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Summary: Trimethylaluminum reacts with base-free ytterbium bis (trimethyl­
silylamide) to give Yb[N(SiMe 3) 2 J2 [AlMe 3 J2• The x-ray crystal structure 
provides evidence for four Yb-Me-Al and two Yb-Me-Si bridging interactions. 

Bridging alkyl compounds formed by interaction of aluminum alkyls with 

early d~ and f- element organometallic compounds are of interest relative to 

1 . 
structure and bonding as well as to the mechanism of Ziegler-Natta 

polymerization processes. 2 Several compounds have been isolated in which two 

methyl groups of an aluminum alkyl forms bridges between the main group and f­

block metal, 3 as in Me4Al 2 (~-Me) 2 , 4 viz., the methyl group contributes one 

sigma-type molecular orbital and a single electron to the bridge bonding. 

Base-free Ybz[N(SiMe 3) 2 J4 5 is a dimer with two terminal and two bridging 

silylamide groups and both ytterbium atoms are three coordinate. The overall 

geometry is similar to that found for Mn 2 [N(SiMe 3) 2 J4
6a,b and 

co 2[N(SiMe 3) 2 J4• 6b The Yb-N-Yb bridge in Ybz[N(SiMe 3) 2 J4 can be cleaved by 

Lewis bases, such as phosphines, to give Yb[N(SiMe 3) 2 J2(Me 2PcH2cH2PMe 2), 7a and 

by molecules that have Lewis acidic and basic sites present in the same 

molecule, such as NaN(SiMe 3) 2 to give NaYb[N(SiMe3 ) 2 J3Jb The latter complex 

contains two silylamide groups that bridge ·the metal atoms with the one-pairs 

of electrons on the nitrogen atoms acting as donors towards the alkali and 

lanthanide metal atoms. In this communication we describe a complex formed 

between Yb 2[N(SiMe 3) 2 J4 and the Lewis acid Me 6Al 2 that contains two bridging 

{""'
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and two semi-bridging Yb-Me-Al interactions. 

Two molar eqivalents of Me 6Al 2 reacts with Ybz[N(SiMe 3) 2 J4 in pentane to 

give a bright yellow solution from which yellow plates of diamagnetic 

Yb[N(SiMe 3) 2 J2(Me 3Al) 2 (I) were obtained by crystallization from pentane at 

-20°C in essentially quantitative yield. 8 Triethylaluminum behaves similarly 

giving giving the yellow, low melting Yb[N(SiMe 3) 2 ] 2(Et 3Al) 2• 9 Figure I shows 

an ORTEP of I. The complex can be thought of as being derived from a 
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monomeric Yb[N(SiMe 3) 2 ]2 fragment in which each lone-pair of electrons on the 

nitrogen atoms is coordinated to aluminum atoms so that the coordination 

number of the nitrogen and aluminum atoms is four. The averaged Al-N distance 

of 1.963(5) A and the averaged Yb-N-Al angle of 80.5(7) 0 are similar to those 
-

found in Me 4AI 2 (~-NPh 2 )lOa of 2.003(3) A and 85.6(1) 0
, Me 4Al 2 (~-NMe 2 ) 2 10c of 

1.96(1) A and 91.6(2) 0
, respectively. The Yb-N(l) and Yb-N(2) bond lengths of 

2.510(2) and 2.573(2) A are longer than the equivalent bond length of 2.46(2) 

A in NaYb[N(SiMe 3)2 ]3• 7b The N(l)-Yb-N(2) angle of 131.56(5) 0 is similar to 

that found in Yb[N(SiMe 3) 2 ] 2(Me 2PcH2cH2PMe 2) 7a of 123.6(6) 0
• 

The methyl groups C(1,2) and C(5,6) bridge the aluminum and ytterbium 

atoms with Al (1 )-C(l, 2) and A1(2)-G(.5, 6) distances of 2. 005( 2), 2.030(2), 

2.012(2), and 2.027(2) A, respectively, with an average of 2.019(11) A. The 

averaged bridge aistance is significantly shorter than that found for the Al-G 

bridging distance in Me 4Al 2 (~-Me) 2 and Me 4Al 2 (~-Me)(~-NPh2 ) of 2.125(2) A4 and 

2.142(2) A10a, respectively. The averaged Al-C(2,6)-Yb and Al-C(1,5)-Yb 

angles of 73.8(1) 0 and 65.9(7) 0
, respectively, are similar to the equivalent 

angles in Cp 2Yb(~-Me) 2A1Me 2 and Cp 2Y(~-Me) 2A1Me 2 of 78.9(6)o 3a and 80.8(4)o, 3b 

respectively. The averaged N(1)-Al(1)-C(1,2) and N(2)-Al(2)-C(5,6) angle is 

106.1(1.6) 0 and the averaged N(l)-Al(l)-C(3) and N(2)-Al(2)-C(4) angle is 

116.6(4) 0
, similar to the equivalent angles in Me 4A1 2 (~-Me)(~-NPh2 ) of 

108.9(1.0) 0 and 113.1(1.1) 0
, lOa respectively. The averaged terminal Al-G 

distance in (I) of 1.959(2) A is identical to that found for the equivalent 

distance in Me 4AI 2 (~-Me) 24 of 1.953(2) A, and in other related compounds as 

shown in the Table. Inspection of the Table shows that the bridging Al-C 

distances in (I) are ca. 0.1 A shorter than this distance in related 

compounds. This concept may be expressed quantitatively by defining ~, the 

averaged terminal Al-e distance minus the averaged bridging Al-G distance, for 

(\ 

\/ 
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the series of related complexes in the Table. The A-values show that the 

bridge bonds in I are approximately midway between bridging and terminal Al-C 

bonds in length and presumably in strength. As a consequence of the shorter 

('·) bridging Al-C lengths in I, the bridging Yb-C bonds might be proportionately 

v longer and therefore weaker. 

The Yb-~-c bond lengths fall into three ranges, two short distances, Yb-

C(2,6) of 2.788(2) and 2.756(2) A, respectively [ave. = 2.767(6) A] with Yb-C-

Al angles of 74.03(7) and 73.65(7) 0
, respectively, one intermediate distance, 

Yb-C(5) of 3.042(2) and the Yb-C(5)-Al angle of 67.21(7) 0
, and one long 

distance, Yb-C(l) of 3.202(3)A [ave. = 2.95(17)A]. Further, the shortest Al-

C distances are pair-wise related to the longest Yb-c distances. The two 

short Yb-C distances are close to those found in Cp 2Yb(~-Me) 2A1Me 2 and 

Cp4Y2(~-Me)2 of 2.59(2) and 2.54(1) A, respectively, 3a since the radius of 

Yb(II) is ca. 0.1 A larger than that of Yb(III) or Y(III). 11 The two longer 

Yb-c distances are still shorter than the sum (3.3 A) of the van der Waals 

radius of a carbon atom12a and the metallic radius of divalent ytterbium (1.7 

A). 12b The relative weakness of the Yb-Me-Al interaction in I in the solid 

state is apparently true in solution since the line shape in the 1HNMR 

resonance experiment does not change to -80°C. Assuming a chemical shift 

difference for the bridging and termial methyl groups of 1Hz at -80°C, the 

upper limit for AG*(Tc) is~· 10 kcal mol-l. Th~s may be compared with 

AG*(Tc) for bridge-terminal exchange in Me4Al 2 (~-Me) 2 13 and in Cp 2Y(~-
.,. Me) 2A1Me 2

3a of ca. 11 and 16 kcal mol-l, respectively. As a consequence of 

the Yb-C(2,6)-Al bridge bond, two hydrogen atoms on each carbon atom, H(2,3) 

on C(2) and H(4,6) on C(6), approach the ytterbium atom. The Yb•••H (2,3,4,6) 

distances are 2.63, 2.72, 3.13 and 2.53 A, respectively, 8c suggesting that the 

Yb-Me-Al interaction is not just by way of the carbon atom, but the hydrogen 



4 

atoms on the bridging methyl groups also are involved. 

In addition to the short Yb-C-Al distances, two of the methyl groups on 

the silicon atoms have short Yb-c contacts. The Yb•••C (12,21) distances are 

3.067(2) and 3.039(2) A, respectively, and all other intramolecular contacts 

are > 3.5 A. A similar phenomenon was noted in 

Yb[N(SiMe 3) 2 J2(Me 2PcH2cH2Me 2), 7a in which the ytterbium to carbon contact 

distance is 3.04 A, and discussed in some detail in ref. 7b. 

In summary, the coordination at ytterbium in (I) may be described as 

either four or eight coordinate. However, the geometry is so irregular that 

it is impossible to describe the stereochemistry in a precise fashion using 

the dihedral angle formalism advocated by Muetterties. 14 Even though the 

bridging interaction in I is weak, the chemistry of I is substantially 

different than trimethylaluminum or its coordination complexes. In particu­

lar, I polymerizes ethylene at 20°C and 12 atm whereas trimethylamluminum does 

not polymerize ethylene under such mild conditions. 15 These and other 

reactions will be described later. 

(\ 

v 
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Compound Al C a - b 
(A) 

Me 4Al 2(J.J-Me) 2 2.125(2) 

Me 4Al 2(J.J-Me)(J.J-NPh2) 2.142(2) 

Me 4Al 2(J.J-Me) 4Mg 2.13(2) 

Me 2AI 2CJ.J-Me) 2Ycp 2 2. 10(1) 

Me 2Al 2(J.J-Me) 2YbCp2 2.13(2) 

(I) 2.009(2) 

2.029(1) 

a b = bridging carbon atom 
b t = terminal carbon atom 
c t,. is [Al-Cb] - [Al-Ct] 

8 

Table 

Al-C b t 
(A) 

1.953(2) 

1.948(5) 

1. 96(1) 

1.94(1) 

2.00(1) 

1.959(2) 

Me Al 
l!.c M Al X Me(b) Reference ,, 
(A) (deg.) (deg.) 

I ) 

v 
0.17 75.7(1) 104. 3(1) 4 

0.19 78.9(2) 94.7(2) lOa 

0.17 77.7(3) 105.7(1) lOb 

0.16 8Q.8(4) 112(1) 3b 

0.13 78.9(6) 113. 3(8) 3a 

0.05 73.8(1) 106.1(1.6) This 

0.07 65.9(7) work 
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Figure 

An ORTEP drawing of (I), Yb[N(SiMe 3) 2J2(A1Me 3) 2, showing the divalent 

ytterbium atom in eight coordination. 
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Table of Positional Parameters and Their Estimated Standard Deviations 

Atom 

V81 
S I 1 
SI2 
SI3 
514 
ALl 
AL2 
N1 
N2 
C1 
C2 
C3 
C4 
C5 
C6 
c 11 
C12 
C13 
C21 
C22 
C23 
C31 
C32 
C33 
C41 
C42 
C43 

X 

.0'.19426(1) 

.0'.48996(8) 

.0'.24218(8) 

.0'.25322(8) 

.0'.26263(8) 

.0'.24712(9) 
-.0' • .0'.0'36.0'(8) 
.0'.3164(2) 
.0'.19l.lH2) 
.0' .• 3268(4) 
.0' • .0'489(3) 
.0'.2727(4) 

-.0'.1276(3) 
-.0' • .0'596(3) 
-.0' • .0'1.0'8( 3) 
.0'.5683(3) 
.0'.5.0'76(3) 
.0'.5996(3) 
.0'.2557(3) 
.0'.4171<4) 
.0'.122.0'(4) 
.0'.4372(3) 
.0'.1637(4) 
.0'.2285(3) 
.0' • .0'86.0'(3) 
.0'.3744(4) 
.0'.26.0'2(3) 

y 

.0'.31799(1) 
g. 31.0'51 ( 6 ) 
.0'.2228.0'(6) 
.0' • .0'1849(6) 
.0'.27.0'76(6) 
.0'.49111<6) 
.0'.18.0'55(6) 
.0'.3342(2) 
.0'.1577(2) 
.0'.5539(3) . 
.0'.4839(2) 
.0'.5861(3) 
.0' • .0'8.0'.0'(3) 
.0'.34.0'1(3) 
.0'.1822(2) 
.0'.1735(3) 
.0'.3.0'53(2) 
.0'.4192(3) 
.0'.3768(2) 
.0'.1767(3) 
.0'.2.0'48(3) 
.0' • .0'.0'7.0'(3) 

-.0' • .0'525(3) 
-.0' • .0'676(2) 

.0'.32.0'1(3) 

.0'.3.0'17(3) 

.0'.1162(3) 

z 

.0'.21184( 1) 

.0'.32464(6) 

.0' • .0'.0'.0'1.0'(6) 

.0'.2.0'474(6) 

.0'.5.0'3.0'4(6) 

.0'.29736(7) 
g. 18.0'44 ( 6) 
.0'.3621<2) 
g. 1 4.0'9 ( 2 ) 
g. 14.0' 1 ( 3) 
.0'.2746(3) 
.0'.3794(3) 
.0'.1631(3) 
.0' • .0'927(2) 
.0'.335.0'(2) 
.0'.4121<3) 
.0'.1823(2) 
.0'.3258(3) 

-.0' . .0'354(2) 
-.0' • .0'441(3) 
-.0' • .0'9.0'8(2) 

.0'.2299(3) 

.0'.3435(3) 

.0'.1228(3) 

.0'.5381<2> 

.0'.5926(2) 

.0'.5461(3) 

.2 
8( A > 

2 . .0'22(3) 
2 • .0'7(2) 
2.13(2) 
2.21(2) 
2.13(2) 
2.2.0'(2) 
2 • .0'2(2) 
1.72(5) 
1.82(5) 
3.59(8) 
3.12(7> 
3.5.0'(7) 
3.48(8) 
2.94(7) 
2.73(7) 
3.11(7) 
2.82(7) 
3.2.0'(7) 
2.89(7) 
3.55(8) 
3.21<7> 
3.47(8) 
3.5.0'(8) 
3.21<7> 
3.41<8) 
3.34(7) 
3.13(7> 

Anlsotroplcally refined atoms are given fn the form of the 
Isotropic equivalent thermal parameter deffned as: 

2 2 z 
(4/3) * [a *8(1,1) + b *8(2,2) + c *8(3,3) + ab(cos gamma>*8(1,2) 

+ ac(cos beta)*8(1,3) + bc{cos alpha)*8(2,3)] 

,c .... ~. 
~ -~ 

....... 
w 



Table of Positional Parameters and Their Estimated Standard Deviations (cont.) 
----------------------------------------------------------------------

.2 
Atom X y z B<A > 
---- - -

HI B.BBBB .8'.54316 B. 293.8' 4 .B** 
H2 B.BBBB 16.41616 16.3125 4.16** 
H3 16.16293 B .5161616 16.216916 4 .B** 
H4 -B.B82B B. 251616 16.3555 3.7** 
H5 -16.16547 B. 12516 16.37516 3.7** 
H6 16.16547 B. 1875 16.37516 3.7** 
H 11 16.2947 16.6294 B .11675 4.6** 
H12 16.4239 16.5497 B. 1383 4.6** 
H13 B. 316164 16.5118 16.116167 4.6** 
H31 16.2363 16.6595 16.3417 4.5** 
H32 16.2272 16.5568 16.4512 4.5** 
H33 16.3677 B. 58816 16.3847 4.5** 
H41 -16.2188 16.16996 16.1848 4.5** 
H42 -16.12168 16.16869 16.1688.0' 4.5** 
H43 -s .11634 .0'.161654 B. 2.0'79 4.5** 
H51 -16.1542 16.3538 B. 11162 3.9** 
H52 -B.BB81 16.3884 B .11165 3.9** 
H53 -16 . .0'431 16.3532 16.16162 3.9** 
H 111 16.6615 16.16716 16.3868 4.1** 
H112 16.5613 B. 16916 16.4867 4. 1 ** 
H113 B. 5211 B. 1148 B. 41679 4. 1 ** 
H121 B. 61617 16.2924 16.1613 3.8** 
H122 16.4575 16.2465 B. 1822 3.8** 

~ H123 16.4741 16.3742 16.1316 3.8** 
H131 16.6919 16.41617 B. 31648 4.2** 
H132 16.57162 16.4898 8.2752 4.2** 
H133 16.5928 16.4212 s·. 3979 4.2** 
H211 16.2835 16.411.0' -16.1117 3.9** 
H212 B. 1695 8.41691 -16.16189 3.9** 
H213 16.3214 16.3875 B.BB67 3.9** 
H221 16.4369 16.2159 -16.1211 4.6** 
H222 16.4823 .0'. 1928 -B.BB49 4.6** 
H223 16.4213 16.16991 -16.16291 4.6** 
H231 16.1542 16.2414 -16.1657 4.2** 
H232 B. 1164 B. 1275 -16.16758 4.2** 
H233 16.16339 B. 2362 -16.16766 4.2** 
H311 16.4657 -.0'.16694 16.2644 4.4** 
H312 16.49164 16.16384 16.1616 4.4** 
H313 16.4489 .0'.1646.0' 16.2766 4.4** 
H321 B. 216165 -16.1269 16.3742 4.5** 
H322 B. 1751 ~s.B134 16.39162 4.5** 
H323 .0' • .0'688 -.0' • .0'53.0' 16.3365 4.5** 

c --·~~ .. t' -~:-} 
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Table of Positional Parameters and Their Estimated Standard Deviations (cont.) 

Atom 

H331 
H332 
H333 
H411 
H412 
H413 
H421 
H422 
H423 
H431 
H432 
H433 

X 

.0'.2629 

.0'. 1338 

.0'.276.0' 

.0' • .0'613 

.0' • .0'827 

.0' • .0'244 

.0'.3423 

.0'.4656 

.0'.3722 

.0'.2773 

.0'.3249 

.0'. 1 71.0' 

y 

-.0'. 142.0' 
-.0'.8673 
-.0'.8374 

.0'.2837 

.0'.3984 

.0'.3832 

.0'. 2664 

.0'.2749 

.0'.38.0'3 

.0'.882.0' 
8 • .0'847 
.0'.8967 

** -- Atoms Included but not refined. 

z 

.0'. 1595 

.0'. 1156 

.0' • .0'518 

.0'.6145 

.0'.5282 

.0'.4967 

.0'.6677 

.0'.5882 

.0'.5745 

.0'.58.0'.0' 

.0'.5994 

.0'. 58.0'5 

• 2 
B< A > 

4.2** 
4.2** 
4.2** 
4.4** 
4.4** 
4.4** 
4.3** 
4.3** 
4.3** 
4. 1 ** 
4. 1 ** 
4.1 ** 

..... 
U1 
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Intramolecular Angles 

ATOM 1 ATOM 2 ATOM 3 ANGLE ,__, 
YB1 N1 SI1 1.0'4.47(8) 
YB1 N1 Sl4 122.97{8) 
YB1 N1 All 81.83{6) 
SI1 N1 SI4 115.79<1.0') 
S I 1 N1 All 114.28(9) 
SI4 N1 All 113 . .0'8{9) Intramolecular Of stances 
YB1 N2 SI2 1.0'1.95(7) 
YB1 N2 SI3 126.93{8) 

ATOM 1 ATOM 2 DISTANCE 
YB1 N2 AL2 79.24(6) 

N1 S I 1 1.755(2) 
SI2 N2 SI3 116.37{1.0') 

N1 SI4 1.758{2) 
SI2 N2 AL2 114.34(9) 

N1 All 1.973(2} 
SI3 N2 AL2 112.77{9) 
N1 Sll C11 114. 66{ 1.0') 

N2 Sl2 1.753(2) 
N1 SI1 C12 1.0'8.66(9) 

N2 SI3 1.761(2} 
Nl Sil C13 113.45<1.0') 

N2 AL2 1.953(2) 
c 11 SI1 C12 1.0'4.26{11) SI1 N1 1.755(2) 
c 11 SI1 C13 1.0'6. 37 { 11 ) Sll c 11 1.865(2} 
C12 SI1 C13 1.0'8 • 9 5 ( 11 } Sil C12 1.879(2} 

Sl1 C13 1.862(2) 
N2 SI2 C21 11.0'.18{9) 
N2 SI2 C22 114.7.0'{1.0') SI2 N2 1.753(2.} 
N2 SI2 C23 112.82(1.0') SI2 C21 1.883(2} 
C21 S12 C22 1.0'2.97{11) SI2 C22 1.868(2) 
C21 SI2 C23 1.0'8. 23< 11 ) S12 C23 1.864(2) 
C22 S12 C23 1.0'7.32(12) 

SI3 N2 1.761(2) 
N2 SI3 C31 112.69(1.0'} SI3 C31 1.866(3) 
N2 SI3 C32 112.79{1.0') SI3 C32 1.861(3) 
N2 SI3 C33 111.55( 1.0') SI3 C33 1.86.0'(2) 
C31 SI3 C32 1.0'4. 6.0'( 12) 
C31 SI3 C33 1.0'9.25<11) SI4 N1 1.758(2) 
C32 SI3 C33 1.0'5 • 4 9 ( 1 1 ) SI4 C41 1.862(2) 
N1 VB1 N2 131.56{5) Sl4 C42 1.87.0'<2> 
N1 VB1 C2 73.52{6) SI4 C43 1.866(2) 
N1 VB1 C5 152.56(6) VBl All 2.963(1) 
N1 YB1 C6 1.0'.0'.68(6) VB1 AL2 2.925( 1) 
N1 VB 1 C12 63 . .0'1(6) VB1 N1 2.51.0'(2) 
N1 VB1 C21 135,.16(6) VB1 N2 2.573{2) 
N2 VB1 C2 148.35(6) VB1 C2 2.788{2) 
N2 YB1 C5 68.77{6) YB1 C5 3 . .0'42{2) 
N2 YB1 C6 71.94{6) YB1 C6 2.756{2) 
N2. YB1 C12 9.0' . .0'6{6) VB1 C12 3 . .0'67(2) 
N2 YB1 C21 63.59(6) YB1 C21 3 . .0'39{2) f'" 

C2 YB1 C5 81.72(7) 
L 

C2 YB1 C6 85.76{7) 
C2 YB1 C12 121.2.0'(7) ; 

l. 

C2 YB1 C21 115.39(7) 
C5 YB1 C6 65.24(7) 
C5 YB1 C12 143.19{6) 
C5 YB1 C21 66.73(6) 
C6 YB1 C12 137.74(7) 
C6 YB1 C21 123.13(6) 
C12 VB1 C21 77 . .0'.0'{ 6) 
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