amino acid of the corresponding residue in H. sapiens Ran. 

ddg: computed ΔΔG of the mutation, in Rosetta Energy Units (REU), scaled so that 1 REU ~ 

1 kcal/mol based on the benchmark data. 
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Supplementary Data 7 Benchmark ΔΔG data  

Column definitions:  

record_id: unique ID used in this study for the benchmark mutation. 

pdb: PDB ID of the crystal structure used for the calculation. 

mutation_full: long form ID for the mutation made (e.g. A T 100 G corresponds to mutating 

the Threonine at position 100 in chain A to Glycine). 

chain: one-letter ID for the crystal structure chain used for the calculation. 

mutation: short form descriptor of the mutation (e.g. T100G). 

position: sequence position of the mutation (e.g. 100). 

ddg_expt: experimental ΔΔG of the mutation, in kcal/mol. 

ddg_calc: computed ΔΔG of the mutation, in unscaled Rosetta Energy Units (REU). 

ddg_calc_adj: computed ΔΔG of the mutation, in REU, scaled down so that 1 REU ~ 1 

kcal/mol. 

 



 
Publishing Agreement 
 
It is the policy of the University to encourage open access and broad distribution of all 
theses, dissertations, and manuscripts. The Graduate Division will facilitate the 
distribution of UCSF theses, dissertations, and manuscripts to the UCSF Library for 
open access and distribution.  UCSF will make such theses, dissertations, and 
manuscripts accessible to the public and will take reasonable steps to preserve these 
works in perpetuity. 
  
I hereby grant the non-exclusive, perpetual right to The Regents of the University of 
California to reproduce, publicly display, distribute, preserve, and publish copies of my 
thesis, dissertation, or manuscript in any form or media, now existing or later derived, 
including access online for teaching, research, and public service purposes.  
  
 
__________________________       ________________ 

   Author Signature               Date 
 

���������

���


	Chapter 1. Introduction
	Systems biology: uncovering the mechanisms governing molecular interaction networks
	The molecular interaction network of the small GTPase Ran/Gsp1, a model protein switch
	Point mutations as high-resolution, targeted perturbations of gene function
	Table 1.1 Examples of molecular interaction network principles that operate at the molecular scale.
	Table 1.2 Examples of molecular interaction network principles that operate at the systems scale.


	Chapter 2. Systems-level effects of allosteric perturbations to a model molecular switch
	Summary
	Introduction
	Results
	Genetic interactions of Gsp1 mutants.
	Physical interactions of Gsp1 mutants.
	Effect of mutants on Gsp1 switch kinetics.
	Allosteric effects of mutations.
	Encoding of Gsp1 multi-specificity.

	Discussion
	Methods
	Point mutations in genomic Gsp1 sequence
	S. cerevisiae genetics and genetic interaction mapping
	S. cerevisiae transformation
	Epistatic mini-array profiling (E-MAP) of Gsp1 point mutants
	Hierarchical clustering of E-MAP genetic interaction data
	Scaling of published genetic interaction data to the E-MAP format
	Significance of genetic interactions
	GI profile correlation measurements
	Protein expression levels by Western Blot

	Physical interaction mapping using affinity purification mass spectrometry (AP-MS)
	S. cerevisiae cell lysate preparation
	FLAG immunoprecipitation
	Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis

	Biochemical and biophysical assays
	Protein purifications
	Circular dichroism (CD) spectroscopy of protein thermostability
	GTP loading of Gsp1
	Reverse phase high performance liquid chromatography (HPLC)
	NMR Spectroscopy
	Kinetic measurements of GTP hydrolysis.
	Estimating the kcat and Km parameters of GAP-mediated hydrolysis using an accurate solution to the integrated Michaelis-Menten equation.
	Kinetic measurements of Srm1 mediated nucleotide exchange.


	Supplementary Note
	Linkage criteria used for E-MAP hierarchical clustering analyses
	Potential dependencies between alleles when computing genetic interaction (GI) profile correlations
	Robustness of the analysis to leaving out data
	Sub-sampling EMAP data.
	Withholding mutants

	Potential caveats associated with using the GAP (Rna1) from S. pombe
	Sequence conservation between S. cerevisiae and S. pombe Rna1.
	Comparable kinetic parameters to the human Ran/RanGAP1 pair.
	Conclusions are based on relative values between the wild-type Gsp1 and its point mutants.

	Validity of the Michaelis-Menten formalism for GTPases

	Figures
	Figure 2.1 GI profiles of Gsp1 interface point mutants cluster by biological processes but not by targeted interfaces.
	Figure 2.2 Design of interface point mutations in S. cerevisiae Gsp1.
	Figure 2.3 Cartoon representation of co-complex structures of S. cerevisiae Gsp1 (dark navy) with indicated partners (or homologs).
	Figure 2.4 Endogenous expression levels of Gsp1 in S. cerevisiae strains with genomically integrated GSP1 point mutations profiled by western blot.
	Figure 2.5 GI profiles of the 56 GSP1 strains (wild-type GSP1 with clonNAT cassette and 55 point mutants).
	Figure 2.6 Comparison of definitions of high confidence S-scores used in our analysis.
	Figure 2.7 Functional profiles of GSP1 mutants cannot be explained solely by the positions of mutations in interfaces.
	Figure 2.8 Gsp1 interface point mutations rewire the physical interaction network of Gsp1, including interactions with the switch regulators GEF (Srm1) and GAP (Rna1).
	Figure 2.9 Interface point mutations in Gsp1 rewire its physical interaction network.
	Figure 2.10 Gsp1 interface mutations rewire interactions with the core regulators Srm1 and Rna1.
	Figure 2.11 Point mutations in Gsp1 interfaces allosterically modulate GTPase cycle parameters by tuning active site conformational distributions.
	Figure 2.12 Effect of Gsp1 point mutations on the in vitro efficiency of GAP-mediated GTP hydrolysis and GEF-mediated nucleotide exchange.
	Figure 2.13 GAP-mediated GTP hydrolysis monitored as fluorescence increase upon binding of released free phosphate to a fluorescent phosphate sensor.
	Figure 2.14 Michaelis-Menten plots for GEF-mediated nucleotide exchange.
	Figure 2.15 Gsp1 interface mutations act allosterically to modulate the rate of GTP hydrolysis.
	Figure 2.16 Relative prey protein abundance overlaid onto the effects of each mutation on relative in vitro efficiencies of GAP-mediated GTP hydrolysis and GEF-mediated nucleotide exchange.
	Figure 2.17 Cellular effects of interface mutations group by their effect on GTPase cycle kinetics.
	Figure 2.18 Sets of S. cerevisiae genes grouped by biological functions.
	Figure 2.19 Schematic of genomically integrated GSP1 constructs.
	Figure 2.20 Reproducibility of GSP1 point mutant E-MAP screens.
	Figure 2.21 Non-linear scaling of SGA data from the Cell Map to E-MAP format.
	Figure 2.22 Example data for Gsp1 protein expression estimation by Western blot.
	Figure 2.23 Silver stain gels after FLAG immunoprecipitation of amino- (N) or carboxy- (C) terminally 3xFLAG tagged genomically integrated Gsp1.
	Figure 2.24 Clustering of individual AP-MS replicates based on correlations between protein abundance before the final scoring.
	Figure 2.25 Clustering of individual AP-MS replicates based on correlations between protein abundance before the final scoring.
	Figure 2.26 Multiple sequence alignment between Rna1 from S. cerevisiae (Rna1_YEAST) and S. pombe (Rna1_SCHPO), as well as human RanGAP (RAGP1_HUMAN, excluding the C-terminal SUMO conjugation domain which is absent in Fungi).
	Figure 2.27 Circular dichroism (CD) data for wild type (WT) Gsp1 and select mutants.
	Figure 2.28 HPLC reverse phase chromatograms of a GTP/GDP mix (top) and that of a purified and GTP loaded wild type Gsp1 (bottom).
	Figure 2.29 Accuracy estimation for determining the kinetic parameters of GAP-mediated GTP hydrolysis from individual time courses spanning [S] > Km to [S] << Km fit with an accurate solution of the integrated Michaelis Menten (IMM) equation.
	Figure 2.30 Estimated error around the maximum likelihood estimated values of the Michaelis-Menten parameters.
	Figure 2.31 Hierarchical clustering of 22 strong Gsp1 point mutants by the p-value of Pearson correlations of their GI profiles and those of 276 S. cerevisiae alleles, using either the average linkage (top) or Ward’s method (bottom) as linkage criterion.
	Figure 2.32 FDR corrected p-values for Pearson correlations of genetic interaction profiles between Gsp1 mutants and S. cerevisiae alleles.
	Figure 2.33 Clustering of S. cerevisiae alleles and strong Gsp1 point mutants by the p-value of Pearson correlations using alternative distance metrics.
	Figure 2.34 Subsampling of S. cerevisiae alleles maintains clustering of Gsp1 mutants based on their E-MAP profiles.
	Figure 2.35 Random subsampling of S. cerevisiae alleles maintains clustering of Gsp1 mutants based on the p-value of Pearson correlations of their GI profiles.
	Figure 2.36 Leave-one-out analysis of Figure 2.17A.

	Tables
	Table 2.1 Co-complex X-ray crystal structures of Ran or Gsp1 with its partners.
	Table 2.2 Mutated residues in Gsp1 and their interface position and ΔrASA. CellMap alleles are annotated in parentheses.
	Table 2.3 Gsp1 mutants and attempted yeast constructs.
	Table 2.4 Pearson correlations between Gsp1 mutants and the alleles of their direct interaction partners from the SGA CellMap. Ordered by correlation value
	Table 2.5 Interquartile range (IQR) of log2(fold change) values across all the Gsp1 mutants for each prey protein identified. Ordered by IQR.
	Table 2.6 Michaelis-Menten parameters of GAP-mediated GTP hydrolysis. The two Michaelis-Menten parameters and their ratio (enzymatic efficiency) are determined by an integrated Michaelis-Menten fit for each individual experiment. Standard error is bas...
	Table 2.7 Michaelis-Menten parameters of GEF-mediated nucleotide exchange. Standard error is based on the error of the Michaelis-Menten fit to the data.
	Table 2.8 Intrinsic GTP hydrolysis rate of wild type and mutant Gsp1. Standard deviation is based on data from 3 or more replicates.
	Table 2.9 Apparent Tm values estimated from the circular dichroism (CD) thermal melts. Mutants are ordered by apparent Tm.


	Chapter 3. A complete allosteric map of a GTPase switch in its native network
	Summary
	Introduction
	Results
	Comprehensive mutational perturbation of Gsp1.
	Mapping structural locations of toxic/GOF mutations.
	Functional roles of toxic/GOF mutants.
	An allosteric map of a GTPase switch.

	Discussion
	Methods
	Deep mutational scanning of Gsp1 in S. cerevisiae
	Plasmid and strain construction
	Gsp1 fitness competition
	Expression levels of Gsp1 variants via western blot
	Yeast spotting assays
	Statistical modeling of the distribution of toxic/GOF mutations

	Biochemical and biophysical assays
	Protein purifications
	Circular dichroism (CD) spectroscopy
	Kinetic measurements of GEF-mediated nucleotide exchange
	GTP loading of Gsp1 for GAP-activated hydrolysis assay
	Kinetic measurements of GAP-activated GTP hydrolysis

	Computational methods
	Structural bioinformatics
	Rosetta ΔΔG calculations
	Comparison to H-Ras mutagenesis data
	Comparison to Statistical Coupling Analysis


	Figures
	Figure 3.1 In vivo sensitivity of the GTPase Gsp1 to all possible single amino acid substitutions.
	Figure 3.2 Verification of EMPIRIC plasmid expression and growth phenotypes of individual Gsp1 variants.
	Figure 3.3 Structural annotation of Ran/Gsp1 GTPase regions.
	Figure 3.4 Locations of toxic/GOF positions outside of the active site.
	Figure 3.5 Null model of the distribution of toxic/GOF mutations used to define toxic/GOF positions.
	Figure 3.6 Prediction of effects of mutation on protein stability (ΔΔG) using Rosetta.
	Figure 3.7 WT-like mutations predicted as destabilizing are predominantly at hydrophobic positions in the C-terminal lobe.
	Figure 3.8 Distal toxic/GOF mutations allosterically alter the balance of the switch states.
	Figure 3.9 Circular dichroism (CD) spectra of purified Gsp1 variants.
	Figure 3.10 Circular dichroism (CD) thermal melts of purified Gsp1 variants.
	Figure 3.11 Biophysical properties of toxic/GOF and WT-like mutations.
	Figure 3.12 Allosteric map of the Gsp1 GTPase switch.
	Figure 3.13 Sequence alignment of Gsp1 – H-Ras based on structural alignment.
	Figure 3.14 Locations of functional positions identified by the Gsp1 generalized EMPIRIC assay, HRas activation assay, or HRas statistical coupling analysis.

	Table
	Table 3.1 Overlap of positions annotated as toxic/GOF in Gsp1, activating in H-Ras, or part of an H-Ras sector by SCA. Definitions for categories are from Gsp1 analysis, shown in Fig. 4. Sets of H-Ras sites for each category were constructed based on ...


	Chapter 4. Conclusion
	Switching constrains the genotype-phenotype map of Gsp1
	Protein engineering of systems level function – could we design a protein like Gsp1?
	Summary
	Figures
	Figure 4.1 Complex propagation of mutational effects to cellular phenotypes.


	References
	Appendix A. Titles and Legends of Data Files for Chapter 2
	Supplementary Data 1 Genetic interaction (GI) data from the E-MAP screens.
	Supplementary Data 2 Pairwise Pearson correlations of profiles between SGA genes and Gsp1 point mutants, with associated p-values.
	Supplementary Data 3 Affinity purification mass spectrometry (AP-MS) data reported as fold change and significance value, as well as a list of significant interaction hits.
	Supplementary Data 4 S. cerevisiae genes from the SGA data with significant positive correlations with Gsp1 mutants organized by biological functions into gene sets.

	Appendix B. Titles and Legends of Data Files for Chapter 3
	Supplementary Data 5 Gsp1 fitness scores with bins and raw read counts
	Supplementary Data 6 Gsp1 ΔΔG data
	Supplementary Data 7 Benchmark ΔΔG data


