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Top-Down Analysis of Temporal Hierarchy in Biochemical
Reaction Networks
Neema Jamshidi, Bernhard Ø. Palsson*

Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America

Abstract

The study of dynamic functions of large-scale biological networks has intensified in recent years. A critical component in
developing an understanding of such dynamics involves the study of their hierarchical organization. We investigate the
temporal hierarchy in biochemical reaction networks focusing on: (1) the elucidation of the existence of ‘‘pools’’ (i.e.,
aggregate variables) formed from component concentrations and (2) the determination of their composition and
interactions over different time scales. To date the identification of such pools without prior knowledge of their composition
has been a challenge. A new approach is developed for the algorithmic identification of pool formation using correlations
between elements of the modal matrix that correspond to a pair of concentrations and how such correlations form over the
hierarchy of time scales. The analysis elucidates a temporal hierarchy of events that range from chemical equilibration
events to the formation of physiologically meaningful pools, culminating in a network-scale (dynamic) structure–
(physiological) function relationship. This method is validated on a model of human red blood cell metabolism and further
applied to kinetic models of yeast glycolysis and human folate metabolism, enabling the simplification of these models. The
understanding of temporal hierarchy and the formation of dynamic aggregates on different time scales is foundational to
the study of network dynamics and has relevance in multiple areas ranging from bacterial strain design and metabolic
engineering to the understanding of disease processes in humans.
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Introduction

The network of interactions that occur between biological

components on a range of various spatial and temporal scales

confer hierarchical functionality in living cells. In order to

determine how molecular events organize themselves into

coherent physiological functions, in silico approaches are needed

to analyze how physiological functions emerge from the evolved

temporal structure of networks. Time scale decomposition is a

well-established, classical approach to dissecting network dynamics

and there is a notable history of analyzing the time scale hierarchy

in metabolic networks and matching the events that unfold on

each time scale with a physiological function [1–6]. This approach

enables the identification of the independent, characteristic time

scales for a dynamic system. In particular it has been possible

to decompose a cell-scale kinetic model of the human red blood

cell in time to show how its key metabolic demands are met

through a dynamic structure-function relationship. The underly-

ing principle is one of aggregation of concentration variables into

‘pools’ of concentrations that move in tandem on slower time

scales [5,7].

The dynamics of biological networks characteristically span

large time scales (8 to 10 orders of magnitude), which contributes

to the challenge of analyzing and interpreting related models.

However, there is structure in this dynamic hierarchy of events,

particularly in biochemical networks in which the fastest motions

generally correspond to the chemical equilibria between metab-

olites, and the slower motions reflect more physiologically relevant

transformations. Appreciation of this observation can result in

elucidating structure from the network and simplifying the

interactions. The reduction in dynamic dimensionality is based

on such pooling and the analysis of pooling is focused in the

underlying time scale hierarchy and its determinants. Under-

standing the time scale hierarchy and pooling structure of these

networks is critical to understanding network behavior and

simplifying it down to the core interactions.

Top-down studies of dynamic characteristics of networks begin

with fully developed kinetic models that are formal representations

of large amounts of data about the chemistry and kinetics

component interactions. Network properties can be studied by

numerical simulations (that are condition-specific) or by analysis

(that often yield general model properties) of the model equations.

Since comprehensive numerical simulation studies become

intractable for larger networks and the identification of general

model properties are needed for the judicious simplification of

models, there is a need for analysis based methods in order to

characterize properties of dynamic networks. In this study we

present an in silico analysis method to determine pooling of

variables in complex dynamic models of biochemical reaction

networks. This method is used to study metabolic network models

and allows us to identify and analyze pool formation resulting from

the underlying stoichiometric, thermodynamic, and kinetic

properties.
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Results/Discussion

Method Development
Dynamic description of networks. Linearizing the mass

conservation equations for a chemical reacting system around the

steady state yields the linear form of the dynamic mass balances,

dx0 tð Þ
dt

~Jx0 tð Þ ð1Þ

where J is the n6n Jacobian matrix, and x9 ( = x2xss) is the

deviation vector of the concentration variables from the steady

state (xss). J describes the dynamical characteristics of the network

near the steady state. The properties of J can be analyzed using

matrix decomposition methods, and it is important for these

methods to capture the interactions between components across all

of the time scales of the network.

Temporal decomposition. We can apply a similarity

transformation (see Materials and Methods) to J,

J~M
1
L

1
M

1{1 ð2Þ

where L is a diagonal matrix with the eigenvalues, that are the

negative reciprocal time constants [8]. The superscript star indicates

the possible presence of imaginary components in the matrices.

Complex conjugate pairs can be removed by pre-multiplying by a

modified identity matrix with block diagonal ones at the rows and

columns in which the matrix has imaginary components. The

complex conjugate pairs arise in situations in which the motions of

these modes cannot be decomposed in time. The modal matrix,

M21, can then be used to define the modes, m, such that,

m~M{1x ð3Þ

which combined with Equation 1 results in,

dm

dt
~Lm ð4Þ

as described previously [5]. The rows in the modal matrix define

dynamically independent ‘‘aggregates’’, or pooling of metabolites

into independent dynamic variables. Time scale decomposition can

be successfully performed only if the eigenvalues are well separated.

When J is rank deficient, it implies the presence of dynamically

invariant pools reflecting chemically conserved moieties in the

network, whose sum total is constant. These vectors are not included

in the modal matrix.

The modal matrix separates the dynamics of the network into a

series of dynamically independent motions [5,8], moving from the

fastest (top) modes to the slowest (bottom) modes as the time scales

lengthen (Figure 1B). Here we present an approach to the analysis

of the modal matrix that simplifies the elucidation of notable pools

without the need for intensive calculations of dynamic phase

portraits and auto-correlations functions in order to identify

biologically relevant interpretations of these modes as pools of

metabolites being created and consumed on different time scales

[2]. An illustrative ‘toy’ example of time scale decomposition is

described in the supplementary material (Figure S1).

Table 2 summarizes some of the trade-offs between the

characterization of dynamics using the Jacobian matrix and

carrying out large numbers of dynamic simulations directly.

Although carrying out dynamic simulations are not restricted to a

particular steady state, they are condition dependent (e.g. initial

conditions) and resource intensive. Hence for larger networks,

dynamic simulations are not a viable option. In contrast,

characterization of the pooling structure of networks via analysis

of the Jacobian requires only a single set of calculations to

characterize a particular steady state and this approach can be

applied to large and small networks alike. Furthermore, different

steady states can be characterized as well, by recalculating the

Jacobian at the alternate steady states.

Defining pools from modes. A column of the modal matrix

describes the participation of a concentration in each of the

linearly independent modes. When two concentrations (xi and xj)

become dynamically correlated beyond a particular time scale (say

after the kth time constant), the entries of the modal matrix in the

two corresponding columns are correlated with one another on the

subsequent time scales (Figure 2). This characteristic enables the

identification of the time scales that two concentrations would pool

together.

Employing a geometric interpretation for this determination,

one can explicitly identify pool formation by calculating the angle

between columns (M21)i of the modal matrix,

H~cos qij

� �
~

M{1
� �T

i
: M{1
� �

j

M{1ð ÞTi
���

��� M{1ð Þj
���

���
ð5Þ

in which M{1
i

�� �� refers to the magnitude of the ith column of the

modal matrix and qij refers to the angle between the ith and jth

columns of the modal matrix. However, if one were to simply

calculate the correlations between metabolites across all time

scales, in general no pooling would be observed among the

metabolites, even though there may be physiologically relevant

pooling between metabolites, that characteristically occur on

slower time scales. A simple illustration of this is depicted in by the

modal matrix in Figure 2, which highlights the need to

characterize aggregate pool formation of variables in the context

of progressively slower time scales. Hence this approach analyzes

progressive pooling across all of the network’s independent time

scales, in contrast to simulation based methods which are

dependent on a priori specification of the time scales of interest

for identifying correlations between metabolites.

Author Summary

Cellular metabolism describes the complex web of bio-
chemical transformations that are necessary to build the
structural components, to convert nutrients into ‘‘usable
energy’’ by the cell, and to degrade or excrete the by-
products. A critical aspect toward understanding metabo-
lism is the set of dynamic interactions between metabolites,
some of which occur very quickly while others occur more
slowly. To develop a ‘‘systems’’ understanding of how
networks operate dynamically we need to identify the
different processes that occur on different time scales. When
one moves from very fast time scales to slower ones, certain
components in the network move in concert and pool
together. We develop a method to elucidate the time scale
hierarchy of a network and to simplify its structure by
identifying these pools. This is applied to dynamic models of
metabolism for the human red blood cell, human folate
metabolism, and yeast glycolysis. It was possible to simplify
the structure of these networks into biologically meaningful
groups of variables. Because dynamics play important roles
in normal and abnormal function in biology, it is expected
that this work will contribute to an area of great relevance
for human disease and engineering applications.

Elucidating Network Pooling Structure
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In order to identify the time scales at which pool formation

occurs, we compute the angle between two columns as a function

of an index k that runs from 1 to n time scales. As each row of the

modal matrix is removed (k increases by one) the angle is

recomputed to form a series of angles as a function of k; i.e., qij(k),

k = 1, 2, …, n. If the angle qij(k) is close to zero, the two columns

are correlated at and above that k value and the two corresponding

concentrations will move in tandem for the subsequent time scales,

thus forming an aggregate variable or a pool. The practical issue is

to determine when the angle is close enough to zero to make a call

on the formation of a pool.

The pools can be described as a sum of matrix products over the

time scales of the network:

Fts
i M{1Fm

i ð6Þ

Fts
i is a binary diagonal matrix, with n2i non-zero elements on the

diagonal. Fm
i is a binary matrix with off-diagonal elements whenever

two columns meet a specific cutoff and can be combined into an

aggregate pool. Fts
i and Fm

i act on the modal matrix, by filtering out

modes or combining variables, respectively. For a network with m

metabolites, in which no aggregate pools form, there will be m sets of

pooling matrices. Conversely, for the extreme case in which all of the

metabolites form a single aggregate pool on a single time scale there

will only be a single pooling matrix.

Defining dominant interactions for each mode. One can

quantitatively ascertain the contribution of each metabolite to each

mode by rank ordering the normalized mode and keeping only the

largest weights that add up to the specified cutoff percentage. At low

cut-off ranges, all metabolites with small contributions to the mode

will be zeroed out. The interactions across the modes can be mapped

on top of the interactions defined by the stoichiometric matrix in

order to compare and contrast the topological connectivity versus the

dynamic connectivity at time scales of interest.

Application of the Method
The models studied here exhibit a significant span of time scales

(Table 1). A hierarchy pool formation on different time scales was

found in all networks based on the calculation of all pair wise qij(k)

in the models (Figures 1C and 2). The results can be presented in a

symmetric correlation tiled array, where each entry can be used to

represent k for a pair of concentrations. Figure 3 shows the result

Figure 1. Subspaces of the Jacobian matrix and different approaches for decomposing it into dynamically independent
interactions between metabolites. (A) The Jacobian acts as a linear operator mapping the dynamics onto the deviation variable. (B) The Modal
Matrix maps network dynamics onto independent time scales. Panels C and D illustrate two approaches to understanding the interactions between
metabolites on the different time scales. (C) Beginning from the fastest time scale and moving forward, components that move together on
subsequent time scales are lumped into an aggregate pool variable. The pooling pictorially for three different time scales in glycolysis and the
Rapoport-Leubering shunt in the red cell. The large blue dots indicate pool formation between two metabolites, signifying that these two
metabolites become coupled or correlated on slower times scales. In this case, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate pool
together after the first time scale, the hexose phosphates pool together after the fourth time scale, and the triose phosphates pool together after the
eighth time scale. (D) Each time scale is analyzed independently and the interactions are defined in terms of the coefficients in the model and their
contribution to the cumulative sum of the modal coefficients. Analyzing all of the modes in this manner allows the identification of variables that are
dominant across multiple modes and identifying the time scales across which they are most active. Four fundamental subspaces are associated with J
and its mapping onto its time derivative. The key to temporal decomposition is the time-ordered removal of dynamic motions that lead to the step-
by-step increase in the null and left null spaces of J.
doi:10.1371/journal.pcbi.1000177.g001

Elucidating Network Pooling Structure
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of such an array for the human red cell. Since the array is

symmetric we can display both k and the modal coefficient ratio in

the pool (xi/xj) for each pair of concentrations; thus

N The lower left triangle of the tiled array indicates the time scale

k beyond which pooling occurs in the network. So for example,

G6P and F6P pool together after the fourth mode in the red

cell metabolic model. For the highly interconnected metabolic

network in the red cell, eventually, all of the metabolites pool

together.

N The upper right triangle of the tiled array contains plots show

the ratios of the modal coefficients (xi/xj) for each of the

concentration pairs at all of the time scales above k for that

pair. For many of the concentration pairs, the ratio remains

fairly constant (glycolytic pools, pentose phosphate pools, etc)

past a certain time scale showing the relative contribution of

the compounds to a pool.

N The pooling structure observed in Figure 3 is consistent with

the previous descriptions [2] and enable the simplification of

the network into equilibrium pools on fast time scales and

physiological ones on slower time scales (Figure 4).

Figure 2. Illustration of the progression correlation between two variables as fast time scales are removed. The set of dynamic
equations are linearized about a particular steady state. Applying a similarity transformation to the Jacobian, enables the calculation of the modal
matrix (depicted to the right). The rows of the matrix correspond to different time scales. When the ratios between two entries are constant, the two
metabolites pool together. After the second time scale, metabolites xi and xi+1 form an aggregate pool and after the fifth time scale, xi+2 joins the
pool. If the variables were compared across all time scales, no significant correlations would be observed. Hence, this simple example highlights the
need for a method to analyze correlations between metabolites with consideration of the characteristic time scales of the network.
doi:10.1371/journal.pcbi.1000177.g002

Table 1. Summary of properties of the various kinetic models, particularly the Jacobian matrices of the networks.

System Dimension Rank Pooling Conservation Pools Effective Dimensionality Time Scale Span

RBC 34 34 Complete 0 17 1.30E+10

Folate 10 9 Complete 1 6 4.88E+04

Yeast 20 20 Fragmented 0 13 7.50E+06

Pooling of the tiled modal arrays can be classified as complete (in which all elements pools together eventually) or fragmented. The number of conservation pools is
equal to the size of the left null space of the Jacobian. The effective dynamic dimensionality is the number of different time scales at which pooling occurs. The time
scale span is the ratio of the largest to smallest eigenvalue for each of the networks.
doi:10.1371/journal.pcbi.1000177.t001

Table 2. A comparison between the trade-offs for analyzing
the Jacobian around a particular steady state versus carrying
out dynamic simulations.

Jacobian Analysis Dynamic Simulations

Generalized results Conditions specific results

Scaleable Intractable as the number of variables
increase

A single set of calculations will
characterize a particular steady state

Resource intensive, requires many
simulations in order to characterize
network pooling

Linear regime near a particular
steady state

May move from one steady state to
another

The approach presented here for analysis of the Jacobian in order to
characterize network dynamics allows generalized, comprehensive elucidation
of dynamics around a particular steady state directly and in a scaleable manner.
In contrast, although the approach using dynamic simulations is not restricted
to a particular steady state, it is resource intensive and for larger networks it is
infeasible to characterize all of the different possible initial conditions, due to
combinatorial growth of the possible combinations.
doi:10.1371/journal.pcbi.1000177.t002

Elucidating Network Pooling Structure
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The time scale (k) for the formation of pools and the ratio between

a pair of concentrations are functions of three factors: network

stoichiometry (or topology), thermodynamics, and kinetic properties

of the transformations in the network. Viewing the dynamics of the

network in terms of the modal matrix and the pair-wise

concentration correlations on progressing time scales enables one

to consider the questions of (A) the thermodynamic versus kinetic

control of concentrations within the whole network and (B) the

delineation of kinetic versus topological decoupling in networks.

Steady state kinetic versus thermodynamic equilibrium

effects. The thermodynamic equilibrium pools of the network can

be seen in Figure S2. Comparison of these pools with those in Figure 1

distinguishes between the equilibrium state and the kinetically driven

steady state. In many cases such comparisons show a thermodynamic

basis for pool formation, such as the hexose phosphates, the pentose

phosphates, and the triose phosphates. For metabolite pairs that are

thermodynamically close (with regards to the Gibbs free energy of

formation), the kinetics presumably have been adjusted to be fast,

making such thermodynamically neutral events lead to reduction in

effective dynamic dimensionality. Deviations from such behavior are

however observed, such as with 1,3 DPG and 2,3 DPG. Although the

free energy of formation of these two must are close (as approximated

by the group contribution method [9]), 2,3DPG does not pool

together with 1,3DPG until the 31st mode (Figure 3). Hence the

kinetic and allosteric regulatory ‘‘control’’ dominates. This ‘‘control’’

has physiological significance because 2,3DPG can regulate the

binding affinity of hemoglobin for oxygen and is maintained at a

higher concentration than the glycolytic intermediates. Other

examples in which kinetic ‘‘control’’ dominates include ATP and

NADPH, ADP and NADH, and G6P and ADP.

Kinetic and topological decoupling. Two striking features

of the tiled array are (1) the pooling between the majority of the

compounds occurs on the slowest time scales and (2) the slopes for

many of these are horizontal or vertical lines, implying dynami-

cally independent behavior. This dynamically independent

behavior may result from a lack of connectivity (topological

Figure 3. Time scale hierarchy of metabolic pool formation in the human red blood cell. The lower left triangle indicates the modes after
which pooling occurs between the corresponding metabolites (one being the fastest time scale). The upper right triangle are plots of the slopes
between the two metabolites for the remaining time scales after pool formation (the origin is always included in these approximations of the slopes),
color coded according to the time scale at which pooling occurs. Some of the metabolites such as the phosphoglycerates have fairly constant ratios
once they join aggregate pools. Others, such as ATP and ADP have varying ratios. These ratios change when interactions with other pathways
dominate on subsequent time scales, for example when glycolytic intermediates dominate on one time scale and nucleotide salvage metabolites
dominate on another, the respective interactions between ATP and ADP are affected differently. The cutoff value for cos(h) was 0.9. Abbreviations:
G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; FDP. Fructose-1,6-bisphosphate; DHAP, Dihydroxyacetone phosphate; GAP, Glyceraldehyde-3-
phosphate; DPG13. 1,3-bisphosphoglycerate; DPG23, 2,3-bisphosphoglycerate; PG3, 3-phosphoglycerate; PG2, 2-phosphoglycerate; PEP,
Phosphoenolpyruvate; PYR, Pyruvate; LAC. Lactate; NADH, Nicotinamide adenine dinucleotide (reduced); GL6P. 6-Phospho-D-glucono-1,5-lactone;
GO6P, 6-Phospho-D-gluconate; NADPH, Nicotinamide adenine dinucleotide phosphate (reduced); GSH, glutathione (reduced); RU5P, Ribulose-5-
phosphate; R5P, Ribose-5-phosphate; X5P, Xylulose-5-phosphate; S7P, Sedoheptulose-7-phosphate; E4P, Erythrose-4-phosphate; ADO, Adenosine;
AMP, Adenosine monophosphate; ADP, Adenosine diphosphate; ATP, Adenosine triphohsphate; PRPP, 5-Phospho-D-ribose 1-diphosphate; IMP,
Inosine monophosphate; INO, Inosine; HX, Hypoxanthine; R1P, Ribose-1-phosphate; ADE, Adenine; NAI, Sodium; and KI, Potassium.
doi:10.1371/journal.pcbi.1000177.g003

Elucidating Network Pooling Structure
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decoupling) or from independent kinetics (e.g., kinetic decoupling

resulting from a zero order rate law). Thus, if compounds are

detected to be topologically decoupled in the tiling array they are

expected to dominate a particular mode.

A kinetic or topologically decoupled compound will undergo the

largest changes in concentration and interactions with other

compounds during those time scales on which it plays a dominant

role the modes. After these time scales have been passed,

concentration changes are likely to be less significant and the

compounds could be viewed as joining an aggregate pool, but may

not be in a fixed ratio as would be dictated through strictly

thermodynamic or kinetic coupling.

Networks that are tightly connected in terms of stoichiometry

and kinetics will result in complete pooling of all metabolites on

the slowest time scales, which is seen in large part in the red cell

(Figure 1). There are examples of effectively uncoupled metabo-

lites in this model however. Sodium and potassium for example

are uncoupled from all metabolites except for the adenosine

phosphates, which results from topological decoupling, since the

only metabolites these ions interact with in the model are ATP and

ADP via the Na/K ATPase. In contrast, pyruvate and lactate are

decoupled from the rest of glycolysis, even though they are

topologically connected to some of them, thus the decoupling is

driven by kinetic effects.

The tiled arrays can be used to define the ‘effective dynamic

dimensionality’ of the models by counting the number of different

time scales during which two or more variables form an aggregate

pool. For the networks considered, the effective dynamic dimension-

ality reduced the dimension by one-third to one-half (see Table 1).

The tiled pooling array for folate metabolism was computed

(Figure 5). There were 7 independent time scales in the modal

matrix and one conserved folate moiety pool from the left null

space. From the array it is observed that the folate carrier branch

Figure 4. Converting human red cell metabolic network map into lumped pools according to time scale decomposition (adapted
from [26]). Pooling on fast time scales define the chemical equilibrium pools and on slower time scales the physiological pools.
doi:10.1371/journal.pcbi.1000177.g004

Figure 5. Tiled array of the hierarchical pool formation for
human folate metabolism (same layout and color coding as in
Figure 3). Abbreviations: 5MTHF, 5-methyltetrahydrofolate; THF,
tetrahydrofolate; DHF, dihydrofolate; CH2F, 5,10-methylenetrahydrofo-
late; CHF, 5,10-methenyltetrahydrofolate; 10FTHF, 10-formyltetrahydro-
folate; MET, methionine; SAM, S-adenosylmethionine; SAH, S-adenosyl-
homocysteine; and HCY, homocysteine.
doi:10.1371/journal.pcbi.1000177.g005

Elucidating Network Pooling Structure
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(5MTHF, THF, DHF, CH2F, CHF, 10FTHF) of the network and

the methionine metabolism branch (MET, SAM, SAH, HCY) of

the network act fairly independently dynamically. S-adenosylme-

thionine (SAM) is the primary metabolite which joins the

interactions between the two branches. In order to identify if

these interactions are topologically driven, kinetically driven, or

combinations of both, one can plot the modes in which these

interactions are most significant (see Material and Methods).

Figure 6 depicts the primary interactions on the slowest mode in

the network. It can be seen that SAM is not directly topologically

coupled to the folate branch, so the interactions between the two

branches, mediated by SAM is driven by kinetic effects.

Additionally, note that although they pool together, SAM moves

in opposition to the folate carriers. The folate network is depicted

in Figure 7A and the progression of pooling over time is illustrated

in Figure 7B. On time scales slower than the minute time scales

(the sixth mode corresponds to ,6 minutes) the network boils

down to interactions between the folate pool and the methionine

pool. So on physiologically relevant time scales, the various

possible interactions depicted in Figure 7A simplify to shifting

between two carrier pools.

The tiled pooling array for the yeast glycolytic pathway was

computed (Figure 8). The pooling structure of the glycolytic pathway

is very similar to pool formation in the red cell, with glycolytic

intermediates aggregating together on the faster time scales. The

Figure 6. An example of a graphical overlay of topological and
kinetic data for the dominant interacting metabolites for a
particular mode. The slowest mode in the folate network (,30 mi-
nute time scale) is shown. The green and red shaded elements reflect
the dynamic interactions between the metabolites on the 30 minute
time scale (the colors reflect positive and negative entries, respectively).
The blue lines indicate topological connectivity (i.e. from the
stoichiometric matrix).
doi:10.1371/journal.pcbi.1000177.g006

Figure 7. Human folate metabolism and hierarchical simplification into aggregate pools. (A) A map of the folate network described by
[23]. (B) An illustration of progressive pool formation across the first 4 time scales for the folate network based on the results from Figure 5. Beyond
the first time scale pools form between CHF and CH2F; and 5MTHF, 10FTHF, SAM; and MET and SAH. DHF and THF form a pool beyond the second
time scale. Beyond the third time scale CH2F/CHF join the 5MTHF/10FTHF/SAM pool. Beyond the fourth time scale HCY joins the MET/SAH pool.
Ultimately, on time scales on the order of a minute and slower, interactions between the pools of folate carriers and methionine metabolites interact.
doi:10.1371/journal.pcbi.1000177.g007

Elucidating Network Pooling Structure
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adenosine phosphates also pool together very quickly. A feature of

the tiled array not observed with the other models considered is

fragmentation of the pooling structure. This implies that unlike the

other two models considered, all of the metabolites do not eventually

move together in fixed ratios on the slowest time scales. These effects

can be driven by topological properties or kinetic properties of the

network as well. Comparing the topological versus kinetic

interactions in a graphical format (not shown) illustrates that the

lack of interactions by acetate (ACA) and cyanide (CNX) with the

other components in the network are due to topological constraints.

The fragmented pooling reflects the fact that interactions between

ACA and CNX and the rest of the network can only occur during

particular time scales. These constraints however dictate much of the

overall behavior of the network. The fragmented pooling observed in

Figure 8 result in a simplified view of the network built around the

transporters, as seen in Figure 9.

Taken together, in this study we: (1) developed top-down

approaches for the computationally driven delineation of pools, (2)

showed how to distinguish between topological, kinetic and

thermodynamic basis for pool formation, and (3) applied the methods

to analyze the dynamic structure of metabolic network models in

yeast and humans. The application of these methods enabled the

simplification of the networks based on the dynamic pooling of

metabolites on progressive time scales and the identification of the key

metabolic interactions on the slower time scales.

There were some observations in the results worth pointing to

suggest further areas worthy of investigation. The pooling ratios

between metabolites are not always constant and metabolites that

pool early on are more likely to have changing ratios on

subsequent time scales. Furthermore, metabolites that are

connected to multiple pathways are likely to have change ratios

even after they begin pooling. This is observed for ATP and ADP

Figure 8. Tiled array of the hierarchical pool formation for the yeast glycolytic pathway (same layout and color coding as in
Figure 3). Glycolytic intermediates and adenosine phosphates pool together on fast time scales. Fragmented pooling is also observed (i.e. there
were 0 entries in the slowest mode, indicating that on the slowest time scale, all of the components in the network do not move together in a
lumped pool). GLC, intracellular glucose; GLCX, extracellular glucose; G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-
bisphosphate; GAP, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; GLYC, intracellular glycerol; GLYCX, extracellular glycerol; BPG,
1,3-bisphosphoglycerate; PEP, phosphoenol pyruvate; PYR, pyruvate; ACA, intracellular acetaldehyde; ACAx, extracellular acetaldehyde; EtOH,
intracellular ethanol; EtOHx, extracellular ethanol; NADH, nicotinamide adenine dinucleotide (reduced form); ATP. adenosine triphosphate; ADP,
adenosine diphosphate.
doi:10.1371/journal.pcbi.1000177.g008

Figure 9. Simplified model of the yeast glycolytic pathway
dictated by the fragmented pooling of the network. The
glycolytic and redox potentials are similar to those in the red cell.
The adenosine phosphate potential is only composed of ATP and ADP.
The NADH/NAD ratio determines the redox interactions with glycolysis,
glycogen, and conversion between acetaldehyde and ethanol.
doi:10.1371/journal.pcbi.1000177.g009
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in the human red blood cell (Figure 3). These metabolites interact

with glycolysis, the pentose phosphates, and the nucleotide salvage

pathway and these interactions vary as the time scales are

dominated by the different pathways. Conversely, the ATP/ADP

ratio is fairly fixed and uniform in the yeast glycolytic model. This

appears to be a result of the fact that there is only one major

pathway that interacts with ATP and ADP. Further investigations

into when and why pooling ratios change may lead to a richer

appreciation of the integrated dynamic structure of metabolic

networks. Additionally it was observed that the pooling structure

may changes about different steady states. For example, in the

human red cell changing the magnitude of the energy load will

shift the time scale of the ATPase and hence alter the pooling of

the network (not shown). This is also an area in which further

investigation will yield an appreciation of altered dynamics

corresponding to different steady state conditions.

A growing number of large-scale kinetic models of biochemical

reaction networks are becoming available (e.g. http://www.cellml.

org/, http://www.siliconcell.net/). There are also growing compi-

lations of information regarding enzyme kinetics (e.g., http://www.

brenda-enzymes.info/, http://sabio.villa-bosch.de/SABIORK/),

which portend the development and availability of more kinetic

models. Since dynamics simulations are not a viable approach for the

comprehensive characterization of pool formation for larger models,

there is a need for analysis based approaches to identify these general

characteristics in metabolic networks.

The pooling approaches developed here were based on

identifying the dynamically independent times scales and their

corresponding modes. The principle pooling approach considered

here was based on a particular calculation given by the matrix

product,

M{1
� �T

M{1 ð7Þ

In order to identify pools of metabolites, it was necessary to

sequentially eliminate rows and recalculate the product, however it

is worth noting that the matrix product in Equation 7 reflects the

‘dynamic connectivity’ of the network. These collective analyses of

the modal matrix allowed the subsequent identification of pools,

effective dimensionality reduction, differentiation between kinetic

and topological properties, and characterizing the component

condition numbers and strength of interactions between compo-

nents in the network.

There has been an increased interest in the analysis of the

intrinsic characteristics of the growing number of available large-

scale kinetic biological network models [10–14]. The systematic,

algorithmic approach described herein demonstrated a general

approach to pool identification, thus demonstrating how top-down

analyses can be used to identify the hierarchical interactions

between components over the span of time scales and assist in the

simplification, analysis, and interpretation of network capabilities.

This type of an analysis thus helps to link the component

interactions to the overall physiological functions and how such

functions can be affected by genetic parameters and how they

respond to environmental conditions.

Recently, with the continued development of technologies and

experimental procedures to calculate cellular fluxes using iso-

topomer data and to carry out quantitative metabolomic

measurements on a larger scale [15–19], a more complete

biochemical characterization of cells has become possible. The

approach and analysis presented herein, using the Jacobian to

characterize network and cellular level dynamics will benefit from

and serve to benefit the utility of these large datasets. Measure-

ments of the fluxome and metabolome at various time points,

under different perturbations can be analyzed in terms of overall

dynamics and used to validate the model when computed and

measured results agree and alternatively used to highlight areas

where further revisions are needed when they disagree. This will

conceivably add a new dimension to the analysis of metabolism on

the genome-scale.

Materials and Methods

The method developed above was developed, tested, and

implemented in Mathematica (Wolfram Research, Chicago, IL)

version 5.2. The models analyzed herein: the model of human red

cell metabolism [20–22], human folate metabolism [23], and yeast

glycolysis [24] were implemented in Mathematica.

For each model, a stable steady state was identified by integrating

the equations over time until the concentration variables no longer

changed (error ,1610210, see Table S1). The Jacobian was then

calculated symbolically at that steady state condition.

Temporal decomposition was carried out as described in the

Results/Discussion section. Briefly for a general case, a similarity

transformation [8] of a square matrix, A, is given by A = DLD21

in which D is invertible (by definition) and L is a diagonal matrix.

D is an orthogonal matrix composed of eigenvectors correspond-

ing to the entries of L (the eigenvalues). When the Jacobian matrix

for a first order differential equation with respect to time is

decomposed in this manner, the negative reciprocals of the

eigenvalues correspond to the characteristic time scales for the

corresponding modes [8] (this is immediately clear upon

integration of Equation 4). All three of the models considered

here exhibited at least one pair of complex conjugate eigenvalues

at the steady states considered, hence the corresponding complex

conjugate modes were combined in order to eliminate oscillating

motions.

The calculations for the correlations across progressive time

scales were carried out as described in Results/Discussion. Once

the modal matrix, M21, was calculated, all pairwise angles

between the metabolites (columns of the modal matrix) were

calculated (see Equation 5). The modal matrix is rank ordered

from the fastest (k = 1) to the slowest (k = n) modes. The angles

between the columns of the modal matrix were recalculated n21

more times, in which an additional row of the modal matrix is

zeroed out at each iteration. For example at the third iteration

(k = 2), the first two rows of the modal matrix have been zeroed

out. The spectrum of correlation cut-off values for pooling were

considered from 10% to 99%. Cut-off values in the range 85% to

95% resulted in pooling of variables most consistent with the

known pooling structures of the human red cell [2,5]. A value of

90% was used as the correlation cutoff for the red cell, folate, and

yeast glycolysis models. The angle between two zero vectors was

classified as undefined and the angle between any zero vector and

another vector with at least one non-zero element was defined as

90u. Fragmentation of the pooling structure, in the strictest sense,

was identified by any 0 entry (or ,,10213) in the final row of the

metabolite modal matrix.

Values for the Gibbs standard free energies of formation for the

metabolites in the human red cell model were used from [25].

Supporting Information

Figure S1 Illustrative example of time scale decomposition. An

Illustrative example of modal decomposition for a toy network.

The dynamics of 3 reactions involving 6 metabolites is analyzed in

terms of the Jacobian matrix. Time scale decomposition is carried
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out along with simulations and determination of the pooling

structure for this toy example.

Found at: doi:10.1371/journal.pcbi.1000177.s001 (0.09 MB PDF)

Figure S2 Standard free energy of formation ratios for

metabolites in the human red blood cell. The lower left triangle

of the tiled array depicts a matrix with the ratios of the Gibbs free

energy of formation between the metabolites in the red blood cell

metabolic network. Ratios below 0.85 or above 1.15 were filtered

out and not shown. The remaining entries (blackened entries)

indicate expected pools if thermodynamic considerations alone

determined the behavior of the network in a closed system.

Found at: doi:10.1371/journal.pcbi.1000177.s002 (0.06 MB PDF)

Table S1 Steady state concentrations and fluxes for folate, yeast,

and red blood cell.

Found at: doi:10.1371/journal.pcbi.1000177.s003 (0.02 MB XLS)
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