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Abstract

Motivation: Circular RNA (circRNA) is a novel class of long non-coding RNAs that have been broadly discovered in
the eukaryotic transcriptome. The circular structure arises from a non-canonical splicing process, where the donor
site backspliced to an upstream acceptor site. These circRNA sequences are conserved across species. More import-
antly, rising evidence suggests their vital roles in gene regulation and association with diseases. As the fundamental
effort toward elucidating their functions and mechanisms, several computational methods have been proposed to
predict the circular structure from the primary sequence. Recently, advanced computational methods leverage deep
learning to capture the relevant patterns from RNA sequences and model their interactions to facilitate the predic-
tion. However, these methods fail to fully explore positional information of splice junctions and their deep
interaction.

Results: We present a robust end-to-end framework, Junction Encoder with Deep Interaction (JEDI), for circRNA pre-
diction using only nucleotide sequences. JEDI first leverages the attention mechanism to encode each junction site
based on deep bidirectional recurrent neural networks and then presents the novel cross-attention layer to model
deep interaction among these sites for backsplicing. Finally, JEDI can not only predict circRNAs but also interpret
relationships among splice sites to discover backsplicing hotspots within a gene region. Experiments demonstrate
JEDI significantly outperforms state-of-the-art approaches in circRNA prediction on both isoform level and gene
level. Moreover, JEDI also shows promising results on zero-shot backsplicing discovery, where none of the existing
approaches can achieve.

Availability and implementation: The implementation of our framework is available at https://github.com/hallogame
boy/JEDI.

Contact: jyunyu@cs.ucla.edu, weiwang@cs.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ENCODE project has revealed the vital role of different forms
of non-protein-coding RNAs. Among these types of RNAs, much
attention has been placed on cataloging and studying the long non-
coding RNAs (IncRNAs), due to their high relevancy to gene regula-
tion and diseases (Derrien et al., 2012; Ponting et al., 2009).
IncRNAs are typical of 200bp to >100kb in length (Wang et al.,
2020). As a particular type of IncRNA, endogenous circular RNA
(circRNA) has recently received a tremendous amount of research
highlights not only because of its circularity, but also its implications
in a myriad of human diseases, such as cancer and Alzheimer’s dis-
ease (Dube ez al., 2019; Qu et al., 2018). circRNA arises during the
process of alternative splicing of protein-coding genes, where the 5’
end of an exon is covalently ligated to the 3’ end of the same exon or
a downstream exon, forming a closed continuous loop structure.
This mechanism is also known as ‘backsplicing’. The circular struc-
ture provides several beneficial properties over the linear RNAs. To

©The Author(s) 2021. Published by Oxford University Press.

be more specific, it can serve as templates for rolling circle amplifi-
cation of RNAs (Boss and Arenz, 2020), rearrange the order of
genetic information (Lasda and Parker, 2014), resistant to exonucle-
ase-mediated degradation (Jeck et al., 2013) and create a constraint
on RNA folding (Lasda and Parker, 2014). Although the consensus
of biological functions, mechanisms and biogenesis remains unclear
for most circRNAs (Barrett and Salzman, 2016; Yu and Kuo, 2019),
there are emerging evidence suggesting their roles in acting as
sponges for microRNAs (Hansen et al., 2013; Memczak et al.,
2013), RNA-binding protein competition (Ashwal-Fluss et al.,
2014) and inducing host gene transcription (Li et al., 2015).
Evidently, as a fundamental step to facilitate the exploration of
circRNA, it is essential to have a high-throughput approach to iden-
tify the circRNAs.

Multiple factors can contribute to the formation of circRNAs.
These factors include complementary sequences in flanking introns
(Ivanov et al., 2015), the presence of inverted repeats (Dubin ez al.,
1995), number of Arthrobacter luteus (ALU) and tandem repeats
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(Jeck et al., 2013) and single nucleotide polymorphism (SNP) dens-
ity (Thomas and Sztrom, 2014). These factors, together with the
evolutionary conservation and secondary structure of RNA mole-
cules, have been considered as the discriminative features for
circRNA identification. Several research efforts (Chen et al., 2018;
Pan and Xiong, 2015; Wang and Wang, 2017) have leveraged these
features to train a conventional statistical learning model to distin-
guish circRNAs from other IncRNAs. These statistical learning algo-
rithms include support vector machines (SVM), random forest (RF)
and multi-kernel learning. However, methods along this line often
require an extensive domain-specific feature engineering process.
Moreover, the selected features may not provide sufficient coverage
to characterize the backsplicing event.

Recently, the rising of deep learning architectures have been
widely adopted as an alternative learning algorithm that can allevi-
ate the inadequacy of conventional statistical learning methods.
Specifically, these deep learning algorithms provide powerful func-
tionality to process large-scale data and automatically extract useful
features for object tasks (LeCun et al., 2015). In the domain of
circRNA prediction, the convolution neural network (CNN) is the
architecture that has been widely explored to automatically learn
the critical features for prediction, either from the primary sequence
(Chaabane et al., 2020; Wang and Wang, 2019) or secondary struc-
ture (Fiannaca et al., 2017). Although CNN is capable of capturing
relevant local patterns on gene sequences, positional information of
the splice junctions and global context of each splice site cannot be
recognized. One of these approaches (Chaabane ez al., 2020)
attempts to address this issue by applying recurrent neural networks
(RNNs) to learn sequential and contextual information; however,
the essential knowledge, such as splice sites and junctions, are still
ignored.

Understanding the properties of splice sites and their relation-
ships is one of the keys to master RNA splicing and the formation of
circRNAs because the splicing event can be considered as interaction
among those splice sites. To fathom the relations between splice
sites, circDeep (Chaabane et al., 2020) explicitly analyzes the nu-
cleotide sequences of two splice sites to predict the circRNAs.
DeepCirCode (Wang and Wang, 2019) utilizes CNNs to model the
flanking regions around two splice sites to identify if there is a back-
splice event. However, all of the existing methods fail in modeling
deep interaction among splice sites for circRNA prediction. For ex-
ample, circDeep only measures shallow interaction among splice
sites on the nucleotide level; DeepCirCode is limited to examine
only a single pair of splice sites and lacks the capacity of modeling
more complex relations among splice sites on multi-isoform genes.
Hence, there is an immense gap to comprehensively understand the
relationship between splice sites and their interaction regarding the
formation of circRNAs.

In this article, we propose the framework of Junction Encoder
with Deep Interaction (JEDI) to address the limitations in circRNA
prediction. More precisely, we focus on predicting the existence of
circRNAs from either the reference gene/isoform sequences or
assembled transcript sequences by modeling splice sites and their
deep interaction with deep learning techniques. First, the attentive
junction encoders are presented to derive continuous embedding
vectors for acceptor and donor splice sites based on their flanking
regions around junctions. Based on the acceptor and donor embed-
dings, we propose the novel cross-attention layer to model deep
interaction between acceptor and donor sites, thereby inferring
cross-attentive embedding vectors. Finally, the attention mechanism
is applied to determine acceptors and donors that are more import-
ant than other ones to predict if there is a circRNA. It is also import-
ant to note that the interpretability of the attention mechanism and
the cross-attention layer enables JEDI to automatically discover
backsplicing without training on any annotated backspliced sites.

Our contributions are 3-fold. First, to the best of our knowledge,
this work is the first study to model the deep interaction among
splice sites for circRNA prediction. The more profound understand-
ings of the relationships among splice sites can intuitively benefit
circRNA prediction in implying backsplicing. Second, we propose a
robust and effective end-to-end framework, JEDI, to deal with both

isoform-level and gene-level circRNA prediction based on the atten-
tion mechanism and the innovative cross-attention layer. More spe-
cifically, JEDI is capable of not only deriving appropriate
representations from junction encoders but also routing the import-
ance of forming circRNAs on different levels. Third, JEDI creates a
new opportunity of transferring the knowledge from circRNA pre-
diction to backsplicing discovery based on its extensive usage of at-
tention mechanisms. Moreover, our approach can be utilized as a
general and user-friendly detection tool to provide a robust esti-
mated ranking for further validation. Extensive experiments on
human circRNAs have demonstrated that JEDI significantly outper-
forms eight competitive baseline methods on both isoform level and
gene level. The independent study on mouse circRNAs also indicates
that JEDI is robust to transfer knowledge learned from human se-
quence to mouse for circRNA prediction. This phenomenon is sup-
ported by the observation of highly conserved circRNA across
species (Barrett and Salzman, 2016; Jeck ez al., 2013; Suenkel et al.,
2020). In addition, we conduct the experiments to demonstrate that
JEDI can automatically discover backspliced site pairs without any
further annotations. Finally, an in-depth analysis of model hyper-
parameters and run-time presents the robustness and efficiency of
JEDL.

2 Related work

Current works to discover circRNA can be divided into two catego-
ries: one relies on detecting backspliced junction reads from RNA-
Seq data and the other examines features directly from transcript
sequences.

The first category aims at detecting circRNA from expression
data, specifically from RNA-Seq reads. It is mainly achieved by
searching for chimeric reads that join the 3’ end to the upstream 5’
end with respect to a transcript sequence (Barrett and Salzman,
2016). Existing algorithms include MapSplice (Wang et al., 2010),
CIRCexplorer (Zhang et al., 2014), KNIFE (Szabo et al., 2015),
find-circ (Memczak et al., 2013) and CIRI (Gao et al., 2015, 2018).
These algorithms can be quite sensitive to the expression abundance,
as circRNAs are often lowly expressed and fail to be captured with
low sequencing coverage (Barrett and Salzman, 2016). In the com-
parison conducted by Hansen et al. (2016), the findings suggest dra-
matic differences among these algorithms in terms of sensitivity and
specificity. Other caveats are reflected in long duration, high RAM
usage and/or complicated pipeline.

The second category focuses on predicting the circRNA based on
transcript sequences. Methods in this category leverage different fea-
tures and learning algorithms to distinguish circRNA from other
IncRNAs. PredicircRNA (Pan and Xiong, 2015) and H-ELM (Chen
et al., 2018) develop different strategies to extract discriminative
features, and employ conventional statistical learning algorithms,
i.e. multiple kernel learning for PredicircRNA and hierarchical ex-
treme learning machine for H-ELM, to build a classifier. Statistical
learning approaches require explicit feature engineering and selec-
tion. However, the extracted features are dedicated to specific facets
of the sequence properties and present a limited coverage on the
interaction information between the donor and acceptor sites.
circDeep (Chaabane et al., 2020) and DeepCirCode (Wang and
Wang, 2019) are two pioneering methods that employ deep learning
architectures to automatically learn complex patterns from the raw
sequence without extensive feature engineering. circDeep uses
CNNs with the bidirectional long short-term memory network
(LSTM) to encode the entire sequence, whereas DeepCirCode uses
CNNs with max-pooling to capture only the flanking sequences of
the backsplicing sites. Although circDeep has claimed to be an end-
to-end framework, it requires external resources and strategies to
capture the reverse complement matching (RCM) features at the
flanking sequence and the conservation level of the sequence. In add-
ition, the RCM features only measure the match scores between sites
on the nucleotide level, and neglect the complicated interaction be-
tween two sites. CNNs with max-pooling aim at preserving import-
ant local patterns within the flanking sequences. As a result,
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Fig. 1. The schema of the proposed framework, JEDI, using the gene NM_001080433 with six exons as an example, where the second exon forms backsplicing. A; and D; rep-

resent the ith and jth potential acceptors and donors

DeepCirCode fails to retain the positional information of nucleoti-
des and their corresponding convoluted results.

Besides sequence information, a few conventional IncRNA pre-
diction methods also present the potential of discovering circRNA
through the secondary structure. nRC (Fiannaca et al., 2017)
extracts features from the secondary structures of non-coding RNAs
and adopts CNNs framework to classify different types of non-cod-
ing RNA. IncFinder (Han et al., 2019) integrates both the sequence
composition and structural information as features and employs
RFs. The learning process can be further optimized to predict differ-
ent types of IncRNA. Nevertheless, none of these methods factor in
the information specific to the formation of circRNAs, particularly
the interaction information between splicing sites.

3 Materials and methods

In this section, we first formally define the objective of this article,
and then present our proposed deep learning framework, JEDI, to
predict circRNAs.

3.1 Preliminary and problem statement

The vocabulary of four nucleotides is denoted as V = {A,C,G, T}.
For a gene sequence S, s[i...j] € V=1 indicates the subsequence
from the ith to the jth nucleotide of a sequence S. For a gene or an
RNA isoform with the sequence S, £(S) = {(a;,d;)} represents the
given exons in the gene or the isoform, where a; and d; are the indi-
ces of the acceptor and donor junctions of the ith exon in S. Using
only sequence information, the two goals of this work are listed as
follows:

1. Isoform-level circRNA prediction: Given a gene sequence S and
the splicing information of an isoform &£(s), the goal is to identify
whether this RNA isoform is a circRNA.

2. Gene-level circRNA prediction: Given a gene sequence S and all
of its exon—intron boundaries £(S), this task aims at predicting if
any of the junction pairs can backsplice to form a circRNA.

3.2 Framework overview

Figure 1 illustrates the general schema of JEDI to predict circRNAs.
Each acceptor 4; and donor d; in the gene sequence are first repre-
sented by flanking regions A; and D, around exon-intron junctions.
Two attentive junction encoders then derive embedding vectors of
acceptors and donors, respectively. Based on the embedding vectors,
we apply the cross-attention mechanism to consider deep interac-
tions between acceptors and donors, thereby obtaining donor-aware
acceptor embeddings and acceptor-aware donor embeddings.

Finally, the attention mechanism is applied again to learn the pro-
vided acceptor and donor representations so that the prediction can
be inferred by a fully connected layer based on the representations.

3.3 Attentive junction encoders

To represent the properties of acceptors and donors in the gene se-
quence S, we utilize the flanking regions around junctions to derive
informative embedding vectors. Specifically, as shown in Figure 2,
we propose attentive junction encoders using RNNs and the atten-
tion mechanism based on acceptor and donor flanking regions.

3.3.1 Flanking regions as inputs
For each exon (a;,d;) € £(S), length L acceptor and donor flanking
regions A; and D; can be computed as:
at |
1 2 )

A= I:ﬂi* {%}w"vat
L-1 L
= |:dl— |:T:|7...,d,'—l,d“d,‘-l-l,.‘.,d,'-‘r |:E:|:|7

where A,[j] and D;[j] denote the jth positions on S for the flanking
regions of the acceptor a; and the donor d;; the region length L is a
tunable hyperparameter.

Suppose we are encoding an acceptor a and a donor d with the
flanking regions A and D in the gene sequence S for the simplicity.

- La,ai+1,...,

3.3.2 k-mer embedding

To represent different positions in the sequence, we use k-mers as
representations because k-mers are capable of preserving more com-
plicated local contexts (Ju et al., 2017). Each unique k-mer is then
mapped to a continuous embedding vector as various deep learning
approaches in bioinformatics (Chaabane et al., 2020; Min et al.,
2017). Formally, for each position A[j] and DJj], the corresponding
k-mer embedding vectors x{ and x;l can be derived as follows:

-l 57 on- ),
oo 557 o 5]

where F(-) : VX—R' is an embedding function mapping a length K
k-mer to a [-dimensional continuous representation; the embedding
dimension / and the k-mer length K are two model hyperparameters.
Subsequently, A and D are represented by the corresponding k-mer
embedding sequences, x* = [x4,...,x¢] and x¢ = [x¢,...,x¢).
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Fig. 2. The illustration of the attentive encoder for acceptor junctions. Note that the
donor junction encoder shares the same model structure with different model
parameters

3.3.3 Bidirectional RNNs

Based on k-mer embedding vectors, we apply bidirectional RNNs
(BiRNNs) to learn the sequential properties in genes. The k-mer
embedding sequences are scanned twice in both directions as for-
ward and backward passes. During the forward pass, BIRNNs com-

pute forward hidden states b and b? as:

B = (. B and B = (b2, B,

where B? = GRU, (b ;,x¢); hd GRUd(hj’I, xf). GRU, and

GRUjy are gated recurrent units (GRUs) (Cho er al., 2014) with dif-
ferent parameters for acceptors and donors, respectively. Note that
we adopt GRUs instead of other RNN cells like LSTM (Hochreiter
and Schmidhuber, 1997) because GRUs require fewer parameters
(Jozefowicz et al., 2015). Similarly, the backward pass reads the
sequences in the opposite order, thereby calculating backward hid-

den states b* and b as:

— [, B and B = BB,
where h¢ = GRU, (b, ,x?); hd Gf{Ud(th ,x9). To model -
mers with context 1nf0rmat10n, we concatenate forward and back-

ward hidden states as the hidden representations of k-mers in A and
D as:

=B, b and b = B¢, .. B,

where b¢ = B3 b7 ]; b = [hd hd ].

3.3.4 k-mer attention

Since different k-mers can have unequal importance for representing
the properties of splice sites, we introduce the attention mechanism
(Bahdanau et al., 2015) to identify and aggregate the hidden repre-
sentations of k-mers that are more important than others. The mo-
tivation of the attention mechanism is to learn a computational
function for automatically estimating the importance score of each
item so that the ultimate representation can focus on items that are
more significant. More precisely, the importance scores of represen-

tations 4} and hZ can be estimated by the k-mer attention vectors #Z

and #4 as:

exp(t;’Tt?) ‘.

} exp(tftd)
T30 exp (#5T88) 1

> exp (t;thf) ’

where #f = tanh(F7 (h})); t;’l :tanh(]-';’l(h;i)); Fa(-) and F(.) are
fully connected layers. tanh(-) is the activation function for the con-
venience of similarity computation. The importance scores are first
measured by the inner-products to the k-mer attention vectors and
then normalized by a softmax function over the scores of all k-mers.
Note that the k-mer attention vectors 7 and ¢ are learnable and

updated during optimization as model parameters. Finally, the ac-
ceptor embedding w* of A and the donor embedding 1% of D can be
derived by aggregating the hidden representations of k-mers
weighted by their learned importance scores as:

W“:Za?~h? andwd:Za;-i-h]‘-l.
j j

3.4 Cross-attention for modeling deep interaction
Modeling interactions among splice sites is essential for circRNA
prediction because backsplices occur when the donors prefer the up-
stream acceptors over the downstream ones. Inspired by recent suc-
cesses in natural language processing (Hao et al., 2017) and
computer vision (Lee ez al., 2018), we propose the cross-attention
layer to learn deep interaction between acceptors and donors.

3.4.1 Cross-attention layer
For acceptors, the cross-attention layer aims at deriving cross-atten-
tive acceptor embeddings that not only represent the acceptor sites
and their flanking regions but also preserve the knowledge of rele-
vant donors from donor embeddings. Similarly, the cross-attentive
donor embeddings are simultaneously obtained for donors. To
directly model relations between embeddings, we adopt the dot-
product attention mechanism (Vaswani et al., 2017) for the cross-at-
tention layer. For each acceptor embedding w?, the relevance of a
donor embedding wf can be computed by a dot-product waw;i )
that the attention weights /)’?_f can be calculated with a softmax func-
tion over all donors. Likewise, the attention weights /5 for each
donor embedding w;i can also be measured by dot-products to the
acceptor embeddings. Stated formally, we have:
T wiT
o o) g e
Yy exp (waw;f) HST exp (w dTu/d)

Therefore, the cross-attentive embeddings of acceptors and
donors can then be derived by aggregations based on the attention
weights as:

:Z/)’ﬁj-w;i andt}}i:Z[j’gi~uJ?.
] i

Note that we do not utilize the multi-head attention mechanism
(Vaswani et al., 2017) because it requires much more massive train-
ing data to learn multiple projection matrices. As shown in Section
4, the vanilla dot-product attention is sufficient to obtain satisfac-
tory predictions with significant improvements over baselines.

3.5 circRNA prediction

To predict circRNAs, we apply the attention mechanism (Bahdanau
et al., 2015) again to aggregate cross-attentive acceptor and donor
embeddings into an acceptor representation and a donor representa-
tion as ultimate features to predict circRNAs.

3.5.1 Acceptor and donor attention

Although the cross-attention layer provides information cross-atten-
tive embeddings for all acceptors and donors, most of the splice sites
can be irrelevant to backsplicing. To tackle this issue, we present the
acceptor and donor attention to identify splice sites that are more
important than other ones. Similar to k-mer attention, the import-
ance scores of cross-attentive embeddings for acceptors and donors
can be computed as:

exp(«f»iT d)

a

o _expldle) _ o)
TS exp (T ed) Sy exp(cdTed)’

where ¢ = tanh(F4(¢4)); ¢f = tanh(F(vf)); F4(-) and Fe() are
fully connected layers. Subsequently, the acceptor and donor

and y;-i =
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representations #, and 74 can be derived based on the attention
weights of cross-attentive embeddings as:

TuiZ’/?‘U? andrd:ny<ufl.
i

i

3.5.2 Prediction as binary classification

Here, we treat circRNA prediction as a binary classification task.
More specifically, we estimate a probabilistic score ¥ to approxi-
mate the probability of existing circRNA. The ultimate features r for
machine learning are provided by concatenating the acceptor and
donor representations as r = [r,;74]. Finally, the probabilistic score
y can be computed by a sigmoid function with a fully connected
layer as follows:

¥y = o(Fp(ReLU(F(r)))),

where F,(-) and F,(-) are fully connected layers; ReLU(:) is the acti-
vation function for the hidden layer (Glorot et al., 2011); o(-) is the
logistic sigmoid function (Han and Moraga, 1995). The binary pre-
diction can be further generated by a binary indicator function as
15 > 0.5).

3.6 Learning and optimization

To solve circRNA prediction as a binary classification problem,
JEDI is optimized with a binary cross-entropy (Hinton and
Salakhutdinov, 2006). Formally, the loss function for optimization
can be written as follows:

1 ) .
Loss = NZ[% log(y;) + (1 — yi) log(1 — ¥:)] + 4[|0]],,
i=1

where N is the number of training gene sequences; y; is a binary indi-
cator demonstrating whether the ith training sequence exists a
circRNA; y; is the approximated probabilistic score for the ith train-
ing gene sequence; A is the L2-regularization weight for the set of
model parameters 0.

3.7 Remarks on the interpretability of JEDI

The usage of attention mechanisms is one of the most essential keys
in JEDI, including the donor and acceptor attention, the cross-atten-
tion layer and the k-mer attention in junction encoders. In addition
to choosing important information to optimize the objective, one of
the most significant benefits of using attention mechanisms is the
interpretability.

3.7.1 Application: zero-shot backsplicing discovery

For circRNAs, the attention weights can become interpretable hints
for discovering backsplicing without training on the annotated back-
spliced sites. For example, when the model is optimized for accur-
ately predicting circRNAs, the weights of donor attention are
reformed to denote the important and relevant donors, which are
preferred for the upstream acceptors to backsplice. In other words,
the probabilistic attention weight ",v/‘-i for each donor d; can be inter-

preted as the probability of being a backsplice donor site as:
P(dj) =,

where the softmax function guarantees >, P(d;) = 1. Similarly, the
attention weight /f;fi of each acceptor a; for deriving the cross-atten-
tive embedding of the donor d; can be explained as the conditional
probability of being selected as the backsplice acceptor site from the
donor d; as:

P(aj\d;) = B,
where we also have the probabilistic property Vj: >, /3;{1- =1 from
the softmax function. Based on the above interpretations, for any
pair of a donor d; and an acceptor g, the probability of forming a

backsplice can be approximated by decomposing the joint probabil-
ity P(d;,a;) as:

P(dj, a;) = P(d;)P(a;|d;) = 7] B,

Therefore, without any training backsplice site annotation as
zero-shot learning (Socher et al., 2013), we can transfer the know-
ledge in the training data for circRNA prediction to discover poten-
tial backsplice sites by ranking the pairs of acceptors and donors
according to P(d;,a;). Particularly, the interpretations can be also
aligned with the process of RNA splicing, bringing more biological
insights into JEDL. In Section 4.6, we further conduct experiments to
demonstrate that JEDI is capable of addressing the task of zero-shot
backsplicing discovery.

4 Experiments

In this section, we conduct extensive experiments on benchmark
datasets for two tasks and in-depth analysis to verify the perform-
ance and robustness of the proposed framework, JEDI.

4.1 Datasets

4.1.1 Human circRNA

We use the benchmark dataset generated by Chaabane et al. (2020).
The positive data generation follows a similar setting as described in
Pan and Xiong (2015) to derive 31939 isoforms of human
circRNAs covering a diverse range of tissues and cell types from the
circRNADbD database (Chen et al., 2016). The negative set is com-
posed of other IncRNAs, such as processed transcripts, anti-sense,
sense intronic and sense overlapping. It is constructed based on the
annotation provided by GENCODE v19 (Frankish ez al., 2019) with
strong evidence. Specifically, only the experimentally validated or
manually annotated transcripts are considered, resulting in 19 683
negative isoforms. To avoid information leaks through training and
evaluating on paralogous genes, we group isoforms into the same
cluster if they come from the same gene or duplicated genes. The
duplicated gene information is retrieved from the Duplicated Genes
Database (Ouedraogo et al., 2012). Combining both the positive
and negative cases, these 51622 isoforms are grouped into 23 674
clusters. The clusters are divided into five parts to conduct 5-fold
cross-validation. The sequences of all positive and negative cases are
based on hg19.

4.1.2 Mouse circRNA on isoform level

The mouse circRNAs are obtained through circbase (Glazar et al.,
2014), which contains public circRNA datasets for several species
reported in literature. There are 1903 mouse circRNAs. Using the
annotation provided by GENCODE vM1, we randomly select other
lincRNAs, generating 1522 negative cases. The sequences of all posi-
tive and negative cases are based on mm9.

4.2 Experimental settings

4.2.1 Baseline methods

To evaluate the performance of JEDIL, we compare with eight com-
petitive baseline methods, including circDeep (Chaabane et al.,
2020), PredcircRNA (Pan and Xiong, 2015), DeepCirCode (Wang
and Wang, 2019), nRC (Fiannaca et al., 2017), SVM, REF, attentive-
CNN (Att-CNN) and attentive-RNN (Att-RNN). Specifically,
circDeep and PredcircRNA are the state-of-the-art circRNA predic-
tion methods. DeepCirCode originally takes individual splice site
pairs for backsplicing prediction, which is another research prob-
lem, and leads to an enormous number of false alarms in our prob-
lem settings. To conduct fair comparisons, we modify DeepCirCode
by extending the inputs to all sites and aggregating CNN representa-
tions for acceptors and donors with two max-pooling layers before
applying its model structure. nRC represents IncRNA classification
methods that are compatible to solve circRNA prediction as a se-
quence classification problem. SVM and RF apply conventional stat-
istical learning frameworks with the compositional k-mer features



i294

J.-Y. Jiang et al.

Table 1. Evaluation of isoform-level circular RNA prediction based on the 5-fold cross-validation

Specificity

F1-score

MCC

AUC

0.4526 = 0.3413
0.5982 = 0.0075
0.5872+0.0527
0.6171 = 0.0505
0.6193 =0.0998
0.7202 = 0.0120
0.9407 = 0.0138
0.8967 =0.0383
0.9836 =0.0038

0.8042 = 0.0260
0.8165 =0.0095
0.8105 =0.0080
0.8152 = 0.0094
0.8094 =0.0118
0.6422 = 0.0091
0.8732=0.0111
0.9179 = 0.0040
0.9904 = 0.0009

0.4031+0.1784
0.4804 =0.0115
0.4612 =0.0165
0.4960 = 0.0134
0.4781 =0.0279
0.3169 = 0.0164
0.7584 = 0.0186
0.7914 = 0.0073
0.9742 = 0.0014

0.6729 =0.1203
0.7296 = 0.0053
0.7200 = 0.0097
0.7377 =0.0105
0.8280 = 0.0091
0.5882 =0.0102
0.7395 £ 0.0132
0.8994 = 0.0077
0.9872 =0.0009

Method Accuracy Precision Sensitivity

SVM 0.7279 £ 0.0686  0.7479 +0.0970  0.8932 +0.1075
RF 0.7607 =0.0084 0.7764 +0.0123 0.8610 £0.0077
Att-CNN 0.7519 =£0.0069 0.7739 £0.0257 0.8529 £0.0391
Att-RNN 0.7638 £ 0.0075 0.7773 +0.0161 0.8582 +0.0345
nRC 0.7557 =0.0115 0.7844 = 0.0389 0.8410 £0.0597
PredcircRNA  0.6550 =0.0076 0.6977 =0.0137 0.5949 = 0.0070
circDeep 0.8748 £0.0102 0.9393 +0.0134 0.8161 +0.0217
DeepCirCode  0.8997 =0.0039 0.9353+0.0228 0.9021 = 0.0248
JEDI 0.9878 =0.0007 0.9906 = 0.0030 0.9906 £ 0.0032

Note: We report the mean and standard deviation for each metric.

proposed by Wang and Wang (2017) for backsplicing prediction.
Attentive CNN and RNN as popular deep learning approaches util-
ize CNNs and RNNs with the attention mechanism (Bahdanau
et al., 2015) for sequence modeling, thereby predicting circRNAs
based on a fully connected hidden layer with the ReLU activation
function (Glorot et al., 2011). Note that we do not compare with
CIRCexplorer2 (Zhang et al., 2016) and CIRI (Gao et al., 2015) be-
cause they aim at aligning the sequencing reads to known circRNAs,
and performing de novo assembly of novo circRNAs, which is a
completely different approach than our proposed method.

4.2.2 Evaluation metrics and protocol

Six conventional binary classification metrics are selected as the
evaluation metrics for both tasks, including the overall accuracy
(Acc), precision (Prec), sensitivity (Sens), specificity (Spec), F1-score
as well as Matthew correlation coefficient (MCC) and the area
under the receiver operating characteristic (ROC) curve (AUC) on
positive cases. For all metrics, the higher metric scores indicate more
satisfactory performance. We conduct a 5-fold cross-validation for
evaluation on both isoform-level and gene-level circRNA prediction.
Specifically, for each task, the data are randomly shuffled and evenly
partitioned into five non-overlapping subsets. In the five folds of
experiments, each subset has a chance to be considered as the testing
data for assessing the model trained by the remaining four subsets,
thereby ensuring an unbiased and fair evaluation. Finally, we evalu-
ate the methods by aggregating the scores over the 5-fold experi-
ments for each metric.

4.2.3 Implementation details

Our approach, JEDI, is implemented in Tensorflow (Abadi et al.,
2016) and released in GitHub as shown in Abstract. The AMSGrad
optimizer (Reddi ez al., 2018) is adopted to optimize the model
parameters with a learning rate # = 1073, exponential decay rates
f1 =0.9 and f, = 0.999, a batch size 64, and an L2-regularization
weight 4 = 107>, As the hyperparameters of JEDI, the k-mer size K
and the number of dimensions / for k-mer embeddings are set to 3
and 128. We set the length of flanking regions L to 4. The hidden
state size of GRUs for both directions in junction encoders is 128.
The size of all attention vectors is set to 16. The number of units in
the fully connected hidden layer F,(-) for circRNA prediction is
128. The model parameters are trained until the convergence for
each fold in cross-validation. For the baseline methods, the experi-
ments for circDeep, PredcircRNA and nRC are carried out accord-
ing to the publicly available implementations released by the
authors of original papers. SVM and RF are implemented in Python
with the scikit-learn library (Pedregosa er al., 2011). As for deep
learning approaches, DeepCirCode, Att-CNN and Attentive-RNN
are implemented in Tensorflow, which is the same as our proposed
JEDL For all methods, we conduct parameter fine-tuning for fair
comparisons. All of the experiments are also equitably conducted on
a computational server with one NVIDIA Tesla V100 GPU and one
20-core Intel Xeon CPU E5-2698 v4 @ 2.20 GHz.

4.3 Isoform-level circRNA prediction

Table 1 shows the performance of all methods for isoform-level
circRNA prediction. Among the baseline methods, circDeep as the
state-of-the-art approach and DeepCirCode considering junctions
perform the best. It is because circDeep explicitly accounts for the
reverse complimentary sequence matches in flanking regions of the
junctions, and DeepCirCode models the flanking regions with deep
learning. Consistent with the previous study (Chaabane et al.,
2020), PredcircRNA performs worse than circDeep. With compos-
itional k-mer-based features designed for backsplicing prediction,
SVM and RF surprisingly outperform PredicircRNA by 11.13% and
16.14% in accuracy. It not only shows that the k-mers are universal-
ly beneficial across different tasks but also emphasizes the rational-
ity of using k-mers for junction encoders in JEDIL. As an IncRNA
classification method, nRC also shows its potential for circRNA pre-
diction with a 15.37% improvement over PredcircRNA in accuracy.
Although Att-CNN and Att-RNN utilize the attention mechanism,
they can only model the whole sequences and present limited per-
formance without any knowledge of junctions. As our proposed ap-
proach, JEDI significantly outperforms all of the baseline methods
across all evaluation metrics. Particularly, JEDI achieves 9.80% and
7.90% improvements over DeepCirCode in accuracy and Fl-score,
respectively. The experimental results have demonstrated the effect-
iveness of junction encoders and the cross-attention layer that mod-
els deep interaction among splice sites.

4.4 Gene-level circRNA prediction

We further evaluate all methods on gene-level circRNA prediction.
Note that this task is more difficult than the isoform-level prediction
because each junction can be a backsplice site. Since a full gene se-
quence can encode for multiple isoforms, there can be multiple site
pairs forming backsplices for different isoforms. Consequently,
models cannot learn from absolute positions for circRNA predic-
tion. As shown in Table 2, all methods deliver worse performance
than the results in isoform-level circRNA prediction. Notably, the
evaluation metrics have demonstrated a similar trend as shown in
Table 1. DeepCirCode and circDeep are still the best baseline meth-
ods, showing the robustness of exploiting the knowledge about
splice junctions. SVM, RF and nRC still outperform PredicircRNA
by at least 15.08% in accuracy. Att-CNN and Att-RNN using the
attention mechanism still fail to obtain extraordinary performance
because they are unaware of junction information, which is essential
for backsplicing events. In this more difficult task, JEDI consistently
surpasses all of the baseline methods across all evaluation metrics.
For instance, JEDI beats DeepCirCode by 11.94% and 11.75% in
accuracy and Fl-score, respectively. The experimental results further
reveal that our proposed JEDI is capable of tackling different scen-
arios of circRNA prediction with consistently satisfactory
predictions.

4.5 Independent study on mouse circRNAs
To demonstrate the robustness of JEDI, we conduct an independent
study on the dataset of mouse circRNAs. Previous studies have
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Table 2. Evaluation of gene-level circular RNA prediction based on the 5-fold cross-validation

Specificity

F1-score

MCC

AUC

0.8534+0.1067
0.6018 =0.0131
0.5519 = 0.0624
0.5639 = 0.0546
0.6961 = 0.0663
0.6696 =0.0117
0.8749 = 0.0133
0.8860 = 0.0374
0.9630 = 0.0095

0.6652+0.1212
0.7697 = 0.0050
0.7898 = 0.0088
0.7923 = 0.0086
0.7461 = 0.0154
0.6132 = 0.0049
0.8404 = 0.0073
0.8659 = 0.0265
0.9676 = 0.0057

0.4662 = 0.0719
0.4688 =0.0105
0.4006 = 0.0071
0.4164 =0.0153
0.4591+0.0190
0.2433 =0.0077
0.6806 = 0.0138
0.7296 = 0.0377
0.9318 =0.0119

0.7185 = 0.0504
0.7259 =0.0058
0.6910 = 0.0091
0.6989 = 0.0099
0.8013 =0.0076
0.6085 =0.0314
0.7522 = 0.0107
0.8642 =0.0198
0.9657 =0.0054

Method Accuracy Precision Sensitivity

SVM 0.7121 £ 0.0560 0.8346 = 0.0596 0.5836 +=0.1958
RF 0.7324 = 0.0060 0.7035 = 0.0097 0.8499 £ 0.0041
Att-CNN 0.7246 =0.0051 0.7555+0.0275 0.8302 £0.0454
Att-RNN 0.7300 = 0.0076  0.7565 = 0.0246  0.8340 = 0.0407
nRC 0.7290 = 0.0086 0.7378 £0.0329 0.7592 £0.0594
PredcircRNA  0.6188 =0.0033 0.6594 =0.0085 0.5732 %= 0.0085
circDeep 0.8387 +0.0066 0.8778 =0.0135 0.8063 =0.0087
DeepCirCode  0.8629 =0.0215 0.8940 =0.0268 0.8424 = 0.0606
JEDI 0.9659 =0.0059 0.9670 = 0.0075 0.9685 £0.0166

Note: We report the mean and standard deviation for each metric.

Table 3. Independent study of isoform-level circular RNA prediction for mouse circRNAs based on the models trained on human circRNAs

Method Acc Prec Sens Spec F1 MCC AUC
SVM 0.7328 0.7742 0.8108 0.6011 0.7921 0.4196 0.7059
RF 0.7186 0.7393 0.8523 0.4929 0.7918 0.3733 0.6726
Att-CNN 0.7264 0.7452 0.7957 0.6330 0.7696 0.4352 0.7143
Att-RNN 0.7030 0.7189 0.7930 0.5816 0.7541 0.3844 0.6873
PredicircRNA 0.5696 0.6218 0.5056 0.6437 0.5577 0.1501 0.6067
nRC 0.7410 0.7662 0.8455 0.5647 0.8039 0.4298 0.8097
circDeep 0.6140 0.7495 0.6982 0.7509 0.7229 0.4491 0.7669
DeepCirCode 0.8129 0.9271 0.7620 0.8989 0.8365 0.6392 0.8304
JEDI 0.8654 0.9074 0.8749 0.8493 0.8909 0.7162 0.8621
shown that circRNAs are evolutionarily conserved (Barrett and 1 Mean AUC = 0.8002 £ 0.0190

Salzman, 2016; Jeck et al., 2013; Suenkel ez al., 2020), and thus we = L7
evaluate the potential of predicting the circRNAs across different 0.9} -~
species. More precisely, we train each method using the human ,/’

dataset on isoform level, thereby predicting the circRNAs on the 081 e

mouse dataset. Note that some of the required features for o7l e

PredcircRNA are missing on the mouse datasets. In addition to this, £ ' e ’

PredicircRNA perform the worst in other experiments. For these ~ 06l o

reasons, we exclude PredcircRNA from this study. Table 3 presents 2 P

the experimental results of the independent study. Compared to the 7 05¢ e

experiments conducted on the same species as shown in Table 1, & 7

most of the deep learning methods have slightly lower performance g O4r L’ ‘

because they are specifically optimized for human data; SVM and = oal e Fold-1 (AUC = 0.7923)
RF have similar performance in the independent study probably be- ’ Fold-2 (AUC = 0.8313)
cause k-mer features are simpler and more general to different spe- 02} Fold-3 (AUC = 0.7928)
cies. Interestingly, the accuracy of circDeep significantly drops in the Fold-4 (AUC = 0.8033)
study. It is likely due to the fact that circDeep heavily pre-trains the 0.1+ F‘Old’:’ (AUC - U-7§16)
sequence modeling on human data with the serious over-fitting phe- o ‘ ‘ ‘ — urdflce (AF(’ - 0"") ‘

nomenon. As a result, our proposed JEDI still outperforms all of the
baseline methods. It demonstrates that JEDI is robust across the
datasets of different species.

4.6 Zero-shot backsplicing discovery

As mentioned in Section 3.7, the interpretability of the attention
mechanisms and the cross-attention layer enables JEDI to achieve
zero-shot backsplicing discovery. To evaluate the performance of
zero-shot backsplicing, we compute the probabilistic score P(d;, a;)
using the attention weights y;i and ,B;i‘,., thereby indicating the likeli-
hood of forming a backsplice for each pair of a candidate donor d;
and a candidate acceptor a;. Hence, we can simply evaluate the
probabilistic scores with the ROC curve and the AUC. Note that
here we still apply 5-fold cross-validation for experiments based on
the gene-level human circRNA dataset. Since none of the existing
methods can address the task of zero-shot backsplicing prediction,
we compare with random guessing, which is equivalent to the
chance line in ROCs with an AUC score of 0.5. Figure 3 depicts the
ROC curves with AUC scores over five folds of experiments. The
results show that the backspliced site pairs discovered by JEDI are

L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Fig. 3. The ROC curves for zero-shot backsplicing discovery based on the 5-fold
cross-validation and JEDI trained for gene-level circular RNA prediction

effective with an average AUC score of 0.8002. In addition, JEDI is
also robust in this task with a small standard deviation of AUC
scores. Since the cross-attention layer is a major contribution in
JEDI, we conduct another study to analyze how donor and acceptor
embeddings interact with each other in Supplementary Section S1.

4.7 Analysis and discussions

In this section, we first discuss the impacts of hyperparameters for
JEDI and then conduct the run-time analysis for all methods to
verify the model efficiency of JEDI Note that, for hyperparameter
analysis, we adjust the target hyperparameter while other hyper-
parameters are fixed as the values utilized in the experiments as
mentioned in Section 4.2.
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Fig. 4. The isoform-level circular RNA prediction performance of JEDI with different flanking region lengths L based on the 5-fold cross-validation. We report the mean for

each metric and apply error bars to indicate standard deviations

99.5%
>
g 99%
[
=
Y 98.5%
<
98% : : : : :
1 2 3 4 5 6
k-mer Size K
99.5%
>
=
S 99%
2
& 98.5%
Q
wn
98%
i 2 3 4 5 6
k-mer Size K
99.5%
§99.25%
S 99%
& 98.75%
98.5%

1 2 3 4 5
k-mer Size K

100%

10on

99.5%

99%

Precis

98.5%

1 2 3 4 5 6
k-mer Size K
99.5%
99%
98.5%
98%
97.5%

Specificity

1 2 3 4 5 6
k-mer Size K
98.5%
98%
O 97.5%
97%
96.5%

1 2 3 4 5 6
k-mer Size K

Fig. 5. The isoform-level circular RNA prediction performance of JEDI with different k-mer sizes K based on the 5-fold cross-validation. We report the mean for each metric

and apply error bars to indicate standard deviations

4.7.1 Length of flanking regions L

The flanking region length L for junction encoders plays an import-
ant role in JEDI to represent splice sites. Figure 4 illustrates the
circRNA prediction performance of JEDI over different flanking re-
gion lengths. For all evaluation metrics, the performance slightly

improves when L increases to 4. However, the performance signifi-
cantly drops when L > 32. It shows that nucleotides nearer to junc-
tions are more important than other ones for predicting
backsplicing. This result is also consistent with previous studies on
RNA splicing (Ohshima and Gotoh, 1987). Moreover, circRNAs
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Table 4. Run-time analysis on isoform-level circular RNA prediction
in seconds (s), minutes (min) and hours (h), based on the 5-fold
cross-validation

Method Time Method Time Method Time
SVM 28.76s Att-CNN 13.35min circDeep >24h
RF 21.03s Att-RNN 51.53min DeepCirCode 3.80 min

nRC 4.07min PredcircRNA 43.66s JEDI 2.75 min

Note: We report the mean of the training time (over five folds).

tend to contain fewer nucleotides than other transcripts from the
same gene (Jeck and Sharpless, 2014), so excessive and redundant
information could only lead to noises and lower the prediction
performance.

4.7.2 Size of k-mers K
The derivation of k-mers is crucial for JEDI because JEDI treats k-
mers as the fundamental inputs over gene sequences. Figure 5 shows
how the size of k-mers affects the prediction performance. JEDI per-
forms the best with 2- and 3-mers when the performance gets worse
with longer or shorter k-mers. It could be because a small k-mer size
makes k-mers less significant for representations. In addition, the
embedding space of long k-mers could be too enormous for JEDI to
learn with limited training data. It is also worthwhile to mention
that 1-mers lead to much higher standard deviations because of their
low significance induces high instability and sensitive embeddings
during the learning process. This finding is also consistent with pre-
vious studies (Sacan and Toroslu, 2008).

In addition to the flanking region length L and the k-mer size K,
we also conduct the analysis to study how the embedding dimension
[ affects the performance in Supplementary Section S2.

4.7.3 Run-time analysis

To verify the efficiency of JEDI, we conduct the run-time analysis
for all methods in our experiments based on the task of isoform-level
circRNA prediction. For fair comparisons, all methods can access
the same computational resources. Note that we only consider the
time in training and testing. The run-time of feature extraction and
disk I/O are ignored because the features can be pre-processed. Disk
I/O can be affected by many factors that are irrelevant to methods,
such as /O scheduling in operating systems. As shown in Table 4,
JEDI is efficient and averagely needs only <3 min because it only
focuses on junctions and flanking regions. Similarly, DeepCirCode,
which is also a junction-based deep learning method, has compar-
able execution time to JEDI. In contrast, Att-CNN and Att-RNN
are relatively inefficient because they scan the whole sequences in
every training batch, where Att-RNN with non-parallelizable recur-
rent units is slower. Although nRC reads the whole sequences, it
runs faster than some attention-based methods because of its simpler
model structure. SVM, RF and PredcircRNA are the most efficient
because they apply straightforward statistical machine learning
frameworks for training. As a side note, the feature extraction of
PredcircRNA is extremely expensive in execution time and averagely
costs more than 28 h to extract multi-facet features in our experi-
ments. circDeep is the most inefficient in our experiments because it
consists of many time-consuming components, such as embedding
and LSTM pre-training.

5 Conclusions

In this article, we propose a novel end-to-end deep learning ap-
proach for circRNA prediction by learning to appropriately model
splice sites with flanking regions around junctions and studying the
deep relationships among these sites. The attentive junction
encoders are first introduced to represent each splice site, and the

innovative cross-attention layer is proposed to learn the deep inter-
action among splice sites. Moreover, JEDI is capable of discovering
backspliced site pairs without training on annotated site pairs. The
experimental results demonstrate that JEDI is effective and robust in
circRNA prediction on different data levels and across different spe-
cies. Most importantly, the backspliced site pairs discovered by
JEDI are promising as they designate the hotspots for circRNAs for-
mation. The reasons and insights for these observations and discov-
eries can be concluded as follows: (i) JEDI only models valuable and
essential flanking regions around the junctions of splice sites, there-
by discarding irrelevant and redundant information for circRNA
prediction; (ii) the properties of splice sites and essential information
for forming circRNAs can be well-preserved by junction encoders; and
(iii) the attention mechanisms and the cross-attention layer provide in-
tuitive and interpretable hints to implicitly model the backsplicing
events as demonstrated in the experiments. Due to data limitation, we
are only able to examine the effectiveness of transferring the learned
knowledge between humans and mice. As a future direction, we plan
to experiment with more species when more data are available.
Additionally, we also plan on exploring the potential to extend JEDI
to support circRNA prediction from sequencing reads.
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