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Validation Study of Vortex Methods 

I. INTRODUCTION 

In this paper we present a careful and detailed convergence study of the vortex method 

applied to viscous, incompressible, two-dimensional flow. We compute the solution to flow 

over a backwards-facing step over a wide range of Reynolds numbers, from laminar through 

transitional to turbulent flow. The effect of the choice of time step, number of particles, boun

dary layer resolution, core size and domain truncation length is analyzed by comparing the 

converged computed solution to experimental measurements. From this study emerges a 

healthy and heartening portrait of the method: pointwise convergence of computed velocity 

fields to experimental measurements in the laminar regime, decay of variance inversely pro

portional to the number of vortex elements, accurate prediction of size and length of recircu

lating zones as a function of Reynolds number, detailed and successful calculations of eddy 

shedding and pairing at higher Reynolds numbers, and qualitative numerical convergence in 

such critical flow variables as eddy size and average velocity profiles. 

The vortex method relies on a discretization of the continuous time-dependent vorticity 

field into a large number of interacting vortex "blobs", whose position and strengths deter

mine the underlying velocity field. Viscous diffusion is approximated by a random walk 

imposed on the vortex motion, and the no-slip requirement along the boundary is satisfied by 

a vorticity creation algorithm. While this method has gained considerable popularity in recent 

years, and has been used in a variety of settings (see [4,9,10,17,18,27,30,33,35,41,42,43,44]), 

the surprising effectiveness, reliability and accuracy of the algorithm was not fully appreci

ated. Previous applications have focussed on reproducing gross qualitative structures of highly 

turbulent flow. Due to the unsteady nature of such flow, the usual goal has been to predict 

qualitative gross features such as the presence of recirculation zones and global fluid struc-
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tures. These are integrated quantities however, and ideally one would like to know h~w the 

accuracy of the computed values of local instantaneous velocity, pressure, etc., depend on the 

choice of numerical parameters. Unfortunately, since the equations model a turbulent 

phenomenon, exact solutions seldom exist, and experimental measurements usually come in 

the form of averaged quantities. Thus, it is not straightforward to perform the standard con

vergence study of comparing the computed solution to the exact solution as a function of the 

numerical parameters. 

In order to subject the algorithm to critical examination, we studied the problem of flow 

over a backwards-facing step, chosen because of the wealth of experimental data available 

under a variety of flow conditions. Within the laminar regime, the fully developed flow is 

stable and steady, providing a setting for pointwise convergence of computed velocity fields to 

experimental measurements as the numerical parameters are refined. In the transitional and 

turbulent regime, averagea~ quantities such aS recirculation~ zone-lengths and -average ·velocity 

profiles can be calculated and compated with experiment. In addition, there is a periodic and 

regular pattern to the generation and development of coherent fluid structures which should 

not change under refinement of numerical parameters. 

It is important to point out that we study the two-dimensional Navier-Stokes equations, 

and this is a significant assumption that ignores such three-dimensional effects as vortex 

stretching. It is legitimate to wonder what we mean by "two-dimensional turbulence", and 

how we may compare two-dimensional calculations with experiment. The approach taken here 

is that results are indeed two-dimensional at low Reynolds numbers, and analysis of the 2-D 

Navier-Stokes equations from low to moderate Reynolds number can provide insight into the 

transition from steady to unsteady flow. Thus, with respect to our calculations, the word 

"turbulent" shall mean the instability of small-scale flow with increasing Reynolds number 

and the resulting coagulation of vorticity into large fluid structures at large scales. 
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In practice, there are several ways to speed up the vortex method, such as fast Poisson 

solvers, near-field/far-field techniques, boundary layer interpolating splines, etc. In this work, 

we wanted to study the basic random vortex method using as few numerical parameters as 

possible; we refrained from using some of the more sophisticated labor-saving techniques 

beacuse they would have introduced even more numerical parameters. The goal was to sub-

ject the vortex method to the sort of critical examination that it must successfully pass before 

it can be used with full confidence. In doing so, this numerical convergence study required 

several thousand hours of computer time and generated massive amounts of data, enough to 

fill seventeen 6250 bpi tapes. Not surprisingly, we were forced to confront the related issue of 

developing an organized and effective way of looking at that much data, and this will be the 

subject of a later paper [40]. 

ll. EQUATIONS OF MOTION 

The momentum equation for two-dimensional, viscous, incompressible flow [29] is 

Du 1 z-- = - "V u - 'VP Dt R 
(1) 

where u =( u , v ) is the velocity of the fluid, ..!2_ is the total derivative, P =P ( :r ,y ) is the 
Dt 

pressure, R is the Reynolds number 'i7 is the gradient, and 'V2 is the two-dimensional Lapla-

cian. Taking the curl of Eqn. 1 results in the vorticity transport equation [29] 

(2) 

where the vorticity e = 'VXU. The flow is incompressible ( 'V·U = 0), and on solid walls, 

i1 = 0. At the openings we must supply inflow and outflow conditions. 

The computational domain is divided into an interior region and a boundary layer. The 

two solutions are matched to produce the full flow. In the interior, the vorticity transport 
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equation (Eqn. 2) is split into an advection equation 

ate= -(it ·V')e (3) 
... 

with boundary condition it ·n = 0, where n is the unit vector normal to solid walls, and a 

diffusion equation 

(4) 

In the boundary layer, the Prandtl boundary layer approximation to the vorticity tran-

sport equation is used [29]. In this approximation, it is assumed that 1) vorticity is mainly 

produced from large variations of u lD the y direction, hence 

e = av jar -au jay ~-au jay, and 2) along the wall, diffusion of vorticity is small com-

pared to advection, hence aa2e ~ 0. (Here, r and y are parallel and normal to the solid wall, 

respectively). The vorticity advection equation becomes 

a, e =-(it ·vr)e (5) 

az u +a, v = 0 

and the diffusion equation becomes 

(6) 

The boundary conditions are it = 0 on the wall, and u (r ,y =oo)=U 00 is prescribed. The 

'~ 
appropriate equations in each region are shown in Figure 1. 
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ill. THE NUMERICAL SCHEME 

The basic idea behind the numerical scheme, due to Chorin [10,11], is to update e by 

following the motion of a collection of vortex elements. In the interior, smoothed out point 

vortices are taken (vortex blobs) as the discrete elements of vorticity; in the boundary layer, 

discontinuous jumps in the tangential velocity (vortex sheets) are used. Knowledge of the 

position of the vortex elements at any time provides the velocity field 11. We briefly describe 

the method; for details, see [42]. 

In the interior, the starting point is the vorticity advection equation (3). If z( t) is the 

position of a particle moving in the fluid at time t, then e(z(t ),t) = e(z(O),O). Imagine the 

initial vorticity approximated by a collection of N particles (vortex "blobs") placed on a grid 

of grid size h (N =1/ h 2 ) covering the domain; each particle carries a discrete initial vorticity 

e(Xi (O),O)h 2, where z;(O) is the initial position of the particle,- 1$ i $ N. Since '\]·11 = 0, 

there exists a stream function t/J such that u = (t/J 11 ,-t/Js) and hence e = -'\121/J. Thus, 

t/J(z ,t) = I a (z> - z' ) e(z' ,t )dZ' , 

where G (z-z' ) = (1/(2rr)) log I z-z' I and z=(z ,y ). Hence 

11 =I K(x- x' )e(x' ,t )dZ' , 

(7) 

(8) 

where K (x - '1' ) = (-y ,z )/(2rr I x - x' I ). The vortex blob method replaces the singular 

kernel K by a smoothed kernel K a obtained through the convolution K a = K *I a• where 

I a is a smoothing function. The positions of the vortex blobs are updated from one time step 

to the next by numerical integration of the velocity field given in Eqn. (8). Convergence of 

this method was first established in [12,22]; for work relating to the theoretical aspects of this 

method, see [2,5,6,12,20,22,23,24,38,39]. In the calculations presented here, we use a second.

order time integration scheme (Heun's method) for advecting vortex blobs, as suggested in 

[42]. 
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To update the vorticity with respect to the diffusion term R -l \72e, we allow the vortex 

elements to undergo a random step, drawn from a Gaussian distribution with mean zero and 
'' 

variance 2~t j R , where ~~ is the time step used in the advection scheme. Since the random 

walk approximates a solution to the diffusion equation, the combined motion of advection 

plus random step of the vortex blobs approximates the solution to the full vorticity transport 

equation (Eqn.2). For details, see [10]. 

Similarly, in the boundary layer, we update the vorticity by advection and random walk 

of a finite collection of vortex elements. Here, the vorticity is approximated by vortex sheets, 

where a vortex sheet is defined to be a line segment of length h, centered at a point (:r. ,y.) 

and parallel to the :r axis (the wall) such that u (:r., ,y.,+)- u (:r., ,y.-) =-e. Given a collection 

of vortex sheets, the velocity field can be determined from the definition of vorticity and the 

incompressibility relation. During one time step, vortex sheets are advanced under this advec-

tion field anc allowed to undergo a random walk in the direction normal to the wall in 

response to the diffusion term. 

The calculations in the boundary layer and interior are matched as follows: the velocity 

from the interior calculation parallel to the wall and a distance 8 away is taken as the velo-

city U 00 seen at infinity from the boundary layer. As sheets move into the interior, they 

become blobs and vice versa; here, the proper vorticity strength is assigned to the 

transformed object so that circulation is conserved. 

Finally, we turn to boundary conditions. For the moment, imagine that the domain is of 

infinite length downstream of the step. On solid walls, we require that the velocity be zero 

both normal and tangential to the solid walls. The normal boundary condition may be met by 

finding a function t/J such that i) \721/J = 0 and ii) \71/J·n exactly cancels the velocity com-

ponent normal to solid walls _determined by the vortex elements. Appropriate entrance and 

exit requirements on \lt/J·n must also be given. Adding this potential velocity field (t/Jz ,t/J
11

) to 

the one obtained by the vortex elements provides a velocity field whose normal component 
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vanishes on solid walls. 

The tangential boundary condition (no-slip condition) along solid walls is met through 

the creation of vortex sheets. Suppose 0 mu is the maximum circulation allowed for any one 

sheet. At the beginning of each time step, calculate the tangential velocity u at points spaced 

a distance h along the wall. IT u ~0 at any point, create enough vortex sheets (where the 

number created depends on 0 mu to provide a transition from the no-slip condition to the 

value of u . This insures that the tangential boundary condition is satisfied at the beginning of 

each time step. Thus, the interior flow creates vorticity at the boundary due to the no-slip 

condition, and this vorticity is then diffused from the boundary layer into the interior. 

To limit the calculations, we wish to truncate the channel at some point WEND down-

stream from the step. We do this by deleting all the vortex elements past WEND and ignoring 

the no-slip condition beyond this point. Thus, infinitely far downstream, one might imagine 

that the flow becomes nearly uniform (independent of z and y ). In the calculation presented 

here, the potential function <P is found by a conformal transformation of the domain onto the 

upper half plane, see [17]: uniform flow conditions are assumed for t/J at infinity. 

IV. SETUP OF PROBLEM 

Let V be a characteristic speed of the incoming flow, let W, the channel height, 

represent a characteristic length scale, and let v be the kinematic viscosity of the fluid. The 

dimensionless Reynolds number is defined as R = VH, where H is the step height. We shall 
v 

study the flow at six different values of R, namely R =50, R =125, R =250, R =375, 

R =500, and R =5000. Loosely speaking, this covers the range from viscous to early tur-

bulent flow. We take a channel width W of two step heights H. 

We give incoming boundary conditions one channel width upstream of the step along 

the segment z =-1., 0:$ y :$1, where the origin of the coordinate system is at the lower left 

.. 
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corner of the channel {See Figure 2). At the entrance, we assume a uniform entrance profile 

(u ,v )={1,0). It is important to discuss our choice of this inlet velocity profile. From the point 

of view of comparison with physical experiments, this entrance profile is uncommon; at low 

Reynolds number, a parabolic profile will develop in most experimental apparatus in the 

entrance section upstream of the step, To be sure, we do in fact satisfy the no-slip condition 

between the line :t =-1 {channel entrance) and :t =0 {edge of the step). Thus the flow will 

neither be uniform when it reaches the edge of the step, nor will it be fully-developed 

Poiseuille flow over such a short distance, and this will be a source of disagreement between 

our calculations and experiment. 

There are two reasons why we chose this uniform entrance profile. Our goal here is to 

provide a convergence study of the vortex method; we want to focus on the effectof changing 

numerical parameters on the solution. First, by assuming a uniform entrance profile, all the 

vorticity in the flow comes from the no-slip condition along the walls, and the numerical 

parameters involved in the creation of vortex sheets are the sole factors in determining the 

total number of vortex elements (sheets and blobs). A parabolic entrance profile requires a 

discretization of the entrance vorticity distribution into vortex sheets and blobs; we wish to 

limit the manner in which vorticity is created. Second, we wish to run experiments over a 

wide range of Reynolds numbers. A parabolic inlet profile is dependent on the Reynolds 

number, and is in fact physically unstable at the high range. In the vortex method, the only 

manifestation of the Reynolds number is in the size of the random step taken in the solution 

of the diffusion equation. We want to study the eddy structure of the solution as the balance 

between advection and diffusion changes, always maintaining the same boundary conditions. 

It is important to point out however, that it is a simple matter to integrate a given inlet 

profile into the vortex method if desired. 

The numerical parameters are linked as follows. As input, we supply the time step t:..t, 

the sheet length h , the circulation C of an individual vortex element, and the length of the 

•".J' 

.... l".t 

··r 
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channel downstream of the step WEND (see Figure 2). These parameters are connected as fol-

lows. Vortex sheets are created at points spread a distance h along the wall. Since the circu-

lation c =h e. halving c doubles the number of vortex sheets; cutting h in half does not 

change the number of sheets created, but instead creates half as many doubly strong sheets at 

twice as many points. The time step At is a particularly intricate parameter, since it controls 

(a) the size of the time step used in the time integration of the advection equation, (b) the 

size of the random steps, (c) the size of the boundary layer 8, and (d) how often the no-slip 

condition is satisfied. In addition, the scaling rr of the smoothing function / is related to h 

by rr=h j1f (see [22,42]); thus the "singularity" of an individual vortex blob is controlled by 

the discretization of vorticity along the wall. We will not change the smoothing function 

itself, and shall use the smoothed structure given in [10], resulting in a stream function for a 

single vortex blob of strength k or 

{ 
(-k /(21f)) log(r) r ~rr} 

t/J{r) = (-k /(21f)) ((r )/rr + log(r )-1) r <rr 
(9} 

V. COMPARISON OF CALCULATED RESULTS WITH EXPERIMENT 

In this section we compare the results of bur calculations with available experimental 

data. There are a large number of ways to define the Reynolds number R = VL j v: some 

choices for L have been the step height, the channel height, inlet height, and the hydraulic 

diameter; for the characteristic speed, investigators have used the maximum inlet velocity, 

the average inlet velocity assuming a parabolic profile, and the speed at which the apparatus 

is towed through the fluid. To compare the various experiments with our results, we instead 

use the classification given in [3] of the three ranges of separated flow: 1) laminar flow, in 
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which the flow is laminar from the separation off the step all the way beyond reattachment, 

2) transitional flow, which is laminar at the separation point but becomes turbulent prior to 

reattachment and 3) turbulent flow, in which the boundary layer is turbulent prior to separa

tion. We shall use the following coordinate system in our discussion: the x axis is the down

stream direction, the channel height is measured along the y axis, and the spanwise direction 

is the z axis. Planes x =constant are essentially normal to the flow and planes z =constant 

are essentially parallel to the flow. 

Al. Laminar Flow-Experimental Results 

In the laminar regime, the flow structure is characterized by a single, elliptically shaped 

recirculation zone [3,13,19,25,32,37]. The flow is essentially two-dimensional; Armaly et. al. [3] 

found a 1% variation in the downstream velocity in the spanwise direction, and Denham and 

Patrick [13] found a less than 2% variation in the total flow rate in the x direction along the 

center plane, indicating that the flow was self-contained along that plane. 

The flow is reasonably stable and steady. Kueny and Binder [28] report that velccity at 

a fixed grid point did not vary by more than 1% in their experimental apparatus designed for 

viscous/laminar flow. At the low and medium Reynolds numbers within the laminar regime, 

Denham and Patrick [13] report that if the apparatus is tapped, velocities within the main 

flow return to original values, while. velocities near the reattachment point settle to new 

values less than 1% of the average channel velocity; this "indicates that a small range of 

semi-stable recirculation zone configurations exist at each Reynolds number". This is an 

important point, since we are using a probabilistic technique to compute the solution to a 

problem that evidently contains a range of stable solutions. (Note that some numerical 

schemes for viscous flow over a backwards step assume the solution is time-independent 

[3,8,21,32,37] and compute the solution by iteration). At higher Reynolds number, still within 

the laminar regime, time-dependent fluctuations in the reattachment point appear, with the 

most pronounced velocity field fluctuations occurring in the middle of the channel with 
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variation on the order of 5% and periods of several minutes. Denham and Patrick [13] view 

this as an indication of the onset of the transitional flow regime. Furthermore, at these higher 

ranges of laminar flow, there is a tendency for flow separation along the upper wall opposite 

to the reattachment point. This separation is indicated by bending streamlines and inflections 

in velocity profiles, but no actual separation, that is, negative velocities, are reported [13]. 

The basic laminar flow pattern is characterized by flow separation at the step, an ellipti-

cal recirculation zone, and downstream reattachment to the bottom wall. (Honji [25J reports 

that this structure develops continuously from potential flow for impulsively started flow over 

a step without a wall). The reattachment length z1 for laminar internal flow is seen to scale 

with the ~tep height H, and most investigators refer to a normalized reattachment length 

ZR = :e, / H which increases with Reynolds number [3,13,19,25.,28]. Goldstein et. al. [19] 

experimentally observe an approximately linear relationship between normalized reattachment 
• 

length and Reynolds number; the maximum value they could achieve experimentally was 13 

before the laminar quality of the flow broke down. 

The center of the reattachment eddy ("normalized eddy center") remains nearly con-

stant when normalized with respect to the reattachment length, with coordinates 

(xc .Yc )=(.3xR ,.6H ), thus Denham and Patrick [13J conclude that laminar flow is essentially 

self-similar in that experimental values for the normalized reattachment length for different 

Reynolds numbers lie on a single curve, and the normalized eddy center remains fixed. As the 

transition stage is entered, this self-similarity breaks down. 

In the laminar regime, the reattachment length is sensitive to the inlet profile. A long 

channel entrance ensures a parabolic velocity profile corresponding to Poiseuille flow at the 

step, and this is used as a requirement in designing some experimental apparatus, see [3,28]. 

Apparatus that do not yield fully-developed profiles at the step report shorter reattachment 

lengths [ 13J, and numerical calculations based on parabolic inlet profiles usually predict 

slightly longer reattachment lengths than commonly measured [32] for a more uniform inlet 
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profile. At the exit, steady parabolic outlet profiles are reported for an 18xl aspect ratio and 

low Reynolds number flow [3]; at the higher end of the laminar regime, small deviations were 

present. 

A2. Laminar Flow-Numerical Results 

We begin with the results of a calculation performed with R =50, h =.2, Llt =.05, 

C =.005 and W END=IO {the exit section is 20 step heights downstream). In Figure 3, we 

show the startup from a potential flow as the no-slip condition is instantaneously imposed at 

t =0. We show "instantaneous streamlines" every 10 time steps: the data is not time· 

averaged. These streamlines are obtained as follows. A uniform grid is imposed on the 

domain, and the velocity at each grid point is calculated from the positions and strengths of 

vortex elements. Using this fixed discrete velocity field, the trajectory of a particle started 

within each grid cell is drawn, providing the "instantaneous streamlines". The recirculation 

bubble develops smoothly from the potential flow, growing in size as discussed earlier in the 

experimental section. In Figure 4, we show successive time portraits of the long-time behavior 

(the determination of when steady-state is established is discussed in the section on numerical 

parameters). Here, as observed experimentally, there is a single, elliptical recirculation zone 

with downstream reattachment to the bottom wall. The bubble is essentially steady, although 

definite oscillations are seen in these calculations; the variance in the computed shape depends 

on the number N of vortex elements, and decreases as N is increased {see section on conver

gence). This is a delicate point: since experimental results indicate a small range of semi

stable solutions and we are constantly perturbing the flow through our random walk solution 

to the diffusion equation, it is not clear that the time variation in our calculations should van

ish as N goes to infinity. In any case, however, the degree of oscillation shown is probably 

due to the response of the solution to a high level of noise in the random walk. 

A short distance downstream of the reattachment point, the flow becomes mostly paral

lel to the channel walls. In Figure 5, we show the streamline portrait of the flow field 
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averaged over 2000 time steps. The normalized reattachment length is xR =1. 7, and the cal

culated eddy center is at (.59,.29)=(.34:rR ,.59H), in excellent agreement with the self-similar 

value of (.3:rR ,.6H) reported in Denham and Patrick [13]. 

In Figure 6, we show successive time portraits of flow at R =125, towards the higher 

end of the laminar regime. We used the same numerical parameters as the calculation at 

R =50, thus the only difference in the two calculations is the size of the random jump in the 

solution of the vorticity diffusion equation, owing to the higher Reynolds number. Again, the 

long-time structure is an elliptical recirculation zone with essentially parallel flow a short di~ 

tance downstream of the reattachment point, Small oscillations in the bubble are present. 

Once again, while these probably result from not using enoughvortex elements, we believe 

that the slight unsteadiness of the real flow also plays a role here. The recirculation length 

from the time-averaged portrait is XR =3.1, and the eddy center is at (1.0,.31), giving 

{ .32xR ,.62H ), which again is in very good agreement with experiment. 

Bl. Transitional and Turbulent Flow-Experimental Results 

The transitional stage is marked by a collapse of the two-dimensional, single recircula

tion eddy, stable picture of the flow. At the lower end of the transitional regime, although the 

flow is laminar upstream, it turns unstable over the recirculation bubble right after leaving 

the step [13,!4]. As the Reynolds number is increased, the flow becomes three-dimensional [3], 

as indicated by checking spanwise velocity profiles at various points downstream, however, 

symmetry about the center plane is maintained. The central feature of three-dimensionality in 

the transition regime is the presence of longitudinal (spanwise) vortices which are responsible 

for dissipating structures in the flow [3]; these structures are most pronounced in the middle 

of the transition range, and drop out and disappear as the flow becomes turbulent. 

Rather than a single steady recirculation zone, the flow is now characterized by a 

periodic, unsteady mechanism. Laminar flow separates from the step and becomes unsteady 

.. 

.. 
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midway to the reattachment point [14]. Fluid is entrained by the recirculation bubble, and 

eddies detach and move downstream as large eddies [3,7,13,14,19,25]. These eddies are three

dimensional in that their cross-sections vary in the spanwise direction [3]. In their study of 

backwards-step flow without a confining top wall, Bradshaw and Wong [7] report that the 

flow splits at reattachment, with the large recirculation eddy torn into two; part of the flow 

goes upstream into the recirculation zone to supply the entrainment and part of the eddy goes 

downstream, suffering a decrease in eddy length scale; similar findings were reported in [16]. 

In Honji's [25] study, the impulsively started flow begins as potential flow and then forms a 

recirculation bubble which grows, entraining more and more fluid. This bubble then "divides 

into three distinct vortex domains", and then sheds eddies off the downstream end of the bub

ble. Eddy shedding becomes more pronounced as the Reynolds number increases. 

For step flow with a confining upper wall, there is a continuous mechanism of (1) fluid 

entrainment by a growing recirculation zone (2) detachment of eddies which move down

stream resulting in (3) a smaller recirculation zone which then entrains more fluid. Within 

the oscillating recirculation bubble, the mean flow speed is one order of magnitude less than 

the mean main flow speed [26]. The large eddies move downstream and cause local flow 

reversal, as observed in [3,14,15,19,26]. Durst and Tropea [14] report that in the transitional 

regime, streamlines are wavy right after the step, and break into "vortex rolls" after 3-4 step 

heights downstream; as R . increases, vortex formation occurs further and further upstream. 

Eaton and Johnson [15] characterize them as "large, turbulent, spanwise eddies" which effect 

large local flow reversal. These eddies are viewed as three-dimensional, responsible for dissi

pating structures and coupling together the various recirculation regions [3]. 

Transitional flow is marked by a decrease in the mean reattachment length as Reynolds 

number increases, in contrast with the situation in the laminar regime. The mean reattach

ment point is taken as the point along the bottom wall where the time averaged mean velo

city field is zero; the averaging period required in order to obtain acceptably small variance of 
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the mean can be quite long, see [3,14,26]. Instantaneous measurements [14,26] show the reat

tachment point moving backwards and forwards as large eddies pass by over a distance along 

the bottom wall of as much as four step heights [14]; local intermittent flow reversal is 

observed .to occur well outside this range [1,26]. The mean reattachment length decreases 

with increasing Reynolds number to a local minimum, at which point the shed vortices are 

largest [3,14]. 

Along the top wall, the bending streamlines found in the laminar regime now form a full 

new separation zone containing fluid recirculating in the opposite direction as that in the 

main bubble. This top wall eddy persists throughout the transition regime, and appears due 

to an adverse pressure gradient created by the sudden step expansion [3]. This downstream 

moving eddy is reported by a number of observers; time-averaged streamline plots [3,14,26] 

show a recirculation eddy whose position moves upstream along the top wall with increasing 

Reynolds number. Finally, a small, clockwise rotating recirculation eddy located at the base 

of the step between the corner and the large eddy has been observed by a number of research

eta (3,7,28,36]; mean Oow i~ at least two orders of magnitude slower than the main Oow. 

The local minimum in mean reattachment length with increasing R signals the end of 

the transition regime and the beginning of turbulent flow. As R increases, the mean reattach

ment length quickly grows to about 6-8 step heights and remains constant from then on, as 

reported by a large number of observers [3,14,19,26,36]: additional references are provided in 

[19]. Changing inlet profiles does not result in substantial change in the mean reattachment 

length, presumably because of the large amount of turbulence created in the separating shear 

layer which controls mixing and is independent of the boundary conditions, see [1]. As R 

increases into the turbulent regime, the size of the eddies shed off the recirculation bubble 

decrease in size until they finally disappear [3,14,36]. At the same time, there is an increase in 

turbulent mixing [14] and a return to an essentially two-dimensional flow [3]. 

.. 

• 



.. 

17 

B2. Transitional and Turbulent Flow- Numerical Results 

In Figure 7, we show the results of a calculation with R =500, well into the transitional 

regime, with ilt =.05, C =.025, h =.2, and W END=10. The flow picture has radically 

changed; large eddies are shed off the recirculation bubble and progress downstream as dis

tinct structures which decay in size, in agreement with the experiments described earlier. 

Once these eddies break away, calculation show that they move with very close to constant 

speed 1/2 V (Note tliat the expansion ration across the step is 1:2). This was calculated in 

two ways, first, by drawing a line through the center of a particular moving eddy in the suc

cessive time drawings, and second, by placing a moving time window over a given eddy and 

finding the reference frame speed which minimizes motion of the center. Computer-generated 

movies show that this "large eddy velocity" is much slower than the velocity of the particles 

defining its shape, analogous to the distinction between group wave velocity and individual 

fluid particle motion. The calculation at R =500 was carried out for 30 times longer than the 

time window shown (that is, 2500 time steps, counting startup), with 13 separate eddies exit

ing the channel during that time, an average rate of 1 eddy every 7.9 time units. In Figure 8, 

we stand at the point (8.0,y), which is 80% of the distance down the channel from the step, 

and plot the u velocity as a function of time, and height. The changes of sign in u indicating 

the passage of an eddy are more pronounced near the top and bottom walls (away from the 

middle). From this, the essentially fixed frequency of eddy shedding is seen. At this point, we 

do not understand why this particular frequency occurs. 

In Figure 9, we show instantaneous streamline plots of a calculation for R =375 

(ilt =.05, St =.025, h =.2, WEND=lO), and, in Figure 10, for R =250, with the other 

parameters unchanged. At these Reynolds numbers, more towards the lower end of the transi

tional regime, while eddies continue to break away from the recirculation bubble, they soon 

dissipate at R =375 and even more quickly at R =250, due to the increase in the diffusion 

scale with decreasing Reynolds number. This agrees with the experimental observations 
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described earlier. At R =250, the eddies are almost completely diffused before they reach the 

exit, suggesting that the "lifetime" of the shed eddies decreases with decreasing R until the 

laminar, single recirculation bubble picture is reached. At both R =375 and R =250, the ... 

large eddy velocity is constant at 1/2 V, and the shedding frequency is 1 eddy every 9.8 time 

units at R =375 and every 9.4 time units at R =250. 

Returning to the flow portrait at R =500, there are at least two ways in which our com-

puted solution differs substantially from experimental observations. First, as discussed earlier, 

the real flow is three-dimensional, and shed vortices are spanwise three-dimensional struc-

tures. While we believe that our computed eddies are a legitimate aspect of the solution to 

the two-dimensional equations, the vorticity stretching term in the three-dimensional equa-

tions allows these structures to dissipate in the spanwise direction and our 2-D eddies persist 

longer than are they should. 

Second, the results of the calculation (Figure 10) show a slightly different mechanism at 

the edge of the step than was observed experimentally. Most experiments describe a recircula-

tion eddy that oscillates and is tom in two by the incoming flow; the shed eddy moves down-

stream ·and another eddy forms and grows by entraining more fluid as the process repeats 

itself. In the calculation shown, the new recirculation eddy is quite small, probably because 

we did not use enough vortices to adequately resolve this detailed mechanism. To address this 

issue, we refined the numerical parameters and used 0 =.01, t:..t =.025, h =.2, and 

WEND =5, producing approximately 3 times as many vortices as were present in the earlier 

calculation. Successive time portraits of this calculation are shown in Figure 11. Here, one can 

get a better picture of the way that the oscillating recirculation bubble is stretched and dis- .. 
, 

torted by the incoming flow, which tears away the downstream end of the bubble. 

We then increased the Reynolds number, and in Figure 12 show the results of a calcula-

tion at R =5000, in the "two-dimensional turbulent" regime with ill =.05, h =.2, 0 =.05 

and W END=10. Once again, the structure of the flow has changed dramatically. The bending 
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of streamlines seen earlier at about 3-4 step heights downstream has now turned into separa

tion along the top wall, and counterrotating eddies are shed which interlace with eddies shed 

from the recirculation bubble. 

Finally, we discuss the change in the mean reattachment length. In Figure 13, we show 

long time-averaged streamlines plots at R =50, R =125, R =250, R =375, R =500, and 

R =5000, and in Figure 14 we plot reattachment length as a function of Reynolds number for · 

these plus a few more· values. The reattachment length grows in a close to linear fashion, 

reaches a maximum somewhere between R =250 and R =375, and then falls back down, in 

agreement with the experimental data described earlier. At R =250, the eddy center is at 

(1.89,.31)==(.44:rR ,.62H), at R ==375 at (1.59,.32)=(.38zR ,.64H), at R =500 at 

(2.11,.29)=(.53zR ,.58H), and at R =5000 at (I.8,.3)=(.66zR ,.6H), showing the breakdown 

in the self-similar nature of the time-averaged flow at the higher Reynolds numbers. In the 

time-averaged plots for R =375, R =500 and R =5000, the counterrotating eddy in the 

lower left corner is seen. Finally, along the top wall at R =5000, we see the fixed position of 

the counterrotating separation eddy reported in [3,14,26]. The center of this eddy is at 

(4.1,.9), which is 8 step heights downstream, indicating that we are well into the "turbulent" 

reg1me. 

VI. DEPENDENCE OF SOLUTION ON NUMERICAL PARAMETERS 

A. Laminar Flow 

We analyze the dependence of the computed solution at R =50 on numerical parame

ters. At this value of R, the fully developed real flow is essentially time-independent (steady). 

Our procedure is to analyze convergence under a variety of measures, starting from highly 

averaged and integrated statistics down to pointwise, instantaneous quantities. 
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We begin by studying the total circulation r( t ) in the computational domain 

O~x ~5.0, O~y ~1, calculated by summing the circulations of all the vortex elements at 

time t . In Figure 15, we plot r( t) for various values of 0 (the other numerical parameters 

are held fixed). As 0 is decreased, the number N of vortex elements increases. The calcula-

tion runs from t =0 (start up) to t =50.0, which corresponds to 1000 time steps. As a refer-

ence, the total number of vort.ex elements at the end of the run is given in the figure as (A,B), 

where A is the number of .vortex blobs and B is the total number of vortex elements (sheets 

plus blobs). At t =0, there is no vorticity in the domain. Long-time behavior has set in after 

about 200 time steps. Let f be the average value of r( t ) over time steps 200 to 1000. We 

observe that i)the oscillation of r( t) around f and hence the deviation around the mean 

decreases as N increases and ii) f stays relatively fixed as N increases, showing convergence 

of the mean as N increases. To establish a convergence rate, in Figure 16 we plot the vari-

ance 
1000 

E lr(n~t)-fl 2 

500 "=600 

1 
against the number of vortices. The g·raph roughly 

corresponds to a convergence rate of order 1/ N: doubling the numl-~r of vortex elements 

halves the variance in the solution. 

In Figure 17 a, we hold h , 0 and WEND fixed and decrease ~ t by a factor of 2. The 

variance in r( t) around f is about the same in both plots [ 7% for ~~ =.05 and 8% for 

~t =.025], and the mean f is virtually unchanged; f=.36 for ~~ =.05 and f=.31 for 

~~ =.025. Note the additional number of vortex elements resulting from the smaller time 

step. These results indicate that, at low Reynolds number, the large jumps in positions of the 

vortices to approximate the diffusion equation dominate any increase in accuracy associated 

with better time integration along the particle trajectories. Thus, the numerical diffusion error 

associated with advecting the particles, (see [42]), is overshadowed by the actual physical 

viscosity. 

In Figure 17b, we hold ~~ , 0, and WEND fixed and halve h , the sheet length. As 

explained earlier, this corresponds to a more accurate discretization of the newly created 

.. 
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vortex sheet in the :r rather than y direction; in addition, it corresponds to taking a smaller 

core size in the smoothing function. For a flow that is essentially steady with a single reat-

tachment point, little difference can be seen in the two plots (variance is 8.4% for h =.2, and .,. 

8.5% for h =.1, and the f is .52 for h =.2 and .56 for h =.1. 

These results indicate that 0 is the most important parameter controlling accuracy for 

this range of flow. This is reasonable, since at low Reynolds number, the physical diffusion 

term is large and more vortex elements reduce the noise in the random walk solution to the 

diffusion equation. We check two other parameters: the dependence of the solution on the 

particular random number string chosen (the initializing seed) and the length of the truncated 

channel. In Figure 17c, we hold tit , h, and 0 fixed and double the channel length and start 

with a different seed in the random jump subroutine. The variance is 3.5% (f = .61) for 

W END=5 and 4.0% (f = .62) for W END=10, indicating that results are essentially indepen-

dent of starting seed and that W END=5 is long enough for this calculation. 

The total circulation is a global quantity of the flow. The next level of sensitivity is to 

analyze the velocity field. Since we are dealing with a Lagrangian method, we establish a 

velocity field by placing a grid on the domain and at each time step compute U,-~i, where u;~i 

is the velocity on a uniform rectangular grid at time step n ilt at the point i ilr, j ily, 

where il:r = ily =.1, O$i il:r S WEND• O$j ily $1. We want to investigate how the 

choice of numerical parameters affects the convergence of the mean and variance velocity 

field. 

We begin by studying the possibility of time averaging as a technique for removing 

"noise", .i.e., time variation around the mean, in the solution. Let "fi;~j (M) be the velocity 

field obtained by averaging uti over M time steps. Let Err (M) be defined as 

where W (M) is the number of windows of length M. In other words, Err (M) is the average 
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relative L 2 error in the discrete velocity field between a time average portrait of length M 

steps and the time average portrait of length 500 steps (All averages start at time step 

n =500, thus M =500 corresponds to averaging over time steps 500 to 1000). In Figure 18, 

this quantity is plotted against M, the size of the sample window. Here, the average is taken 

over all "windows" of length M, and the norm I u I =( u 2+v 2)'!J. For example, for M =2, we 

calculate the average relative L 2 error between velocity fields obtained from averaging over 2 

time steps and the velocity field obtained from an averaging window 500 time steps long. The 

results indicate that the more the numerical parameters are refined, the more the short-time 

average velocity field look.s like the long-time average field: the dropoff for each curve is like 

1/ M. Note once again that decreasing C has the most profound effect. 

We next want to study the spatial and temporal variance of the velocity field from the 

computed mean. We begin by computing the spatial variance as a function of time. Let U; ,j 

be the velocity field obtained by averaging over time steps 500 to 1000. Then 

Var" = -1-~ I it.·"· - ii"· · 1 2 is the spatial variance at time n ilt of the instantaneous [•J~ I,J I,J 
I ,J 

field from the mean. We plot Var" as a function of time in Figure 19, showing that as 

numerical parameters are refined, the instantaneous velocity field converges to the average 

velocity field. Again, changing C reduces the variance the most. To obtain a convergence 

rate, we define Var" , the spatial variance averaged in time, and plot Var" against the 

number of vortices in Figure 20. Th'-' graph indicates that Var 11 goes as roughly 1/ N, in 

agreement with our earlier estimate. 

We now compute the temporal variation as a function of space, that is, at each grid 

. 1 II ~1000 
• • • Tr ~ 1-+11 - 2 pomt 1 ,J we compute var; i = -- LJ u; ;-u· · I . We plot Var· · as a surface over ' 500 II =600 ' I ,J I ,J 

the computational domain in Figure 21, showing that as the numerical parameters are refined, 

the temporal variance around the computed mean at each point decreases. In Figure 22, we 

calculate Var; .i against the number of vortices at a variety of points in the domain. Two 
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1 
observations can be made. First, the curves are all roughly of the form N, and second, the 

further the spatial point is from the edge of the step, the smaller the variance. 

Next we study the convergence of the mean velocity field itself as numerical parameters 

are refined. Using the 500 time step average of the most refined calculation {.:lt =.05, h =.2, 

C =.005, W END=5 ) as a base mean U; .i (base), in Figure 23 we show surface plots of the 

relative difference between the mean velocity field U; .i (the "steady-state" profile) for a given 

set of numerical parameters and U; .i (base). Here, the graphs are normalized so that the larg-

est value of any of the surfaces corresponds to a a height of unity. Note that the last surface 

plot is completely fiat, showing, of course, no error between the finest calculation and itself.. 

Here, one can see that the means tend towards a given profile. 

Next, we again assume that the long-time average of the finest calculation (referred to 

as the base solution u; .i (base) above) is a close appro:cimation to the exact solution, and 

study the time variance of each calculated solution against this "exact" solution. Let 

Ui~i(.:lt!h ,C, WEND) be the solution at grid point i ,j at time n .:lt with a particular set of 

numerical parameters and let 

1 "-woo 
= 500 E I uti ( .:l t ,Ia ,St , WEND) - U; .i (base) I 2• These surfaces are plotted in Figure 24 

11-600 

and demonstrate convergence towards the base solution as the numerical parameters are 

refined. Again, r:esolution in the time step and the length of the vortex sheet has only small 

effect, and the decay rate of the variance is roughly 1/ N. 

Finally, we wish to establish a single point, instantaneous measurement. In Figure 25, 

we plot the position of the reattachment point as a function of time for different numerical 

input parameters. The reattachment point is determined by starting at (z =.l,y =.05) and 

moving in the positive x direction until the velocity changes sign. This is an extremely sensi-

tive test for the vortex method, since the local instantaneous velocity field can change quite 

drastically if too few vortex elements are used to resolve the boundary layer. Note that the 
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top three calculations are sufficiently crude that the location of this point jumps wildly during 

a single time step. However, as the parameters are refined, the variation in position settles 

down and the reattachment point is relatively constant for the finer calculation. 

To summarize, at low Reynolds number the variance is controlled primarily by G, 

which determines the number of vortex elements. Accuracy gained by refinement in time step 

is overshadowed by the error in the approximation to the diffusion equation due to the large 

diffusive scale of the flow. Changing the sheet length, which also controls the smoothing 

radius of the vortex core, is of secondary importance. 

B. Transitional/Turbulent Flow 

At higher Reynolds number, the flow is no longer steady, and a periodic structure is 

seen. In the portraits for R ;::,:250 shown earlier, the flow is characterized by large coherent 

vortex eddies which detach from the separating shear layer and move downstream at a regu

lar frequency. At this range of Reynolds numbers, the two-dimensional equations are unstable, 

and the instantaneous velocity at a particular point has little meaning. Energy (and eddies) at 

the smallest scales combine in an unpredictable manner, and it is only in the largest scales 

(coherent eddy structures) that one can see repeatability in a flow experiment. 

The typical response to this has been to analyze unsteady flow by measuring variations 

in flow quantities around means. While certainly a valuable approach, there are two problems. 

First, in both experiments and numerical computations, a very long time-averaging window 

may be required to gain reliable statistics independent of the window size; this was observed 

in several of the experiments cited. Second, in many engineering applications, the main goal 

may not be to find mean flow statistics. Instead, one is often interested in how large-scale 

structures develop, the stresses they exert on the body, how they interact and how they affect 

mixing within the flow. Computed long-time averages remove much of the transitory dynam

ics. Thus, it is important to analyze the flow on some level between instantaneous measu~e

ments, which have little meaning, and long-time averaged statistics, which remove periodic 
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dynamics. With this approach in mind, our goal is to study the effect of refining numerical 

parameters on the computed large-scale eddy dynamics. 

We performed a range of calculations at R =500, well outside the laminar regime. In 

order to make the computations affordable, we chose W END=5. Calculations were performed 

for all combinations C =.05,.025,.01, .6.t =.05,.025 and h =.2,.1, for a total of 12 runs, each 

running 500 time steps (1000 for .6.t =.025) to become fully developed and then from 500 to 

1000 (1000 to 2000 for ilt =.025) to provide data. In addition, an extremely long time (3000 

time steps), extended channel ( W END=10), refined ( C =.015, h =.2, .6.t =.05) calculation 

was performed, providing a large sample set from which to perform statistics and compare 

with the shorter time/shorter channel runs. This data set allowed us to check that the results 

obtained for the other runs did not depend on the channel ·trunctation length or time length 

of the computation. 

We begin by studying the change in the large-scale structure of the flow as numerical 

parameters are refined. In Figure 26, we show 6 successive time instantaneous streamlines of a 

calculation for C =.05, .025, .01, ~t =.05, h =.2. For C =.05, Fig. 26a, (N TOT = total 

number of vortex elements at end of calculation = 593), the eddies are distinct structures 

which move downstream separately. For 0=.025, Fig.26b (NToT=865), the same general 

picture is presented, with smoother contours around the eddies. In the case C =.05, a typical 

downstream eddy consists of roughly 120 vortices, as compared with 210 for C =.025. In 

addition, the structures for C =.05 have some spurious smaller eddies attached to the large 

downstream-shed eddies, and these smaller eddies are not present in the more refined 

( C =.025) calculation. We believe that these smaller eddies in the former are due to numeri

cal effects, since they are made up of relatively few (;=::::10) strong vortex elements and disap

pear in the more refined calculation. Finally, the shed downstream eddies in the coarser 

( C =.05) calculation have less well-defined eddy centers (multiple centers, etc.) than do those 

for the case C =.025. This is caused by using too few total vortex elements, which has the 
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effect of creating artificial centers. The 6 successive portraits presented here are 5% of the 

total number computed, and their qualitative and quantitative structure is maintained 

through the run of the calculations. 

For C =.01, Fig. 26c,, (N TO-r-"1943), the computed picture. Although the eddy centers 

are well-defined, with few smaller spurious eddies, the boundaries between eddy structures 

blurs. We hypothesized that this was due to a problem with the time step. At high Reynolds 

numbers, the size of the random step taken to approximate the diffusion equation is small 

compared to the error in the_ time integration scheme used for the advection step, in contrast 

to the low Reynolds number situation described earlier. When a large number of vortex ele

ments are used to resolve the boundary layer, many of them start off close together. Since the 

vortex method has an artificial diffusion error associated with time integration along particle 

trajectories (see .[42]), with too large a time step the boundaries of the eddy structures diffuse 

and merge. 

The obvious test to check this hypothesis is to reduce the time step. First, however, we 

change the sheet length to make sure that the discretization of the no-slip sheet at the boun

dary is not the reason for this smearing of vortex structures. With h reduced from .2 to .1, 

although the total number of sheets created is about the same, more are created along the 

boundary and fewer normal to the boundary. In Figure 27, we show the results for C =.05, 

.025, and .01, h =.1 (sheets half as long) and ill =.05. In Fig. 27a, C =.05, (N ToT=821), 

the spurious attached smaller eddies, multiple centers and jagged contours are all present. In 

Fig. 27b, C =.025, (N ToT=1061), the eddy contours are smoother, with better defined 

centers and fewer spurious eddies. In Fig. 27c, C =.01, (NToT=1754); once again there are 

distinct eddy centers and smoother contours, but significant smearing between the structures. 

We then decreased the time step by a factor of 2, and repeated the above calculations. 

In Figure 28, we show results for C =.05, .025, and .01, h =.2, and At =.025. In Fig. 28a, 

0=.05, (NToT=651), we have distinct structures, but rough contours, spurious eddies and 
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multiple centers. In Fig. 28b, 0 =.025, (N ToT=1096), contours are smoother, and eddy 

centers and boundaries are better defined. In Fig. 28c, 0 =.01, (N ToT=2045), contours are 

still smooth and centers and boundaries are well-defined. Thus, with a smaller time step, 

boundary merging did not occur and vortex structures remain distinct. 

To check this result, we halved the sheet length and repeated the above calculation. In 

Figure 29, we show results for 0 =.05, .025 and .01, h =.1 and ilt =.025. For all three cases, 

0=.05 (NTo-r-=1069), 0=.025 (NTo...-1226) and 0=.01 (NToT=2146), the same progres

sion is present, with no boundary" smearing for the 0 =.01 case. To summarize, in this 

unsteady regime, more vortices provide better resolution of the large vortex structures, how

ever there is an accompanying requirement that the time step be suitably decreased so that 

the advection error remains small in comparison with the physical diffusion scale. 

Given this analysis of the effect of changing numerical parameters on large-scale eddy 

structures, we now consider the velocity field itself. Here, we want to study the convergence 

of the time-averaged velocity profile to see if the same conclusions hold about the effects of 

the choice of numerical parameters. In an unsteady flow, particular care must be taken to 

determine the length of the averaging window. For example, in the case 0 =.05, h =.2, 

ilt =.05, approximately three complete eddy shedding cycles occurred during the 500 time 

step fully developed flow period. If one attempts to compute an average velocity profile over 

the full 500 time steps, the profile obtained greatly depends on whether one is "in phase" with 

the cycling frequency. As an illustration, consider a function I ( i) defined on the positive 

integers i, where i is time in integer units, and suppose I ( i )=0 if i is odd and I ( i )=1 if 

i is even. If one attempts to compute an average value of 1 over an averaging window of 3 

units, the answer depends on whether one starts at an odd or an even integer. 

Since we could not afford to perform a calculation for each of the 12 parameter combi

nations over 20 - 30 shedding cycles, after much experimentation we chose the following 

approach. For each data set, start the time window when the center of the first eddy passes 
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WEND and stop the averaging window when the next shed eddy reaches WEND· Calling this 

one cycle, compute the average velocity profile over this cycle and store it. Starting with the 

second eddy, begin another averaging window which ends when the center of the third eddy 

reaches WEND and compute the average velocity profile over this second cycle. Do this until 

all the eddies have been shed in the data set under study, and compute a velocity profile by 

averaging over all the individual one cycle averages. There were typically 3 - 4 one cycle 

averages in each grand average portrait. 

In Figure 30, we show the streamline plots of these average velocity fields for all combi

nations of C =.05, .025, .01, h =.2, .1, and ta.t =.05, .025. The previous conclusions about 

the choice of numerical parameters are reinforced. For the crudest calculations, a jagged, mul

tiple center, single recirculation zone is seen with reattachment length of about 8 step heights. 

As the number of vortices is increased ( C decreased), the average profile becomes a single, 

smoother, large recirculation zone with a well-defined single center and similar reattachment 

length. For C =.01 with ta.t =.05 and both h =.2 and h =.1, this portrait is lost and the 

results are ambiguous; but halving the time step ( C =.01, ta.t =.025, h =.2 and h =.1) brings 

back the single eddy, single center, smooth recirculation zone with a reattachment length of 

about 8.5 step heights. 

VII. SUMMARY 

We have studied the convergence of the vortex method applied to two-dimensional, 

viscous, incompressible flow over a backwards-facing step. Calculations were performed over a 

wide range of Reynolds numbers. At low Reynolds number, where the real solution is steady, 

we showed that the most important parameter is the circulation of an individual vortex ele

ment, which controls the total number N of vortex elements. Within the laminar regime, 

reductions in the time step and sheet length are of secondary importance. Convergence was 

• 
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demonstrated using a variety of measurements, from integrated quantities such as total circu

lation to pointwise measurements such as eddy centers and reattachment points. We showed 

that the variance from the mean decays as 1/ N for both the velocity field and the total cir

culation. Our predictions of recirculation zone size and length were in excellent agreement 

with experiment. 

For higher Reynolds number calculations, we demonstrated convergence for averaged 

quantities such as average velocity profiles and eddy boundaries. Here, while the total number 

of vortex elements controlled the accuracy, the time step also must be decreased. With suit

able refinement of the relevant numerical parameters, we showed that the dynamics of large 

fluid structures may be accurately computed. We did not try to analyze our data at high Rey

nolds number with pointwise instantaneous measurements, since the underlying equations are 

unstable to small perturbations. The calculations in this paper demonstrate that these pertur

bations organize themselves into coherent structures whose size and dynamics remain 

unchanged as the numerical parameters are refined. The problems of identifying, classifying 

and tracking these coherent structures will be discussed in a later paper [40]. 
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Nt:MERICAL PARAMETERS 
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I ~t (time step} 

· h (sheet length) 

a (boundary layer thickness) 

FIGURE 2 
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STARTUP OF FLOW R =50 
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FIGURE 3 
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SUCCESSIVE TIME PORTRAITS OF FULLY DEVELOPED FLOW R =50 
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FIGURE 4 
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AVERAGED STREAMLINES OVER 2000 TIME STEPS R =50 

R ==50 . 

FIGURE 5 
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SUCCESSIVE TIME PORTRAITS OF FULLY DEVELOPED FLOW R =125 
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SUCCESSIVE TTh1E PORTRAITS OF FULLY DEVELOPED FLOW R =500 
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U VELOCITY PWII'ED AGAINST TillE R =500 
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SUCCESSIVE TIME PORTRAITS OF FULLY DEVELOPED FLOW R =375 
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SUCCESSIVE TIME PORTRAITS OF FULLY DEVELOPED FLOW R =250 

.. 
e.esee SPACE STEP H•0.2 

aug• 1 

~== ~ TiJT ~ =-1§ 

Tl"E STEP• 0.0500 SPACE STEP H•0.2 
R• 250.0 C•0.02500 TIME• 51,1§39 ITEB•10B2 AYE• 1 

FIGURE 10 



43 

BLOW-UP OF CORNER FOR R =500 
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SUCCESSIVE TIME PORTRAITS OF FULLY DEVELOPED FLOW R =5000 
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AVERAGED STREAMLINES OVER 2000 TIME STEPS 

R =50, 125, 250, 375, 500, 5000 
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REAITACIDlENT LENGTH AS A FUNCTION OF REYNOLDS NUMBER 
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FIGURE 14 
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TOTAL CIRCULATION VS. TIME 
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so 

ERROR Err (M) IN VELOCITY BETWEEN AVERAGING WINDOW OF SIZE M vs. FULL AVERAGE 
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FIGURE 18 
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SPATIAL VARIANCE Var• FROM MEAN VELOCITY AS A FUNCTION OF TIME 
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DECAY OF TIME AVERAGED SPATIAL VARIANCE Var• AS A FUNCTION 

OF NUMBER OF VORTICES 
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TEMPORAL VARIANCE Var; .i FROM MEAN AS A FUNCTION OF SPACE 
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DECAY OF TEMPORAL VARIANCE V~&ri,i FROM :MEAN AT SELECT POINTS i ,j IN DOMAIN 
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CONVERGENcE OF MEAN VELOCITY FIELD FOR GIVEN NUMERICAL PARAMETERS 
TO MEAN OF FINEST (T=.05, H=.2, C=.005, WEND=5.) CALCULATION 
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TEMPORAL VARIANCE Err; .i AGAINST FINEST MEAN iii .i AS A FUNCTION OF SPACE 
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REATTACHMENT POINT VS. TIME 
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FULLY DEVELOPED FLOW R =500 
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